Merge git://git.kernel.org/pub/scm/linux/kernel/git/wim/linux-2.6-watchdog
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include "internal.h"
40
41 /*
42 * Usage:
43 * dcache->d_inode->i_lock protects:
44 * - i_dentry, d_alias, d_inode of aliases
45 * dcache_hash_bucket lock protects:
46 * - the dcache hash table
47 * s_anon bl list spinlock protects:
48 * - the s_anon list (see __d_drop)
49 * dcache_lru_lock protects:
50 * - the dcache lru lists and counters
51 * d_lock protects:
52 * - d_flags
53 * - d_name
54 * - d_lru
55 * - d_count
56 * - d_unhashed()
57 * - d_parent and d_subdirs
58 * - childrens' d_child and d_parent
59 * - d_alias, d_inode
60 *
61 * Ordering:
62 * dentry->d_inode->i_lock
63 * dentry->d_lock
64 * dcache_lru_lock
65 * dcache_hash_bucket lock
66 * s_anon lock
67 *
68 * If there is an ancestor relationship:
69 * dentry->d_parent->...->d_parent->d_lock
70 * ...
71 * dentry->d_parent->d_lock
72 * dentry->d_lock
73 *
74 * If no ancestor relationship:
75 * if (dentry1 < dentry2)
76 * dentry1->d_lock
77 * dentry2->d_lock
78 */
79 int sysctl_vfs_cache_pressure __read_mostly = 100;
80 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
81
82 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
84
85 EXPORT_SYMBOL(rename_lock);
86
87 static struct kmem_cache *dentry_cache __read_mostly;
88
89 /*
90 * This is the single most critical data structure when it comes
91 * to the dcache: the hashtable for lookups. Somebody should try
92 * to make this good - I've just made it work.
93 *
94 * This hash-function tries to avoid losing too many bits of hash
95 * information, yet avoid using a prime hash-size or similar.
96 */
97 #define D_HASHBITS d_hash_shift
98 #define D_HASHMASK d_hash_mask
99
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
102
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
104
105 static inline struct hlist_bl_head *d_hash(struct dentry *parent,
106 unsigned long hash)
107 {
108 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
109 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
110 return dentry_hashtable + (hash & D_HASHMASK);
111 }
112
113 /* Statistics gathering. */
114 struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
116 };
117
118 static DEFINE_PER_CPU(unsigned int, nr_dentry);
119
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121 static int get_nr_dentry(void)
122 {
123 int i;
124 int sum = 0;
125 for_each_possible_cpu(i)
126 sum += per_cpu(nr_dentry, i);
127 return sum < 0 ? 0 : sum;
128 }
129
130 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
131 size_t *lenp, loff_t *ppos)
132 {
133 dentry_stat.nr_dentry = get_nr_dentry();
134 return proc_dointvec(table, write, buffer, lenp, ppos);
135 }
136 #endif
137
138 static void __d_free(struct rcu_head *head)
139 {
140 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
141
142 WARN_ON(!list_empty(&dentry->d_alias));
143 if (dname_external(dentry))
144 kfree(dentry->d_name.name);
145 kmem_cache_free(dentry_cache, dentry);
146 }
147
148 /*
149 * no locks, please.
150 */
151 static void d_free(struct dentry *dentry)
152 {
153 BUG_ON(dentry->d_count);
154 this_cpu_dec(nr_dentry);
155 if (dentry->d_op && dentry->d_op->d_release)
156 dentry->d_op->d_release(dentry);
157
158 /* if dentry was never visible to RCU, immediate free is OK */
159 if (!(dentry->d_flags & DCACHE_RCUACCESS))
160 __d_free(&dentry->d_u.d_rcu);
161 else
162 call_rcu(&dentry->d_u.d_rcu, __d_free);
163 }
164
165 /**
166 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
167 * @dentry: the target dentry
168 * After this call, in-progress rcu-walk path lookup will fail. This
169 * should be called after unhashing, and after changing d_inode (if
170 * the dentry has not already been unhashed).
171 */
172 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
173 {
174 assert_spin_locked(&dentry->d_lock);
175 /* Go through a barrier */
176 write_seqcount_barrier(&dentry->d_seq);
177 }
178
179 /*
180 * Release the dentry's inode, using the filesystem
181 * d_iput() operation if defined. Dentry has no refcount
182 * and is unhashed.
183 */
184 static void dentry_iput(struct dentry * dentry)
185 __releases(dentry->d_lock)
186 __releases(dentry->d_inode->i_lock)
187 {
188 struct inode *inode = dentry->d_inode;
189 if (inode) {
190 dentry->d_inode = NULL;
191 list_del_init(&dentry->d_alias);
192 spin_unlock(&dentry->d_lock);
193 spin_unlock(&inode->i_lock);
194 if (!inode->i_nlink)
195 fsnotify_inoderemove(inode);
196 if (dentry->d_op && dentry->d_op->d_iput)
197 dentry->d_op->d_iput(dentry, inode);
198 else
199 iput(inode);
200 } else {
201 spin_unlock(&dentry->d_lock);
202 }
203 }
204
205 /*
206 * Release the dentry's inode, using the filesystem
207 * d_iput() operation if defined. dentry remains in-use.
208 */
209 static void dentry_unlink_inode(struct dentry * dentry)
210 __releases(dentry->d_lock)
211 __releases(dentry->d_inode->i_lock)
212 {
213 struct inode *inode = dentry->d_inode;
214 dentry->d_inode = NULL;
215 list_del_init(&dentry->d_alias);
216 dentry_rcuwalk_barrier(dentry);
217 spin_unlock(&dentry->d_lock);
218 spin_unlock(&inode->i_lock);
219 if (!inode->i_nlink)
220 fsnotify_inoderemove(inode);
221 if (dentry->d_op && dentry->d_op->d_iput)
222 dentry->d_op->d_iput(dentry, inode);
223 else
224 iput(inode);
225 }
226
227 /*
228 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
229 */
230 static void dentry_lru_add(struct dentry *dentry)
231 {
232 if (list_empty(&dentry->d_lru)) {
233 spin_lock(&dcache_lru_lock);
234 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
235 dentry->d_sb->s_nr_dentry_unused++;
236 dentry_stat.nr_unused++;
237 spin_unlock(&dcache_lru_lock);
238 }
239 }
240
241 static void __dentry_lru_del(struct dentry *dentry)
242 {
243 list_del_init(&dentry->d_lru);
244 dentry->d_sb->s_nr_dentry_unused--;
245 dentry_stat.nr_unused--;
246 }
247
248 static void dentry_lru_del(struct dentry *dentry)
249 {
250 if (!list_empty(&dentry->d_lru)) {
251 spin_lock(&dcache_lru_lock);
252 __dentry_lru_del(dentry);
253 spin_unlock(&dcache_lru_lock);
254 }
255 }
256
257 static void dentry_lru_move_tail(struct dentry *dentry)
258 {
259 spin_lock(&dcache_lru_lock);
260 if (list_empty(&dentry->d_lru)) {
261 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
262 dentry->d_sb->s_nr_dentry_unused++;
263 dentry_stat.nr_unused++;
264 } else {
265 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
266 }
267 spin_unlock(&dcache_lru_lock);
268 }
269
270 /**
271 * d_kill - kill dentry and return parent
272 * @dentry: dentry to kill
273 * @parent: parent dentry
274 *
275 * The dentry must already be unhashed and removed from the LRU.
276 *
277 * If this is the root of the dentry tree, return NULL.
278 *
279 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
280 * d_kill.
281 */
282 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
283 __releases(dentry->d_lock)
284 __releases(parent->d_lock)
285 __releases(dentry->d_inode->i_lock)
286 {
287 list_del(&dentry->d_u.d_child);
288 /*
289 * Inform try_to_ascend() that we are no longer attached to the
290 * dentry tree
291 */
292 dentry->d_flags |= DCACHE_DISCONNECTED;
293 if (parent)
294 spin_unlock(&parent->d_lock);
295 dentry_iput(dentry);
296 /*
297 * dentry_iput drops the locks, at which point nobody (except
298 * transient RCU lookups) can reach this dentry.
299 */
300 d_free(dentry);
301 return parent;
302 }
303
304 /**
305 * d_drop - drop a dentry
306 * @dentry: dentry to drop
307 *
308 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
309 * be found through a VFS lookup any more. Note that this is different from
310 * deleting the dentry - d_delete will try to mark the dentry negative if
311 * possible, giving a successful _negative_ lookup, while d_drop will
312 * just make the cache lookup fail.
313 *
314 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
315 * reason (NFS timeouts or autofs deletes).
316 *
317 * __d_drop requires dentry->d_lock.
318 */
319 void __d_drop(struct dentry *dentry)
320 {
321 if (!d_unhashed(dentry)) {
322 struct hlist_bl_head *b;
323 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
324 b = &dentry->d_sb->s_anon;
325 else
326 b = d_hash(dentry->d_parent, dentry->d_name.hash);
327
328 hlist_bl_lock(b);
329 __hlist_bl_del(&dentry->d_hash);
330 dentry->d_hash.pprev = NULL;
331 hlist_bl_unlock(b);
332
333 dentry_rcuwalk_barrier(dentry);
334 }
335 }
336 EXPORT_SYMBOL(__d_drop);
337
338 void d_drop(struct dentry *dentry)
339 {
340 spin_lock(&dentry->d_lock);
341 __d_drop(dentry);
342 spin_unlock(&dentry->d_lock);
343 }
344 EXPORT_SYMBOL(d_drop);
345
346 /*
347 * Finish off a dentry we've decided to kill.
348 * dentry->d_lock must be held, returns with it unlocked.
349 * If ref is non-zero, then decrement the refcount too.
350 * Returns dentry requiring refcount drop, or NULL if we're done.
351 */
352 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
353 __releases(dentry->d_lock)
354 {
355 struct inode *inode;
356 struct dentry *parent;
357
358 inode = dentry->d_inode;
359 if (inode && !spin_trylock(&inode->i_lock)) {
360 relock:
361 spin_unlock(&dentry->d_lock);
362 cpu_relax();
363 return dentry; /* try again with same dentry */
364 }
365 if (IS_ROOT(dentry))
366 parent = NULL;
367 else
368 parent = dentry->d_parent;
369 if (parent && !spin_trylock(&parent->d_lock)) {
370 if (inode)
371 spin_unlock(&inode->i_lock);
372 goto relock;
373 }
374
375 if (ref)
376 dentry->d_count--;
377 /* if dentry was on the d_lru list delete it from there */
378 dentry_lru_del(dentry);
379 /* if it was on the hash then remove it */
380 __d_drop(dentry);
381 return d_kill(dentry, parent);
382 }
383
384 /*
385 * This is dput
386 *
387 * This is complicated by the fact that we do not want to put
388 * dentries that are no longer on any hash chain on the unused
389 * list: we'd much rather just get rid of them immediately.
390 *
391 * However, that implies that we have to traverse the dentry
392 * tree upwards to the parents which might _also_ now be
393 * scheduled for deletion (it may have been only waiting for
394 * its last child to go away).
395 *
396 * This tail recursion is done by hand as we don't want to depend
397 * on the compiler to always get this right (gcc generally doesn't).
398 * Real recursion would eat up our stack space.
399 */
400
401 /*
402 * dput - release a dentry
403 * @dentry: dentry to release
404 *
405 * Release a dentry. This will drop the usage count and if appropriate
406 * call the dentry unlink method as well as removing it from the queues and
407 * releasing its resources. If the parent dentries were scheduled for release
408 * they too may now get deleted.
409 */
410 void dput(struct dentry *dentry)
411 {
412 if (!dentry)
413 return;
414
415 repeat:
416 if (dentry->d_count == 1)
417 might_sleep();
418 spin_lock(&dentry->d_lock);
419 BUG_ON(!dentry->d_count);
420 if (dentry->d_count > 1) {
421 dentry->d_count--;
422 spin_unlock(&dentry->d_lock);
423 return;
424 }
425
426 if (dentry->d_flags & DCACHE_OP_DELETE) {
427 if (dentry->d_op->d_delete(dentry))
428 goto kill_it;
429 }
430
431 /* Unreachable? Get rid of it */
432 if (d_unhashed(dentry))
433 goto kill_it;
434
435 /* Otherwise leave it cached and ensure it's on the LRU */
436 dentry->d_flags |= DCACHE_REFERENCED;
437 dentry_lru_add(dentry);
438
439 dentry->d_count--;
440 spin_unlock(&dentry->d_lock);
441 return;
442
443 kill_it:
444 dentry = dentry_kill(dentry, 1);
445 if (dentry)
446 goto repeat;
447 }
448 EXPORT_SYMBOL(dput);
449
450 /**
451 * d_invalidate - invalidate a dentry
452 * @dentry: dentry to invalidate
453 *
454 * Try to invalidate the dentry if it turns out to be
455 * possible. If there are other dentries that can be
456 * reached through this one we can't delete it and we
457 * return -EBUSY. On success we return 0.
458 *
459 * no dcache lock.
460 */
461
462 int d_invalidate(struct dentry * dentry)
463 {
464 /*
465 * If it's already been dropped, return OK.
466 */
467 spin_lock(&dentry->d_lock);
468 if (d_unhashed(dentry)) {
469 spin_unlock(&dentry->d_lock);
470 return 0;
471 }
472 /*
473 * Check whether to do a partial shrink_dcache
474 * to get rid of unused child entries.
475 */
476 if (!list_empty(&dentry->d_subdirs)) {
477 spin_unlock(&dentry->d_lock);
478 shrink_dcache_parent(dentry);
479 spin_lock(&dentry->d_lock);
480 }
481
482 /*
483 * Somebody else still using it?
484 *
485 * If it's a directory, we can't drop it
486 * for fear of somebody re-populating it
487 * with children (even though dropping it
488 * would make it unreachable from the root,
489 * we might still populate it if it was a
490 * working directory or similar).
491 */
492 if (dentry->d_count > 1) {
493 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
494 spin_unlock(&dentry->d_lock);
495 return -EBUSY;
496 }
497 }
498
499 __d_drop(dentry);
500 spin_unlock(&dentry->d_lock);
501 return 0;
502 }
503 EXPORT_SYMBOL(d_invalidate);
504
505 /* This must be called with d_lock held */
506 static inline void __dget_dlock(struct dentry *dentry)
507 {
508 dentry->d_count++;
509 }
510
511 static inline void __dget(struct dentry *dentry)
512 {
513 spin_lock(&dentry->d_lock);
514 __dget_dlock(dentry);
515 spin_unlock(&dentry->d_lock);
516 }
517
518 struct dentry *dget_parent(struct dentry *dentry)
519 {
520 struct dentry *ret;
521
522 repeat:
523 /*
524 * Don't need rcu_dereference because we re-check it was correct under
525 * the lock.
526 */
527 rcu_read_lock();
528 ret = dentry->d_parent;
529 if (!ret) {
530 rcu_read_unlock();
531 goto out;
532 }
533 spin_lock(&ret->d_lock);
534 if (unlikely(ret != dentry->d_parent)) {
535 spin_unlock(&ret->d_lock);
536 rcu_read_unlock();
537 goto repeat;
538 }
539 rcu_read_unlock();
540 BUG_ON(!ret->d_count);
541 ret->d_count++;
542 spin_unlock(&ret->d_lock);
543 out:
544 return ret;
545 }
546 EXPORT_SYMBOL(dget_parent);
547
548 /**
549 * d_find_alias - grab a hashed alias of inode
550 * @inode: inode in question
551 * @want_discon: flag, used by d_splice_alias, to request
552 * that only a DISCONNECTED alias be returned.
553 *
554 * If inode has a hashed alias, or is a directory and has any alias,
555 * acquire the reference to alias and return it. Otherwise return NULL.
556 * Notice that if inode is a directory there can be only one alias and
557 * it can be unhashed only if it has no children, or if it is the root
558 * of a filesystem.
559 *
560 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
561 * any other hashed alias over that one unless @want_discon is set,
562 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
563 */
564 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
565 {
566 struct dentry *alias, *discon_alias;
567
568 again:
569 discon_alias = NULL;
570 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
571 spin_lock(&alias->d_lock);
572 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
573 if (IS_ROOT(alias) &&
574 (alias->d_flags & DCACHE_DISCONNECTED)) {
575 discon_alias = alias;
576 } else if (!want_discon) {
577 __dget_dlock(alias);
578 spin_unlock(&alias->d_lock);
579 return alias;
580 }
581 }
582 spin_unlock(&alias->d_lock);
583 }
584 if (discon_alias) {
585 alias = discon_alias;
586 spin_lock(&alias->d_lock);
587 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
588 if (IS_ROOT(alias) &&
589 (alias->d_flags & DCACHE_DISCONNECTED)) {
590 __dget_dlock(alias);
591 spin_unlock(&alias->d_lock);
592 return alias;
593 }
594 }
595 spin_unlock(&alias->d_lock);
596 goto again;
597 }
598 return NULL;
599 }
600
601 struct dentry *d_find_alias(struct inode *inode)
602 {
603 struct dentry *de = NULL;
604
605 if (!list_empty(&inode->i_dentry)) {
606 spin_lock(&inode->i_lock);
607 de = __d_find_alias(inode, 0);
608 spin_unlock(&inode->i_lock);
609 }
610 return de;
611 }
612 EXPORT_SYMBOL(d_find_alias);
613
614 /*
615 * Try to kill dentries associated with this inode.
616 * WARNING: you must own a reference to inode.
617 */
618 void d_prune_aliases(struct inode *inode)
619 {
620 struct dentry *dentry;
621 restart:
622 spin_lock(&inode->i_lock);
623 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
624 spin_lock(&dentry->d_lock);
625 if (!dentry->d_count) {
626 __dget_dlock(dentry);
627 __d_drop(dentry);
628 spin_unlock(&dentry->d_lock);
629 spin_unlock(&inode->i_lock);
630 dput(dentry);
631 goto restart;
632 }
633 spin_unlock(&dentry->d_lock);
634 }
635 spin_unlock(&inode->i_lock);
636 }
637 EXPORT_SYMBOL(d_prune_aliases);
638
639 /*
640 * Try to throw away a dentry - free the inode, dput the parent.
641 * Requires dentry->d_lock is held, and dentry->d_count == 0.
642 * Releases dentry->d_lock.
643 *
644 * This may fail if locks cannot be acquired no problem, just try again.
645 */
646 static void try_prune_one_dentry(struct dentry *dentry)
647 __releases(dentry->d_lock)
648 {
649 struct dentry *parent;
650
651 parent = dentry_kill(dentry, 0);
652 /*
653 * If dentry_kill returns NULL, we have nothing more to do.
654 * if it returns the same dentry, trylocks failed. In either
655 * case, just loop again.
656 *
657 * Otherwise, we need to prune ancestors too. This is necessary
658 * to prevent quadratic behavior of shrink_dcache_parent(), but
659 * is also expected to be beneficial in reducing dentry cache
660 * fragmentation.
661 */
662 if (!parent)
663 return;
664 if (parent == dentry)
665 return;
666
667 /* Prune ancestors. */
668 dentry = parent;
669 while (dentry) {
670 spin_lock(&dentry->d_lock);
671 if (dentry->d_count > 1) {
672 dentry->d_count--;
673 spin_unlock(&dentry->d_lock);
674 return;
675 }
676 dentry = dentry_kill(dentry, 1);
677 }
678 }
679
680 static void shrink_dentry_list(struct list_head *list)
681 {
682 struct dentry *dentry;
683
684 rcu_read_lock();
685 for (;;) {
686 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
687 if (&dentry->d_lru == list)
688 break; /* empty */
689 spin_lock(&dentry->d_lock);
690 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
691 spin_unlock(&dentry->d_lock);
692 continue;
693 }
694
695 /*
696 * We found an inuse dentry which was not removed from
697 * the LRU because of laziness during lookup. Do not free
698 * it - just keep it off the LRU list.
699 */
700 if (dentry->d_count) {
701 dentry_lru_del(dentry);
702 spin_unlock(&dentry->d_lock);
703 continue;
704 }
705
706 rcu_read_unlock();
707
708 try_prune_one_dentry(dentry);
709
710 rcu_read_lock();
711 }
712 rcu_read_unlock();
713 }
714
715 /**
716 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
717 * @sb: superblock to shrink dentry LRU.
718 * @count: number of entries to prune
719 * @flags: flags to control the dentry processing
720 *
721 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
722 */
723 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
724 {
725 /* called from prune_dcache() and shrink_dcache_parent() */
726 struct dentry *dentry;
727 LIST_HEAD(referenced);
728 LIST_HEAD(tmp);
729 int cnt = *count;
730
731 relock:
732 spin_lock(&dcache_lru_lock);
733 while (!list_empty(&sb->s_dentry_lru)) {
734 dentry = list_entry(sb->s_dentry_lru.prev,
735 struct dentry, d_lru);
736 BUG_ON(dentry->d_sb != sb);
737
738 if (!spin_trylock(&dentry->d_lock)) {
739 spin_unlock(&dcache_lru_lock);
740 cpu_relax();
741 goto relock;
742 }
743
744 /*
745 * If we are honouring the DCACHE_REFERENCED flag and the
746 * dentry has this flag set, don't free it. Clear the flag
747 * and put it back on the LRU.
748 */
749 if (flags & DCACHE_REFERENCED &&
750 dentry->d_flags & DCACHE_REFERENCED) {
751 dentry->d_flags &= ~DCACHE_REFERENCED;
752 list_move(&dentry->d_lru, &referenced);
753 spin_unlock(&dentry->d_lock);
754 } else {
755 list_move_tail(&dentry->d_lru, &tmp);
756 spin_unlock(&dentry->d_lock);
757 if (!--cnt)
758 break;
759 }
760 cond_resched_lock(&dcache_lru_lock);
761 }
762 if (!list_empty(&referenced))
763 list_splice(&referenced, &sb->s_dentry_lru);
764 spin_unlock(&dcache_lru_lock);
765
766 shrink_dentry_list(&tmp);
767
768 *count = cnt;
769 }
770
771 /**
772 * prune_dcache - shrink the dcache
773 * @count: number of entries to try to free
774 *
775 * Shrink the dcache. This is done when we need more memory, or simply when we
776 * need to unmount something (at which point we need to unuse all dentries).
777 *
778 * This function may fail to free any resources if all the dentries are in use.
779 */
780 static void prune_dcache(int count)
781 {
782 struct super_block *sb, *p = NULL;
783 int w_count;
784 int unused = dentry_stat.nr_unused;
785 int prune_ratio;
786 int pruned;
787
788 if (unused == 0 || count == 0)
789 return;
790 if (count >= unused)
791 prune_ratio = 1;
792 else
793 prune_ratio = unused / count;
794 spin_lock(&sb_lock);
795 list_for_each_entry(sb, &super_blocks, s_list) {
796 if (list_empty(&sb->s_instances))
797 continue;
798 if (sb->s_nr_dentry_unused == 0)
799 continue;
800 sb->s_count++;
801 /* Now, we reclaim unused dentrins with fairness.
802 * We reclaim them same percentage from each superblock.
803 * We calculate number of dentries to scan on this sb
804 * as follows, but the implementation is arranged to avoid
805 * overflows:
806 * number of dentries to scan on this sb =
807 * count * (number of dentries on this sb /
808 * number of dentries in the machine)
809 */
810 spin_unlock(&sb_lock);
811 if (prune_ratio != 1)
812 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
813 else
814 w_count = sb->s_nr_dentry_unused;
815 pruned = w_count;
816 /*
817 * We need to be sure this filesystem isn't being unmounted,
818 * otherwise we could race with generic_shutdown_super(), and
819 * end up holding a reference to an inode while the filesystem
820 * is unmounted. So we try to get s_umount, and make sure
821 * s_root isn't NULL.
822 */
823 if (down_read_trylock(&sb->s_umount)) {
824 if ((sb->s_root != NULL) &&
825 (!list_empty(&sb->s_dentry_lru))) {
826 __shrink_dcache_sb(sb, &w_count,
827 DCACHE_REFERENCED);
828 pruned -= w_count;
829 }
830 up_read(&sb->s_umount);
831 }
832 spin_lock(&sb_lock);
833 if (p)
834 __put_super(p);
835 count -= pruned;
836 p = sb;
837 /* more work left to do? */
838 if (count <= 0)
839 break;
840 }
841 if (p)
842 __put_super(p);
843 spin_unlock(&sb_lock);
844 }
845
846 /**
847 * shrink_dcache_sb - shrink dcache for a superblock
848 * @sb: superblock
849 *
850 * Shrink the dcache for the specified super block. This is used to free
851 * the dcache before unmounting a file system.
852 */
853 void shrink_dcache_sb(struct super_block *sb)
854 {
855 LIST_HEAD(tmp);
856
857 spin_lock(&dcache_lru_lock);
858 while (!list_empty(&sb->s_dentry_lru)) {
859 list_splice_init(&sb->s_dentry_lru, &tmp);
860 spin_unlock(&dcache_lru_lock);
861 shrink_dentry_list(&tmp);
862 spin_lock(&dcache_lru_lock);
863 }
864 spin_unlock(&dcache_lru_lock);
865 }
866 EXPORT_SYMBOL(shrink_dcache_sb);
867
868 /*
869 * destroy a single subtree of dentries for unmount
870 * - see the comments on shrink_dcache_for_umount() for a description of the
871 * locking
872 */
873 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
874 {
875 struct dentry *parent;
876 unsigned detached = 0;
877
878 BUG_ON(!IS_ROOT(dentry));
879
880 /* detach this root from the system */
881 spin_lock(&dentry->d_lock);
882 dentry_lru_del(dentry);
883 __d_drop(dentry);
884 spin_unlock(&dentry->d_lock);
885
886 for (;;) {
887 /* descend to the first leaf in the current subtree */
888 while (!list_empty(&dentry->d_subdirs)) {
889 struct dentry *loop;
890
891 /* this is a branch with children - detach all of them
892 * from the system in one go */
893 spin_lock(&dentry->d_lock);
894 list_for_each_entry(loop, &dentry->d_subdirs,
895 d_u.d_child) {
896 spin_lock_nested(&loop->d_lock,
897 DENTRY_D_LOCK_NESTED);
898 dentry_lru_del(loop);
899 __d_drop(loop);
900 spin_unlock(&loop->d_lock);
901 }
902 spin_unlock(&dentry->d_lock);
903
904 /* move to the first child */
905 dentry = list_entry(dentry->d_subdirs.next,
906 struct dentry, d_u.d_child);
907 }
908
909 /* consume the dentries from this leaf up through its parents
910 * until we find one with children or run out altogether */
911 do {
912 struct inode *inode;
913
914 if (dentry->d_count != 0) {
915 printk(KERN_ERR
916 "BUG: Dentry %p{i=%lx,n=%s}"
917 " still in use (%d)"
918 " [unmount of %s %s]\n",
919 dentry,
920 dentry->d_inode ?
921 dentry->d_inode->i_ino : 0UL,
922 dentry->d_name.name,
923 dentry->d_count,
924 dentry->d_sb->s_type->name,
925 dentry->d_sb->s_id);
926 BUG();
927 }
928
929 if (IS_ROOT(dentry)) {
930 parent = NULL;
931 list_del(&dentry->d_u.d_child);
932 } else {
933 parent = dentry->d_parent;
934 spin_lock(&parent->d_lock);
935 parent->d_count--;
936 list_del(&dentry->d_u.d_child);
937 spin_unlock(&parent->d_lock);
938 }
939
940 detached++;
941
942 inode = dentry->d_inode;
943 if (inode) {
944 dentry->d_inode = NULL;
945 list_del_init(&dentry->d_alias);
946 if (dentry->d_op && dentry->d_op->d_iput)
947 dentry->d_op->d_iput(dentry, inode);
948 else
949 iput(inode);
950 }
951
952 d_free(dentry);
953
954 /* finished when we fall off the top of the tree,
955 * otherwise we ascend to the parent and move to the
956 * next sibling if there is one */
957 if (!parent)
958 return;
959 dentry = parent;
960 } while (list_empty(&dentry->d_subdirs));
961
962 dentry = list_entry(dentry->d_subdirs.next,
963 struct dentry, d_u.d_child);
964 }
965 }
966
967 /*
968 * destroy the dentries attached to a superblock on unmounting
969 * - we don't need to use dentry->d_lock because:
970 * - the superblock is detached from all mountings and open files, so the
971 * dentry trees will not be rearranged by the VFS
972 * - s_umount is write-locked, so the memory pressure shrinker will ignore
973 * any dentries belonging to this superblock that it comes across
974 * - the filesystem itself is no longer permitted to rearrange the dentries
975 * in this superblock
976 */
977 void shrink_dcache_for_umount(struct super_block *sb)
978 {
979 struct dentry *dentry;
980
981 if (down_read_trylock(&sb->s_umount))
982 BUG();
983
984 dentry = sb->s_root;
985 sb->s_root = NULL;
986 spin_lock(&dentry->d_lock);
987 dentry->d_count--;
988 spin_unlock(&dentry->d_lock);
989 shrink_dcache_for_umount_subtree(dentry);
990
991 while (!hlist_bl_empty(&sb->s_anon)) {
992 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
993 shrink_dcache_for_umount_subtree(dentry);
994 }
995 }
996
997 /*
998 * This tries to ascend one level of parenthood, but
999 * we can race with renaming, so we need to re-check
1000 * the parenthood after dropping the lock and check
1001 * that the sequence number still matches.
1002 */
1003 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1004 {
1005 struct dentry *new = old->d_parent;
1006
1007 rcu_read_lock();
1008 spin_unlock(&old->d_lock);
1009 spin_lock(&new->d_lock);
1010
1011 /*
1012 * might go back up the wrong parent if we have had a rename
1013 * or deletion
1014 */
1015 if (new != old->d_parent ||
1016 (old->d_flags & DCACHE_DISCONNECTED) ||
1017 (!locked && read_seqretry(&rename_lock, seq))) {
1018 spin_unlock(&new->d_lock);
1019 new = NULL;
1020 }
1021 rcu_read_unlock();
1022 return new;
1023 }
1024
1025
1026 /*
1027 * Search for at least 1 mount point in the dentry's subdirs.
1028 * We descend to the next level whenever the d_subdirs
1029 * list is non-empty and continue searching.
1030 */
1031
1032 /**
1033 * have_submounts - check for mounts over a dentry
1034 * @parent: dentry to check.
1035 *
1036 * Return true if the parent or its subdirectories contain
1037 * a mount point
1038 */
1039 int have_submounts(struct dentry *parent)
1040 {
1041 struct dentry *this_parent;
1042 struct list_head *next;
1043 unsigned seq;
1044 int locked = 0;
1045
1046 seq = read_seqbegin(&rename_lock);
1047 again:
1048 this_parent = parent;
1049
1050 if (d_mountpoint(parent))
1051 goto positive;
1052 spin_lock(&this_parent->d_lock);
1053 repeat:
1054 next = this_parent->d_subdirs.next;
1055 resume:
1056 while (next != &this_parent->d_subdirs) {
1057 struct list_head *tmp = next;
1058 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1059 next = tmp->next;
1060
1061 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1062 /* Have we found a mount point ? */
1063 if (d_mountpoint(dentry)) {
1064 spin_unlock(&dentry->d_lock);
1065 spin_unlock(&this_parent->d_lock);
1066 goto positive;
1067 }
1068 if (!list_empty(&dentry->d_subdirs)) {
1069 spin_unlock(&this_parent->d_lock);
1070 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1071 this_parent = dentry;
1072 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1073 goto repeat;
1074 }
1075 spin_unlock(&dentry->d_lock);
1076 }
1077 /*
1078 * All done at this level ... ascend and resume the search.
1079 */
1080 if (this_parent != parent) {
1081 struct dentry *child = this_parent;
1082 this_parent = try_to_ascend(this_parent, locked, seq);
1083 if (!this_parent)
1084 goto rename_retry;
1085 next = child->d_u.d_child.next;
1086 goto resume;
1087 }
1088 spin_unlock(&this_parent->d_lock);
1089 if (!locked && read_seqretry(&rename_lock, seq))
1090 goto rename_retry;
1091 if (locked)
1092 write_sequnlock(&rename_lock);
1093 return 0; /* No mount points found in tree */
1094 positive:
1095 if (!locked && read_seqretry(&rename_lock, seq))
1096 goto rename_retry;
1097 if (locked)
1098 write_sequnlock(&rename_lock);
1099 return 1;
1100
1101 rename_retry:
1102 locked = 1;
1103 write_seqlock(&rename_lock);
1104 goto again;
1105 }
1106 EXPORT_SYMBOL(have_submounts);
1107
1108 /*
1109 * Search the dentry child list for the specified parent,
1110 * and move any unused dentries to the end of the unused
1111 * list for prune_dcache(). We descend to the next level
1112 * whenever the d_subdirs list is non-empty and continue
1113 * searching.
1114 *
1115 * It returns zero iff there are no unused children,
1116 * otherwise it returns the number of children moved to
1117 * the end of the unused list. This may not be the total
1118 * number of unused children, because select_parent can
1119 * drop the lock and return early due to latency
1120 * constraints.
1121 */
1122 static int select_parent(struct dentry * parent)
1123 {
1124 struct dentry *this_parent;
1125 struct list_head *next;
1126 unsigned seq;
1127 int found = 0;
1128 int locked = 0;
1129
1130 seq = read_seqbegin(&rename_lock);
1131 again:
1132 this_parent = parent;
1133 spin_lock(&this_parent->d_lock);
1134 repeat:
1135 next = this_parent->d_subdirs.next;
1136 resume:
1137 while (next != &this_parent->d_subdirs) {
1138 struct list_head *tmp = next;
1139 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1140 next = tmp->next;
1141
1142 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1143
1144 /*
1145 * move only zero ref count dentries to the end
1146 * of the unused list for prune_dcache
1147 */
1148 if (!dentry->d_count) {
1149 dentry_lru_move_tail(dentry);
1150 found++;
1151 } else {
1152 dentry_lru_del(dentry);
1153 }
1154
1155 /*
1156 * We can return to the caller if we have found some (this
1157 * ensures forward progress). We'll be coming back to find
1158 * the rest.
1159 */
1160 if (found && need_resched()) {
1161 spin_unlock(&dentry->d_lock);
1162 goto out;
1163 }
1164
1165 /*
1166 * Descend a level if the d_subdirs list is non-empty.
1167 */
1168 if (!list_empty(&dentry->d_subdirs)) {
1169 spin_unlock(&this_parent->d_lock);
1170 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1171 this_parent = dentry;
1172 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1173 goto repeat;
1174 }
1175
1176 spin_unlock(&dentry->d_lock);
1177 }
1178 /*
1179 * All done at this level ... ascend and resume the search.
1180 */
1181 if (this_parent != parent) {
1182 struct dentry *child = this_parent;
1183 this_parent = try_to_ascend(this_parent, locked, seq);
1184 if (!this_parent)
1185 goto rename_retry;
1186 next = child->d_u.d_child.next;
1187 goto resume;
1188 }
1189 out:
1190 spin_unlock(&this_parent->d_lock);
1191 if (!locked && read_seqretry(&rename_lock, seq))
1192 goto rename_retry;
1193 if (locked)
1194 write_sequnlock(&rename_lock);
1195 return found;
1196
1197 rename_retry:
1198 if (found)
1199 return found;
1200 locked = 1;
1201 write_seqlock(&rename_lock);
1202 goto again;
1203 }
1204
1205 /**
1206 * shrink_dcache_parent - prune dcache
1207 * @parent: parent of entries to prune
1208 *
1209 * Prune the dcache to remove unused children of the parent dentry.
1210 */
1211
1212 void shrink_dcache_parent(struct dentry * parent)
1213 {
1214 struct super_block *sb = parent->d_sb;
1215 int found;
1216
1217 while ((found = select_parent(parent)) != 0)
1218 __shrink_dcache_sb(sb, &found, 0);
1219 }
1220 EXPORT_SYMBOL(shrink_dcache_parent);
1221
1222 /*
1223 * Scan `sc->nr_slab_to_reclaim' dentries and return the number which remain.
1224 *
1225 * We need to avoid reentering the filesystem if the caller is performing a
1226 * GFP_NOFS allocation attempt. One example deadlock is:
1227 *
1228 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1229 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1230 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1231 *
1232 * In this case we return -1 to tell the caller that we baled.
1233 */
1234 static int shrink_dcache_memory(struct shrinker *shrink,
1235 struct shrink_control *sc)
1236 {
1237 int nr = sc->nr_to_scan;
1238 gfp_t gfp_mask = sc->gfp_mask;
1239
1240 if (nr) {
1241 if (!(gfp_mask & __GFP_FS))
1242 return -1;
1243 prune_dcache(nr);
1244 }
1245
1246 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
1247 }
1248
1249 static struct shrinker dcache_shrinker = {
1250 .shrink = shrink_dcache_memory,
1251 .seeks = DEFAULT_SEEKS,
1252 };
1253
1254 /**
1255 * d_alloc - allocate a dcache entry
1256 * @parent: parent of entry to allocate
1257 * @name: qstr of the name
1258 *
1259 * Allocates a dentry. It returns %NULL if there is insufficient memory
1260 * available. On a success the dentry is returned. The name passed in is
1261 * copied and the copy passed in may be reused after this call.
1262 */
1263
1264 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1265 {
1266 struct dentry *dentry;
1267 char *dname;
1268
1269 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1270 if (!dentry)
1271 return NULL;
1272
1273 if (name->len > DNAME_INLINE_LEN-1) {
1274 dname = kmalloc(name->len + 1, GFP_KERNEL);
1275 if (!dname) {
1276 kmem_cache_free(dentry_cache, dentry);
1277 return NULL;
1278 }
1279 } else {
1280 dname = dentry->d_iname;
1281 }
1282 dentry->d_name.name = dname;
1283
1284 dentry->d_name.len = name->len;
1285 dentry->d_name.hash = name->hash;
1286 memcpy(dname, name->name, name->len);
1287 dname[name->len] = 0;
1288
1289 dentry->d_count = 1;
1290 dentry->d_flags = 0;
1291 spin_lock_init(&dentry->d_lock);
1292 seqcount_init(&dentry->d_seq);
1293 dentry->d_inode = NULL;
1294 dentry->d_parent = NULL;
1295 dentry->d_sb = NULL;
1296 dentry->d_op = NULL;
1297 dentry->d_fsdata = NULL;
1298 INIT_HLIST_BL_NODE(&dentry->d_hash);
1299 INIT_LIST_HEAD(&dentry->d_lru);
1300 INIT_LIST_HEAD(&dentry->d_subdirs);
1301 INIT_LIST_HEAD(&dentry->d_alias);
1302 INIT_LIST_HEAD(&dentry->d_u.d_child);
1303
1304 if (parent) {
1305 spin_lock(&parent->d_lock);
1306 /*
1307 * don't need child lock because it is not subject
1308 * to concurrency here
1309 */
1310 __dget_dlock(parent);
1311 dentry->d_parent = parent;
1312 dentry->d_sb = parent->d_sb;
1313 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1314 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1315 spin_unlock(&parent->d_lock);
1316 }
1317
1318 this_cpu_inc(nr_dentry);
1319
1320 return dentry;
1321 }
1322 EXPORT_SYMBOL(d_alloc);
1323
1324 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1325 {
1326 struct dentry *dentry = d_alloc(NULL, name);
1327 if (dentry) {
1328 dentry->d_sb = sb;
1329 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1330 dentry->d_parent = dentry;
1331 dentry->d_flags |= DCACHE_DISCONNECTED;
1332 }
1333 return dentry;
1334 }
1335 EXPORT_SYMBOL(d_alloc_pseudo);
1336
1337 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1338 {
1339 struct qstr q;
1340
1341 q.name = name;
1342 q.len = strlen(name);
1343 q.hash = full_name_hash(q.name, q.len);
1344 return d_alloc(parent, &q);
1345 }
1346 EXPORT_SYMBOL(d_alloc_name);
1347
1348 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1349 {
1350 WARN_ON_ONCE(dentry->d_op);
1351 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1352 DCACHE_OP_COMPARE |
1353 DCACHE_OP_REVALIDATE |
1354 DCACHE_OP_DELETE ));
1355 dentry->d_op = op;
1356 if (!op)
1357 return;
1358 if (op->d_hash)
1359 dentry->d_flags |= DCACHE_OP_HASH;
1360 if (op->d_compare)
1361 dentry->d_flags |= DCACHE_OP_COMPARE;
1362 if (op->d_revalidate)
1363 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1364 if (op->d_delete)
1365 dentry->d_flags |= DCACHE_OP_DELETE;
1366
1367 }
1368 EXPORT_SYMBOL(d_set_d_op);
1369
1370 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1371 {
1372 spin_lock(&dentry->d_lock);
1373 if (inode) {
1374 if (unlikely(IS_AUTOMOUNT(inode)))
1375 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1376 list_add(&dentry->d_alias, &inode->i_dentry);
1377 }
1378 dentry->d_inode = inode;
1379 dentry_rcuwalk_barrier(dentry);
1380 spin_unlock(&dentry->d_lock);
1381 fsnotify_d_instantiate(dentry, inode);
1382 }
1383
1384 /**
1385 * d_instantiate - fill in inode information for a dentry
1386 * @entry: dentry to complete
1387 * @inode: inode to attach to this dentry
1388 *
1389 * Fill in inode information in the entry.
1390 *
1391 * This turns negative dentries into productive full members
1392 * of society.
1393 *
1394 * NOTE! This assumes that the inode count has been incremented
1395 * (or otherwise set) by the caller to indicate that it is now
1396 * in use by the dcache.
1397 */
1398
1399 void d_instantiate(struct dentry *entry, struct inode * inode)
1400 {
1401 BUG_ON(!list_empty(&entry->d_alias));
1402 if (inode)
1403 spin_lock(&inode->i_lock);
1404 __d_instantiate(entry, inode);
1405 if (inode)
1406 spin_unlock(&inode->i_lock);
1407 security_d_instantiate(entry, inode);
1408 }
1409 EXPORT_SYMBOL(d_instantiate);
1410
1411 /**
1412 * d_instantiate_unique - instantiate a non-aliased dentry
1413 * @entry: dentry to instantiate
1414 * @inode: inode to attach to this dentry
1415 *
1416 * Fill in inode information in the entry. On success, it returns NULL.
1417 * If an unhashed alias of "entry" already exists, then we return the
1418 * aliased dentry instead and drop one reference to inode.
1419 *
1420 * Note that in order to avoid conflicts with rename() etc, the caller
1421 * had better be holding the parent directory semaphore.
1422 *
1423 * This also assumes that the inode count has been incremented
1424 * (or otherwise set) by the caller to indicate that it is now
1425 * in use by the dcache.
1426 */
1427 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1428 struct inode *inode)
1429 {
1430 struct dentry *alias;
1431 int len = entry->d_name.len;
1432 const char *name = entry->d_name.name;
1433 unsigned int hash = entry->d_name.hash;
1434
1435 if (!inode) {
1436 __d_instantiate(entry, NULL);
1437 return NULL;
1438 }
1439
1440 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1441 struct qstr *qstr = &alias->d_name;
1442
1443 /*
1444 * Don't need alias->d_lock here, because aliases with
1445 * d_parent == entry->d_parent are not subject to name or
1446 * parent changes, because the parent inode i_mutex is held.
1447 */
1448 if (qstr->hash != hash)
1449 continue;
1450 if (alias->d_parent != entry->d_parent)
1451 continue;
1452 if (dentry_cmp(qstr->name, qstr->len, name, len))
1453 continue;
1454 __dget(alias);
1455 return alias;
1456 }
1457
1458 __d_instantiate(entry, inode);
1459 return NULL;
1460 }
1461
1462 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1463 {
1464 struct dentry *result;
1465
1466 BUG_ON(!list_empty(&entry->d_alias));
1467
1468 if (inode)
1469 spin_lock(&inode->i_lock);
1470 result = __d_instantiate_unique(entry, inode);
1471 if (inode)
1472 spin_unlock(&inode->i_lock);
1473
1474 if (!result) {
1475 security_d_instantiate(entry, inode);
1476 return NULL;
1477 }
1478
1479 BUG_ON(!d_unhashed(result));
1480 iput(inode);
1481 return result;
1482 }
1483
1484 EXPORT_SYMBOL(d_instantiate_unique);
1485
1486 /**
1487 * d_alloc_root - allocate root dentry
1488 * @root_inode: inode to allocate the root for
1489 *
1490 * Allocate a root ("/") dentry for the inode given. The inode is
1491 * instantiated and returned. %NULL is returned if there is insufficient
1492 * memory or the inode passed is %NULL.
1493 */
1494
1495 struct dentry * d_alloc_root(struct inode * root_inode)
1496 {
1497 struct dentry *res = NULL;
1498
1499 if (root_inode) {
1500 static const struct qstr name = { .name = "/", .len = 1 };
1501
1502 res = d_alloc(NULL, &name);
1503 if (res) {
1504 res->d_sb = root_inode->i_sb;
1505 d_set_d_op(res, res->d_sb->s_d_op);
1506 res->d_parent = res;
1507 d_instantiate(res, root_inode);
1508 }
1509 }
1510 return res;
1511 }
1512 EXPORT_SYMBOL(d_alloc_root);
1513
1514 static struct dentry * __d_find_any_alias(struct inode *inode)
1515 {
1516 struct dentry *alias;
1517
1518 if (list_empty(&inode->i_dentry))
1519 return NULL;
1520 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1521 __dget(alias);
1522 return alias;
1523 }
1524
1525 static struct dentry * d_find_any_alias(struct inode *inode)
1526 {
1527 struct dentry *de;
1528
1529 spin_lock(&inode->i_lock);
1530 de = __d_find_any_alias(inode);
1531 spin_unlock(&inode->i_lock);
1532 return de;
1533 }
1534
1535
1536 /**
1537 * d_obtain_alias - find or allocate a dentry for a given inode
1538 * @inode: inode to allocate the dentry for
1539 *
1540 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1541 * similar open by handle operations. The returned dentry may be anonymous,
1542 * or may have a full name (if the inode was already in the cache).
1543 *
1544 * When called on a directory inode, we must ensure that the inode only ever
1545 * has one dentry. If a dentry is found, that is returned instead of
1546 * allocating a new one.
1547 *
1548 * On successful return, the reference to the inode has been transferred
1549 * to the dentry. In case of an error the reference on the inode is released.
1550 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1551 * be passed in and will be the error will be propagate to the return value,
1552 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1553 */
1554 struct dentry *d_obtain_alias(struct inode *inode)
1555 {
1556 static const struct qstr anonstring = { .name = "" };
1557 struct dentry *tmp;
1558 struct dentry *res;
1559
1560 if (!inode)
1561 return ERR_PTR(-ESTALE);
1562 if (IS_ERR(inode))
1563 return ERR_CAST(inode);
1564
1565 res = d_find_any_alias(inode);
1566 if (res)
1567 goto out_iput;
1568
1569 tmp = d_alloc(NULL, &anonstring);
1570 if (!tmp) {
1571 res = ERR_PTR(-ENOMEM);
1572 goto out_iput;
1573 }
1574 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1575
1576
1577 spin_lock(&inode->i_lock);
1578 res = __d_find_any_alias(inode);
1579 if (res) {
1580 spin_unlock(&inode->i_lock);
1581 dput(tmp);
1582 goto out_iput;
1583 }
1584
1585 /* attach a disconnected dentry */
1586 spin_lock(&tmp->d_lock);
1587 tmp->d_sb = inode->i_sb;
1588 d_set_d_op(tmp, tmp->d_sb->s_d_op);
1589 tmp->d_inode = inode;
1590 tmp->d_flags |= DCACHE_DISCONNECTED;
1591 list_add(&tmp->d_alias, &inode->i_dentry);
1592 hlist_bl_lock(&tmp->d_sb->s_anon);
1593 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1594 hlist_bl_unlock(&tmp->d_sb->s_anon);
1595 spin_unlock(&tmp->d_lock);
1596 spin_unlock(&inode->i_lock);
1597 security_d_instantiate(tmp, inode);
1598
1599 return tmp;
1600
1601 out_iput:
1602 if (res && !IS_ERR(res))
1603 security_d_instantiate(res, inode);
1604 iput(inode);
1605 return res;
1606 }
1607 EXPORT_SYMBOL(d_obtain_alias);
1608
1609 /**
1610 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1611 * @inode: the inode which may have a disconnected dentry
1612 * @dentry: a negative dentry which we want to point to the inode.
1613 *
1614 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1615 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1616 * and return it, else simply d_add the inode to the dentry and return NULL.
1617 *
1618 * This is needed in the lookup routine of any filesystem that is exportable
1619 * (via knfsd) so that we can build dcache paths to directories effectively.
1620 *
1621 * If a dentry was found and moved, then it is returned. Otherwise NULL
1622 * is returned. This matches the expected return value of ->lookup.
1623 *
1624 */
1625 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1626 {
1627 struct dentry *new = NULL;
1628
1629 if (inode && S_ISDIR(inode->i_mode)) {
1630 spin_lock(&inode->i_lock);
1631 new = __d_find_alias(inode, 1);
1632 if (new) {
1633 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1634 spin_unlock(&inode->i_lock);
1635 security_d_instantiate(new, inode);
1636 d_move(new, dentry);
1637 iput(inode);
1638 } else {
1639 /* already taking inode->i_lock, so d_add() by hand */
1640 __d_instantiate(dentry, inode);
1641 spin_unlock(&inode->i_lock);
1642 security_d_instantiate(dentry, inode);
1643 d_rehash(dentry);
1644 }
1645 } else
1646 d_add(dentry, inode);
1647 return new;
1648 }
1649 EXPORT_SYMBOL(d_splice_alias);
1650
1651 /**
1652 * d_add_ci - lookup or allocate new dentry with case-exact name
1653 * @inode: the inode case-insensitive lookup has found
1654 * @dentry: the negative dentry that was passed to the parent's lookup func
1655 * @name: the case-exact name to be associated with the returned dentry
1656 *
1657 * This is to avoid filling the dcache with case-insensitive names to the
1658 * same inode, only the actual correct case is stored in the dcache for
1659 * case-insensitive filesystems.
1660 *
1661 * For a case-insensitive lookup match and if the the case-exact dentry
1662 * already exists in in the dcache, use it and return it.
1663 *
1664 * If no entry exists with the exact case name, allocate new dentry with
1665 * the exact case, and return the spliced entry.
1666 */
1667 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1668 struct qstr *name)
1669 {
1670 int error;
1671 struct dentry *found;
1672 struct dentry *new;
1673
1674 /*
1675 * First check if a dentry matching the name already exists,
1676 * if not go ahead and create it now.
1677 */
1678 found = d_hash_and_lookup(dentry->d_parent, name);
1679 if (!found) {
1680 new = d_alloc(dentry->d_parent, name);
1681 if (!new) {
1682 error = -ENOMEM;
1683 goto err_out;
1684 }
1685
1686 found = d_splice_alias(inode, new);
1687 if (found) {
1688 dput(new);
1689 return found;
1690 }
1691 return new;
1692 }
1693
1694 /*
1695 * If a matching dentry exists, and it's not negative use it.
1696 *
1697 * Decrement the reference count to balance the iget() done
1698 * earlier on.
1699 */
1700 if (found->d_inode) {
1701 if (unlikely(found->d_inode != inode)) {
1702 /* This can't happen because bad inodes are unhashed. */
1703 BUG_ON(!is_bad_inode(inode));
1704 BUG_ON(!is_bad_inode(found->d_inode));
1705 }
1706 iput(inode);
1707 return found;
1708 }
1709
1710 /*
1711 * Negative dentry: instantiate it unless the inode is a directory and
1712 * already has a dentry.
1713 */
1714 spin_lock(&inode->i_lock);
1715 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1716 __d_instantiate(found, inode);
1717 spin_unlock(&inode->i_lock);
1718 security_d_instantiate(found, inode);
1719 return found;
1720 }
1721
1722 /*
1723 * In case a directory already has a (disconnected) entry grab a
1724 * reference to it, move it in place and use it.
1725 */
1726 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1727 __dget(new);
1728 spin_unlock(&inode->i_lock);
1729 security_d_instantiate(found, inode);
1730 d_move(new, found);
1731 iput(inode);
1732 dput(found);
1733 return new;
1734
1735 err_out:
1736 iput(inode);
1737 return ERR_PTR(error);
1738 }
1739 EXPORT_SYMBOL(d_add_ci);
1740
1741 /**
1742 * __d_lookup_rcu - search for a dentry (racy, store-free)
1743 * @parent: parent dentry
1744 * @name: qstr of name we wish to find
1745 * @seq: returns d_seq value at the point where the dentry was found
1746 * @inode: returns dentry->d_inode when the inode was found valid.
1747 * Returns: dentry, or NULL
1748 *
1749 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1750 * resolution (store-free path walking) design described in
1751 * Documentation/filesystems/path-lookup.txt.
1752 *
1753 * This is not to be used outside core vfs.
1754 *
1755 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1756 * held, and rcu_read_lock held. The returned dentry must not be stored into
1757 * without taking d_lock and checking d_seq sequence count against @seq
1758 * returned here.
1759 *
1760 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1761 * function.
1762 *
1763 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1764 * the returned dentry, so long as its parent's seqlock is checked after the
1765 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1766 * is formed, giving integrity down the path walk.
1767 */
1768 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1769 unsigned *seq, struct inode **inode)
1770 {
1771 unsigned int len = name->len;
1772 unsigned int hash = name->hash;
1773 const unsigned char *str = name->name;
1774 struct hlist_bl_head *b = d_hash(parent, hash);
1775 struct hlist_bl_node *node;
1776 struct dentry *dentry;
1777
1778 /*
1779 * Note: There is significant duplication with __d_lookup_rcu which is
1780 * required to prevent single threaded performance regressions
1781 * especially on architectures where smp_rmb (in seqcounts) are costly.
1782 * Keep the two functions in sync.
1783 */
1784
1785 /*
1786 * The hash list is protected using RCU.
1787 *
1788 * Carefully use d_seq when comparing a candidate dentry, to avoid
1789 * races with d_move().
1790 *
1791 * It is possible that concurrent renames can mess up our list
1792 * walk here and result in missing our dentry, resulting in the
1793 * false-negative result. d_lookup() protects against concurrent
1794 * renames using rename_lock seqlock.
1795 *
1796 * See Documentation/filesystems/path-lookup.txt for more details.
1797 */
1798 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1799 struct inode *i;
1800 const char *tname;
1801 int tlen;
1802
1803 if (dentry->d_name.hash != hash)
1804 continue;
1805
1806 seqretry:
1807 *seq = read_seqcount_begin(&dentry->d_seq);
1808 if (dentry->d_parent != parent)
1809 continue;
1810 if (d_unhashed(dentry))
1811 continue;
1812 tlen = dentry->d_name.len;
1813 tname = dentry->d_name.name;
1814 i = dentry->d_inode;
1815 prefetch(tname);
1816 if (i)
1817 prefetch(i);
1818 /*
1819 * This seqcount check is required to ensure name and
1820 * len are loaded atomically, so as not to walk off the
1821 * edge of memory when walking. If we could load this
1822 * atomically some other way, we could drop this check.
1823 */
1824 if (read_seqcount_retry(&dentry->d_seq, *seq))
1825 goto seqretry;
1826 if (parent->d_flags & DCACHE_OP_COMPARE) {
1827 if (parent->d_op->d_compare(parent, *inode,
1828 dentry, i,
1829 tlen, tname, name))
1830 continue;
1831 } else {
1832 if (dentry_cmp(tname, tlen, str, len))
1833 continue;
1834 }
1835 /*
1836 * No extra seqcount check is required after the name
1837 * compare. The caller must perform a seqcount check in
1838 * order to do anything useful with the returned dentry
1839 * anyway.
1840 */
1841 *inode = i;
1842 return dentry;
1843 }
1844 return NULL;
1845 }
1846
1847 /**
1848 * d_lookup - search for a dentry
1849 * @parent: parent dentry
1850 * @name: qstr of name we wish to find
1851 * Returns: dentry, or NULL
1852 *
1853 * d_lookup searches the children of the parent dentry for the name in
1854 * question. If the dentry is found its reference count is incremented and the
1855 * dentry is returned. The caller must use dput to free the entry when it has
1856 * finished using it. %NULL is returned if the dentry does not exist.
1857 */
1858 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1859 {
1860 struct dentry *dentry;
1861 unsigned seq;
1862
1863 do {
1864 seq = read_seqbegin(&rename_lock);
1865 dentry = __d_lookup(parent, name);
1866 if (dentry)
1867 break;
1868 } while (read_seqretry(&rename_lock, seq));
1869 return dentry;
1870 }
1871 EXPORT_SYMBOL(d_lookup);
1872
1873 /**
1874 * __d_lookup - search for a dentry (racy)
1875 * @parent: parent dentry
1876 * @name: qstr of name we wish to find
1877 * Returns: dentry, or NULL
1878 *
1879 * __d_lookup is like d_lookup, however it may (rarely) return a
1880 * false-negative result due to unrelated rename activity.
1881 *
1882 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1883 * however it must be used carefully, eg. with a following d_lookup in
1884 * the case of failure.
1885 *
1886 * __d_lookup callers must be commented.
1887 */
1888 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1889 {
1890 unsigned int len = name->len;
1891 unsigned int hash = name->hash;
1892 const unsigned char *str = name->name;
1893 struct hlist_bl_head *b = d_hash(parent, hash);
1894 struct hlist_bl_node *node;
1895 struct dentry *found = NULL;
1896 struct dentry *dentry;
1897
1898 /*
1899 * Note: There is significant duplication with __d_lookup_rcu which is
1900 * required to prevent single threaded performance regressions
1901 * especially on architectures where smp_rmb (in seqcounts) are costly.
1902 * Keep the two functions in sync.
1903 */
1904
1905 /*
1906 * The hash list is protected using RCU.
1907 *
1908 * Take d_lock when comparing a candidate dentry, to avoid races
1909 * with d_move().
1910 *
1911 * It is possible that concurrent renames can mess up our list
1912 * walk here and result in missing our dentry, resulting in the
1913 * false-negative result. d_lookup() protects against concurrent
1914 * renames using rename_lock seqlock.
1915 *
1916 * See Documentation/filesystems/path-lookup.txt for more details.
1917 */
1918 rcu_read_lock();
1919
1920 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1921 const char *tname;
1922 int tlen;
1923
1924 if (dentry->d_name.hash != hash)
1925 continue;
1926
1927 spin_lock(&dentry->d_lock);
1928 if (dentry->d_parent != parent)
1929 goto next;
1930 if (d_unhashed(dentry))
1931 goto next;
1932
1933 /*
1934 * It is safe to compare names since d_move() cannot
1935 * change the qstr (protected by d_lock).
1936 */
1937 tlen = dentry->d_name.len;
1938 tname = dentry->d_name.name;
1939 if (parent->d_flags & DCACHE_OP_COMPARE) {
1940 if (parent->d_op->d_compare(parent, parent->d_inode,
1941 dentry, dentry->d_inode,
1942 tlen, tname, name))
1943 goto next;
1944 } else {
1945 if (dentry_cmp(tname, tlen, str, len))
1946 goto next;
1947 }
1948
1949 dentry->d_count++;
1950 found = dentry;
1951 spin_unlock(&dentry->d_lock);
1952 break;
1953 next:
1954 spin_unlock(&dentry->d_lock);
1955 }
1956 rcu_read_unlock();
1957
1958 return found;
1959 }
1960
1961 /**
1962 * d_hash_and_lookup - hash the qstr then search for a dentry
1963 * @dir: Directory to search in
1964 * @name: qstr of name we wish to find
1965 *
1966 * On hash failure or on lookup failure NULL is returned.
1967 */
1968 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1969 {
1970 struct dentry *dentry = NULL;
1971
1972 /*
1973 * Check for a fs-specific hash function. Note that we must
1974 * calculate the standard hash first, as the d_op->d_hash()
1975 * routine may choose to leave the hash value unchanged.
1976 */
1977 name->hash = full_name_hash(name->name, name->len);
1978 if (dir->d_flags & DCACHE_OP_HASH) {
1979 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1980 goto out;
1981 }
1982 dentry = d_lookup(dir, name);
1983 out:
1984 return dentry;
1985 }
1986
1987 /**
1988 * d_validate - verify dentry provided from insecure source (deprecated)
1989 * @dentry: The dentry alleged to be valid child of @dparent
1990 * @dparent: The parent dentry (known to be valid)
1991 *
1992 * An insecure source has sent us a dentry, here we verify it and dget() it.
1993 * This is used by ncpfs in its readdir implementation.
1994 * Zero is returned in the dentry is invalid.
1995 *
1996 * This function is slow for big directories, and deprecated, do not use it.
1997 */
1998 int d_validate(struct dentry *dentry, struct dentry *dparent)
1999 {
2000 struct dentry *child;
2001
2002 spin_lock(&dparent->d_lock);
2003 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2004 if (dentry == child) {
2005 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2006 __dget_dlock(dentry);
2007 spin_unlock(&dentry->d_lock);
2008 spin_unlock(&dparent->d_lock);
2009 return 1;
2010 }
2011 }
2012 spin_unlock(&dparent->d_lock);
2013
2014 return 0;
2015 }
2016 EXPORT_SYMBOL(d_validate);
2017
2018 /*
2019 * When a file is deleted, we have two options:
2020 * - turn this dentry into a negative dentry
2021 * - unhash this dentry and free it.
2022 *
2023 * Usually, we want to just turn this into
2024 * a negative dentry, but if anybody else is
2025 * currently using the dentry or the inode
2026 * we can't do that and we fall back on removing
2027 * it from the hash queues and waiting for
2028 * it to be deleted later when it has no users
2029 */
2030
2031 /**
2032 * d_delete - delete a dentry
2033 * @dentry: The dentry to delete
2034 *
2035 * Turn the dentry into a negative dentry if possible, otherwise
2036 * remove it from the hash queues so it can be deleted later
2037 */
2038
2039 void d_delete(struct dentry * dentry)
2040 {
2041 struct inode *inode;
2042 int isdir = 0;
2043 /*
2044 * Are we the only user?
2045 */
2046 again:
2047 spin_lock(&dentry->d_lock);
2048 inode = dentry->d_inode;
2049 isdir = S_ISDIR(inode->i_mode);
2050 if (dentry->d_count == 1) {
2051 if (inode && !spin_trylock(&inode->i_lock)) {
2052 spin_unlock(&dentry->d_lock);
2053 cpu_relax();
2054 goto again;
2055 }
2056 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2057 dentry_unlink_inode(dentry);
2058 fsnotify_nameremove(dentry, isdir);
2059 return;
2060 }
2061
2062 if (!d_unhashed(dentry))
2063 __d_drop(dentry);
2064
2065 spin_unlock(&dentry->d_lock);
2066
2067 fsnotify_nameremove(dentry, isdir);
2068 }
2069 EXPORT_SYMBOL(d_delete);
2070
2071 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2072 {
2073 BUG_ON(!d_unhashed(entry));
2074 hlist_bl_lock(b);
2075 entry->d_flags |= DCACHE_RCUACCESS;
2076 hlist_bl_add_head_rcu(&entry->d_hash, b);
2077 hlist_bl_unlock(b);
2078 }
2079
2080 static void _d_rehash(struct dentry * entry)
2081 {
2082 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2083 }
2084
2085 /**
2086 * d_rehash - add an entry back to the hash
2087 * @entry: dentry to add to the hash
2088 *
2089 * Adds a dentry to the hash according to its name.
2090 */
2091
2092 void d_rehash(struct dentry * entry)
2093 {
2094 spin_lock(&entry->d_lock);
2095 _d_rehash(entry);
2096 spin_unlock(&entry->d_lock);
2097 }
2098 EXPORT_SYMBOL(d_rehash);
2099
2100 /**
2101 * dentry_update_name_case - update case insensitive dentry with a new name
2102 * @dentry: dentry to be updated
2103 * @name: new name
2104 *
2105 * Update a case insensitive dentry with new case of name.
2106 *
2107 * dentry must have been returned by d_lookup with name @name. Old and new
2108 * name lengths must match (ie. no d_compare which allows mismatched name
2109 * lengths).
2110 *
2111 * Parent inode i_mutex must be held over d_lookup and into this call (to
2112 * keep renames and concurrent inserts, and readdir(2) away).
2113 */
2114 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2115 {
2116 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2117 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2118
2119 spin_lock(&dentry->d_lock);
2120 write_seqcount_begin(&dentry->d_seq);
2121 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2122 write_seqcount_end(&dentry->d_seq);
2123 spin_unlock(&dentry->d_lock);
2124 }
2125 EXPORT_SYMBOL(dentry_update_name_case);
2126
2127 static void switch_names(struct dentry *dentry, struct dentry *target)
2128 {
2129 if (dname_external(target)) {
2130 if (dname_external(dentry)) {
2131 /*
2132 * Both external: swap the pointers
2133 */
2134 swap(target->d_name.name, dentry->d_name.name);
2135 } else {
2136 /*
2137 * dentry:internal, target:external. Steal target's
2138 * storage and make target internal.
2139 */
2140 memcpy(target->d_iname, dentry->d_name.name,
2141 dentry->d_name.len + 1);
2142 dentry->d_name.name = target->d_name.name;
2143 target->d_name.name = target->d_iname;
2144 }
2145 } else {
2146 if (dname_external(dentry)) {
2147 /*
2148 * dentry:external, target:internal. Give dentry's
2149 * storage to target and make dentry internal
2150 */
2151 memcpy(dentry->d_iname, target->d_name.name,
2152 target->d_name.len + 1);
2153 target->d_name.name = dentry->d_name.name;
2154 dentry->d_name.name = dentry->d_iname;
2155 } else {
2156 /*
2157 * Both are internal. Just copy target to dentry
2158 */
2159 memcpy(dentry->d_iname, target->d_name.name,
2160 target->d_name.len + 1);
2161 dentry->d_name.len = target->d_name.len;
2162 return;
2163 }
2164 }
2165 swap(dentry->d_name.len, target->d_name.len);
2166 }
2167
2168 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2169 {
2170 /*
2171 * XXXX: do we really need to take target->d_lock?
2172 */
2173 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2174 spin_lock(&target->d_parent->d_lock);
2175 else {
2176 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2177 spin_lock(&dentry->d_parent->d_lock);
2178 spin_lock_nested(&target->d_parent->d_lock,
2179 DENTRY_D_LOCK_NESTED);
2180 } else {
2181 spin_lock(&target->d_parent->d_lock);
2182 spin_lock_nested(&dentry->d_parent->d_lock,
2183 DENTRY_D_LOCK_NESTED);
2184 }
2185 }
2186 if (target < dentry) {
2187 spin_lock_nested(&target->d_lock, 2);
2188 spin_lock_nested(&dentry->d_lock, 3);
2189 } else {
2190 spin_lock_nested(&dentry->d_lock, 2);
2191 spin_lock_nested(&target->d_lock, 3);
2192 }
2193 }
2194
2195 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2196 struct dentry *target)
2197 {
2198 if (target->d_parent != dentry->d_parent)
2199 spin_unlock(&dentry->d_parent->d_lock);
2200 if (target->d_parent != target)
2201 spin_unlock(&target->d_parent->d_lock);
2202 }
2203
2204 /*
2205 * When switching names, the actual string doesn't strictly have to
2206 * be preserved in the target - because we're dropping the target
2207 * anyway. As such, we can just do a simple memcpy() to copy over
2208 * the new name before we switch.
2209 *
2210 * Note that we have to be a lot more careful about getting the hash
2211 * switched - we have to switch the hash value properly even if it
2212 * then no longer matches the actual (corrupted) string of the target.
2213 * The hash value has to match the hash queue that the dentry is on..
2214 */
2215 /*
2216 * __d_move - move a dentry
2217 * @dentry: entry to move
2218 * @target: new dentry
2219 *
2220 * Update the dcache to reflect the move of a file name. Negative
2221 * dcache entries should not be moved in this way. Caller hold
2222 * rename_lock.
2223 */
2224 static void __d_move(struct dentry * dentry, struct dentry * target)
2225 {
2226 if (!dentry->d_inode)
2227 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2228
2229 BUG_ON(d_ancestor(dentry, target));
2230 BUG_ON(d_ancestor(target, dentry));
2231
2232 dentry_lock_for_move(dentry, target);
2233
2234 write_seqcount_begin(&dentry->d_seq);
2235 write_seqcount_begin(&target->d_seq);
2236
2237 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2238
2239 /*
2240 * Move the dentry to the target hash queue. Don't bother checking
2241 * for the same hash queue because of how unlikely it is.
2242 */
2243 __d_drop(dentry);
2244 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2245
2246 /* Unhash the target: dput() will then get rid of it */
2247 __d_drop(target);
2248
2249 list_del(&dentry->d_u.d_child);
2250 list_del(&target->d_u.d_child);
2251
2252 /* Switch the names.. */
2253 switch_names(dentry, target);
2254 swap(dentry->d_name.hash, target->d_name.hash);
2255
2256 /* ... and switch the parents */
2257 if (IS_ROOT(dentry)) {
2258 dentry->d_parent = target->d_parent;
2259 target->d_parent = target;
2260 INIT_LIST_HEAD(&target->d_u.d_child);
2261 } else {
2262 swap(dentry->d_parent, target->d_parent);
2263
2264 /* And add them back to the (new) parent lists */
2265 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2266 }
2267
2268 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2269
2270 write_seqcount_end(&target->d_seq);
2271 write_seqcount_end(&dentry->d_seq);
2272
2273 dentry_unlock_parents_for_move(dentry, target);
2274 spin_unlock(&target->d_lock);
2275 fsnotify_d_move(dentry);
2276 spin_unlock(&dentry->d_lock);
2277 }
2278
2279 /*
2280 * d_move - move a dentry
2281 * @dentry: entry to move
2282 * @target: new dentry
2283 *
2284 * Update the dcache to reflect the move of a file name. Negative
2285 * dcache entries should not be moved in this way.
2286 */
2287 void d_move(struct dentry *dentry, struct dentry *target)
2288 {
2289 write_seqlock(&rename_lock);
2290 __d_move(dentry, target);
2291 write_sequnlock(&rename_lock);
2292 }
2293 EXPORT_SYMBOL(d_move);
2294
2295 /**
2296 * d_ancestor - search for an ancestor
2297 * @p1: ancestor dentry
2298 * @p2: child dentry
2299 *
2300 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2301 * an ancestor of p2, else NULL.
2302 */
2303 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2304 {
2305 struct dentry *p;
2306
2307 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2308 if (p->d_parent == p1)
2309 return p;
2310 }
2311 return NULL;
2312 }
2313
2314 /*
2315 * This helper attempts to cope with remotely renamed directories
2316 *
2317 * It assumes that the caller is already holding
2318 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2319 *
2320 * Note: If ever the locking in lock_rename() changes, then please
2321 * remember to update this too...
2322 */
2323 static struct dentry *__d_unalias(struct inode *inode,
2324 struct dentry *dentry, struct dentry *alias)
2325 {
2326 struct mutex *m1 = NULL, *m2 = NULL;
2327 struct dentry *ret;
2328
2329 /* If alias and dentry share a parent, then no extra locks required */
2330 if (alias->d_parent == dentry->d_parent)
2331 goto out_unalias;
2332
2333 /* See lock_rename() */
2334 ret = ERR_PTR(-EBUSY);
2335 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2336 goto out_err;
2337 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2338 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2339 goto out_err;
2340 m2 = &alias->d_parent->d_inode->i_mutex;
2341 out_unalias:
2342 __d_move(alias, dentry);
2343 ret = alias;
2344 out_err:
2345 spin_unlock(&inode->i_lock);
2346 if (m2)
2347 mutex_unlock(m2);
2348 if (m1)
2349 mutex_unlock(m1);
2350 return ret;
2351 }
2352
2353 /*
2354 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2355 * named dentry in place of the dentry to be replaced.
2356 * returns with anon->d_lock held!
2357 */
2358 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2359 {
2360 struct dentry *dparent, *aparent;
2361
2362 dentry_lock_for_move(anon, dentry);
2363
2364 write_seqcount_begin(&dentry->d_seq);
2365 write_seqcount_begin(&anon->d_seq);
2366
2367 dparent = dentry->d_parent;
2368 aparent = anon->d_parent;
2369
2370 switch_names(dentry, anon);
2371 swap(dentry->d_name.hash, anon->d_name.hash);
2372
2373 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2374 list_del(&dentry->d_u.d_child);
2375 if (!IS_ROOT(dentry))
2376 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2377 else
2378 INIT_LIST_HEAD(&dentry->d_u.d_child);
2379
2380 anon->d_parent = (dparent == dentry) ? anon : dparent;
2381 list_del(&anon->d_u.d_child);
2382 if (!IS_ROOT(anon))
2383 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2384 else
2385 INIT_LIST_HEAD(&anon->d_u.d_child);
2386
2387 write_seqcount_end(&dentry->d_seq);
2388 write_seqcount_end(&anon->d_seq);
2389
2390 dentry_unlock_parents_for_move(anon, dentry);
2391 spin_unlock(&dentry->d_lock);
2392
2393 /* anon->d_lock still locked, returns locked */
2394 anon->d_flags &= ~DCACHE_DISCONNECTED;
2395 }
2396
2397 /**
2398 * d_materialise_unique - introduce an inode into the tree
2399 * @dentry: candidate dentry
2400 * @inode: inode to bind to the dentry, to which aliases may be attached
2401 *
2402 * Introduces an dentry into the tree, substituting an extant disconnected
2403 * root directory alias in its place if there is one
2404 */
2405 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2406 {
2407 struct dentry *actual;
2408
2409 BUG_ON(!d_unhashed(dentry));
2410
2411 if (!inode) {
2412 actual = dentry;
2413 __d_instantiate(dentry, NULL);
2414 d_rehash(actual);
2415 goto out_nolock;
2416 }
2417
2418 spin_lock(&inode->i_lock);
2419
2420 if (S_ISDIR(inode->i_mode)) {
2421 struct dentry *alias;
2422
2423 /* Does an aliased dentry already exist? */
2424 alias = __d_find_alias(inode, 0);
2425 if (alias) {
2426 actual = alias;
2427 write_seqlock(&rename_lock);
2428
2429 if (d_ancestor(alias, dentry)) {
2430 /* Check for loops */
2431 actual = ERR_PTR(-ELOOP);
2432 } else if (IS_ROOT(alias)) {
2433 /* Is this an anonymous mountpoint that we
2434 * could splice into our tree? */
2435 __d_materialise_dentry(dentry, alias);
2436 write_sequnlock(&rename_lock);
2437 __d_drop(alias);
2438 goto found;
2439 } else {
2440 /* Nope, but we must(!) avoid directory
2441 * aliasing */
2442 actual = __d_unalias(inode, dentry, alias);
2443 }
2444 write_sequnlock(&rename_lock);
2445 if (IS_ERR(actual))
2446 dput(alias);
2447 goto out_nolock;
2448 }
2449 }
2450
2451 /* Add a unique reference */
2452 actual = __d_instantiate_unique(dentry, inode);
2453 if (!actual)
2454 actual = dentry;
2455 else
2456 BUG_ON(!d_unhashed(actual));
2457
2458 spin_lock(&actual->d_lock);
2459 found:
2460 _d_rehash(actual);
2461 spin_unlock(&actual->d_lock);
2462 spin_unlock(&inode->i_lock);
2463 out_nolock:
2464 if (actual == dentry) {
2465 security_d_instantiate(dentry, inode);
2466 return NULL;
2467 }
2468
2469 iput(inode);
2470 return actual;
2471 }
2472 EXPORT_SYMBOL_GPL(d_materialise_unique);
2473
2474 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2475 {
2476 *buflen -= namelen;
2477 if (*buflen < 0)
2478 return -ENAMETOOLONG;
2479 *buffer -= namelen;
2480 memcpy(*buffer, str, namelen);
2481 return 0;
2482 }
2483
2484 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2485 {
2486 return prepend(buffer, buflen, name->name, name->len);
2487 }
2488
2489 /**
2490 * prepend_path - Prepend path string to a buffer
2491 * @path: the dentry/vfsmount to report
2492 * @root: root vfsmnt/dentry (may be modified by this function)
2493 * @buffer: pointer to the end of the buffer
2494 * @buflen: pointer to buffer length
2495 *
2496 * Caller holds the rename_lock.
2497 *
2498 * If path is not reachable from the supplied root, then the value of
2499 * root is changed (without modifying refcounts).
2500 */
2501 static int prepend_path(const struct path *path, struct path *root,
2502 char **buffer, int *buflen)
2503 {
2504 struct dentry *dentry = path->dentry;
2505 struct vfsmount *vfsmnt = path->mnt;
2506 bool slash = false;
2507 int error = 0;
2508
2509 br_read_lock(vfsmount_lock);
2510 while (dentry != root->dentry || vfsmnt != root->mnt) {
2511 struct dentry * parent;
2512
2513 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2514 /* Global root? */
2515 if (vfsmnt->mnt_parent == vfsmnt) {
2516 goto global_root;
2517 }
2518 dentry = vfsmnt->mnt_mountpoint;
2519 vfsmnt = vfsmnt->mnt_parent;
2520 continue;
2521 }
2522 parent = dentry->d_parent;
2523 prefetch(parent);
2524 spin_lock(&dentry->d_lock);
2525 error = prepend_name(buffer, buflen, &dentry->d_name);
2526 spin_unlock(&dentry->d_lock);
2527 if (!error)
2528 error = prepend(buffer, buflen, "/", 1);
2529 if (error)
2530 break;
2531
2532 slash = true;
2533 dentry = parent;
2534 }
2535
2536 out:
2537 if (!error && !slash)
2538 error = prepend(buffer, buflen, "/", 1);
2539
2540 br_read_unlock(vfsmount_lock);
2541 return error;
2542
2543 global_root:
2544 /*
2545 * Filesystems needing to implement special "root names"
2546 * should do so with ->d_dname()
2547 */
2548 if (IS_ROOT(dentry) &&
2549 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2550 WARN(1, "Root dentry has weird name <%.*s>\n",
2551 (int) dentry->d_name.len, dentry->d_name.name);
2552 }
2553 root->mnt = vfsmnt;
2554 root->dentry = dentry;
2555 goto out;
2556 }
2557
2558 /**
2559 * __d_path - return the path of a dentry
2560 * @path: the dentry/vfsmount to report
2561 * @root: root vfsmnt/dentry (may be modified by this function)
2562 * @buf: buffer to return value in
2563 * @buflen: buffer length
2564 *
2565 * Convert a dentry into an ASCII path name.
2566 *
2567 * Returns a pointer into the buffer or an error code if the
2568 * path was too long.
2569 *
2570 * "buflen" should be positive.
2571 *
2572 * If path is not reachable from the supplied root, then the value of
2573 * root is changed (without modifying refcounts).
2574 */
2575 char *__d_path(const struct path *path, struct path *root,
2576 char *buf, int buflen)
2577 {
2578 char *res = buf + buflen;
2579 int error;
2580
2581 prepend(&res, &buflen, "\0", 1);
2582 write_seqlock(&rename_lock);
2583 error = prepend_path(path, root, &res, &buflen);
2584 write_sequnlock(&rename_lock);
2585
2586 if (error)
2587 return ERR_PTR(error);
2588 return res;
2589 }
2590
2591 /*
2592 * same as __d_path but appends "(deleted)" for unlinked files.
2593 */
2594 static int path_with_deleted(const struct path *path, struct path *root,
2595 char **buf, int *buflen)
2596 {
2597 prepend(buf, buflen, "\0", 1);
2598 if (d_unlinked(path->dentry)) {
2599 int error = prepend(buf, buflen, " (deleted)", 10);
2600 if (error)
2601 return error;
2602 }
2603
2604 return prepend_path(path, root, buf, buflen);
2605 }
2606
2607 static int prepend_unreachable(char **buffer, int *buflen)
2608 {
2609 return prepend(buffer, buflen, "(unreachable)", 13);
2610 }
2611
2612 /**
2613 * d_path - return the path of a dentry
2614 * @path: path to report
2615 * @buf: buffer to return value in
2616 * @buflen: buffer length
2617 *
2618 * Convert a dentry into an ASCII path name. If the entry has been deleted
2619 * the string " (deleted)" is appended. Note that this is ambiguous.
2620 *
2621 * Returns a pointer into the buffer or an error code if the path was
2622 * too long. Note: Callers should use the returned pointer, not the passed
2623 * in buffer, to use the name! The implementation often starts at an offset
2624 * into the buffer, and may leave 0 bytes at the start.
2625 *
2626 * "buflen" should be positive.
2627 */
2628 char *d_path(const struct path *path, char *buf, int buflen)
2629 {
2630 char *res = buf + buflen;
2631 struct path root;
2632 struct path tmp;
2633 int error;
2634
2635 /*
2636 * We have various synthetic filesystems that never get mounted. On
2637 * these filesystems dentries are never used for lookup purposes, and
2638 * thus don't need to be hashed. They also don't need a name until a
2639 * user wants to identify the object in /proc/pid/fd/. The little hack
2640 * below allows us to generate a name for these objects on demand:
2641 */
2642 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2643 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2644
2645 get_fs_root(current->fs, &root);
2646 write_seqlock(&rename_lock);
2647 tmp = root;
2648 error = path_with_deleted(path, &tmp, &res, &buflen);
2649 if (error)
2650 res = ERR_PTR(error);
2651 write_sequnlock(&rename_lock);
2652 path_put(&root);
2653 return res;
2654 }
2655 EXPORT_SYMBOL(d_path);
2656
2657 /**
2658 * d_path_with_unreachable - return the path of a dentry
2659 * @path: path to report
2660 * @buf: buffer to return value in
2661 * @buflen: buffer length
2662 *
2663 * The difference from d_path() is that this prepends "(unreachable)"
2664 * to paths which are unreachable from the current process' root.
2665 */
2666 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2667 {
2668 char *res = buf + buflen;
2669 struct path root;
2670 struct path tmp;
2671 int error;
2672
2673 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2674 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2675
2676 get_fs_root(current->fs, &root);
2677 write_seqlock(&rename_lock);
2678 tmp = root;
2679 error = path_with_deleted(path, &tmp, &res, &buflen);
2680 if (!error && !path_equal(&tmp, &root))
2681 error = prepend_unreachable(&res, &buflen);
2682 write_sequnlock(&rename_lock);
2683 path_put(&root);
2684 if (error)
2685 res = ERR_PTR(error);
2686
2687 return res;
2688 }
2689
2690 /*
2691 * Helper function for dentry_operations.d_dname() members
2692 */
2693 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2694 const char *fmt, ...)
2695 {
2696 va_list args;
2697 char temp[64];
2698 int sz;
2699
2700 va_start(args, fmt);
2701 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2702 va_end(args);
2703
2704 if (sz > sizeof(temp) || sz > buflen)
2705 return ERR_PTR(-ENAMETOOLONG);
2706
2707 buffer += buflen - sz;
2708 return memcpy(buffer, temp, sz);
2709 }
2710
2711 /*
2712 * Write full pathname from the root of the filesystem into the buffer.
2713 */
2714 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2715 {
2716 char *end = buf + buflen;
2717 char *retval;
2718
2719 prepend(&end, &buflen, "\0", 1);
2720 if (buflen < 1)
2721 goto Elong;
2722 /* Get '/' right */
2723 retval = end-1;
2724 *retval = '/';
2725
2726 while (!IS_ROOT(dentry)) {
2727 struct dentry *parent = dentry->d_parent;
2728 int error;
2729
2730 prefetch(parent);
2731 spin_lock(&dentry->d_lock);
2732 error = prepend_name(&end, &buflen, &dentry->d_name);
2733 spin_unlock(&dentry->d_lock);
2734 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2735 goto Elong;
2736
2737 retval = end;
2738 dentry = parent;
2739 }
2740 return retval;
2741 Elong:
2742 return ERR_PTR(-ENAMETOOLONG);
2743 }
2744
2745 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2746 {
2747 char *retval;
2748
2749 write_seqlock(&rename_lock);
2750 retval = __dentry_path(dentry, buf, buflen);
2751 write_sequnlock(&rename_lock);
2752
2753 return retval;
2754 }
2755 EXPORT_SYMBOL(dentry_path_raw);
2756
2757 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2758 {
2759 char *p = NULL;
2760 char *retval;
2761
2762 write_seqlock(&rename_lock);
2763 if (d_unlinked(dentry)) {
2764 p = buf + buflen;
2765 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2766 goto Elong;
2767 buflen++;
2768 }
2769 retval = __dentry_path(dentry, buf, buflen);
2770 write_sequnlock(&rename_lock);
2771 if (!IS_ERR(retval) && p)
2772 *p = '/'; /* restore '/' overriden with '\0' */
2773 return retval;
2774 Elong:
2775 return ERR_PTR(-ENAMETOOLONG);
2776 }
2777
2778 /*
2779 * NOTE! The user-level library version returns a
2780 * character pointer. The kernel system call just
2781 * returns the length of the buffer filled (which
2782 * includes the ending '\0' character), or a negative
2783 * error value. So libc would do something like
2784 *
2785 * char *getcwd(char * buf, size_t size)
2786 * {
2787 * int retval;
2788 *
2789 * retval = sys_getcwd(buf, size);
2790 * if (retval >= 0)
2791 * return buf;
2792 * errno = -retval;
2793 * return NULL;
2794 * }
2795 */
2796 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2797 {
2798 int error;
2799 struct path pwd, root;
2800 char *page = (char *) __get_free_page(GFP_USER);
2801
2802 if (!page)
2803 return -ENOMEM;
2804
2805 get_fs_root_and_pwd(current->fs, &root, &pwd);
2806
2807 error = -ENOENT;
2808 write_seqlock(&rename_lock);
2809 if (!d_unlinked(pwd.dentry)) {
2810 unsigned long len;
2811 struct path tmp = root;
2812 char *cwd = page + PAGE_SIZE;
2813 int buflen = PAGE_SIZE;
2814
2815 prepend(&cwd, &buflen, "\0", 1);
2816 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
2817 write_sequnlock(&rename_lock);
2818
2819 if (error)
2820 goto out;
2821
2822 /* Unreachable from current root */
2823 if (!path_equal(&tmp, &root)) {
2824 error = prepend_unreachable(&cwd, &buflen);
2825 if (error)
2826 goto out;
2827 }
2828
2829 error = -ERANGE;
2830 len = PAGE_SIZE + page - cwd;
2831 if (len <= size) {
2832 error = len;
2833 if (copy_to_user(buf, cwd, len))
2834 error = -EFAULT;
2835 }
2836 } else {
2837 write_sequnlock(&rename_lock);
2838 }
2839
2840 out:
2841 path_put(&pwd);
2842 path_put(&root);
2843 free_page((unsigned long) page);
2844 return error;
2845 }
2846
2847 /*
2848 * Test whether new_dentry is a subdirectory of old_dentry.
2849 *
2850 * Trivially implemented using the dcache structure
2851 */
2852
2853 /**
2854 * is_subdir - is new dentry a subdirectory of old_dentry
2855 * @new_dentry: new dentry
2856 * @old_dentry: old dentry
2857 *
2858 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2859 * Returns 0 otherwise.
2860 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2861 */
2862
2863 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2864 {
2865 int result;
2866 unsigned seq;
2867
2868 if (new_dentry == old_dentry)
2869 return 1;
2870
2871 do {
2872 /* for restarting inner loop in case of seq retry */
2873 seq = read_seqbegin(&rename_lock);
2874 /*
2875 * Need rcu_readlock to protect against the d_parent trashing
2876 * due to d_move
2877 */
2878 rcu_read_lock();
2879 if (d_ancestor(old_dentry, new_dentry))
2880 result = 1;
2881 else
2882 result = 0;
2883 rcu_read_unlock();
2884 } while (read_seqretry(&rename_lock, seq));
2885
2886 return result;
2887 }
2888
2889 int path_is_under(struct path *path1, struct path *path2)
2890 {
2891 struct vfsmount *mnt = path1->mnt;
2892 struct dentry *dentry = path1->dentry;
2893 int res;
2894
2895 br_read_lock(vfsmount_lock);
2896 if (mnt != path2->mnt) {
2897 for (;;) {
2898 if (mnt->mnt_parent == mnt) {
2899 br_read_unlock(vfsmount_lock);
2900 return 0;
2901 }
2902 if (mnt->mnt_parent == path2->mnt)
2903 break;
2904 mnt = mnt->mnt_parent;
2905 }
2906 dentry = mnt->mnt_mountpoint;
2907 }
2908 res = is_subdir(dentry, path2->dentry);
2909 br_read_unlock(vfsmount_lock);
2910 return res;
2911 }
2912 EXPORT_SYMBOL(path_is_under);
2913
2914 void d_genocide(struct dentry *root)
2915 {
2916 struct dentry *this_parent;
2917 struct list_head *next;
2918 unsigned seq;
2919 int locked = 0;
2920
2921 seq = read_seqbegin(&rename_lock);
2922 again:
2923 this_parent = root;
2924 spin_lock(&this_parent->d_lock);
2925 repeat:
2926 next = this_parent->d_subdirs.next;
2927 resume:
2928 while (next != &this_parent->d_subdirs) {
2929 struct list_head *tmp = next;
2930 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2931 next = tmp->next;
2932
2933 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2934 if (d_unhashed(dentry) || !dentry->d_inode) {
2935 spin_unlock(&dentry->d_lock);
2936 continue;
2937 }
2938 if (!list_empty(&dentry->d_subdirs)) {
2939 spin_unlock(&this_parent->d_lock);
2940 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2941 this_parent = dentry;
2942 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2943 goto repeat;
2944 }
2945 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2946 dentry->d_flags |= DCACHE_GENOCIDE;
2947 dentry->d_count--;
2948 }
2949 spin_unlock(&dentry->d_lock);
2950 }
2951 if (this_parent != root) {
2952 struct dentry *child = this_parent;
2953 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2954 this_parent->d_flags |= DCACHE_GENOCIDE;
2955 this_parent->d_count--;
2956 }
2957 this_parent = try_to_ascend(this_parent, locked, seq);
2958 if (!this_parent)
2959 goto rename_retry;
2960 next = child->d_u.d_child.next;
2961 goto resume;
2962 }
2963 spin_unlock(&this_parent->d_lock);
2964 if (!locked && read_seqretry(&rename_lock, seq))
2965 goto rename_retry;
2966 if (locked)
2967 write_sequnlock(&rename_lock);
2968 return;
2969
2970 rename_retry:
2971 locked = 1;
2972 write_seqlock(&rename_lock);
2973 goto again;
2974 }
2975
2976 /**
2977 * find_inode_number - check for dentry with name
2978 * @dir: directory to check
2979 * @name: Name to find.
2980 *
2981 * Check whether a dentry already exists for the given name,
2982 * and return the inode number if it has an inode. Otherwise
2983 * 0 is returned.
2984 *
2985 * This routine is used to post-process directory listings for
2986 * filesystems using synthetic inode numbers, and is necessary
2987 * to keep getcwd() working.
2988 */
2989
2990 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2991 {
2992 struct dentry * dentry;
2993 ino_t ino = 0;
2994
2995 dentry = d_hash_and_lookup(dir, name);
2996 if (dentry) {
2997 if (dentry->d_inode)
2998 ino = dentry->d_inode->i_ino;
2999 dput(dentry);
3000 }
3001 return ino;
3002 }
3003 EXPORT_SYMBOL(find_inode_number);
3004
3005 static __initdata unsigned long dhash_entries;
3006 static int __init set_dhash_entries(char *str)
3007 {
3008 if (!str)
3009 return 0;
3010 dhash_entries = simple_strtoul(str, &str, 0);
3011 return 1;
3012 }
3013 __setup("dhash_entries=", set_dhash_entries);
3014
3015 static void __init dcache_init_early(void)
3016 {
3017 int loop;
3018
3019 /* If hashes are distributed across NUMA nodes, defer
3020 * hash allocation until vmalloc space is available.
3021 */
3022 if (hashdist)
3023 return;
3024
3025 dentry_hashtable =
3026 alloc_large_system_hash("Dentry cache",
3027 sizeof(struct hlist_bl_head),
3028 dhash_entries,
3029 13,
3030 HASH_EARLY,
3031 &d_hash_shift,
3032 &d_hash_mask,
3033 0);
3034
3035 for (loop = 0; loop < (1 << d_hash_shift); loop++)
3036 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3037 }
3038
3039 static void __init dcache_init(void)
3040 {
3041 int loop;
3042
3043 /*
3044 * A constructor could be added for stable state like the lists,
3045 * but it is probably not worth it because of the cache nature
3046 * of the dcache.
3047 */
3048 dentry_cache = KMEM_CACHE(dentry,
3049 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3050
3051 register_shrinker(&dcache_shrinker);
3052
3053 /* Hash may have been set up in dcache_init_early */
3054 if (!hashdist)
3055 return;
3056
3057 dentry_hashtable =
3058 alloc_large_system_hash("Dentry cache",
3059 sizeof(struct hlist_bl_head),
3060 dhash_entries,
3061 13,
3062 0,
3063 &d_hash_shift,
3064 &d_hash_mask,
3065 0);
3066
3067 for (loop = 0; loop < (1 << d_hash_shift); loop++)
3068 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3069 }
3070
3071 /* SLAB cache for __getname() consumers */
3072 struct kmem_cache *names_cachep __read_mostly;
3073 EXPORT_SYMBOL(names_cachep);
3074
3075 EXPORT_SYMBOL(d_genocide);
3076
3077 void __init vfs_caches_init_early(void)
3078 {
3079 dcache_init_early();
3080 inode_init_early();
3081 }
3082
3083 void __init vfs_caches_init(unsigned long mempages)
3084 {
3085 unsigned long reserve;
3086
3087 /* Base hash sizes on available memory, with a reserve equal to
3088 150% of current kernel size */
3089
3090 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3091 mempages -= reserve;
3092
3093 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3094 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3095
3096 dcache_init();
3097 inode_init();
3098 files_init(mempages);
3099 mnt_init();
3100 bdev_cache_init();
3101 chrdev_init();
3102 }