Btrfs: fix missing release of the space/qgroup reservation in start_transaction()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ceph / mds_client.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
9
10 #include "super.h"
11 #include "mds_client.h"
12
13 #include <linux/ceph/ceph_features.h>
14 #include <linux/ceph/messenger.h>
15 #include <linux/ceph/decode.h>
16 #include <linux/ceph/pagelist.h>
17 #include <linux/ceph/auth.h>
18 #include <linux/ceph/debugfs.h>
19
20 /*
21 * A cluster of MDS (metadata server) daemons is responsible for
22 * managing the file system namespace (the directory hierarchy and
23 * inodes) and for coordinating shared access to storage. Metadata is
24 * partitioning hierarchically across a number of servers, and that
25 * partition varies over time as the cluster adjusts the distribution
26 * in order to balance load.
27 *
28 * The MDS client is primarily responsible to managing synchronous
29 * metadata requests for operations like open, unlink, and so forth.
30 * If there is a MDS failure, we find out about it when we (possibly
31 * request and) receive a new MDS map, and can resubmit affected
32 * requests.
33 *
34 * For the most part, though, we take advantage of a lossless
35 * communications channel to the MDS, and do not need to worry about
36 * timing out or resubmitting requests.
37 *
38 * We maintain a stateful "session" with each MDS we interact with.
39 * Within each session, we sent periodic heartbeat messages to ensure
40 * any capabilities or leases we have been issues remain valid. If
41 * the session times out and goes stale, our leases and capabilities
42 * are no longer valid.
43 */
44
45 struct ceph_reconnect_state {
46 struct ceph_pagelist *pagelist;
47 bool flock;
48 };
49
50 static void __wake_requests(struct ceph_mds_client *mdsc,
51 struct list_head *head);
52
53 static const struct ceph_connection_operations mds_con_ops;
54
55
56 /*
57 * mds reply parsing
58 */
59
60 /*
61 * parse individual inode info
62 */
63 static int parse_reply_info_in(void **p, void *end,
64 struct ceph_mds_reply_info_in *info,
65 int features)
66 {
67 int err = -EIO;
68
69 info->in = *p;
70 *p += sizeof(struct ceph_mds_reply_inode) +
71 sizeof(*info->in->fragtree.splits) *
72 le32_to_cpu(info->in->fragtree.nsplits);
73
74 ceph_decode_32_safe(p, end, info->symlink_len, bad);
75 ceph_decode_need(p, end, info->symlink_len, bad);
76 info->symlink = *p;
77 *p += info->symlink_len;
78
79 if (features & CEPH_FEATURE_DIRLAYOUTHASH)
80 ceph_decode_copy_safe(p, end, &info->dir_layout,
81 sizeof(info->dir_layout), bad);
82 else
83 memset(&info->dir_layout, 0, sizeof(info->dir_layout));
84
85 ceph_decode_32_safe(p, end, info->xattr_len, bad);
86 ceph_decode_need(p, end, info->xattr_len, bad);
87 info->xattr_data = *p;
88 *p += info->xattr_len;
89 return 0;
90 bad:
91 return err;
92 }
93
94 /*
95 * parse a normal reply, which may contain a (dir+)dentry and/or a
96 * target inode.
97 */
98 static int parse_reply_info_trace(void **p, void *end,
99 struct ceph_mds_reply_info_parsed *info,
100 int features)
101 {
102 int err;
103
104 if (info->head->is_dentry) {
105 err = parse_reply_info_in(p, end, &info->diri, features);
106 if (err < 0)
107 goto out_bad;
108
109 if (unlikely(*p + sizeof(*info->dirfrag) > end))
110 goto bad;
111 info->dirfrag = *p;
112 *p += sizeof(*info->dirfrag) +
113 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
114 if (unlikely(*p > end))
115 goto bad;
116
117 ceph_decode_32_safe(p, end, info->dname_len, bad);
118 ceph_decode_need(p, end, info->dname_len, bad);
119 info->dname = *p;
120 *p += info->dname_len;
121 info->dlease = *p;
122 *p += sizeof(*info->dlease);
123 }
124
125 if (info->head->is_target) {
126 err = parse_reply_info_in(p, end, &info->targeti, features);
127 if (err < 0)
128 goto out_bad;
129 }
130
131 if (unlikely(*p != end))
132 goto bad;
133 return 0;
134
135 bad:
136 err = -EIO;
137 out_bad:
138 pr_err("problem parsing mds trace %d\n", err);
139 return err;
140 }
141
142 /*
143 * parse readdir results
144 */
145 static int parse_reply_info_dir(void **p, void *end,
146 struct ceph_mds_reply_info_parsed *info,
147 int features)
148 {
149 u32 num, i = 0;
150 int err;
151
152 info->dir_dir = *p;
153 if (*p + sizeof(*info->dir_dir) > end)
154 goto bad;
155 *p += sizeof(*info->dir_dir) +
156 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
157 if (*p > end)
158 goto bad;
159
160 ceph_decode_need(p, end, sizeof(num) + 2, bad);
161 num = ceph_decode_32(p);
162 info->dir_end = ceph_decode_8(p);
163 info->dir_complete = ceph_decode_8(p);
164 if (num == 0)
165 goto done;
166
167 /* alloc large array */
168 info->dir_nr = num;
169 info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
170 sizeof(*info->dir_dname) +
171 sizeof(*info->dir_dname_len) +
172 sizeof(*info->dir_dlease),
173 GFP_NOFS);
174 if (info->dir_in == NULL) {
175 err = -ENOMEM;
176 goto out_bad;
177 }
178 info->dir_dname = (void *)(info->dir_in + num);
179 info->dir_dname_len = (void *)(info->dir_dname + num);
180 info->dir_dlease = (void *)(info->dir_dname_len + num);
181
182 while (num) {
183 /* dentry */
184 ceph_decode_need(p, end, sizeof(u32)*2, bad);
185 info->dir_dname_len[i] = ceph_decode_32(p);
186 ceph_decode_need(p, end, info->dir_dname_len[i], bad);
187 info->dir_dname[i] = *p;
188 *p += info->dir_dname_len[i];
189 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
190 info->dir_dname[i]);
191 info->dir_dlease[i] = *p;
192 *p += sizeof(struct ceph_mds_reply_lease);
193
194 /* inode */
195 err = parse_reply_info_in(p, end, &info->dir_in[i], features);
196 if (err < 0)
197 goto out_bad;
198 i++;
199 num--;
200 }
201
202 done:
203 if (*p != end)
204 goto bad;
205 return 0;
206
207 bad:
208 err = -EIO;
209 out_bad:
210 pr_err("problem parsing dir contents %d\n", err);
211 return err;
212 }
213
214 /*
215 * parse fcntl F_GETLK results
216 */
217 static int parse_reply_info_filelock(void **p, void *end,
218 struct ceph_mds_reply_info_parsed *info,
219 int features)
220 {
221 if (*p + sizeof(*info->filelock_reply) > end)
222 goto bad;
223
224 info->filelock_reply = *p;
225 *p += sizeof(*info->filelock_reply);
226
227 if (unlikely(*p != end))
228 goto bad;
229 return 0;
230
231 bad:
232 return -EIO;
233 }
234
235 /*
236 * parse extra results
237 */
238 static int parse_reply_info_extra(void **p, void *end,
239 struct ceph_mds_reply_info_parsed *info,
240 int features)
241 {
242 if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
243 return parse_reply_info_filelock(p, end, info, features);
244 else
245 return parse_reply_info_dir(p, end, info, features);
246 }
247
248 /*
249 * parse entire mds reply
250 */
251 static int parse_reply_info(struct ceph_msg *msg,
252 struct ceph_mds_reply_info_parsed *info,
253 int features)
254 {
255 void *p, *end;
256 u32 len;
257 int err;
258
259 info->head = msg->front.iov_base;
260 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
261 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
262
263 /* trace */
264 ceph_decode_32_safe(&p, end, len, bad);
265 if (len > 0) {
266 ceph_decode_need(&p, end, len, bad);
267 err = parse_reply_info_trace(&p, p+len, info, features);
268 if (err < 0)
269 goto out_bad;
270 }
271
272 /* extra */
273 ceph_decode_32_safe(&p, end, len, bad);
274 if (len > 0) {
275 ceph_decode_need(&p, end, len, bad);
276 err = parse_reply_info_extra(&p, p+len, info, features);
277 if (err < 0)
278 goto out_bad;
279 }
280
281 /* snap blob */
282 ceph_decode_32_safe(&p, end, len, bad);
283 info->snapblob_len = len;
284 info->snapblob = p;
285 p += len;
286
287 if (p != end)
288 goto bad;
289 return 0;
290
291 bad:
292 err = -EIO;
293 out_bad:
294 pr_err("mds parse_reply err %d\n", err);
295 return err;
296 }
297
298 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
299 {
300 kfree(info->dir_in);
301 }
302
303
304 /*
305 * sessions
306 */
307 static const char *session_state_name(int s)
308 {
309 switch (s) {
310 case CEPH_MDS_SESSION_NEW: return "new";
311 case CEPH_MDS_SESSION_OPENING: return "opening";
312 case CEPH_MDS_SESSION_OPEN: return "open";
313 case CEPH_MDS_SESSION_HUNG: return "hung";
314 case CEPH_MDS_SESSION_CLOSING: return "closing";
315 case CEPH_MDS_SESSION_RESTARTING: return "restarting";
316 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
317 default: return "???";
318 }
319 }
320
321 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
322 {
323 if (atomic_inc_not_zero(&s->s_ref)) {
324 dout("mdsc get_session %p %d -> %d\n", s,
325 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
326 return s;
327 } else {
328 dout("mdsc get_session %p 0 -- FAIL", s);
329 return NULL;
330 }
331 }
332
333 void ceph_put_mds_session(struct ceph_mds_session *s)
334 {
335 dout("mdsc put_session %p %d -> %d\n", s,
336 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
337 if (atomic_dec_and_test(&s->s_ref)) {
338 if (s->s_auth.authorizer)
339 s->s_mdsc->fsc->client->monc.auth->ops->destroy_authorizer(
340 s->s_mdsc->fsc->client->monc.auth,
341 s->s_auth.authorizer);
342 kfree(s);
343 }
344 }
345
346 /*
347 * called under mdsc->mutex
348 */
349 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
350 int mds)
351 {
352 struct ceph_mds_session *session;
353
354 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
355 return NULL;
356 session = mdsc->sessions[mds];
357 dout("lookup_mds_session %p %d\n", session,
358 atomic_read(&session->s_ref));
359 get_session(session);
360 return session;
361 }
362
363 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
364 {
365 if (mds >= mdsc->max_sessions)
366 return false;
367 return mdsc->sessions[mds];
368 }
369
370 static int __verify_registered_session(struct ceph_mds_client *mdsc,
371 struct ceph_mds_session *s)
372 {
373 if (s->s_mds >= mdsc->max_sessions ||
374 mdsc->sessions[s->s_mds] != s)
375 return -ENOENT;
376 return 0;
377 }
378
379 /*
380 * create+register a new session for given mds.
381 * called under mdsc->mutex.
382 */
383 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
384 int mds)
385 {
386 struct ceph_mds_session *s;
387
388 s = kzalloc(sizeof(*s), GFP_NOFS);
389 if (!s)
390 return ERR_PTR(-ENOMEM);
391 s->s_mdsc = mdsc;
392 s->s_mds = mds;
393 s->s_state = CEPH_MDS_SESSION_NEW;
394 s->s_ttl = 0;
395 s->s_seq = 0;
396 mutex_init(&s->s_mutex);
397
398 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
399
400 spin_lock_init(&s->s_gen_ttl_lock);
401 s->s_cap_gen = 0;
402 s->s_cap_ttl = jiffies - 1;
403
404 spin_lock_init(&s->s_cap_lock);
405 s->s_renew_requested = 0;
406 s->s_renew_seq = 0;
407 INIT_LIST_HEAD(&s->s_caps);
408 s->s_nr_caps = 0;
409 s->s_trim_caps = 0;
410 atomic_set(&s->s_ref, 1);
411 INIT_LIST_HEAD(&s->s_waiting);
412 INIT_LIST_HEAD(&s->s_unsafe);
413 s->s_num_cap_releases = 0;
414 s->s_cap_iterator = NULL;
415 INIT_LIST_HEAD(&s->s_cap_releases);
416 INIT_LIST_HEAD(&s->s_cap_releases_done);
417 INIT_LIST_HEAD(&s->s_cap_flushing);
418 INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
419
420 dout("register_session mds%d\n", mds);
421 if (mds >= mdsc->max_sessions) {
422 int newmax = 1 << get_count_order(mds+1);
423 struct ceph_mds_session **sa;
424
425 dout("register_session realloc to %d\n", newmax);
426 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
427 if (sa == NULL)
428 goto fail_realloc;
429 if (mdsc->sessions) {
430 memcpy(sa, mdsc->sessions,
431 mdsc->max_sessions * sizeof(void *));
432 kfree(mdsc->sessions);
433 }
434 mdsc->sessions = sa;
435 mdsc->max_sessions = newmax;
436 }
437 mdsc->sessions[mds] = s;
438 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */
439
440 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
441 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
442
443 return s;
444
445 fail_realloc:
446 kfree(s);
447 return ERR_PTR(-ENOMEM);
448 }
449
450 /*
451 * called under mdsc->mutex
452 */
453 static void __unregister_session(struct ceph_mds_client *mdsc,
454 struct ceph_mds_session *s)
455 {
456 dout("__unregister_session mds%d %p\n", s->s_mds, s);
457 BUG_ON(mdsc->sessions[s->s_mds] != s);
458 mdsc->sessions[s->s_mds] = NULL;
459 ceph_con_close(&s->s_con);
460 ceph_put_mds_session(s);
461 }
462
463 /*
464 * drop session refs in request.
465 *
466 * should be last request ref, or hold mdsc->mutex
467 */
468 static void put_request_session(struct ceph_mds_request *req)
469 {
470 if (req->r_session) {
471 ceph_put_mds_session(req->r_session);
472 req->r_session = NULL;
473 }
474 }
475
476 void ceph_mdsc_release_request(struct kref *kref)
477 {
478 struct ceph_mds_request *req = container_of(kref,
479 struct ceph_mds_request,
480 r_kref);
481 if (req->r_request)
482 ceph_msg_put(req->r_request);
483 if (req->r_reply) {
484 ceph_msg_put(req->r_reply);
485 destroy_reply_info(&req->r_reply_info);
486 }
487 if (req->r_inode) {
488 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
489 iput(req->r_inode);
490 }
491 if (req->r_locked_dir)
492 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
493 if (req->r_target_inode)
494 iput(req->r_target_inode);
495 if (req->r_dentry)
496 dput(req->r_dentry);
497 if (req->r_old_dentry) {
498 /*
499 * track (and drop pins for) r_old_dentry_dir
500 * separately, since r_old_dentry's d_parent may have
501 * changed between the dir mutex being dropped and
502 * this request being freed.
503 */
504 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
505 CEPH_CAP_PIN);
506 dput(req->r_old_dentry);
507 iput(req->r_old_dentry_dir);
508 }
509 kfree(req->r_path1);
510 kfree(req->r_path2);
511 put_request_session(req);
512 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
513 kfree(req);
514 }
515
516 /*
517 * lookup session, bump ref if found.
518 *
519 * called under mdsc->mutex.
520 */
521 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
522 u64 tid)
523 {
524 struct ceph_mds_request *req;
525 struct rb_node *n = mdsc->request_tree.rb_node;
526
527 while (n) {
528 req = rb_entry(n, struct ceph_mds_request, r_node);
529 if (tid < req->r_tid)
530 n = n->rb_left;
531 else if (tid > req->r_tid)
532 n = n->rb_right;
533 else {
534 ceph_mdsc_get_request(req);
535 return req;
536 }
537 }
538 return NULL;
539 }
540
541 static void __insert_request(struct ceph_mds_client *mdsc,
542 struct ceph_mds_request *new)
543 {
544 struct rb_node **p = &mdsc->request_tree.rb_node;
545 struct rb_node *parent = NULL;
546 struct ceph_mds_request *req = NULL;
547
548 while (*p) {
549 parent = *p;
550 req = rb_entry(parent, struct ceph_mds_request, r_node);
551 if (new->r_tid < req->r_tid)
552 p = &(*p)->rb_left;
553 else if (new->r_tid > req->r_tid)
554 p = &(*p)->rb_right;
555 else
556 BUG();
557 }
558
559 rb_link_node(&new->r_node, parent, p);
560 rb_insert_color(&new->r_node, &mdsc->request_tree);
561 }
562
563 /*
564 * Register an in-flight request, and assign a tid. Link to directory
565 * are modifying (if any).
566 *
567 * Called under mdsc->mutex.
568 */
569 static void __register_request(struct ceph_mds_client *mdsc,
570 struct ceph_mds_request *req,
571 struct inode *dir)
572 {
573 req->r_tid = ++mdsc->last_tid;
574 if (req->r_num_caps)
575 ceph_reserve_caps(mdsc, &req->r_caps_reservation,
576 req->r_num_caps);
577 dout("__register_request %p tid %lld\n", req, req->r_tid);
578 ceph_mdsc_get_request(req);
579 __insert_request(mdsc, req);
580
581 req->r_uid = current_fsuid();
582 req->r_gid = current_fsgid();
583
584 if (dir) {
585 struct ceph_inode_info *ci = ceph_inode(dir);
586
587 ihold(dir);
588 spin_lock(&ci->i_unsafe_lock);
589 req->r_unsafe_dir = dir;
590 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
591 spin_unlock(&ci->i_unsafe_lock);
592 }
593 }
594
595 static void __unregister_request(struct ceph_mds_client *mdsc,
596 struct ceph_mds_request *req)
597 {
598 dout("__unregister_request %p tid %lld\n", req, req->r_tid);
599 rb_erase(&req->r_node, &mdsc->request_tree);
600 RB_CLEAR_NODE(&req->r_node);
601
602 if (req->r_unsafe_dir) {
603 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
604
605 spin_lock(&ci->i_unsafe_lock);
606 list_del_init(&req->r_unsafe_dir_item);
607 spin_unlock(&ci->i_unsafe_lock);
608
609 iput(req->r_unsafe_dir);
610 req->r_unsafe_dir = NULL;
611 }
612
613 ceph_mdsc_put_request(req);
614 }
615
616 /*
617 * Choose mds to send request to next. If there is a hint set in the
618 * request (e.g., due to a prior forward hint from the mds), use that.
619 * Otherwise, consult frag tree and/or caps to identify the
620 * appropriate mds. If all else fails, choose randomly.
621 *
622 * Called under mdsc->mutex.
623 */
624 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
625 {
626 /*
627 * we don't need to worry about protecting the d_parent access
628 * here because we never renaming inside the snapped namespace
629 * except to resplice to another snapdir, and either the old or new
630 * result is a valid result.
631 */
632 while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
633 dentry = dentry->d_parent;
634 return dentry;
635 }
636
637 static int __choose_mds(struct ceph_mds_client *mdsc,
638 struct ceph_mds_request *req)
639 {
640 struct inode *inode;
641 struct ceph_inode_info *ci;
642 struct ceph_cap *cap;
643 int mode = req->r_direct_mode;
644 int mds = -1;
645 u32 hash = req->r_direct_hash;
646 bool is_hash = req->r_direct_is_hash;
647
648 /*
649 * is there a specific mds we should try? ignore hint if we have
650 * no session and the mds is not up (active or recovering).
651 */
652 if (req->r_resend_mds >= 0 &&
653 (__have_session(mdsc, req->r_resend_mds) ||
654 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
655 dout("choose_mds using resend_mds mds%d\n",
656 req->r_resend_mds);
657 return req->r_resend_mds;
658 }
659
660 if (mode == USE_RANDOM_MDS)
661 goto random;
662
663 inode = NULL;
664 if (req->r_inode) {
665 inode = req->r_inode;
666 } else if (req->r_dentry) {
667 /* ignore race with rename; old or new d_parent is okay */
668 struct dentry *parent = req->r_dentry->d_parent;
669 struct inode *dir = parent->d_inode;
670
671 if (dir->i_sb != mdsc->fsc->sb) {
672 /* not this fs! */
673 inode = req->r_dentry->d_inode;
674 } else if (ceph_snap(dir) != CEPH_NOSNAP) {
675 /* direct snapped/virtual snapdir requests
676 * based on parent dir inode */
677 struct dentry *dn = get_nonsnap_parent(parent);
678 inode = dn->d_inode;
679 dout("__choose_mds using nonsnap parent %p\n", inode);
680 } else if (req->r_dentry->d_inode) {
681 /* dentry target */
682 inode = req->r_dentry->d_inode;
683 } else {
684 /* dir + name */
685 inode = dir;
686 hash = ceph_dentry_hash(dir, req->r_dentry);
687 is_hash = true;
688 }
689 }
690
691 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
692 (int)hash, mode);
693 if (!inode)
694 goto random;
695 ci = ceph_inode(inode);
696
697 if (is_hash && S_ISDIR(inode->i_mode)) {
698 struct ceph_inode_frag frag;
699 int found;
700
701 ceph_choose_frag(ci, hash, &frag, &found);
702 if (found) {
703 if (mode == USE_ANY_MDS && frag.ndist > 0) {
704 u8 r;
705
706 /* choose a random replica */
707 get_random_bytes(&r, 1);
708 r %= frag.ndist;
709 mds = frag.dist[r];
710 dout("choose_mds %p %llx.%llx "
711 "frag %u mds%d (%d/%d)\n",
712 inode, ceph_vinop(inode),
713 frag.frag, mds,
714 (int)r, frag.ndist);
715 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
716 CEPH_MDS_STATE_ACTIVE)
717 return mds;
718 }
719
720 /* since this file/dir wasn't known to be
721 * replicated, then we want to look for the
722 * authoritative mds. */
723 mode = USE_AUTH_MDS;
724 if (frag.mds >= 0) {
725 /* choose auth mds */
726 mds = frag.mds;
727 dout("choose_mds %p %llx.%llx "
728 "frag %u mds%d (auth)\n",
729 inode, ceph_vinop(inode), frag.frag, mds);
730 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
731 CEPH_MDS_STATE_ACTIVE)
732 return mds;
733 }
734 }
735 }
736
737 spin_lock(&ci->i_ceph_lock);
738 cap = NULL;
739 if (mode == USE_AUTH_MDS)
740 cap = ci->i_auth_cap;
741 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
742 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
743 if (!cap) {
744 spin_unlock(&ci->i_ceph_lock);
745 goto random;
746 }
747 mds = cap->session->s_mds;
748 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
749 inode, ceph_vinop(inode), mds,
750 cap == ci->i_auth_cap ? "auth " : "", cap);
751 spin_unlock(&ci->i_ceph_lock);
752 return mds;
753
754 random:
755 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
756 dout("choose_mds chose random mds%d\n", mds);
757 return mds;
758 }
759
760
761 /*
762 * session messages
763 */
764 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
765 {
766 struct ceph_msg *msg;
767 struct ceph_mds_session_head *h;
768
769 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
770 false);
771 if (!msg) {
772 pr_err("create_session_msg ENOMEM creating msg\n");
773 return NULL;
774 }
775 h = msg->front.iov_base;
776 h->op = cpu_to_le32(op);
777 h->seq = cpu_to_le64(seq);
778 return msg;
779 }
780
781 /*
782 * send session open request.
783 *
784 * called under mdsc->mutex
785 */
786 static int __open_session(struct ceph_mds_client *mdsc,
787 struct ceph_mds_session *session)
788 {
789 struct ceph_msg *msg;
790 int mstate;
791 int mds = session->s_mds;
792
793 /* wait for mds to go active? */
794 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
795 dout("open_session to mds%d (%s)\n", mds,
796 ceph_mds_state_name(mstate));
797 session->s_state = CEPH_MDS_SESSION_OPENING;
798 session->s_renew_requested = jiffies;
799
800 /* send connect message */
801 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
802 if (!msg)
803 return -ENOMEM;
804 ceph_con_send(&session->s_con, msg);
805 return 0;
806 }
807
808 /*
809 * open sessions for any export targets for the given mds
810 *
811 * called under mdsc->mutex
812 */
813 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
814 struct ceph_mds_session *session)
815 {
816 struct ceph_mds_info *mi;
817 struct ceph_mds_session *ts;
818 int i, mds = session->s_mds;
819 int target;
820
821 if (mds >= mdsc->mdsmap->m_max_mds)
822 return;
823 mi = &mdsc->mdsmap->m_info[mds];
824 dout("open_export_target_sessions for mds%d (%d targets)\n",
825 session->s_mds, mi->num_export_targets);
826
827 for (i = 0; i < mi->num_export_targets; i++) {
828 target = mi->export_targets[i];
829 ts = __ceph_lookup_mds_session(mdsc, target);
830 if (!ts) {
831 ts = register_session(mdsc, target);
832 if (IS_ERR(ts))
833 return;
834 }
835 if (session->s_state == CEPH_MDS_SESSION_NEW ||
836 session->s_state == CEPH_MDS_SESSION_CLOSING)
837 __open_session(mdsc, session);
838 else
839 dout(" mds%d target mds%d %p is %s\n", session->s_mds,
840 i, ts, session_state_name(ts->s_state));
841 ceph_put_mds_session(ts);
842 }
843 }
844
845 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
846 struct ceph_mds_session *session)
847 {
848 mutex_lock(&mdsc->mutex);
849 __open_export_target_sessions(mdsc, session);
850 mutex_unlock(&mdsc->mutex);
851 }
852
853 /*
854 * session caps
855 */
856
857 /*
858 * Free preallocated cap messages assigned to this session
859 */
860 static void cleanup_cap_releases(struct ceph_mds_session *session)
861 {
862 struct ceph_msg *msg;
863
864 spin_lock(&session->s_cap_lock);
865 while (!list_empty(&session->s_cap_releases)) {
866 msg = list_first_entry(&session->s_cap_releases,
867 struct ceph_msg, list_head);
868 list_del_init(&msg->list_head);
869 ceph_msg_put(msg);
870 }
871 while (!list_empty(&session->s_cap_releases_done)) {
872 msg = list_first_entry(&session->s_cap_releases_done,
873 struct ceph_msg, list_head);
874 list_del_init(&msg->list_head);
875 ceph_msg_put(msg);
876 }
877 spin_unlock(&session->s_cap_lock);
878 }
879
880 /*
881 * Helper to safely iterate over all caps associated with a session, with
882 * special care taken to handle a racing __ceph_remove_cap().
883 *
884 * Caller must hold session s_mutex.
885 */
886 static int iterate_session_caps(struct ceph_mds_session *session,
887 int (*cb)(struct inode *, struct ceph_cap *,
888 void *), void *arg)
889 {
890 struct list_head *p;
891 struct ceph_cap *cap;
892 struct inode *inode, *last_inode = NULL;
893 struct ceph_cap *old_cap = NULL;
894 int ret;
895
896 dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
897 spin_lock(&session->s_cap_lock);
898 p = session->s_caps.next;
899 while (p != &session->s_caps) {
900 cap = list_entry(p, struct ceph_cap, session_caps);
901 inode = igrab(&cap->ci->vfs_inode);
902 if (!inode) {
903 p = p->next;
904 continue;
905 }
906 session->s_cap_iterator = cap;
907 spin_unlock(&session->s_cap_lock);
908
909 if (last_inode) {
910 iput(last_inode);
911 last_inode = NULL;
912 }
913 if (old_cap) {
914 ceph_put_cap(session->s_mdsc, old_cap);
915 old_cap = NULL;
916 }
917
918 ret = cb(inode, cap, arg);
919 last_inode = inode;
920
921 spin_lock(&session->s_cap_lock);
922 p = p->next;
923 if (cap->ci == NULL) {
924 dout("iterate_session_caps finishing cap %p removal\n",
925 cap);
926 BUG_ON(cap->session != session);
927 list_del_init(&cap->session_caps);
928 session->s_nr_caps--;
929 cap->session = NULL;
930 old_cap = cap; /* put_cap it w/o locks held */
931 }
932 if (ret < 0)
933 goto out;
934 }
935 ret = 0;
936 out:
937 session->s_cap_iterator = NULL;
938 spin_unlock(&session->s_cap_lock);
939
940 if (last_inode)
941 iput(last_inode);
942 if (old_cap)
943 ceph_put_cap(session->s_mdsc, old_cap);
944
945 return ret;
946 }
947
948 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
949 void *arg)
950 {
951 struct ceph_inode_info *ci = ceph_inode(inode);
952 int drop = 0;
953
954 dout("removing cap %p, ci is %p, inode is %p\n",
955 cap, ci, &ci->vfs_inode);
956 spin_lock(&ci->i_ceph_lock);
957 __ceph_remove_cap(cap);
958 if (!__ceph_is_any_real_caps(ci)) {
959 struct ceph_mds_client *mdsc =
960 ceph_sb_to_client(inode->i_sb)->mdsc;
961
962 spin_lock(&mdsc->cap_dirty_lock);
963 if (!list_empty(&ci->i_dirty_item)) {
964 pr_info(" dropping dirty %s state for %p %lld\n",
965 ceph_cap_string(ci->i_dirty_caps),
966 inode, ceph_ino(inode));
967 ci->i_dirty_caps = 0;
968 list_del_init(&ci->i_dirty_item);
969 drop = 1;
970 }
971 if (!list_empty(&ci->i_flushing_item)) {
972 pr_info(" dropping dirty+flushing %s state for %p %lld\n",
973 ceph_cap_string(ci->i_flushing_caps),
974 inode, ceph_ino(inode));
975 ci->i_flushing_caps = 0;
976 list_del_init(&ci->i_flushing_item);
977 mdsc->num_cap_flushing--;
978 drop = 1;
979 }
980 if (drop && ci->i_wrbuffer_ref) {
981 pr_info(" dropping dirty data for %p %lld\n",
982 inode, ceph_ino(inode));
983 ci->i_wrbuffer_ref = 0;
984 ci->i_wrbuffer_ref_head = 0;
985 drop++;
986 }
987 spin_unlock(&mdsc->cap_dirty_lock);
988 }
989 spin_unlock(&ci->i_ceph_lock);
990 while (drop--)
991 iput(inode);
992 return 0;
993 }
994
995 /*
996 * caller must hold session s_mutex
997 */
998 static void remove_session_caps(struct ceph_mds_session *session)
999 {
1000 dout("remove_session_caps on %p\n", session);
1001 iterate_session_caps(session, remove_session_caps_cb, NULL);
1002 BUG_ON(session->s_nr_caps > 0);
1003 BUG_ON(!list_empty(&session->s_cap_flushing));
1004 cleanup_cap_releases(session);
1005 }
1006
1007 /*
1008 * wake up any threads waiting on this session's caps. if the cap is
1009 * old (didn't get renewed on the client reconnect), remove it now.
1010 *
1011 * caller must hold s_mutex.
1012 */
1013 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1014 void *arg)
1015 {
1016 struct ceph_inode_info *ci = ceph_inode(inode);
1017
1018 wake_up_all(&ci->i_cap_wq);
1019 if (arg) {
1020 spin_lock(&ci->i_ceph_lock);
1021 ci->i_wanted_max_size = 0;
1022 ci->i_requested_max_size = 0;
1023 spin_unlock(&ci->i_ceph_lock);
1024 }
1025 return 0;
1026 }
1027
1028 static void wake_up_session_caps(struct ceph_mds_session *session,
1029 int reconnect)
1030 {
1031 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1032 iterate_session_caps(session, wake_up_session_cb,
1033 (void *)(unsigned long)reconnect);
1034 }
1035
1036 /*
1037 * Send periodic message to MDS renewing all currently held caps. The
1038 * ack will reset the expiration for all caps from this session.
1039 *
1040 * caller holds s_mutex
1041 */
1042 static int send_renew_caps(struct ceph_mds_client *mdsc,
1043 struct ceph_mds_session *session)
1044 {
1045 struct ceph_msg *msg;
1046 int state;
1047
1048 if (time_after_eq(jiffies, session->s_cap_ttl) &&
1049 time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1050 pr_info("mds%d caps stale\n", session->s_mds);
1051 session->s_renew_requested = jiffies;
1052
1053 /* do not try to renew caps until a recovering mds has reconnected
1054 * with its clients. */
1055 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1056 if (state < CEPH_MDS_STATE_RECONNECT) {
1057 dout("send_renew_caps ignoring mds%d (%s)\n",
1058 session->s_mds, ceph_mds_state_name(state));
1059 return 0;
1060 }
1061
1062 dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1063 ceph_mds_state_name(state));
1064 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1065 ++session->s_renew_seq);
1066 if (!msg)
1067 return -ENOMEM;
1068 ceph_con_send(&session->s_con, msg);
1069 return 0;
1070 }
1071
1072 /*
1073 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1074 *
1075 * Called under session->s_mutex
1076 */
1077 static void renewed_caps(struct ceph_mds_client *mdsc,
1078 struct ceph_mds_session *session, int is_renew)
1079 {
1080 int was_stale;
1081 int wake = 0;
1082
1083 spin_lock(&session->s_cap_lock);
1084 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1085
1086 session->s_cap_ttl = session->s_renew_requested +
1087 mdsc->mdsmap->m_session_timeout*HZ;
1088
1089 if (was_stale) {
1090 if (time_before(jiffies, session->s_cap_ttl)) {
1091 pr_info("mds%d caps renewed\n", session->s_mds);
1092 wake = 1;
1093 } else {
1094 pr_info("mds%d caps still stale\n", session->s_mds);
1095 }
1096 }
1097 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1098 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1099 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1100 spin_unlock(&session->s_cap_lock);
1101
1102 if (wake)
1103 wake_up_session_caps(session, 0);
1104 }
1105
1106 /*
1107 * send a session close request
1108 */
1109 static int request_close_session(struct ceph_mds_client *mdsc,
1110 struct ceph_mds_session *session)
1111 {
1112 struct ceph_msg *msg;
1113
1114 dout("request_close_session mds%d state %s seq %lld\n",
1115 session->s_mds, session_state_name(session->s_state),
1116 session->s_seq);
1117 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1118 if (!msg)
1119 return -ENOMEM;
1120 ceph_con_send(&session->s_con, msg);
1121 return 0;
1122 }
1123
1124 /*
1125 * Called with s_mutex held.
1126 */
1127 static int __close_session(struct ceph_mds_client *mdsc,
1128 struct ceph_mds_session *session)
1129 {
1130 if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1131 return 0;
1132 session->s_state = CEPH_MDS_SESSION_CLOSING;
1133 return request_close_session(mdsc, session);
1134 }
1135
1136 /*
1137 * Trim old(er) caps.
1138 *
1139 * Because we can't cache an inode without one or more caps, we do
1140 * this indirectly: if a cap is unused, we prune its aliases, at which
1141 * point the inode will hopefully get dropped to.
1142 *
1143 * Yes, this is a bit sloppy. Our only real goal here is to respond to
1144 * memory pressure from the MDS, though, so it needn't be perfect.
1145 */
1146 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1147 {
1148 struct ceph_mds_session *session = arg;
1149 struct ceph_inode_info *ci = ceph_inode(inode);
1150 int used, oissued, mine;
1151
1152 if (session->s_trim_caps <= 0)
1153 return -1;
1154
1155 spin_lock(&ci->i_ceph_lock);
1156 mine = cap->issued | cap->implemented;
1157 used = __ceph_caps_used(ci);
1158 oissued = __ceph_caps_issued_other(ci, cap);
1159
1160 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1161 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1162 ceph_cap_string(used));
1163 if (ci->i_dirty_caps)
1164 goto out; /* dirty caps */
1165 if ((used & ~oissued) & mine)
1166 goto out; /* we need these caps */
1167
1168 session->s_trim_caps--;
1169 if (oissued) {
1170 /* we aren't the only cap.. just remove us */
1171 __ceph_remove_cap(cap);
1172 } else {
1173 /* try to drop referring dentries */
1174 spin_unlock(&ci->i_ceph_lock);
1175 d_prune_aliases(inode);
1176 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1177 inode, cap, atomic_read(&inode->i_count));
1178 return 0;
1179 }
1180
1181 out:
1182 spin_unlock(&ci->i_ceph_lock);
1183 return 0;
1184 }
1185
1186 /*
1187 * Trim session cap count down to some max number.
1188 */
1189 static int trim_caps(struct ceph_mds_client *mdsc,
1190 struct ceph_mds_session *session,
1191 int max_caps)
1192 {
1193 int trim_caps = session->s_nr_caps - max_caps;
1194
1195 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1196 session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1197 if (trim_caps > 0) {
1198 session->s_trim_caps = trim_caps;
1199 iterate_session_caps(session, trim_caps_cb, session);
1200 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1201 session->s_mds, session->s_nr_caps, max_caps,
1202 trim_caps - session->s_trim_caps);
1203 session->s_trim_caps = 0;
1204 }
1205 return 0;
1206 }
1207
1208 /*
1209 * Allocate cap_release messages. If there is a partially full message
1210 * in the queue, try to allocate enough to cover it's remainder, so that
1211 * we can send it immediately.
1212 *
1213 * Called under s_mutex.
1214 */
1215 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1216 struct ceph_mds_session *session)
1217 {
1218 struct ceph_msg *msg, *partial = NULL;
1219 struct ceph_mds_cap_release *head;
1220 int err = -ENOMEM;
1221 int extra = mdsc->fsc->mount_options->cap_release_safety;
1222 int num;
1223
1224 dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1225 extra);
1226
1227 spin_lock(&session->s_cap_lock);
1228
1229 if (!list_empty(&session->s_cap_releases)) {
1230 msg = list_first_entry(&session->s_cap_releases,
1231 struct ceph_msg,
1232 list_head);
1233 head = msg->front.iov_base;
1234 num = le32_to_cpu(head->num);
1235 if (num) {
1236 dout(" partial %p with (%d/%d)\n", msg, num,
1237 (int)CEPH_CAPS_PER_RELEASE);
1238 extra += CEPH_CAPS_PER_RELEASE - num;
1239 partial = msg;
1240 }
1241 }
1242 while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1243 spin_unlock(&session->s_cap_lock);
1244 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1245 GFP_NOFS, false);
1246 if (!msg)
1247 goto out_unlocked;
1248 dout("add_cap_releases %p msg %p now %d\n", session, msg,
1249 (int)msg->front.iov_len);
1250 head = msg->front.iov_base;
1251 head->num = cpu_to_le32(0);
1252 msg->front.iov_len = sizeof(*head);
1253 spin_lock(&session->s_cap_lock);
1254 list_add(&msg->list_head, &session->s_cap_releases);
1255 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1256 }
1257
1258 if (partial) {
1259 head = partial->front.iov_base;
1260 num = le32_to_cpu(head->num);
1261 dout(" queueing partial %p with %d/%d\n", partial, num,
1262 (int)CEPH_CAPS_PER_RELEASE);
1263 list_move_tail(&partial->list_head,
1264 &session->s_cap_releases_done);
1265 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1266 }
1267 err = 0;
1268 spin_unlock(&session->s_cap_lock);
1269 out_unlocked:
1270 return err;
1271 }
1272
1273 /*
1274 * flush all dirty inode data to disk.
1275 *
1276 * returns true if we've flushed through want_flush_seq
1277 */
1278 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1279 {
1280 int mds, ret = 1;
1281
1282 dout("check_cap_flush want %lld\n", want_flush_seq);
1283 mutex_lock(&mdsc->mutex);
1284 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1285 struct ceph_mds_session *session = mdsc->sessions[mds];
1286
1287 if (!session)
1288 continue;
1289 get_session(session);
1290 mutex_unlock(&mdsc->mutex);
1291
1292 mutex_lock(&session->s_mutex);
1293 if (!list_empty(&session->s_cap_flushing)) {
1294 struct ceph_inode_info *ci =
1295 list_entry(session->s_cap_flushing.next,
1296 struct ceph_inode_info,
1297 i_flushing_item);
1298 struct inode *inode = &ci->vfs_inode;
1299
1300 spin_lock(&ci->i_ceph_lock);
1301 if (ci->i_cap_flush_seq <= want_flush_seq) {
1302 dout("check_cap_flush still flushing %p "
1303 "seq %lld <= %lld to mds%d\n", inode,
1304 ci->i_cap_flush_seq, want_flush_seq,
1305 session->s_mds);
1306 ret = 0;
1307 }
1308 spin_unlock(&ci->i_ceph_lock);
1309 }
1310 mutex_unlock(&session->s_mutex);
1311 ceph_put_mds_session(session);
1312
1313 if (!ret)
1314 return ret;
1315 mutex_lock(&mdsc->mutex);
1316 }
1317
1318 mutex_unlock(&mdsc->mutex);
1319 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1320 return ret;
1321 }
1322
1323 /*
1324 * called under s_mutex
1325 */
1326 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1327 struct ceph_mds_session *session)
1328 {
1329 struct ceph_msg *msg;
1330
1331 dout("send_cap_releases mds%d\n", session->s_mds);
1332 spin_lock(&session->s_cap_lock);
1333 while (!list_empty(&session->s_cap_releases_done)) {
1334 msg = list_first_entry(&session->s_cap_releases_done,
1335 struct ceph_msg, list_head);
1336 list_del_init(&msg->list_head);
1337 spin_unlock(&session->s_cap_lock);
1338 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1339 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1340 ceph_con_send(&session->s_con, msg);
1341 spin_lock(&session->s_cap_lock);
1342 }
1343 spin_unlock(&session->s_cap_lock);
1344 }
1345
1346 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1347 struct ceph_mds_session *session)
1348 {
1349 struct ceph_msg *msg;
1350 struct ceph_mds_cap_release *head;
1351 unsigned num;
1352
1353 dout("discard_cap_releases mds%d\n", session->s_mds);
1354 spin_lock(&session->s_cap_lock);
1355
1356 /* zero out the in-progress message */
1357 msg = list_first_entry(&session->s_cap_releases,
1358 struct ceph_msg, list_head);
1359 head = msg->front.iov_base;
1360 num = le32_to_cpu(head->num);
1361 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1362 head->num = cpu_to_le32(0);
1363 session->s_num_cap_releases += num;
1364
1365 /* requeue completed messages */
1366 while (!list_empty(&session->s_cap_releases_done)) {
1367 msg = list_first_entry(&session->s_cap_releases_done,
1368 struct ceph_msg, list_head);
1369 list_del_init(&msg->list_head);
1370
1371 head = msg->front.iov_base;
1372 num = le32_to_cpu(head->num);
1373 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1374 num);
1375 session->s_num_cap_releases += num;
1376 head->num = cpu_to_le32(0);
1377 msg->front.iov_len = sizeof(*head);
1378 list_add(&msg->list_head, &session->s_cap_releases);
1379 }
1380
1381 spin_unlock(&session->s_cap_lock);
1382 }
1383
1384 /*
1385 * requests
1386 */
1387
1388 /*
1389 * Create an mds request.
1390 */
1391 struct ceph_mds_request *
1392 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1393 {
1394 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1395
1396 if (!req)
1397 return ERR_PTR(-ENOMEM);
1398
1399 mutex_init(&req->r_fill_mutex);
1400 req->r_mdsc = mdsc;
1401 req->r_started = jiffies;
1402 req->r_resend_mds = -1;
1403 INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1404 req->r_fmode = -1;
1405 kref_init(&req->r_kref);
1406 INIT_LIST_HEAD(&req->r_wait);
1407 init_completion(&req->r_completion);
1408 init_completion(&req->r_safe_completion);
1409 INIT_LIST_HEAD(&req->r_unsafe_item);
1410
1411 req->r_op = op;
1412 req->r_direct_mode = mode;
1413 return req;
1414 }
1415
1416 /*
1417 * return oldest (lowest) request, tid in request tree, 0 if none.
1418 *
1419 * called under mdsc->mutex.
1420 */
1421 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1422 {
1423 if (RB_EMPTY_ROOT(&mdsc->request_tree))
1424 return NULL;
1425 return rb_entry(rb_first(&mdsc->request_tree),
1426 struct ceph_mds_request, r_node);
1427 }
1428
1429 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1430 {
1431 struct ceph_mds_request *req = __get_oldest_req(mdsc);
1432
1433 if (req)
1434 return req->r_tid;
1435 return 0;
1436 }
1437
1438 /*
1439 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1440 * on build_path_from_dentry in fs/cifs/dir.c.
1441 *
1442 * If @stop_on_nosnap, generate path relative to the first non-snapped
1443 * inode.
1444 *
1445 * Encode hidden .snap dirs as a double /, i.e.
1446 * foo/.snap/bar -> foo//bar
1447 */
1448 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1449 int stop_on_nosnap)
1450 {
1451 struct dentry *temp;
1452 char *path;
1453 int len, pos;
1454 unsigned seq;
1455
1456 if (dentry == NULL)
1457 return ERR_PTR(-EINVAL);
1458
1459 retry:
1460 len = 0;
1461 seq = read_seqbegin(&rename_lock);
1462 rcu_read_lock();
1463 for (temp = dentry; !IS_ROOT(temp);) {
1464 struct inode *inode = temp->d_inode;
1465 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1466 len++; /* slash only */
1467 else if (stop_on_nosnap && inode &&
1468 ceph_snap(inode) == CEPH_NOSNAP)
1469 break;
1470 else
1471 len += 1 + temp->d_name.len;
1472 temp = temp->d_parent;
1473 }
1474 rcu_read_unlock();
1475 if (len)
1476 len--; /* no leading '/' */
1477
1478 path = kmalloc(len+1, GFP_NOFS);
1479 if (path == NULL)
1480 return ERR_PTR(-ENOMEM);
1481 pos = len;
1482 path[pos] = 0; /* trailing null */
1483 rcu_read_lock();
1484 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1485 struct inode *inode;
1486
1487 spin_lock(&temp->d_lock);
1488 inode = temp->d_inode;
1489 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1490 dout("build_path path+%d: %p SNAPDIR\n",
1491 pos, temp);
1492 } else if (stop_on_nosnap && inode &&
1493 ceph_snap(inode) == CEPH_NOSNAP) {
1494 spin_unlock(&temp->d_lock);
1495 break;
1496 } else {
1497 pos -= temp->d_name.len;
1498 if (pos < 0) {
1499 spin_unlock(&temp->d_lock);
1500 break;
1501 }
1502 strncpy(path + pos, temp->d_name.name,
1503 temp->d_name.len);
1504 }
1505 spin_unlock(&temp->d_lock);
1506 if (pos)
1507 path[--pos] = '/';
1508 temp = temp->d_parent;
1509 }
1510 rcu_read_unlock();
1511 if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1512 pr_err("build_path did not end path lookup where "
1513 "expected, namelen is %d, pos is %d\n", len, pos);
1514 /* presumably this is only possible if racing with a
1515 rename of one of the parent directories (we can not
1516 lock the dentries above us to prevent this, but
1517 retrying should be harmless) */
1518 kfree(path);
1519 goto retry;
1520 }
1521
1522 *base = ceph_ino(temp->d_inode);
1523 *plen = len;
1524 dout("build_path on %p %d built %llx '%.*s'\n",
1525 dentry, dentry->d_count, *base, len, path);
1526 return path;
1527 }
1528
1529 static int build_dentry_path(struct dentry *dentry,
1530 const char **ppath, int *ppathlen, u64 *pino,
1531 int *pfreepath)
1532 {
1533 char *path;
1534
1535 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1536 *pino = ceph_ino(dentry->d_parent->d_inode);
1537 *ppath = dentry->d_name.name;
1538 *ppathlen = dentry->d_name.len;
1539 return 0;
1540 }
1541 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1542 if (IS_ERR(path))
1543 return PTR_ERR(path);
1544 *ppath = path;
1545 *pfreepath = 1;
1546 return 0;
1547 }
1548
1549 static int build_inode_path(struct inode *inode,
1550 const char **ppath, int *ppathlen, u64 *pino,
1551 int *pfreepath)
1552 {
1553 struct dentry *dentry;
1554 char *path;
1555
1556 if (ceph_snap(inode) == CEPH_NOSNAP) {
1557 *pino = ceph_ino(inode);
1558 *ppathlen = 0;
1559 return 0;
1560 }
1561 dentry = d_find_alias(inode);
1562 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1563 dput(dentry);
1564 if (IS_ERR(path))
1565 return PTR_ERR(path);
1566 *ppath = path;
1567 *pfreepath = 1;
1568 return 0;
1569 }
1570
1571 /*
1572 * request arguments may be specified via an inode *, a dentry *, or
1573 * an explicit ino+path.
1574 */
1575 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1576 const char *rpath, u64 rino,
1577 const char **ppath, int *pathlen,
1578 u64 *ino, int *freepath)
1579 {
1580 int r = 0;
1581
1582 if (rinode) {
1583 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1584 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1585 ceph_snap(rinode));
1586 } else if (rdentry) {
1587 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1588 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1589 *ppath);
1590 } else if (rpath || rino) {
1591 *ino = rino;
1592 *ppath = rpath;
1593 *pathlen = strlen(rpath);
1594 dout(" path %.*s\n", *pathlen, rpath);
1595 }
1596
1597 return r;
1598 }
1599
1600 /*
1601 * called under mdsc->mutex
1602 */
1603 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1604 struct ceph_mds_request *req,
1605 int mds)
1606 {
1607 struct ceph_msg *msg;
1608 struct ceph_mds_request_head *head;
1609 const char *path1 = NULL;
1610 const char *path2 = NULL;
1611 u64 ino1 = 0, ino2 = 0;
1612 int pathlen1 = 0, pathlen2 = 0;
1613 int freepath1 = 0, freepath2 = 0;
1614 int len;
1615 u16 releases;
1616 void *p, *end;
1617 int ret;
1618
1619 ret = set_request_path_attr(req->r_inode, req->r_dentry,
1620 req->r_path1, req->r_ino1.ino,
1621 &path1, &pathlen1, &ino1, &freepath1);
1622 if (ret < 0) {
1623 msg = ERR_PTR(ret);
1624 goto out;
1625 }
1626
1627 ret = set_request_path_attr(NULL, req->r_old_dentry,
1628 req->r_path2, req->r_ino2.ino,
1629 &path2, &pathlen2, &ino2, &freepath2);
1630 if (ret < 0) {
1631 msg = ERR_PTR(ret);
1632 goto out_free1;
1633 }
1634
1635 len = sizeof(*head) +
1636 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1637
1638 /* calculate (max) length for cap releases */
1639 len += sizeof(struct ceph_mds_request_release) *
1640 (!!req->r_inode_drop + !!req->r_dentry_drop +
1641 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1642 if (req->r_dentry_drop)
1643 len += req->r_dentry->d_name.len;
1644 if (req->r_old_dentry_drop)
1645 len += req->r_old_dentry->d_name.len;
1646
1647 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1648 if (!msg) {
1649 msg = ERR_PTR(-ENOMEM);
1650 goto out_free2;
1651 }
1652
1653 msg->hdr.tid = cpu_to_le64(req->r_tid);
1654
1655 head = msg->front.iov_base;
1656 p = msg->front.iov_base + sizeof(*head);
1657 end = msg->front.iov_base + msg->front.iov_len;
1658
1659 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1660 head->op = cpu_to_le32(req->r_op);
1661 head->caller_uid = cpu_to_le32(req->r_uid);
1662 head->caller_gid = cpu_to_le32(req->r_gid);
1663 head->args = req->r_args;
1664
1665 ceph_encode_filepath(&p, end, ino1, path1);
1666 ceph_encode_filepath(&p, end, ino2, path2);
1667
1668 /* make note of release offset, in case we need to replay */
1669 req->r_request_release_offset = p - msg->front.iov_base;
1670
1671 /* cap releases */
1672 releases = 0;
1673 if (req->r_inode_drop)
1674 releases += ceph_encode_inode_release(&p,
1675 req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1676 mds, req->r_inode_drop, req->r_inode_unless, 0);
1677 if (req->r_dentry_drop)
1678 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1679 mds, req->r_dentry_drop, req->r_dentry_unless);
1680 if (req->r_old_dentry_drop)
1681 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1682 mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1683 if (req->r_old_inode_drop)
1684 releases += ceph_encode_inode_release(&p,
1685 req->r_old_dentry->d_inode,
1686 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1687 head->num_releases = cpu_to_le16(releases);
1688
1689 BUG_ON(p > end);
1690 msg->front.iov_len = p - msg->front.iov_base;
1691 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1692
1693 msg->pages = req->r_pages;
1694 msg->nr_pages = req->r_num_pages;
1695 msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1696 msg->hdr.data_off = cpu_to_le16(0);
1697
1698 out_free2:
1699 if (freepath2)
1700 kfree((char *)path2);
1701 out_free1:
1702 if (freepath1)
1703 kfree((char *)path1);
1704 out:
1705 return msg;
1706 }
1707
1708 /*
1709 * called under mdsc->mutex if error, under no mutex if
1710 * success.
1711 */
1712 static void complete_request(struct ceph_mds_client *mdsc,
1713 struct ceph_mds_request *req)
1714 {
1715 if (req->r_callback)
1716 req->r_callback(mdsc, req);
1717 else
1718 complete_all(&req->r_completion);
1719 }
1720
1721 /*
1722 * called under mdsc->mutex
1723 */
1724 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1725 struct ceph_mds_request *req,
1726 int mds)
1727 {
1728 struct ceph_mds_request_head *rhead;
1729 struct ceph_msg *msg;
1730 int flags = 0;
1731
1732 req->r_attempts++;
1733 if (req->r_inode) {
1734 struct ceph_cap *cap =
1735 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1736
1737 if (cap)
1738 req->r_sent_on_mseq = cap->mseq;
1739 else
1740 req->r_sent_on_mseq = -1;
1741 }
1742 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1743 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1744
1745 if (req->r_got_unsafe) {
1746 /*
1747 * Replay. Do not regenerate message (and rebuild
1748 * paths, etc.); just use the original message.
1749 * Rebuilding paths will break for renames because
1750 * d_move mangles the src name.
1751 */
1752 msg = req->r_request;
1753 rhead = msg->front.iov_base;
1754
1755 flags = le32_to_cpu(rhead->flags);
1756 flags |= CEPH_MDS_FLAG_REPLAY;
1757 rhead->flags = cpu_to_le32(flags);
1758
1759 if (req->r_target_inode)
1760 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1761
1762 rhead->num_retry = req->r_attempts - 1;
1763
1764 /* remove cap/dentry releases from message */
1765 rhead->num_releases = 0;
1766 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1767 msg->front.iov_len = req->r_request_release_offset;
1768 return 0;
1769 }
1770
1771 if (req->r_request) {
1772 ceph_msg_put(req->r_request);
1773 req->r_request = NULL;
1774 }
1775 msg = create_request_message(mdsc, req, mds);
1776 if (IS_ERR(msg)) {
1777 req->r_err = PTR_ERR(msg);
1778 complete_request(mdsc, req);
1779 return PTR_ERR(msg);
1780 }
1781 req->r_request = msg;
1782
1783 rhead = msg->front.iov_base;
1784 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1785 if (req->r_got_unsafe)
1786 flags |= CEPH_MDS_FLAG_REPLAY;
1787 if (req->r_locked_dir)
1788 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1789 rhead->flags = cpu_to_le32(flags);
1790 rhead->num_fwd = req->r_num_fwd;
1791 rhead->num_retry = req->r_attempts - 1;
1792 rhead->ino = 0;
1793
1794 dout(" r_locked_dir = %p\n", req->r_locked_dir);
1795 return 0;
1796 }
1797
1798 /*
1799 * send request, or put it on the appropriate wait list.
1800 */
1801 static int __do_request(struct ceph_mds_client *mdsc,
1802 struct ceph_mds_request *req)
1803 {
1804 struct ceph_mds_session *session = NULL;
1805 int mds = -1;
1806 int err = -EAGAIN;
1807
1808 if (req->r_err || req->r_got_result)
1809 goto out;
1810
1811 if (req->r_timeout &&
1812 time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1813 dout("do_request timed out\n");
1814 err = -EIO;
1815 goto finish;
1816 }
1817
1818 put_request_session(req);
1819
1820 mds = __choose_mds(mdsc, req);
1821 if (mds < 0 ||
1822 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1823 dout("do_request no mds or not active, waiting for map\n");
1824 list_add(&req->r_wait, &mdsc->waiting_for_map);
1825 goto out;
1826 }
1827
1828 /* get, open session */
1829 session = __ceph_lookup_mds_session(mdsc, mds);
1830 if (!session) {
1831 session = register_session(mdsc, mds);
1832 if (IS_ERR(session)) {
1833 err = PTR_ERR(session);
1834 goto finish;
1835 }
1836 }
1837 req->r_session = get_session(session);
1838
1839 dout("do_request mds%d session %p state %s\n", mds, session,
1840 session_state_name(session->s_state));
1841 if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1842 session->s_state != CEPH_MDS_SESSION_HUNG) {
1843 if (session->s_state == CEPH_MDS_SESSION_NEW ||
1844 session->s_state == CEPH_MDS_SESSION_CLOSING)
1845 __open_session(mdsc, session);
1846 list_add(&req->r_wait, &session->s_waiting);
1847 goto out_session;
1848 }
1849
1850 /* send request */
1851 req->r_resend_mds = -1; /* forget any previous mds hint */
1852
1853 if (req->r_request_started == 0) /* note request start time */
1854 req->r_request_started = jiffies;
1855
1856 err = __prepare_send_request(mdsc, req, mds);
1857 if (!err) {
1858 ceph_msg_get(req->r_request);
1859 ceph_con_send(&session->s_con, req->r_request);
1860 }
1861
1862 out_session:
1863 ceph_put_mds_session(session);
1864 out:
1865 return err;
1866
1867 finish:
1868 req->r_err = err;
1869 complete_request(mdsc, req);
1870 goto out;
1871 }
1872
1873 /*
1874 * called under mdsc->mutex
1875 */
1876 static void __wake_requests(struct ceph_mds_client *mdsc,
1877 struct list_head *head)
1878 {
1879 struct ceph_mds_request *req, *nreq;
1880
1881 list_for_each_entry_safe(req, nreq, head, r_wait) {
1882 list_del_init(&req->r_wait);
1883 __do_request(mdsc, req);
1884 }
1885 }
1886
1887 /*
1888 * Wake up threads with requests pending for @mds, so that they can
1889 * resubmit their requests to a possibly different mds.
1890 */
1891 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1892 {
1893 struct ceph_mds_request *req;
1894 struct rb_node *p;
1895
1896 dout("kick_requests mds%d\n", mds);
1897 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1898 req = rb_entry(p, struct ceph_mds_request, r_node);
1899 if (req->r_got_unsafe)
1900 continue;
1901 if (req->r_session &&
1902 req->r_session->s_mds == mds) {
1903 dout(" kicking tid %llu\n", req->r_tid);
1904 __do_request(mdsc, req);
1905 }
1906 }
1907 }
1908
1909 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1910 struct ceph_mds_request *req)
1911 {
1912 dout("submit_request on %p\n", req);
1913 mutex_lock(&mdsc->mutex);
1914 __register_request(mdsc, req, NULL);
1915 __do_request(mdsc, req);
1916 mutex_unlock(&mdsc->mutex);
1917 }
1918
1919 /*
1920 * Synchrously perform an mds request. Take care of all of the
1921 * session setup, forwarding, retry details.
1922 */
1923 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1924 struct inode *dir,
1925 struct ceph_mds_request *req)
1926 {
1927 int err;
1928
1929 dout("do_request on %p\n", req);
1930
1931 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1932 if (req->r_inode)
1933 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1934 if (req->r_locked_dir)
1935 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1936 if (req->r_old_dentry)
1937 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
1938 CEPH_CAP_PIN);
1939
1940 /* issue */
1941 mutex_lock(&mdsc->mutex);
1942 __register_request(mdsc, req, dir);
1943 __do_request(mdsc, req);
1944
1945 if (req->r_err) {
1946 err = req->r_err;
1947 __unregister_request(mdsc, req);
1948 dout("do_request early error %d\n", err);
1949 goto out;
1950 }
1951
1952 /* wait */
1953 mutex_unlock(&mdsc->mutex);
1954 dout("do_request waiting\n");
1955 if (req->r_timeout) {
1956 err = (long)wait_for_completion_killable_timeout(
1957 &req->r_completion, req->r_timeout);
1958 if (err == 0)
1959 err = -EIO;
1960 } else {
1961 err = wait_for_completion_killable(&req->r_completion);
1962 }
1963 dout("do_request waited, got %d\n", err);
1964 mutex_lock(&mdsc->mutex);
1965
1966 /* only abort if we didn't race with a real reply */
1967 if (req->r_got_result) {
1968 err = le32_to_cpu(req->r_reply_info.head->result);
1969 } else if (err < 0) {
1970 dout("aborted request %lld with %d\n", req->r_tid, err);
1971
1972 /*
1973 * ensure we aren't running concurrently with
1974 * ceph_fill_trace or ceph_readdir_prepopulate, which
1975 * rely on locks (dir mutex) held by our caller.
1976 */
1977 mutex_lock(&req->r_fill_mutex);
1978 req->r_err = err;
1979 req->r_aborted = true;
1980 mutex_unlock(&req->r_fill_mutex);
1981
1982 if (req->r_locked_dir &&
1983 (req->r_op & CEPH_MDS_OP_WRITE))
1984 ceph_invalidate_dir_request(req);
1985 } else {
1986 err = req->r_err;
1987 }
1988
1989 out:
1990 mutex_unlock(&mdsc->mutex);
1991 dout("do_request %p done, result %d\n", req, err);
1992 return err;
1993 }
1994
1995 /*
1996 * Invalidate dir D_COMPLETE, dentry lease state on an aborted MDS
1997 * namespace request.
1998 */
1999 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2000 {
2001 struct inode *inode = req->r_locked_dir;
2002 struct ceph_inode_info *ci = ceph_inode(inode);
2003
2004 dout("invalidate_dir_request %p (D_COMPLETE, lease(s))\n", inode);
2005 spin_lock(&ci->i_ceph_lock);
2006 ceph_dir_clear_complete(inode);
2007 ci->i_release_count++;
2008 spin_unlock(&ci->i_ceph_lock);
2009
2010 if (req->r_dentry)
2011 ceph_invalidate_dentry_lease(req->r_dentry);
2012 if (req->r_old_dentry)
2013 ceph_invalidate_dentry_lease(req->r_old_dentry);
2014 }
2015
2016 /*
2017 * Handle mds reply.
2018 *
2019 * We take the session mutex and parse and process the reply immediately.
2020 * This preserves the logical ordering of replies, capabilities, etc., sent
2021 * by the MDS as they are applied to our local cache.
2022 */
2023 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2024 {
2025 struct ceph_mds_client *mdsc = session->s_mdsc;
2026 struct ceph_mds_request *req;
2027 struct ceph_mds_reply_head *head = msg->front.iov_base;
2028 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
2029 u64 tid;
2030 int err, result;
2031 int mds = session->s_mds;
2032
2033 if (msg->front.iov_len < sizeof(*head)) {
2034 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2035 ceph_msg_dump(msg);
2036 return;
2037 }
2038
2039 /* get request, session */
2040 tid = le64_to_cpu(msg->hdr.tid);
2041 mutex_lock(&mdsc->mutex);
2042 req = __lookup_request(mdsc, tid);
2043 if (!req) {
2044 dout("handle_reply on unknown tid %llu\n", tid);
2045 mutex_unlock(&mdsc->mutex);
2046 return;
2047 }
2048 dout("handle_reply %p\n", req);
2049
2050 /* correct session? */
2051 if (req->r_session != session) {
2052 pr_err("mdsc_handle_reply got %llu on session mds%d"
2053 " not mds%d\n", tid, session->s_mds,
2054 req->r_session ? req->r_session->s_mds : -1);
2055 mutex_unlock(&mdsc->mutex);
2056 goto out;
2057 }
2058
2059 /* dup? */
2060 if ((req->r_got_unsafe && !head->safe) ||
2061 (req->r_got_safe && head->safe)) {
2062 pr_warning("got a dup %s reply on %llu from mds%d\n",
2063 head->safe ? "safe" : "unsafe", tid, mds);
2064 mutex_unlock(&mdsc->mutex);
2065 goto out;
2066 }
2067 if (req->r_got_safe && !head->safe) {
2068 pr_warning("got unsafe after safe on %llu from mds%d\n",
2069 tid, mds);
2070 mutex_unlock(&mdsc->mutex);
2071 goto out;
2072 }
2073
2074 result = le32_to_cpu(head->result);
2075
2076 /*
2077 * Handle an ESTALE
2078 * if we're not talking to the authority, send to them
2079 * if the authority has changed while we weren't looking,
2080 * send to new authority
2081 * Otherwise we just have to return an ESTALE
2082 */
2083 if (result == -ESTALE) {
2084 dout("got ESTALE on request %llu", req->r_tid);
2085 if (!req->r_inode) {
2086 /* do nothing; not an authority problem */
2087 } else if (req->r_direct_mode != USE_AUTH_MDS) {
2088 dout("not using auth, setting for that now");
2089 req->r_direct_mode = USE_AUTH_MDS;
2090 __do_request(mdsc, req);
2091 mutex_unlock(&mdsc->mutex);
2092 goto out;
2093 } else {
2094 struct ceph_inode_info *ci = ceph_inode(req->r_inode);
2095 struct ceph_cap *cap = NULL;
2096
2097 if (req->r_session)
2098 cap = ceph_get_cap_for_mds(ci,
2099 req->r_session->s_mds);
2100
2101 dout("already using auth");
2102 if ((!cap || cap != ci->i_auth_cap) ||
2103 (cap->mseq != req->r_sent_on_mseq)) {
2104 dout("but cap changed, so resending");
2105 __do_request(mdsc, req);
2106 mutex_unlock(&mdsc->mutex);
2107 goto out;
2108 }
2109 }
2110 dout("have to return ESTALE on request %llu", req->r_tid);
2111 }
2112
2113
2114 if (head->safe) {
2115 req->r_got_safe = true;
2116 __unregister_request(mdsc, req);
2117 complete_all(&req->r_safe_completion);
2118
2119 if (req->r_got_unsafe) {
2120 /*
2121 * We already handled the unsafe response, now do the
2122 * cleanup. No need to examine the response; the MDS
2123 * doesn't include any result info in the safe
2124 * response. And even if it did, there is nothing
2125 * useful we could do with a revised return value.
2126 */
2127 dout("got safe reply %llu, mds%d\n", tid, mds);
2128 list_del_init(&req->r_unsafe_item);
2129
2130 /* last unsafe request during umount? */
2131 if (mdsc->stopping && !__get_oldest_req(mdsc))
2132 complete_all(&mdsc->safe_umount_waiters);
2133 mutex_unlock(&mdsc->mutex);
2134 goto out;
2135 }
2136 } else {
2137 req->r_got_unsafe = true;
2138 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2139 }
2140
2141 dout("handle_reply tid %lld result %d\n", tid, result);
2142 rinfo = &req->r_reply_info;
2143 err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2144 mutex_unlock(&mdsc->mutex);
2145
2146 mutex_lock(&session->s_mutex);
2147 if (err < 0) {
2148 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2149 ceph_msg_dump(msg);
2150 goto out_err;
2151 }
2152
2153 /* snap trace */
2154 if (rinfo->snapblob_len) {
2155 down_write(&mdsc->snap_rwsem);
2156 ceph_update_snap_trace(mdsc, rinfo->snapblob,
2157 rinfo->snapblob + rinfo->snapblob_len,
2158 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2159 downgrade_write(&mdsc->snap_rwsem);
2160 } else {
2161 down_read(&mdsc->snap_rwsem);
2162 }
2163
2164 /* insert trace into our cache */
2165 mutex_lock(&req->r_fill_mutex);
2166 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2167 if (err == 0) {
2168 if (result == 0 && req->r_op != CEPH_MDS_OP_GETFILELOCK &&
2169 rinfo->dir_nr)
2170 ceph_readdir_prepopulate(req, req->r_session);
2171 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2172 }
2173 mutex_unlock(&req->r_fill_mutex);
2174
2175 up_read(&mdsc->snap_rwsem);
2176 out_err:
2177 mutex_lock(&mdsc->mutex);
2178 if (!req->r_aborted) {
2179 if (err) {
2180 req->r_err = err;
2181 } else {
2182 req->r_reply = msg;
2183 ceph_msg_get(msg);
2184 req->r_got_result = true;
2185 }
2186 } else {
2187 dout("reply arrived after request %lld was aborted\n", tid);
2188 }
2189 mutex_unlock(&mdsc->mutex);
2190
2191 ceph_add_cap_releases(mdsc, req->r_session);
2192 mutex_unlock(&session->s_mutex);
2193
2194 /* kick calling process */
2195 complete_request(mdsc, req);
2196 out:
2197 ceph_mdsc_put_request(req);
2198 return;
2199 }
2200
2201
2202
2203 /*
2204 * handle mds notification that our request has been forwarded.
2205 */
2206 static void handle_forward(struct ceph_mds_client *mdsc,
2207 struct ceph_mds_session *session,
2208 struct ceph_msg *msg)
2209 {
2210 struct ceph_mds_request *req;
2211 u64 tid = le64_to_cpu(msg->hdr.tid);
2212 u32 next_mds;
2213 u32 fwd_seq;
2214 int err = -EINVAL;
2215 void *p = msg->front.iov_base;
2216 void *end = p + msg->front.iov_len;
2217
2218 ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2219 next_mds = ceph_decode_32(&p);
2220 fwd_seq = ceph_decode_32(&p);
2221
2222 mutex_lock(&mdsc->mutex);
2223 req = __lookup_request(mdsc, tid);
2224 if (!req) {
2225 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2226 goto out; /* dup reply? */
2227 }
2228
2229 if (req->r_aborted) {
2230 dout("forward tid %llu aborted, unregistering\n", tid);
2231 __unregister_request(mdsc, req);
2232 } else if (fwd_seq <= req->r_num_fwd) {
2233 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2234 tid, next_mds, req->r_num_fwd, fwd_seq);
2235 } else {
2236 /* resend. forward race not possible; mds would drop */
2237 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2238 BUG_ON(req->r_err);
2239 BUG_ON(req->r_got_result);
2240 req->r_num_fwd = fwd_seq;
2241 req->r_resend_mds = next_mds;
2242 put_request_session(req);
2243 __do_request(mdsc, req);
2244 }
2245 ceph_mdsc_put_request(req);
2246 out:
2247 mutex_unlock(&mdsc->mutex);
2248 return;
2249
2250 bad:
2251 pr_err("mdsc_handle_forward decode error err=%d\n", err);
2252 }
2253
2254 /*
2255 * handle a mds session control message
2256 */
2257 static void handle_session(struct ceph_mds_session *session,
2258 struct ceph_msg *msg)
2259 {
2260 struct ceph_mds_client *mdsc = session->s_mdsc;
2261 u32 op;
2262 u64 seq;
2263 int mds = session->s_mds;
2264 struct ceph_mds_session_head *h = msg->front.iov_base;
2265 int wake = 0;
2266
2267 /* decode */
2268 if (msg->front.iov_len != sizeof(*h))
2269 goto bad;
2270 op = le32_to_cpu(h->op);
2271 seq = le64_to_cpu(h->seq);
2272
2273 mutex_lock(&mdsc->mutex);
2274 if (op == CEPH_SESSION_CLOSE)
2275 __unregister_session(mdsc, session);
2276 /* FIXME: this ttl calculation is generous */
2277 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2278 mutex_unlock(&mdsc->mutex);
2279
2280 mutex_lock(&session->s_mutex);
2281
2282 dout("handle_session mds%d %s %p state %s seq %llu\n",
2283 mds, ceph_session_op_name(op), session,
2284 session_state_name(session->s_state), seq);
2285
2286 if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2287 session->s_state = CEPH_MDS_SESSION_OPEN;
2288 pr_info("mds%d came back\n", session->s_mds);
2289 }
2290
2291 switch (op) {
2292 case CEPH_SESSION_OPEN:
2293 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2294 pr_info("mds%d reconnect success\n", session->s_mds);
2295 session->s_state = CEPH_MDS_SESSION_OPEN;
2296 renewed_caps(mdsc, session, 0);
2297 wake = 1;
2298 if (mdsc->stopping)
2299 __close_session(mdsc, session);
2300 break;
2301
2302 case CEPH_SESSION_RENEWCAPS:
2303 if (session->s_renew_seq == seq)
2304 renewed_caps(mdsc, session, 1);
2305 break;
2306
2307 case CEPH_SESSION_CLOSE:
2308 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2309 pr_info("mds%d reconnect denied\n", session->s_mds);
2310 remove_session_caps(session);
2311 wake = 1; /* for good measure */
2312 wake_up_all(&mdsc->session_close_wq);
2313 kick_requests(mdsc, mds);
2314 break;
2315
2316 case CEPH_SESSION_STALE:
2317 pr_info("mds%d caps went stale, renewing\n",
2318 session->s_mds);
2319 spin_lock(&session->s_gen_ttl_lock);
2320 session->s_cap_gen++;
2321 session->s_cap_ttl = jiffies - 1;
2322 spin_unlock(&session->s_gen_ttl_lock);
2323 send_renew_caps(mdsc, session);
2324 break;
2325
2326 case CEPH_SESSION_RECALL_STATE:
2327 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2328 break;
2329
2330 default:
2331 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2332 WARN_ON(1);
2333 }
2334
2335 mutex_unlock(&session->s_mutex);
2336 if (wake) {
2337 mutex_lock(&mdsc->mutex);
2338 __wake_requests(mdsc, &session->s_waiting);
2339 mutex_unlock(&mdsc->mutex);
2340 }
2341 return;
2342
2343 bad:
2344 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2345 (int)msg->front.iov_len);
2346 ceph_msg_dump(msg);
2347 return;
2348 }
2349
2350
2351 /*
2352 * called under session->mutex.
2353 */
2354 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2355 struct ceph_mds_session *session)
2356 {
2357 struct ceph_mds_request *req, *nreq;
2358 int err;
2359
2360 dout("replay_unsafe_requests mds%d\n", session->s_mds);
2361
2362 mutex_lock(&mdsc->mutex);
2363 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2364 err = __prepare_send_request(mdsc, req, session->s_mds);
2365 if (!err) {
2366 ceph_msg_get(req->r_request);
2367 ceph_con_send(&session->s_con, req->r_request);
2368 }
2369 }
2370 mutex_unlock(&mdsc->mutex);
2371 }
2372
2373 /*
2374 * Encode information about a cap for a reconnect with the MDS.
2375 */
2376 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2377 void *arg)
2378 {
2379 union {
2380 struct ceph_mds_cap_reconnect v2;
2381 struct ceph_mds_cap_reconnect_v1 v1;
2382 } rec;
2383 size_t reclen;
2384 struct ceph_inode_info *ci;
2385 struct ceph_reconnect_state *recon_state = arg;
2386 struct ceph_pagelist *pagelist = recon_state->pagelist;
2387 char *path;
2388 int pathlen, err;
2389 u64 pathbase;
2390 struct dentry *dentry;
2391
2392 ci = cap->ci;
2393
2394 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2395 inode, ceph_vinop(inode), cap, cap->cap_id,
2396 ceph_cap_string(cap->issued));
2397 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2398 if (err)
2399 return err;
2400
2401 dentry = d_find_alias(inode);
2402 if (dentry) {
2403 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2404 if (IS_ERR(path)) {
2405 err = PTR_ERR(path);
2406 goto out_dput;
2407 }
2408 } else {
2409 path = NULL;
2410 pathlen = 0;
2411 }
2412 err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2413 if (err)
2414 goto out_free;
2415
2416 spin_lock(&ci->i_ceph_lock);
2417 cap->seq = 0; /* reset cap seq */
2418 cap->issue_seq = 0; /* and issue_seq */
2419
2420 if (recon_state->flock) {
2421 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2422 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2423 rec.v2.issued = cpu_to_le32(cap->issued);
2424 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2425 rec.v2.pathbase = cpu_to_le64(pathbase);
2426 rec.v2.flock_len = 0;
2427 reclen = sizeof(rec.v2);
2428 } else {
2429 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2430 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2431 rec.v1.issued = cpu_to_le32(cap->issued);
2432 rec.v1.size = cpu_to_le64(inode->i_size);
2433 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2434 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2435 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2436 rec.v1.pathbase = cpu_to_le64(pathbase);
2437 reclen = sizeof(rec.v1);
2438 }
2439 spin_unlock(&ci->i_ceph_lock);
2440
2441 if (recon_state->flock) {
2442 int num_fcntl_locks, num_flock_locks;
2443 struct ceph_pagelist_cursor trunc_point;
2444
2445 ceph_pagelist_set_cursor(pagelist, &trunc_point);
2446 do {
2447 lock_flocks();
2448 ceph_count_locks(inode, &num_fcntl_locks,
2449 &num_flock_locks);
2450 rec.v2.flock_len = (2*sizeof(u32) +
2451 (num_fcntl_locks+num_flock_locks) *
2452 sizeof(struct ceph_filelock));
2453 unlock_flocks();
2454
2455 /* pre-alloc pagelist */
2456 ceph_pagelist_truncate(pagelist, &trunc_point);
2457 err = ceph_pagelist_append(pagelist, &rec, reclen);
2458 if (!err)
2459 err = ceph_pagelist_reserve(pagelist,
2460 rec.v2.flock_len);
2461
2462 /* encode locks */
2463 if (!err) {
2464 lock_flocks();
2465 err = ceph_encode_locks(inode,
2466 pagelist,
2467 num_fcntl_locks,
2468 num_flock_locks);
2469 unlock_flocks();
2470 }
2471 } while (err == -ENOSPC);
2472 } else {
2473 err = ceph_pagelist_append(pagelist, &rec, reclen);
2474 }
2475
2476 out_free:
2477 kfree(path);
2478 out_dput:
2479 dput(dentry);
2480 return err;
2481 }
2482
2483
2484 /*
2485 * If an MDS fails and recovers, clients need to reconnect in order to
2486 * reestablish shared state. This includes all caps issued through
2487 * this session _and_ the snap_realm hierarchy. Because it's not
2488 * clear which snap realms the mds cares about, we send everything we
2489 * know about.. that ensures we'll then get any new info the
2490 * recovering MDS might have.
2491 *
2492 * This is a relatively heavyweight operation, but it's rare.
2493 *
2494 * called with mdsc->mutex held.
2495 */
2496 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2497 struct ceph_mds_session *session)
2498 {
2499 struct ceph_msg *reply;
2500 struct rb_node *p;
2501 int mds = session->s_mds;
2502 int err = -ENOMEM;
2503 struct ceph_pagelist *pagelist;
2504 struct ceph_reconnect_state recon_state;
2505
2506 pr_info("mds%d reconnect start\n", mds);
2507
2508 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2509 if (!pagelist)
2510 goto fail_nopagelist;
2511 ceph_pagelist_init(pagelist);
2512
2513 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2514 if (!reply)
2515 goto fail_nomsg;
2516
2517 mutex_lock(&session->s_mutex);
2518 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2519 session->s_seq = 0;
2520
2521 ceph_con_close(&session->s_con);
2522 ceph_con_open(&session->s_con,
2523 CEPH_ENTITY_TYPE_MDS, mds,
2524 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2525
2526 /* replay unsafe requests */
2527 replay_unsafe_requests(mdsc, session);
2528
2529 down_read(&mdsc->snap_rwsem);
2530
2531 dout("session %p state %s\n", session,
2532 session_state_name(session->s_state));
2533
2534 /* drop old cap expires; we're about to reestablish that state */
2535 discard_cap_releases(mdsc, session);
2536
2537 /* traverse this session's caps */
2538 err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2539 if (err)
2540 goto fail;
2541
2542 recon_state.pagelist = pagelist;
2543 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2544 err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2545 if (err < 0)
2546 goto fail;
2547
2548 /*
2549 * snaprealms. we provide mds with the ino, seq (version), and
2550 * parent for all of our realms. If the mds has any newer info,
2551 * it will tell us.
2552 */
2553 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2554 struct ceph_snap_realm *realm =
2555 rb_entry(p, struct ceph_snap_realm, node);
2556 struct ceph_mds_snaprealm_reconnect sr_rec;
2557
2558 dout(" adding snap realm %llx seq %lld parent %llx\n",
2559 realm->ino, realm->seq, realm->parent_ino);
2560 sr_rec.ino = cpu_to_le64(realm->ino);
2561 sr_rec.seq = cpu_to_le64(realm->seq);
2562 sr_rec.parent = cpu_to_le64(realm->parent_ino);
2563 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2564 if (err)
2565 goto fail;
2566 }
2567
2568 reply->pagelist = pagelist;
2569 if (recon_state.flock)
2570 reply->hdr.version = cpu_to_le16(2);
2571 reply->hdr.data_len = cpu_to_le32(pagelist->length);
2572 reply->nr_pages = calc_pages_for(0, pagelist->length);
2573 ceph_con_send(&session->s_con, reply);
2574
2575 mutex_unlock(&session->s_mutex);
2576
2577 mutex_lock(&mdsc->mutex);
2578 __wake_requests(mdsc, &session->s_waiting);
2579 mutex_unlock(&mdsc->mutex);
2580
2581 up_read(&mdsc->snap_rwsem);
2582 return;
2583
2584 fail:
2585 ceph_msg_put(reply);
2586 up_read(&mdsc->snap_rwsem);
2587 mutex_unlock(&session->s_mutex);
2588 fail_nomsg:
2589 ceph_pagelist_release(pagelist);
2590 kfree(pagelist);
2591 fail_nopagelist:
2592 pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2593 return;
2594 }
2595
2596
2597 /*
2598 * compare old and new mdsmaps, kicking requests
2599 * and closing out old connections as necessary
2600 *
2601 * called under mdsc->mutex.
2602 */
2603 static void check_new_map(struct ceph_mds_client *mdsc,
2604 struct ceph_mdsmap *newmap,
2605 struct ceph_mdsmap *oldmap)
2606 {
2607 int i;
2608 int oldstate, newstate;
2609 struct ceph_mds_session *s;
2610
2611 dout("check_new_map new %u old %u\n",
2612 newmap->m_epoch, oldmap->m_epoch);
2613
2614 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2615 if (mdsc->sessions[i] == NULL)
2616 continue;
2617 s = mdsc->sessions[i];
2618 oldstate = ceph_mdsmap_get_state(oldmap, i);
2619 newstate = ceph_mdsmap_get_state(newmap, i);
2620
2621 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2622 i, ceph_mds_state_name(oldstate),
2623 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2624 ceph_mds_state_name(newstate),
2625 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2626 session_state_name(s->s_state));
2627
2628 if (i >= newmap->m_max_mds ||
2629 memcmp(ceph_mdsmap_get_addr(oldmap, i),
2630 ceph_mdsmap_get_addr(newmap, i),
2631 sizeof(struct ceph_entity_addr))) {
2632 if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2633 /* the session never opened, just close it
2634 * out now */
2635 __wake_requests(mdsc, &s->s_waiting);
2636 __unregister_session(mdsc, s);
2637 } else {
2638 /* just close it */
2639 mutex_unlock(&mdsc->mutex);
2640 mutex_lock(&s->s_mutex);
2641 mutex_lock(&mdsc->mutex);
2642 ceph_con_close(&s->s_con);
2643 mutex_unlock(&s->s_mutex);
2644 s->s_state = CEPH_MDS_SESSION_RESTARTING;
2645 }
2646
2647 /* kick any requests waiting on the recovering mds */
2648 kick_requests(mdsc, i);
2649 } else if (oldstate == newstate) {
2650 continue; /* nothing new with this mds */
2651 }
2652
2653 /*
2654 * send reconnect?
2655 */
2656 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2657 newstate >= CEPH_MDS_STATE_RECONNECT) {
2658 mutex_unlock(&mdsc->mutex);
2659 send_mds_reconnect(mdsc, s);
2660 mutex_lock(&mdsc->mutex);
2661 }
2662
2663 /*
2664 * kick request on any mds that has gone active.
2665 */
2666 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2667 newstate >= CEPH_MDS_STATE_ACTIVE) {
2668 if (oldstate != CEPH_MDS_STATE_CREATING &&
2669 oldstate != CEPH_MDS_STATE_STARTING)
2670 pr_info("mds%d recovery completed\n", s->s_mds);
2671 kick_requests(mdsc, i);
2672 ceph_kick_flushing_caps(mdsc, s);
2673 wake_up_session_caps(s, 1);
2674 }
2675 }
2676
2677 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2678 s = mdsc->sessions[i];
2679 if (!s)
2680 continue;
2681 if (!ceph_mdsmap_is_laggy(newmap, i))
2682 continue;
2683 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2684 s->s_state == CEPH_MDS_SESSION_HUNG ||
2685 s->s_state == CEPH_MDS_SESSION_CLOSING) {
2686 dout(" connecting to export targets of laggy mds%d\n",
2687 i);
2688 __open_export_target_sessions(mdsc, s);
2689 }
2690 }
2691 }
2692
2693
2694
2695 /*
2696 * leases
2697 */
2698
2699 /*
2700 * caller must hold session s_mutex, dentry->d_lock
2701 */
2702 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2703 {
2704 struct ceph_dentry_info *di = ceph_dentry(dentry);
2705
2706 ceph_put_mds_session(di->lease_session);
2707 di->lease_session = NULL;
2708 }
2709
2710 static void handle_lease(struct ceph_mds_client *mdsc,
2711 struct ceph_mds_session *session,
2712 struct ceph_msg *msg)
2713 {
2714 struct super_block *sb = mdsc->fsc->sb;
2715 struct inode *inode;
2716 struct dentry *parent, *dentry;
2717 struct ceph_dentry_info *di;
2718 int mds = session->s_mds;
2719 struct ceph_mds_lease *h = msg->front.iov_base;
2720 u32 seq;
2721 struct ceph_vino vino;
2722 struct qstr dname;
2723 int release = 0;
2724
2725 dout("handle_lease from mds%d\n", mds);
2726
2727 /* decode */
2728 if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2729 goto bad;
2730 vino.ino = le64_to_cpu(h->ino);
2731 vino.snap = CEPH_NOSNAP;
2732 seq = le32_to_cpu(h->seq);
2733 dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2734 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2735 if (dname.len != get_unaligned_le32(h+1))
2736 goto bad;
2737
2738 mutex_lock(&session->s_mutex);
2739 session->s_seq++;
2740
2741 /* lookup inode */
2742 inode = ceph_find_inode(sb, vino);
2743 dout("handle_lease %s, ino %llx %p %.*s\n",
2744 ceph_lease_op_name(h->action), vino.ino, inode,
2745 dname.len, dname.name);
2746 if (inode == NULL) {
2747 dout("handle_lease no inode %llx\n", vino.ino);
2748 goto release;
2749 }
2750
2751 /* dentry */
2752 parent = d_find_alias(inode);
2753 if (!parent) {
2754 dout("no parent dentry on inode %p\n", inode);
2755 WARN_ON(1);
2756 goto release; /* hrm... */
2757 }
2758 dname.hash = full_name_hash(dname.name, dname.len);
2759 dentry = d_lookup(parent, &dname);
2760 dput(parent);
2761 if (!dentry)
2762 goto release;
2763
2764 spin_lock(&dentry->d_lock);
2765 di = ceph_dentry(dentry);
2766 switch (h->action) {
2767 case CEPH_MDS_LEASE_REVOKE:
2768 if (di->lease_session == session) {
2769 if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2770 h->seq = cpu_to_le32(di->lease_seq);
2771 __ceph_mdsc_drop_dentry_lease(dentry);
2772 }
2773 release = 1;
2774 break;
2775
2776 case CEPH_MDS_LEASE_RENEW:
2777 if (di->lease_session == session &&
2778 di->lease_gen == session->s_cap_gen &&
2779 di->lease_renew_from &&
2780 di->lease_renew_after == 0) {
2781 unsigned long duration =
2782 le32_to_cpu(h->duration_ms) * HZ / 1000;
2783
2784 di->lease_seq = seq;
2785 dentry->d_time = di->lease_renew_from + duration;
2786 di->lease_renew_after = di->lease_renew_from +
2787 (duration >> 1);
2788 di->lease_renew_from = 0;
2789 }
2790 break;
2791 }
2792 spin_unlock(&dentry->d_lock);
2793 dput(dentry);
2794
2795 if (!release)
2796 goto out;
2797
2798 release:
2799 /* let's just reuse the same message */
2800 h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2801 ceph_msg_get(msg);
2802 ceph_con_send(&session->s_con, msg);
2803
2804 out:
2805 iput(inode);
2806 mutex_unlock(&session->s_mutex);
2807 return;
2808
2809 bad:
2810 pr_err("corrupt lease message\n");
2811 ceph_msg_dump(msg);
2812 }
2813
2814 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2815 struct inode *inode,
2816 struct dentry *dentry, char action,
2817 u32 seq)
2818 {
2819 struct ceph_msg *msg;
2820 struct ceph_mds_lease *lease;
2821 int len = sizeof(*lease) + sizeof(u32);
2822 int dnamelen = 0;
2823
2824 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2825 inode, dentry, ceph_lease_op_name(action), session->s_mds);
2826 dnamelen = dentry->d_name.len;
2827 len += dnamelen;
2828
2829 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
2830 if (!msg)
2831 return;
2832 lease = msg->front.iov_base;
2833 lease->action = action;
2834 lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2835 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2836 lease->seq = cpu_to_le32(seq);
2837 put_unaligned_le32(dnamelen, lease + 1);
2838 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2839
2840 /*
2841 * if this is a preemptive lease RELEASE, no need to
2842 * flush request stream, since the actual request will
2843 * soon follow.
2844 */
2845 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2846
2847 ceph_con_send(&session->s_con, msg);
2848 }
2849
2850 /*
2851 * Preemptively release a lease we expect to invalidate anyway.
2852 * Pass @inode always, @dentry is optional.
2853 */
2854 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2855 struct dentry *dentry)
2856 {
2857 struct ceph_dentry_info *di;
2858 struct ceph_mds_session *session;
2859 u32 seq;
2860
2861 BUG_ON(inode == NULL);
2862 BUG_ON(dentry == NULL);
2863
2864 /* is dentry lease valid? */
2865 spin_lock(&dentry->d_lock);
2866 di = ceph_dentry(dentry);
2867 if (!di || !di->lease_session ||
2868 di->lease_session->s_mds < 0 ||
2869 di->lease_gen != di->lease_session->s_cap_gen ||
2870 !time_before(jiffies, dentry->d_time)) {
2871 dout("lease_release inode %p dentry %p -- "
2872 "no lease\n",
2873 inode, dentry);
2874 spin_unlock(&dentry->d_lock);
2875 return;
2876 }
2877
2878 /* we do have a lease on this dentry; note mds and seq */
2879 session = ceph_get_mds_session(di->lease_session);
2880 seq = di->lease_seq;
2881 __ceph_mdsc_drop_dentry_lease(dentry);
2882 spin_unlock(&dentry->d_lock);
2883
2884 dout("lease_release inode %p dentry %p to mds%d\n",
2885 inode, dentry, session->s_mds);
2886 ceph_mdsc_lease_send_msg(session, inode, dentry,
2887 CEPH_MDS_LEASE_RELEASE, seq);
2888 ceph_put_mds_session(session);
2889 }
2890
2891 /*
2892 * drop all leases (and dentry refs) in preparation for umount
2893 */
2894 static void drop_leases(struct ceph_mds_client *mdsc)
2895 {
2896 int i;
2897
2898 dout("drop_leases\n");
2899 mutex_lock(&mdsc->mutex);
2900 for (i = 0; i < mdsc->max_sessions; i++) {
2901 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2902 if (!s)
2903 continue;
2904 mutex_unlock(&mdsc->mutex);
2905 mutex_lock(&s->s_mutex);
2906 mutex_unlock(&s->s_mutex);
2907 ceph_put_mds_session(s);
2908 mutex_lock(&mdsc->mutex);
2909 }
2910 mutex_unlock(&mdsc->mutex);
2911 }
2912
2913
2914
2915 /*
2916 * delayed work -- periodically trim expired leases, renew caps with mds
2917 */
2918 static void schedule_delayed(struct ceph_mds_client *mdsc)
2919 {
2920 int delay = 5;
2921 unsigned hz = round_jiffies_relative(HZ * delay);
2922 schedule_delayed_work(&mdsc->delayed_work, hz);
2923 }
2924
2925 static void delayed_work(struct work_struct *work)
2926 {
2927 int i;
2928 struct ceph_mds_client *mdsc =
2929 container_of(work, struct ceph_mds_client, delayed_work.work);
2930 int renew_interval;
2931 int renew_caps;
2932
2933 dout("mdsc delayed_work\n");
2934 ceph_check_delayed_caps(mdsc);
2935
2936 mutex_lock(&mdsc->mutex);
2937 renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2938 renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2939 mdsc->last_renew_caps);
2940 if (renew_caps)
2941 mdsc->last_renew_caps = jiffies;
2942
2943 for (i = 0; i < mdsc->max_sessions; i++) {
2944 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2945 if (s == NULL)
2946 continue;
2947 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2948 dout("resending session close request for mds%d\n",
2949 s->s_mds);
2950 request_close_session(mdsc, s);
2951 ceph_put_mds_session(s);
2952 continue;
2953 }
2954 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
2955 if (s->s_state == CEPH_MDS_SESSION_OPEN) {
2956 s->s_state = CEPH_MDS_SESSION_HUNG;
2957 pr_info("mds%d hung\n", s->s_mds);
2958 }
2959 }
2960 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
2961 /* this mds is failed or recovering, just wait */
2962 ceph_put_mds_session(s);
2963 continue;
2964 }
2965 mutex_unlock(&mdsc->mutex);
2966
2967 mutex_lock(&s->s_mutex);
2968 if (renew_caps)
2969 send_renew_caps(mdsc, s);
2970 else
2971 ceph_con_keepalive(&s->s_con);
2972 ceph_add_cap_releases(mdsc, s);
2973 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2974 s->s_state == CEPH_MDS_SESSION_HUNG)
2975 ceph_send_cap_releases(mdsc, s);
2976 mutex_unlock(&s->s_mutex);
2977 ceph_put_mds_session(s);
2978
2979 mutex_lock(&mdsc->mutex);
2980 }
2981 mutex_unlock(&mdsc->mutex);
2982
2983 schedule_delayed(mdsc);
2984 }
2985
2986 int ceph_mdsc_init(struct ceph_fs_client *fsc)
2987
2988 {
2989 struct ceph_mds_client *mdsc;
2990
2991 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
2992 if (!mdsc)
2993 return -ENOMEM;
2994 mdsc->fsc = fsc;
2995 fsc->mdsc = mdsc;
2996 mutex_init(&mdsc->mutex);
2997 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
2998 if (mdsc->mdsmap == NULL)
2999 return -ENOMEM;
3000
3001 init_completion(&mdsc->safe_umount_waiters);
3002 init_waitqueue_head(&mdsc->session_close_wq);
3003 INIT_LIST_HEAD(&mdsc->waiting_for_map);
3004 mdsc->sessions = NULL;
3005 mdsc->max_sessions = 0;
3006 mdsc->stopping = 0;
3007 init_rwsem(&mdsc->snap_rwsem);
3008 mdsc->snap_realms = RB_ROOT;
3009 INIT_LIST_HEAD(&mdsc->snap_empty);
3010 spin_lock_init(&mdsc->snap_empty_lock);
3011 mdsc->last_tid = 0;
3012 mdsc->request_tree = RB_ROOT;
3013 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3014 mdsc->last_renew_caps = jiffies;
3015 INIT_LIST_HEAD(&mdsc->cap_delay_list);
3016 spin_lock_init(&mdsc->cap_delay_lock);
3017 INIT_LIST_HEAD(&mdsc->snap_flush_list);
3018 spin_lock_init(&mdsc->snap_flush_lock);
3019 mdsc->cap_flush_seq = 0;
3020 INIT_LIST_HEAD(&mdsc->cap_dirty);
3021 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3022 mdsc->num_cap_flushing = 0;
3023 spin_lock_init(&mdsc->cap_dirty_lock);
3024 init_waitqueue_head(&mdsc->cap_flushing_wq);
3025 spin_lock_init(&mdsc->dentry_lru_lock);
3026 INIT_LIST_HEAD(&mdsc->dentry_lru);
3027
3028 ceph_caps_init(mdsc);
3029 ceph_adjust_min_caps(mdsc, fsc->min_caps);
3030
3031 return 0;
3032 }
3033
3034 /*
3035 * Wait for safe replies on open mds requests. If we time out, drop
3036 * all requests from the tree to avoid dangling dentry refs.
3037 */
3038 static void wait_requests(struct ceph_mds_client *mdsc)
3039 {
3040 struct ceph_mds_request *req;
3041 struct ceph_fs_client *fsc = mdsc->fsc;
3042
3043 mutex_lock(&mdsc->mutex);
3044 if (__get_oldest_req(mdsc)) {
3045 mutex_unlock(&mdsc->mutex);
3046
3047 dout("wait_requests waiting for requests\n");
3048 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3049 fsc->client->options->mount_timeout * HZ);
3050
3051 /* tear down remaining requests */
3052 mutex_lock(&mdsc->mutex);
3053 while ((req = __get_oldest_req(mdsc))) {
3054 dout("wait_requests timed out on tid %llu\n",
3055 req->r_tid);
3056 __unregister_request(mdsc, req);
3057 }
3058 }
3059 mutex_unlock(&mdsc->mutex);
3060 dout("wait_requests done\n");
3061 }
3062
3063 /*
3064 * called before mount is ro, and before dentries are torn down.
3065 * (hmm, does this still race with new lookups?)
3066 */
3067 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3068 {
3069 dout("pre_umount\n");
3070 mdsc->stopping = 1;
3071
3072 drop_leases(mdsc);
3073 ceph_flush_dirty_caps(mdsc);
3074 wait_requests(mdsc);
3075
3076 /*
3077 * wait for reply handlers to drop their request refs and
3078 * their inode/dcache refs
3079 */
3080 ceph_msgr_flush();
3081 }
3082
3083 /*
3084 * wait for all write mds requests to flush.
3085 */
3086 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3087 {
3088 struct ceph_mds_request *req = NULL, *nextreq;
3089 struct rb_node *n;
3090
3091 mutex_lock(&mdsc->mutex);
3092 dout("wait_unsafe_requests want %lld\n", want_tid);
3093 restart:
3094 req = __get_oldest_req(mdsc);
3095 while (req && req->r_tid <= want_tid) {
3096 /* find next request */
3097 n = rb_next(&req->r_node);
3098 if (n)
3099 nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3100 else
3101 nextreq = NULL;
3102 if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3103 /* write op */
3104 ceph_mdsc_get_request(req);
3105 if (nextreq)
3106 ceph_mdsc_get_request(nextreq);
3107 mutex_unlock(&mdsc->mutex);
3108 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
3109 req->r_tid, want_tid);
3110 wait_for_completion(&req->r_safe_completion);
3111 mutex_lock(&mdsc->mutex);
3112 ceph_mdsc_put_request(req);
3113 if (!nextreq)
3114 break; /* next dne before, so we're done! */
3115 if (RB_EMPTY_NODE(&nextreq->r_node)) {
3116 /* next request was removed from tree */
3117 ceph_mdsc_put_request(nextreq);
3118 goto restart;
3119 }
3120 ceph_mdsc_put_request(nextreq); /* won't go away */
3121 }
3122 req = nextreq;
3123 }
3124 mutex_unlock(&mdsc->mutex);
3125 dout("wait_unsafe_requests done\n");
3126 }
3127
3128 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3129 {
3130 u64 want_tid, want_flush;
3131
3132 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3133 return;
3134
3135 dout("sync\n");
3136 mutex_lock(&mdsc->mutex);
3137 want_tid = mdsc->last_tid;
3138 want_flush = mdsc->cap_flush_seq;
3139 mutex_unlock(&mdsc->mutex);
3140 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3141
3142 ceph_flush_dirty_caps(mdsc);
3143
3144 wait_unsafe_requests(mdsc, want_tid);
3145 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3146 }
3147
3148 /*
3149 * true if all sessions are closed, or we force unmount
3150 */
3151 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3152 {
3153 int i, n = 0;
3154
3155 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3156 return true;
3157
3158 mutex_lock(&mdsc->mutex);
3159 for (i = 0; i < mdsc->max_sessions; i++)
3160 if (mdsc->sessions[i])
3161 n++;
3162 mutex_unlock(&mdsc->mutex);
3163 return n == 0;
3164 }
3165
3166 /*
3167 * called after sb is ro.
3168 */
3169 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3170 {
3171 struct ceph_mds_session *session;
3172 int i;
3173 struct ceph_fs_client *fsc = mdsc->fsc;
3174 unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3175
3176 dout("close_sessions\n");
3177
3178 /* close sessions */
3179 mutex_lock(&mdsc->mutex);
3180 for (i = 0; i < mdsc->max_sessions; i++) {
3181 session = __ceph_lookup_mds_session(mdsc, i);
3182 if (!session)
3183 continue;
3184 mutex_unlock(&mdsc->mutex);
3185 mutex_lock(&session->s_mutex);
3186 __close_session(mdsc, session);
3187 mutex_unlock(&session->s_mutex);
3188 ceph_put_mds_session(session);
3189 mutex_lock(&mdsc->mutex);
3190 }
3191 mutex_unlock(&mdsc->mutex);
3192
3193 dout("waiting for sessions to close\n");
3194 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3195 timeout);
3196
3197 /* tear down remaining sessions */
3198 mutex_lock(&mdsc->mutex);
3199 for (i = 0; i < mdsc->max_sessions; i++) {
3200 if (mdsc->sessions[i]) {
3201 session = get_session(mdsc->sessions[i]);
3202 __unregister_session(mdsc, session);
3203 mutex_unlock(&mdsc->mutex);
3204 mutex_lock(&session->s_mutex);
3205 remove_session_caps(session);
3206 mutex_unlock(&session->s_mutex);
3207 ceph_put_mds_session(session);
3208 mutex_lock(&mdsc->mutex);
3209 }
3210 }
3211 WARN_ON(!list_empty(&mdsc->cap_delay_list));
3212 mutex_unlock(&mdsc->mutex);
3213
3214 ceph_cleanup_empty_realms(mdsc);
3215
3216 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3217
3218 dout("stopped\n");
3219 }
3220
3221 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3222 {
3223 dout("stop\n");
3224 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3225 if (mdsc->mdsmap)
3226 ceph_mdsmap_destroy(mdsc->mdsmap);
3227 kfree(mdsc->sessions);
3228 ceph_caps_finalize(mdsc);
3229 }
3230
3231 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3232 {
3233 struct ceph_mds_client *mdsc = fsc->mdsc;
3234
3235 dout("mdsc_destroy %p\n", mdsc);
3236 ceph_mdsc_stop(mdsc);
3237
3238 /* flush out any connection work with references to us */
3239 ceph_msgr_flush();
3240
3241 fsc->mdsc = NULL;
3242 kfree(mdsc);
3243 dout("mdsc_destroy %p done\n", mdsc);
3244 }
3245
3246
3247 /*
3248 * handle mds map update.
3249 */
3250 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3251 {
3252 u32 epoch;
3253 u32 maplen;
3254 void *p = msg->front.iov_base;
3255 void *end = p + msg->front.iov_len;
3256 struct ceph_mdsmap *newmap, *oldmap;
3257 struct ceph_fsid fsid;
3258 int err = -EINVAL;
3259
3260 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3261 ceph_decode_copy(&p, &fsid, sizeof(fsid));
3262 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3263 return;
3264 epoch = ceph_decode_32(&p);
3265 maplen = ceph_decode_32(&p);
3266 dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3267
3268 /* do we need it? */
3269 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3270 mutex_lock(&mdsc->mutex);
3271 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3272 dout("handle_map epoch %u <= our %u\n",
3273 epoch, mdsc->mdsmap->m_epoch);
3274 mutex_unlock(&mdsc->mutex);
3275 return;
3276 }
3277
3278 newmap = ceph_mdsmap_decode(&p, end);
3279 if (IS_ERR(newmap)) {
3280 err = PTR_ERR(newmap);
3281 goto bad_unlock;
3282 }
3283
3284 /* swap into place */
3285 if (mdsc->mdsmap) {
3286 oldmap = mdsc->mdsmap;
3287 mdsc->mdsmap = newmap;
3288 check_new_map(mdsc, newmap, oldmap);
3289 ceph_mdsmap_destroy(oldmap);
3290 } else {
3291 mdsc->mdsmap = newmap; /* first mds map */
3292 }
3293 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3294
3295 __wake_requests(mdsc, &mdsc->waiting_for_map);
3296
3297 mutex_unlock(&mdsc->mutex);
3298 schedule_delayed(mdsc);
3299 return;
3300
3301 bad_unlock:
3302 mutex_unlock(&mdsc->mutex);
3303 bad:
3304 pr_err("error decoding mdsmap %d\n", err);
3305 return;
3306 }
3307
3308 static struct ceph_connection *con_get(struct ceph_connection *con)
3309 {
3310 struct ceph_mds_session *s = con->private;
3311
3312 if (get_session(s)) {
3313 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3314 return con;
3315 }
3316 dout("mdsc con_get %p FAIL\n", s);
3317 return NULL;
3318 }
3319
3320 static void con_put(struct ceph_connection *con)
3321 {
3322 struct ceph_mds_session *s = con->private;
3323
3324 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3325 ceph_put_mds_session(s);
3326 }
3327
3328 /*
3329 * if the client is unresponsive for long enough, the mds will kill
3330 * the session entirely.
3331 */
3332 static void peer_reset(struct ceph_connection *con)
3333 {
3334 struct ceph_mds_session *s = con->private;
3335 struct ceph_mds_client *mdsc = s->s_mdsc;
3336
3337 pr_warning("mds%d closed our session\n", s->s_mds);
3338 send_mds_reconnect(mdsc, s);
3339 }
3340
3341 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3342 {
3343 struct ceph_mds_session *s = con->private;
3344 struct ceph_mds_client *mdsc = s->s_mdsc;
3345 int type = le16_to_cpu(msg->hdr.type);
3346
3347 mutex_lock(&mdsc->mutex);
3348 if (__verify_registered_session(mdsc, s) < 0) {
3349 mutex_unlock(&mdsc->mutex);
3350 goto out;
3351 }
3352 mutex_unlock(&mdsc->mutex);
3353
3354 switch (type) {
3355 case CEPH_MSG_MDS_MAP:
3356 ceph_mdsc_handle_map(mdsc, msg);
3357 break;
3358 case CEPH_MSG_CLIENT_SESSION:
3359 handle_session(s, msg);
3360 break;
3361 case CEPH_MSG_CLIENT_REPLY:
3362 handle_reply(s, msg);
3363 break;
3364 case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3365 handle_forward(mdsc, s, msg);
3366 break;
3367 case CEPH_MSG_CLIENT_CAPS:
3368 ceph_handle_caps(s, msg);
3369 break;
3370 case CEPH_MSG_CLIENT_SNAP:
3371 ceph_handle_snap(mdsc, s, msg);
3372 break;
3373 case CEPH_MSG_CLIENT_LEASE:
3374 handle_lease(mdsc, s, msg);
3375 break;
3376
3377 default:
3378 pr_err("received unknown message type %d %s\n", type,
3379 ceph_msg_type_name(type));
3380 }
3381 out:
3382 ceph_msg_put(msg);
3383 }
3384
3385 /*
3386 * authentication
3387 */
3388
3389 /*
3390 * Note: returned pointer is the address of a structure that's
3391 * managed separately. Caller must *not* attempt to free it.
3392 */
3393 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3394 int *proto, int force_new)
3395 {
3396 struct ceph_mds_session *s = con->private;
3397 struct ceph_mds_client *mdsc = s->s_mdsc;
3398 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3399 struct ceph_auth_handshake *auth = &s->s_auth;
3400
3401 if (force_new && auth->authorizer) {
3402 if (ac->ops && ac->ops->destroy_authorizer)
3403 ac->ops->destroy_authorizer(ac, auth->authorizer);
3404 auth->authorizer = NULL;
3405 }
3406 if (!auth->authorizer && ac->ops && ac->ops->create_authorizer) {
3407 int ret = ac->ops->create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3408 auth);
3409 if (ret)
3410 return ERR_PTR(ret);
3411 }
3412 *proto = ac->protocol;
3413
3414 return auth;
3415 }
3416
3417
3418 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3419 {
3420 struct ceph_mds_session *s = con->private;
3421 struct ceph_mds_client *mdsc = s->s_mdsc;
3422 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3423
3424 return ac->ops->verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3425 }
3426
3427 static int invalidate_authorizer(struct ceph_connection *con)
3428 {
3429 struct ceph_mds_session *s = con->private;
3430 struct ceph_mds_client *mdsc = s->s_mdsc;
3431 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3432
3433 if (ac->ops->invalidate_authorizer)
3434 ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3435
3436 return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3437 }
3438
3439 static const struct ceph_connection_operations mds_con_ops = {
3440 .get = con_get,
3441 .put = con_put,
3442 .dispatch = dispatch,
3443 .get_authorizer = get_authorizer,
3444 .verify_authorizer_reply = verify_authorizer_reply,
3445 .invalidate_authorizer = invalidate_authorizer,
3446 .peer_reset = peer_reset,
3447 };
3448
3449 /* eof */