Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ceph / caps.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <linux/wait.h>
9 #include <linux/writeback.h>
10
11 #include "super.h"
12 #include "mds_client.h"
13 #include <linux/ceph/decode.h>
14 #include <linux/ceph/messenger.h>
15
16 /*
17 * Capability management
18 *
19 * The Ceph metadata servers control client access to inode metadata
20 * and file data by issuing capabilities, granting clients permission
21 * to read and/or write both inode field and file data to OSDs
22 * (storage nodes). Each capability consists of a set of bits
23 * indicating which operations are allowed.
24 *
25 * If the client holds a *_SHARED cap, the client has a coherent value
26 * that can be safely read from the cached inode.
27 *
28 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
29 * client is allowed to change inode attributes (e.g., file size,
30 * mtime), note its dirty state in the ceph_cap, and asynchronously
31 * flush that metadata change to the MDS.
32 *
33 * In the event of a conflicting operation (perhaps by another
34 * client), the MDS will revoke the conflicting client capabilities.
35 *
36 * In order for a client to cache an inode, it must hold a capability
37 * with at least one MDS server. When inodes are released, release
38 * notifications are batched and periodically sent en masse to the MDS
39 * cluster to release server state.
40 */
41
42
43 /*
44 * Generate readable cap strings for debugging output.
45 */
46 #define MAX_CAP_STR 20
47 static char cap_str[MAX_CAP_STR][40];
48 static DEFINE_SPINLOCK(cap_str_lock);
49 static int last_cap_str;
50
51 static char *gcap_string(char *s, int c)
52 {
53 if (c & CEPH_CAP_GSHARED)
54 *s++ = 's';
55 if (c & CEPH_CAP_GEXCL)
56 *s++ = 'x';
57 if (c & CEPH_CAP_GCACHE)
58 *s++ = 'c';
59 if (c & CEPH_CAP_GRD)
60 *s++ = 'r';
61 if (c & CEPH_CAP_GWR)
62 *s++ = 'w';
63 if (c & CEPH_CAP_GBUFFER)
64 *s++ = 'b';
65 if (c & CEPH_CAP_GLAZYIO)
66 *s++ = 'l';
67 return s;
68 }
69
70 const char *ceph_cap_string(int caps)
71 {
72 int i;
73 char *s;
74 int c;
75
76 spin_lock(&cap_str_lock);
77 i = last_cap_str++;
78 if (last_cap_str == MAX_CAP_STR)
79 last_cap_str = 0;
80 spin_unlock(&cap_str_lock);
81
82 s = cap_str[i];
83
84 if (caps & CEPH_CAP_PIN)
85 *s++ = 'p';
86
87 c = (caps >> CEPH_CAP_SAUTH) & 3;
88 if (c) {
89 *s++ = 'A';
90 s = gcap_string(s, c);
91 }
92
93 c = (caps >> CEPH_CAP_SLINK) & 3;
94 if (c) {
95 *s++ = 'L';
96 s = gcap_string(s, c);
97 }
98
99 c = (caps >> CEPH_CAP_SXATTR) & 3;
100 if (c) {
101 *s++ = 'X';
102 s = gcap_string(s, c);
103 }
104
105 c = caps >> CEPH_CAP_SFILE;
106 if (c) {
107 *s++ = 'F';
108 s = gcap_string(s, c);
109 }
110
111 if (s == cap_str[i])
112 *s++ = '-';
113 *s = 0;
114 return cap_str[i];
115 }
116
117 void ceph_caps_init(struct ceph_mds_client *mdsc)
118 {
119 INIT_LIST_HEAD(&mdsc->caps_list);
120 spin_lock_init(&mdsc->caps_list_lock);
121 }
122
123 void ceph_caps_finalize(struct ceph_mds_client *mdsc)
124 {
125 struct ceph_cap *cap;
126
127 spin_lock(&mdsc->caps_list_lock);
128 while (!list_empty(&mdsc->caps_list)) {
129 cap = list_first_entry(&mdsc->caps_list,
130 struct ceph_cap, caps_item);
131 list_del(&cap->caps_item);
132 kmem_cache_free(ceph_cap_cachep, cap);
133 }
134 mdsc->caps_total_count = 0;
135 mdsc->caps_avail_count = 0;
136 mdsc->caps_use_count = 0;
137 mdsc->caps_reserve_count = 0;
138 mdsc->caps_min_count = 0;
139 spin_unlock(&mdsc->caps_list_lock);
140 }
141
142 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta)
143 {
144 spin_lock(&mdsc->caps_list_lock);
145 mdsc->caps_min_count += delta;
146 BUG_ON(mdsc->caps_min_count < 0);
147 spin_unlock(&mdsc->caps_list_lock);
148 }
149
150 int ceph_reserve_caps(struct ceph_mds_client *mdsc,
151 struct ceph_cap_reservation *ctx, int need)
152 {
153 int i;
154 struct ceph_cap *cap;
155 int have;
156 int alloc = 0;
157 LIST_HEAD(newcaps);
158 int ret = 0;
159
160 dout("reserve caps ctx=%p need=%d\n", ctx, need);
161
162 /* first reserve any caps that are already allocated */
163 spin_lock(&mdsc->caps_list_lock);
164 if (mdsc->caps_avail_count >= need)
165 have = need;
166 else
167 have = mdsc->caps_avail_count;
168 mdsc->caps_avail_count -= have;
169 mdsc->caps_reserve_count += have;
170 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
171 mdsc->caps_reserve_count +
172 mdsc->caps_avail_count);
173 spin_unlock(&mdsc->caps_list_lock);
174
175 for (i = have; i < need; i++) {
176 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
177 if (!cap) {
178 ret = -ENOMEM;
179 goto out_alloc_count;
180 }
181 list_add(&cap->caps_item, &newcaps);
182 alloc++;
183 }
184 BUG_ON(have + alloc != need);
185
186 spin_lock(&mdsc->caps_list_lock);
187 mdsc->caps_total_count += alloc;
188 mdsc->caps_reserve_count += alloc;
189 list_splice(&newcaps, &mdsc->caps_list);
190
191 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
192 mdsc->caps_reserve_count +
193 mdsc->caps_avail_count);
194 spin_unlock(&mdsc->caps_list_lock);
195
196 ctx->count = need;
197 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
198 ctx, mdsc->caps_total_count, mdsc->caps_use_count,
199 mdsc->caps_reserve_count, mdsc->caps_avail_count);
200 return 0;
201
202 out_alloc_count:
203 /* we didn't manage to reserve as much as we needed */
204 pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
205 ctx, need, have);
206 return ret;
207 }
208
209 int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
210 struct ceph_cap_reservation *ctx)
211 {
212 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
213 if (ctx->count) {
214 spin_lock(&mdsc->caps_list_lock);
215 BUG_ON(mdsc->caps_reserve_count < ctx->count);
216 mdsc->caps_reserve_count -= ctx->count;
217 mdsc->caps_avail_count += ctx->count;
218 ctx->count = 0;
219 dout("unreserve caps %d = %d used + %d resv + %d avail\n",
220 mdsc->caps_total_count, mdsc->caps_use_count,
221 mdsc->caps_reserve_count, mdsc->caps_avail_count);
222 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
223 mdsc->caps_reserve_count +
224 mdsc->caps_avail_count);
225 spin_unlock(&mdsc->caps_list_lock);
226 }
227 return 0;
228 }
229
230 static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc,
231 struct ceph_cap_reservation *ctx)
232 {
233 struct ceph_cap *cap = NULL;
234
235 /* temporary, until we do something about cap import/export */
236 if (!ctx) {
237 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
238 if (cap) {
239 spin_lock(&mdsc->caps_list_lock);
240 mdsc->caps_use_count++;
241 mdsc->caps_total_count++;
242 spin_unlock(&mdsc->caps_list_lock);
243 }
244 return cap;
245 }
246
247 spin_lock(&mdsc->caps_list_lock);
248 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
249 ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count,
250 mdsc->caps_reserve_count, mdsc->caps_avail_count);
251 BUG_ON(!ctx->count);
252 BUG_ON(ctx->count > mdsc->caps_reserve_count);
253 BUG_ON(list_empty(&mdsc->caps_list));
254
255 ctx->count--;
256 mdsc->caps_reserve_count--;
257 mdsc->caps_use_count++;
258
259 cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item);
260 list_del(&cap->caps_item);
261
262 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
263 mdsc->caps_reserve_count + mdsc->caps_avail_count);
264 spin_unlock(&mdsc->caps_list_lock);
265 return cap;
266 }
267
268 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap)
269 {
270 spin_lock(&mdsc->caps_list_lock);
271 dout("put_cap %p %d = %d used + %d resv + %d avail\n",
272 cap, mdsc->caps_total_count, mdsc->caps_use_count,
273 mdsc->caps_reserve_count, mdsc->caps_avail_count);
274 mdsc->caps_use_count--;
275 /*
276 * Keep some preallocated caps around (ceph_min_count), to
277 * avoid lots of free/alloc churn.
278 */
279 if (mdsc->caps_avail_count >= mdsc->caps_reserve_count +
280 mdsc->caps_min_count) {
281 mdsc->caps_total_count--;
282 kmem_cache_free(ceph_cap_cachep, cap);
283 } else {
284 mdsc->caps_avail_count++;
285 list_add(&cap->caps_item, &mdsc->caps_list);
286 }
287
288 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
289 mdsc->caps_reserve_count + mdsc->caps_avail_count);
290 spin_unlock(&mdsc->caps_list_lock);
291 }
292
293 void ceph_reservation_status(struct ceph_fs_client *fsc,
294 int *total, int *avail, int *used, int *reserved,
295 int *min)
296 {
297 struct ceph_mds_client *mdsc = fsc->mdsc;
298
299 if (total)
300 *total = mdsc->caps_total_count;
301 if (avail)
302 *avail = mdsc->caps_avail_count;
303 if (used)
304 *used = mdsc->caps_use_count;
305 if (reserved)
306 *reserved = mdsc->caps_reserve_count;
307 if (min)
308 *min = mdsc->caps_min_count;
309 }
310
311 /*
312 * Find ceph_cap for given mds, if any.
313 *
314 * Called with i_ceph_lock held.
315 */
316 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
317 {
318 struct ceph_cap *cap;
319 struct rb_node *n = ci->i_caps.rb_node;
320
321 while (n) {
322 cap = rb_entry(n, struct ceph_cap, ci_node);
323 if (mds < cap->mds)
324 n = n->rb_left;
325 else if (mds > cap->mds)
326 n = n->rb_right;
327 else
328 return cap;
329 }
330 return NULL;
331 }
332
333 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds)
334 {
335 struct ceph_cap *cap;
336
337 spin_lock(&ci->i_ceph_lock);
338 cap = __get_cap_for_mds(ci, mds);
339 spin_unlock(&ci->i_ceph_lock);
340 return cap;
341 }
342
343 /*
344 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1.
345 */
346 static int __ceph_get_cap_mds(struct ceph_inode_info *ci)
347 {
348 struct ceph_cap *cap;
349 int mds = -1;
350 struct rb_node *p;
351
352 /* prefer mds with WR|BUFFER|EXCL caps */
353 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
354 cap = rb_entry(p, struct ceph_cap, ci_node);
355 mds = cap->mds;
356 if (cap->issued & (CEPH_CAP_FILE_WR |
357 CEPH_CAP_FILE_BUFFER |
358 CEPH_CAP_FILE_EXCL))
359 break;
360 }
361 return mds;
362 }
363
364 int ceph_get_cap_mds(struct inode *inode)
365 {
366 struct ceph_inode_info *ci = ceph_inode(inode);
367 int mds;
368 spin_lock(&ci->i_ceph_lock);
369 mds = __ceph_get_cap_mds(ceph_inode(inode));
370 spin_unlock(&ci->i_ceph_lock);
371 return mds;
372 }
373
374 /*
375 * Called under i_ceph_lock.
376 */
377 static void __insert_cap_node(struct ceph_inode_info *ci,
378 struct ceph_cap *new)
379 {
380 struct rb_node **p = &ci->i_caps.rb_node;
381 struct rb_node *parent = NULL;
382 struct ceph_cap *cap = NULL;
383
384 while (*p) {
385 parent = *p;
386 cap = rb_entry(parent, struct ceph_cap, ci_node);
387 if (new->mds < cap->mds)
388 p = &(*p)->rb_left;
389 else if (new->mds > cap->mds)
390 p = &(*p)->rb_right;
391 else
392 BUG();
393 }
394
395 rb_link_node(&new->ci_node, parent, p);
396 rb_insert_color(&new->ci_node, &ci->i_caps);
397 }
398
399 /*
400 * (re)set cap hold timeouts, which control the delayed release
401 * of unused caps back to the MDS. Should be called on cap use.
402 */
403 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
404 struct ceph_inode_info *ci)
405 {
406 struct ceph_mount_options *ma = mdsc->fsc->mount_options;
407
408 ci->i_hold_caps_min = round_jiffies(jiffies +
409 ma->caps_wanted_delay_min * HZ);
410 ci->i_hold_caps_max = round_jiffies(jiffies +
411 ma->caps_wanted_delay_max * HZ);
412 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
413 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
414 }
415
416 /*
417 * (Re)queue cap at the end of the delayed cap release list.
418 *
419 * If I_FLUSH is set, leave the inode at the front of the list.
420 *
421 * Caller holds i_ceph_lock
422 * -> we take mdsc->cap_delay_lock
423 */
424 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
425 struct ceph_inode_info *ci)
426 {
427 __cap_set_timeouts(mdsc, ci);
428 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
429 ci->i_ceph_flags, ci->i_hold_caps_max);
430 if (!mdsc->stopping) {
431 spin_lock(&mdsc->cap_delay_lock);
432 if (!list_empty(&ci->i_cap_delay_list)) {
433 if (ci->i_ceph_flags & CEPH_I_FLUSH)
434 goto no_change;
435 list_del_init(&ci->i_cap_delay_list);
436 }
437 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
438 no_change:
439 spin_unlock(&mdsc->cap_delay_lock);
440 }
441 }
442
443 /*
444 * Queue an inode for immediate writeback. Mark inode with I_FLUSH,
445 * indicating we should send a cap message to flush dirty metadata
446 * asap, and move to the front of the delayed cap list.
447 */
448 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
449 struct ceph_inode_info *ci)
450 {
451 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
452 spin_lock(&mdsc->cap_delay_lock);
453 ci->i_ceph_flags |= CEPH_I_FLUSH;
454 if (!list_empty(&ci->i_cap_delay_list))
455 list_del_init(&ci->i_cap_delay_list);
456 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
457 spin_unlock(&mdsc->cap_delay_lock);
458 }
459
460 /*
461 * Cancel delayed work on cap.
462 *
463 * Caller must hold i_ceph_lock.
464 */
465 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
466 struct ceph_inode_info *ci)
467 {
468 dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
469 if (list_empty(&ci->i_cap_delay_list))
470 return;
471 spin_lock(&mdsc->cap_delay_lock);
472 list_del_init(&ci->i_cap_delay_list);
473 spin_unlock(&mdsc->cap_delay_lock);
474 }
475
476 /*
477 * Common issue checks for add_cap, handle_cap_grant.
478 */
479 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
480 unsigned issued)
481 {
482 unsigned had = __ceph_caps_issued(ci, NULL);
483
484 /*
485 * Each time we receive FILE_CACHE anew, we increment
486 * i_rdcache_gen.
487 */
488 if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
489 (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0)
490 ci->i_rdcache_gen++;
491
492 /*
493 * if we are newly issued FILE_SHARED, mark dir not complete; we
494 * don't know what happened to this directory while we didn't
495 * have the cap.
496 */
497 if ((issued & CEPH_CAP_FILE_SHARED) &&
498 (had & CEPH_CAP_FILE_SHARED) == 0) {
499 ci->i_shared_gen++;
500 if (S_ISDIR(ci->vfs_inode.i_mode)) {
501 dout(" marking %p NOT complete\n", &ci->vfs_inode);
502 __ceph_dir_clear_complete(ci);
503 }
504 }
505 }
506
507 /*
508 * Add a capability under the given MDS session.
509 *
510 * Caller should hold session snap_rwsem (read) and s_mutex.
511 *
512 * @fmode is the open file mode, if we are opening a file, otherwise
513 * it is < 0. (This is so we can atomically add the cap and add an
514 * open file reference to it.)
515 */
516 int ceph_add_cap(struct inode *inode,
517 struct ceph_mds_session *session, u64 cap_id,
518 int fmode, unsigned issued, unsigned wanted,
519 unsigned seq, unsigned mseq, u64 realmino, int flags,
520 struct ceph_cap_reservation *caps_reservation)
521 {
522 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
523 struct ceph_inode_info *ci = ceph_inode(inode);
524 struct ceph_cap *new_cap = NULL;
525 struct ceph_cap *cap;
526 int mds = session->s_mds;
527 int actual_wanted;
528
529 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
530 session->s_mds, cap_id, ceph_cap_string(issued), seq);
531
532 /*
533 * If we are opening the file, include file mode wanted bits
534 * in wanted.
535 */
536 if (fmode >= 0)
537 wanted |= ceph_caps_for_mode(fmode);
538
539 retry:
540 spin_lock(&ci->i_ceph_lock);
541 cap = __get_cap_for_mds(ci, mds);
542 if (!cap) {
543 if (new_cap) {
544 cap = new_cap;
545 new_cap = NULL;
546 } else {
547 spin_unlock(&ci->i_ceph_lock);
548 new_cap = get_cap(mdsc, caps_reservation);
549 if (new_cap == NULL)
550 return -ENOMEM;
551 goto retry;
552 }
553
554 cap->issued = 0;
555 cap->implemented = 0;
556 cap->mds = mds;
557 cap->mds_wanted = 0;
558 cap->mseq = 0;
559
560 cap->ci = ci;
561 __insert_cap_node(ci, cap);
562
563 /* clear out old exporting info? (i.e. on cap import) */
564 if (ci->i_cap_exporting_mds == mds) {
565 ci->i_cap_exporting_issued = 0;
566 ci->i_cap_exporting_mseq = 0;
567 ci->i_cap_exporting_mds = -1;
568 }
569
570 /* add to session cap list */
571 cap->session = session;
572 spin_lock(&session->s_cap_lock);
573 list_add_tail(&cap->session_caps, &session->s_caps);
574 session->s_nr_caps++;
575 spin_unlock(&session->s_cap_lock);
576 } else if (new_cap)
577 ceph_put_cap(mdsc, new_cap);
578
579 if (!ci->i_snap_realm) {
580 /*
581 * add this inode to the appropriate snap realm
582 */
583 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
584 realmino);
585 if (realm) {
586 ceph_get_snap_realm(mdsc, realm);
587 spin_lock(&realm->inodes_with_caps_lock);
588 ci->i_snap_realm = realm;
589 list_add(&ci->i_snap_realm_item,
590 &realm->inodes_with_caps);
591 spin_unlock(&realm->inodes_with_caps_lock);
592 } else {
593 pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
594 realmino);
595 WARN_ON(!realm);
596 }
597 }
598
599 __check_cap_issue(ci, cap, issued);
600
601 /*
602 * If we are issued caps we don't want, or the mds' wanted
603 * value appears to be off, queue a check so we'll release
604 * later and/or update the mds wanted value.
605 */
606 actual_wanted = __ceph_caps_wanted(ci);
607 if ((wanted & ~actual_wanted) ||
608 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
609 dout(" issued %s, mds wanted %s, actual %s, queueing\n",
610 ceph_cap_string(issued), ceph_cap_string(wanted),
611 ceph_cap_string(actual_wanted));
612 __cap_delay_requeue(mdsc, ci);
613 }
614
615 if (flags & CEPH_CAP_FLAG_AUTH)
616 ci->i_auth_cap = cap;
617 else if (ci->i_auth_cap == cap) {
618 ci->i_auth_cap = NULL;
619 spin_lock(&mdsc->cap_dirty_lock);
620 if (!list_empty(&ci->i_dirty_item)) {
621 dout(" moving %p to cap_dirty_migrating\n", inode);
622 list_move(&ci->i_dirty_item,
623 &mdsc->cap_dirty_migrating);
624 }
625 spin_unlock(&mdsc->cap_dirty_lock);
626 }
627
628 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
629 inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
630 ceph_cap_string(issued|cap->issued), seq, mds);
631 cap->cap_id = cap_id;
632 cap->issued = issued;
633 cap->implemented |= issued;
634 if (mseq > cap->mseq)
635 cap->mds_wanted = wanted;
636 else
637 cap->mds_wanted |= wanted;
638 cap->seq = seq;
639 cap->issue_seq = seq;
640 cap->mseq = mseq;
641 cap->cap_gen = session->s_cap_gen;
642
643 if (fmode >= 0)
644 __ceph_get_fmode(ci, fmode);
645 spin_unlock(&ci->i_ceph_lock);
646 wake_up_all(&ci->i_cap_wq);
647 return 0;
648 }
649
650 /*
651 * Return true if cap has not timed out and belongs to the current
652 * generation of the MDS session (i.e. has not gone 'stale' due to
653 * us losing touch with the mds).
654 */
655 static int __cap_is_valid(struct ceph_cap *cap)
656 {
657 unsigned long ttl;
658 u32 gen;
659
660 spin_lock(&cap->session->s_gen_ttl_lock);
661 gen = cap->session->s_cap_gen;
662 ttl = cap->session->s_cap_ttl;
663 spin_unlock(&cap->session->s_gen_ttl_lock);
664
665 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
666 dout("__cap_is_valid %p cap %p issued %s "
667 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
668 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
669 return 0;
670 }
671
672 return 1;
673 }
674
675 /*
676 * Return set of valid cap bits issued to us. Note that caps time
677 * out, and may be invalidated in bulk if the client session times out
678 * and session->s_cap_gen is bumped.
679 */
680 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
681 {
682 int have = ci->i_snap_caps | ci->i_cap_exporting_issued;
683 struct ceph_cap *cap;
684 struct rb_node *p;
685
686 if (implemented)
687 *implemented = 0;
688 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
689 cap = rb_entry(p, struct ceph_cap, ci_node);
690 if (!__cap_is_valid(cap))
691 continue;
692 dout("__ceph_caps_issued %p cap %p issued %s\n",
693 &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
694 have |= cap->issued;
695 if (implemented)
696 *implemented |= cap->implemented;
697 }
698 return have;
699 }
700
701 /*
702 * Get cap bits issued by caps other than @ocap
703 */
704 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
705 {
706 int have = ci->i_snap_caps;
707 struct ceph_cap *cap;
708 struct rb_node *p;
709
710 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
711 cap = rb_entry(p, struct ceph_cap, ci_node);
712 if (cap == ocap)
713 continue;
714 if (!__cap_is_valid(cap))
715 continue;
716 have |= cap->issued;
717 }
718 return have;
719 }
720
721 /*
722 * Move a cap to the end of the LRU (oldest caps at list head, newest
723 * at list tail).
724 */
725 static void __touch_cap(struct ceph_cap *cap)
726 {
727 struct ceph_mds_session *s = cap->session;
728
729 spin_lock(&s->s_cap_lock);
730 if (s->s_cap_iterator == NULL) {
731 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
732 s->s_mds);
733 list_move_tail(&cap->session_caps, &s->s_caps);
734 } else {
735 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
736 &cap->ci->vfs_inode, cap, s->s_mds);
737 }
738 spin_unlock(&s->s_cap_lock);
739 }
740
741 /*
742 * Check if we hold the given mask. If so, move the cap(s) to the
743 * front of their respective LRUs. (This is the preferred way for
744 * callers to check for caps they want.)
745 */
746 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
747 {
748 struct ceph_cap *cap;
749 struct rb_node *p;
750 int have = ci->i_snap_caps;
751
752 if ((have & mask) == mask) {
753 dout("__ceph_caps_issued_mask %p snap issued %s"
754 " (mask %s)\n", &ci->vfs_inode,
755 ceph_cap_string(have),
756 ceph_cap_string(mask));
757 return 1;
758 }
759
760 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
761 cap = rb_entry(p, struct ceph_cap, ci_node);
762 if (!__cap_is_valid(cap))
763 continue;
764 if ((cap->issued & mask) == mask) {
765 dout("__ceph_caps_issued_mask %p cap %p issued %s"
766 " (mask %s)\n", &ci->vfs_inode, cap,
767 ceph_cap_string(cap->issued),
768 ceph_cap_string(mask));
769 if (touch)
770 __touch_cap(cap);
771 return 1;
772 }
773
774 /* does a combination of caps satisfy mask? */
775 have |= cap->issued;
776 if ((have & mask) == mask) {
777 dout("__ceph_caps_issued_mask %p combo issued %s"
778 " (mask %s)\n", &ci->vfs_inode,
779 ceph_cap_string(cap->issued),
780 ceph_cap_string(mask));
781 if (touch) {
782 struct rb_node *q;
783
784 /* touch this + preceding caps */
785 __touch_cap(cap);
786 for (q = rb_first(&ci->i_caps); q != p;
787 q = rb_next(q)) {
788 cap = rb_entry(q, struct ceph_cap,
789 ci_node);
790 if (!__cap_is_valid(cap))
791 continue;
792 __touch_cap(cap);
793 }
794 }
795 return 1;
796 }
797 }
798
799 return 0;
800 }
801
802 /*
803 * Return true if mask caps are currently being revoked by an MDS.
804 */
805 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
806 {
807 struct inode *inode = &ci->vfs_inode;
808 struct ceph_cap *cap;
809 struct rb_node *p;
810 int ret = 0;
811
812 spin_lock(&ci->i_ceph_lock);
813 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
814 cap = rb_entry(p, struct ceph_cap, ci_node);
815 if (__cap_is_valid(cap) &&
816 (cap->implemented & ~cap->issued & mask)) {
817 ret = 1;
818 break;
819 }
820 }
821 spin_unlock(&ci->i_ceph_lock);
822 dout("ceph_caps_revoking %p %s = %d\n", inode,
823 ceph_cap_string(mask), ret);
824 return ret;
825 }
826
827 int __ceph_caps_used(struct ceph_inode_info *ci)
828 {
829 int used = 0;
830 if (ci->i_pin_ref)
831 used |= CEPH_CAP_PIN;
832 if (ci->i_rd_ref)
833 used |= CEPH_CAP_FILE_RD;
834 if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages)
835 used |= CEPH_CAP_FILE_CACHE;
836 if (ci->i_wr_ref)
837 used |= CEPH_CAP_FILE_WR;
838 if (ci->i_wb_ref || ci->i_wrbuffer_ref)
839 used |= CEPH_CAP_FILE_BUFFER;
840 return used;
841 }
842
843 /*
844 * wanted, by virtue of open file modes
845 */
846 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
847 {
848 int want = 0;
849 int mode;
850 for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++)
851 if (ci->i_nr_by_mode[mode])
852 want |= ceph_caps_for_mode(mode);
853 return want;
854 }
855
856 /*
857 * Return caps we have registered with the MDS(s) as 'wanted'.
858 */
859 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
860 {
861 struct ceph_cap *cap;
862 struct rb_node *p;
863 int mds_wanted = 0;
864
865 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
866 cap = rb_entry(p, struct ceph_cap, ci_node);
867 if (!__cap_is_valid(cap))
868 continue;
869 mds_wanted |= cap->mds_wanted;
870 }
871 return mds_wanted;
872 }
873
874 /*
875 * called under i_ceph_lock
876 */
877 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
878 {
879 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
880 }
881
882 /*
883 * Remove a cap. Take steps to deal with a racing iterate_session_caps.
884 *
885 * caller should hold i_ceph_lock.
886 * caller will not hold session s_mutex if called from destroy_inode.
887 */
888 void __ceph_remove_cap(struct ceph_cap *cap)
889 {
890 struct ceph_mds_session *session = cap->session;
891 struct ceph_inode_info *ci = cap->ci;
892 struct ceph_mds_client *mdsc =
893 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
894 int removed = 0;
895
896 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
897
898 /* remove from session list */
899 spin_lock(&session->s_cap_lock);
900 if (session->s_cap_iterator == cap) {
901 /* not yet, we are iterating over this very cap */
902 dout("__ceph_remove_cap delaying %p removal from session %p\n",
903 cap, cap->session);
904 } else {
905 list_del_init(&cap->session_caps);
906 session->s_nr_caps--;
907 cap->session = NULL;
908 removed = 1;
909 }
910 /* protect backpointer with s_cap_lock: see iterate_session_caps */
911 cap->ci = NULL;
912 spin_unlock(&session->s_cap_lock);
913
914 /* remove from inode list */
915 rb_erase(&cap->ci_node, &ci->i_caps);
916 if (ci->i_auth_cap == cap)
917 ci->i_auth_cap = NULL;
918
919 if (removed)
920 ceph_put_cap(mdsc, cap);
921
922 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
923 struct ceph_snap_realm *realm = ci->i_snap_realm;
924 spin_lock(&realm->inodes_with_caps_lock);
925 list_del_init(&ci->i_snap_realm_item);
926 ci->i_snap_realm_counter++;
927 ci->i_snap_realm = NULL;
928 spin_unlock(&realm->inodes_with_caps_lock);
929 ceph_put_snap_realm(mdsc, realm);
930 }
931 if (!__ceph_is_any_real_caps(ci))
932 __cap_delay_cancel(mdsc, ci);
933 }
934
935 /*
936 * Build and send a cap message to the given MDS.
937 *
938 * Caller should be holding s_mutex.
939 */
940 static int send_cap_msg(struct ceph_mds_session *session,
941 u64 ino, u64 cid, int op,
942 int caps, int wanted, int dirty,
943 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
944 u64 size, u64 max_size,
945 struct timespec *mtime, struct timespec *atime,
946 u64 time_warp_seq,
947 kuid_t uid, kgid_t gid, umode_t mode,
948 u64 xattr_version,
949 struct ceph_buffer *xattrs_buf,
950 u64 follows)
951 {
952 struct ceph_mds_caps *fc;
953 struct ceph_msg *msg;
954
955 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
956 " seq %u/%u mseq %u follows %lld size %llu/%llu"
957 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
958 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
959 ceph_cap_string(dirty),
960 seq, issue_seq, mseq, follows, size, max_size,
961 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
962
963 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS, false);
964 if (!msg)
965 return -ENOMEM;
966
967 msg->hdr.tid = cpu_to_le64(flush_tid);
968
969 fc = msg->front.iov_base;
970 memset(fc, 0, sizeof(*fc));
971
972 fc->cap_id = cpu_to_le64(cid);
973 fc->op = cpu_to_le32(op);
974 fc->seq = cpu_to_le32(seq);
975 fc->issue_seq = cpu_to_le32(issue_seq);
976 fc->migrate_seq = cpu_to_le32(mseq);
977 fc->caps = cpu_to_le32(caps);
978 fc->wanted = cpu_to_le32(wanted);
979 fc->dirty = cpu_to_le32(dirty);
980 fc->ino = cpu_to_le64(ino);
981 fc->snap_follows = cpu_to_le64(follows);
982
983 fc->size = cpu_to_le64(size);
984 fc->max_size = cpu_to_le64(max_size);
985 if (mtime)
986 ceph_encode_timespec(&fc->mtime, mtime);
987 if (atime)
988 ceph_encode_timespec(&fc->atime, atime);
989 fc->time_warp_seq = cpu_to_le32(time_warp_seq);
990
991 fc->uid = cpu_to_le32(from_kuid(&init_user_ns, uid));
992 fc->gid = cpu_to_le32(from_kgid(&init_user_ns, gid));
993 fc->mode = cpu_to_le32(mode);
994
995 fc->xattr_version = cpu_to_le64(xattr_version);
996 if (xattrs_buf) {
997 msg->middle = ceph_buffer_get(xattrs_buf);
998 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
999 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
1000 }
1001
1002 ceph_con_send(&session->s_con, msg);
1003 return 0;
1004 }
1005
1006 void __queue_cap_release(struct ceph_mds_session *session,
1007 u64 ino, u64 cap_id, u32 migrate_seq,
1008 u32 issue_seq)
1009 {
1010 struct ceph_msg *msg;
1011 struct ceph_mds_cap_release *head;
1012 struct ceph_mds_cap_item *item;
1013
1014 spin_lock(&session->s_cap_lock);
1015 BUG_ON(!session->s_num_cap_releases);
1016 msg = list_first_entry(&session->s_cap_releases,
1017 struct ceph_msg, list_head);
1018
1019 dout(" adding %llx release to mds%d msg %p (%d left)\n",
1020 ino, session->s_mds, msg, session->s_num_cap_releases);
1021
1022 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
1023 head = msg->front.iov_base;
1024 le32_add_cpu(&head->num, 1);
1025 item = msg->front.iov_base + msg->front.iov_len;
1026 item->ino = cpu_to_le64(ino);
1027 item->cap_id = cpu_to_le64(cap_id);
1028 item->migrate_seq = cpu_to_le32(migrate_seq);
1029 item->seq = cpu_to_le32(issue_seq);
1030
1031 session->s_num_cap_releases--;
1032
1033 msg->front.iov_len += sizeof(*item);
1034 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1035 dout(" release msg %p full\n", msg);
1036 list_move_tail(&msg->list_head, &session->s_cap_releases_done);
1037 } else {
1038 dout(" release msg %p at %d/%d (%d)\n", msg,
1039 (int)le32_to_cpu(head->num),
1040 (int)CEPH_CAPS_PER_RELEASE,
1041 (int)msg->front.iov_len);
1042 }
1043 spin_unlock(&session->s_cap_lock);
1044 }
1045
1046 /*
1047 * Queue cap releases when an inode is dropped from our cache. Since
1048 * inode is about to be destroyed, there is no need for i_ceph_lock.
1049 */
1050 void ceph_queue_caps_release(struct inode *inode)
1051 {
1052 struct ceph_inode_info *ci = ceph_inode(inode);
1053 struct rb_node *p;
1054
1055 p = rb_first(&ci->i_caps);
1056 while (p) {
1057 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
1058 struct ceph_mds_session *session = cap->session;
1059
1060 __queue_cap_release(session, ceph_ino(inode), cap->cap_id,
1061 cap->mseq, cap->issue_seq);
1062 p = rb_next(p);
1063 __ceph_remove_cap(cap);
1064 }
1065 }
1066
1067 /*
1068 * Send a cap msg on the given inode. Update our caps state, then
1069 * drop i_ceph_lock and send the message.
1070 *
1071 * Make note of max_size reported/requested from mds, revoked caps
1072 * that have now been implemented.
1073 *
1074 * Make half-hearted attempt ot to invalidate page cache if we are
1075 * dropping RDCACHE. Note that this will leave behind locked pages
1076 * that we'll then need to deal with elsewhere.
1077 *
1078 * Return non-zero if delayed release, or we experienced an error
1079 * such that the caller should requeue + retry later.
1080 *
1081 * called with i_ceph_lock, then drops it.
1082 * caller should hold snap_rwsem (read), s_mutex.
1083 */
1084 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1085 int op, int used, int want, int retain, int flushing,
1086 unsigned *pflush_tid)
1087 __releases(cap->ci->i_ceph_lock)
1088 {
1089 struct ceph_inode_info *ci = cap->ci;
1090 struct inode *inode = &ci->vfs_inode;
1091 u64 cap_id = cap->cap_id;
1092 int held, revoking, dropping, keep;
1093 u64 seq, issue_seq, mseq, time_warp_seq, follows;
1094 u64 size, max_size;
1095 struct timespec mtime, atime;
1096 int wake = 0;
1097 umode_t mode;
1098 kuid_t uid;
1099 kgid_t gid;
1100 struct ceph_mds_session *session;
1101 u64 xattr_version = 0;
1102 struct ceph_buffer *xattr_blob = NULL;
1103 int delayed = 0;
1104 u64 flush_tid = 0;
1105 int i;
1106 int ret;
1107
1108 held = cap->issued | cap->implemented;
1109 revoking = cap->implemented & ~cap->issued;
1110 retain &= ~revoking;
1111 dropping = cap->issued & ~retain;
1112
1113 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1114 inode, cap, cap->session,
1115 ceph_cap_string(held), ceph_cap_string(held & retain),
1116 ceph_cap_string(revoking));
1117 BUG_ON((retain & CEPH_CAP_PIN) == 0);
1118
1119 session = cap->session;
1120
1121 /* don't release wanted unless we've waited a bit. */
1122 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1123 time_before(jiffies, ci->i_hold_caps_min)) {
1124 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1125 ceph_cap_string(cap->issued),
1126 ceph_cap_string(cap->issued & retain),
1127 ceph_cap_string(cap->mds_wanted),
1128 ceph_cap_string(want));
1129 want |= cap->mds_wanted;
1130 retain |= cap->issued;
1131 delayed = 1;
1132 }
1133 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1134
1135 cap->issued &= retain; /* drop bits we don't want */
1136 if (cap->implemented & ~cap->issued) {
1137 /*
1138 * Wake up any waiters on wanted -> needed transition.
1139 * This is due to the weird transition from buffered
1140 * to sync IO... we need to flush dirty pages _before_
1141 * allowing sync writes to avoid reordering.
1142 */
1143 wake = 1;
1144 }
1145 cap->implemented &= cap->issued | used;
1146 cap->mds_wanted = want;
1147
1148 if (flushing) {
1149 /*
1150 * assign a tid for flush operations so we can avoid
1151 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1152 * clean type races. track latest tid for every bit
1153 * so we can handle flush AxFw, flush Fw, and have the
1154 * first ack clean Ax.
1155 */
1156 flush_tid = ++ci->i_cap_flush_last_tid;
1157 if (pflush_tid)
1158 *pflush_tid = flush_tid;
1159 dout(" cap_flush_tid %d\n", (int)flush_tid);
1160 for (i = 0; i < CEPH_CAP_BITS; i++)
1161 if (flushing & (1 << i))
1162 ci->i_cap_flush_tid[i] = flush_tid;
1163
1164 follows = ci->i_head_snapc->seq;
1165 } else {
1166 follows = 0;
1167 }
1168
1169 keep = cap->implemented;
1170 seq = cap->seq;
1171 issue_seq = cap->issue_seq;
1172 mseq = cap->mseq;
1173 size = inode->i_size;
1174 ci->i_reported_size = size;
1175 max_size = ci->i_wanted_max_size;
1176 ci->i_requested_max_size = max_size;
1177 mtime = inode->i_mtime;
1178 atime = inode->i_atime;
1179 time_warp_seq = ci->i_time_warp_seq;
1180 uid = inode->i_uid;
1181 gid = inode->i_gid;
1182 mode = inode->i_mode;
1183
1184 if (flushing & CEPH_CAP_XATTR_EXCL) {
1185 __ceph_build_xattrs_blob(ci);
1186 xattr_blob = ci->i_xattrs.blob;
1187 xattr_version = ci->i_xattrs.version;
1188 }
1189
1190 spin_unlock(&ci->i_ceph_lock);
1191
1192 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1193 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1194 size, max_size, &mtime, &atime, time_warp_seq,
1195 uid, gid, mode, xattr_version, xattr_blob,
1196 follows);
1197 if (ret < 0) {
1198 dout("error sending cap msg, must requeue %p\n", inode);
1199 delayed = 1;
1200 }
1201
1202 if (wake)
1203 wake_up_all(&ci->i_cap_wq);
1204
1205 return delayed;
1206 }
1207
1208 /*
1209 * When a snapshot is taken, clients accumulate dirty metadata on
1210 * inodes with capabilities in ceph_cap_snaps to describe the file
1211 * state at the time the snapshot was taken. This must be flushed
1212 * asynchronously back to the MDS once sync writes complete and dirty
1213 * data is written out.
1214 *
1215 * Unless @again is true, skip cap_snaps that were already sent to
1216 * the MDS (i.e., during this session).
1217 *
1218 * Called under i_ceph_lock. Takes s_mutex as needed.
1219 */
1220 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1221 struct ceph_mds_session **psession,
1222 int again)
1223 __releases(ci->i_ceph_lock)
1224 __acquires(ci->i_ceph_lock)
1225 {
1226 struct inode *inode = &ci->vfs_inode;
1227 int mds;
1228 struct ceph_cap_snap *capsnap;
1229 u32 mseq;
1230 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
1231 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1232 session->s_mutex */
1233 u64 next_follows = 0; /* keep track of how far we've gotten through the
1234 i_cap_snaps list, and skip these entries next time
1235 around to avoid an infinite loop */
1236
1237 if (psession)
1238 session = *psession;
1239
1240 dout("__flush_snaps %p\n", inode);
1241 retry:
1242 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1243 /* avoid an infiniute loop after retry */
1244 if (capsnap->follows < next_follows)
1245 continue;
1246 /*
1247 * we need to wait for sync writes to complete and for dirty
1248 * pages to be written out.
1249 */
1250 if (capsnap->dirty_pages || capsnap->writing)
1251 break;
1252
1253 /*
1254 * if cap writeback already occurred, we should have dropped
1255 * the capsnap in ceph_put_wrbuffer_cap_refs.
1256 */
1257 BUG_ON(capsnap->dirty == 0);
1258
1259 /* pick mds, take s_mutex */
1260 if (ci->i_auth_cap == NULL) {
1261 dout("no auth cap (migrating?), doing nothing\n");
1262 goto out;
1263 }
1264
1265 /* only flush each capsnap once */
1266 if (!again && !list_empty(&capsnap->flushing_item)) {
1267 dout("already flushed %p, skipping\n", capsnap);
1268 continue;
1269 }
1270
1271 mds = ci->i_auth_cap->session->s_mds;
1272 mseq = ci->i_auth_cap->mseq;
1273
1274 if (session && session->s_mds != mds) {
1275 dout("oops, wrong session %p mutex\n", session);
1276 mutex_unlock(&session->s_mutex);
1277 ceph_put_mds_session(session);
1278 session = NULL;
1279 }
1280 if (!session) {
1281 spin_unlock(&ci->i_ceph_lock);
1282 mutex_lock(&mdsc->mutex);
1283 session = __ceph_lookup_mds_session(mdsc, mds);
1284 mutex_unlock(&mdsc->mutex);
1285 if (session) {
1286 dout("inverting session/ino locks on %p\n",
1287 session);
1288 mutex_lock(&session->s_mutex);
1289 }
1290 /*
1291 * if session == NULL, we raced against a cap
1292 * deletion or migration. retry, and we'll
1293 * get a better @mds value next time.
1294 */
1295 spin_lock(&ci->i_ceph_lock);
1296 goto retry;
1297 }
1298
1299 capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1300 atomic_inc(&capsnap->nref);
1301 if (!list_empty(&capsnap->flushing_item))
1302 list_del_init(&capsnap->flushing_item);
1303 list_add_tail(&capsnap->flushing_item,
1304 &session->s_cap_snaps_flushing);
1305 spin_unlock(&ci->i_ceph_lock);
1306
1307 dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n",
1308 inode, capsnap, capsnap->follows, capsnap->flush_tid);
1309 send_cap_msg(session, ceph_vino(inode).ino, 0,
1310 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1311 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1312 capsnap->size, 0,
1313 &capsnap->mtime, &capsnap->atime,
1314 capsnap->time_warp_seq,
1315 capsnap->uid, capsnap->gid, capsnap->mode,
1316 capsnap->xattr_version, capsnap->xattr_blob,
1317 capsnap->follows);
1318
1319 next_follows = capsnap->follows + 1;
1320 ceph_put_cap_snap(capsnap);
1321
1322 spin_lock(&ci->i_ceph_lock);
1323 goto retry;
1324 }
1325
1326 /* we flushed them all; remove this inode from the queue */
1327 spin_lock(&mdsc->snap_flush_lock);
1328 list_del_init(&ci->i_snap_flush_item);
1329 spin_unlock(&mdsc->snap_flush_lock);
1330
1331 out:
1332 if (psession)
1333 *psession = session;
1334 else if (session) {
1335 mutex_unlock(&session->s_mutex);
1336 ceph_put_mds_session(session);
1337 }
1338 }
1339
1340 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1341 {
1342 spin_lock(&ci->i_ceph_lock);
1343 __ceph_flush_snaps(ci, NULL, 0);
1344 spin_unlock(&ci->i_ceph_lock);
1345 }
1346
1347 /*
1348 * Mark caps dirty. If inode is newly dirty, return the dirty flags.
1349 * Caller is then responsible for calling __mark_inode_dirty with the
1350 * returned flags value.
1351 */
1352 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1353 {
1354 struct ceph_mds_client *mdsc =
1355 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
1356 struct inode *inode = &ci->vfs_inode;
1357 int was = ci->i_dirty_caps;
1358 int dirty = 0;
1359
1360 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1361 ceph_cap_string(mask), ceph_cap_string(was),
1362 ceph_cap_string(was | mask));
1363 ci->i_dirty_caps |= mask;
1364 if (was == 0) {
1365 if (!ci->i_head_snapc)
1366 ci->i_head_snapc = ceph_get_snap_context(
1367 ci->i_snap_realm->cached_context);
1368 dout(" inode %p now dirty snapc %p auth cap %p\n",
1369 &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap);
1370 BUG_ON(!list_empty(&ci->i_dirty_item));
1371 spin_lock(&mdsc->cap_dirty_lock);
1372 if (ci->i_auth_cap)
1373 list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1374 else
1375 list_add(&ci->i_dirty_item,
1376 &mdsc->cap_dirty_migrating);
1377 spin_unlock(&mdsc->cap_dirty_lock);
1378 if (ci->i_flushing_caps == 0) {
1379 ihold(inode);
1380 dirty |= I_DIRTY_SYNC;
1381 }
1382 }
1383 BUG_ON(list_empty(&ci->i_dirty_item));
1384 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1385 (mask & CEPH_CAP_FILE_BUFFER))
1386 dirty |= I_DIRTY_DATASYNC;
1387 __cap_delay_requeue(mdsc, ci);
1388 return dirty;
1389 }
1390
1391 /*
1392 * Add dirty inode to the flushing list. Assigned a seq number so we
1393 * can wait for caps to flush without starving.
1394 *
1395 * Called under i_ceph_lock.
1396 */
1397 static int __mark_caps_flushing(struct inode *inode,
1398 struct ceph_mds_session *session)
1399 {
1400 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1401 struct ceph_inode_info *ci = ceph_inode(inode);
1402 int flushing;
1403
1404 BUG_ON(ci->i_dirty_caps == 0);
1405 BUG_ON(list_empty(&ci->i_dirty_item));
1406
1407 flushing = ci->i_dirty_caps;
1408 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1409 ceph_cap_string(flushing),
1410 ceph_cap_string(ci->i_flushing_caps),
1411 ceph_cap_string(ci->i_flushing_caps | flushing));
1412 ci->i_flushing_caps |= flushing;
1413 ci->i_dirty_caps = 0;
1414 dout(" inode %p now !dirty\n", inode);
1415
1416 spin_lock(&mdsc->cap_dirty_lock);
1417 list_del_init(&ci->i_dirty_item);
1418
1419 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1420 if (list_empty(&ci->i_flushing_item)) {
1421 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1422 mdsc->num_cap_flushing++;
1423 dout(" inode %p now flushing seq %lld\n", inode,
1424 ci->i_cap_flush_seq);
1425 } else {
1426 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1427 dout(" inode %p now flushing (more) seq %lld\n", inode,
1428 ci->i_cap_flush_seq);
1429 }
1430 spin_unlock(&mdsc->cap_dirty_lock);
1431
1432 return flushing;
1433 }
1434
1435 /*
1436 * try to invalidate mapping pages without blocking.
1437 */
1438 static int try_nonblocking_invalidate(struct inode *inode)
1439 {
1440 struct ceph_inode_info *ci = ceph_inode(inode);
1441 u32 invalidating_gen = ci->i_rdcache_gen;
1442
1443 spin_unlock(&ci->i_ceph_lock);
1444 invalidate_mapping_pages(&inode->i_data, 0, -1);
1445 spin_lock(&ci->i_ceph_lock);
1446
1447 if (inode->i_data.nrpages == 0 &&
1448 invalidating_gen == ci->i_rdcache_gen) {
1449 /* success. */
1450 dout("try_nonblocking_invalidate %p success\n", inode);
1451 /* save any racing async invalidate some trouble */
1452 ci->i_rdcache_revoking = ci->i_rdcache_gen - 1;
1453 return 0;
1454 }
1455 dout("try_nonblocking_invalidate %p failed\n", inode);
1456 return -1;
1457 }
1458
1459 /*
1460 * Swiss army knife function to examine currently used and wanted
1461 * versus held caps. Release, flush, ack revoked caps to mds as
1462 * appropriate.
1463 *
1464 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1465 * cap release further.
1466 * CHECK_CAPS_AUTHONLY - we should only check the auth cap
1467 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1468 * further delay.
1469 */
1470 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1471 struct ceph_mds_session *session)
1472 {
1473 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode);
1474 struct ceph_mds_client *mdsc = fsc->mdsc;
1475 struct inode *inode = &ci->vfs_inode;
1476 struct ceph_cap *cap;
1477 int file_wanted, used, cap_used;
1478 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */
1479 int issued, implemented, want, retain, revoking, flushing = 0;
1480 int mds = -1; /* keep track of how far we've gone through i_caps list
1481 to avoid an infinite loop on retry */
1482 struct rb_node *p;
1483 int tried_invalidate = 0;
1484 int delayed = 0, sent = 0, force_requeue = 0, num;
1485 int queue_invalidate = 0;
1486 int is_delayed = flags & CHECK_CAPS_NODELAY;
1487
1488 /* if we are unmounting, flush any unused caps immediately. */
1489 if (mdsc->stopping)
1490 is_delayed = 1;
1491
1492 spin_lock(&ci->i_ceph_lock);
1493
1494 if (ci->i_ceph_flags & CEPH_I_FLUSH)
1495 flags |= CHECK_CAPS_FLUSH;
1496
1497 /* flush snaps first time around only */
1498 if (!list_empty(&ci->i_cap_snaps))
1499 __ceph_flush_snaps(ci, &session, 0);
1500 goto retry_locked;
1501 retry:
1502 spin_lock(&ci->i_ceph_lock);
1503 retry_locked:
1504 file_wanted = __ceph_caps_file_wanted(ci);
1505 used = __ceph_caps_used(ci);
1506 want = file_wanted | used;
1507 issued = __ceph_caps_issued(ci, &implemented);
1508 revoking = implemented & ~issued;
1509
1510 retain = want | CEPH_CAP_PIN;
1511 if (!mdsc->stopping && inode->i_nlink > 0) {
1512 if (want) {
1513 retain |= CEPH_CAP_ANY; /* be greedy */
1514 } else {
1515 retain |= CEPH_CAP_ANY_SHARED;
1516 /*
1517 * keep RD only if we didn't have the file open RW,
1518 * because then the mds would revoke it anyway to
1519 * journal max_size=0.
1520 */
1521 if (ci->i_max_size == 0)
1522 retain |= CEPH_CAP_ANY_RD;
1523 }
1524 }
1525
1526 dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1527 " issued %s revoking %s retain %s %s%s%s\n", inode,
1528 ceph_cap_string(file_wanted),
1529 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1530 ceph_cap_string(ci->i_flushing_caps),
1531 ceph_cap_string(issued), ceph_cap_string(revoking),
1532 ceph_cap_string(retain),
1533 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1534 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1535 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1536
1537 /*
1538 * If we no longer need to hold onto old our caps, and we may
1539 * have cached pages, but don't want them, then try to invalidate.
1540 * If we fail, it's because pages are locked.... try again later.
1541 */
1542 if ((!is_delayed || mdsc->stopping) &&
1543 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */
1544 inode->i_data.nrpages && /* have cached pages */
1545 (file_wanted == 0 || /* no open files */
1546 (revoking & (CEPH_CAP_FILE_CACHE|
1547 CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */
1548 !tried_invalidate) {
1549 dout("check_caps trying to invalidate on %p\n", inode);
1550 if (try_nonblocking_invalidate(inode) < 0) {
1551 if (revoking & (CEPH_CAP_FILE_CACHE|
1552 CEPH_CAP_FILE_LAZYIO)) {
1553 dout("check_caps queuing invalidate\n");
1554 queue_invalidate = 1;
1555 ci->i_rdcache_revoking = ci->i_rdcache_gen;
1556 } else {
1557 dout("check_caps failed to invalidate pages\n");
1558 /* we failed to invalidate pages. check these
1559 caps again later. */
1560 force_requeue = 1;
1561 __cap_set_timeouts(mdsc, ci);
1562 }
1563 }
1564 tried_invalidate = 1;
1565 goto retry_locked;
1566 }
1567
1568 num = 0;
1569 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1570 cap = rb_entry(p, struct ceph_cap, ci_node);
1571 num++;
1572
1573 /* avoid looping forever */
1574 if (mds >= cap->mds ||
1575 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1576 continue;
1577
1578 /* NOTE: no side-effects allowed, until we take s_mutex */
1579
1580 cap_used = used;
1581 if (ci->i_auth_cap && cap != ci->i_auth_cap)
1582 cap_used &= ~ci->i_auth_cap->issued;
1583
1584 revoking = cap->implemented & ~cap->issued;
1585 dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n",
1586 cap->mds, cap, ceph_cap_string(cap->issued),
1587 ceph_cap_string(cap_used),
1588 ceph_cap_string(cap->implemented),
1589 ceph_cap_string(revoking));
1590
1591 if (cap == ci->i_auth_cap &&
1592 (cap->issued & CEPH_CAP_FILE_WR)) {
1593 /* request larger max_size from MDS? */
1594 if (ci->i_wanted_max_size > ci->i_max_size &&
1595 ci->i_wanted_max_size > ci->i_requested_max_size) {
1596 dout("requesting new max_size\n");
1597 goto ack;
1598 }
1599
1600 /* approaching file_max? */
1601 if ((inode->i_size << 1) >= ci->i_max_size &&
1602 (ci->i_reported_size << 1) < ci->i_max_size) {
1603 dout("i_size approaching max_size\n");
1604 goto ack;
1605 }
1606 }
1607 /* flush anything dirty? */
1608 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1609 ci->i_dirty_caps) {
1610 dout("flushing dirty caps\n");
1611 goto ack;
1612 }
1613
1614 /* completed revocation? going down and there are no caps? */
1615 if (revoking && (revoking & cap_used) == 0) {
1616 dout("completed revocation of %s\n",
1617 ceph_cap_string(cap->implemented & ~cap->issued));
1618 goto ack;
1619 }
1620
1621 /* want more caps from mds? */
1622 if (want & ~(cap->mds_wanted | cap->issued))
1623 goto ack;
1624
1625 /* things we might delay */
1626 if ((cap->issued & ~retain) == 0 &&
1627 cap->mds_wanted == want)
1628 continue; /* nope, all good */
1629
1630 if (is_delayed)
1631 goto ack;
1632
1633 /* delay? */
1634 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1635 time_before(jiffies, ci->i_hold_caps_max)) {
1636 dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1637 ceph_cap_string(cap->issued),
1638 ceph_cap_string(cap->issued & retain),
1639 ceph_cap_string(cap->mds_wanted),
1640 ceph_cap_string(want));
1641 delayed++;
1642 continue;
1643 }
1644
1645 ack:
1646 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1647 dout(" skipping %p I_NOFLUSH set\n", inode);
1648 continue;
1649 }
1650
1651 if (session && session != cap->session) {
1652 dout("oops, wrong session %p mutex\n", session);
1653 mutex_unlock(&session->s_mutex);
1654 session = NULL;
1655 }
1656 if (!session) {
1657 session = cap->session;
1658 if (mutex_trylock(&session->s_mutex) == 0) {
1659 dout("inverting session/ino locks on %p\n",
1660 session);
1661 spin_unlock(&ci->i_ceph_lock);
1662 if (took_snap_rwsem) {
1663 up_read(&mdsc->snap_rwsem);
1664 took_snap_rwsem = 0;
1665 }
1666 mutex_lock(&session->s_mutex);
1667 goto retry;
1668 }
1669 }
1670 /* take snap_rwsem after session mutex */
1671 if (!took_snap_rwsem) {
1672 if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1673 dout("inverting snap/in locks on %p\n",
1674 inode);
1675 spin_unlock(&ci->i_ceph_lock);
1676 down_read(&mdsc->snap_rwsem);
1677 took_snap_rwsem = 1;
1678 goto retry;
1679 }
1680 took_snap_rwsem = 1;
1681 }
1682
1683 if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1684 flushing = __mark_caps_flushing(inode, session);
1685 else
1686 flushing = 0;
1687
1688 mds = cap->mds; /* remember mds, so we don't repeat */
1689 sent++;
1690
1691 /* __send_cap drops i_ceph_lock */
1692 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, cap_used,
1693 want, retain, flushing, NULL);
1694 goto retry; /* retake i_ceph_lock and restart our cap scan. */
1695 }
1696
1697 /*
1698 * Reschedule delayed caps release if we delayed anything,
1699 * otherwise cancel.
1700 */
1701 if (delayed && is_delayed)
1702 force_requeue = 1; /* __send_cap delayed release; requeue */
1703 if (!delayed && !is_delayed)
1704 __cap_delay_cancel(mdsc, ci);
1705 else if (!is_delayed || force_requeue)
1706 __cap_delay_requeue(mdsc, ci);
1707
1708 spin_unlock(&ci->i_ceph_lock);
1709
1710 if (queue_invalidate)
1711 ceph_queue_invalidate(inode);
1712
1713 if (session)
1714 mutex_unlock(&session->s_mutex);
1715 if (took_snap_rwsem)
1716 up_read(&mdsc->snap_rwsem);
1717 }
1718
1719 /*
1720 * Try to flush dirty caps back to the auth mds.
1721 */
1722 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1723 unsigned *flush_tid)
1724 {
1725 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1726 struct ceph_inode_info *ci = ceph_inode(inode);
1727 int unlock_session = session ? 0 : 1;
1728 int flushing = 0;
1729
1730 retry:
1731 spin_lock(&ci->i_ceph_lock);
1732 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1733 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
1734 goto out;
1735 }
1736 if (ci->i_dirty_caps && ci->i_auth_cap) {
1737 struct ceph_cap *cap = ci->i_auth_cap;
1738 int used = __ceph_caps_used(ci);
1739 int want = __ceph_caps_wanted(ci);
1740 int delayed;
1741
1742 if (!session) {
1743 spin_unlock(&ci->i_ceph_lock);
1744 session = cap->session;
1745 mutex_lock(&session->s_mutex);
1746 goto retry;
1747 }
1748 BUG_ON(session != cap->session);
1749 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1750 goto out;
1751
1752 flushing = __mark_caps_flushing(inode, session);
1753
1754 /* __send_cap drops i_ceph_lock */
1755 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1756 cap->issued | cap->implemented, flushing,
1757 flush_tid);
1758 if (!delayed)
1759 goto out_unlocked;
1760
1761 spin_lock(&ci->i_ceph_lock);
1762 __cap_delay_requeue(mdsc, ci);
1763 }
1764 out:
1765 spin_unlock(&ci->i_ceph_lock);
1766 out_unlocked:
1767 if (session && unlock_session)
1768 mutex_unlock(&session->s_mutex);
1769 return flushing;
1770 }
1771
1772 /*
1773 * Return true if we've flushed caps through the given flush_tid.
1774 */
1775 static int caps_are_flushed(struct inode *inode, unsigned tid)
1776 {
1777 struct ceph_inode_info *ci = ceph_inode(inode);
1778 int i, ret = 1;
1779
1780 spin_lock(&ci->i_ceph_lock);
1781 for (i = 0; i < CEPH_CAP_BITS; i++)
1782 if ((ci->i_flushing_caps & (1 << i)) &&
1783 ci->i_cap_flush_tid[i] <= tid) {
1784 /* still flushing this bit */
1785 ret = 0;
1786 break;
1787 }
1788 spin_unlock(&ci->i_ceph_lock);
1789 return ret;
1790 }
1791
1792 /*
1793 * Wait on any unsafe replies for the given inode. First wait on the
1794 * newest request, and make that the upper bound. Then, if there are
1795 * more requests, keep waiting on the oldest as long as it is still older
1796 * than the original request.
1797 */
1798 static void sync_write_wait(struct inode *inode)
1799 {
1800 struct ceph_inode_info *ci = ceph_inode(inode);
1801 struct list_head *head = &ci->i_unsafe_writes;
1802 struct ceph_osd_request *req;
1803 u64 last_tid;
1804
1805 spin_lock(&ci->i_unsafe_lock);
1806 if (list_empty(head))
1807 goto out;
1808
1809 /* set upper bound as _last_ entry in chain */
1810 req = list_entry(head->prev, struct ceph_osd_request,
1811 r_unsafe_item);
1812 last_tid = req->r_tid;
1813
1814 do {
1815 ceph_osdc_get_request(req);
1816 spin_unlock(&ci->i_unsafe_lock);
1817 dout("sync_write_wait on tid %llu (until %llu)\n",
1818 req->r_tid, last_tid);
1819 wait_for_completion(&req->r_safe_completion);
1820 spin_lock(&ci->i_unsafe_lock);
1821 ceph_osdc_put_request(req);
1822
1823 /*
1824 * from here on look at first entry in chain, since we
1825 * only want to wait for anything older than last_tid
1826 */
1827 if (list_empty(head))
1828 break;
1829 req = list_entry(head->next, struct ceph_osd_request,
1830 r_unsafe_item);
1831 } while (req->r_tid < last_tid);
1832 out:
1833 spin_unlock(&ci->i_unsafe_lock);
1834 }
1835
1836 int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1837 {
1838 struct inode *inode = file->f_mapping->host;
1839 struct ceph_inode_info *ci = ceph_inode(inode);
1840 unsigned flush_tid;
1841 int ret;
1842 int dirty;
1843
1844 dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1845 sync_write_wait(inode);
1846
1847 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
1848 if (ret < 0)
1849 return ret;
1850 mutex_lock(&inode->i_mutex);
1851
1852 dirty = try_flush_caps(inode, NULL, &flush_tid);
1853 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1854
1855 /*
1856 * only wait on non-file metadata writeback (the mds
1857 * can recover size and mtime, so we don't need to
1858 * wait for that)
1859 */
1860 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1861 dout("fsync waiting for flush_tid %u\n", flush_tid);
1862 ret = wait_event_interruptible(ci->i_cap_wq,
1863 caps_are_flushed(inode, flush_tid));
1864 }
1865
1866 dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1867 mutex_unlock(&inode->i_mutex);
1868 return ret;
1869 }
1870
1871 /*
1872 * Flush any dirty caps back to the mds. If we aren't asked to wait,
1873 * queue inode for flush but don't do so immediately, because we can
1874 * get by with fewer MDS messages if we wait for data writeback to
1875 * complete first.
1876 */
1877 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
1878 {
1879 struct ceph_inode_info *ci = ceph_inode(inode);
1880 unsigned flush_tid;
1881 int err = 0;
1882 int dirty;
1883 int wait = wbc->sync_mode == WB_SYNC_ALL;
1884
1885 dout("write_inode %p wait=%d\n", inode, wait);
1886 if (wait) {
1887 dirty = try_flush_caps(inode, NULL, &flush_tid);
1888 if (dirty)
1889 err = wait_event_interruptible(ci->i_cap_wq,
1890 caps_are_flushed(inode, flush_tid));
1891 } else {
1892 struct ceph_mds_client *mdsc =
1893 ceph_sb_to_client(inode->i_sb)->mdsc;
1894
1895 spin_lock(&ci->i_ceph_lock);
1896 if (__ceph_caps_dirty(ci))
1897 __cap_delay_requeue_front(mdsc, ci);
1898 spin_unlock(&ci->i_ceph_lock);
1899 }
1900 return err;
1901 }
1902
1903 /*
1904 * After a recovering MDS goes active, we need to resend any caps
1905 * we were flushing.
1906 *
1907 * Caller holds session->s_mutex.
1908 */
1909 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1910 struct ceph_mds_session *session)
1911 {
1912 struct ceph_cap_snap *capsnap;
1913
1914 dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1915 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1916 flushing_item) {
1917 struct ceph_inode_info *ci = capsnap->ci;
1918 struct inode *inode = &ci->vfs_inode;
1919 struct ceph_cap *cap;
1920
1921 spin_lock(&ci->i_ceph_lock);
1922 cap = ci->i_auth_cap;
1923 if (cap && cap->session == session) {
1924 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1925 cap, capsnap);
1926 __ceph_flush_snaps(ci, &session, 1);
1927 } else {
1928 pr_err("%p auth cap %p not mds%d ???\n", inode,
1929 cap, session->s_mds);
1930 }
1931 spin_unlock(&ci->i_ceph_lock);
1932 }
1933 }
1934
1935 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1936 struct ceph_mds_session *session)
1937 {
1938 struct ceph_inode_info *ci;
1939
1940 kick_flushing_capsnaps(mdsc, session);
1941
1942 dout("kick_flushing_caps mds%d\n", session->s_mds);
1943 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1944 struct inode *inode = &ci->vfs_inode;
1945 struct ceph_cap *cap;
1946 int delayed = 0;
1947
1948 spin_lock(&ci->i_ceph_lock);
1949 cap = ci->i_auth_cap;
1950 if (cap && cap->session == session) {
1951 dout("kick_flushing_caps %p cap %p %s\n", inode,
1952 cap, ceph_cap_string(ci->i_flushing_caps));
1953 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1954 __ceph_caps_used(ci),
1955 __ceph_caps_wanted(ci),
1956 cap->issued | cap->implemented,
1957 ci->i_flushing_caps, NULL);
1958 if (delayed) {
1959 spin_lock(&ci->i_ceph_lock);
1960 __cap_delay_requeue(mdsc, ci);
1961 spin_unlock(&ci->i_ceph_lock);
1962 }
1963 } else {
1964 pr_err("%p auth cap %p not mds%d ???\n", inode,
1965 cap, session->s_mds);
1966 spin_unlock(&ci->i_ceph_lock);
1967 }
1968 }
1969 }
1970
1971 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc,
1972 struct ceph_mds_session *session,
1973 struct inode *inode)
1974 {
1975 struct ceph_inode_info *ci = ceph_inode(inode);
1976 struct ceph_cap *cap;
1977 int delayed = 0;
1978
1979 spin_lock(&ci->i_ceph_lock);
1980 cap = ci->i_auth_cap;
1981 dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode,
1982 ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq);
1983 __ceph_flush_snaps(ci, &session, 1);
1984 if (ci->i_flushing_caps) {
1985 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1986 __ceph_caps_used(ci),
1987 __ceph_caps_wanted(ci),
1988 cap->issued | cap->implemented,
1989 ci->i_flushing_caps, NULL);
1990 if (delayed) {
1991 spin_lock(&ci->i_ceph_lock);
1992 __cap_delay_requeue(mdsc, ci);
1993 spin_unlock(&ci->i_ceph_lock);
1994 }
1995 } else {
1996 spin_unlock(&ci->i_ceph_lock);
1997 }
1998 }
1999
2000
2001 /*
2002 * Take references to capabilities we hold, so that we don't release
2003 * them to the MDS prematurely.
2004 *
2005 * Protected by i_ceph_lock.
2006 */
2007 static void __take_cap_refs(struct ceph_inode_info *ci, int got)
2008 {
2009 if (got & CEPH_CAP_PIN)
2010 ci->i_pin_ref++;
2011 if (got & CEPH_CAP_FILE_RD)
2012 ci->i_rd_ref++;
2013 if (got & CEPH_CAP_FILE_CACHE)
2014 ci->i_rdcache_ref++;
2015 if (got & CEPH_CAP_FILE_WR)
2016 ci->i_wr_ref++;
2017 if (got & CEPH_CAP_FILE_BUFFER) {
2018 if (ci->i_wb_ref == 0)
2019 ihold(&ci->vfs_inode);
2020 ci->i_wb_ref++;
2021 dout("__take_cap_refs %p wb %d -> %d (?)\n",
2022 &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref);
2023 }
2024 }
2025
2026 /*
2027 * Try to grab cap references. Specify those refs we @want, and the
2028 * minimal set we @need. Also include the larger offset we are writing
2029 * to (when applicable), and check against max_size here as well.
2030 * Note that caller is responsible for ensuring max_size increases are
2031 * requested from the MDS.
2032 */
2033 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
2034 int *got, loff_t endoff, int *check_max, int *err)
2035 {
2036 struct inode *inode = &ci->vfs_inode;
2037 int ret = 0;
2038 int have, implemented;
2039 int file_wanted;
2040
2041 dout("get_cap_refs %p need %s want %s\n", inode,
2042 ceph_cap_string(need), ceph_cap_string(want));
2043 spin_lock(&ci->i_ceph_lock);
2044
2045 /* make sure file is actually open */
2046 file_wanted = __ceph_caps_file_wanted(ci);
2047 if ((file_wanted & need) == 0) {
2048 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
2049 ceph_cap_string(need), ceph_cap_string(file_wanted));
2050 *err = -EBADF;
2051 ret = 1;
2052 goto out;
2053 }
2054
2055 /* finish pending truncate */
2056 while (ci->i_truncate_pending) {
2057 spin_unlock(&ci->i_ceph_lock);
2058 __ceph_do_pending_vmtruncate(inode, !(need & CEPH_CAP_FILE_WR));
2059 spin_lock(&ci->i_ceph_lock);
2060 }
2061
2062 if (need & CEPH_CAP_FILE_WR) {
2063 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
2064 dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
2065 inode, endoff, ci->i_max_size);
2066 if (endoff > ci->i_wanted_max_size) {
2067 *check_max = 1;
2068 ret = 1;
2069 }
2070 goto out;
2071 }
2072 /*
2073 * If a sync write is in progress, we must wait, so that we
2074 * can get a final snapshot value for size+mtime.
2075 */
2076 if (__ceph_have_pending_cap_snap(ci)) {
2077 dout("get_cap_refs %p cap_snap_pending\n", inode);
2078 goto out;
2079 }
2080 }
2081 have = __ceph_caps_issued(ci, &implemented);
2082
2083 if ((have & need) == need) {
2084 /*
2085 * Look at (implemented & ~have & not) so that we keep waiting
2086 * on transition from wanted -> needed caps. This is needed
2087 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
2088 * going before a prior buffered writeback happens.
2089 */
2090 int not = want & ~(have & need);
2091 int revoking = implemented & ~have;
2092 dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
2093 inode, ceph_cap_string(have), ceph_cap_string(not),
2094 ceph_cap_string(revoking));
2095 if ((revoking & not) == 0) {
2096 *got = need | (have & want);
2097 __take_cap_refs(ci, *got);
2098 ret = 1;
2099 }
2100 } else {
2101 dout("get_cap_refs %p have %s needed %s\n", inode,
2102 ceph_cap_string(have), ceph_cap_string(need));
2103 }
2104 out:
2105 spin_unlock(&ci->i_ceph_lock);
2106 dout("get_cap_refs %p ret %d got %s\n", inode,
2107 ret, ceph_cap_string(*got));
2108 return ret;
2109 }
2110
2111 /*
2112 * Check the offset we are writing up to against our current
2113 * max_size. If necessary, tell the MDS we want to write to
2114 * a larger offset.
2115 */
2116 static void check_max_size(struct inode *inode, loff_t endoff)
2117 {
2118 struct ceph_inode_info *ci = ceph_inode(inode);
2119 int check = 0;
2120
2121 /* do we need to explicitly request a larger max_size? */
2122 spin_lock(&ci->i_ceph_lock);
2123 if ((endoff >= ci->i_max_size ||
2124 endoff > (inode->i_size << 1)) &&
2125 endoff > ci->i_wanted_max_size) {
2126 dout("write %p at large endoff %llu, req max_size\n",
2127 inode, endoff);
2128 ci->i_wanted_max_size = endoff;
2129 check = 1;
2130 }
2131 spin_unlock(&ci->i_ceph_lock);
2132 if (check)
2133 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2134 }
2135
2136 /*
2137 * Wait for caps, and take cap references. If we can't get a WR cap
2138 * due to a small max_size, make sure we check_max_size (and possibly
2139 * ask the mds) so we don't get hung up indefinitely.
2140 */
2141 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
2142 loff_t endoff)
2143 {
2144 int check_max, ret, err;
2145
2146 retry:
2147 if (endoff > 0)
2148 check_max_size(&ci->vfs_inode, endoff);
2149 check_max = 0;
2150 err = 0;
2151 ret = wait_event_interruptible(ci->i_cap_wq,
2152 try_get_cap_refs(ci, need, want,
2153 got, endoff,
2154 &check_max, &err));
2155 if (err)
2156 ret = err;
2157 if (check_max)
2158 goto retry;
2159 return ret;
2160 }
2161
2162 /*
2163 * Take cap refs. Caller must already know we hold at least one ref
2164 * on the caps in question or we don't know this is safe.
2165 */
2166 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2167 {
2168 spin_lock(&ci->i_ceph_lock);
2169 __take_cap_refs(ci, caps);
2170 spin_unlock(&ci->i_ceph_lock);
2171 }
2172
2173 /*
2174 * Release cap refs.
2175 *
2176 * If we released the last ref on any given cap, call ceph_check_caps
2177 * to release (or schedule a release).
2178 *
2179 * If we are releasing a WR cap (from a sync write), finalize any affected
2180 * cap_snap, and wake up any waiters.
2181 */
2182 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2183 {
2184 struct inode *inode = &ci->vfs_inode;
2185 int last = 0, put = 0, flushsnaps = 0, wake = 0;
2186 struct ceph_cap_snap *capsnap;
2187
2188 spin_lock(&ci->i_ceph_lock);
2189 if (had & CEPH_CAP_PIN)
2190 --ci->i_pin_ref;
2191 if (had & CEPH_CAP_FILE_RD)
2192 if (--ci->i_rd_ref == 0)
2193 last++;
2194 if (had & CEPH_CAP_FILE_CACHE)
2195 if (--ci->i_rdcache_ref == 0)
2196 last++;
2197 if (had & CEPH_CAP_FILE_BUFFER) {
2198 if (--ci->i_wb_ref == 0) {
2199 last++;
2200 put++;
2201 }
2202 dout("put_cap_refs %p wb %d -> %d (?)\n",
2203 inode, ci->i_wb_ref+1, ci->i_wb_ref);
2204 }
2205 if (had & CEPH_CAP_FILE_WR)
2206 if (--ci->i_wr_ref == 0) {
2207 last++;
2208 if (!list_empty(&ci->i_cap_snaps)) {
2209 capsnap = list_first_entry(&ci->i_cap_snaps,
2210 struct ceph_cap_snap,
2211 ci_item);
2212 if (capsnap->writing) {
2213 capsnap->writing = 0;
2214 flushsnaps =
2215 __ceph_finish_cap_snap(ci,
2216 capsnap);
2217 wake = 1;
2218 }
2219 }
2220 }
2221 spin_unlock(&ci->i_ceph_lock);
2222
2223 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
2224 last ? " last" : "", put ? " put" : "");
2225
2226 if (last && !flushsnaps)
2227 ceph_check_caps(ci, 0, NULL);
2228 else if (flushsnaps)
2229 ceph_flush_snaps(ci);
2230 if (wake)
2231 wake_up_all(&ci->i_cap_wq);
2232 if (put)
2233 iput(inode);
2234 }
2235
2236 /*
2237 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2238 * context. Adjust per-snap dirty page accounting as appropriate.
2239 * Once all dirty data for a cap_snap is flushed, flush snapped file
2240 * metadata back to the MDS. If we dropped the last ref, call
2241 * ceph_check_caps.
2242 */
2243 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2244 struct ceph_snap_context *snapc)
2245 {
2246 struct inode *inode = &ci->vfs_inode;
2247 int last = 0;
2248 int complete_capsnap = 0;
2249 int drop_capsnap = 0;
2250 int found = 0;
2251 struct ceph_cap_snap *capsnap = NULL;
2252
2253 spin_lock(&ci->i_ceph_lock);
2254 ci->i_wrbuffer_ref -= nr;
2255 last = !ci->i_wrbuffer_ref;
2256
2257 if (ci->i_head_snapc == snapc) {
2258 ci->i_wrbuffer_ref_head -= nr;
2259 if (ci->i_wrbuffer_ref_head == 0 &&
2260 ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) {
2261 BUG_ON(!ci->i_head_snapc);
2262 ceph_put_snap_context(ci->i_head_snapc);
2263 ci->i_head_snapc = NULL;
2264 }
2265 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2266 inode,
2267 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2268 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2269 last ? " LAST" : "");
2270 } else {
2271 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2272 if (capsnap->context == snapc) {
2273 found = 1;
2274 break;
2275 }
2276 }
2277 BUG_ON(!found);
2278 capsnap->dirty_pages -= nr;
2279 if (capsnap->dirty_pages == 0) {
2280 complete_capsnap = 1;
2281 if (capsnap->dirty == 0)
2282 /* cap writeback completed before we created
2283 * the cap_snap; no FLUSHSNAP is needed */
2284 drop_capsnap = 1;
2285 }
2286 dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2287 " snap %lld %d/%d -> %d/%d %s%s%s\n",
2288 inode, capsnap, capsnap->context->seq,
2289 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2290 ci->i_wrbuffer_ref, capsnap->dirty_pages,
2291 last ? " (wrbuffer last)" : "",
2292 complete_capsnap ? " (complete capsnap)" : "",
2293 drop_capsnap ? " (drop capsnap)" : "");
2294 if (drop_capsnap) {
2295 ceph_put_snap_context(capsnap->context);
2296 list_del(&capsnap->ci_item);
2297 list_del(&capsnap->flushing_item);
2298 ceph_put_cap_snap(capsnap);
2299 }
2300 }
2301
2302 spin_unlock(&ci->i_ceph_lock);
2303
2304 if (last) {
2305 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2306 iput(inode);
2307 } else if (complete_capsnap) {
2308 ceph_flush_snaps(ci);
2309 wake_up_all(&ci->i_cap_wq);
2310 }
2311 if (drop_capsnap)
2312 iput(inode);
2313 }
2314
2315 /*
2316 * Handle a cap GRANT message from the MDS. (Note that a GRANT may
2317 * actually be a revocation if it specifies a smaller cap set.)
2318 *
2319 * caller holds s_mutex and i_ceph_lock, we drop both.
2320 *
2321 * return value:
2322 * 0 - ok
2323 * 1 - check_caps on auth cap only (writeback)
2324 * 2 - check_caps (ack revoke)
2325 */
2326 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2327 struct ceph_mds_session *session,
2328 struct ceph_cap *cap,
2329 struct ceph_buffer *xattr_buf)
2330 __releases(ci->i_ceph_lock)
2331 {
2332 struct ceph_inode_info *ci = ceph_inode(inode);
2333 int mds = session->s_mds;
2334 int seq = le32_to_cpu(grant->seq);
2335 int newcaps = le32_to_cpu(grant->caps);
2336 int issued, implemented, used, wanted, dirty;
2337 u64 size = le64_to_cpu(grant->size);
2338 u64 max_size = le64_to_cpu(grant->max_size);
2339 struct timespec mtime, atime, ctime;
2340 int check_caps = 0;
2341 int wake = 0;
2342 int writeback = 0;
2343 int revoked_rdcache = 0;
2344 int queue_invalidate = 0;
2345
2346 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2347 inode, cap, mds, seq, ceph_cap_string(newcaps));
2348 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2349 inode->i_size);
2350
2351 /*
2352 * If CACHE is being revoked, and we have no dirty buffers,
2353 * try to invalidate (once). (If there are dirty buffers, we
2354 * will invalidate _after_ writeback.)
2355 */
2356 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2357 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2358 !ci->i_wrbuffer_ref) {
2359 if (try_nonblocking_invalidate(inode) == 0) {
2360 revoked_rdcache = 1;
2361 } else {
2362 /* there were locked pages.. invalidate later
2363 in a separate thread. */
2364 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2365 queue_invalidate = 1;
2366 ci->i_rdcache_revoking = ci->i_rdcache_gen;
2367 }
2368 }
2369 }
2370
2371 /* side effects now are allowed */
2372
2373 issued = __ceph_caps_issued(ci, &implemented);
2374 issued |= implemented | __ceph_caps_dirty(ci);
2375
2376 cap->cap_gen = session->s_cap_gen;
2377
2378 __check_cap_issue(ci, cap, newcaps);
2379
2380 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2381 inode->i_mode = le32_to_cpu(grant->mode);
2382 inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid));
2383 inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid));
2384 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2385 from_kuid(&init_user_ns, inode->i_uid),
2386 from_kgid(&init_user_ns, inode->i_gid));
2387 }
2388
2389 if ((issued & CEPH_CAP_LINK_EXCL) == 0)
2390 set_nlink(inode, le32_to_cpu(grant->nlink));
2391
2392 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2393 int len = le32_to_cpu(grant->xattr_len);
2394 u64 version = le64_to_cpu(grant->xattr_version);
2395
2396 if (version > ci->i_xattrs.version) {
2397 dout(" got new xattrs v%llu on %p len %d\n",
2398 version, inode, len);
2399 if (ci->i_xattrs.blob)
2400 ceph_buffer_put(ci->i_xattrs.blob);
2401 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2402 ci->i_xattrs.version = version;
2403 }
2404 }
2405
2406 /* size/ctime/mtime/atime? */
2407 ceph_fill_file_size(inode, issued,
2408 le32_to_cpu(grant->truncate_seq),
2409 le64_to_cpu(grant->truncate_size), size);
2410 ceph_decode_timespec(&mtime, &grant->mtime);
2411 ceph_decode_timespec(&atime, &grant->atime);
2412 ceph_decode_timespec(&ctime, &grant->ctime);
2413 ceph_fill_file_time(inode, issued,
2414 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2415 &atime);
2416
2417 /* max size increase? */
2418 if (ci->i_auth_cap == cap && max_size != ci->i_max_size) {
2419 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2420 ci->i_max_size = max_size;
2421 if (max_size >= ci->i_wanted_max_size) {
2422 ci->i_wanted_max_size = 0; /* reset */
2423 ci->i_requested_max_size = 0;
2424 }
2425 wake = 1;
2426 }
2427
2428 /* check cap bits */
2429 wanted = __ceph_caps_wanted(ci);
2430 used = __ceph_caps_used(ci);
2431 dirty = __ceph_caps_dirty(ci);
2432 dout(" my wanted = %s, used = %s, dirty %s\n",
2433 ceph_cap_string(wanted),
2434 ceph_cap_string(used),
2435 ceph_cap_string(dirty));
2436 if (wanted != le32_to_cpu(grant->wanted)) {
2437 dout("mds wanted %s -> %s\n",
2438 ceph_cap_string(le32_to_cpu(grant->wanted)),
2439 ceph_cap_string(wanted));
2440 /* imported cap may not have correct mds_wanted */
2441 if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT)
2442 check_caps = 1;
2443 }
2444
2445 cap->seq = seq;
2446
2447 /* file layout may have changed */
2448 ci->i_layout = grant->layout;
2449
2450 /* revocation, grant, or no-op? */
2451 if (cap->issued & ~newcaps) {
2452 int revoking = cap->issued & ~newcaps;
2453
2454 dout("revocation: %s -> %s (revoking %s)\n",
2455 ceph_cap_string(cap->issued),
2456 ceph_cap_string(newcaps),
2457 ceph_cap_string(revoking));
2458 if (revoking & used & CEPH_CAP_FILE_BUFFER)
2459 writeback = 1; /* initiate writeback; will delay ack */
2460 else if (revoking == CEPH_CAP_FILE_CACHE &&
2461 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2462 queue_invalidate)
2463 ; /* do nothing yet, invalidation will be queued */
2464 else if (cap == ci->i_auth_cap)
2465 check_caps = 1; /* check auth cap only */
2466 else
2467 check_caps = 2; /* check all caps */
2468 cap->issued = newcaps;
2469 cap->implemented |= newcaps;
2470 } else if (cap->issued == newcaps) {
2471 dout("caps unchanged: %s -> %s\n",
2472 ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2473 } else {
2474 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2475 ceph_cap_string(newcaps));
2476 cap->issued = newcaps;
2477 cap->implemented |= newcaps; /* add bits only, to
2478 * avoid stepping on a
2479 * pending revocation */
2480 wake = 1;
2481 }
2482 BUG_ON(cap->issued & ~cap->implemented);
2483
2484 spin_unlock(&ci->i_ceph_lock);
2485 if (writeback)
2486 /*
2487 * queue inode for writeback: we can't actually call
2488 * filemap_write_and_wait, etc. from message handler
2489 * context.
2490 */
2491 ceph_queue_writeback(inode);
2492 if (queue_invalidate)
2493 ceph_queue_invalidate(inode);
2494 if (wake)
2495 wake_up_all(&ci->i_cap_wq);
2496
2497 if (check_caps == 1)
2498 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2499 session);
2500 else if (check_caps == 2)
2501 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
2502 else
2503 mutex_unlock(&session->s_mutex);
2504 }
2505
2506 /*
2507 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2508 * MDS has been safely committed.
2509 */
2510 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2511 struct ceph_mds_caps *m,
2512 struct ceph_mds_session *session,
2513 struct ceph_cap *cap)
2514 __releases(ci->i_ceph_lock)
2515 {
2516 struct ceph_inode_info *ci = ceph_inode(inode);
2517 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
2518 unsigned seq = le32_to_cpu(m->seq);
2519 int dirty = le32_to_cpu(m->dirty);
2520 int cleaned = 0;
2521 int drop = 0;
2522 int i;
2523
2524 for (i = 0; i < CEPH_CAP_BITS; i++)
2525 if ((dirty & (1 << i)) &&
2526 flush_tid == ci->i_cap_flush_tid[i])
2527 cleaned |= 1 << i;
2528
2529 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2530 " flushing %s -> %s\n",
2531 inode, session->s_mds, seq, ceph_cap_string(dirty),
2532 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2533 ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2534
2535 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2536 goto out;
2537
2538 ci->i_flushing_caps &= ~cleaned;
2539
2540 spin_lock(&mdsc->cap_dirty_lock);
2541 if (ci->i_flushing_caps == 0) {
2542 list_del_init(&ci->i_flushing_item);
2543 if (!list_empty(&session->s_cap_flushing))
2544 dout(" mds%d still flushing cap on %p\n",
2545 session->s_mds,
2546 &list_entry(session->s_cap_flushing.next,
2547 struct ceph_inode_info,
2548 i_flushing_item)->vfs_inode);
2549 mdsc->num_cap_flushing--;
2550 wake_up_all(&mdsc->cap_flushing_wq);
2551 dout(" inode %p now !flushing\n", inode);
2552
2553 if (ci->i_dirty_caps == 0) {
2554 dout(" inode %p now clean\n", inode);
2555 BUG_ON(!list_empty(&ci->i_dirty_item));
2556 drop = 1;
2557 if (ci->i_wrbuffer_ref_head == 0) {
2558 BUG_ON(!ci->i_head_snapc);
2559 ceph_put_snap_context(ci->i_head_snapc);
2560 ci->i_head_snapc = NULL;
2561 }
2562 } else {
2563 BUG_ON(list_empty(&ci->i_dirty_item));
2564 }
2565 }
2566 spin_unlock(&mdsc->cap_dirty_lock);
2567 wake_up_all(&ci->i_cap_wq);
2568
2569 out:
2570 spin_unlock(&ci->i_ceph_lock);
2571 if (drop)
2572 iput(inode);
2573 }
2574
2575 /*
2576 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can
2577 * throw away our cap_snap.
2578 *
2579 * Caller hold s_mutex.
2580 */
2581 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2582 struct ceph_mds_caps *m,
2583 struct ceph_mds_session *session)
2584 {
2585 struct ceph_inode_info *ci = ceph_inode(inode);
2586 u64 follows = le64_to_cpu(m->snap_follows);
2587 struct ceph_cap_snap *capsnap;
2588 int drop = 0;
2589
2590 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2591 inode, ci, session->s_mds, follows);
2592
2593 spin_lock(&ci->i_ceph_lock);
2594 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2595 if (capsnap->follows == follows) {
2596 if (capsnap->flush_tid != flush_tid) {
2597 dout(" cap_snap %p follows %lld tid %lld !="
2598 " %lld\n", capsnap, follows,
2599 flush_tid, capsnap->flush_tid);
2600 break;
2601 }
2602 WARN_ON(capsnap->dirty_pages || capsnap->writing);
2603 dout(" removing %p cap_snap %p follows %lld\n",
2604 inode, capsnap, follows);
2605 ceph_put_snap_context(capsnap->context);
2606 list_del(&capsnap->ci_item);
2607 list_del(&capsnap->flushing_item);
2608 ceph_put_cap_snap(capsnap);
2609 drop = 1;
2610 break;
2611 } else {
2612 dout(" skipping cap_snap %p follows %lld\n",
2613 capsnap, capsnap->follows);
2614 }
2615 }
2616 spin_unlock(&ci->i_ceph_lock);
2617 if (drop)
2618 iput(inode);
2619 }
2620
2621 /*
2622 * Handle TRUNC from MDS, indicating file truncation.
2623 *
2624 * caller hold s_mutex.
2625 */
2626 static void handle_cap_trunc(struct inode *inode,
2627 struct ceph_mds_caps *trunc,
2628 struct ceph_mds_session *session)
2629 __releases(ci->i_ceph_lock)
2630 {
2631 struct ceph_inode_info *ci = ceph_inode(inode);
2632 int mds = session->s_mds;
2633 int seq = le32_to_cpu(trunc->seq);
2634 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2635 u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2636 u64 size = le64_to_cpu(trunc->size);
2637 int implemented = 0;
2638 int dirty = __ceph_caps_dirty(ci);
2639 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2640 int queue_trunc = 0;
2641
2642 issued |= implemented | dirty;
2643
2644 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2645 inode, mds, seq, truncate_size, truncate_seq);
2646 queue_trunc = ceph_fill_file_size(inode, issued,
2647 truncate_seq, truncate_size, size);
2648 spin_unlock(&ci->i_ceph_lock);
2649
2650 if (queue_trunc)
2651 ceph_queue_vmtruncate(inode);
2652 }
2653
2654 /*
2655 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a
2656 * different one. If we are the most recent migration we've seen (as
2657 * indicated by mseq), make note of the migrating cap bits for the
2658 * duration (until we see the corresponding IMPORT).
2659 *
2660 * caller holds s_mutex
2661 */
2662 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2663 struct ceph_mds_session *session,
2664 int *open_target_sessions)
2665 {
2666 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
2667 struct ceph_inode_info *ci = ceph_inode(inode);
2668 int mds = session->s_mds;
2669 unsigned mseq = le32_to_cpu(ex->migrate_seq);
2670 struct ceph_cap *cap = NULL, *t;
2671 struct rb_node *p;
2672 int remember = 1;
2673
2674 dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2675 inode, ci, mds, mseq);
2676
2677 spin_lock(&ci->i_ceph_lock);
2678
2679 /* make sure we haven't seen a higher mseq */
2680 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2681 t = rb_entry(p, struct ceph_cap, ci_node);
2682 if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2683 dout(" higher mseq on cap from mds%d\n",
2684 t->session->s_mds);
2685 remember = 0;
2686 }
2687 if (t->session->s_mds == mds)
2688 cap = t;
2689 }
2690
2691 if (cap) {
2692 if (remember) {
2693 /* make note */
2694 ci->i_cap_exporting_mds = mds;
2695 ci->i_cap_exporting_mseq = mseq;
2696 ci->i_cap_exporting_issued = cap->issued;
2697
2698 /*
2699 * make sure we have open sessions with all possible
2700 * export targets, so that we get the matching IMPORT
2701 */
2702 *open_target_sessions = 1;
2703
2704 /*
2705 * we can't flush dirty caps that we've seen the
2706 * EXPORT but no IMPORT for
2707 */
2708 spin_lock(&mdsc->cap_dirty_lock);
2709 if (!list_empty(&ci->i_dirty_item)) {
2710 dout(" moving %p to cap_dirty_migrating\n",
2711 inode);
2712 list_move(&ci->i_dirty_item,
2713 &mdsc->cap_dirty_migrating);
2714 }
2715 spin_unlock(&mdsc->cap_dirty_lock);
2716 }
2717 __ceph_remove_cap(cap);
2718 }
2719 /* else, we already released it */
2720
2721 spin_unlock(&ci->i_ceph_lock);
2722 }
2723
2724 /*
2725 * Handle cap IMPORT. If there are temp bits from an older EXPORT,
2726 * clean them up.
2727 *
2728 * caller holds s_mutex.
2729 */
2730 static void handle_cap_import(struct ceph_mds_client *mdsc,
2731 struct inode *inode, struct ceph_mds_caps *im,
2732 struct ceph_mds_session *session,
2733 void *snaptrace, int snaptrace_len)
2734 {
2735 struct ceph_inode_info *ci = ceph_inode(inode);
2736 int mds = session->s_mds;
2737 unsigned issued = le32_to_cpu(im->caps);
2738 unsigned wanted = le32_to_cpu(im->wanted);
2739 unsigned seq = le32_to_cpu(im->seq);
2740 unsigned mseq = le32_to_cpu(im->migrate_seq);
2741 u64 realmino = le64_to_cpu(im->realm);
2742 u64 cap_id = le64_to_cpu(im->cap_id);
2743
2744 if (ci->i_cap_exporting_mds >= 0 &&
2745 ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2746 dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2747 " - cleared exporting from mds%d\n",
2748 inode, ci, mds, mseq,
2749 ci->i_cap_exporting_mds);
2750 ci->i_cap_exporting_issued = 0;
2751 ci->i_cap_exporting_mseq = 0;
2752 ci->i_cap_exporting_mds = -1;
2753
2754 spin_lock(&mdsc->cap_dirty_lock);
2755 if (!list_empty(&ci->i_dirty_item)) {
2756 dout(" moving %p back to cap_dirty\n", inode);
2757 list_move(&ci->i_dirty_item, &mdsc->cap_dirty);
2758 }
2759 spin_unlock(&mdsc->cap_dirty_lock);
2760 } else {
2761 dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2762 inode, ci, mds, mseq);
2763 }
2764
2765 down_write(&mdsc->snap_rwsem);
2766 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2767 false);
2768 downgrade_write(&mdsc->snap_rwsem);
2769 ceph_add_cap(inode, session, cap_id, -1,
2770 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2771 NULL /* no caps context */);
2772 kick_flushing_inode_caps(mdsc, session, inode);
2773 up_read(&mdsc->snap_rwsem);
2774
2775 /* make sure we re-request max_size, if necessary */
2776 spin_lock(&ci->i_ceph_lock);
2777 ci->i_wanted_max_size = 0; /* reset */
2778 ci->i_requested_max_size = 0;
2779 spin_unlock(&ci->i_ceph_lock);
2780 }
2781
2782 /*
2783 * Handle a caps message from the MDS.
2784 *
2785 * Identify the appropriate session, inode, and call the right handler
2786 * based on the cap op.
2787 */
2788 void ceph_handle_caps(struct ceph_mds_session *session,
2789 struct ceph_msg *msg)
2790 {
2791 struct ceph_mds_client *mdsc = session->s_mdsc;
2792 struct super_block *sb = mdsc->fsc->sb;
2793 struct inode *inode;
2794 struct ceph_inode_info *ci;
2795 struct ceph_cap *cap;
2796 struct ceph_mds_caps *h;
2797 int mds = session->s_mds;
2798 int op;
2799 u32 seq, mseq;
2800 struct ceph_vino vino;
2801 u64 cap_id;
2802 u64 size, max_size;
2803 u64 tid;
2804 void *snaptrace;
2805 size_t snaptrace_len;
2806 void *flock;
2807 u32 flock_len;
2808 int open_target_sessions = 0;
2809
2810 dout("handle_caps from mds%d\n", mds);
2811
2812 /* decode */
2813 tid = le64_to_cpu(msg->hdr.tid);
2814 if (msg->front.iov_len < sizeof(*h))
2815 goto bad;
2816 h = msg->front.iov_base;
2817 op = le32_to_cpu(h->op);
2818 vino.ino = le64_to_cpu(h->ino);
2819 vino.snap = CEPH_NOSNAP;
2820 cap_id = le64_to_cpu(h->cap_id);
2821 seq = le32_to_cpu(h->seq);
2822 mseq = le32_to_cpu(h->migrate_seq);
2823 size = le64_to_cpu(h->size);
2824 max_size = le64_to_cpu(h->max_size);
2825
2826 snaptrace = h + 1;
2827 snaptrace_len = le32_to_cpu(h->snap_trace_len);
2828
2829 if (le16_to_cpu(msg->hdr.version) >= 2) {
2830 void *p, *end;
2831
2832 p = snaptrace + snaptrace_len;
2833 end = msg->front.iov_base + msg->front.iov_len;
2834 ceph_decode_32_safe(&p, end, flock_len, bad);
2835 flock = p;
2836 } else {
2837 flock = NULL;
2838 flock_len = 0;
2839 }
2840
2841 mutex_lock(&session->s_mutex);
2842 session->s_seq++;
2843 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2844 (unsigned)seq);
2845
2846 if (op == CEPH_CAP_OP_IMPORT)
2847 ceph_add_cap_releases(mdsc, session);
2848
2849 /* lookup ino */
2850 inode = ceph_find_inode(sb, vino);
2851 ci = ceph_inode(inode);
2852 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2853 vino.snap, inode);
2854 if (!inode) {
2855 dout(" i don't have ino %llx\n", vino.ino);
2856
2857 if (op == CEPH_CAP_OP_IMPORT)
2858 __queue_cap_release(session, vino.ino, cap_id,
2859 mseq, seq);
2860 goto flush_cap_releases;
2861 }
2862
2863 /* these will work even if we don't have a cap yet */
2864 switch (op) {
2865 case CEPH_CAP_OP_FLUSHSNAP_ACK:
2866 handle_cap_flushsnap_ack(inode, tid, h, session);
2867 goto done;
2868
2869 case CEPH_CAP_OP_EXPORT:
2870 handle_cap_export(inode, h, session, &open_target_sessions);
2871 goto done;
2872
2873 case CEPH_CAP_OP_IMPORT:
2874 handle_cap_import(mdsc, inode, h, session,
2875 snaptrace, snaptrace_len);
2876 }
2877
2878 /* the rest require a cap */
2879 spin_lock(&ci->i_ceph_lock);
2880 cap = __get_cap_for_mds(ceph_inode(inode), mds);
2881 if (!cap) {
2882 dout(" no cap on %p ino %llx.%llx from mds%d\n",
2883 inode, ceph_ino(inode), ceph_snap(inode), mds);
2884 spin_unlock(&ci->i_ceph_lock);
2885 goto flush_cap_releases;
2886 }
2887
2888 /* note that each of these drops i_ceph_lock for us */
2889 switch (op) {
2890 case CEPH_CAP_OP_REVOKE:
2891 case CEPH_CAP_OP_GRANT:
2892 case CEPH_CAP_OP_IMPORT:
2893 handle_cap_grant(inode, h, session, cap, msg->middle);
2894 goto done_unlocked;
2895
2896 case CEPH_CAP_OP_FLUSH_ACK:
2897 handle_cap_flush_ack(inode, tid, h, session, cap);
2898 break;
2899
2900 case CEPH_CAP_OP_TRUNC:
2901 handle_cap_trunc(inode, h, session);
2902 break;
2903
2904 default:
2905 spin_unlock(&ci->i_ceph_lock);
2906 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2907 ceph_cap_op_name(op));
2908 }
2909
2910 goto done;
2911
2912 flush_cap_releases:
2913 /*
2914 * send any full release message to try to move things
2915 * along for the mds (who clearly thinks we still have this
2916 * cap).
2917 */
2918 ceph_add_cap_releases(mdsc, session);
2919 ceph_send_cap_releases(mdsc, session);
2920
2921 done:
2922 mutex_unlock(&session->s_mutex);
2923 done_unlocked:
2924 if (inode)
2925 iput(inode);
2926 if (open_target_sessions)
2927 ceph_mdsc_open_export_target_sessions(mdsc, session);
2928 return;
2929
2930 bad:
2931 pr_err("ceph_handle_caps: corrupt message\n");
2932 ceph_msg_dump(msg);
2933 return;
2934 }
2935
2936 /*
2937 * Delayed work handler to process end of delayed cap release LRU list.
2938 */
2939 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
2940 {
2941 struct ceph_inode_info *ci;
2942 int flags = CHECK_CAPS_NODELAY;
2943
2944 dout("check_delayed_caps\n");
2945 while (1) {
2946 spin_lock(&mdsc->cap_delay_lock);
2947 if (list_empty(&mdsc->cap_delay_list))
2948 break;
2949 ci = list_first_entry(&mdsc->cap_delay_list,
2950 struct ceph_inode_info,
2951 i_cap_delay_list);
2952 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
2953 time_before(jiffies, ci->i_hold_caps_max))
2954 break;
2955 list_del_init(&ci->i_cap_delay_list);
2956 spin_unlock(&mdsc->cap_delay_lock);
2957 dout("check_delayed_caps on %p\n", &ci->vfs_inode);
2958 ceph_check_caps(ci, flags, NULL);
2959 }
2960 spin_unlock(&mdsc->cap_delay_lock);
2961 }
2962
2963 /*
2964 * Flush all dirty caps to the mds
2965 */
2966 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
2967 {
2968 struct ceph_inode_info *ci;
2969 struct inode *inode;
2970
2971 dout("flush_dirty_caps\n");
2972 spin_lock(&mdsc->cap_dirty_lock);
2973 while (!list_empty(&mdsc->cap_dirty)) {
2974 ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info,
2975 i_dirty_item);
2976 inode = &ci->vfs_inode;
2977 ihold(inode);
2978 dout("flush_dirty_caps %p\n", inode);
2979 spin_unlock(&mdsc->cap_dirty_lock);
2980 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL);
2981 iput(inode);
2982 spin_lock(&mdsc->cap_dirty_lock);
2983 }
2984 spin_unlock(&mdsc->cap_dirty_lock);
2985 dout("flush_dirty_caps done\n");
2986 }
2987
2988 /*
2989 * Drop open file reference. If we were the last open file,
2990 * we may need to release capabilities to the MDS (or schedule
2991 * their delayed release).
2992 */
2993 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
2994 {
2995 struct inode *inode = &ci->vfs_inode;
2996 int last = 0;
2997
2998 spin_lock(&ci->i_ceph_lock);
2999 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
3000 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
3001 BUG_ON(ci->i_nr_by_mode[fmode] == 0);
3002 if (--ci->i_nr_by_mode[fmode] == 0)
3003 last++;
3004 spin_unlock(&ci->i_ceph_lock);
3005
3006 if (last && ci->i_vino.snap == CEPH_NOSNAP)
3007 ceph_check_caps(ci, 0, NULL);
3008 }
3009
3010 /*
3011 * Helpers for embedding cap and dentry lease releases into mds
3012 * requests.
3013 *
3014 * @force is used by dentry_release (below) to force inclusion of a
3015 * record for the directory inode, even when there aren't any caps to
3016 * drop.
3017 */
3018 int ceph_encode_inode_release(void **p, struct inode *inode,
3019 int mds, int drop, int unless, int force)
3020 {
3021 struct ceph_inode_info *ci = ceph_inode(inode);
3022 struct ceph_cap *cap;
3023 struct ceph_mds_request_release *rel = *p;
3024 int used, dirty;
3025 int ret = 0;
3026
3027 spin_lock(&ci->i_ceph_lock);
3028 used = __ceph_caps_used(ci);
3029 dirty = __ceph_caps_dirty(ci);
3030
3031 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
3032 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
3033 ceph_cap_string(unless));
3034
3035 /* only drop unused, clean caps */
3036 drop &= ~(used | dirty);
3037
3038 cap = __get_cap_for_mds(ci, mds);
3039 if (cap && __cap_is_valid(cap)) {
3040 if (force ||
3041 ((cap->issued & drop) &&
3042 (cap->issued & unless) == 0)) {
3043 if ((cap->issued & drop) &&
3044 (cap->issued & unless) == 0) {
3045 dout("encode_inode_release %p cap %p %s -> "
3046 "%s\n", inode, cap,
3047 ceph_cap_string(cap->issued),
3048 ceph_cap_string(cap->issued & ~drop));
3049 cap->issued &= ~drop;
3050 cap->implemented &= ~drop;
3051 if (ci->i_ceph_flags & CEPH_I_NODELAY) {
3052 int wanted = __ceph_caps_wanted(ci);
3053 dout(" wanted %s -> %s (act %s)\n",
3054 ceph_cap_string(cap->mds_wanted),
3055 ceph_cap_string(cap->mds_wanted &
3056 ~wanted),
3057 ceph_cap_string(wanted));
3058 cap->mds_wanted &= wanted;
3059 }
3060 } else {
3061 dout("encode_inode_release %p cap %p %s"
3062 " (force)\n", inode, cap,
3063 ceph_cap_string(cap->issued));
3064 }
3065
3066 rel->ino = cpu_to_le64(ceph_ino(inode));
3067 rel->cap_id = cpu_to_le64(cap->cap_id);
3068 rel->seq = cpu_to_le32(cap->seq);
3069 rel->issue_seq = cpu_to_le32(cap->issue_seq),
3070 rel->mseq = cpu_to_le32(cap->mseq);
3071 rel->caps = cpu_to_le32(cap->issued);
3072 rel->wanted = cpu_to_le32(cap->mds_wanted);
3073 rel->dname_len = 0;
3074 rel->dname_seq = 0;
3075 *p += sizeof(*rel);
3076 ret = 1;
3077 } else {
3078 dout("encode_inode_release %p cap %p %s\n",
3079 inode, cap, ceph_cap_string(cap->issued));
3080 }
3081 }
3082 spin_unlock(&ci->i_ceph_lock);
3083 return ret;
3084 }
3085
3086 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
3087 int mds, int drop, int unless)
3088 {
3089 struct inode *dir = dentry->d_parent->d_inode;
3090 struct ceph_mds_request_release *rel = *p;
3091 struct ceph_dentry_info *di = ceph_dentry(dentry);
3092 int force = 0;
3093 int ret;
3094
3095 /*
3096 * force an record for the directory caps if we have a dentry lease.
3097 * this is racy (can't take i_ceph_lock and d_lock together), but it
3098 * doesn't have to be perfect; the mds will revoke anything we don't
3099 * release.
3100 */
3101 spin_lock(&dentry->d_lock);
3102 if (di->lease_session && di->lease_session->s_mds == mds)
3103 force = 1;
3104 spin_unlock(&dentry->d_lock);
3105
3106 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
3107
3108 spin_lock(&dentry->d_lock);
3109 if (ret && di->lease_session && di->lease_session->s_mds == mds) {
3110 dout("encode_dentry_release %p mds%d seq %d\n",
3111 dentry, mds, (int)di->lease_seq);
3112 rel->dname_len = cpu_to_le32(dentry->d_name.len);
3113 memcpy(*p, dentry->d_name.name, dentry->d_name.len);
3114 *p += dentry->d_name.len;
3115 rel->dname_seq = cpu_to_le32(di->lease_seq);
3116 __ceph_mdsc_drop_dentry_lease(dentry);
3117 }
3118 spin_unlock(&dentry->d_lock);
3119 return ret;
3120 }