fs: handle failed audit_log_start properly
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
42
43 /*
44 * Usage:
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
57 * - d_count
58 * - d_unhashed()
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_alias, d_inode
62 *
63 * Ordering:
64 * dentry->d_inode->i_lock
65 * dentry->d_lock
66 * dcache_lru_lock
67 * dcache_hash_bucket lock
68 * s_anon lock
69 *
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *dentry_cache __read_mostly;
90
91 /*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99 #define D_HASHBITS d_hash_shift
100 #define D_HASHMASK d_hash_mask
101
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 unsigned int hash)
109 {
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 hash = hash + (hash >> D_HASHBITS);
112 return dentry_hashtable + (hash & D_HASHMASK);
113 }
114
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
118 };
119
120 static DEFINE_PER_CPU(unsigned int, nr_dentry);
121
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
124 {
125 int i;
126 int sum = 0;
127 for_each_possible_cpu(i)
128 sum += per_cpu(nr_dentry, i);
129 return sum < 0 ? 0 : sum;
130 }
131
132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 size_t *lenp, loff_t *ppos)
134 {
135 dentry_stat.nr_dentry = get_nr_dentry();
136 return proc_dointvec(table, write, buffer, lenp, ppos);
137 }
138 #endif
139
140 /*
141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142 * The strings are both count bytes long, and count is non-zero.
143 */
144 #ifdef CONFIG_DCACHE_WORD_ACCESS
145
146 #include <asm/word-at-a-time.h>
147 /*
148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149 * aligned allocation for this particular component. We don't
150 * strictly need the load_unaligned_zeropad() safety, but it
151 * doesn't hurt either.
152 *
153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154 * need the careful unaligned handling.
155 */
156 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
157 {
158 unsigned long a,b,mask;
159
160 for (;;) {
161 a = *(unsigned long *)cs;
162 b = load_unaligned_zeropad(ct);
163 if (tcount < sizeof(unsigned long))
164 break;
165 if (unlikely(a != b))
166 return 1;
167 cs += sizeof(unsigned long);
168 ct += sizeof(unsigned long);
169 tcount -= sizeof(unsigned long);
170 if (!tcount)
171 return 0;
172 }
173 mask = ~(~0ul << tcount*8);
174 return unlikely(!!((a ^ b) & mask));
175 }
176
177 #else
178
179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 do {
182 if (*cs != *ct)
183 return 1;
184 cs++;
185 ct++;
186 tcount--;
187 } while (tcount);
188 return 0;
189 }
190
191 #endif
192
193 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
194 {
195 const unsigned char *cs;
196 /*
197 * Be careful about RCU walk racing with rename:
198 * use ACCESS_ONCE to fetch the name pointer.
199 *
200 * NOTE! Even if a rename will mean that the length
201 * was not loaded atomically, we don't care. The
202 * RCU walk will check the sequence count eventually,
203 * and catch it. And we won't overrun the buffer,
204 * because we're reading the name pointer atomically,
205 * and a dentry name is guaranteed to be properly
206 * terminated with a NUL byte.
207 *
208 * End result: even if 'len' is wrong, we'll exit
209 * early because the data cannot match (there can
210 * be no NUL in the ct/tcount data)
211 */
212 cs = ACCESS_ONCE(dentry->d_name.name);
213 smp_read_barrier_depends();
214 return dentry_string_cmp(cs, ct, tcount);
215 }
216
217 static void __d_free(struct rcu_head *head)
218 {
219 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
220
221 WARN_ON(!hlist_unhashed(&dentry->d_alias));
222 if (dname_external(dentry))
223 kfree(dentry->d_name.name);
224 kmem_cache_free(dentry_cache, dentry);
225 }
226
227 /*
228 * no locks, please.
229 */
230 static void d_free(struct dentry *dentry)
231 {
232 BUG_ON(dentry->d_count);
233 this_cpu_dec(nr_dentry);
234 if (dentry->d_op && dentry->d_op->d_release)
235 dentry->d_op->d_release(dentry);
236
237 /* if dentry was never visible to RCU, immediate free is OK */
238 if (!(dentry->d_flags & DCACHE_RCUACCESS))
239 __d_free(&dentry->d_u.d_rcu);
240 else
241 call_rcu(&dentry->d_u.d_rcu, __d_free);
242 }
243
244 /**
245 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
246 * @dentry: the target dentry
247 * After this call, in-progress rcu-walk path lookup will fail. This
248 * should be called after unhashing, and after changing d_inode (if
249 * the dentry has not already been unhashed).
250 */
251 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
252 {
253 assert_spin_locked(&dentry->d_lock);
254 /* Go through a barrier */
255 write_seqcount_barrier(&dentry->d_seq);
256 }
257
258 /*
259 * Release the dentry's inode, using the filesystem
260 * d_iput() operation if defined. Dentry has no refcount
261 * and is unhashed.
262 */
263 static void dentry_iput(struct dentry * dentry)
264 __releases(dentry->d_lock)
265 __releases(dentry->d_inode->i_lock)
266 {
267 struct inode *inode = dentry->d_inode;
268 if (inode) {
269 dentry->d_inode = NULL;
270 hlist_del_init(&dentry->d_alias);
271 spin_unlock(&dentry->d_lock);
272 spin_unlock(&inode->i_lock);
273 if (!inode->i_nlink)
274 fsnotify_inoderemove(inode);
275 if (dentry->d_op && dentry->d_op->d_iput)
276 dentry->d_op->d_iput(dentry, inode);
277 else
278 iput(inode);
279 } else {
280 spin_unlock(&dentry->d_lock);
281 }
282 }
283
284 /*
285 * Release the dentry's inode, using the filesystem
286 * d_iput() operation if defined. dentry remains in-use.
287 */
288 static void dentry_unlink_inode(struct dentry * dentry)
289 __releases(dentry->d_lock)
290 __releases(dentry->d_inode->i_lock)
291 {
292 struct inode *inode = dentry->d_inode;
293 dentry->d_inode = NULL;
294 hlist_del_init(&dentry->d_alias);
295 dentry_rcuwalk_barrier(dentry);
296 spin_unlock(&dentry->d_lock);
297 spin_unlock(&inode->i_lock);
298 if (!inode->i_nlink)
299 fsnotify_inoderemove(inode);
300 if (dentry->d_op && dentry->d_op->d_iput)
301 dentry->d_op->d_iput(dentry, inode);
302 else
303 iput(inode);
304 }
305
306 /*
307 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
308 */
309 static void dentry_lru_add(struct dentry *dentry)
310 {
311 if (list_empty(&dentry->d_lru)) {
312 spin_lock(&dcache_lru_lock);
313 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
314 dentry->d_sb->s_nr_dentry_unused++;
315 dentry_stat.nr_unused++;
316 spin_unlock(&dcache_lru_lock);
317 }
318 }
319
320 static void __dentry_lru_del(struct dentry *dentry)
321 {
322 list_del_init(&dentry->d_lru);
323 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
324 dentry->d_sb->s_nr_dentry_unused--;
325 dentry_stat.nr_unused--;
326 }
327
328 /*
329 * Remove a dentry with references from the LRU.
330 */
331 static void dentry_lru_del(struct dentry *dentry)
332 {
333 if (!list_empty(&dentry->d_lru)) {
334 spin_lock(&dcache_lru_lock);
335 __dentry_lru_del(dentry);
336 spin_unlock(&dcache_lru_lock);
337 }
338 }
339
340 /*
341 * Remove a dentry that is unreferenced and about to be pruned
342 * (unhashed and destroyed) from the LRU, and inform the file system.
343 * This wrapper should be called _prior_ to unhashing a victim dentry.
344 */
345 static void dentry_lru_prune(struct dentry *dentry)
346 {
347 if (!list_empty(&dentry->d_lru)) {
348 if (dentry->d_flags & DCACHE_OP_PRUNE)
349 dentry->d_op->d_prune(dentry);
350
351 spin_lock(&dcache_lru_lock);
352 __dentry_lru_del(dentry);
353 spin_unlock(&dcache_lru_lock);
354 }
355 }
356
357 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
358 {
359 spin_lock(&dcache_lru_lock);
360 if (list_empty(&dentry->d_lru)) {
361 list_add_tail(&dentry->d_lru, list);
362 dentry->d_sb->s_nr_dentry_unused++;
363 dentry_stat.nr_unused++;
364 } else {
365 list_move_tail(&dentry->d_lru, list);
366 }
367 spin_unlock(&dcache_lru_lock);
368 }
369
370 /**
371 * d_kill - kill dentry and return parent
372 * @dentry: dentry to kill
373 * @parent: parent dentry
374 *
375 * The dentry must already be unhashed and removed from the LRU.
376 *
377 * If this is the root of the dentry tree, return NULL.
378 *
379 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
380 * d_kill.
381 */
382 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
383 __releases(dentry->d_lock)
384 __releases(parent->d_lock)
385 __releases(dentry->d_inode->i_lock)
386 {
387 list_del(&dentry->d_u.d_child);
388 /*
389 * Inform try_to_ascend() that we are no longer attached to the
390 * dentry tree
391 */
392 dentry->d_flags |= DCACHE_DENTRY_KILLED;
393 if (parent)
394 spin_unlock(&parent->d_lock);
395 dentry_iput(dentry);
396 /*
397 * dentry_iput drops the locks, at which point nobody (except
398 * transient RCU lookups) can reach this dentry.
399 */
400 d_free(dentry);
401 return parent;
402 }
403
404 /*
405 * Unhash a dentry without inserting an RCU walk barrier or checking that
406 * dentry->d_lock is locked. The caller must take care of that, if
407 * appropriate.
408 */
409 static void __d_shrink(struct dentry *dentry)
410 {
411 if (!d_unhashed(dentry)) {
412 struct hlist_bl_head *b;
413 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
414 b = &dentry->d_sb->s_anon;
415 else
416 b = d_hash(dentry->d_parent, dentry->d_name.hash);
417
418 hlist_bl_lock(b);
419 __hlist_bl_del(&dentry->d_hash);
420 dentry->d_hash.pprev = NULL;
421 hlist_bl_unlock(b);
422 }
423 }
424
425 /**
426 * d_drop - drop a dentry
427 * @dentry: dentry to drop
428 *
429 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
430 * be found through a VFS lookup any more. Note that this is different from
431 * deleting the dentry - d_delete will try to mark the dentry negative if
432 * possible, giving a successful _negative_ lookup, while d_drop will
433 * just make the cache lookup fail.
434 *
435 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
436 * reason (NFS timeouts or autofs deletes).
437 *
438 * __d_drop requires dentry->d_lock.
439 */
440 void __d_drop(struct dentry *dentry)
441 {
442 if (!d_unhashed(dentry)) {
443 __d_shrink(dentry);
444 dentry_rcuwalk_barrier(dentry);
445 }
446 }
447 EXPORT_SYMBOL(__d_drop);
448
449 void d_drop(struct dentry *dentry)
450 {
451 spin_lock(&dentry->d_lock);
452 __d_drop(dentry);
453 spin_unlock(&dentry->d_lock);
454 }
455 EXPORT_SYMBOL(d_drop);
456
457 /*
458 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
459 * @dentry: dentry to drop
460 *
461 * This is called when we do a lookup on a placeholder dentry that needed to be
462 * looked up. The dentry should have been hashed in order for it to be found by
463 * the lookup code, but now needs to be unhashed while we do the actual lookup
464 * and clear the DCACHE_NEED_LOOKUP flag.
465 */
466 void d_clear_need_lookup(struct dentry *dentry)
467 {
468 spin_lock(&dentry->d_lock);
469 __d_drop(dentry);
470 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
471 spin_unlock(&dentry->d_lock);
472 }
473 EXPORT_SYMBOL(d_clear_need_lookup);
474
475 /*
476 * Finish off a dentry we've decided to kill.
477 * dentry->d_lock must be held, returns with it unlocked.
478 * If ref is non-zero, then decrement the refcount too.
479 * Returns dentry requiring refcount drop, or NULL if we're done.
480 */
481 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
482 __releases(dentry->d_lock)
483 {
484 struct inode *inode;
485 struct dentry *parent;
486
487 inode = dentry->d_inode;
488 if (inode && !spin_trylock(&inode->i_lock)) {
489 relock:
490 spin_unlock(&dentry->d_lock);
491 cpu_relax();
492 return dentry; /* try again with same dentry */
493 }
494 if (IS_ROOT(dentry))
495 parent = NULL;
496 else
497 parent = dentry->d_parent;
498 if (parent && !spin_trylock(&parent->d_lock)) {
499 if (inode)
500 spin_unlock(&inode->i_lock);
501 goto relock;
502 }
503
504 if (ref)
505 dentry->d_count--;
506 /*
507 * if dentry was on the d_lru list delete it from there.
508 * inform the fs via d_prune that this dentry is about to be
509 * unhashed and destroyed.
510 */
511 dentry_lru_prune(dentry);
512 /* if it was on the hash then remove it */
513 __d_drop(dentry);
514 return d_kill(dentry, parent);
515 }
516
517 /*
518 * This is dput
519 *
520 * This is complicated by the fact that we do not want to put
521 * dentries that are no longer on any hash chain on the unused
522 * list: we'd much rather just get rid of them immediately.
523 *
524 * However, that implies that we have to traverse the dentry
525 * tree upwards to the parents which might _also_ now be
526 * scheduled for deletion (it may have been only waiting for
527 * its last child to go away).
528 *
529 * This tail recursion is done by hand as we don't want to depend
530 * on the compiler to always get this right (gcc generally doesn't).
531 * Real recursion would eat up our stack space.
532 */
533
534 /*
535 * dput - release a dentry
536 * @dentry: dentry to release
537 *
538 * Release a dentry. This will drop the usage count and if appropriate
539 * call the dentry unlink method as well as removing it from the queues and
540 * releasing its resources. If the parent dentries were scheduled for release
541 * they too may now get deleted.
542 */
543 void dput(struct dentry *dentry)
544 {
545 if (!dentry)
546 return;
547
548 repeat:
549 if (dentry->d_count == 1)
550 might_sleep();
551 spin_lock(&dentry->d_lock);
552 BUG_ON(!dentry->d_count);
553 if (dentry->d_count > 1) {
554 dentry->d_count--;
555 spin_unlock(&dentry->d_lock);
556 return;
557 }
558
559 if (dentry->d_flags & DCACHE_OP_DELETE) {
560 if (dentry->d_op->d_delete(dentry))
561 goto kill_it;
562 }
563
564 /* Unreachable? Get rid of it */
565 if (d_unhashed(dentry))
566 goto kill_it;
567
568 /*
569 * If this dentry needs lookup, don't set the referenced flag so that it
570 * is more likely to be cleaned up by the dcache shrinker in case of
571 * memory pressure.
572 */
573 if (!d_need_lookup(dentry))
574 dentry->d_flags |= DCACHE_REFERENCED;
575 dentry_lru_add(dentry);
576
577 dentry->d_count--;
578 spin_unlock(&dentry->d_lock);
579 return;
580
581 kill_it:
582 dentry = dentry_kill(dentry, 1);
583 if (dentry)
584 goto repeat;
585 }
586 EXPORT_SYMBOL(dput);
587
588 /**
589 * d_invalidate - invalidate a dentry
590 * @dentry: dentry to invalidate
591 *
592 * Try to invalidate the dentry if it turns out to be
593 * possible. If there are other dentries that can be
594 * reached through this one we can't delete it and we
595 * return -EBUSY. On success we return 0.
596 *
597 * no dcache lock.
598 */
599
600 int d_invalidate(struct dentry * dentry)
601 {
602 /*
603 * If it's already been dropped, return OK.
604 */
605 spin_lock(&dentry->d_lock);
606 if (d_unhashed(dentry)) {
607 spin_unlock(&dentry->d_lock);
608 return 0;
609 }
610 /*
611 * Check whether to do a partial shrink_dcache
612 * to get rid of unused child entries.
613 */
614 if (!list_empty(&dentry->d_subdirs)) {
615 spin_unlock(&dentry->d_lock);
616 shrink_dcache_parent(dentry);
617 spin_lock(&dentry->d_lock);
618 }
619
620 /*
621 * Somebody else still using it?
622 *
623 * If it's a directory, we can't drop it
624 * for fear of somebody re-populating it
625 * with children (even though dropping it
626 * would make it unreachable from the root,
627 * we might still populate it if it was a
628 * working directory or similar).
629 * We also need to leave mountpoints alone,
630 * directory or not.
631 */
632 if (dentry->d_count > 1 && dentry->d_inode) {
633 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
634 spin_unlock(&dentry->d_lock);
635 return -EBUSY;
636 }
637 }
638
639 __d_drop(dentry);
640 spin_unlock(&dentry->d_lock);
641 return 0;
642 }
643 EXPORT_SYMBOL(d_invalidate);
644
645 /* This must be called with d_lock held */
646 static inline void __dget_dlock(struct dentry *dentry)
647 {
648 dentry->d_count++;
649 }
650
651 static inline void __dget(struct dentry *dentry)
652 {
653 spin_lock(&dentry->d_lock);
654 __dget_dlock(dentry);
655 spin_unlock(&dentry->d_lock);
656 }
657
658 struct dentry *dget_parent(struct dentry *dentry)
659 {
660 struct dentry *ret;
661
662 repeat:
663 /*
664 * Don't need rcu_dereference because we re-check it was correct under
665 * the lock.
666 */
667 rcu_read_lock();
668 ret = dentry->d_parent;
669 spin_lock(&ret->d_lock);
670 if (unlikely(ret != dentry->d_parent)) {
671 spin_unlock(&ret->d_lock);
672 rcu_read_unlock();
673 goto repeat;
674 }
675 rcu_read_unlock();
676 BUG_ON(!ret->d_count);
677 ret->d_count++;
678 spin_unlock(&ret->d_lock);
679 return ret;
680 }
681 EXPORT_SYMBOL(dget_parent);
682
683 /**
684 * d_find_alias - grab a hashed alias of inode
685 * @inode: inode in question
686 * @want_discon: flag, used by d_splice_alias, to request
687 * that only a DISCONNECTED alias be returned.
688 *
689 * If inode has a hashed alias, or is a directory and has any alias,
690 * acquire the reference to alias and return it. Otherwise return NULL.
691 * Notice that if inode is a directory there can be only one alias and
692 * it can be unhashed only if it has no children, or if it is the root
693 * of a filesystem.
694 *
695 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
696 * any other hashed alias over that one unless @want_discon is set,
697 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
698 */
699 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
700 {
701 struct dentry *alias, *discon_alias;
702 struct hlist_node *p;
703
704 again:
705 discon_alias = NULL;
706 hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) {
707 spin_lock(&alias->d_lock);
708 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
709 if (IS_ROOT(alias) &&
710 (alias->d_flags & DCACHE_DISCONNECTED)) {
711 discon_alias = alias;
712 } else if (!want_discon) {
713 __dget_dlock(alias);
714 spin_unlock(&alias->d_lock);
715 return alias;
716 }
717 }
718 spin_unlock(&alias->d_lock);
719 }
720 if (discon_alias) {
721 alias = discon_alias;
722 spin_lock(&alias->d_lock);
723 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
724 if (IS_ROOT(alias) &&
725 (alias->d_flags & DCACHE_DISCONNECTED)) {
726 __dget_dlock(alias);
727 spin_unlock(&alias->d_lock);
728 return alias;
729 }
730 }
731 spin_unlock(&alias->d_lock);
732 goto again;
733 }
734 return NULL;
735 }
736
737 struct dentry *d_find_alias(struct inode *inode)
738 {
739 struct dentry *de = NULL;
740
741 if (!hlist_empty(&inode->i_dentry)) {
742 spin_lock(&inode->i_lock);
743 de = __d_find_alias(inode, 0);
744 spin_unlock(&inode->i_lock);
745 }
746 return de;
747 }
748 EXPORT_SYMBOL(d_find_alias);
749
750 /*
751 * Try to kill dentries associated with this inode.
752 * WARNING: you must own a reference to inode.
753 */
754 void d_prune_aliases(struct inode *inode)
755 {
756 struct dentry *dentry;
757 struct hlist_node *p;
758 restart:
759 spin_lock(&inode->i_lock);
760 hlist_for_each_entry(dentry, p, &inode->i_dentry, d_alias) {
761 spin_lock(&dentry->d_lock);
762 if (!dentry->d_count) {
763 __dget_dlock(dentry);
764 __d_drop(dentry);
765 spin_unlock(&dentry->d_lock);
766 spin_unlock(&inode->i_lock);
767 dput(dentry);
768 goto restart;
769 }
770 spin_unlock(&dentry->d_lock);
771 }
772 spin_unlock(&inode->i_lock);
773 }
774 EXPORT_SYMBOL(d_prune_aliases);
775
776 /*
777 * Try to throw away a dentry - free the inode, dput the parent.
778 * Requires dentry->d_lock is held, and dentry->d_count == 0.
779 * Releases dentry->d_lock.
780 *
781 * This may fail if locks cannot be acquired no problem, just try again.
782 */
783 static void try_prune_one_dentry(struct dentry *dentry)
784 __releases(dentry->d_lock)
785 {
786 struct dentry *parent;
787
788 parent = dentry_kill(dentry, 0);
789 /*
790 * If dentry_kill returns NULL, we have nothing more to do.
791 * if it returns the same dentry, trylocks failed. In either
792 * case, just loop again.
793 *
794 * Otherwise, we need to prune ancestors too. This is necessary
795 * to prevent quadratic behavior of shrink_dcache_parent(), but
796 * is also expected to be beneficial in reducing dentry cache
797 * fragmentation.
798 */
799 if (!parent)
800 return;
801 if (parent == dentry)
802 return;
803
804 /* Prune ancestors. */
805 dentry = parent;
806 while (dentry) {
807 spin_lock(&dentry->d_lock);
808 if (dentry->d_count > 1) {
809 dentry->d_count--;
810 spin_unlock(&dentry->d_lock);
811 return;
812 }
813 dentry = dentry_kill(dentry, 1);
814 }
815 }
816
817 static void shrink_dentry_list(struct list_head *list)
818 {
819 struct dentry *dentry;
820
821 rcu_read_lock();
822 for (;;) {
823 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
824 if (&dentry->d_lru == list)
825 break; /* empty */
826 spin_lock(&dentry->d_lock);
827 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
828 spin_unlock(&dentry->d_lock);
829 continue;
830 }
831
832 /*
833 * We found an inuse dentry which was not removed from
834 * the LRU because of laziness during lookup. Do not free
835 * it - just keep it off the LRU list.
836 */
837 if (dentry->d_count) {
838 dentry_lru_del(dentry);
839 spin_unlock(&dentry->d_lock);
840 continue;
841 }
842
843 rcu_read_unlock();
844
845 try_prune_one_dentry(dentry);
846
847 rcu_read_lock();
848 }
849 rcu_read_unlock();
850 }
851
852 /**
853 * prune_dcache_sb - shrink the dcache
854 * @sb: superblock
855 * @count: number of entries to try to free
856 *
857 * Attempt to shrink the superblock dcache LRU by @count entries. This is
858 * done when we need more memory an called from the superblock shrinker
859 * function.
860 *
861 * This function may fail to free any resources if all the dentries are in
862 * use.
863 */
864 void prune_dcache_sb(struct super_block *sb, int count)
865 {
866 struct dentry *dentry;
867 LIST_HEAD(referenced);
868 LIST_HEAD(tmp);
869
870 relock:
871 spin_lock(&dcache_lru_lock);
872 while (!list_empty(&sb->s_dentry_lru)) {
873 dentry = list_entry(sb->s_dentry_lru.prev,
874 struct dentry, d_lru);
875 BUG_ON(dentry->d_sb != sb);
876
877 if (!spin_trylock(&dentry->d_lock)) {
878 spin_unlock(&dcache_lru_lock);
879 cpu_relax();
880 goto relock;
881 }
882
883 if (dentry->d_flags & DCACHE_REFERENCED) {
884 dentry->d_flags &= ~DCACHE_REFERENCED;
885 list_move(&dentry->d_lru, &referenced);
886 spin_unlock(&dentry->d_lock);
887 } else {
888 list_move_tail(&dentry->d_lru, &tmp);
889 dentry->d_flags |= DCACHE_SHRINK_LIST;
890 spin_unlock(&dentry->d_lock);
891 if (!--count)
892 break;
893 }
894 cond_resched_lock(&dcache_lru_lock);
895 }
896 if (!list_empty(&referenced))
897 list_splice(&referenced, &sb->s_dentry_lru);
898 spin_unlock(&dcache_lru_lock);
899
900 shrink_dentry_list(&tmp);
901 }
902
903 /**
904 * shrink_dcache_sb - shrink dcache for a superblock
905 * @sb: superblock
906 *
907 * Shrink the dcache for the specified super block. This is used to free
908 * the dcache before unmounting a file system.
909 */
910 void shrink_dcache_sb(struct super_block *sb)
911 {
912 LIST_HEAD(tmp);
913
914 spin_lock(&dcache_lru_lock);
915 while (!list_empty(&sb->s_dentry_lru)) {
916 list_splice_init(&sb->s_dentry_lru, &tmp);
917 spin_unlock(&dcache_lru_lock);
918 shrink_dentry_list(&tmp);
919 spin_lock(&dcache_lru_lock);
920 }
921 spin_unlock(&dcache_lru_lock);
922 }
923 EXPORT_SYMBOL(shrink_dcache_sb);
924
925 /*
926 * destroy a single subtree of dentries for unmount
927 * - see the comments on shrink_dcache_for_umount() for a description of the
928 * locking
929 */
930 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
931 {
932 struct dentry *parent;
933
934 BUG_ON(!IS_ROOT(dentry));
935
936 for (;;) {
937 /* descend to the first leaf in the current subtree */
938 while (!list_empty(&dentry->d_subdirs))
939 dentry = list_entry(dentry->d_subdirs.next,
940 struct dentry, d_u.d_child);
941
942 /* consume the dentries from this leaf up through its parents
943 * until we find one with children or run out altogether */
944 do {
945 struct inode *inode;
946
947 /*
948 * remove the dentry from the lru, and inform
949 * the fs that this dentry is about to be
950 * unhashed and destroyed.
951 */
952 dentry_lru_prune(dentry);
953 __d_shrink(dentry);
954
955 if (dentry->d_count != 0) {
956 printk(KERN_ERR
957 "BUG: Dentry %p{i=%lx,n=%s}"
958 " still in use (%d)"
959 " [unmount of %s %s]\n",
960 dentry,
961 dentry->d_inode ?
962 dentry->d_inode->i_ino : 0UL,
963 dentry->d_name.name,
964 dentry->d_count,
965 dentry->d_sb->s_type->name,
966 dentry->d_sb->s_id);
967 BUG();
968 }
969
970 if (IS_ROOT(dentry)) {
971 parent = NULL;
972 list_del(&dentry->d_u.d_child);
973 } else {
974 parent = dentry->d_parent;
975 parent->d_count--;
976 list_del(&dentry->d_u.d_child);
977 }
978
979 inode = dentry->d_inode;
980 if (inode) {
981 dentry->d_inode = NULL;
982 hlist_del_init(&dentry->d_alias);
983 if (dentry->d_op && dentry->d_op->d_iput)
984 dentry->d_op->d_iput(dentry, inode);
985 else
986 iput(inode);
987 }
988
989 d_free(dentry);
990
991 /* finished when we fall off the top of the tree,
992 * otherwise we ascend to the parent and move to the
993 * next sibling if there is one */
994 if (!parent)
995 return;
996 dentry = parent;
997 } while (list_empty(&dentry->d_subdirs));
998
999 dentry = list_entry(dentry->d_subdirs.next,
1000 struct dentry, d_u.d_child);
1001 }
1002 }
1003
1004 /*
1005 * destroy the dentries attached to a superblock on unmounting
1006 * - we don't need to use dentry->d_lock because:
1007 * - the superblock is detached from all mountings and open files, so the
1008 * dentry trees will not be rearranged by the VFS
1009 * - s_umount is write-locked, so the memory pressure shrinker will ignore
1010 * any dentries belonging to this superblock that it comes across
1011 * - the filesystem itself is no longer permitted to rearrange the dentries
1012 * in this superblock
1013 */
1014 void shrink_dcache_for_umount(struct super_block *sb)
1015 {
1016 struct dentry *dentry;
1017
1018 if (down_read_trylock(&sb->s_umount))
1019 BUG();
1020
1021 dentry = sb->s_root;
1022 sb->s_root = NULL;
1023 dentry->d_count--;
1024 shrink_dcache_for_umount_subtree(dentry);
1025
1026 while (!hlist_bl_empty(&sb->s_anon)) {
1027 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1028 shrink_dcache_for_umount_subtree(dentry);
1029 }
1030 }
1031
1032 /*
1033 * This tries to ascend one level of parenthood, but
1034 * we can race with renaming, so we need to re-check
1035 * the parenthood after dropping the lock and check
1036 * that the sequence number still matches.
1037 */
1038 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1039 {
1040 struct dentry *new = old->d_parent;
1041
1042 rcu_read_lock();
1043 spin_unlock(&old->d_lock);
1044 spin_lock(&new->d_lock);
1045
1046 /*
1047 * might go back up the wrong parent if we have had a rename
1048 * or deletion
1049 */
1050 if (new != old->d_parent ||
1051 (old->d_flags & DCACHE_DENTRY_KILLED) ||
1052 (!locked && read_seqretry(&rename_lock, seq))) {
1053 spin_unlock(&new->d_lock);
1054 new = NULL;
1055 }
1056 rcu_read_unlock();
1057 return new;
1058 }
1059
1060
1061 /*
1062 * Search for at least 1 mount point in the dentry's subdirs.
1063 * We descend to the next level whenever the d_subdirs
1064 * list is non-empty and continue searching.
1065 */
1066
1067 /**
1068 * have_submounts - check for mounts over a dentry
1069 * @parent: dentry to check.
1070 *
1071 * Return true if the parent or its subdirectories contain
1072 * a mount point
1073 */
1074 int have_submounts(struct dentry *parent)
1075 {
1076 struct dentry *this_parent;
1077 struct list_head *next;
1078 unsigned seq;
1079 int locked = 0;
1080
1081 seq = read_seqbegin(&rename_lock);
1082 again:
1083 this_parent = parent;
1084
1085 if (d_mountpoint(parent))
1086 goto positive;
1087 spin_lock(&this_parent->d_lock);
1088 repeat:
1089 next = this_parent->d_subdirs.next;
1090 resume:
1091 while (next != &this_parent->d_subdirs) {
1092 struct list_head *tmp = next;
1093 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1094 next = tmp->next;
1095
1096 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1097 /* Have we found a mount point ? */
1098 if (d_mountpoint(dentry)) {
1099 spin_unlock(&dentry->d_lock);
1100 spin_unlock(&this_parent->d_lock);
1101 goto positive;
1102 }
1103 if (!list_empty(&dentry->d_subdirs)) {
1104 spin_unlock(&this_parent->d_lock);
1105 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1106 this_parent = dentry;
1107 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1108 goto repeat;
1109 }
1110 spin_unlock(&dentry->d_lock);
1111 }
1112 /*
1113 * All done at this level ... ascend and resume the search.
1114 */
1115 if (this_parent != parent) {
1116 struct dentry *child = this_parent;
1117 this_parent = try_to_ascend(this_parent, locked, seq);
1118 if (!this_parent)
1119 goto rename_retry;
1120 next = child->d_u.d_child.next;
1121 goto resume;
1122 }
1123 spin_unlock(&this_parent->d_lock);
1124 if (!locked && read_seqretry(&rename_lock, seq))
1125 goto rename_retry;
1126 if (locked)
1127 write_sequnlock(&rename_lock);
1128 return 0; /* No mount points found in tree */
1129 positive:
1130 if (!locked && read_seqretry(&rename_lock, seq))
1131 goto rename_retry;
1132 if (locked)
1133 write_sequnlock(&rename_lock);
1134 return 1;
1135
1136 rename_retry:
1137 if (locked)
1138 goto again;
1139 locked = 1;
1140 write_seqlock(&rename_lock);
1141 goto again;
1142 }
1143 EXPORT_SYMBOL(have_submounts);
1144
1145 /*
1146 * Search the dentry child list of the specified parent,
1147 * and move any unused dentries to the end of the unused
1148 * list for prune_dcache(). We descend to the next level
1149 * whenever the d_subdirs list is non-empty and continue
1150 * searching.
1151 *
1152 * It returns zero iff there are no unused children,
1153 * otherwise it returns the number of children moved to
1154 * the end of the unused list. This may not be the total
1155 * number of unused children, because select_parent can
1156 * drop the lock and return early due to latency
1157 * constraints.
1158 */
1159 static int select_parent(struct dentry *parent, struct list_head *dispose)
1160 {
1161 struct dentry *this_parent;
1162 struct list_head *next;
1163 unsigned seq;
1164 int found = 0;
1165 int locked = 0;
1166
1167 seq = read_seqbegin(&rename_lock);
1168 again:
1169 this_parent = parent;
1170 spin_lock(&this_parent->d_lock);
1171 repeat:
1172 next = this_parent->d_subdirs.next;
1173 resume:
1174 while (next != &this_parent->d_subdirs) {
1175 struct list_head *tmp = next;
1176 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1177 next = tmp->next;
1178
1179 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1180
1181 /*
1182 * move only zero ref count dentries to the dispose list.
1183 *
1184 * Those which are presently on the shrink list, being processed
1185 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1186 * loop in shrink_dcache_parent() might not make any progress
1187 * and loop forever.
1188 */
1189 if (dentry->d_count) {
1190 dentry_lru_del(dentry);
1191 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1192 dentry_lru_move_list(dentry, dispose);
1193 dentry->d_flags |= DCACHE_SHRINK_LIST;
1194 found++;
1195 }
1196 /*
1197 * We can return to the caller if we have found some (this
1198 * ensures forward progress). We'll be coming back to find
1199 * the rest.
1200 */
1201 if (found && need_resched()) {
1202 spin_unlock(&dentry->d_lock);
1203 goto out;
1204 }
1205
1206 /*
1207 * Descend a level if the d_subdirs list is non-empty.
1208 */
1209 if (!list_empty(&dentry->d_subdirs)) {
1210 spin_unlock(&this_parent->d_lock);
1211 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1212 this_parent = dentry;
1213 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1214 goto repeat;
1215 }
1216
1217 spin_unlock(&dentry->d_lock);
1218 }
1219 /*
1220 * All done at this level ... ascend and resume the search.
1221 */
1222 if (this_parent != parent) {
1223 struct dentry *child = this_parent;
1224 this_parent = try_to_ascend(this_parent, locked, seq);
1225 if (!this_parent)
1226 goto rename_retry;
1227 next = child->d_u.d_child.next;
1228 goto resume;
1229 }
1230 out:
1231 spin_unlock(&this_parent->d_lock);
1232 if (!locked && read_seqretry(&rename_lock, seq))
1233 goto rename_retry;
1234 if (locked)
1235 write_sequnlock(&rename_lock);
1236 return found;
1237
1238 rename_retry:
1239 if (found)
1240 return found;
1241 if (locked)
1242 goto again;
1243 locked = 1;
1244 write_seqlock(&rename_lock);
1245 goto again;
1246 }
1247
1248 /**
1249 * shrink_dcache_parent - prune dcache
1250 * @parent: parent of entries to prune
1251 *
1252 * Prune the dcache to remove unused children of the parent dentry.
1253 */
1254 void shrink_dcache_parent(struct dentry * parent)
1255 {
1256 LIST_HEAD(dispose);
1257 int found;
1258
1259 while ((found = select_parent(parent, &dispose)) != 0)
1260 shrink_dentry_list(&dispose);
1261 }
1262 EXPORT_SYMBOL(shrink_dcache_parent);
1263
1264 /**
1265 * __d_alloc - allocate a dcache entry
1266 * @sb: filesystem it will belong to
1267 * @name: qstr of the name
1268 *
1269 * Allocates a dentry. It returns %NULL if there is insufficient memory
1270 * available. On a success the dentry is returned. The name passed in is
1271 * copied and the copy passed in may be reused after this call.
1272 */
1273
1274 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1275 {
1276 struct dentry *dentry;
1277 char *dname;
1278
1279 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1280 if (!dentry)
1281 return NULL;
1282
1283 /*
1284 * We guarantee that the inline name is always NUL-terminated.
1285 * This way the memcpy() done by the name switching in rename
1286 * will still always have a NUL at the end, even if we might
1287 * be overwriting an internal NUL character
1288 */
1289 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1290 if (name->len > DNAME_INLINE_LEN-1) {
1291 dname = kmalloc(name->len + 1, GFP_KERNEL);
1292 if (!dname) {
1293 kmem_cache_free(dentry_cache, dentry);
1294 return NULL;
1295 }
1296 } else {
1297 dname = dentry->d_iname;
1298 }
1299
1300 dentry->d_name.len = name->len;
1301 dentry->d_name.hash = name->hash;
1302 memcpy(dname, name->name, name->len);
1303 dname[name->len] = 0;
1304
1305 /* Make sure we always see the terminating NUL character */
1306 smp_wmb();
1307 dentry->d_name.name = dname;
1308
1309 dentry->d_count = 1;
1310 dentry->d_flags = 0;
1311 spin_lock_init(&dentry->d_lock);
1312 seqcount_init(&dentry->d_seq);
1313 dentry->d_inode = NULL;
1314 dentry->d_parent = dentry;
1315 dentry->d_sb = sb;
1316 dentry->d_op = NULL;
1317 dentry->d_fsdata = NULL;
1318 INIT_HLIST_BL_NODE(&dentry->d_hash);
1319 INIT_LIST_HEAD(&dentry->d_lru);
1320 INIT_LIST_HEAD(&dentry->d_subdirs);
1321 INIT_HLIST_NODE(&dentry->d_alias);
1322 INIT_LIST_HEAD(&dentry->d_u.d_child);
1323 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1324
1325 this_cpu_inc(nr_dentry);
1326
1327 return dentry;
1328 }
1329
1330 /**
1331 * d_alloc - allocate a dcache entry
1332 * @parent: parent of entry to allocate
1333 * @name: qstr of the name
1334 *
1335 * Allocates a dentry. It returns %NULL if there is insufficient memory
1336 * available. On a success the dentry is returned. The name passed in is
1337 * copied and the copy passed in may be reused after this call.
1338 */
1339 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1340 {
1341 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1342 if (!dentry)
1343 return NULL;
1344
1345 spin_lock(&parent->d_lock);
1346 /*
1347 * don't need child lock because it is not subject
1348 * to concurrency here
1349 */
1350 __dget_dlock(parent);
1351 dentry->d_parent = parent;
1352 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1353 spin_unlock(&parent->d_lock);
1354
1355 return dentry;
1356 }
1357 EXPORT_SYMBOL(d_alloc);
1358
1359 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1360 {
1361 struct dentry *dentry = __d_alloc(sb, name);
1362 if (dentry)
1363 dentry->d_flags |= DCACHE_DISCONNECTED;
1364 return dentry;
1365 }
1366 EXPORT_SYMBOL(d_alloc_pseudo);
1367
1368 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1369 {
1370 struct qstr q;
1371
1372 q.name = name;
1373 q.len = strlen(name);
1374 q.hash = full_name_hash(q.name, q.len);
1375 return d_alloc(parent, &q);
1376 }
1377 EXPORT_SYMBOL(d_alloc_name);
1378
1379 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1380 {
1381 WARN_ON_ONCE(dentry->d_op);
1382 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1383 DCACHE_OP_COMPARE |
1384 DCACHE_OP_REVALIDATE |
1385 DCACHE_OP_DELETE ));
1386 dentry->d_op = op;
1387 if (!op)
1388 return;
1389 if (op->d_hash)
1390 dentry->d_flags |= DCACHE_OP_HASH;
1391 if (op->d_compare)
1392 dentry->d_flags |= DCACHE_OP_COMPARE;
1393 if (op->d_revalidate)
1394 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1395 if (op->d_delete)
1396 dentry->d_flags |= DCACHE_OP_DELETE;
1397 if (op->d_prune)
1398 dentry->d_flags |= DCACHE_OP_PRUNE;
1399
1400 }
1401 EXPORT_SYMBOL(d_set_d_op);
1402
1403 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1404 {
1405 spin_lock(&dentry->d_lock);
1406 if (inode) {
1407 if (unlikely(IS_AUTOMOUNT(inode)))
1408 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1409 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1410 }
1411 dentry->d_inode = inode;
1412 dentry_rcuwalk_barrier(dentry);
1413 spin_unlock(&dentry->d_lock);
1414 fsnotify_d_instantiate(dentry, inode);
1415 }
1416
1417 /**
1418 * d_instantiate - fill in inode information for a dentry
1419 * @entry: dentry to complete
1420 * @inode: inode to attach to this dentry
1421 *
1422 * Fill in inode information in the entry.
1423 *
1424 * This turns negative dentries into productive full members
1425 * of society.
1426 *
1427 * NOTE! This assumes that the inode count has been incremented
1428 * (or otherwise set) by the caller to indicate that it is now
1429 * in use by the dcache.
1430 */
1431
1432 void d_instantiate(struct dentry *entry, struct inode * inode)
1433 {
1434 BUG_ON(!hlist_unhashed(&entry->d_alias));
1435 if (inode)
1436 spin_lock(&inode->i_lock);
1437 __d_instantiate(entry, inode);
1438 if (inode)
1439 spin_unlock(&inode->i_lock);
1440 security_d_instantiate(entry, inode);
1441 }
1442 EXPORT_SYMBOL(d_instantiate);
1443
1444 /**
1445 * d_instantiate_unique - instantiate a non-aliased dentry
1446 * @entry: dentry to instantiate
1447 * @inode: inode to attach to this dentry
1448 *
1449 * Fill in inode information in the entry. On success, it returns NULL.
1450 * If an unhashed alias of "entry" already exists, then we return the
1451 * aliased dentry instead and drop one reference to inode.
1452 *
1453 * Note that in order to avoid conflicts with rename() etc, the caller
1454 * had better be holding the parent directory semaphore.
1455 *
1456 * This also assumes that the inode count has been incremented
1457 * (or otherwise set) by the caller to indicate that it is now
1458 * in use by the dcache.
1459 */
1460 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1461 struct inode *inode)
1462 {
1463 struct dentry *alias;
1464 int len = entry->d_name.len;
1465 const char *name = entry->d_name.name;
1466 unsigned int hash = entry->d_name.hash;
1467 struct hlist_node *p;
1468
1469 if (!inode) {
1470 __d_instantiate(entry, NULL);
1471 return NULL;
1472 }
1473
1474 hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) {
1475 /*
1476 * Don't need alias->d_lock here, because aliases with
1477 * d_parent == entry->d_parent are not subject to name or
1478 * parent changes, because the parent inode i_mutex is held.
1479 */
1480 if (alias->d_name.hash != hash)
1481 continue;
1482 if (alias->d_parent != entry->d_parent)
1483 continue;
1484 if (alias->d_name.len != len)
1485 continue;
1486 if (dentry_cmp(alias, name, len))
1487 continue;
1488 __dget(alias);
1489 return alias;
1490 }
1491
1492 __d_instantiate(entry, inode);
1493 return NULL;
1494 }
1495
1496 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1497 {
1498 struct dentry *result;
1499
1500 BUG_ON(!hlist_unhashed(&entry->d_alias));
1501
1502 if (inode)
1503 spin_lock(&inode->i_lock);
1504 result = __d_instantiate_unique(entry, inode);
1505 if (inode)
1506 spin_unlock(&inode->i_lock);
1507
1508 if (!result) {
1509 security_d_instantiate(entry, inode);
1510 return NULL;
1511 }
1512
1513 BUG_ON(!d_unhashed(result));
1514 iput(inode);
1515 return result;
1516 }
1517
1518 EXPORT_SYMBOL(d_instantiate_unique);
1519
1520 struct dentry *d_make_root(struct inode *root_inode)
1521 {
1522 struct dentry *res = NULL;
1523
1524 if (root_inode) {
1525 static const struct qstr name = QSTR_INIT("/", 1);
1526
1527 res = __d_alloc(root_inode->i_sb, &name);
1528 if (res)
1529 d_instantiate(res, root_inode);
1530 else
1531 iput(root_inode);
1532 }
1533 return res;
1534 }
1535 EXPORT_SYMBOL(d_make_root);
1536
1537 static struct dentry * __d_find_any_alias(struct inode *inode)
1538 {
1539 struct dentry *alias;
1540
1541 if (hlist_empty(&inode->i_dentry))
1542 return NULL;
1543 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1544 __dget(alias);
1545 return alias;
1546 }
1547
1548 /**
1549 * d_find_any_alias - find any alias for a given inode
1550 * @inode: inode to find an alias for
1551 *
1552 * If any aliases exist for the given inode, take and return a
1553 * reference for one of them. If no aliases exist, return %NULL.
1554 */
1555 struct dentry *d_find_any_alias(struct inode *inode)
1556 {
1557 struct dentry *de;
1558
1559 spin_lock(&inode->i_lock);
1560 de = __d_find_any_alias(inode);
1561 spin_unlock(&inode->i_lock);
1562 return de;
1563 }
1564 EXPORT_SYMBOL(d_find_any_alias);
1565
1566 /**
1567 * d_obtain_alias - find or allocate a dentry for a given inode
1568 * @inode: inode to allocate the dentry for
1569 *
1570 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1571 * similar open by handle operations. The returned dentry may be anonymous,
1572 * or may have a full name (if the inode was already in the cache).
1573 *
1574 * When called on a directory inode, we must ensure that the inode only ever
1575 * has one dentry. If a dentry is found, that is returned instead of
1576 * allocating a new one.
1577 *
1578 * On successful return, the reference to the inode has been transferred
1579 * to the dentry. In case of an error the reference on the inode is released.
1580 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1581 * be passed in and will be the error will be propagate to the return value,
1582 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1583 */
1584 struct dentry *d_obtain_alias(struct inode *inode)
1585 {
1586 static const struct qstr anonstring = { .name = "" };
1587 struct dentry *tmp;
1588 struct dentry *res;
1589
1590 if (!inode)
1591 return ERR_PTR(-ESTALE);
1592 if (IS_ERR(inode))
1593 return ERR_CAST(inode);
1594
1595 res = d_find_any_alias(inode);
1596 if (res)
1597 goto out_iput;
1598
1599 tmp = __d_alloc(inode->i_sb, &anonstring);
1600 if (!tmp) {
1601 res = ERR_PTR(-ENOMEM);
1602 goto out_iput;
1603 }
1604
1605 spin_lock(&inode->i_lock);
1606 res = __d_find_any_alias(inode);
1607 if (res) {
1608 spin_unlock(&inode->i_lock);
1609 dput(tmp);
1610 goto out_iput;
1611 }
1612
1613 /* attach a disconnected dentry */
1614 spin_lock(&tmp->d_lock);
1615 tmp->d_inode = inode;
1616 tmp->d_flags |= DCACHE_DISCONNECTED;
1617 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1618 hlist_bl_lock(&tmp->d_sb->s_anon);
1619 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1620 hlist_bl_unlock(&tmp->d_sb->s_anon);
1621 spin_unlock(&tmp->d_lock);
1622 spin_unlock(&inode->i_lock);
1623 security_d_instantiate(tmp, inode);
1624
1625 return tmp;
1626
1627 out_iput:
1628 if (res && !IS_ERR(res))
1629 security_d_instantiate(res, inode);
1630 iput(inode);
1631 return res;
1632 }
1633 EXPORT_SYMBOL(d_obtain_alias);
1634
1635 /**
1636 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1637 * @inode: the inode which may have a disconnected dentry
1638 * @dentry: a negative dentry which we want to point to the inode.
1639 *
1640 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1641 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1642 * and return it, else simply d_add the inode to the dentry and return NULL.
1643 *
1644 * This is needed in the lookup routine of any filesystem that is exportable
1645 * (via knfsd) so that we can build dcache paths to directories effectively.
1646 *
1647 * If a dentry was found and moved, then it is returned. Otherwise NULL
1648 * is returned. This matches the expected return value of ->lookup.
1649 *
1650 */
1651 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1652 {
1653 struct dentry *new = NULL;
1654
1655 if (IS_ERR(inode))
1656 return ERR_CAST(inode);
1657
1658 if (inode && S_ISDIR(inode->i_mode)) {
1659 spin_lock(&inode->i_lock);
1660 new = __d_find_alias(inode, 1);
1661 if (new) {
1662 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1663 spin_unlock(&inode->i_lock);
1664 security_d_instantiate(new, inode);
1665 d_move(new, dentry);
1666 iput(inode);
1667 } else {
1668 /* already taking inode->i_lock, so d_add() by hand */
1669 __d_instantiate(dentry, inode);
1670 spin_unlock(&inode->i_lock);
1671 security_d_instantiate(dentry, inode);
1672 d_rehash(dentry);
1673 }
1674 } else
1675 d_add(dentry, inode);
1676 return new;
1677 }
1678 EXPORT_SYMBOL(d_splice_alias);
1679
1680 /**
1681 * d_add_ci - lookup or allocate new dentry with case-exact name
1682 * @inode: the inode case-insensitive lookup has found
1683 * @dentry: the negative dentry that was passed to the parent's lookup func
1684 * @name: the case-exact name to be associated with the returned dentry
1685 *
1686 * This is to avoid filling the dcache with case-insensitive names to the
1687 * same inode, only the actual correct case is stored in the dcache for
1688 * case-insensitive filesystems.
1689 *
1690 * For a case-insensitive lookup match and if the the case-exact dentry
1691 * already exists in in the dcache, use it and return it.
1692 *
1693 * If no entry exists with the exact case name, allocate new dentry with
1694 * the exact case, and return the spliced entry.
1695 */
1696 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1697 struct qstr *name)
1698 {
1699 int error;
1700 struct dentry *found;
1701 struct dentry *new;
1702
1703 /*
1704 * First check if a dentry matching the name already exists,
1705 * if not go ahead and create it now.
1706 */
1707 found = d_hash_and_lookup(dentry->d_parent, name);
1708 if (!found) {
1709 new = d_alloc(dentry->d_parent, name);
1710 if (!new) {
1711 error = -ENOMEM;
1712 goto err_out;
1713 }
1714
1715 found = d_splice_alias(inode, new);
1716 if (found) {
1717 dput(new);
1718 return found;
1719 }
1720 return new;
1721 }
1722
1723 /*
1724 * If a matching dentry exists, and it's not negative use it.
1725 *
1726 * Decrement the reference count to balance the iget() done
1727 * earlier on.
1728 */
1729 if (found->d_inode) {
1730 if (unlikely(found->d_inode != inode)) {
1731 /* This can't happen because bad inodes are unhashed. */
1732 BUG_ON(!is_bad_inode(inode));
1733 BUG_ON(!is_bad_inode(found->d_inode));
1734 }
1735 iput(inode);
1736 return found;
1737 }
1738
1739 /*
1740 * We are going to instantiate this dentry, unhash it and clear the
1741 * lookup flag so we can do that.
1742 */
1743 if (unlikely(d_need_lookup(found)))
1744 d_clear_need_lookup(found);
1745
1746 /*
1747 * Negative dentry: instantiate it unless the inode is a directory and
1748 * already has a dentry.
1749 */
1750 new = d_splice_alias(inode, found);
1751 if (new) {
1752 dput(found);
1753 found = new;
1754 }
1755 return found;
1756
1757 err_out:
1758 iput(inode);
1759 return ERR_PTR(error);
1760 }
1761 EXPORT_SYMBOL(d_add_ci);
1762
1763 /*
1764 * Do the slow-case of the dentry name compare.
1765 *
1766 * Unlike the dentry_cmp() function, we need to atomically
1767 * load the name, length and inode information, so that the
1768 * filesystem can rely on them, and can use the 'name' and
1769 * 'len' information without worrying about walking off the
1770 * end of memory etc.
1771 *
1772 * Thus the read_seqcount_retry() and the "duplicate" info
1773 * in arguments (the low-level filesystem should not look
1774 * at the dentry inode or name contents directly, since
1775 * rename can change them while we're in RCU mode).
1776 */
1777 enum slow_d_compare {
1778 D_COMP_OK,
1779 D_COMP_NOMATCH,
1780 D_COMP_SEQRETRY,
1781 };
1782
1783 static noinline enum slow_d_compare slow_dentry_cmp(
1784 const struct dentry *parent,
1785 struct inode *inode,
1786 struct dentry *dentry,
1787 unsigned int seq,
1788 const struct qstr *name)
1789 {
1790 int tlen = dentry->d_name.len;
1791 const char *tname = dentry->d_name.name;
1792 struct inode *i = dentry->d_inode;
1793
1794 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1795 cpu_relax();
1796 return D_COMP_SEQRETRY;
1797 }
1798 if (parent->d_op->d_compare(parent, inode,
1799 dentry, i,
1800 tlen, tname, name))
1801 return D_COMP_NOMATCH;
1802 return D_COMP_OK;
1803 }
1804
1805 /**
1806 * __d_lookup_rcu - search for a dentry (racy, store-free)
1807 * @parent: parent dentry
1808 * @name: qstr of name we wish to find
1809 * @seqp: returns d_seq value at the point where the dentry was found
1810 * @inode: returns dentry->d_inode when the inode was found valid.
1811 * Returns: dentry, or NULL
1812 *
1813 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1814 * resolution (store-free path walking) design described in
1815 * Documentation/filesystems/path-lookup.txt.
1816 *
1817 * This is not to be used outside core vfs.
1818 *
1819 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1820 * held, and rcu_read_lock held. The returned dentry must not be stored into
1821 * without taking d_lock and checking d_seq sequence count against @seq
1822 * returned here.
1823 *
1824 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1825 * function.
1826 *
1827 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1828 * the returned dentry, so long as its parent's seqlock is checked after the
1829 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1830 * is formed, giving integrity down the path walk.
1831 *
1832 * NOTE! The caller *has* to check the resulting dentry against the sequence
1833 * number we've returned before using any of the resulting dentry state!
1834 */
1835 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1836 const struct qstr *name,
1837 unsigned *seqp, struct inode *inode)
1838 {
1839 u64 hashlen = name->hash_len;
1840 const unsigned char *str = name->name;
1841 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
1842 struct hlist_bl_node *node;
1843 struct dentry *dentry;
1844
1845 /*
1846 * Note: There is significant duplication with __d_lookup_rcu which is
1847 * required to prevent single threaded performance regressions
1848 * especially on architectures where smp_rmb (in seqcounts) are costly.
1849 * Keep the two functions in sync.
1850 */
1851
1852 /*
1853 * The hash list is protected using RCU.
1854 *
1855 * Carefully use d_seq when comparing a candidate dentry, to avoid
1856 * races with d_move().
1857 *
1858 * It is possible that concurrent renames can mess up our list
1859 * walk here and result in missing our dentry, resulting in the
1860 * false-negative result. d_lookup() protects against concurrent
1861 * renames using rename_lock seqlock.
1862 *
1863 * See Documentation/filesystems/path-lookup.txt for more details.
1864 */
1865 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1866 unsigned seq;
1867
1868 seqretry:
1869 /*
1870 * The dentry sequence count protects us from concurrent
1871 * renames, and thus protects inode, parent and name fields.
1872 *
1873 * The caller must perform a seqcount check in order
1874 * to do anything useful with the returned dentry,
1875 * including using the 'd_inode' pointer.
1876 *
1877 * NOTE! We do a "raw" seqcount_begin here. That means that
1878 * we don't wait for the sequence count to stabilize if it
1879 * is in the middle of a sequence change. If we do the slow
1880 * dentry compare, we will do seqretries until it is stable,
1881 * and if we end up with a successful lookup, we actually
1882 * want to exit RCU lookup anyway.
1883 */
1884 seq = raw_seqcount_begin(&dentry->d_seq);
1885 if (dentry->d_parent != parent)
1886 continue;
1887 if (d_unhashed(dentry))
1888 continue;
1889 *seqp = seq;
1890
1891 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1892 if (dentry->d_name.hash != hashlen_hash(hashlen))
1893 continue;
1894 switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1895 case D_COMP_OK:
1896 return dentry;
1897 case D_COMP_NOMATCH:
1898 continue;
1899 default:
1900 goto seqretry;
1901 }
1902 }
1903
1904 if (dentry->d_name.hash_len != hashlen)
1905 continue;
1906 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
1907 return dentry;
1908 }
1909 return NULL;
1910 }
1911
1912 /**
1913 * d_lookup - search for a dentry
1914 * @parent: parent dentry
1915 * @name: qstr of name we wish to find
1916 * Returns: dentry, or NULL
1917 *
1918 * d_lookup searches the children of the parent dentry for the name in
1919 * question. If the dentry is found its reference count is incremented and the
1920 * dentry is returned. The caller must use dput to free the entry when it has
1921 * finished using it. %NULL is returned if the dentry does not exist.
1922 */
1923 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1924 {
1925 struct dentry *dentry;
1926 unsigned seq;
1927
1928 do {
1929 seq = read_seqbegin(&rename_lock);
1930 dentry = __d_lookup(parent, name);
1931 if (dentry)
1932 break;
1933 } while (read_seqretry(&rename_lock, seq));
1934 return dentry;
1935 }
1936 EXPORT_SYMBOL(d_lookup);
1937
1938 /**
1939 * __d_lookup - search for a dentry (racy)
1940 * @parent: parent dentry
1941 * @name: qstr of name we wish to find
1942 * Returns: dentry, or NULL
1943 *
1944 * __d_lookup is like d_lookup, however it may (rarely) return a
1945 * false-negative result due to unrelated rename activity.
1946 *
1947 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1948 * however it must be used carefully, eg. with a following d_lookup in
1949 * the case of failure.
1950 *
1951 * __d_lookup callers must be commented.
1952 */
1953 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1954 {
1955 unsigned int len = name->len;
1956 unsigned int hash = name->hash;
1957 const unsigned char *str = name->name;
1958 struct hlist_bl_head *b = d_hash(parent, hash);
1959 struct hlist_bl_node *node;
1960 struct dentry *found = NULL;
1961 struct dentry *dentry;
1962
1963 /*
1964 * Note: There is significant duplication with __d_lookup_rcu which is
1965 * required to prevent single threaded performance regressions
1966 * especially on architectures where smp_rmb (in seqcounts) are costly.
1967 * Keep the two functions in sync.
1968 */
1969
1970 /*
1971 * The hash list is protected using RCU.
1972 *
1973 * Take d_lock when comparing a candidate dentry, to avoid races
1974 * with d_move().
1975 *
1976 * It is possible that concurrent renames can mess up our list
1977 * walk here and result in missing our dentry, resulting in the
1978 * false-negative result. d_lookup() protects against concurrent
1979 * renames using rename_lock seqlock.
1980 *
1981 * See Documentation/filesystems/path-lookup.txt for more details.
1982 */
1983 rcu_read_lock();
1984
1985 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1986
1987 if (dentry->d_name.hash != hash)
1988 continue;
1989
1990 spin_lock(&dentry->d_lock);
1991 if (dentry->d_parent != parent)
1992 goto next;
1993 if (d_unhashed(dentry))
1994 goto next;
1995
1996 /*
1997 * It is safe to compare names since d_move() cannot
1998 * change the qstr (protected by d_lock).
1999 */
2000 if (parent->d_flags & DCACHE_OP_COMPARE) {
2001 int tlen = dentry->d_name.len;
2002 const char *tname = dentry->d_name.name;
2003 if (parent->d_op->d_compare(parent, parent->d_inode,
2004 dentry, dentry->d_inode,
2005 tlen, tname, name))
2006 goto next;
2007 } else {
2008 if (dentry->d_name.len != len)
2009 goto next;
2010 if (dentry_cmp(dentry, str, len))
2011 goto next;
2012 }
2013
2014 dentry->d_count++;
2015 found = dentry;
2016 spin_unlock(&dentry->d_lock);
2017 break;
2018 next:
2019 spin_unlock(&dentry->d_lock);
2020 }
2021 rcu_read_unlock();
2022
2023 return found;
2024 }
2025
2026 /**
2027 * d_hash_and_lookup - hash the qstr then search for a dentry
2028 * @dir: Directory to search in
2029 * @name: qstr of name we wish to find
2030 *
2031 * On hash failure or on lookup failure NULL is returned.
2032 */
2033 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2034 {
2035 struct dentry *dentry = NULL;
2036
2037 /*
2038 * Check for a fs-specific hash function. Note that we must
2039 * calculate the standard hash first, as the d_op->d_hash()
2040 * routine may choose to leave the hash value unchanged.
2041 */
2042 name->hash = full_name_hash(name->name, name->len);
2043 if (dir->d_flags & DCACHE_OP_HASH) {
2044 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
2045 goto out;
2046 }
2047 dentry = d_lookup(dir, name);
2048 out:
2049 return dentry;
2050 }
2051
2052 /**
2053 * d_validate - verify dentry provided from insecure source (deprecated)
2054 * @dentry: The dentry alleged to be valid child of @dparent
2055 * @dparent: The parent dentry (known to be valid)
2056 *
2057 * An insecure source has sent us a dentry, here we verify it and dget() it.
2058 * This is used by ncpfs in its readdir implementation.
2059 * Zero is returned in the dentry is invalid.
2060 *
2061 * This function is slow for big directories, and deprecated, do not use it.
2062 */
2063 int d_validate(struct dentry *dentry, struct dentry *dparent)
2064 {
2065 struct dentry *child;
2066
2067 spin_lock(&dparent->d_lock);
2068 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2069 if (dentry == child) {
2070 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2071 __dget_dlock(dentry);
2072 spin_unlock(&dentry->d_lock);
2073 spin_unlock(&dparent->d_lock);
2074 return 1;
2075 }
2076 }
2077 spin_unlock(&dparent->d_lock);
2078
2079 return 0;
2080 }
2081 EXPORT_SYMBOL(d_validate);
2082
2083 /*
2084 * When a file is deleted, we have two options:
2085 * - turn this dentry into a negative dentry
2086 * - unhash this dentry and free it.
2087 *
2088 * Usually, we want to just turn this into
2089 * a negative dentry, but if anybody else is
2090 * currently using the dentry or the inode
2091 * we can't do that and we fall back on removing
2092 * it from the hash queues and waiting for
2093 * it to be deleted later when it has no users
2094 */
2095
2096 /**
2097 * d_delete - delete a dentry
2098 * @dentry: The dentry to delete
2099 *
2100 * Turn the dentry into a negative dentry if possible, otherwise
2101 * remove it from the hash queues so it can be deleted later
2102 */
2103
2104 void d_delete(struct dentry * dentry)
2105 {
2106 struct inode *inode;
2107 int isdir = 0;
2108 /*
2109 * Are we the only user?
2110 */
2111 again:
2112 spin_lock(&dentry->d_lock);
2113 inode = dentry->d_inode;
2114 isdir = S_ISDIR(inode->i_mode);
2115 if (dentry->d_count == 1) {
2116 if (!spin_trylock(&inode->i_lock)) {
2117 spin_unlock(&dentry->d_lock);
2118 cpu_relax();
2119 goto again;
2120 }
2121 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2122 dentry_unlink_inode(dentry);
2123 fsnotify_nameremove(dentry, isdir);
2124 return;
2125 }
2126
2127 if (!d_unhashed(dentry))
2128 __d_drop(dentry);
2129
2130 spin_unlock(&dentry->d_lock);
2131
2132 fsnotify_nameremove(dentry, isdir);
2133 }
2134 EXPORT_SYMBOL(d_delete);
2135
2136 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2137 {
2138 BUG_ON(!d_unhashed(entry));
2139 hlist_bl_lock(b);
2140 entry->d_flags |= DCACHE_RCUACCESS;
2141 hlist_bl_add_head_rcu(&entry->d_hash, b);
2142 hlist_bl_unlock(b);
2143 }
2144
2145 static void _d_rehash(struct dentry * entry)
2146 {
2147 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2148 }
2149
2150 /**
2151 * d_rehash - add an entry back to the hash
2152 * @entry: dentry to add to the hash
2153 *
2154 * Adds a dentry to the hash according to its name.
2155 */
2156
2157 void d_rehash(struct dentry * entry)
2158 {
2159 spin_lock(&entry->d_lock);
2160 _d_rehash(entry);
2161 spin_unlock(&entry->d_lock);
2162 }
2163 EXPORT_SYMBOL(d_rehash);
2164
2165 /**
2166 * dentry_update_name_case - update case insensitive dentry with a new name
2167 * @dentry: dentry to be updated
2168 * @name: new name
2169 *
2170 * Update a case insensitive dentry with new case of name.
2171 *
2172 * dentry must have been returned by d_lookup with name @name. Old and new
2173 * name lengths must match (ie. no d_compare which allows mismatched name
2174 * lengths).
2175 *
2176 * Parent inode i_mutex must be held over d_lookup and into this call (to
2177 * keep renames and concurrent inserts, and readdir(2) away).
2178 */
2179 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2180 {
2181 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2182 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2183
2184 spin_lock(&dentry->d_lock);
2185 write_seqcount_begin(&dentry->d_seq);
2186 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2187 write_seqcount_end(&dentry->d_seq);
2188 spin_unlock(&dentry->d_lock);
2189 }
2190 EXPORT_SYMBOL(dentry_update_name_case);
2191
2192 static void switch_names(struct dentry *dentry, struct dentry *target)
2193 {
2194 if (dname_external(target)) {
2195 if (dname_external(dentry)) {
2196 /*
2197 * Both external: swap the pointers
2198 */
2199 swap(target->d_name.name, dentry->d_name.name);
2200 } else {
2201 /*
2202 * dentry:internal, target:external. Steal target's
2203 * storage and make target internal.
2204 */
2205 memcpy(target->d_iname, dentry->d_name.name,
2206 dentry->d_name.len + 1);
2207 dentry->d_name.name = target->d_name.name;
2208 target->d_name.name = target->d_iname;
2209 }
2210 } else {
2211 if (dname_external(dentry)) {
2212 /*
2213 * dentry:external, target:internal. Give dentry's
2214 * storage to target and make dentry internal
2215 */
2216 memcpy(dentry->d_iname, target->d_name.name,
2217 target->d_name.len + 1);
2218 target->d_name.name = dentry->d_name.name;
2219 dentry->d_name.name = dentry->d_iname;
2220 } else {
2221 /*
2222 * Both are internal. Just copy target to dentry
2223 */
2224 memcpy(dentry->d_iname, target->d_name.name,
2225 target->d_name.len + 1);
2226 dentry->d_name.len = target->d_name.len;
2227 return;
2228 }
2229 }
2230 swap(dentry->d_name.len, target->d_name.len);
2231 }
2232
2233 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2234 {
2235 /*
2236 * XXXX: do we really need to take target->d_lock?
2237 */
2238 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2239 spin_lock(&target->d_parent->d_lock);
2240 else {
2241 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2242 spin_lock(&dentry->d_parent->d_lock);
2243 spin_lock_nested(&target->d_parent->d_lock,
2244 DENTRY_D_LOCK_NESTED);
2245 } else {
2246 spin_lock(&target->d_parent->d_lock);
2247 spin_lock_nested(&dentry->d_parent->d_lock,
2248 DENTRY_D_LOCK_NESTED);
2249 }
2250 }
2251 if (target < dentry) {
2252 spin_lock_nested(&target->d_lock, 2);
2253 spin_lock_nested(&dentry->d_lock, 3);
2254 } else {
2255 spin_lock_nested(&dentry->d_lock, 2);
2256 spin_lock_nested(&target->d_lock, 3);
2257 }
2258 }
2259
2260 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2261 struct dentry *target)
2262 {
2263 if (target->d_parent != dentry->d_parent)
2264 spin_unlock(&dentry->d_parent->d_lock);
2265 if (target->d_parent != target)
2266 spin_unlock(&target->d_parent->d_lock);
2267 }
2268
2269 /*
2270 * When switching names, the actual string doesn't strictly have to
2271 * be preserved in the target - because we're dropping the target
2272 * anyway. As such, we can just do a simple memcpy() to copy over
2273 * the new name before we switch.
2274 *
2275 * Note that we have to be a lot more careful about getting the hash
2276 * switched - we have to switch the hash value properly even if it
2277 * then no longer matches the actual (corrupted) string of the target.
2278 * The hash value has to match the hash queue that the dentry is on..
2279 */
2280 /*
2281 * __d_move - move a dentry
2282 * @dentry: entry to move
2283 * @target: new dentry
2284 *
2285 * Update the dcache to reflect the move of a file name. Negative
2286 * dcache entries should not be moved in this way. Caller must hold
2287 * rename_lock, the i_mutex of the source and target directories,
2288 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2289 */
2290 static void __d_move(struct dentry * dentry, struct dentry * target)
2291 {
2292 if (!dentry->d_inode)
2293 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2294
2295 BUG_ON(d_ancestor(dentry, target));
2296 BUG_ON(d_ancestor(target, dentry));
2297
2298 dentry_lock_for_move(dentry, target);
2299
2300 write_seqcount_begin(&dentry->d_seq);
2301 write_seqcount_begin(&target->d_seq);
2302
2303 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2304
2305 /*
2306 * Move the dentry to the target hash queue. Don't bother checking
2307 * for the same hash queue because of how unlikely it is.
2308 */
2309 __d_drop(dentry);
2310 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2311
2312 /* Unhash the target: dput() will then get rid of it */
2313 __d_drop(target);
2314
2315 list_del(&dentry->d_u.d_child);
2316 list_del(&target->d_u.d_child);
2317
2318 /* Switch the names.. */
2319 switch_names(dentry, target);
2320 swap(dentry->d_name.hash, target->d_name.hash);
2321
2322 /* ... and switch the parents */
2323 if (IS_ROOT(dentry)) {
2324 dentry->d_parent = target->d_parent;
2325 target->d_parent = target;
2326 INIT_LIST_HEAD(&target->d_u.d_child);
2327 } else {
2328 swap(dentry->d_parent, target->d_parent);
2329
2330 /* And add them back to the (new) parent lists */
2331 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2332 }
2333
2334 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2335
2336 write_seqcount_end(&target->d_seq);
2337 write_seqcount_end(&dentry->d_seq);
2338
2339 dentry_unlock_parents_for_move(dentry, target);
2340 spin_unlock(&target->d_lock);
2341 fsnotify_d_move(dentry);
2342 spin_unlock(&dentry->d_lock);
2343 }
2344
2345 /*
2346 * d_move - move a dentry
2347 * @dentry: entry to move
2348 * @target: new dentry
2349 *
2350 * Update the dcache to reflect the move of a file name. Negative
2351 * dcache entries should not be moved in this way. See the locking
2352 * requirements for __d_move.
2353 */
2354 void d_move(struct dentry *dentry, struct dentry *target)
2355 {
2356 write_seqlock(&rename_lock);
2357 __d_move(dentry, target);
2358 write_sequnlock(&rename_lock);
2359 }
2360 EXPORT_SYMBOL(d_move);
2361
2362 /**
2363 * d_ancestor - search for an ancestor
2364 * @p1: ancestor dentry
2365 * @p2: child dentry
2366 *
2367 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2368 * an ancestor of p2, else NULL.
2369 */
2370 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2371 {
2372 struct dentry *p;
2373
2374 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2375 if (p->d_parent == p1)
2376 return p;
2377 }
2378 return NULL;
2379 }
2380
2381 /*
2382 * This helper attempts to cope with remotely renamed directories
2383 *
2384 * It assumes that the caller is already holding
2385 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2386 *
2387 * Note: If ever the locking in lock_rename() changes, then please
2388 * remember to update this too...
2389 */
2390 static struct dentry *__d_unalias(struct inode *inode,
2391 struct dentry *dentry, struct dentry *alias)
2392 {
2393 struct mutex *m1 = NULL, *m2 = NULL;
2394 struct dentry *ret = ERR_PTR(-EBUSY);
2395
2396 /* If alias and dentry share a parent, then no extra locks required */
2397 if (alias->d_parent == dentry->d_parent)
2398 goto out_unalias;
2399
2400 /* See lock_rename() */
2401 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2402 goto out_err;
2403 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2404 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2405 goto out_err;
2406 m2 = &alias->d_parent->d_inode->i_mutex;
2407 out_unalias:
2408 if (likely(!d_mountpoint(alias))) {
2409 __d_move(alias, dentry);
2410 ret = alias;
2411 }
2412 out_err:
2413 spin_unlock(&inode->i_lock);
2414 if (m2)
2415 mutex_unlock(m2);
2416 if (m1)
2417 mutex_unlock(m1);
2418 return ret;
2419 }
2420
2421 /*
2422 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2423 * named dentry in place of the dentry to be replaced.
2424 * returns with anon->d_lock held!
2425 */
2426 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2427 {
2428 struct dentry *dparent, *aparent;
2429
2430 dentry_lock_for_move(anon, dentry);
2431
2432 write_seqcount_begin(&dentry->d_seq);
2433 write_seqcount_begin(&anon->d_seq);
2434
2435 dparent = dentry->d_parent;
2436 aparent = anon->d_parent;
2437
2438 switch_names(dentry, anon);
2439 swap(dentry->d_name.hash, anon->d_name.hash);
2440
2441 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2442 list_del(&dentry->d_u.d_child);
2443 if (!IS_ROOT(dentry))
2444 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2445 else
2446 INIT_LIST_HEAD(&dentry->d_u.d_child);
2447
2448 anon->d_parent = (dparent == dentry) ? anon : dparent;
2449 list_del(&anon->d_u.d_child);
2450 if (!IS_ROOT(anon))
2451 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2452 else
2453 INIT_LIST_HEAD(&anon->d_u.d_child);
2454
2455 write_seqcount_end(&dentry->d_seq);
2456 write_seqcount_end(&anon->d_seq);
2457
2458 dentry_unlock_parents_for_move(anon, dentry);
2459 spin_unlock(&dentry->d_lock);
2460
2461 /* anon->d_lock still locked, returns locked */
2462 anon->d_flags &= ~DCACHE_DISCONNECTED;
2463 }
2464
2465 /**
2466 * d_materialise_unique - introduce an inode into the tree
2467 * @dentry: candidate dentry
2468 * @inode: inode to bind to the dentry, to which aliases may be attached
2469 *
2470 * Introduces an dentry into the tree, substituting an extant disconnected
2471 * root directory alias in its place if there is one. Caller must hold the
2472 * i_mutex of the parent directory.
2473 */
2474 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2475 {
2476 struct dentry *actual;
2477
2478 BUG_ON(!d_unhashed(dentry));
2479
2480 if (!inode) {
2481 actual = dentry;
2482 __d_instantiate(dentry, NULL);
2483 d_rehash(actual);
2484 goto out_nolock;
2485 }
2486
2487 spin_lock(&inode->i_lock);
2488
2489 if (S_ISDIR(inode->i_mode)) {
2490 struct dentry *alias;
2491
2492 /* Does an aliased dentry already exist? */
2493 alias = __d_find_alias(inode, 0);
2494 if (alias) {
2495 actual = alias;
2496 write_seqlock(&rename_lock);
2497
2498 if (d_ancestor(alias, dentry)) {
2499 /* Check for loops */
2500 actual = ERR_PTR(-ELOOP);
2501 spin_unlock(&inode->i_lock);
2502 } else if (IS_ROOT(alias)) {
2503 /* Is this an anonymous mountpoint that we
2504 * could splice into our tree? */
2505 __d_materialise_dentry(dentry, alias);
2506 write_sequnlock(&rename_lock);
2507 __d_drop(alias);
2508 goto found;
2509 } else {
2510 /* Nope, but we must(!) avoid directory
2511 * aliasing. This drops inode->i_lock */
2512 actual = __d_unalias(inode, dentry, alias);
2513 }
2514 write_sequnlock(&rename_lock);
2515 if (IS_ERR(actual)) {
2516 if (PTR_ERR(actual) == -ELOOP)
2517 pr_warn_ratelimited(
2518 "VFS: Lookup of '%s' in %s %s"
2519 " would have caused loop\n",
2520 dentry->d_name.name,
2521 inode->i_sb->s_type->name,
2522 inode->i_sb->s_id);
2523 dput(alias);
2524 }
2525 goto out_nolock;
2526 }
2527 }
2528
2529 /* Add a unique reference */
2530 actual = __d_instantiate_unique(dentry, inode);
2531 if (!actual)
2532 actual = dentry;
2533 else
2534 BUG_ON(!d_unhashed(actual));
2535
2536 spin_lock(&actual->d_lock);
2537 found:
2538 _d_rehash(actual);
2539 spin_unlock(&actual->d_lock);
2540 spin_unlock(&inode->i_lock);
2541 out_nolock:
2542 if (actual == dentry) {
2543 security_d_instantiate(dentry, inode);
2544 return NULL;
2545 }
2546
2547 iput(inode);
2548 return actual;
2549 }
2550 EXPORT_SYMBOL_GPL(d_materialise_unique);
2551
2552 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2553 {
2554 *buflen -= namelen;
2555 if (*buflen < 0)
2556 return -ENAMETOOLONG;
2557 *buffer -= namelen;
2558 memcpy(*buffer, str, namelen);
2559 return 0;
2560 }
2561
2562 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2563 {
2564 return prepend(buffer, buflen, name->name, name->len);
2565 }
2566
2567 /**
2568 * prepend_path - Prepend path string to a buffer
2569 * @path: the dentry/vfsmount to report
2570 * @root: root vfsmnt/dentry
2571 * @buffer: pointer to the end of the buffer
2572 * @buflen: pointer to buffer length
2573 *
2574 * Caller holds the rename_lock.
2575 */
2576 static int prepend_path(const struct path *path,
2577 const struct path *root,
2578 char **buffer, int *buflen)
2579 {
2580 struct dentry *dentry = path->dentry;
2581 struct vfsmount *vfsmnt = path->mnt;
2582 struct mount *mnt = real_mount(vfsmnt);
2583 bool slash = false;
2584 int error = 0;
2585
2586 br_read_lock(&vfsmount_lock);
2587 while (dentry != root->dentry || vfsmnt != root->mnt) {
2588 struct dentry * parent;
2589
2590 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2591 /* Global root? */
2592 if (!mnt_has_parent(mnt))
2593 goto global_root;
2594 dentry = mnt->mnt_mountpoint;
2595 mnt = mnt->mnt_parent;
2596 vfsmnt = &mnt->mnt;
2597 continue;
2598 }
2599 parent = dentry->d_parent;
2600 prefetch(parent);
2601 spin_lock(&dentry->d_lock);
2602 error = prepend_name(buffer, buflen, &dentry->d_name);
2603 spin_unlock(&dentry->d_lock);
2604 if (!error)
2605 error = prepend(buffer, buflen, "/", 1);
2606 if (error)
2607 break;
2608
2609 slash = true;
2610 dentry = parent;
2611 }
2612
2613 if (!error && !slash)
2614 error = prepend(buffer, buflen, "/", 1);
2615
2616 out:
2617 br_read_unlock(&vfsmount_lock);
2618 return error;
2619
2620 global_root:
2621 /*
2622 * Filesystems needing to implement special "root names"
2623 * should do so with ->d_dname()
2624 */
2625 if (IS_ROOT(dentry) &&
2626 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2627 WARN(1, "Root dentry has weird name <%.*s>\n",
2628 (int) dentry->d_name.len, dentry->d_name.name);
2629 }
2630 if (!slash)
2631 error = prepend(buffer, buflen, "/", 1);
2632 if (!error)
2633 error = is_mounted(vfsmnt) ? 1 : 2;
2634 goto out;
2635 }
2636
2637 /**
2638 * __d_path - return the path of a dentry
2639 * @path: the dentry/vfsmount to report
2640 * @root: root vfsmnt/dentry
2641 * @buf: buffer to return value in
2642 * @buflen: buffer length
2643 *
2644 * Convert a dentry into an ASCII path name.
2645 *
2646 * Returns a pointer into the buffer or an error code if the
2647 * path was too long.
2648 *
2649 * "buflen" should be positive.
2650 *
2651 * If the path is not reachable from the supplied root, return %NULL.
2652 */
2653 char *__d_path(const struct path *path,
2654 const struct path *root,
2655 char *buf, int buflen)
2656 {
2657 char *res = buf + buflen;
2658 int error;
2659
2660 prepend(&res, &buflen, "\0", 1);
2661 write_seqlock(&rename_lock);
2662 error = prepend_path(path, root, &res, &buflen);
2663 write_sequnlock(&rename_lock);
2664
2665 if (error < 0)
2666 return ERR_PTR(error);
2667 if (error > 0)
2668 return NULL;
2669 return res;
2670 }
2671
2672 char *d_absolute_path(const struct path *path,
2673 char *buf, int buflen)
2674 {
2675 struct path root = {};
2676 char *res = buf + buflen;
2677 int error;
2678
2679 prepend(&res, &buflen, "\0", 1);
2680 write_seqlock(&rename_lock);
2681 error = prepend_path(path, &root, &res, &buflen);
2682 write_sequnlock(&rename_lock);
2683
2684 if (error > 1)
2685 error = -EINVAL;
2686 if (error < 0)
2687 return ERR_PTR(error);
2688 return res;
2689 }
2690
2691 /*
2692 * same as __d_path but appends "(deleted)" for unlinked files.
2693 */
2694 static int path_with_deleted(const struct path *path,
2695 const struct path *root,
2696 char **buf, int *buflen)
2697 {
2698 prepend(buf, buflen, "\0", 1);
2699 if (d_unlinked(path->dentry)) {
2700 int error = prepend(buf, buflen, " (deleted)", 10);
2701 if (error)
2702 return error;
2703 }
2704
2705 return prepend_path(path, root, buf, buflen);
2706 }
2707
2708 static int prepend_unreachable(char **buffer, int *buflen)
2709 {
2710 return prepend(buffer, buflen, "(unreachable)", 13);
2711 }
2712
2713 /**
2714 * d_path - return the path of a dentry
2715 * @path: path to report
2716 * @buf: buffer to return value in
2717 * @buflen: buffer length
2718 *
2719 * Convert a dentry into an ASCII path name. If the entry has been deleted
2720 * the string " (deleted)" is appended. Note that this is ambiguous.
2721 *
2722 * Returns a pointer into the buffer or an error code if the path was
2723 * too long. Note: Callers should use the returned pointer, not the passed
2724 * in buffer, to use the name! The implementation often starts at an offset
2725 * into the buffer, and may leave 0 bytes at the start.
2726 *
2727 * "buflen" should be positive.
2728 */
2729 char *d_path(const struct path *path, char *buf, int buflen)
2730 {
2731 char *res = buf + buflen;
2732 struct path root;
2733 int error;
2734
2735 /*
2736 * We have various synthetic filesystems that never get mounted. On
2737 * these filesystems dentries are never used for lookup purposes, and
2738 * thus don't need to be hashed. They also don't need a name until a
2739 * user wants to identify the object in /proc/pid/fd/. The little hack
2740 * below allows us to generate a name for these objects on demand:
2741 */
2742 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2743 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2744
2745 get_fs_root(current->fs, &root);
2746 write_seqlock(&rename_lock);
2747 error = path_with_deleted(path, &root, &res, &buflen);
2748 if (error < 0)
2749 res = ERR_PTR(error);
2750 write_sequnlock(&rename_lock);
2751 path_put(&root);
2752 return res;
2753 }
2754 EXPORT_SYMBOL(d_path);
2755
2756 /**
2757 * d_path_with_unreachable - return the path of a dentry
2758 * @path: path to report
2759 * @buf: buffer to return value in
2760 * @buflen: buffer length
2761 *
2762 * The difference from d_path() is that this prepends "(unreachable)"
2763 * to paths which are unreachable from the current process' root.
2764 */
2765 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2766 {
2767 char *res = buf + buflen;
2768 struct path root;
2769 int error;
2770
2771 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2772 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2773
2774 get_fs_root(current->fs, &root);
2775 write_seqlock(&rename_lock);
2776 error = path_with_deleted(path, &root, &res, &buflen);
2777 if (error > 0)
2778 error = prepend_unreachable(&res, &buflen);
2779 write_sequnlock(&rename_lock);
2780 path_put(&root);
2781 if (error)
2782 res = ERR_PTR(error);
2783
2784 return res;
2785 }
2786
2787 /*
2788 * Helper function for dentry_operations.d_dname() members
2789 */
2790 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2791 const char *fmt, ...)
2792 {
2793 va_list args;
2794 char temp[64];
2795 int sz;
2796
2797 va_start(args, fmt);
2798 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2799 va_end(args);
2800
2801 if (sz > sizeof(temp) || sz > buflen)
2802 return ERR_PTR(-ENAMETOOLONG);
2803
2804 buffer += buflen - sz;
2805 return memcpy(buffer, temp, sz);
2806 }
2807
2808 /*
2809 * Write full pathname from the root of the filesystem into the buffer.
2810 */
2811 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2812 {
2813 char *end = buf + buflen;
2814 char *retval;
2815
2816 prepend(&end, &buflen, "\0", 1);
2817 if (buflen < 1)
2818 goto Elong;
2819 /* Get '/' right */
2820 retval = end-1;
2821 *retval = '/';
2822
2823 while (!IS_ROOT(dentry)) {
2824 struct dentry *parent = dentry->d_parent;
2825 int error;
2826
2827 prefetch(parent);
2828 spin_lock(&dentry->d_lock);
2829 error = prepend_name(&end, &buflen, &dentry->d_name);
2830 spin_unlock(&dentry->d_lock);
2831 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2832 goto Elong;
2833
2834 retval = end;
2835 dentry = parent;
2836 }
2837 return retval;
2838 Elong:
2839 return ERR_PTR(-ENAMETOOLONG);
2840 }
2841
2842 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2843 {
2844 char *retval;
2845
2846 write_seqlock(&rename_lock);
2847 retval = __dentry_path(dentry, buf, buflen);
2848 write_sequnlock(&rename_lock);
2849
2850 return retval;
2851 }
2852 EXPORT_SYMBOL(dentry_path_raw);
2853
2854 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2855 {
2856 char *p = NULL;
2857 char *retval;
2858
2859 write_seqlock(&rename_lock);
2860 if (d_unlinked(dentry)) {
2861 p = buf + buflen;
2862 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2863 goto Elong;
2864 buflen++;
2865 }
2866 retval = __dentry_path(dentry, buf, buflen);
2867 write_sequnlock(&rename_lock);
2868 if (!IS_ERR(retval) && p)
2869 *p = '/'; /* restore '/' overriden with '\0' */
2870 return retval;
2871 Elong:
2872 return ERR_PTR(-ENAMETOOLONG);
2873 }
2874
2875 /*
2876 * NOTE! The user-level library version returns a
2877 * character pointer. The kernel system call just
2878 * returns the length of the buffer filled (which
2879 * includes the ending '\0' character), or a negative
2880 * error value. So libc would do something like
2881 *
2882 * char *getcwd(char * buf, size_t size)
2883 * {
2884 * int retval;
2885 *
2886 * retval = sys_getcwd(buf, size);
2887 * if (retval >= 0)
2888 * return buf;
2889 * errno = -retval;
2890 * return NULL;
2891 * }
2892 */
2893 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2894 {
2895 int error;
2896 struct path pwd, root;
2897 char *page = (char *) __get_free_page(GFP_USER);
2898
2899 if (!page)
2900 return -ENOMEM;
2901
2902 get_fs_root_and_pwd(current->fs, &root, &pwd);
2903
2904 error = -ENOENT;
2905 write_seqlock(&rename_lock);
2906 if (!d_unlinked(pwd.dentry)) {
2907 unsigned long len;
2908 char *cwd = page + PAGE_SIZE;
2909 int buflen = PAGE_SIZE;
2910
2911 prepend(&cwd, &buflen, "\0", 1);
2912 error = prepend_path(&pwd, &root, &cwd, &buflen);
2913 write_sequnlock(&rename_lock);
2914
2915 if (error < 0)
2916 goto out;
2917
2918 /* Unreachable from current root */
2919 if (error > 0) {
2920 error = prepend_unreachable(&cwd, &buflen);
2921 if (error)
2922 goto out;
2923 }
2924
2925 error = -ERANGE;
2926 len = PAGE_SIZE + page - cwd;
2927 if (len <= size) {
2928 error = len;
2929 if (copy_to_user(buf, cwd, len))
2930 error = -EFAULT;
2931 }
2932 } else {
2933 write_sequnlock(&rename_lock);
2934 }
2935
2936 out:
2937 path_put(&pwd);
2938 path_put(&root);
2939 free_page((unsigned long) page);
2940 return error;
2941 }
2942
2943 /*
2944 * Test whether new_dentry is a subdirectory of old_dentry.
2945 *
2946 * Trivially implemented using the dcache structure
2947 */
2948
2949 /**
2950 * is_subdir - is new dentry a subdirectory of old_dentry
2951 * @new_dentry: new dentry
2952 * @old_dentry: old dentry
2953 *
2954 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2955 * Returns 0 otherwise.
2956 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2957 */
2958
2959 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2960 {
2961 int result;
2962 unsigned seq;
2963
2964 if (new_dentry == old_dentry)
2965 return 1;
2966
2967 do {
2968 /* for restarting inner loop in case of seq retry */
2969 seq = read_seqbegin(&rename_lock);
2970 /*
2971 * Need rcu_readlock to protect against the d_parent trashing
2972 * due to d_move
2973 */
2974 rcu_read_lock();
2975 if (d_ancestor(old_dentry, new_dentry))
2976 result = 1;
2977 else
2978 result = 0;
2979 rcu_read_unlock();
2980 } while (read_seqretry(&rename_lock, seq));
2981
2982 return result;
2983 }
2984
2985 void d_genocide(struct dentry *root)
2986 {
2987 struct dentry *this_parent;
2988 struct list_head *next;
2989 unsigned seq;
2990 int locked = 0;
2991
2992 seq = read_seqbegin(&rename_lock);
2993 again:
2994 this_parent = root;
2995 spin_lock(&this_parent->d_lock);
2996 repeat:
2997 next = this_parent->d_subdirs.next;
2998 resume:
2999 while (next != &this_parent->d_subdirs) {
3000 struct list_head *tmp = next;
3001 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
3002 next = tmp->next;
3003
3004 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3005 if (d_unhashed(dentry) || !dentry->d_inode) {
3006 spin_unlock(&dentry->d_lock);
3007 continue;
3008 }
3009 if (!list_empty(&dentry->d_subdirs)) {
3010 spin_unlock(&this_parent->d_lock);
3011 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
3012 this_parent = dentry;
3013 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
3014 goto repeat;
3015 }
3016 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3017 dentry->d_flags |= DCACHE_GENOCIDE;
3018 dentry->d_count--;
3019 }
3020 spin_unlock(&dentry->d_lock);
3021 }
3022 if (this_parent != root) {
3023 struct dentry *child = this_parent;
3024 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
3025 this_parent->d_flags |= DCACHE_GENOCIDE;
3026 this_parent->d_count--;
3027 }
3028 this_parent = try_to_ascend(this_parent, locked, seq);
3029 if (!this_parent)
3030 goto rename_retry;
3031 next = child->d_u.d_child.next;
3032 goto resume;
3033 }
3034 spin_unlock(&this_parent->d_lock);
3035 if (!locked && read_seqretry(&rename_lock, seq))
3036 goto rename_retry;
3037 if (locked)
3038 write_sequnlock(&rename_lock);
3039 return;
3040
3041 rename_retry:
3042 if (locked)
3043 goto again;
3044 locked = 1;
3045 write_seqlock(&rename_lock);
3046 goto again;
3047 }
3048
3049 /**
3050 * find_inode_number - check for dentry with name
3051 * @dir: directory to check
3052 * @name: Name to find.
3053 *
3054 * Check whether a dentry already exists for the given name,
3055 * and return the inode number if it has an inode. Otherwise
3056 * 0 is returned.
3057 *
3058 * This routine is used to post-process directory listings for
3059 * filesystems using synthetic inode numbers, and is necessary
3060 * to keep getcwd() working.
3061 */
3062
3063 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
3064 {
3065 struct dentry * dentry;
3066 ino_t ino = 0;
3067
3068 dentry = d_hash_and_lookup(dir, name);
3069 if (dentry) {
3070 if (dentry->d_inode)
3071 ino = dentry->d_inode->i_ino;
3072 dput(dentry);
3073 }
3074 return ino;
3075 }
3076 EXPORT_SYMBOL(find_inode_number);
3077
3078 static __initdata unsigned long dhash_entries;
3079 static int __init set_dhash_entries(char *str)
3080 {
3081 if (!str)
3082 return 0;
3083 dhash_entries = simple_strtoul(str, &str, 0);
3084 return 1;
3085 }
3086 __setup("dhash_entries=", set_dhash_entries);
3087
3088 static void __init dcache_init_early(void)
3089 {
3090 unsigned int loop;
3091
3092 /* If hashes are distributed across NUMA nodes, defer
3093 * hash allocation until vmalloc space is available.
3094 */
3095 if (hashdist)
3096 return;
3097
3098 dentry_hashtable =
3099 alloc_large_system_hash("Dentry cache",
3100 sizeof(struct hlist_bl_head),
3101 dhash_entries,
3102 13,
3103 HASH_EARLY,
3104 &d_hash_shift,
3105 &d_hash_mask,
3106 0,
3107 0);
3108
3109 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3110 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3111 }
3112
3113 static void __init dcache_init(void)
3114 {
3115 unsigned int loop;
3116
3117 /*
3118 * A constructor could be added for stable state like the lists,
3119 * but it is probably not worth it because of the cache nature
3120 * of the dcache.
3121 */
3122 dentry_cache = KMEM_CACHE(dentry,
3123 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3124
3125 /* Hash may have been set up in dcache_init_early */
3126 if (!hashdist)
3127 return;
3128
3129 dentry_hashtable =
3130 alloc_large_system_hash("Dentry cache",
3131 sizeof(struct hlist_bl_head),
3132 dhash_entries,
3133 13,
3134 0,
3135 &d_hash_shift,
3136 &d_hash_mask,
3137 0,
3138 0);
3139
3140 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3141 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3142 }
3143
3144 /* SLAB cache for __getname() consumers */
3145 struct kmem_cache *names_cachep __read_mostly;
3146 EXPORT_SYMBOL(names_cachep);
3147
3148 EXPORT_SYMBOL(d_genocide);
3149
3150 void __init vfs_caches_init_early(void)
3151 {
3152 dcache_init_early();
3153 inode_init_early();
3154 }
3155
3156 void __init vfs_caches_init(unsigned long mempages)
3157 {
3158 unsigned long reserve;
3159
3160 /* Base hash sizes on available memory, with a reserve equal to
3161 150% of current kernel size */
3162
3163 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3164 mempages -= reserve;
3165
3166 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3167 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3168
3169 dcache_init();
3170 inode_init();
3171 files_init(mempages);
3172 mnt_init();
3173 bdev_cache_init();
3174 chrdev_init();
3175 }