Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ceph / mds_client.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
9
10 #include "super.h"
11 #include "mds_client.h"
12
13 #include <linux/ceph/ceph_features.h>
14 #include <linux/ceph/messenger.h>
15 #include <linux/ceph/decode.h>
16 #include <linux/ceph/pagelist.h>
17 #include <linux/ceph/auth.h>
18 #include <linux/ceph/debugfs.h>
19
20 /*
21 * A cluster of MDS (metadata server) daemons is responsible for
22 * managing the file system namespace (the directory hierarchy and
23 * inodes) and for coordinating shared access to storage. Metadata is
24 * partitioning hierarchically across a number of servers, and that
25 * partition varies over time as the cluster adjusts the distribution
26 * in order to balance load.
27 *
28 * The MDS client is primarily responsible to managing synchronous
29 * metadata requests for operations like open, unlink, and so forth.
30 * If there is a MDS failure, we find out about it when we (possibly
31 * request and) receive a new MDS map, and can resubmit affected
32 * requests.
33 *
34 * For the most part, though, we take advantage of a lossless
35 * communications channel to the MDS, and do not need to worry about
36 * timing out or resubmitting requests.
37 *
38 * We maintain a stateful "session" with each MDS we interact with.
39 * Within each session, we sent periodic heartbeat messages to ensure
40 * any capabilities or leases we have been issues remain valid. If
41 * the session times out and goes stale, our leases and capabilities
42 * are no longer valid.
43 */
44
45 struct ceph_reconnect_state {
46 struct ceph_pagelist *pagelist;
47 bool flock;
48 };
49
50 static void __wake_requests(struct ceph_mds_client *mdsc,
51 struct list_head *head);
52
53 static const struct ceph_connection_operations mds_con_ops;
54
55
56 /*
57 * mds reply parsing
58 */
59
60 /*
61 * parse individual inode info
62 */
63 static int parse_reply_info_in(void **p, void *end,
64 struct ceph_mds_reply_info_in *info,
65 int features)
66 {
67 int err = -EIO;
68
69 info->in = *p;
70 *p += sizeof(struct ceph_mds_reply_inode) +
71 sizeof(*info->in->fragtree.splits) *
72 le32_to_cpu(info->in->fragtree.nsplits);
73
74 ceph_decode_32_safe(p, end, info->symlink_len, bad);
75 ceph_decode_need(p, end, info->symlink_len, bad);
76 info->symlink = *p;
77 *p += info->symlink_len;
78
79 if (features & CEPH_FEATURE_DIRLAYOUTHASH)
80 ceph_decode_copy_safe(p, end, &info->dir_layout,
81 sizeof(info->dir_layout), bad);
82 else
83 memset(&info->dir_layout, 0, sizeof(info->dir_layout));
84
85 ceph_decode_32_safe(p, end, info->xattr_len, bad);
86 ceph_decode_need(p, end, info->xattr_len, bad);
87 info->xattr_data = *p;
88 *p += info->xattr_len;
89 return 0;
90 bad:
91 return err;
92 }
93
94 /*
95 * parse a normal reply, which may contain a (dir+)dentry and/or a
96 * target inode.
97 */
98 static int parse_reply_info_trace(void **p, void *end,
99 struct ceph_mds_reply_info_parsed *info,
100 int features)
101 {
102 int err;
103
104 if (info->head->is_dentry) {
105 err = parse_reply_info_in(p, end, &info->diri, features);
106 if (err < 0)
107 goto out_bad;
108
109 if (unlikely(*p + sizeof(*info->dirfrag) > end))
110 goto bad;
111 info->dirfrag = *p;
112 *p += sizeof(*info->dirfrag) +
113 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
114 if (unlikely(*p > end))
115 goto bad;
116
117 ceph_decode_32_safe(p, end, info->dname_len, bad);
118 ceph_decode_need(p, end, info->dname_len, bad);
119 info->dname = *p;
120 *p += info->dname_len;
121 info->dlease = *p;
122 *p += sizeof(*info->dlease);
123 }
124
125 if (info->head->is_target) {
126 err = parse_reply_info_in(p, end, &info->targeti, features);
127 if (err < 0)
128 goto out_bad;
129 }
130
131 if (unlikely(*p != end))
132 goto bad;
133 return 0;
134
135 bad:
136 err = -EIO;
137 out_bad:
138 pr_err("problem parsing mds trace %d\n", err);
139 return err;
140 }
141
142 /*
143 * parse readdir results
144 */
145 static int parse_reply_info_dir(void **p, void *end,
146 struct ceph_mds_reply_info_parsed *info,
147 int features)
148 {
149 u32 num, i = 0;
150 int err;
151
152 info->dir_dir = *p;
153 if (*p + sizeof(*info->dir_dir) > end)
154 goto bad;
155 *p += sizeof(*info->dir_dir) +
156 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
157 if (*p > end)
158 goto bad;
159
160 ceph_decode_need(p, end, sizeof(num) + 2, bad);
161 num = ceph_decode_32(p);
162 info->dir_end = ceph_decode_8(p);
163 info->dir_complete = ceph_decode_8(p);
164 if (num == 0)
165 goto done;
166
167 /* alloc large array */
168 info->dir_nr = num;
169 info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
170 sizeof(*info->dir_dname) +
171 sizeof(*info->dir_dname_len) +
172 sizeof(*info->dir_dlease),
173 GFP_NOFS);
174 if (info->dir_in == NULL) {
175 err = -ENOMEM;
176 goto out_bad;
177 }
178 info->dir_dname = (void *)(info->dir_in + num);
179 info->dir_dname_len = (void *)(info->dir_dname + num);
180 info->dir_dlease = (void *)(info->dir_dname_len + num);
181
182 while (num) {
183 /* dentry */
184 ceph_decode_need(p, end, sizeof(u32)*2, bad);
185 info->dir_dname_len[i] = ceph_decode_32(p);
186 ceph_decode_need(p, end, info->dir_dname_len[i], bad);
187 info->dir_dname[i] = *p;
188 *p += info->dir_dname_len[i];
189 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
190 info->dir_dname[i]);
191 info->dir_dlease[i] = *p;
192 *p += sizeof(struct ceph_mds_reply_lease);
193
194 /* inode */
195 err = parse_reply_info_in(p, end, &info->dir_in[i], features);
196 if (err < 0)
197 goto out_bad;
198 i++;
199 num--;
200 }
201
202 done:
203 if (*p != end)
204 goto bad;
205 return 0;
206
207 bad:
208 err = -EIO;
209 out_bad:
210 pr_err("problem parsing dir contents %d\n", err);
211 return err;
212 }
213
214 /*
215 * parse fcntl F_GETLK results
216 */
217 static int parse_reply_info_filelock(void **p, void *end,
218 struct ceph_mds_reply_info_parsed *info,
219 int features)
220 {
221 if (*p + sizeof(*info->filelock_reply) > end)
222 goto bad;
223
224 info->filelock_reply = *p;
225 *p += sizeof(*info->filelock_reply);
226
227 if (unlikely(*p != end))
228 goto bad;
229 return 0;
230
231 bad:
232 return -EIO;
233 }
234
235 /*
236 * parse create results
237 */
238 static int parse_reply_info_create(void **p, void *end,
239 struct ceph_mds_reply_info_parsed *info,
240 int features)
241 {
242 if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
243 if (*p == end) {
244 info->has_create_ino = false;
245 } else {
246 info->has_create_ino = true;
247 info->ino = ceph_decode_64(p);
248 }
249 }
250
251 if (unlikely(*p != end))
252 goto bad;
253 return 0;
254
255 bad:
256 return -EIO;
257 }
258
259 /*
260 * parse extra results
261 */
262 static int parse_reply_info_extra(void **p, void *end,
263 struct ceph_mds_reply_info_parsed *info,
264 int features)
265 {
266 if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
267 return parse_reply_info_filelock(p, end, info, features);
268 else if (info->head->op == CEPH_MDS_OP_READDIR)
269 return parse_reply_info_dir(p, end, info, features);
270 else if (info->head->op == CEPH_MDS_OP_CREATE)
271 return parse_reply_info_create(p, end, info, features);
272 else
273 return -EIO;
274 }
275
276 /*
277 * parse entire mds reply
278 */
279 static int parse_reply_info(struct ceph_msg *msg,
280 struct ceph_mds_reply_info_parsed *info,
281 int features)
282 {
283 void *p, *end;
284 u32 len;
285 int err;
286
287 info->head = msg->front.iov_base;
288 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
289 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
290
291 /* trace */
292 ceph_decode_32_safe(&p, end, len, bad);
293 if (len > 0) {
294 ceph_decode_need(&p, end, len, bad);
295 err = parse_reply_info_trace(&p, p+len, info, features);
296 if (err < 0)
297 goto out_bad;
298 }
299
300 /* extra */
301 ceph_decode_32_safe(&p, end, len, bad);
302 if (len > 0) {
303 ceph_decode_need(&p, end, len, bad);
304 err = parse_reply_info_extra(&p, p+len, info, features);
305 if (err < 0)
306 goto out_bad;
307 }
308
309 /* snap blob */
310 ceph_decode_32_safe(&p, end, len, bad);
311 info->snapblob_len = len;
312 info->snapblob = p;
313 p += len;
314
315 if (p != end)
316 goto bad;
317 return 0;
318
319 bad:
320 err = -EIO;
321 out_bad:
322 pr_err("mds parse_reply err %d\n", err);
323 return err;
324 }
325
326 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
327 {
328 kfree(info->dir_in);
329 }
330
331
332 /*
333 * sessions
334 */
335 static const char *session_state_name(int s)
336 {
337 switch (s) {
338 case CEPH_MDS_SESSION_NEW: return "new";
339 case CEPH_MDS_SESSION_OPENING: return "opening";
340 case CEPH_MDS_SESSION_OPEN: return "open";
341 case CEPH_MDS_SESSION_HUNG: return "hung";
342 case CEPH_MDS_SESSION_CLOSING: return "closing";
343 case CEPH_MDS_SESSION_RESTARTING: return "restarting";
344 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
345 default: return "???";
346 }
347 }
348
349 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
350 {
351 if (atomic_inc_not_zero(&s->s_ref)) {
352 dout("mdsc get_session %p %d -> %d\n", s,
353 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
354 return s;
355 } else {
356 dout("mdsc get_session %p 0 -- FAIL", s);
357 return NULL;
358 }
359 }
360
361 void ceph_put_mds_session(struct ceph_mds_session *s)
362 {
363 dout("mdsc put_session %p %d -> %d\n", s,
364 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
365 if (atomic_dec_and_test(&s->s_ref)) {
366 if (s->s_auth.authorizer)
367 s->s_mdsc->fsc->client->monc.auth->ops->destroy_authorizer(
368 s->s_mdsc->fsc->client->monc.auth,
369 s->s_auth.authorizer);
370 kfree(s);
371 }
372 }
373
374 /*
375 * called under mdsc->mutex
376 */
377 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
378 int mds)
379 {
380 struct ceph_mds_session *session;
381
382 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
383 return NULL;
384 session = mdsc->sessions[mds];
385 dout("lookup_mds_session %p %d\n", session,
386 atomic_read(&session->s_ref));
387 get_session(session);
388 return session;
389 }
390
391 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
392 {
393 if (mds >= mdsc->max_sessions)
394 return false;
395 return mdsc->sessions[mds];
396 }
397
398 static int __verify_registered_session(struct ceph_mds_client *mdsc,
399 struct ceph_mds_session *s)
400 {
401 if (s->s_mds >= mdsc->max_sessions ||
402 mdsc->sessions[s->s_mds] != s)
403 return -ENOENT;
404 return 0;
405 }
406
407 /*
408 * create+register a new session for given mds.
409 * called under mdsc->mutex.
410 */
411 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
412 int mds)
413 {
414 struct ceph_mds_session *s;
415
416 s = kzalloc(sizeof(*s), GFP_NOFS);
417 if (!s)
418 return ERR_PTR(-ENOMEM);
419 s->s_mdsc = mdsc;
420 s->s_mds = mds;
421 s->s_state = CEPH_MDS_SESSION_NEW;
422 s->s_ttl = 0;
423 s->s_seq = 0;
424 mutex_init(&s->s_mutex);
425
426 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
427
428 spin_lock_init(&s->s_gen_ttl_lock);
429 s->s_cap_gen = 0;
430 s->s_cap_ttl = jiffies - 1;
431
432 spin_lock_init(&s->s_cap_lock);
433 s->s_renew_requested = 0;
434 s->s_renew_seq = 0;
435 INIT_LIST_HEAD(&s->s_caps);
436 s->s_nr_caps = 0;
437 s->s_trim_caps = 0;
438 atomic_set(&s->s_ref, 1);
439 INIT_LIST_HEAD(&s->s_waiting);
440 INIT_LIST_HEAD(&s->s_unsafe);
441 s->s_num_cap_releases = 0;
442 s->s_cap_iterator = NULL;
443 INIT_LIST_HEAD(&s->s_cap_releases);
444 INIT_LIST_HEAD(&s->s_cap_releases_done);
445 INIT_LIST_HEAD(&s->s_cap_flushing);
446 INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
447
448 dout("register_session mds%d\n", mds);
449 if (mds >= mdsc->max_sessions) {
450 int newmax = 1 << get_count_order(mds+1);
451 struct ceph_mds_session **sa;
452
453 dout("register_session realloc to %d\n", newmax);
454 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
455 if (sa == NULL)
456 goto fail_realloc;
457 if (mdsc->sessions) {
458 memcpy(sa, mdsc->sessions,
459 mdsc->max_sessions * sizeof(void *));
460 kfree(mdsc->sessions);
461 }
462 mdsc->sessions = sa;
463 mdsc->max_sessions = newmax;
464 }
465 mdsc->sessions[mds] = s;
466 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */
467
468 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
469 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
470
471 return s;
472
473 fail_realloc:
474 kfree(s);
475 return ERR_PTR(-ENOMEM);
476 }
477
478 /*
479 * called under mdsc->mutex
480 */
481 static void __unregister_session(struct ceph_mds_client *mdsc,
482 struct ceph_mds_session *s)
483 {
484 dout("__unregister_session mds%d %p\n", s->s_mds, s);
485 BUG_ON(mdsc->sessions[s->s_mds] != s);
486 mdsc->sessions[s->s_mds] = NULL;
487 ceph_con_close(&s->s_con);
488 ceph_put_mds_session(s);
489 }
490
491 /*
492 * drop session refs in request.
493 *
494 * should be last request ref, or hold mdsc->mutex
495 */
496 static void put_request_session(struct ceph_mds_request *req)
497 {
498 if (req->r_session) {
499 ceph_put_mds_session(req->r_session);
500 req->r_session = NULL;
501 }
502 }
503
504 void ceph_mdsc_release_request(struct kref *kref)
505 {
506 struct ceph_mds_request *req = container_of(kref,
507 struct ceph_mds_request,
508 r_kref);
509 if (req->r_request)
510 ceph_msg_put(req->r_request);
511 if (req->r_reply) {
512 ceph_msg_put(req->r_reply);
513 destroy_reply_info(&req->r_reply_info);
514 }
515 if (req->r_inode) {
516 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
517 iput(req->r_inode);
518 }
519 if (req->r_locked_dir)
520 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
521 if (req->r_target_inode)
522 iput(req->r_target_inode);
523 if (req->r_dentry)
524 dput(req->r_dentry);
525 if (req->r_old_dentry) {
526 /*
527 * track (and drop pins for) r_old_dentry_dir
528 * separately, since r_old_dentry's d_parent may have
529 * changed between the dir mutex being dropped and
530 * this request being freed.
531 */
532 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
533 CEPH_CAP_PIN);
534 dput(req->r_old_dentry);
535 iput(req->r_old_dentry_dir);
536 }
537 kfree(req->r_path1);
538 kfree(req->r_path2);
539 put_request_session(req);
540 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
541 kfree(req);
542 }
543
544 /*
545 * lookup session, bump ref if found.
546 *
547 * called under mdsc->mutex.
548 */
549 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
550 u64 tid)
551 {
552 struct ceph_mds_request *req;
553 struct rb_node *n = mdsc->request_tree.rb_node;
554
555 while (n) {
556 req = rb_entry(n, struct ceph_mds_request, r_node);
557 if (tid < req->r_tid)
558 n = n->rb_left;
559 else if (tid > req->r_tid)
560 n = n->rb_right;
561 else {
562 ceph_mdsc_get_request(req);
563 return req;
564 }
565 }
566 return NULL;
567 }
568
569 static void __insert_request(struct ceph_mds_client *mdsc,
570 struct ceph_mds_request *new)
571 {
572 struct rb_node **p = &mdsc->request_tree.rb_node;
573 struct rb_node *parent = NULL;
574 struct ceph_mds_request *req = NULL;
575
576 while (*p) {
577 parent = *p;
578 req = rb_entry(parent, struct ceph_mds_request, r_node);
579 if (new->r_tid < req->r_tid)
580 p = &(*p)->rb_left;
581 else if (new->r_tid > req->r_tid)
582 p = &(*p)->rb_right;
583 else
584 BUG();
585 }
586
587 rb_link_node(&new->r_node, parent, p);
588 rb_insert_color(&new->r_node, &mdsc->request_tree);
589 }
590
591 /*
592 * Register an in-flight request, and assign a tid. Link to directory
593 * are modifying (if any).
594 *
595 * Called under mdsc->mutex.
596 */
597 static void __register_request(struct ceph_mds_client *mdsc,
598 struct ceph_mds_request *req,
599 struct inode *dir)
600 {
601 req->r_tid = ++mdsc->last_tid;
602 if (req->r_num_caps)
603 ceph_reserve_caps(mdsc, &req->r_caps_reservation,
604 req->r_num_caps);
605 dout("__register_request %p tid %lld\n", req, req->r_tid);
606 ceph_mdsc_get_request(req);
607 __insert_request(mdsc, req);
608
609 req->r_uid = current_fsuid();
610 req->r_gid = current_fsgid();
611
612 if (dir) {
613 struct ceph_inode_info *ci = ceph_inode(dir);
614
615 ihold(dir);
616 spin_lock(&ci->i_unsafe_lock);
617 req->r_unsafe_dir = dir;
618 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
619 spin_unlock(&ci->i_unsafe_lock);
620 }
621 }
622
623 static void __unregister_request(struct ceph_mds_client *mdsc,
624 struct ceph_mds_request *req)
625 {
626 dout("__unregister_request %p tid %lld\n", req, req->r_tid);
627 rb_erase(&req->r_node, &mdsc->request_tree);
628 RB_CLEAR_NODE(&req->r_node);
629
630 if (req->r_unsafe_dir) {
631 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
632
633 spin_lock(&ci->i_unsafe_lock);
634 list_del_init(&req->r_unsafe_dir_item);
635 spin_unlock(&ci->i_unsafe_lock);
636
637 iput(req->r_unsafe_dir);
638 req->r_unsafe_dir = NULL;
639 }
640
641 ceph_mdsc_put_request(req);
642 }
643
644 /*
645 * Choose mds to send request to next. If there is a hint set in the
646 * request (e.g., due to a prior forward hint from the mds), use that.
647 * Otherwise, consult frag tree and/or caps to identify the
648 * appropriate mds. If all else fails, choose randomly.
649 *
650 * Called under mdsc->mutex.
651 */
652 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
653 {
654 /*
655 * we don't need to worry about protecting the d_parent access
656 * here because we never renaming inside the snapped namespace
657 * except to resplice to another snapdir, and either the old or new
658 * result is a valid result.
659 */
660 while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
661 dentry = dentry->d_parent;
662 return dentry;
663 }
664
665 static int __choose_mds(struct ceph_mds_client *mdsc,
666 struct ceph_mds_request *req)
667 {
668 struct inode *inode;
669 struct ceph_inode_info *ci;
670 struct ceph_cap *cap;
671 int mode = req->r_direct_mode;
672 int mds = -1;
673 u32 hash = req->r_direct_hash;
674 bool is_hash = req->r_direct_is_hash;
675
676 /*
677 * is there a specific mds we should try? ignore hint if we have
678 * no session and the mds is not up (active or recovering).
679 */
680 if (req->r_resend_mds >= 0 &&
681 (__have_session(mdsc, req->r_resend_mds) ||
682 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
683 dout("choose_mds using resend_mds mds%d\n",
684 req->r_resend_mds);
685 return req->r_resend_mds;
686 }
687
688 if (mode == USE_RANDOM_MDS)
689 goto random;
690
691 inode = NULL;
692 if (req->r_inode) {
693 inode = req->r_inode;
694 } else if (req->r_dentry) {
695 /* ignore race with rename; old or new d_parent is okay */
696 struct dentry *parent = req->r_dentry->d_parent;
697 struct inode *dir = parent->d_inode;
698
699 if (dir->i_sb != mdsc->fsc->sb) {
700 /* not this fs! */
701 inode = req->r_dentry->d_inode;
702 } else if (ceph_snap(dir) != CEPH_NOSNAP) {
703 /* direct snapped/virtual snapdir requests
704 * based on parent dir inode */
705 struct dentry *dn = get_nonsnap_parent(parent);
706 inode = dn->d_inode;
707 dout("__choose_mds using nonsnap parent %p\n", inode);
708 } else if (req->r_dentry->d_inode) {
709 /* dentry target */
710 inode = req->r_dentry->d_inode;
711 } else {
712 /* dir + name */
713 inode = dir;
714 hash = ceph_dentry_hash(dir, req->r_dentry);
715 is_hash = true;
716 }
717 }
718
719 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
720 (int)hash, mode);
721 if (!inode)
722 goto random;
723 ci = ceph_inode(inode);
724
725 if (is_hash && S_ISDIR(inode->i_mode)) {
726 struct ceph_inode_frag frag;
727 int found;
728
729 ceph_choose_frag(ci, hash, &frag, &found);
730 if (found) {
731 if (mode == USE_ANY_MDS && frag.ndist > 0) {
732 u8 r;
733
734 /* choose a random replica */
735 get_random_bytes(&r, 1);
736 r %= frag.ndist;
737 mds = frag.dist[r];
738 dout("choose_mds %p %llx.%llx "
739 "frag %u mds%d (%d/%d)\n",
740 inode, ceph_vinop(inode),
741 frag.frag, mds,
742 (int)r, frag.ndist);
743 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
744 CEPH_MDS_STATE_ACTIVE)
745 return mds;
746 }
747
748 /* since this file/dir wasn't known to be
749 * replicated, then we want to look for the
750 * authoritative mds. */
751 mode = USE_AUTH_MDS;
752 if (frag.mds >= 0) {
753 /* choose auth mds */
754 mds = frag.mds;
755 dout("choose_mds %p %llx.%llx "
756 "frag %u mds%d (auth)\n",
757 inode, ceph_vinop(inode), frag.frag, mds);
758 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
759 CEPH_MDS_STATE_ACTIVE)
760 return mds;
761 }
762 }
763 }
764
765 spin_lock(&ci->i_ceph_lock);
766 cap = NULL;
767 if (mode == USE_AUTH_MDS)
768 cap = ci->i_auth_cap;
769 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
770 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
771 if (!cap) {
772 spin_unlock(&ci->i_ceph_lock);
773 goto random;
774 }
775 mds = cap->session->s_mds;
776 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
777 inode, ceph_vinop(inode), mds,
778 cap == ci->i_auth_cap ? "auth " : "", cap);
779 spin_unlock(&ci->i_ceph_lock);
780 return mds;
781
782 random:
783 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
784 dout("choose_mds chose random mds%d\n", mds);
785 return mds;
786 }
787
788
789 /*
790 * session messages
791 */
792 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
793 {
794 struct ceph_msg *msg;
795 struct ceph_mds_session_head *h;
796
797 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
798 false);
799 if (!msg) {
800 pr_err("create_session_msg ENOMEM creating msg\n");
801 return NULL;
802 }
803 h = msg->front.iov_base;
804 h->op = cpu_to_le32(op);
805 h->seq = cpu_to_le64(seq);
806 return msg;
807 }
808
809 /*
810 * send session open request.
811 *
812 * called under mdsc->mutex
813 */
814 static int __open_session(struct ceph_mds_client *mdsc,
815 struct ceph_mds_session *session)
816 {
817 struct ceph_msg *msg;
818 int mstate;
819 int mds = session->s_mds;
820
821 /* wait for mds to go active? */
822 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
823 dout("open_session to mds%d (%s)\n", mds,
824 ceph_mds_state_name(mstate));
825 session->s_state = CEPH_MDS_SESSION_OPENING;
826 session->s_renew_requested = jiffies;
827
828 /* send connect message */
829 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
830 if (!msg)
831 return -ENOMEM;
832 ceph_con_send(&session->s_con, msg);
833 return 0;
834 }
835
836 /*
837 * open sessions for any export targets for the given mds
838 *
839 * called under mdsc->mutex
840 */
841 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
842 struct ceph_mds_session *session)
843 {
844 struct ceph_mds_info *mi;
845 struct ceph_mds_session *ts;
846 int i, mds = session->s_mds;
847 int target;
848
849 if (mds >= mdsc->mdsmap->m_max_mds)
850 return;
851 mi = &mdsc->mdsmap->m_info[mds];
852 dout("open_export_target_sessions for mds%d (%d targets)\n",
853 session->s_mds, mi->num_export_targets);
854
855 for (i = 0; i < mi->num_export_targets; i++) {
856 target = mi->export_targets[i];
857 ts = __ceph_lookup_mds_session(mdsc, target);
858 if (!ts) {
859 ts = register_session(mdsc, target);
860 if (IS_ERR(ts))
861 return;
862 }
863 if (session->s_state == CEPH_MDS_SESSION_NEW ||
864 session->s_state == CEPH_MDS_SESSION_CLOSING)
865 __open_session(mdsc, session);
866 else
867 dout(" mds%d target mds%d %p is %s\n", session->s_mds,
868 i, ts, session_state_name(ts->s_state));
869 ceph_put_mds_session(ts);
870 }
871 }
872
873 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
874 struct ceph_mds_session *session)
875 {
876 mutex_lock(&mdsc->mutex);
877 __open_export_target_sessions(mdsc, session);
878 mutex_unlock(&mdsc->mutex);
879 }
880
881 /*
882 * session caps
883 */
884
885 /*
886 * Free preallocated cap messages assigned to this session
887 */
888 static void cleanup_cap_releases(struct ceph_mds_session *session)
889 {
890 struct ceph_msg *msg;
891
892 spin_lock(&session->s_cap_lock);
893 while (!list_empty(&session->s_cap_releases)) {
894 msg = list_first_entry(&session->s_cap_releases,
895 struct ceph_msg, list_head);
896 list_del_init(&msg->list_head);
897 ceph_msg_put(msg);
898 }
899 while (!list_empty(&session->s_cap_releases_done)) {
900 msg = list_first_entry(&session->s_cap_releases_done,
901 struct ceph_msg, list_head);
902 list_del_init(&msg->list_head);
903 ceph_msg_put(msg);
904 }
905 spin_unlock(&session->s_cap_lock);
906 }
907
908 /*
909 * Helper to safely iterate over all caps associated with a session, with
910 * special care taken to handle a racing __ceph_remove_cap().
911 *
912 * Caller must hold session s_mutex.
913 */
914 static int iterate_session_caps(struct ceph_mds_session *session,
915 int (*cb)(struct inode *, struct ceph_cap *,
916 void *), void *arg)
917 {
918 struct list_head *p;
919 struct ceph_cap *cap;
920 struct inode *inode, *last_inode = NULL;
921 struct ceph_cap *old_cap = NULL;
922 int ret;
923
924 dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
925 spin_lock(&session->s_cap_lock);
926 p = session->s_caps.next;
927 while (p != &session->s_caps) {
928 cap = list_entry(p, struct ceph_cap, session_caps);
929 inode = igrab(&cap->ci->vfs_inode);
930 if (!inode) {
931 p = p->next;
932 continue;
933 }
934 session->s_cap_iterator = cap;
935 spin_unlock(&session->s_cap_lock);
936
937 if (last_inode) {
938 iput(last_inode);
939 last_inode = NULL;
940 }
941 if (old_cap) {
942 ceph_put_cap(session->s_mdsc, old_cap);
943 old_cap = NULL;
944 }
945
946 ret = cb(inode, cap, arg);
947 last_inode = inode;
948
949 spin_lock(&session->s_cap_lock);
950 p = p->next;
951 if (cap->ci == NULL) {
952 dout("iterate_session_caps finishing cap %p removal\n",
953 cap);
954 BUG_ON(cap->session != session);
955 list_del_init(&cap->session_caps);
956 session->s_nr_caps--;
957 cap->session = NULL;
958 old_cap = cap; /* put_cap it w/o locks held */
959 }
960 if (ret < 0)
961 goto out;
962 }
963 ret = 0;
964 out:
965 session->s_cap_iterator = NULL;
966 spin_unlock(&session->s_cap_lock);
967
968 if (last_inode)
969 iput(last_inode);
970 if (old_cap)
971 ceph_put_cap(session->s_mdsc, old_cap);
972
973 return ret;
974 }
975
976 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
977 void *arg)
978 {
979 struct ceph_inode_info *ci = ceph_inode(inode);
980 int drop = 0;
981
982 dout("removing cap %p, ci is %p, inode is %p\n",
983 cap, ci, &ci->vfs_inode);
984 spin_lock(&ci->i_ceph_lock);
985 __ceph_remove_cap(cap);
986 if (!__ceph_is_any_real_caps(ci)) {
987 struct ceph_mds_client *mdsc =
988 ceph_sb_to_client(inode->i_sb)->mdsc;
989
990 spin_lock(&mdsc->cap_dirty_lock);
991 if (!list_empty(&ci->i_dirty_item)) {
992 pr_info(" dropping dirty %s state for %p %lld\n",
993 ceph_cap_string(ci->i_dirty_caps),
994 inode, ceph_ino(inode));
995 ci->i_dirty_caps = 0;
996 list_del_init(&ci->i_dirty_item);
997 drop = 1;
998 }
999 if (!list_empty(&ci->i_flushing_item)) {
1000 pr_info(" dropping dirty+flushing %s state for %p %lld\n",
1001 ceph_cap_string(ci->i_flushing_caps),
1002 inode, ceph_ino(inode));
1003 ci->i_flushing_caps = 0;
1004 list_del_init(&ci->i_flushing_item);
1005 mdsc->num_cap_flushing--;
1006 drop = 1;
1007 }
1008 if (drop && ci->i_wrbuffer_ref) {
1009 pr_info(" dropping dirty data for %p %lld\n",
1010 inode, ceph_ino(inode));
1011 ci->i_wrbuffer_ref = 0;
1012 ci->i_wrbuffer_ref_head = 0;
1013 drop++;
1014 }
1015 spin_unlock(&mdsc->cap_dirty_lock);
1016 }
1017 spin_unlock(&ci->i_ceph_lock);
1018 while (drop--)
1019 iput(inode);
1020 return 0;
1021 }
1022
1023 /*
1024 * caller must hold session s_mutex
1025 */
1026 static void remove_session_caps(struct ceph_mds_session *session)
1027 {
1028 dout("remove_session_caps on %p\n", session);
1029 iterate_session_caps(session, remove_session_caps_cb, NULL);
1030 BUG_ON(session->s_nr_caps > 0);
1031 BUG_ON(!list_empty(&session->s_cap_flushing));
1032 cleanup_cap_releases(session);
1033 }
1034
1035 /*
1036 * wake up any threads waiting on this session's caps. if the cap is
1037 * old (didn't get renewed on the client reconnect), remove it now.
1038 *
1039 * caller must hold s_mutex.
1040 */
1041 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1042 void *arg)
1043 {
1044 struct ceph_inode_info *ci = ceph_inode(inode);
1045
1046 wake_up_all(&ci->i_cap_wq);
1047 if (arg) {
1048 spin_lock(&ci->i_ceph_lock);
1049 ci->i_wanted_max_size = 0;
1050 ci->i_requested_max_size = 0;
1051 spin_unlock(&ci->i_ceph_lock);
1052 }
1053 return 0;
1054 }
1055
1056 static void wake_up_session_caps(struct ceph_mds_session *session,
1057 int reconnect)
1058 {
1059 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1060 iterate_session_caps(session, wake_up_session_cb,
1061 (void *)(unsigned long)reconnect);
1062 }
1063
1064 /*
1065 * Send periodic message to MDS renewing all currently held caps. The
1066 * ack will reset the expiration for all caps from this session.
1067 *
1068 * caller holds s_mutex
1069 */
1070 static int send_renew_caps(struct ceph_mds_client *mdsc,
1071 struct ceph_mds_session *session)
1072 {
1073 struct ceph_msg *msg;
1074 int state;
1075
1076 if (time_after_eq(jiffies, session->s_cap_ttl) &&
1077 time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1078 pr_info("mds%d caps stale\n", session->s_mds);
1079 session->s_renew_requested = jiffies;
1080
1081 /* do not try to renew caps until a recovering mds has reconnected
1082 * with its clients. */
1083 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1084 if (state < CEPH_MDS_STATE_RECONNECT) {
1085 dout("send_renew_caps ignoring mds%d (%s)\n",
1086 session->s_mds, ceph_mds_state_name(state));
1087 return 0;
1088 }
1089
1090 dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1091 ceph_mds_state_name(state));
1092 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1093 ++session->s_renew_seq);
1094 if (!msg)
1095 return -ENOMEM;
1096 ceph_con_send(&session->s_con, msg);
1097 return 0;
1098 }
1099
1100 /*
1101 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1102 *
1103 * Called under session->s_mutex
1104 */
1105 static void renewed_caps(struct ceph_mds_client *mdsc,
1106 struct ceph_mds_session *session, int is_renew)
1107 {
1108 int was_stale;
1109 int wake = 0;
1110
1111 spin_lock(&session->s_cap_lock);
1112 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1113
1114 session->s_cap_ttl = session->s_renew_requested +
1115 mdsc->mdsmap->m_session_timeout*HZ;
1116
1117 if (was_stale) {
1118 if (time_before(jiffies, session->s_cap_ttl)) {
1119 pr_info("mds%d caps renewed\n", session->s_mds);
1120 wake = 1;
1121 } else {
1122 pr_info("mds%d caps still stale\n", session->s_mds);
1123 }
1124 }
1125 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1126 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1127 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1128 spin_unlock(&session->s_cap_lock);
1129
1130 if (wake)
1131 wake_up_session_caps(session, 0);
1132 }
1133
1134 /*
1135 * send a session close request
1136 */
1137 static int request_close_session(struct ceph_mds_client *mdsc,
1138 struct ceph_mds_session *session)
1139 {
1140 struct ceph_msg *msg;
1141
1142 dout("request_close_session mds%d state %s seq %lld\n",
1143 session->s_mds, session_state_name(session->s_state),
1144 session->s_seq);
1145 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1146 if (!msg)
1147 return -ENOMEM;
1148 ceph_con_send(&session->s_con, msg);
1149 return 0;
1150 }
1151
1152 /*
1153 * Called with s_mutex held.
1154 */
1155 static int __close_session(struct ceph_mds_client *mdsc,
1156 struct ceph_mds_session *session)
1157 {
1158 if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1159 return 0;
1160 session->s_state = CEPH_MDS_SESSION_CLOSING;
1161 return request_close_session(mdsc, session);
1162 }
1163
1164 /*
1165 * Trim old(er) caps.
1166 *
1167 * Because we can't cache an inode without one or more caps, we do
1168 * this indirectly: if a cap is unused, we prune its aliases, at which
1169 * point the inode will hopefully get dropped to.
1170 *
1171 * Yes, this is a bit sloppy. Our only real goal here is to respond to
1172 * memory pressure from the MDS, though, so it needn't be perfect.
1173 */
1174 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1175 {
1176 struct ceph_mds_session *session = arg;
1177 struct ceph_inode_info *ci = ceph_inode(inode);
1178 int used, oissued, mine;
1179
1180 if (session->s_trim_caps <= 0)
1181 return -1;
1182
1183 spin_lock(&ci->i_ceph_lock);
1184 mine = cap->issued | cap->implemented;
1185 used = __ceph_caps_used(ci);
1186 oissued = __ceph_caps_issued_other(ci, cap);
1187
1188 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1189 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1190 ceph_cap_string(used));
1191 if (ci->i_dirty_caps)
1192 goto out; /* dirty caps */
1193 if ((used & ~oissued) & mine)
1194 goto out; /* we need these caps */
1195
1196 session->s_trim_caps--;
1197 if (oissued) {
1198 /* we aren't the only cap.. just remove us */
1199 __ceph_remove_cap(cap);
1200 } else {
1201 /* try to drop referring dentries */
1202 spin_unlock(&ci->i_ceph_lock);
1203 d_prune_aliases(inode);
1204 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1205 inode, cap, atomic_read(&inode->i_count));
1206 return 0;
1207 }
1208
1209 out:
1210 spin_unlock(&ci->i_ceph_lock);
1211 return 0;
1212 }
1213
1214 /*
1215 * Trim session cap count down to some max number.
1216 */
1217 static int trim_caps(struct ceph_mds_client *mdsc,
1218 struct ceph_mds_session *session,
1219 int max_caps)
1220 {
1221 int trim_caps = session->s_nr_caps - max_caps;
1222
1223 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1224 session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1225 if (trim_caps > 0) {
1226 session->s_trim_caps = trim_caps;
1227 iterate_session_caps(session, trim_caps_cb, session);
1228 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1229 session->s_mds, session->s_nr_caps, max_caps,
1230 trim_caps - session->s_trim_caps);
1231 session->s_trim_caps = 0;
1232 }
1233 return 0;
1234 }
1235
1236 /*
1237 * Allocate cap_release messages. If there is a partially full message
1238 * in the queue, try to allocate enough to cover it's remainder, so that
1239 * we can send it immediately.
1240 *
1241 * Called under s_mutex.
1242 */
1243 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1244 struct ceph_mds_session *session)
1245 {
1246 struct ceph_msg *msg, *partial = NULL;
1247 struct ceph_mds_cap_release *head;
1248 int err = -ENOMEM;
1249 int extra = mdsc->fsc->mount_options->cap_release_safety;
1250 int num;
1251
1252 dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1253 extra);
1254
1255 spin_lock(&session->s_cap_lock);
1256
1257 if (!list_empty(&session->s_cap_releases)) {
1258 msg = list_first_entry(&session->s_cap_releases,
1259 struct ceph_msg,
1260 list_head);
1261 head = msg->front.iov_base;
1262 num = le32_to_cpu(head->num);
1263 if (num) {
1264 dout(" partial %p with (%d/%d)\n", msg, num,
1265 (int)CEPH_CAPS_PER_RELEASE);
1266 extra += CEPH_CAPS_PER_RELEASE - num;
1267 partial = msg;
1268 }
1269 }
1270 while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1271 spin_unlock(&session->s_cap_lock);
1272 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1273 GFP_NOFS, false);
1274 if (!msg)
1275 goto out_unlocked;
1276 dout("add_cap_releases %p msg %p now %d\n", session, msg,
1277 (int)msg->front.iov_len);
1278 head = msg->front.iov_base;
1279 head->num = cpu_to_le32(0);
1280 msg->front.iov_len = sizeof(*head);
1281 spin_lock(&session->s_cap_lock);
1282 list_add(&msg->list_head, &session->s_cap_releases);
1283 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1284 }
1285
1286 if (partial) {
1287 head = partial->front.iov_base;
1288 num = le32_to_cpu(head->num);
1289 dout(" queueing partial %p with %d/%d\n", partial, num,
1290 (int)CEPH_CAPS_PER_RELEASE);
1291 list_move_tail(&partial->list_head,
1292 &session->s_cap_releases_done);
1293 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1294 }
1295 err = 0;
1296 spin_unlock(&session->s_cap_lock);
1297 out_unlocked:
1298 return err;
1299 }
1300
1301 /*
1302 * flush all dirty inode data to disk.
1303 *
1304 * returns true if we've flushed through want_flush_seq
1305 */
1306 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1307 {
1308 int mds, ret = 1;
1309
1310 dout("check_cap_flush want %lld\n", want_flush_seq);
1311 mutex_lock(&mdsc->mutex);
1312 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1313 struct ceph_mds_session *session = mdsc->sessions[mds];
1314
1315 if (!session)
1316 continue;
1317 get_session(session);
1318 mutex_unlock(&mdsc->mutex);
1319
1320 mutex_lock(&session->s_mutex);
1321 if (!list_empty(&session->s_cap_flushing)) {
1322 struct ceph_inode_info *ci =
1323 list_entry(session->s_cap_flushing.next,
1324 struct ceph_inode_info,
1325 i_flushing_item);
1326 struct inode *inode = &ci->vfs_inode;
1327
1328 spin_lock(&ci->i_ceph_lock);
1329 if (ci->i_cap_flush_seq <= want_flush_seq) {
1330 dout("check_cap_flush still flushing %p "
1331 "seq %lld <= %lld to mds%d\n", inode,
1332 ci->i_cap_flush_seq, want_flush_seq,
1333 session->s_mds);
1334 ret = 0;
1335 }
1336 spin_unlock(&ci->i_ceph_lock);
1337 }
1338 mutex_unlock(&session->s_mutex);
1339 ceph_put_mds_session(session);
1340
1341 if (!ret)
1342 return ret;
1343 mutex_lock(&mdsc->mutex);
1344 }
1345
1346 mutex_unlock(&mdsc->mutex);
1347 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1348 return ret;
1349 }
1350
1351 /*
1352 * called under s_mutex
1353 */
1354 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1355 struct ceph_mds_session *session)
1356 {
1357 struct ceph_msg *msg;
1358
1359 dout("send_cap_releases mds%d\n", session->s_mds);
1360 spin_lock(&session->s_cap_lock);
1361 while (!list_empty(&session->s_cap_releases_done)) {
1362 msg = list_first_entry(&session->s_cap_releases_done,
1363 struct ceph_msg, list_head);
1364 list_del_init(&msg->list_head);
1365 spin_unlock(&session->s_cap_lock);
1366 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1367 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1368 ceph_con_send(&session->s_con, msg);
1369 spin_lock(&session->s_cap_lock);
1370 }
1371 spin_unlock(&session->s_cap_lock);
1372 }
1373
1374 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1375 struct ceph_mds_session *session)
1376 {
1377 struct ceph_msg *msg;
1378 struct ceph_mds_cap_release *head;
1379 unsigned num;
1380
1381 dout("discard_cap_releases mds%d\n", session->s_mds);
1382 spin_lock(&session->s_cap_lock);
1383
1384 /* zero out the in-progress message */
1385 msg = list_first_entry(&session->s_cap_releases,
1386 struct ceph_msg, list_head);
1387 head = msg->front.iov_base;
1388 num = le32_to_cpu(head->num);
1389 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1390 head->num = cpu_to_le32(0);
1391 session->s_num_cap_releases += num;
1392
1393 /* requeue completed messages */
1394 while (!list_empty(&session->s_cap_releases_done)) {
1395 msg = list_first_entry(&session->s_cap_releases_done,
1396 struct ceph_msg, list_head);
1397 list_del_init(&msg->list_head);
1398
1399 head = msg->front.iov_base;
1400 num = le32_to_cpu(head->num);
1401 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1402 num);
1403 session->s_num_cap_releases += num;
1404 head->num = cpu_to_le32(0);
1405 msg->front.iov_len = sizeof(*head);
1406 list_add(&msg->list_head, &session->s_cap_releases);
1407 }
1408
1409 spin_unlock(&session->s_cap_lock);
1410 }
1411
1412 /*
1413 * requests
1414 */
1415
1416 /*
1417 * Create an mds request.
1418 */
1419 struct ceph_mds_request *
1420 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1421 {
1422 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1423
1424 if (!req)
1425 return ERR_PTR(-ENOMEM);
1426
1427 mutex_init(&req->r_fill_mutex);
1428 req->r_mdsc = mdsc;
1429 req->r_started = jiffies;
1430 req->r_resend_mds = -1;
1431 INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1432 req->r_fmode = -1;
1433 kref_init(&req->r_kref);
1434 INIT_LIST_HEAD(&req->r_wait);
1435 init_completion(&req->r_completion);
1436 init_completion(&req->r_safe_completion);
1437 INIT_LIST_HEAD(&req->r_unsafe_item);
1438
1439 req->r_op = op;
1440 req->r_direct_mode = mode;
1441 return req;
1442 }
1443
1444 /*
1445 * return oldest (lowest) request, tid in request tree, 0 if none.
1446 *
1447 * called under mdsc->mutex.
1448 */
1449 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1450 {
1451 if (RB_EMPTY_ROOT(&mdsc->request_tree))
1452 return NULL;
1453 return rb_entry(rb_first(&mdsc->request_tree),
1454 struct ceph_mds_request, r_node);
1455 }
1456
1457 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1458 {
1459 struct ceph_mds_request *req = __get_oldest_req(mdsc);
1460
1461 if (req)
1462 return req->r_tid;
1463 return 0;
1464 }
1465
1466 /*
1467 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1468 * on build_path_from_dentry in fs/cifs/dir.c.
1469 *
1470 * If @stop_on_nosnap, generate path relative to the first non-snapped
1471 * inode.
1472 *
1473 * Encode hidden .snap dirs as a double /, i.e.
1474 * foo/.snap/bar -> foo//bar
1475 */
1476 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1477 int stop_on_nosnap)
1478 {
1479 struct dentry *temp;
1480 char *path;
1481 int len, pos;
1482 unsigned seq;
1483
1484 if (dentry == NULL)
1485 return ERR_PTR(-EINVAL);
1486
1487 retry:
1488 len = 0;
1489 seq = read_seqbegin(&rename_lock);
1490 rcu_read_lock();
1491 for (temp = dentry; !IS_ROOT(temp);) {
1492 struct inode *inode = temp->d_inode;
1493 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1494 len++; /* slash only */
1495 else if (stop_on_nosnap && inode &&
1496 ceph_snap(inode) == CEPH_NOSNAP)
1497 break;
1498 else
1499 len += 1 + temp->d_name.len;
1500 temp = temp->d_parent;
1501 }
1502 rcu_read_unlock();
1503 if (len)
1504 len--; /* no leading '/' */
1505
1506 path = kmalloc(len+1, GFP_NOFS);
1507 if (path == NULL)
1508 return ERR_PTR(-ENOMEM);
1509 pos = len;
1510 path[pos] = 0; /* trailing null */
1511 rcu_read_lock();
1512 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1513 struct inode *inode;
1514
1515 spin_lock(&temp->d_lock);
1516 inode = temp->d_inode;
1517 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1518 dout("build_path path+%d: %p SNAPDIR\n",
1519 pos, temp);
1520 } else if (stop_on_nosnap && inode &&
1521 ceph_snap(inode) == CEPH_NOSNAP) {
1522 spin_unlock(&temp->d_lock);
1523 break;
1524 } else {
1525 pos -= temp->d_name.len;
1526 if (pos < 0) {
1527 spin_unlock(&temp->d_lock);
1528 break;
1529 }
1530 strncpy(path + pos, temp->d_name.name,
1531 temp->d_name.len);
1532 }
1533 spin_unlock(&temp->d_lock);
1534 if (pos)
1535 path[--pos] = '/';
1536 temp = temp->d_parent;
1537 }
1538 rcu_read_unlock();
1539 if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1540 pr_err("build_path did not end path lookup where "
1541 "expected, namelen is %d, pos is %d\n", len, pos);
1542 /* presumably this is only possible if racing with a
1543 rename of one of the parent directories (we can not
1544 lock the dentries above us to prevent this, but
1545 retrying should be harmless) */
1546 kfree(path);
1547 goto retry;
1548 }
1549
1550 *base = ceph_ino(temp->d_inode);
1551 *plen = len;
1552 dout("build_path on %p %d built %llx '%.*s'\n",
1553 dentry, dentry->d_count, *base, len, path);
1554 return path;
1555 }
1556
1557 static int build_dentry_path(struct dentry *dentry,
1558 const char **ppath, int *ppathlen, u64 *pino,
1559 int *pfreepath)
1560 {
1561 char *path;
1562
1563 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1564 *pino = ceph_ino(dentry->d_parent->d_inode);
1565 *ppath = dentry->d_name.name;
1566 *ppathlen = dentry->d_name.len;
1567 return 0;
1568 }
1569 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1570 if (IS_ERR(path))
1571 return PTR_ERR(path);
1572 *ppath = path;
1573 *pfreepath = 1;
1574 return 0;
1575 }
1576
1577 static int build_inode_path(struct inode *inode,
1578 const char **ppath, int *ppathlen, u64 *pino,
1579 int *pfreepath)
1580 {
1581 struct dentry *dentry;
1582 char *path;
1583
1584 if (ceph_snap(inode) == CEPH_NOSNAP) {
1585 *pino = ceph_ino(inode);
1586 *ppathlen = 0;
1587 return 0;
1588 }
1589 dentry = d_find_alias(inode);
1590 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1591 dput(dentry);
1592 if (IS_ERR(path))
1593 return PTR_ERR(path);
1594 *ppath = path;
1595 *pfreepath = 1;
1596 return 0;
1597 }
1598
1599 /*
1600 * request arguments may be specified via an inode *, a dentry *, or
1601 * an explicit ino+path.
1602 */
1603 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1604 const char *rpath, u64 rino,
1605 const char **ppath, int *pathlen,
1606 u64 *ino, int *freepath)
1607 {
1608 int r = 0;
1609
1610 if (rinode) {
1611 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1612 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1613 ceph_snap(rinode));
1614 } else if (rdentry) {
1615 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1616 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1617 *ppath);
1618 } else if (rpath || rino) {
1619 *ino = rino;
1620 *ppath = rpath;
1621 *pathlen = rpath ? strlen(rpath) : 0;
1622 dout(" path %.*s\n", *pathlen, rpath);
1623 }
1624
1625 return r;
1626 }
1627
1628 /*
1629 * called under mdsc->mutex
1630 */
1631 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1632 struct ceph_mds_request *req,
1633 int mds)
1634 {
1635 struct ceph_msg *msg;
1636 struct ceph_mds_request_head *head;
1637 const char *path1 = NULL;
1638 const char *path2 = NULL;
1639 u64 ino1 = 0, ino2 = 0;
1640 int pathlen1 = 0, pathlen2 = 0;
1641 int freepath1 = 0, freepath2 = 0;
1642 int len;
1643 u16 releases;
1644 void *p, *end;
1645 int ret;
1646
1647 ret = set_request_path_attr(req->r_inode, req->r_dentry,
1648 req->r_path1, req->r_ino1.ino,
1649 &path1, &pathlen1, &ino1, &freepath1);
1650 if (ret < 0) {
1651 msg = ERR_PTR(ret);
1652 goto out;
1653 }
1654
1655 ret = set_request_path_attr(NULL, req->r_old_dentry,
1656 req->r_path2, req->r_ino2.ino,
1657 &path2, &pathlen2, &ino2, &freepath2);
1658 if (ret < 0) {
1659 msg = ERR_PTR(ret);
1660 goto out_free1;
1661 }
1662
1663 len = sizeof(*head) +
1664 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1665
1666 /* calculate (max) length for cap releases */
1667 len += sizeof(struct ceph_mds_request_release) *
1668 (!!req->r_inode_drop + !!req->r_dentry_drop +
1669 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1670 if (req->r_dentry_drop)
1671 len += req->r_dentry->d_name.len;
1672 if (req->r_old_dentry_drop)
1673 len += req->r_old_dentry->d_name.len;
1674
1675 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1676 if (!msg) {
1677 msg = ERR_PTR(-ENOMEM);
1678 goto out_free2;
1679 }
1680
1681 msg->hdr.tid = cpu_to_le64(req->r_tid);
1682
1683 head = msg->front.iov_base;
1684 p = msg->front.iov_base + sizeof(*head);
1685 end = msg->front.iov_base + msg->front.iov_len;
1686
1687 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1688 head->op = cpu_to_le32(req->r_op);
1689 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1690 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1691 head->args = req->r_args;
1692
1693 ceph_encode_filepath(&p, end, ino1, path1);
1694 ceph_encode_filepath(&p, end, ino2, path2);
1695
1696 /* make note of release offset, in case we need to replay */
1697 req->r_request_release_offset = p - msg->front.iov_base;
1698
1699 /* cap releases */
1700 releases = 0;
1701 if (req->r_inode_drop)
1702 releases += ceph_encode_inode_release(&p,
1703 req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1704 mds, req->r_inode_drop, req->r_inode_unless, 0);
1705 if (req->r_dentry_drop)
1706 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1707 mds, req->r_dentry_drop, req->r_dentry_unless);
1708 if (req->r_old_dentry_drop)
1709 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1710 mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1711 if (req->r_old_inode_drop)
1712 releases += ceph_encode_inode_release(&p,
1713 req->r_old_dentry->d_inode,
1714 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1715 head->num_releases = cpu_to_le16(releases);
1716
1717 BUG_ON(p > end);
1718 msg->front.iov_len = p - msg->front.iov_base;
1719 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1720
1721 msg->pages = req->r_pages;
1722 msg->nr_pages = req->r_num_pages;
1723 msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1724 msg->hdr.data_off = cpu_to_le16(0);
1725
1726 out_free2:
1727 if (freepath2)
1728 kfree((char *)path2);
1729 out_free1:
1730 if (freepath1)
1731 kfree((char *)path1);
1732 out:
1733 return msg;
1734 }
1735
1736 /*
1737 * called under mdsc->mutex if error, under no mutex if
1738 * success.
1739 */
1740 static void complete_request(struct ceph_mds_client *mdsc,
1741 struct ceph_mds_request *req)
1742 {
1743 if (req->r_callback)
1744 req->r_callback(mdsc, req);
1745 else
1746 complete_all(&req->r_completion);
1747 }
1748
1749 /*
1750 * called under mdsc->mutex
1751 */
1752 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1753 struct ceph_mds_request *req,
1754 int mds)
1755 {
1756 struct ceph_mds_request_head *rhead;
1757 struct ceph_msg *msg;
1758 int flags = 0;
1759
1760 req->r_attempts++;
1761 if (req->r_inode) {
1762 struct ceph_cap *cap =
1763 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1764
1765 if (cap)
1766 req->r_sent_on_mseq = cap->mseq;
1767 else
1768 req->r_sent_on_mseq = -1;
1769 }
1770 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1771 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1772
1773 if (req->r_got_unsafe) {
1774 /*
1775 * Replay. Do not regenerate message (and rebuild
1776 * paths, etc.); just use the original message.
1777 * Rebuilding paths will break for renames because
1778 * d_move mangles the src name.
1779 */
1780 msg = req->r_request;
1781 rhead = msg->front.iov_base;
1782
1783 flags = le32_to_cpu(rhead->flags);
1784 flags |= CEPH_MDS_FLAG_REPLAY;
1785 rhead->flags = cpu_to_le32(flags);
1786
1787 if (req->r_target_inode)
1788 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1789
1790 rhead->num_retry = req->r_attempts - 1;
1791
1792 /* remove cap/dentry releases from message */
1793 rhead->num_releases = 0;
1794 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1795 msg->front.iov_len = req->r_request_release_offset;
1796 return 0;
1797 }
1798
1799 if (req->r_request) {
1800 ceph_msg_put(req->r_request);
1801 req->r_request = NULL;
1802 }
1803 msg = create_request_message(mdsc, req, mds);
1804 if (IS_ERR(msg)) {
1805 req->r_err = PTR_ERR(msg);
1806 complete_request(mdsc, req);
1807 return PTR_ERR(msg);
1808 }
1809 req->r_request = msg;
1810
1811 rhead = msg->front.iov_base;
1812 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1813 if (req->r_got_unsafe)
1814 flags |= CEPH_MDS_FLAG_REPLAY;
1815 if (req->r_locked_dir)
1816 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1817 rhead->flags = cpu_to_le32(flags);
1818 rhead->num_fwd = req->r_num_fwd;
1819 rhead->num_retry = req->r_attempts - 1;
1820 rhead->ino = 0;
1821
1822 dout(" r_locked_dir = %p\n", req->r_locked_dir);
1823 return 0;
1824 }
1825
1826 /*
1827 * send request, or put it on the appropriate wait list.
1828 */
1829 static int __do_request(struct ceph_mds_client *mdsc,
1830 struct ceph_mds_request *req)
1831 {
1832 struct ceph_mds_session *session = NULL;
1833 int mds = -1;
1834 int err = -EAGAIN;
1835
1836 if (req->r_err || req->r_got_result)
1837 goto out;
1838
1839 if (req->r_timeout &&
1840 time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1841 dout("do_request timed out\n");
1842 err = -EIO;
1843 goto finish;
1844 }
1845
1846 put_request_session(req);
1847
1848 mds = __choose_mds(mdsc, req);
1849 if (mds < 0 ||
1850 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1851 dout("do_request no mds or not active, waiting for map\n");
1852 list_add(&req->r_wait, &mdsc->waiting_for_map);
1853 goto out;
1854 }
1855
1856 /* get, open session */
1857 session = __ceph_lookup_mds_session(mdsc, mds);
1858 if (!session) {
1859 session = register_session(mdsc, mds);
1860 if (IS_ERR(session)) {
1861 err = PTR_ERR(session);
1862 goto finish;
1863 }
1864 }
1865 req->r_session = get_session(session);
1866
1867 dout("do_request mds%d session %p state %s\n", mds, session,
1868 session_state_name(session->s_state));
1869 if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1870 session->s_state != CEPH_MDS_SESSION_HUNG) {
1871 if (session->s_state == CEPH_MDS_SESSION_NEW ||
1872 session->s_state == CEPH_MDS_SESSION_CLOSING)
1873 __open_session(mdsc, session);
1874 list_add(&req->r_wait, &session->s_waiting);
1875 goto out_session;
1876 }
1877
1878 /* send request */
1879 req->r_resend_mds = -1; /* forget any previous mds hint */
1880
1881 if (req->r_request_started == 0) /* note request start time */
1882 req->r_request_started = jiffies;
1883
1884 err = __prepare_send_request(mdsc, req, mds);
1885 if (!err) {
1886 ceph_msg_get(req->r_request);
1887 ceph_con_send(&session->s_con, req->r_request);
1888 }
1889
1890 out_session:
1891 ceph_put_mds_session(session);
1892 out:
1893 return err;
1894
1895 finish:
1896 req->r_err = err;
1897 complete_request(mdsc, req);
1898 goto out;
1899 }
1900
1901 /*
1902 * called under mdsc->mutex
1903 */
1904 static void __wake_requests(struct ceph_mds_client *mdsc,
1905 struct list_head *head)
1906 {
1907 struct ceph_mds_request *req;
1908 LIST_HEAD(tmp_list);
1909
1910 list_splice_init(head, &tmp_list);
1911
1912 while (!list_empty(&tmp_list)) {
1913 req = list_entry(tmp_list.next,
1914 struct ceph_mds_request, r_wait);
1915 list_del_init(&req->r_wait);
1916 __do_request(mdsc, req);
1917 }
1918 }
1919
1920 /*
1921 * Wake up threads with requests pending for @mds, so that they can
1922 * resubmit their requests to a possibly different mds.
1923 */
1924 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1925 {
1926 struct ceph_mds_request *req;
1927 struct rb_node *p;
1928
1929 dout("kick_requests mds%d\n", mds);
1930 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1931 req = rb_entry(p, struct ceph_mds_request, r_node);
1932 if (req->r_got_unsafe)
1933 continue;
1934 if (req->r_session &&
1935 req->r_session->s_mds == mds) {
1936 dout(" kicking tid %llu\n", req->r_tid);
1937 __do_request(mdsc, req);
1938 }
1939 }
1940 }
1941
1942 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1943 struct ceph_mds_request *req)
1944 {
1945 dout("submit_request on %p\n", req);
1946 mutex_lock(&mdsc->mutex);
1947 __register_request(mdsc, req, NULL);
1948 __do_request(mdsc, req);
1949 mutex_unlock(&mdsc->mutex);
1950 }
1951
1952 /*
1953 * Synchrously perform an mds request. Take care of all of the
1954 * session setup, forwarding, retry details.
1955 */
1956 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1957 struct inode *dir,
1958 struct ceph_mds_request *req)
1959 {
1960 int err;
1961
1962 dout("do_request on %p\n", req);
1963
1964 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1965 if (req->r_inode)
1966 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1967 if (req->r_locked_dir)
1968 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1969 if (req->r_old_dentry)
1970 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
1971 CEPH_CAP_PIN);
1972
1973 /* issue */
1974 mutex_lock(&mdsc->mutex);
1975 __register_request(mdsc, req, dir);
1976 __do_request(mdsc, req);
1977
1978 if (req->r_err) {
1979 err = req->r_err;
1980 __unregister_request(mdsc, req);
1981 dout("do_request early error %d\n", err);
1982 goto out;
1983 }
1984
1985 /* wait */
1986 mutex_unlock(&mdsc->mutex);
1987 dout("do_request waiting\n");
1988 if (req->r_timeout) {
1989 err = (long)wait_for_completion_killable_timeout(
1990 &req->r_completion, req->r_timeout);
1991 if (err == 0)
1992 err = -EIO;
1993 } else {
1994 err = wait_for_completion_killable(&req->r_completion);
1995 }
1996 dout("do_request waited, got %d\n", err);
1997 mutex_lock(&mdsc->mutex);
1998
1999 /* only abort if we didn't race with a real reply */
2000 if (req->r_got_result) {
2001 err = le32_to_cpu(req->r_reply_info.head->result);
2002 } else if (err < 0) {
2003 dout("aborted request %lld with %d\n", req->r_tid, err);
2004
2005 /*
2006 * ensure we aren't running concurrently with
2007 * ceph_fill_trace or ceph_readdir_prepopulate, which
2008 * rely on locks (dir mutex) held by our caller.
2009 */
2010 mutex_lock(&req->r_fill_mutex);
2011 req->r_err = err;
2012 req->r_aborted = true;
2013 mutex_unlock(&req->r_fill_mutex);
2014
2015 if (req->r_locked_dir &&
2016 (req->r_op & CEPH_MDS_OP_WRITE))
2017 ceph_invalidate_dir_request(req);
2018 } else {
2019 err = req->r_err;
2020 }
2021
2022 out:
2023 mutex_unlock(&mdsc->mutex);
2024 dout("do_request %p done, result %d\n", req, err);
2025 return err;
2026 }
2027
2028 /*
2029 * Invalidate dir D_COMPLETE, dentry lease state on an aborted MDS
2030 * namespace request.
2031 */
2032 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2033 {
2034 struct inode *inode = req->r_locked_dir;
2035 struct ceph_inode_info *ci = ceph_inode(inode);
2036
2037 dout("invalidate_dir_request %p (D_COMPLETE, lease(s))\n", inode);
2038 spin_lock(&ci->i_ceph_lock);
2039 ceph_dir_clear_complete(inode);
2040 ci->i_release_count++;
2041 spin_unlock(&ci->i_ceph_lock);
2042
2043 if (req->r_dentry)
2044 ceph_invalidate_dentry_lease(req->r_dentry);
2045 if (req->r_old_dentry)
2046 ceph_invalidate_dentry_lease(req->r_old_dentry);
2047 }
2048
2049 /*
2050 * Handle mds reply.
2051 *
2052 * We take the session mutex and parse and process the reply immediately.
2053 * This preserves the logical ordering of replies, capabilities, etc., sent
2054 * by the MDS as they are applied to our local cache.
2055 */
2056 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2057 {
2058 struct ceph_mds_client *mdsc = session->s_mdsc;
2059 struct ceph_mds_request *req;
2060 struct ceph_mds_reply_head *head = msg->front.iov_base;
2061 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
2062 u64 tid;
2063 int err, result;
2064 int mds = session->s_mds;
2065
2066 if (msg->front.iov_len < sizeof(*head)) {
2067 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2068 ceph_msg_dump(msg);
2069 return;
2070 }
2071
2072 /* get request, session */
2073 tid = le64_to_cpu(msg->hdr.tid);
2074 mutex_lock(&mdsc->mutex);
2075 req = __lookup_request(mdsc, tid);
2076 if (!req) {
2077 dout("handle_reply on unknown tid %llu\n", tid);
2078 mutex_unlock(&mdsc->mutex);
2079 return;
2080 }
2081 dout("handle_reply %p\n", req);
2082
2083 /* correct session? */
2084 if (req->r_session != session) {
2085 pr_err("mdsc_handle_reply got %llu on session mds%d"
2086 " not mds%d\n", tid, session->s_mds,
2087 req->r_session ? req->r_session->s_mds : -1);
2088 mutex_unlock(&mdsc->mutex);
2089 goto out;
2090 }
2091
2092 /* dup? */
2093 if ((req->r_got_unsafe && !head->safe) ||
2094 (req->r_got_safe && head->safe)) {
2095 pr_warning("got a dup %s reply on %llu from mds%d\n",
2096 head->safe ? "safe" : "unsafe", tid, mds);
2097 mutex_unlock(&mdsc->mutex);
2098 goto out;
2099 }
2100 if (req->r_got_safe && !head->safe) {
2101 pr_warning("got unsafe after safe on %llu from mds%d\n",
2102 tid, mds);
2103 mutex_unlock(&mdsc->mutex);
2104 goto out;
2105 }
2106
2107 result = le32_to_cpu(head->result);
2108
2109 /*
2110 * Handle an ESTALE
2111 * if we're not talking to the authority, send to them
2112 * if the authority has changed while we weren't looking,
2113 * send to new authority
2114 * Otherwise we just have to return an ESTALE
2115 */
2116 if (result == -ESTALE) {
2117 dout("got ESTALE on request %llu", req->r_tid);
2118 if (!req->r_inode) {
2119 /* do nothing; not an authority problem */
2120 } else if (req->r_direct_mode != USE_AUTH_MDS) {
2121 dout("not using auth, setting for that now");
2122 req->r_direct_mode = USE_AUTH_MDS;
2123 __do_request(mdsc, req);
2124 mutex_unlock(&mdsc->mutex);
2125 goto out;
2126 } else {
2127 struct ceph_inode_info *ci = ceph_inode(req->r_inode);
2128 struct ceph_cap *cap = NULL;
2129
2130 if (req->r_session)
2131 cap = ceph_get_cap_for_mds(ci,
2132 req->r_session->s_mds);
2133
2134 dout("already using auth");
2135 if ((!cap || cap != ci->i_auth_cap) ||
2136 (cap->mseq != req->r_sent_on_mseq)) {
2137 dout("but cap changed, so resending");
2138 __do_request(mdsc, req);
2139 mutex_unlock(&mdsc->mutex);
2140 goto out;
2141 }
2142 }
2143 dout("have to return ESTALE on request %llu", req->r_tid);
2144 }
2145
2146
2147 if (head->safe) {
2148 req->r_got_safe = true;
2149 __unregister_request(mdsc, req);
2150 complete_all(&req->r_safe_completion);
2151
2152 if (req->r_got_unsafe) {
2153 /*
2154 * We already handled the unsafe response, now do the
2155 * cleanup. No need to examine the response; the MDS
2156 * doesn't include any result info in the safe
2157 * response. And even if it did, there is nothing
2158 * useful we could do with a revised return value.
2159 */
2160 dout("got safe reply %llu, mds%d\n", tid, mds);
2161 list_del_init(&req->r_unsafe_item);
2162
2163 /* last unsafe request during umount? */
2164 if (mdsc->stopping && !__get_oldest_req(mdsc))
2165 complete_all(&mdsc->safe_umount_waiters);
2166 mutex_unlock(&mdsc->mutex);
2167 goto out;
2168 }
2169 } else {
2170 req->r_got_unsafe = true;
2171 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2172 }
2173
2174 dout("handle_reply tid %lld result %d\n", tid, result);
2175 rinfo = &req->r_reply_info;
2176 err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2177 mutex_unlock(&mdsc->mutex);
2178
2179 mutex_lock(&session->s_mutex);
2180 if (err < 0) {
2181 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2182 ceph_msg_dump(msg);
2183 goto out_err;
2184 }
2185
2186 /* snap trace */
2187 if (rinfo->snapblob_len) {
2188 down_write(&mdsc->snap_rwsem);
2189 ceph_update_snap_trace(mdsc, rinfo->snapblob,
2190 rinfo->snapblob + rinfo->snapblob_len,
2191 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2192 downgrade_write(&mdsc->snap_rwsem);
2193 } else {
2194 down_read(&mdsc->snap_rwsem);
2195 }
2196
2197 /* insert trace into our cache */
2198 mutex_lock(&req->r_fill_mutex);
2199 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2200 if (err == 0) {
2201 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2202 req->r_op == CEPH_MDS_OP_LSSNAP) &&
2203 rinfo->dir_nr)
2204 ceph_readdir_prepopulate(req, req->r_session);
2205 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2206 }
2207 mutex_unlock(&req->r_fill_mutex);
2208
2209 up_read(&mdsc->snap_rwsem);
2210 out_err:
2211 mutex_lock(&mdsc->mutex);
2212 if (!req->r_aborted) {
2213 if (err) {
2214 req->r_err = err;
2215 } else {
2216 req->r_reply = msg;
2217 ceph_msg_get(msg);
2218 req->r_got_result = true;
2219 }
2220 } else {
2221 dout("reply arrived after request %lld was aborted\n", tid);
2222 }
2223 mutex_unlock(&mdsc->mutex);
2224
2225 ceph_add_cap_releases(mdsc, req->r_session);
2226 mutex_unlock(&session->s_mutex);
2227
2228 /* kick calling process */
2229 complete_request(mdsc, req);
2230 out:
2231 ceph_mdsc_put_request(req);
2232 return;
2233 }
2234
2235
2236
2237 /*
2238 * handle mds notification that our request has been forwarded.
2239 */
2240 static void handle_forward(struct ceph_mds_client *mdsc,
2241 struct ceph_mds_session *session,
2242 struct ceph_msg *msg)
2243 {
2244 struct ceph_mds_request *req;
2245 u64 tid = le64_to_cpu(msg->hdr.tid);
2246 u32 next_mds;
2247 u32 fwd_seq;
2248 int err = -EINVAL;
2249 void *p = msg->front.iov_base;
2250 void *end = p + msg->front.iov_len;
2251
2252 ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2253 next_mds = ceph_decode_32(&p);
2254 fwd_seq = ceph_decode_32(&p);
2255
2256 mutex_lock(&mdsc->mutex);
2257 req = __lookup_request(mdsc, tid);
2258 if (!req) {
2259 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2260 goto out; /* dup reply? */
2261 }
2262
2263 if (req->r_aborted) {
2264 dout("forward tid %llu aborted, unregistering\n", tid);
2265 __unregister_request(mdsc, req);
2266 } else if (fwd_seq <= req->r_num_fwd) {
2267 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2268 tid, next_mds, req->r_num_fwd, fwd_seq);
2269 } else {
2270 /* resend. forward race not possible; mds would drop */
2271 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2272 BUG_ON(req->r_err);
2273 BUG_ON(req->r_got_result);
2274 req->r_num_fwd = fwd_seq;
2275 req->r_resend_mds = next_mds;
2276 put_request_session(req);
2277 __do_request(mdsc, req);
2278 }
2279 ceph_mdsc_put_request(req);
2280 out:
2281 mutex_unlock(&mdsc->mutex);
2282 return;
2283
2284 bad:
2285 pr_err("mdsc_handle_forward decode error err=%d\n", err);
2286 }
2287
2288 /*
2289 * handle a mds session control message
2290 */
2291 static void handle_session(struct ceph_mds_session *session,
2292 struct ceph_msg *msg)
2293 {
2294 struct ceph_mds_client *mdsc = session->s_mdsc;
2295 u32 op;
2296 u64 seq;
2297 int mds = session->s_mds;
2298 struct ceph_mds_session_head *h = msg->front.iov_base;
2299 int wake = 0;
2300
2301 /* decode */
2302 if (msg->front.iov_len != sizeof(*h))
2303 goto bad;
2304 op = le32_to_cpu(h->op);
2305 seq = le64_to_cpu(h->seq);
2306
2307 mutex_lock(&mdsc->mutex);
2308 if (op == CEPH_SESSION_CLOSE)
2309 __unregister_session(mdsc, session);
2310 /* FIXME: this ttl calculation is generous */
2311 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2312 mutex_unlock(&mdsc->mutex);
2313
2314 mutex_lock(&session->s_mutex);
2315
2316 dout("handle_session mds%d %s %p state %s seq %llu\n",
2317 mds, ceph_session_op_name(op), session,
2318 session_state_name(session->s_state), seq);
2319
2320 if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2321 session->s_state = CEPH_MDS_SESSION_OPEN;
2322 pr_info("mds%d came back\n", session->s_mds);
2323 }
2324
2325 switch (op) {
2326 case CEPH_SESSION_OPEN:
2327 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2328 pr_info("mds%d reconnect success\n", session->s_mds);
2329 session->s_state = CEPH_MDS_SESSION_OPEN;
2330 renewed_caps(mdsc, session, 0);
2331 wake = 1;
2332 if (mdsc->stopping)
2333 __close_session(mdsc, session);
2334 break;
2335
2336 case CEPH_SESSION_RENEWCAPS:
2337 if (session->s_renew_seq == seq)
2338 renewed_caps(mdsc, session, 1);
2339 break;
2340
2341 case CEPH_SESSION_CLOSE:
2342 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2343 pr_info("mds%d reconnect denied\n", session->s_mds);
2344 remove_session_caps(session);
2345 wake = 1; /* for good measure */
2346 wake_up_all(&mdsc->session_close_wq);
2347 kick_requests(mdsc, mds);
2348 break;
2349
2350 case CEPH_SESSION_STALE:
2351 pr_info("mds%d caps went stale, renewing\n",
2352 session->s_mds);
2353 spin_lock(&session->s_gen_ttl_lock);
2354 session->s_cap_gen++;
2355 session->s_cap_ttl = jiffies - 1;
2356 spin_unlock(&session->s_gen_ttl_lock);
2357 send_renew_caps(mdsc, session);
2358 break;
2359
2360 case CEPH_SESSION_RECALL_STATE:
2361 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2362 break;
2363
2364 default:
2365 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2366 WARN_ON(1);
2367 }
2368
2369 mutex_unlock(&session->s_mutex);
2370 if (wake) {
2371 mutex_lock(&mdsc->mutex);
2372 __wake_requests(mdsc, &session->s_waiting);
2373 mutex_unlock(&mdsc->mutex);
2374 }
2375 return;
2376
2377 bad:
2378 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2379 (int)msg->front.iov_len);
2380 ceph_msg_dump(msg);
2381 return;
2382 }
2383
2384
2385 /*
2386 * called under session->mutex.
2387 */
2388 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2389 struct ceph_mds_session *session)
2390 {
2391 struct ceph_mds_request *req, *nreq;
2392 int err;
2393
2394 dout("replay_unsafe_requests mds%d\n", session->s_mds);
2395
2396 mutex_lock(&mdsc->mutex);
2397 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2398 err = __prepare_send_request(mdsc, req, session->s_mds);
2399 if (!err) {
2400 ceph_msg_get(req->r_request);
2401 ceph_con_send(&session->s_con, req->r_request);
2402 }
2403 }
2404 mutex_unlock(&mdsc->mutex);
2405 }
2406
2407 /*
2408 * Encode information about a cap for a reconnect with the MDS.
2409 */
2410 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2411 void *arg)
2412 {
2413 union {
2414 struct ceph_mds_cap_reconnect v2;
2415 struct ceph_mds_cap_reconnect_v1 v1;
2416 } rec;
2417 size_t reclen;
2418 struct ceph_inode_info *ci;
2419 struct ceph_reconnect_state *recon_state = arg;
2420 struct ceph_pagelist *pagelist = recon_state->pagelist;
2421 char *path;
2422 int pathlen, err;
2423 u64 pathbase;
2424 struct dentry *dentry;
2425
2426 ci = cap->ci;
2427
2428 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2429 inode, ceph_vinop(inode), cap, cap->cap_id,
2430 ceph_cap_string(cap->issued));
2431 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2432 if (err)
2433 return err;
2434
2435 dentry = d_find_alias(inode);
2436 if (dentry) {
2437 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2438 if (IS_ERR(path)) {
2439 err = PTR_ERR(path);
2440 goto out_dput;
2441 }
2442 } else {
2443 path = NULL;
2444 pathlen = 0;
2445 }
2446 err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2447 if (err)
2448 goto out_free;
2449
2450 spin_lock(&ci->i_ceph_lock);
2451 cap->seq = 0; /* reset cap seq */
2452 cap->issue_seq = 0; /* and issue_seq */
2453
2454 if (recon_state->flock) {
2455 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2456 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2457 rec.v2.issued = cpu_to_le32(cap->issued);
2458 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2459 rec.v2.pathbase = cpu_to_le64(pathbase);
2460 rec.v2.flock_len = 0;
2461 reclen = sizeof(rec.v2);
2462 } else {
2463 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2464 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2465 rec.v1.issued = cpu_to_le32(cap->issued);
2466 rec.v1.size = cpu_to_le64(inode->i_size);
2467 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2468 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2469 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2470 rec.v1.pathbase = cpu_to_le64(pathbase);
2471 reclen = sizeof(rec.v1);
2472 }
2473 spin_unlock(&ci->i_ceph_lock);
2474
2475 if (recon_state->flock) {
2476 int num_fcntl_locks, num_flock_locks;
2477 struct ceph_pagelist_cursor trunc_point;
2478
2479 ceph_pagelist_set_cursor(pagelist, &trunc_point);
2480 do {
2481 lock_flocks();
2482 ceph_count_locks(inode, &num_fcntl_locks,
2483 &num_flock_locks);
2484 rec.v2.flock_len = (2*sizeof(u32) +
2485 (num_fcntl_locks+num_flock_locks) *
2486 sizeof(struct ceph_filelock));
2487 unlock_flocks();
2488
2489 /* pre-alloc pagelist */
2490 ceph_pagelist_truncate(pagelist, &trunc_point);
2491 err = ceph_pagelist_append(pagelist, &rec, reclen);
2492 if (!err)
2493 err = ceph_pagelist_reserve(pagelist,
2494 rec.v2.flock_len);
2495
2496 /* encode locks */
2497 if (!err) {
2498 lock_flocks();
2499 err = ceph_encode_locks(inode,
2500 pagelist,
2501 num_fcntl_locks,
2502 num_flock_locks);
2503 unlock_flocks();
2504 }
2505 } while (err == -ENOSPC);
2506 } else {
2507 err = ceph_pagelist_append(pagelist, &rec, reclen);
2508 }
2509
2510 out_free:
2511 kfree(path);
2512 out_dput:
2513 dput(dentry);
2514 return err;
2515 }
2516
2517
2518 /*
2519 * If an MDS fails and recovers, clients need to reconnect in order to
2520 * reestablish shared state. This includes all caps issued through
2521 * this session _and_ the snap_realm hierarchy. Because it's not
2522 * clear which snap realms the mds cares about, we send everything we
2523 * know about.. that ensures we'll then get any new info the
2524 * recovering MDS might have.
2525 *
2526 * This is a relatively heavyweight operation, but it's rare.
2527 *
2528 * called with mdsc->mutex held.
2529 */
2530 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2531 struct ceph_mds_session *session)
2532 {
2533 struct ceph_msg *reply;
2534 struct rb_node *p;
2535 int mds = session->s_mds;
2536 int err = -ENOMEM;
2537 struct ceph_pagelist *pagelist;
2538 struct ceph_reconnect_state recon_state;
2539
2540 pr_info("mds%d reconnect start\n", mds);
2541
2542 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2543 if (!pagelist)
2544 goto fail_nopagelist;
2545 ceph_pagelist_init(pagelist);
2546
2547 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2548 if (!reply)
2549 goto fail_nomsg;
2550
2551 mutex_lock(&session->s_mutex);
2552 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2553 session->s_seq = 0;
2554
2555 ceph_con_close(&session->s_con);
2556 ceph_con_open(&session->s_con,
2557 CEPH_ENTITY_TYPE_MDS, mds,
2558 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2559
2560 /* replay unsafe requests */
2561 replay_unsafe_requests(mdsc, session);
2562
2563 down_read(&mdsc->snap_rwsem);
2564
2565 dout("session %p state %s\n", session,
2566 session_state_name(session->s_state));
2567
2568 /* drop old cap expires; we're about to reestablish that state */
2569 discard_cap_releases(mdsc, session);
2570
2571 /* traverse this session's caps */
2572 err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2573 if (err)
2574 goto fail;
2575
2576 recon_state.pagelist = pagelist;
2577 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2578 err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2579 if (err < 0)
2580 goto fail;
2581
2582 /*
2583 * snaprealms. we provide mds with the ino, seq (version), and
2584 * parent for all of our realms. If the mds has any newer info,
2585 * it will tell us.
2586 */
2587 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2588 struct ceph_snap_realm *realm =
2589 rb_entry(p, struct ceph_snap_realm, node);
2590 struct ceph_mds_snaprealm_reconnect sr_rec;
2591
2592 dout(" adding snap realm %llx seq %lld parent %llx\n",
2593 realm->ino, realm->seq, realm->parent_ino);
2594 sr_rec.ino = cpu_to_le64(realm->ino);
2595 sr_rec.seq = cpu_to_le64(realm->seq);
2596 sr_rec.parent = cpu_to_le64(realm->parent_ino);
2597 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2598 if (err)
2599 goto fail;
2600 }
2601
2602 reply->pagelist = pagelist;
2603 if (recon_state.flock)
2604 reply->hdr.version = cpu_to_le16(2);
2605 reply->hdr.data_len = cpu_to_le32(pagelist->length);
2606 reply->nr_pages = calc_pages_for(0, pagelist->length);
2607 ceph_con_send(&session->s_con, reply);
2608
2609 mutex_unlock(&session->s_mutex);
2610
2611 mutex_lock(&mdsc->mutex);
2612 __wake_requests(mdsc, &session->s_waiting);
2613 mutex_unlock(&mdsc->mutex);
2614
2615 up_read(&mdsc->snap_rwsem);
2616 return;
2617
2618 fail:
2619 ceph_msg_put(reply);
2620 up_read(&mdsc->snap_rwsem);
2621 mutex_unlock(&session->s_mutex);
2622 fail_nomsg:
2623 ceph_pagelist_release(pagelist);
2624 kfree(pagelist);
2625 fail_nopagelist:
2626 pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2627 return;
2628 }
2629
2630
2631 /*
2632 * compare old and new mdsmaps, kicking requests
2633 * and closing out old connections as necessary
2634 *
2635 * called under mdsc->mutex.
2636 */
2637 static void check_new_map(struct ceph_mds_client *mdsc,
2638 struct ceph_mdsmap *newmap,
2639 struct ceph_mdsmap *oldmap)
2640 {
2641 int i;
2642 int oldstate, newstate;
2643 struct ceph_mds_session *s;
2644
2645 dout("check_new_map new %u old %u\n",
2646 newmap->m_epoch, oldmap->m_epoch);
2647
2648 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2649 if (mdsc->sessions[i] == NULL)
2650 continue;
2651 s = mdsc->sessions[i];
2652 oldstate = ceph_mdsmap_get_state(oldmap, i);
2653 newstate = ceph_mdsmap_get_state(newmap, i);
2654
2655 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2656 i, ceph_mds_state_name(oldstate),
2657 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2658 ceph_mds_state_name(newstate),
2659 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2660 session_state_name(s->s_state));
2661
2662 if (i >= newmap->m_max_mds ||
2663 memcmp(ceph_mdsmap_get_addr(oldmap, i),
2664 ceph_mdsmap_get_addr(newmap, i),
2665 sizeof(struct ceph_entity_addr))) {
2666 if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2667 /* the session never opened, just close it
2668 * out now */
2669 __wake_requests(mdsc, &s->s_waiting);
2670 __unregister_session(mdsc, s);
2671 } else {
2672 /* just close it */
2673 mutex_unlock(&mdsc->mutex);
2674 mutex_lock(&s->s_mutex);
2675 mutex_lock(&mdsc->mutex);
2676 ceph_con_close(&s->s_con);
2677 mutex_unlock(&s->s_mutex);
2678 s->s_state = CEPH_MDS_SESSION_RESTARTING;
2679 }
2680
2681 /* kick any requests waiting on the recovering mds */
2682 kick_requests(mdsc, i);
2683 } else if (oldstate == newstate) {
2684 continue; /* nothing new with this mds */
2685 }
2686
2687 /*
2688 * send reconnect?
2689 */
2690 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2691 newstate >= CEPH_MDS_STATE_RECONNECT) {
2692 mutex_unlock(&mdsc->mutex);
2693 send_mds_reconnect(mdsc, s);
2694 mutex_lock(&mdsc->mutex);
2695 }
2696
2697 /*
2698 * kick request on any mds that has gone active.
2699 */
2700 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2701 newstate >= CEPH_MDS_STATE_ACTIVE) {
2702 if (oldstate != CEPH_MDS_STATE_CREATING &&
2703 oldstate != CEPH_MDS_STATE_STARTING)
2704 pr_info("mds%d recovery completed\n", s->s_mds);
2705 kick_requests(mdsc, i);
2706 ceph_kick_flushing_caps(mdsc, s);
2707 wake_up_session_caps(s, 1);
2708 }
2709 }
2710
2711 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2712 s = mdsc->sessions[i];
2713 if (!s)
2714 continue;
2715 if (!ceph_mdsmap_is_laggy(newmap, i))
2716 continue;
2717 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2718 s->s_state == CEPH_MDS_SESSION_HUNG ||
2719 s->s_state == CEPH_MDS_SESSION_CLOSING) {
2720 dout(" connecting to export targets of laggy mds%d\n",
2721 i);
2722 __open_export_target_sessions(mdsc, s);
2723 }
2724 }
2725 }
2726
2727
2728
2729 /*
2730 * leases
2731 */
2732
2733 /*
2734 * caller must hold session s_mutex, dentry->d_lock
2735 */
2736 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2737 {
2738 struct ceph_dentry_info *di = ceph_dentry(dentry);
2739
2740 ceph_put_mds_session(di->lease_session);
2741 di->lease_session = NULL;
2742 }
2743
2744 static void handle_lease(struct ceph_mds_client *mdsc,
2745 struct ceph_mds_session *session,
2746 struct ceph_msg *msg)
2747 {
2748 struct super_block *sb = mdsc->fsc->sb;
2749 struct inode *inode;
2750 struct dentry *parent, *dentry;
2751 struct ceph_dentry_info *di;
2752 int mds = session->s_mds;
2753 struct ceph_mds_lease *h = msg->front.iov_base;
2754 u32 seq;
2755 struct ceph_vino vino;
2756 struct qstr dname;
2757 int release = 0;
2758
2759 dout("handle_lease from mds%d\n", mds);
2760
2761 /* decode */
2762 if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2763 goto bad;
2764 vino.ino = le64_to_cpu(h->ino);
2765 vino.snap = CEPH_NOSNAP;
2766 seq = le32_to_cpu(h->seq);
2767 dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2768 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2769 if (dname.len != get_unaligned_le32(h+1))
2770 goto bad;
2771
2772 mutex_lock(&session->s_mutex);
2773 session->s_seq++;
2774
2775 /* lookup inode */
2776 inode = ceph_find_inode(sb, vino);
2777 dout("handle_lease %s, ino %llx %p %.*s\n",
2778 ceph_lease_op_name(h->action), vino.ino, inode,
2779 dname.len, dname.name);
2780 if (inode == NULL) {
2781 dout("handle_lease no inode %llx\n", vino.ino);
2782 goto release;
2783 }
2784
2785 /* dentry */
2786 parent = d_find_alias(inode);
2787 if (!parent) {
2788 dout("no parent dentry on inode %p\n", inode);
2789 WARN_ON(1);
2790 goto release; /* hrm... */
2791 }
2792 dname.hash = full_name_hash(dname.name, dname.len);
2793 dentry = d_lookup(parent, &dname);
2794 dput(parent);
2795 if (!dentry)
2796 goto release;
2797
2798 spin_lock(&dentry->d_lock);
2799 di = ceph_dentry(dentry);
2800 switch (h->action) {
2801 case CEPH_MDS_LEASE_REVOKE:
2802 if (di->lease_session == session) {
2803 if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2804 h->seq = cpu_to_le32(di->lease_seq);
2805 __ceph_mdsc_drop_dentry_lease(dentry);
2806 }
2807 release = 1;
2808 break;
2809
2810 case CEPH_MDS_LEASE_RENEW:
2811 if (di->lease_session == session &&
2812 di->lease_gen == session->s_cap_gen &&
2813 di->lease_renew_from &&
2814 di->lease_renew_after == 0) {
2815 unsigned long duration =
2816 le32_to_cpu(h->duration_ms) * HZ / 1000;
2817
2818 di->lease_seq = seq;
2819 dentry->d_time = di->lease_renew_from + duration;
2820 di->lease_renew_after = di->lease_renew_from +
2821 (duration >> 1);
2822 di->lease_renew_from = 0;
2823 }
2824 break;
2825 }
2826 spin_unlock(&dentry->d_lock);
2827 dput(dentry);
2828
2829 if (!release)
2830 goto out;
2831
2832 release:
2833 /* let's just reuse the same message */
2834 h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2835 ceph_msg_get(msg);
2836 ceph_con_send(&session->s_con, msg);
2837
2838 out:
2839 iput(inode);
2840 mutex_unlock(&session->s_mutex);
2841 return;
2842
2843 bad:
2844 pr_err("corrupt lease message\n");
2845 ceph_msg_dump(msg);
2846 }
2847
2848 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2849 struct inode *inode,
2850 struct dentry *dentry, char action,
2851 u32 seq)
2852 {
2853 struct ceph_msg *msg;
2854 struct ceph_mds_lease *lease;
2855 int len = sizeof(*lease) + sizeof(u32);
2856 int dnamelen = 0;
2857
2858 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2859 inode, dentry, ceph_lease_op_name(action), session->s_mds);
2860 dnamelen = dentry->d_name.len;
2861 len += dnamelen;
2862
2863 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
2864 if (!msg)
2865 return;
2866 lease = msg->front.iov_base;
2867 lease->action = action;
2868 lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2869 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2870 lease->seq = cpu_to_le32(seq);
2871 put_unaligned_le32(dnamelen, lease + 1);
2872 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2873
2874 /*
2875 * if this is a preemptive lease RELEASE, no need to
2876 * flush request stream, since the actual request will
2877 * soon follow.
2878 */
2879 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2880
2881 ceph_con_send(&session->s_con, msg);
2882 }
2883
2884 /*
2885 * Preemptively release a lease we expect to invalidate anyway.
2886 * Pass @inode always, @dentry is optional.
2887 */
2888 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2889 struct dentry *dentry)
2890 {
2891 struct ceph_dentry_info *di;
2892 struct ceph_mds_session *session;
2893 u32 seq;
2894
2895 BUG_ON(inode == NULL);
2896 BUG_ON(dentry == NULL);
2897
2898 /* is dentry lease valid? */
2899 spin_lock(&dentry->d_lock);
2900 di = ceph_dentry(dentry);
2901 if (!di || !di->lease_session ||
2902 di->lease_session->s_mds < 0 ||
2903 di->lease_gen != di->lease_session->s_cap_gen ||
2904 !time_before(jiffies, dentry->d_time)) {
2905 dout("lease_release inode %p dentry %p -- "
2906 "no lease\n",
2907 inode, dentry);
2908 spin_unlock(&dentry->d_lock);
2909 return;
2910 }
2911
2912 /* we do have a lease on this dentry; note mds and seq */
2913 session = ceph_get_mds_session(di->lease_session);
2914 seq = di->lease_seq;
2915 __ceph_mdsc_drop_dentry_lease(dentry);
2916 spin_unlock(&dentry->d_lock);
2917
2918 dout("lease_release inode %p dentry %p to mds%d\n",
2919 inode, dentry, session->s_mds);
2920 ceph_mdsc_lease_send_msg(session, inode, dentry,
2921 CEPH_MDS_LEASE_RELEASE, seq);
2922 ceph_put_mds_session(session);
2923 }
2924
2925 /*
2926 * drop all leases (and dentry refs) in preparation for umount
2927 */
2928 static void drop_leases(struct ceph_mds_client *mdsc)
2929 {
2930 int i;
2931
2932 dout("drop_leases\n");
2933 mutex_lock(&mdsc->mutex);
2934 for (i = 0; i < mdsc->max_sessions; i++) {
2935 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2936 if (!s)
2937 continue;
2938 mutex_unlock(&mdsc->mutex);
2939 mutex_lock(&s->s_mutex);
2940 mutex_unlock(&s->s_mutex);
2941 ceph_put_mds_session(s);
2942 mutex_lock(&mdsc->mutex);
2943 }
2944 mutex_unlock(&mdsc->mutex);
2945 }
2946
2947
2948
2949 /*
2950 * delayed work -- periodically trim expired leases, renew caps with mds
2951 */
2952 static void schedule_delayed(struct ceph_mds_client *mdsc)
2953 {
2954 int delay = 5;
2955 unsigned hz = round_jiffies_relative(HZ * delay);
2956 schedule_delayed_work(&mdsc->delayed_work, hz);
2957 }
2958
2959 static void delayed_work(struct work_struct *work)
2960 {
2961 int i;
2962 struct ceph_mds_client *mdsc =
2963 container_of(work, struct ceph_mds_client, delayed_work.work);
2964 int renew_interval;
2965 int renew_caps;
2966
2967 dout("mdsc delayed_work\n");
2968 ceph_check_delayed_caps(mdsc);
2969
2970 mutex_lock(&mdsc->mutex);
2971 renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2972 renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2973 mdsc->last_renew_caps);
2974 if (renew_caps)
2975 mdsc->last_renew_caps = jiffies;
2976
2977 for (i = 0; i < mdsc->max_sessions; i++) {
2978 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2979 if (s == NULL)
2980 continue;
2981 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2982 dout("resending session close request for mds%d\n",
2983 s->s_mds);
2984 request_close_session(mdsc, s);
2985 ceph_put_mds_session(s);
2986 continue;
2987 }
2988 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
2989 if (s->s_state == CEPH_MDS_SESSION_OPEN) {
2990 s->s_state = CEPH_MDS_SESSION_HUNG;
2991 pr_info("mds%d hung\n", s->s_mds);
2992 }
2993 }
2994 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
2995 /* this mds is failed or recovering, just wait */
2996 ceph_put_mds_session(s);
2997 continue;
2998 }
2999 mutex_unlock(&mdsc->mutex);
3000
3001 mutex_lock(&s->s_mutex);
3002 if (renew_caps)
3003 send_renew_caps(mdsc, s);
3004 else
3005 ceph_con_keepalive(&s->s_con);
3006 ceph_add_cap_releases(mdsc, s);
3007 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3008 s->s_state == CEPH_MDS_SESSION_HUNG)
3009 ceph_send_cap_releases(mdsc, s);
3010 mutex_unlock(&s->s_mutex);
3011 ceph_put_mds_session(s);
3012
3013 mutex_lock(&mdsc->mutex);
3014 }
3015 mutex_unlock(&mdsc->mutex);
3016
3017 schedule_delayed(mdsc);
3018 }
3019
3020 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3021
3022 {
3023 struct ceph_mds_client *mdsc;
3024
3025 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3026 if (!mdsc)
3027 return -ENOMEM;
3028 mdsc->fsc = fsc;
3029 fsc->mdsc = mdsc;
3030 mutex_init(&mdsc->mutex);
3031 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3032 if (mdsc->mdsmap == NULL)
3033 return -ENOMEM;
3034
3035 init_completion(&mdsc->safe_umount_waiters);
3036 init_waitqueue_head(&mdsc->session_close_wq);
3037 INIT_LIST_HEAD(&mdsc->waiting_for_map);
3038 mdsc->sessions = NULL;
3039 mdsc->max_sessions = 0;
3040 mdsc->stopping = 0;
3041 init_rwsem(&mdsc->snap_rwsem);
3042 mdsc->snap_realms = RB_ROOT;
3043 INIT_LIST_HEAD(&mdsc->snap_empty);
3044 spin_lock_init(&mdsc->snap_empty_lock);
3045 mdsc->last_tid = 0;
3046 mdsc->request_tree = RB_ROOT;
3047 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3048 mdsc->last_renew_caps = jiffies;
3049 INIT_LIST_HEAD(&mdsc->cap_delay_list);
3050 spin_lock_init(&mdsc->cap_delay_lock);
3051 INIT_LIST_HEAD(&mdsc->snap_flush_list);
3052 spin_lock_init(&mdsc->snap_flush_lock);
3053 mdsc->cap_flush_seq = 0;
3054 INIT_LIST_HEAD(&mdsc->cap_dirty);
3055 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3056 mdsc->num_cap_flushing = 0;
3057 spin_lock_init(&mdsc->cap_dirty_lock);
3058 init_waitqueue_head(&mdsc->cap_flushing_wq);
3059 spin_lock_init(&mdsc->dentry_lru_lock);
3060 INIT_LIST_HEAD(&mdsc->dentry_lru);
3061
3062 ceph_caps_init(mdsc);
3063 ceph_adjust_min_caps(mdsc, fsc->min_caps);
3064
3065 return 0;
3066 }
3067
3068 /*
3069 * Wait for safe replies on open mds requests. If we time out, drop
3070 * all requests from the tree to avoid dangling dentry refs.
3071 */
3072 static void wait_requests(struct ceph_mds_client *mdsc)
3073 {
3074 struct ceph_mds_request *req;
3075 struct ceph_fs_client *fsc = mdsc->fsc;
3076
3077 mutex_lock(&mdsc->mutex);
3078 if (__get_oldest_req(mdsc)) {
3079 mutex_unlock(&mdsc->mutex);
3080
3081 dout("wait_requests waiting for requests\n");
3082 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3083 fsc->client->options->mount_timeout * HZ);
3084
3085 /* tear down remaining requests */
3086 mutex_lock(&mdsc->mutex);
3087 while ((req = __get_oldest_req(mdsc))) {
3088 dout("wait_requests timed out on tid %llu\n",
3089 req->r_tid);
3090 __unregister_request(mdsc, req);
3091 }
3092 }
3093 mutex_unlock(&mdsc->mutex);
3094 dout("wait_requests done\n");
3095 }
3096
3097 /*
3098 * called before mount is ro, and before dentries are torn down.
3099 * (hmm, does this still race with new lookups?)
3100 */
3101 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3102 {
3103 dout("pre_umount\n");
3104 mdsc->stopping = 1;
3105
3106 drop_leases(mdsc);
3107 ceph_flush_dirty_caps(mdsc);
3108 wait_requests(mdsc);
3109
3110 /*
3111 * wait for reply handlers to drop their request refs and
3112 * their inode/dcache refs
3113 */
3114 ceph_msgr_flush();
3115 }
3116
3117 /*
3118 * wait for all write mds requests to flush.
3119 */
3120 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3121 {
3122 struct ceph_mds_request *req = NULL, *nextreq;
3123 struct rb_node *n;
3124
3125 mutex_lock(&mdsc->mutex);
3126 dout("wait_unsafe_requests want %lld\n", want_tid);
3127 restart:
3128 req = __get_oldest_req(mdsc);
3129 while (req && req->r_tid <= want_tid) {
3130 /* find next request */
3131 n = rb_next(&req->r_node);
3132 if (n)
3133 nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3134 else
3135 nextreq = NULL;
3136 if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3137 /* write op */
3138 ceph_mdsc_get_request(req);
3139 if (nextreq)
3140 ceph_mdsc_get_request(nextreq);
3141 mutex_unlock(&mdsc->mutex);
3142 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
3143 req->r_tid, want_tid);
3144 wait_for_completion(&req->r_safe_completion);
3145 mutex_lock(&mdsc->mutex);
3146 ceph_mdsc_put_request(req);
3147 if (!nextreq)
3148 break; /* next dne before, so we're done! */
3149 if (RB_EMPTY_NODE(&nextreq->r_node)) {
3150 /* next request was removed from tree */
3151 ceph_mdsc_put_request(nextreq);
3152 goto restart;
3153 }
3154 ceph_mdsc_put_request(nextreq); /* won't go away */
3155 }
3156 req = nextreq;
3157 }
3158 mutex_unlock(&mdsc->mutex);
3159 dout("wait_unsafe_requests done\n");
3160 }
3161
3162 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3163 {
3164 u64 want_tid, want_flush;
3165
3166 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3167 return;
3168
3169 dout("sync\n");
3170 mutex_lock(&mdsc->mutex);
3171 want_tid = mdsc->last_tid;
3172 want_flush = mdsc->cap_flush_seq;
3173 mutex_unlock(&mdsc->mutex);
3174 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3175
3176 ceph_flush_dirty_caps(mdsc);
3177
3178 wait_unsafe_requests(mdsc, want_tid);
3179 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3180 }
3181
3182 /*
3183 * true if all sessions are closed, or we force unmount
3184 */
3185 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3186 {
3187 int i, n = 0;
3188
3189 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3190 return true;
3191
3192 mutex_lock(&mdsc->mutex);
3193 for (i = 0; i < mdsc->max_sessions; i++)
3194 if (mdsc->sessions[i])
3195 n++;
3196 mutex_unlock(&mdsc->mutex);
3197 return n == 0;
3198 }
3199
3200 /*
3201 * called after sb is ro.
3202 */
3203 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3204 {
3205 struct ceph_mds_session *session;
3206 int i;
3207 struct ceph_fs_client *fsc = mdsc->fsc;
3208 unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3209
3210 dout("close_sessions\n");
3211
3212 /* close sessions */
3213 mutex_lock(&mdsc->mutex);
3214 for (i = 0; i < mdsc->max_sessions; i++) {
3215 session = __ceph_lookup_mds_session(mdsc, i);
3216 if (!session)
3217 continue;
3218 mutex_unlock(&mdsc->mutex);
3219 mutex_lock(&session->s_mutex);
3220 __close_session(mdsc, session);
3221 mutex_unlock(&session->s_mutex);
3222 ceph_put_mds_session(session);
3223 mutex_lock(&mdsc->mutex);
3224 }
3225 mutex_unlock(&mdsc->mutex);
3226
3227 dout("waiting for sessions to close\n");
3228 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3229 timeout);
3230
3231 /* tear down remaining sessions */
3232 mutex_lock(&mdsc->mutex);
3233 for (i = 0; i < mdsc->max_sessions; i++) {
3234 if (mdsc->sessions[i]) {
3235 session = get_session(mdsc->sessions[i]);
3236 __unregister_session(mdsc, session);
3237 mutex_unlock(&mdsc->mutex);
3238 mutex_lock(&session->s_mutex);
3239 remove_session_caps(session);
3240 mutex_unlock(&session->s_mutex);
3241 ceph_put_mds_session(session);
3242 mutex_lock(&mdsc->mutex);
3243 }
3244 }
3245 WARN_ON(!list_empty(&mdsc->cap_delay_list));
3246 mutex_unlock(&mdsc->mutex);
3247
3248 ceph_cleanup_empty_realms(mdsc);
3249
3250 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3251
3252 dout("stopped\n");
3253 }
3254
3255 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3256 {
3257 dout("stop\n");
3258 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3259 if (mdsc->mdsmap)
3260 ceph_mdsmap_destroy(mdsc->mdsmap);
3261 kfree(mdsc->sessions);
3262 ceph_caps_finalize(mdsc);
3263 }
3264
3265 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3266 {
3267 struct ceph_mds_client *mdsc = fsc->mdsc;
3268
3269 dout("mdsc_destroy %p\n", mdsc);
3270 ceph_mdsc_stop(mdsc);
3271
3272 /* flush out any connection work with references to us */
3273 ceph_msgr_flush();
3274
3275 fsc->mdsc = NULL;
3276 kfree(mdsc);
3277 dout("mdsc_destroy %p done\n", mdsc);
3278 }
3279
3280
3281 /*
3282 * handle mds map update.
3283 */
3284 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3285 {
3286 u32 epoch;
3287 u32 maplen;
3288 void *p = msg->front.iov_base;
3289 void *end = p + msg->front.iov_len;
3290 struct ceph_mdsmap *newmap, *oldmap;
3291 struct ceph_fsid fsid;
3292 int err = -EINVAL;
3293
3294 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3295 ceph_decode_copy(&p, &fsid, sizeof(fsid));
3296 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3297 return;
3298 epoch = ceph_decode_32(&p);
3299 maplen = ceph_decode_32(&p);
3300 dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3301
3302 /* do we need it? */
3303 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3304 mutex_lock(&mdsc->mutex);
3305 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3306 dout("handle_map epoch %u <= our %u\n",
3307 epoch, mdsc->mdsmap->m_epoch);
3308 mutex_unlock(&mdsc->mutex);
3309 return;
3310 }
3311
3312 newmap = ceph_mdsmap_decode(&p, end);
3313 if (IS_ERR(newmap)) {
3314 err = PTR_ERR(newmap);
3315 goto bad_unlock;
3316 }
3317
3318 /* swap into place */
3319 if (mdsc->mdsmap) {
3320 oldmap = mdsc->mdsmap;
3321 mdsc->mdsmap = newmap;
3322 check_new_map(mdsc, newmap, oldmap);
3323 ceph_mdsmap_destroy(oldmap);
3324 } else {
3325 mdsc->mdsmap = newmap; /* first mds map */
3326 }
3327 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3328
3329 __wake_requests(mdsc, &mdsc->waiting_for_map);
3330
3331 mutex_unlock(&mdsc->mutex);
3332 schedule_delayed(mdsc);
3333 return;
3334
3335 bad_unlock:
3336 mutex_unlock(&mdsc->mutex);
3337 bad:
3338 pr_err("error decoding mdsmap %d\n", err);
3339 return;
3340 }
3341
3342 static struct ceph_connection *con_get(struct ceph_connection *con)
3343 {
3344 struct ceph_mds_session *s = con->private;
3345
3346 if (get_session(s)) {
3347 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3348 return con;
3349 }
3350 dout("mdsc con_get %p FAIL\n", s);
3351 return NULL;
3352 }
3353
3354 static void con_put(struct ceph_connection *con)
3355 {
3356 struct ceph_mds_session *s = con->private;
3357
3358 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3359 ceph_put_mds_session(s);
3360 }
3361
3362 /*
3363 * if the client is unresponsive for long enough, the mds will kill
3364 * the session entirely.
3365 */
3366 static void peer_reset(struct ceph_connection *con)
3367 {
3368 struct ceph_mds_session *s = con->private;
3369 struct ceph_mds_client *mdsc = s->s_mdsc;
3370
3371 pr_warning("mds%d closed our session\n", s->s_mds);
3372 send_mds_reconnect(mdsc, s);
3373 }
3374
3375 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3376 {
3377 struct ceph_mds_session *s = con->private;
3378 struct ceph_mds_client *mdsc = s->s_mdsc;
3379 int type = le16_to_cpu(msg->hdr.type);
3380
3381 mutex_lock(&mdsc->mutex);
3382 if (__verify_registered_session(mdsc, s) < 0) {
3383 mutex_unlock(&mdsc->mutex);
3384 goto out;
3385 }
3386 mutex_unlock(&mdsc->mutex);
3387
3388 switch (type) {
3389 case CEPH_MSG_MDS_MAP:
3390 ceph_mdsc_handle_map(mdsc, msg);
3391 break;
3392 case CEPH_MSG_CLIENT_SESSION:
3393 handle_session(s, msg);
3394 break;
3395 case CEPH_MSG_CLIENT_REPLY:
3396 handle_reply(s, msg);
3397 break;
3398 case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3399 handle_forward(mdsc, s, msg);
3400 break;
3401 case CEPH_MSG_CLIENT_CAPS:
3402 ceph_handle_caps(s, msg);
3403 break;
3404 case CEPH_MSG_CLIENT_SNAP:
3405 ceph_handle_snap(mdsc, s, msg);
3406 break;
3407 case CEPH_MSG_CLIENT_LEASE:
3408 handle_lease(mdsc, s, msg);
3409 break;
3410
3411 default:
3412 pr_err("received unknown message type %d %s\n", type,
3413 ceph_msg_type_name(type));
3414 }
3415 out:
3416 ceph_msg_put(msg);
3417 }
3418
3419 /*
3420 * authentication
3421 */
3422
3423 /*
3424 * Note: returned pointer is the address of a structure that's
3425 * managed separately. Caller must *not* attempt to free it.
3426 */
3427 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3428 int *proto, int force_new)
3429 {
3430 struct ceph_mds_session *s = con->private;
3431 struct ceph_mds_client *mdsc = s->s_mdsc;
3432 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3433 struct ceph_auth_handshake *auth = &s->s_auth;
3434
3435 if (force_new && auth->authorizer) {
3436 if (ac->ops && ac->ops->destroy_authorizer)
3437 ac->ops->destroy_authorizer(ac, auth->authorizer);
3438 auth->authorizer = NULL;
3439 }
3440 if (!auth->authorizer && ac->ops && ac->ops->create_authorizer) {
3441 int ret = ac->ops->create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3442 auth);
3443 if (ret)
3444 return ERR_PTR(ret);
3445 }
3446 *proto = ac->protocol;
3447
3448 return auth;
3449 }
3450
3451
3452 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3453 {
3454 struct ceph_mds_session *s = con->private;
3455 struct ceph_mds_client *mdsc = s->s_mdsc;
3456 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3457
3458 return ac->ops->verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3459 }
3460
3461 static int invalidate_authorizer(struct ceph_connection *con)
3462 {
3463 struct ceph_mds_session *s = con->private;
3464 struct ceph_mds_client *mdsc = s->s_mdsc;
3465 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3466
3467 if (ac->ops->invalidate_authorizer)
3468 ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3469
3470 return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3471 }
3472
3473 static const struct ceph_connection_operations mds_con_ops = {
3474 .get = con_get,
3475 .put = con_put,
3476 .dispatch = dispatch,
3477 .get_authorizer = get_authorizer,
3478 .verify_authorizer_reply = verify_authorizer_reply,
3479 .invalidate_authorizer = invalidate_authorizer,
3480 .peer_reset = peer_reset,
3481 };
3482
3483 /* eof */