Merge branches 'acpi-spcr', 'acpi-osi', 'acpi-bus', 'acpi-scan' and 'acpi-misc'
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / fs / btrfs / volumes.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
51 .tolerated_failures = 1,
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
60 .tolerated_failures = 1,
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
69 .tolerated_failures = 0,
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
78 .tolerated_failures = 0,
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
87 .tolerated_failures = 0,
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
96 .tolerated_failures = 1,
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
105 .tolerated_failures = 2,
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 /*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143 enum btrfs_map_op op,
144 u64 logical, u64 *length,
145 struct btrfs_bio **bbio_ret,
146 int mirror_num, int need_raid_map);
147
148 DEFINE_MUTEX(uuid_mutex);
149 static LIST_HEAD(fs_uuids);
150 struct list_head *btrfs_get_fs_uuids(void)
151 {
152 return &fs_uuids;
153 }
154
155 static struct btrfs_fs_devices *__alloc_fs_devices(void)
156 {
157 struct btrfs_fs_devices *fs_devs;
158
159 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
160 if (!fs_devs)
161 return ERR_PTR(-ENOMEM);
162
163 mutex_init(&fs_devs->device_list_mutex);
164
165 INIT_LIST_HEAD(&fs_devs->devices);
166 INIT_LIST_HEAD(&fs_devs->resized_devices);
167 INIT_LIST_HEAD(&fs_devs->alloc_list);
168 INIT_LIST_HEAD(&fs_devs->list);
169
170 return fs_devs;
171 }
172
173 /**
174 * alloc_fs_devices - allocate struct btrfs_fs_devices
175 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
176 * generated.
177 *
178 * Return: a pointer to a new &struct btrfs_fs_devices on success;
179 * ERR_PTR() on error. Returned struct is not linked onto any lists and
180 * can be destroyed with kfree() right away.
181 */
182 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
183 {
184 struct btrfs_fs_devices *fs_devs;
185
186 fs_devs = __alloc_fs_devices();
187 if (IS_ERR(fs_devs))
188 return fs_devs;
189
190 if (fsid)
191 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
192 else
193 generate_random_uuid(fs_devs->fsid);
194
195 return fs_devs;
196 }
197
198 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
199 {
200 struct btrfs_device *device;
201 WARN_ON(fs_devices->opened);
202 while (!list_empty(&fs_devices->devices)) {
203 device = list_entry(fs_devices->devices.next,
204 struct btrfs_device, dev_list);
205 list_del(&device->dev_list);
206 rcu_string_free(device->name);
207 kfree(device);
208 }
209 kfree(fs_devices);
210 }
211
212 static void btrfs_kobject_uevent(struct block_device *bdev,
213 enum kobject_action action)
214 {
215 int ret;
216
217 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
218 if (ret)
219 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
220 action,
221 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
222 &disk_to_dev(bdev->bd_disk)->kobj);
223 }
224
225 void btrfs_cleanup_fs_uuids(void)
226 {
227 struct btrfs_fs_devices *fs_devices;
228
229 while (!list_empty(&fs_uuids)) {
230 fs_devices = list_entry(fs_uuids.next,
231 struct btrfs_fs_devices, list);
232 list_del(&fs_devices->list);
233 free_fs_devices(fs_devices);
234 }
235 }
236
237 static struct btrfs_device *__alloc_device(void)
238 {
239 struct btrfs_device *dev;
240
241 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
242 if (!dev)
243 return ERR_PTR(-ENOMEM);
244
245 INIT_LIST_HEAD(&dev->dev_list);
246 INIT_LIST_HEAD(&dev->dev_alloc_list);
247 INIT_LIST_HEAD(&dev->resized_list);
248
249 spin_lock_init(&dev->io_lock);
250
251 spin_lock_init(&dev->reada_lock);
252 atomic_set(&dev->reada_in_flight, 0);
253 atomic_set(&dev->dev_stats_ccnt, 0);
254 btrfs_device_data_ordered_init(dev);
255 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
256 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
257
258 return dev;
259 }
260
261 static noinline struct btrfs_device *__find_device(struct list_head *head,
262 u64 devid, u8 *uuid)
263 {
264 struct btrfs_device *dev;
265
266 list_for_each_entry(dev, head, dev_list) {
267 if (dev->devid == devid &&
268 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
269 return dev;
270 }
271 }
272 return NULL;
273 }
274
275 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
276 {
277 struct btrfs_fs_devices *fs_devices;
278
279 list_for_each_entry(fs_devices, &fs_uuids, list) {
280 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
281 return fs_devices;
282 }
283 return NULL;
284 }
285
286 static int
287 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
288 int flush, struct block_device **bdev,
289 struct buffer_head **bh)
290 {
291 int ret;
292
293 *bdev = blkdev_get_by_path(device_path, flags, holder);
294
295 if (IS_ERR(*bdev)) {
296 ret = PTR_ERR(*bdev);
297 goto error;
298 }
299
300 if (flush)
301 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
302 ret = set_blocksize(*bdev, 4096);
303 if (ret) {
304 blkdev_put(*bdev, flags);
305 goto error;
306 }
307 invalidate_bdev(*bdev);
308 *bh = btrfs_read_dev_super(*bdev);
309 if (IS_ERR(*bh)) {
310 ret = PTR_ERR(*bh);
311 blkdev_put(*bdev, flags);
312 goto error;
313 }
314
315 return 0;
316
317 error:
318 *bdev = NULL;
319 *bh = NULL;
320 return ret;
321 }
322
323 static void requeue_list(struct btrfs_pending_bios *pending_bios,
324 struct bio *head, struct bio *tail)
325 {
326
327 struct bio *old_head;
328
329 old_head = pending_bios->head;
330 pending_bios->head = head;
331 if (pending_bios->tail)
332 tail->bi_next = old_head;
333 else
334 pending_bios->tail = tail;
335 }
336
337 /*
338 * we try to collect pending bios for a device so we don't get a large
339 * number of procs sending bios down to the same device. This greatly
340 * improves the schedulers ability to collect and merge the bios.
341 *
342 * But, it also turns into a long list of bios to process and that is sure
343 * to eventually make the worker thread block. The solution here is to
344 * make some progress and then put this work struct back at the end of
345 * the list if the block device is congested. This way, multiple devices
346 * can make progress from a single worker thread.
347 */
348 static noinline void run_scheduled_bios(struct btrfs_device *device)
349 {
350 struct btrfs_fs_info *fs_info = device->fs_info;
351 struct bio *pending;
352 struct backing_dev_info *bdi;
353 struct btrfs_pending_bios *pending_bios;
354 struct bio *tail;
355 struct bio *cur;
356 int again = 0;
357 unsigned long num_run;
358 unsigned long batch_run = 0;
359 unsigned long limit;
360 unsigned long last_waited = 0;
361 int force_reg = 0;
362 int sync_pending = 0;
363 struct blk_plug plug;
364
365 /*
366 * this function runs all the bios we've collected for
367 * a particular device. We don't want to wander off to
368 * another device without first sending all of these down.
369 * So, setup a plug here and finish it off before we return
370 */
371 blk_start_plug(&plug);
372
373 bdi = device->bdev->bd_bdi;
374 limit = btrfs_async_submit_limit(fs_info);
375 limit = limit * 2 / 3;
376
377 loop:
378 spin_lock(&device->io_lock);
379
380 loop_lock:
381 num_run = 0;
382
383 /* take all the bios off the list at once and process them
384 * later on (without the lock held). But, remember the
385 * tail and other pointers so the bios can be properly reinserted
386 * into the list if we hit congestion
387 */
388 if (!force_reg && device->pending_sync_bios.head) {
389 pending_bios = &device->pending_sync_bios;
390 force_reg = 1;
391 } else {
392 pending_bios = &device->pending_bios;
393 force_reg = 0;
394 }
395
396 pending = pending_bios->head;
397 tail = pending_bios->tail;
398 WARN_ON(pending && !tail);
399
400 /*
401 * if pending was null this time around, no bios need processing
402 * at all and we can stop. Otherwise it'll loop back up again
403 * and do an additional check so no bios are missed.
404 *
405 * device->running_pending is used to synchronize with the
406 * schedule_bio code.
407 */
408 if (device->pending_sync_bios.head == NULL &&
409 device->pending_bios.head == NULL) {
410 again = 0;
411 device->running_pending = 0;
412 } else {
413 again = 1;
414 device->running_pending = 1;
415 }
416
417 pending_bios->head = NULL;
418 pending_bios->tail = NULL;
419
420 spin_unlock(&device->io_lock);
421
422 while (pending) {
423
424 rmb();
425 /* we want to work on both lists, but do more bios on the
426 * sync list than the regular list
427 */
428 if ((num_run > 32 &&
429 pending_bios != &device->pending_sync_bios &&
430 device->pending_sync_bios.head) ||
431 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
432 device->pending_bios.head)) {
433 spin_lock(&device->io_lock);
434 requeue_list(pending_bios, pending, tail);
435 goto loop_lock;
436 }
437
438 cur = pending;
439 pending = pending->bi_next;
440 cur->bi_next = NULL;
441
442 /*
443 * atomic_dec_return implies a barrier for waitqueue_active
444 */
445 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
446 waitqueue_active(&fs_info->async_submit_wait))
447 wake_up(&fs_info->async_submit_wait);
448
449 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
450
451 /*
452 * if we're doing the sync list, record that our
453 * plug has some sync requests on it
454 *
455 * If we're doing the regular list and there are
456 * sync requests sitting around, unplug before
457 * we add more
458 */
459 if (pending_bios == &device->pending_sync_bios) {
460 sync_pending = 1;
461 } else if (sync_pending) {
462 blk_finish_plug(&plug);
463 blk_start_plug(&plug);
464 sync_pending = 0;
465 }
466
467 btrfsic_submit_bio(cur);
468 num_run++;
469 batch_run++;
470
471 cond_resched();
472
473 /*
474 * we made progress, there is more work to do and the bdi
475 * is now congested. Back off and let other work structs
476 * run instead
477 */
478 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
479 fs_info->fs_devices->open_devices > 1) {
480 struct io_context *ioc;
481
482 ioc = current->io_context;
483
484 /*
485 * the main goal here is that we don't want to
486 * block if we're going to be able to submit
487 * more requests without blocking.
488 *
489 * This code does two great things, it pokes into
490 * the elevator code from a filesystem _and_
491 * it makes assumptions about how batching works.
492 */
493 if (ioc && ioc->nr_batch_requests > 0 &&
494 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
495 (last_waited == 0 ||
496 ioc->last_waited == last_waited)) {
497 /*
498 * we want to go through our batch of
499 * requests and stop. So, we copy out
500 * the ioc->last_waited time and test
501 * against it before looping
502 */
503 last_waited = ioc->last_waited;
504 cond_resched();
505 continue;
506 }
507 spin_lock(&device->io_lock);
508 requeue_list(pending_bios, pending, tail);
509 device->running_pending = 1;
510
511 spin_unlock(&device->io_lock);
512 btrfs_queue_work(fs_info->submit_workers,
513 &device->work);
514 goto done;
515 }
516 /* unplug every 64 requests just for good measure */
517 if (batch_run % 64 == 0) {
518 blk_finish_plug(&plug);
519 blk_start_plug(&plug);
520 sync_pending = 0;
521 }
522 }
523
524 cond_resched();
525 if (again)
526 goto loop;
527
528 spin_lock(&device->io_lock);
529 if (device->pending_bios.head || device->pending_sync_bios.head)
530 goto loop_lock;
531 spin_unlock(&device->io_lock);
532
533 done:
534 blk_finish_plug(&plug);
535 }
536
537 static void pending_bios_fn(struct btrfs_work *work)
538 {
539 struct btrfs_device *device;
540
541 device = container_of(work, struct btrfs_device, work);
542 run_scheduled_bios(device);
543 }
544
545
546 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
547 {
548 struct btrfs_fs_devices *fs_devs;
549 struct btrfs_device *dev;
550
551 if (!cur_dev->name)
552 return;
553
554 list_for_each_entry(fs_devs, &fs_uuids, list) {
555 int del = 1;
556
557 if (fs_devs->opened)
558 continue;
559 if (fs_devs->seeding)
560 continue;
561
562 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
563
564 if (dev == cur_dev)
565 continue;
566 if (!dev->name)
567 continue;
568
569 /*
570 * Todo: This won't be enough. What if the same device
571 * comes back (with new uuid and) with its mapper path?
572 * But for now, this does help as mostly an admin will
573 * either use mapper or non mapper path throughout.
574 */
575 rcu_read_lock();
576 del = strcmp(rcu_str_deref(dev->name),
577 rcu_str_deref(cur_dev->name));
578 rcu_read_unlock();
579 if (!del)
580 break;
581 }
582
583 if (!del) {
584 /* delete the stale device */
585 if (fs_devs->num_devices == 1) {
586 btrfs_sysfs_remove_fsid(fs_devs);
587 list_del(&fs_devs->list);
588 free_fs_devices(fs_devs);
589 } else {
590 fs_devs->num_devices--;
591 list_del(&dev->dev_list);
592 rcu_string_free(dev->name);
593 kfree(dev);
594 }
595 break;
596 }
597 }
598 }
599
600 /*
601 * Add new device to list of registered devices
602 *
603 * Returns:
604 * 1 - first time device is seen
605 * 0 - device already known
606 * < 0 - error
607 */
608 static noinline int device_list_add(const char *path,
609 struct btrfs_super_block *disk_super,
610 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
611 {
612 struct btrfs_device *device;
613 struct btrfs_fs_devices *fs_devices;
614 struct rcu_string *name;
615 int ret = 0;
616 u64 found_transid = btrfs_super_generation(disk_super);
617
618 fs_devices = find_fsid(disk_super->fsid);
619 if (!fs_devices) {
620 fs_devices = alloc_fs_devices(disk_super->fsid);
621 if (IS_ERR(fs_devices))
622 return PTR_ERR(fs_devices);
623
624 list_add(&fs_devices->list, &fs_uuids);
625
626 device = NULL;
627 } else {
628 device = __find_device(&fs_devices->devices, devid,
629 disk_super->dev_item.uuid);
630 }
631
632 if (!device) {
633 if (fs_devices->opened)
634 return -EBUSY;
635
636 device = btrfs_alloc_device(NULL, &devid,
637 disk_super->dev_item.uuid);
638 if (IS_ERR(device)) {
639 /* we can safely leave the fs_devices entry around */
640 return PTR_ERR(device);
641 }
642
643 name = rcu_string_strdup(path, GFP_NOFS);
644 if (!name) {
645 kfree(device);
646 return -ENOMEM;
647 }
648 rcu_assign_pointer(device->name, name);
649
650 mutex_lock(&fs_devices->device_list_mutex);
651 list_add_rcu(&device->dev_list, &fs_devices->devices);
652 fs_devices->num_devices++;
653 mutex_unlock(&fs_devices->device_list_mutex);
654
655 ret = 1;
656 device->fs_devices = fs_devices;
657 } else if (!device->name || strcmp(device->name->str, path)) {
658 /*
659 * When FS is already mounted.
660 * 1. If you are here and if the device->name is NULL that
661 * means this device was missing at time of FS mount.
662 * 2. If you are here and if the device->name is different
663 * from 'path' that means either
664 * a. The same device disappeared and reappeared with
665 * different name. or
666 * b. The missing-disk-which-was-replaced, has
667 * reappeared now.
668 *
669 * We must allow 1 and 2a above. But 2b would be a spurious
670 * and unintentional.
671 *
672 * Further in case of 1 and 2a above, the disk at 'path'
673 * would have missed some transaction when it was away and
674 * in case of 2a the stale bdev has to be updated as well.
675 * 2b must not be allowed at all time.
676 */
677
678 /*
679 * For now, we do allow update to btrfs_fs_device through the
680 * btrfs dev scan cli after FS has been mounted. We're still
681 * tracking a problem where systems fail mount by subvolume id
682 * when we reject replacement on a mounted FS.
683 */
684 if (!fs_devices->opened && found_transid < device->generation) {
685 /*
686 * That is if the FS is _not_ mounted and if you
687 * are here, that means there is more than one
688 * disk with same uuid and devid.We keep the one
689 * with larger generation number or the last-in if
690 * generation are equal.
691 */
692 return -EEXIST;
693 }
694
695 name = rcu_string_strdup(path, GFP_NOFS);
696 if (!name)
697 return -ENOMEM;
698 rcu_string_free(device->name);
699 rcu_assign_pointer(device->name, name);
700 if (device->missing) {
701 fs_devices->missing_devices--;
702 device->missing = 0;
703 }
704 }
705
706 /*
707 * Unmount does not free the btrfs_device struct but would zero
708 * generation along with most of the other members. So just update
709 * it back. We need it to pick the disk with largest generation
710 * (as above).
711 */
712 if (!fs_devices->opened)
713 device->generation = found_transid;
714
715 /*
716 * if there is new btrfs on an already registered device,
717 * then remove the stale device entry.
718 */
719 if (ret > 0)
720 btrfs_free_stale_device(device);
721
722 *fs_devices_ret = fs_devices;
723
724 return ret;
725 }
726
727 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
728 {
729 struct btrfs_fs_devices *fs_devices;
730 struct btrfs_device *device;
731 struct btrfs_device *orig_dev;
732
733 fs_devices = alloc_fs_devices(orig->fsid);
734 if (IS_ERR(fs_devices))
735 return fs_devices;
736
737 mutex_lock(&orig->device_list_mutex);
738 fs_devices->total_devices = orig->total_devices;
739
740 /* We have held the volume lock, it is safe to get the devices. */
741 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
742 struct rcu_string *name;
743
744 device = btrfs_alloc_device(NULL, &orig_dev->devid,
745 orig_dev->uuid);
746 if (IS_ERR(device))
747 goto error;
748
749 /*
750 * This is ok to do without rcu read locked because we hold the
751 * uuid mutex so nothing we touch in here is going to disappear.
752 */
753 if (orig_dev->name) {
754 name = rcu_string_strdup(orig_dev->name->str,
755 GFP_KERNEL);
756 if (!name) {
757 kfree(device);
758 goto error;
759 }
760 rcu_assign_pointer(device->name, name);
761 }
762
763 list_add(&device->dev_list, &fs_devices->devices);
764 device->fs_devices = fs_devices;
765 fs_devices->num_devices++;
766 }
767 mutex_unlock(&orig->device_list_mutex);
768 return fs_devices;
769 error:
770 mutex_unlock(&orig->device_list_mutex);
771 free_fs_devices(fs_devices);
772 return ERR_PTR(-ENOMEM);
773 }
774
775 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
776 {
777 struct btrfs_device *device, *next;
778 struct btrfs_device *latest_dev = NULL;
779
780 mutex_lock(&uuid_mutex);
781 again:
782 /* This is the initialized path, it is safe to release the devices. */
783 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
784 if (device->in_fs_metadata) {
785 if (!device->is_tgtdev_for_dev_replace &&
786 (!latest_dev ||
787 device->generation > latest_dev->generation)) {
788 latest_dev = device;
789 }
790 continue;
791 }
792
793 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
794 /*
795 * In the first step, keep the device which has
796 * the correct fsid and the devid that is used
797 * for the dev_replace procedure.
798 * In the second step, the dev_replace state is
799 * read from the device tree and it is known
800 * whether the procedure is really active or
801 * not, which means whether this device is
802 * used or whether it should be removed.
803 */
804 if (step == 0 || device->is_tgtdev_for_dev_replace) {
805 continue;
806 }
807 }
808 if (device->bdev) {
809 blkdev_put(device->bdev, device->mode);
810 device->bdev = NULL;
811 fs_devices->open_devices--;
812 }
813 if (device->writeable) {
814 list_del_init(&device->dev_alloc_list);
815 device->writeable = 0;
816 if (!device->is_tgtdev_for_dev_replace)
817 fs_devices->rw_devices--;
818 }
819 list_del_init(&device->dev_list);
820 fs_devices->num_devices--;
821 rcu_string_free(device->name);
822 kfree(device);
823 }
824
825 if (fs_devices->seed) {
826 fs_devices = fs_devices->seed;
827 goto again;
828 }
829
830 fs_devices->latest_bdev = latest_dev->bdev;
831
832 mutex_unlock(&uuid_mutex);
833 }
834
835 static void __free_device(struct work_struct *work)
836 {
837 struct btrfs_device *device;
838
839 device = container_of(work, struct btrfs_device, rcu_work);
840 rcu_string_free(device->name);
841 kfree(device);
842 }
843
844 static void free_device(struct rcu_head *head)
845 {
846 struct btrfs_device *device;
847
848 device = container_of(head, struct btrfs_device, rcu);
849
850 INIT_WORK(&device->rcu_work, __free_device);
851 schedule_work(&device->rcu_work);
852 }
853
854 static void btrfs_close_bdev(struct btrfs_device *device)
855 {
856 if (device->bdev && device->writeable) {
857 sync_blockdev(device->bdev);
858 invalidate_bdev(device->bdev);
859 }
860
861 if (device->bdev)
862 blkdev_put(device->bdev, device->mode);
863 }
864
865 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
866 {
867 struct btrfs_fs_devices *fs_devices = device->fs_devices;
868 struct btrfs_device *new_device;
869 struct rcu_string *name;
870
871 if (device->bdev)
872 fs_devices->open_devices--;
873
874 if (device->writeable &&
875 device->devid != BTRFS_DEV_REPLACE_DEVID) {
876 list_del_init(&device->dev_alloc_list);
877 fs_devices->rw_devices--;
878 }
879
880 if (device->missing)
881 fs_devices->missing_devices--;
882
883 new_device = btrfs_alloc_device(NULL, &device->devid,
884 device->uuid);
885 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
886
887 /* Safe because we are under uuid_mutex */
888 if (device->name) {
889 name = rcu_string_strdup(device->name->str, GFP_NOFS);
890 BUG_ON(!name); /* -ENOMEM */
891 rcu_assign_pointer(new_device->name, name);
892 }
893
894 list_replace_rcu(&device->dev_list, &new_device->dev_list);
895 new_device->fs_devices = device->fs_devices;
896 }
897
898 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
899 {
900 struct btrfs_device *device, *tmp;
901 struct list_head pending_put;
902
903 INIT_LIST_HEAD(&pending_put);
904
905 if (--fs_devices->opened > 0)
906 return 0;
907
908 mutex_lock(&fs_devices->device_list_mutex);
909 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
910 btrfs_prepare_close_one_device(device);
911 list_add(&device->dev_list, &pending_put);
912 }
913 mutex_unlock(&fs_devices->device_list_mutex);
914
915 /*
916 * btrfs_show_devname() is using the device_list_mutex,
917 * sometimes call to blkdev_put() leads vfs calling
918 * into this func. So do put outside of device_list_mutex,
919 * as of now.
920 */
921 while (!list_empty(&pending_put)) {
922 device = list_first_entry(&pending_put,
923 struct btrfs_device, dev_list);
924 list_del(&device->dev_list);
925 btrfs_close_bdev(device);
926 call_rcu(&device->rcu, free_device);
927 }
928
929 WARN_ON(fs_devices->open_devices);
930 WARN_ON(fs_devices->rw_devices);
931 fs_devices->opened = 0;
932 fs_devices->seeding = 0;
933
934 return 0;
935 }
936
937 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
938 {
939 struct btrfs_fs_devices *seed_devices = NULL;
940 int ret;
941
942 mutex_lock(&uuid_mutex);
943 ret = __btrfs_close_devices(fs_devices);
944 if (!fs_devices->opened) {
945 seed_devices = fs_devices->seed;
946 fs_devices->seed = NULL;
947 }
948 mutex_unlock(&uuid_mutex);
949
950 while (seed_devices) {
951 fs_devices = seed_devices;
952 seed_devices = fs_devices->seed;
953 __btrfs_close_devices(fs_devices);
954 free_fs_devices(fs_devices);
955 }
956 /*
957 * Wait for rcu kworkers under __btrfs_close_devices
958 * to finish all blkdev_puts so device is really
959 * free when umount is done.
960 */
961 rcu_barrier();
962 return ret;
963 }
964
965 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
966 fmode_t flags, void *holder)
967 {
968 struct request_queue *q;
969 struct block_device *bdev;
970 struct list_head *head = &fs_devices->devices;
971 struct btrfs_device *device;
972 struct btrfs_device *latest_dev = NULL;
973 struct buffer_head *bh;
974 struct btrfs_super_block *disk_super;
975 u64 devid;
976 int seeding = 1;
977 int ret = 0;
978
979 flags |= FMODE_EXCL;
980
981 list_for_each_entry(device, head, dev_list) {
982 if (device->bdev)
983 continue;
984 if (!device->name)
985 continue;
986
987 /* Just open everything we can; ignore failures here */
988 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
989 &bdev, &bh))
990 continue;
991
992 disk_super = (struct btrfs_super_block *)bh->b_data;
993 devid = btrfs_stack_device_id(&disk_super->dev_item);
994 if (devid != device->devid)
995 goto error_brelse;
996
997 if (memcmp(device->uuid, disk_super->dev_item.uuid,
998 BTRFS_UUID_SIZE))
999 goto error_brelse;
1000
1001 device->generation = btrfs_super_generation(disk_super);
1002 if (!latest_dev ||
1003 device->generation > latest_dev->generation)
1004 latest_dev = device;
1005
1006 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1007 device->writeable = 0;
1008 } else {
1009 device->writeable = !bdev_read_only(bdev);
1010 seeding = 0;
1011 }
1012
1013 q = bdev_get_queue(bdev);
1014 if (blk_queue_discard(q))
1015 device->can_discard = 1;
1016 if (!blk_queue_nonrot(q))
1017 fs_devices->rotating = 1;
1018
1019 device->bdev = bdev;
1020 device->in_fs_metadata = 0;
1021 device->mode = flags;
1022
1023 fs_devices->open_devices++;
1024 if (device->writeable &&
1025 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1026 fs_devices->rw_devices++;
1027 list_add(&device->dev_alloc_list,
1028 &fs_devices->alloc_list);
1029 }
1030 brelse(bh);
1031 continue;
1032
1033 error_brelse:
1034 brelse(bh);
1035 blkdev_put(bdev, flags);
1036 continue;
1037 }
1038 if (fs_devices->open_devices == 0) {
1039 ret = -EINVAL;
1040 goto out;
1041 }
1042 fs_devices->seeding = seeding;
1043 fs_devices->opened = 1;
1044 fs_devices->latest_bdev = latest_dev->bdev;
1045 fs_devices->total_rw_bytes = 0;
1046 out:
1047 return ret;
1048 }
1049
1050 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1051 fmode_t flags, void *holder)
1052 {
1053 int ret;
1054
1055 mutex_lock(&uuid_mutex);
1056 if (fs_devices->opened) {
1057 fs_devices->opened++;
1058 ret = 0;
1059 } else {
1060 ret = __btrfs_open_devices(fs_devices, flags, holder);
1061 }
1062 mutex_unlock(&uuid_mutex);
1063 return ret;
1064 }
1065
1066 void btrfs_release_disk_super(struct page *page)
1067 {
1068 kunmap(page);
1069 put_page(page);
1070 }
1071
1072 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1073 struct page **page, struct btrfs_super_block **disk_super)
1074 {
1075 void *p;
1076 pgoff_t index;
1077
1078 /* make sure our super fits in the device */
1079 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1080 return 1;
1081
1082 /* make sure our super fits in the page */
1083 if (sizeof(**disk_super) > PAGE_SIZE)
1084 return 1;
1085
1086 /* make sure our super doesn't straddle pages on disk */
1087 index = bytenr >> PAGE_SHIFT;
1088 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1089 return 1;
1090
1091 /* pull in the page with our super */
1092 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1093 index, GFP_KERNEL);
1094
1095 if (IS_ERR_OR_NULL(*page))
1096 return 1;
1097
1098 p = kmap(*page);
1099
1100 /* align our pointer to the offset of the super block */
1101 *disk_super = p + (bytenr & ~PAGE_MASK);
1102
1103 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1104 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1105 btrfs_release_disk_super(*page);
1106 return 1;
1107 }
1108
1109 if ((*disk_super)->label[0] &&
1110 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1111 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1112
1113 return 0;
1114 }
1115
1116 /*
1117 * Look for a btrfs signature on a device. This may be called out of the mount path
1118 * and we are not allowed to call set_blocksize during the scan. The superblock
1119 * is read via pagecache
1120 */
1121 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1122 struct btrfs_fs_devices **fs_devices_ret)
1123 {
1124 struct btrfs_super_block *disk_super;
1125 struct block_device *bdev;
1126 struct page *page;
1127 int ret = -EINVAL;
1128 u64 devid;
1129 u64 transid;
1130 u64 total_devices;
1131 u64 bytenr;
1132
1133 /*
1134 * we would like to check all the supers, but that would make
1135 * a btrfs mount succeed after a mkfs from a different FS.
1136 * So, we need to add a special mount option to scan for
1137 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1138 */
1139 bytenr = btrfs_sb_offset(0);
1140 flags |= FMODE_EXCL;
1141 mutex_lock(&uuid_mutex);
1142
1143 bdev = blkdev_get_by_path(path, flags, holder);
1144 if (IS_ERR(bdev)) {
1145 ret = PTR_ERR(bdev);
1146 goto error;
1147 }
1148
1149 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1150 goto error_bdev_put;
1151
1152 devid = btrfs_stack_device_id(&disk_super->dev_item);
1153 transid = btrfs_super_generation(disk_super);
1154 total_devices = btrfs_super_num_devices(disk_super);
1155
1156 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1157 if (ret > 0) {
1158 if (disk_super->label[0]) {
1159 pr_info("BTRFS: device label %s ", disk_super->label);
1160 } else {
1161 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1162 }
1163
1164 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1165 ret = 0;
1166 }
1167 if (!ret && fs_devices_ret)
1168 (*fs_devices_ret)->total_devices = total_devices;
1169
1170 btrfs_release_disk_super(page);
1171
1172 error_bdev_put:
1173 blkdev_put(bdev, flags);
1174 error:
1175 mutex_unlock(&uuid_mutex);
1176 return ret;
1177 }
1178
1179 /* helper to account the used device space in the range */
1180 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1181 u64 end, u64 *length)
1182 {
1183 struct btrfs_key key;
1184 struct btrfs_root *root = device->fs_info->dev_root;
1185 struct btrfs_dev_extent *dev_extent;
1186 struct btrfs_path *path;
1187 u64 extent_end;
1188 int ret;
1189 int slot;
1190 struct extent_buffer *l;
1191
1192 *length = 0;
1193
1194 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1195 return 0;
1196
1197 path = btrfs_alloc_path();
1198 if (!path)
1199 return -ENOMEM;
1200 path->reada = READA_FORWARD;
1201
1202 key.objectid = device->devid;
1203 key.offset = start;
1204 key.type = BTRFS_DEV_EXTENT_KEY;
1205
1206 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1207 if (ret < 0)
1208 goto out;
1209 if (ret > 0) {
1210 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1211 if (ret < 0)
1212 goto out;
1213 }
1214
1215 while (1) {
1216 l = path->nodes[0];
1217 slot = path->slots[0];
1218 if (slot >= btrfs_header_nritems(l)) {
1219 ret = btrfs_next_leaf(root, path);
1220 if (ret == 0)
1221 continue;
1222 if (ret < 0)
1223 goto out;
1224
1225 break;
1226 }
1227 btrfs_item_key_to_cpu(l, &key, slot);
1228
1229 if (key.objectid < device->devid)
1230 goto next;
1231
1232 if (key.objectid > device->devid)
1233 break;
1234
1235 if (key.type != BTRFS_DEV_EXTENT_KEY)
1236 goto next;
1237
1238 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1239 extent_end = key.offset + btrfs_dev_extent_length(l,
1240 dev_extent);
1241 if (key.offset <= start && extent_end > end) {
1242 *length = end - start + 1;
1243 break;
1244 } else if (key.offset <= start && extent_end > start)
1245 *length += extent_end - start;
1246 else if (key.offset > start && extent_end <= end)
1247 *length += extent_end - key.offset;
1248 else if (key.offset > start && key.offset <= end) {
1249 *length += end - key.offset + 1;
1250 break;
1251 } else if (key.offset > end)
1252 break;
1253
1254 next:
1255 path->slots[0]++;
1256 }
1257 ret = 0;
1258 out:
1259 btrfs_free_path(path);
1260 return ret;
1261 }
1262
1263 static int contains_pending_extent(struct btrfs_transaction *transaction,
1264 struct btrfs_device *device,
1265 u64 *start, u64 len)
1266 {
1267 struct btrfs_fs_info *fs_info = device->fs_info;
1268 struct extent_map *em;
1269 struct list_head *search_list = &fs_info->pinned_chunks;
1270 int ret = 0;
1271 u64 physical_start = *start;
1272
1273 if (transaction)
1274 search_list = &transaction->pending_chunks;
1275 again:
1276 list_for_each_entry(em, search_list, list) {
1277 struct map_lookup *map;
1278 int i;
1279
1280 map = em->map_lookup;
1281 for (i = 0; i < map->num_stripes; i++) {
1282 u64 end;
1283
1284 if (map->stripes[i].dev != device)
1285 continue;
1286 if (map->stripes[i].physical >= physical_start + len ||
1287 map->stripes[i].physical + em->orig_block_len <=
1288 physical_start)
1289 continue;
1290 /*
1291 * Make sure that while processing the pinned list we do
1292 * not override our *start with a lower value, because
1293 * we can have pinned chunks that fall within this
1294 * device hole and that have lower physical addresses
1295 * than the pending chunks we processed before. If we
1296 * do not take this special care we can end up getting
1297 * 2 pending chunks that start at the same physical
1298 * device offsets because the end offset of a pinned
1299 * chunk can be equal to the start offset of some
1300 * pending chunk.
1301 */
1302 end = map->stripes[i].physical + em->orig_block_len;
1303 if (end > *start) {
1304 *start = end;
1305 ret = 1;
1306 }
1307 }
1308 }
1309 if (search_list != &fs_info->pinned_chunks) {
1310 search_list = &fs_info->pinned_chunks;
1311 goto again;
1312 }
1313
1314 return ret;
1315 }
1316
1317
1318 /*
1319 * find_free_dev_extent_start - find free space in the specified device
1320 * @device: the device which we search the free space in
1321 * @num_bytes: the size of the free space that we need
1322 * @search_start: the position from which to begin the search
1323 * @start: store the start of the free space.
1324 * @len: the size of the free space. that we find, or the size
1325 * of the max free space if we don't find suitable free space
1326 *
1327 * this uses a pretty simple search, the expectation is that it is
1328 * called very infrequently and that a given device has a small number
1329 * of extents
1330 *
1331 * @start is used to store the start of the free space if we find. But if we
1332 * don't find suitable free space, it will be used to store the start position
1333 * of the max free space.
1334 *
1335 * @len is used to store the size of the free space that we find.
1336 * But if we don't find suitable free space, it is used to store the size of
1337 * the max free space.
1338 */
1339 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1340 struct btrfs_device *device, u64 num_bytes,
1341 u64 search_start, u64 *start, u64 *len)
1342 {
1343 struct btrfs_fs_info *fs_info = device->fs_info;
1344 struct btrfs_root *root = fs_info->dev_root;
1345 struct btrfs_key key;
1346 struct btrfs_dev_extent *dev_extent;
1347 struct btrfs_path *path;
1348 u64 hole_size;
1349 u64 max_hole_start;
1350 u64 max_hole_size;
1351 u64 extent_end;
1352 u64 search_end = device->total_bytes;
1353 int ret;
1354 int slot;
1355 struct extent_buffer *l;
1356 u64 min_search_start;
1357
1358 /*
1359 * We don't want to overwrite the superblock on the drive nor any area
1360 * used by the boot loader (grub for example), so we make sure to start
1361 * at an offset of at least 1MB.
1362 */
1363 min_search_start = max(fs_info->alloc_start, 1024ull * 1024);
1364 search_start = max(search_start, min_search_start);
1365
1366 path = btrfs_alloc_path();
1367 if (!path)
1368 return -ENOMEM;
1369
1370 max_hole_start = search_start;
1371 max_hole_size = 0;
1372
1373 again:
1374 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1375 ret = -ENOSPC;
1376 goto out;
1377 }
1378
1379 path->reada = READA_FORWARD;
1380 path->search_commit_root = 1;
1381 path->skip_locking = 1;
1382
1383 key.objectid = device->devid;
1384 key.offset = search_start;
1385 key.type = BTRFS_DEV_EXTENT_KEY;
1386
1387 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1388 if (ret < 0)
1389 goto out;
1390 if (ret > 0) {
1391 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1392 if (ret < 0)
1393 goto out;
1394 }
1395
1396 while (1) {
1397 l = path->nodes[0];
1398 slot = path->slots[0];
1399 if (slot >= btrfs_header_nritems(l)) {
1400 ret = btrfs_next_leaf(root, path);
1401 if (ret == 0)
1402 continue;
1403 if (ret < 0)
1404 goto out;
1405
1406 break;
1407 }
1408 btrfs_item_key_to_cpu(l, &key, slot);
1409
1410 if (key.objectid < device->devid)
1411 goto next;
1412
1413 if (key.objectid > device->devid)
1414 break;
1415
1416 if (key.type != BTRFS_DEV_EXTENT_KEY)
1417 goto next;
1418
1419 if (key.offset > search_start) {
1420 hole_size = key.offset - search_start;
1421
1422 /*
1423 * Have to check before we set max_hole_start, otherwise
1424 * we could end up sending back this offset anyway.
1425 */
1426 if (contains_pending_extent(transaction, device,
1427 &search_start,
1428 hole_size)) {
1429 if (key.offset >= search_start) {
1430 hole_size = key.offset - search_start;
1431 } else {
1432 WARN_ON_ONCE(1);
1433 hole_size = 0;
1434 }
1435 }
1436
1437 if (hole_size > max_hole_size) {
1438 max_hole_start = search_start;
1439 max_hole_size = hole_size;
1440 }
1441
1442 /*
1443 * If this free space is greater than which we need,
1444 * it must be the max free space that we have found
1445 * until now, so max_hole_start must point to the start
1446 * of this free space and the length of this free space
1447 * is stored in max_hole_size. Thus, we return
1448 * max_hole_start and max_hole_size and go back to the
1449 * caller.
1450 */
1451 if (hole_size >= num_bytes) {
1452 ret = 0;
1453 goto out;
1454 }
1455 }
1456
1457 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1458 extent_end = key.offset + btrfs_dev_extent_length(l,
1459 dev_extent);
1460 if (extent_end > search_start)
1461 search_start = extent_end;
1462 next:
1463 path->slots[0]++;
1464 cond_resched();
1465 }
1466
1467 /*
1468 * At this point, search_start should be the end of
1469 * allocated dev extents, and when shrinking the device,
1470 * search_end may be smaller than search_start.
1471 */
1472 if (search_end > search_start) {
1473 hole_size = search_end - search_start;
1474
1475 if (contains_pending_extent(transaction, device, &search_start,
1476 hole_size)) {
1477 btrfs_release_path(path);
1478 goto again;
1479 }
1480
1481 if (hole_size > max_hole_size) {
1482 max_hole_start = search_start;
1483 max_hole_size = hole_size;
1484 }
1485 }
1486
1487 /* See above. */
1488 if (max_hole_size < num_bytes)
1489 ret = -ENOSPC;
1490 else
1491 ret = 0;
1492
1493 out:
1494 btrfs_free_path(path);
1495 *start = max_hole_start;
1496 if (len)
1497 *len = max_hole_size;
1498 return ret;
1499 }
1500
1501 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1502 struct btrfs_device *device, u64 num_bytes,
1503 u64 *start, u64 *len)
1504 {
1505 /* FIXME use last free of some kind */
1506 return find_free_dev_extent_start(trans->transaction, device,
1507 num_bytes, 0, start, len);
1508 }
1509
1510 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1511 struct btrfs_device *device,
1512 u64 start, u64 *dev_extent_len)
1513 {
1514 struct btrfs_fs_info *fs_info = device->fs_info;
1515 struct btrfs_root *root = fs_info->dev_root;
1516 int ret;
1517 struct btrfs_path *path;
1518 struct btrfs_key key;
1519 struct btrfs_key found_key;
1520 struct extent_buffer *leaf = NULL;
1521 struct btrfs_dev_extent *extent = NULL;
1522
1523 path = btrfs_alloc_path();
1524 if (!path)
1525 return -ENOMEM;
1526
1527 key.objectid = device->devid;
1528 key.offset = start;
1529 key.type = BTRFS_DEV_EXTENT_KEY;
1530 again:
1531 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1532 if (ret > 0) {
1533 ret = btrfs_previous_item(root, path, key.objectid,
1534 BTRFS_DEV_EXTENT_KEY);
1535 if (ret)
1536 goto out;
1537 leaf = path->nodes[0];
1538 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1539 extent = btrfs_item_ptr(leaf, path->slots[0],
1540 struct btrfs_dev_extent);
1541 BUG_ON(found_key.offset > start || found_key.offset +
1542 btrfs_dev_extent_length(leaf, extent) < start);
1543 key = found_key;
1544 btrfs_release_path(path);
1545 goto again;
1546 } else if (ret == 0) {
1547 leaf = path->nodes[0];
1548 extent = btrfs_item_ptr(leaf, path->slots[0],
1549 struct btrfs_dev_extent);
1550 } else {
1551 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1552 goto out;
1553 }
1554
1555 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1556
1557 ret = btrfs_del_item(trans, root, path);
1558 if (ret) {
1559 btrfs_handle_fs_error(fs_info, ret,
1560 "Failed to remove dev extent item");
1561 } else {
1562 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1563 }
1564 out:
1565 btrfs_free_path(path);
1566 return ret;
1567 }
1568
1569 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1570 struct btrfs_device *device,
1571 u64 chunk_tree, u64 chunk_objectid,
1572 u64 chunk_offset, u64 start, u64 num_bytes)
1573 {
1574 int ret;
1575 struct btrfs_path *path;
1576 struct btrfs_fs_info *fs_info = device->fs_info;
1577 struct btrfs_root *root = fs_info->dev_root;
1578 struct btrfs_dev_extent *extent;
1579 struct extent_buffer *leaf;
1580 struct btrfs_key key;
1581
1582 WARN_ON(!device->in_fs_metadata);
1583 WARN_ON(device->is_tgtdev_for_dev_replace);
1584 path = btrfs_alloc_path();
1585 if (!path)
1586 return -ENOMEM;
1587
1588 key.objectid = device->devid;
1589 key.offset = start;
1590 key.type = BTRFS_DEV_EXTENT_KEY;
1591 ret = btrfs_insert_empty_item(trans, root, path, &key,
1592 sizeof(*extent));
1593 if (ret)
1594 goto out;
1595
1596 leaf = path->nodes[0];
1597 extent = btrfs_item_ptr(leaf, path->slots[0],
1598 struct btrfs_dev_extent);
1599 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1600 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1601 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1602
1603 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1604
1605 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1606 btrfs_mark_buffer_dirty(leaf);
1607 out:
1608 btrfs_free_path(path);
1609 return ret;
1610 }
1611
1612 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1613 {
1614 struct extent_map_tree *em_tree;
1615 struct extent_map *em;
1616 struct rb_node *n;
1617 u64 ret = 0;
1618
1619 em_tree = &fs_info->mapping_tree.map_tree;
1620 read_lock(&em_tree->lock);
1621 n = rb_last(&em_tree->map);
1622 if (n) {
1623 em = rb_entry(n, struct extent_map, rb_node);
1624 ret = em->start + em->len;
1625 }
1626 read_unlock(&em_tree->lock);
1627
1628 return ret;
1629 }
1630
1631 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1632 u64 *devid_ret)
1633 {
1634 int ret;
1635 struct btrfs_key key;
1636 struct btrfs_key found_key;
1637 struct btrfs_path *path;
1638
1639 path = btrfs_alloc_path();
1640 if (!path)
1641 return -ENOMEM;
1642
1643 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1644 key.type = BTRFS_DEV_ITEM_KEY;
1645 key.offset = (u64)-1;
1646
1647 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1648 if (ret < 0)
1649 goto error;
1650
1651 BUG_ON(ret == 0); /* Corruption */
1652
1653 ret = btrfs_previous_item(fs_info->chunk_root, path,
1654 BTRFS_DEV_ITEMS_OBJECTID,
1655 BTRFS_DEV_ITEM_KEY);
1656 if (ret) {
1657 *devid_ret = 1;
1658 } else {
1659 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1660 path->slots[0]);
1661 *devid_ret = found_key.offset + 1;
1662 }
1663 ret = 0;
1664 error:
1665 btrfs_free_path(path);
1666 return ret;
1667 }
1668
1669 /*
1670 * the device information is stored in the chunk root
1671 * the btrfs_device struct should be fully filled in
1672 */
1673 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1674 struct btrfs_fs_info *fs_info,
1675 struct btrfs_device *device)
1676 {
1677 struct btrfs_root *root = fs_info->chunk_root;
1678 int ret;
1679 struct btrfs_path *path;
1680 struct btrfs_dev_item *dev_item;
1681 struct extent_buffer *leaf;
1682 struct btrfs_key key;
1683 unsigned long ptr;
1684
1685 path = btrfs_alloc_path();
1686 if (!path)
1687 return -ENOMEM;
1688
1689 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1690 key.type = BTRFS_DEV_ITEM_KEY;
1691 key.offset = device->devid;
1692
1693 ret = btrfs_insert_empty_item(trans, root, path, &key,
1694 sizeof(*dev_item));
1695 if (ret)
1696 goto out;
1697
1698 leaf = path->nodes[0];
1699 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1700
1701 btrfs_set_device_id(leaf, dev_item, device->devid);
1702 btrfs_set_device_generation(leaf, dev_item, 0);
1703 btrfs_set_device_type(leaf, dev_item, device->type);
1704 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1705 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1706 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1707 btrfs_set_device_total_bytes(leaf, dev_item,
1708 btrfs_device_get_disk_total_bytes(device));
1709 btrfs_set_device_bytes_used(leaf, dev_item,
1710 btrfs_device_get_bytes_used(device));
1711 btrfs_set_device_group(leaf, dev_item, 0);
1712 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1713 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1714 btrfs_set_device_start_offset(leaf, dev_item, 0);
1715
1716 ptr = btrfs_device_uuid(dev_item);
1717 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1718 ptr = btrfs_device_fsid(dev_item);
1719 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1720 btrfs_mark_buffer_dirty(leaf);
1721
1722 ret = 0;
1723 out:
1724 btrfs_free_path(path);
1725 return ret;
1726 }
1727
1728 /*
1729 * Function to update ctime/mtime for a given device path.
1730 * Mainly used for ctime/mtime based probe like libblkid.
1731 */
1732 static void update_dev_time(const char *path_name)
1733 {
1734 struct file *filp;
1735
1736 filp = filp_open(path_name, O_RDWR, 0);
1737 if (IS_ERR(filp))
1738 return;
1739 file_update_time(filp);
1740 filp_close(filp, NULL);
1741 }
1742
1743 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1744 struct btrfs_device *device)
1745 {
1746 struct btrfs_root *root = fs_info->chunk_root;
1747 int ret;
1748 struct btrfs_path *path;
1749 struct btrfs_key key;
1750 struct btrfs_trans_handle *trans;
1751
1752 path = btrfs_alloc_path();
1753 if (!path)
1754 return -ENOMEM;
1755
1756 trans = btrfs_start_transaction(root, 0);
1757 if (IS_ERR(trans)) {
1758 btrfs_free_path(path);
1759 return PTR_ERR(trans);
1760 }
1761 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1762 key.type = BTRFS_DEV_ITEM_KEY;
1763 key.offset = device->devid;
1764
1765 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1766 if (ret < 0)
1767 goto out;
1768
1769 if (ret > 0) {
1770 ret = -ENOENT;
1771 goto out;
1772 }
1773
1774 ret = btrfs_del_item(trans, root, path);
1775 if (ret)
1776 goto out;
1777 out:
1778 btrfs_free_path(path);
1779 btrfs_commit_transaction(trans);
1780 return ret;
1781 }
1782
1783 /*
1784 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1785 * filesystem. It's up to the caller to adjust that number regarding eg. device
1786 * replace.
1787 */
1788 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1789 u64 num_devices)
1790 {
1791 u64 all_avail;
1792 unsigned seq;
1793 int i;
1794
1795 do {
1796 seq = read_seqbegin(&fs_info->profiles_lock);
1797
1798 all_avail = fs_info->avail_data_alloc_bits |
1799 fs_info->avail_system_alloc_bits |
1800 fs_info->avail_metadata_alloc_bits;
1801 } while (read_seqretry(&fs_info->profiles_lock, seq));
1802
1803 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1804 if (!(all_avail & btrfs_raid_group[i]))
1805 continue;
1806
1807 if (num_devices < btrfs_raid_array[i].devs_min) {
1808 int ret = btrfs_raid_mindev_error[i];
1809
1810 if (ret)
1811 return ret;
1812 }
1813 }
1814
1815 return 0;
1816 }
1817
1818 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1819 struct btrfs_device *device)
1820 {
1821 struct btrfs_device *next_device;
1822
1823 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1824 if (next_device != device &&
1825 !next_device->missing && next_device->bdev)
1826 return next_device;
1827 }
1828
1829 return NULL;
1830 }
1831
1832 /*
1833 * Helper function to check if the given device is part of s_bdev / latest_bdev
1834 * and replace it with the provided or the next active device, in the context
1835 * where this function called, there should be always be another device (or
1836 * this_dev) which is active.
1837 */
1838 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1839 struct btrfs_device *device, struct btrfs_device *this_dev)
1840 {
1841 struct btrfs_device *next_device;
1842
1843 if (this_dev)
1844 next_device = this_dev;
1845 else
1846 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1847 device);
1848 ASSERT(next_device);
1849
1850 if (fs_info->sb->s_bdev &&
1851 (fs_info->sb->s_bdev == device->bdev))
1852 fs_info->sb->s_bdev = next_device->bdev;
1853
1854 if (fs_info->fs_devices->latest_bdev == device->bdev)
1855 fs_info->fs_devices->latest_bdev = next_device->bdev;
1856 }
1857
1858 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1859 u64 devid)
1860 {
1861 struct btrfs_device *device;
1862 struct btrfs_fs_devices *cur_devices;
1863 u64 num_devices;
1864 int ret = 0;
1865 bool clear_super = false;
1866
1867 mutex_lock(&uuid_mutex);
1868
1869 num_devices = fs_info->fs_devices->num_devices;
1870 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1871 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1872 WARN_ON(num_devices < 1);
1873 num_devices--;
1874 }
1875 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1876
1877 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1878 if (ret)
1879 goto out;
1880
1881 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1882 &device);
1883 if (ret)
1884 goto out;
1885
1886 if (device->is_tgtdev_for_dev_replace) {
1887 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1888 goto out;
1889 }
1890
1891 if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
1892 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1893 goto out;
1894 }
1895
1896 if (device->writeable) {
1897 mutex_lock(&fs_info->chunk_mutex);
1898 list_del_init(&device->dev_alloc_list);
1899 device->fs_devices->rw_devices--;
1900 mutex_unlock(&fs_info->chunk_mutex);
1901 clear_super = true;
1902 }
1903
1904 mutex_unlock(&uuid_mutex);
1905 ret = btrfs_shrink_device(device, 0);
1906 mutex_lock(&uuid_mutex);
1907 if (ret)
1908 goto error_undo;
1909
1910 /*
1911 * TODO: the superblock still includes this device in its num_devices
1912 * counter although write_all_supers() is not locked out. This
1913 * could give a filesystem state which requires a degraded mount.
1914 */
1915 ret = btrfs_rm_dev_item(fs_info, device);
1916 if (ret)
1917 goto error_undo;
1918
1919 device->in_fs_metadata = 0;
1920 btrfs_scrub_cancel_dev(fs_info, device);
1921
1922 /*
1923 * the device list mutex makes sure that we don't change
1924 * the device list while someone else is writing out all
1925 * the device supers. Whoever is writing all supers, should
1926 * lock the device list mutex before getting the number of
1927 * devices in the super block (super_copy). Conversely,
1928 * whoever updates the number of devices in the super block
1929 * (super_copy) should hold the device list mutex.
1930 */
1931
1932 cur_devices = device->fs_devices;
1933 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1934 list_del_rcu(&device->dev_list);
1935
1936 device->fs_devices->num_devices--;
1937 device->fs_devices->total_devices--;
1938
1939 if (device->missing)
1940 device->fs_devices->missing_devices--;
1941
1942 btrfs_assign_next_active_device(fs_info, device, NULL);
1943
1944 if (device->bdev) {
1945 device->fs_devices->open_devices--;
1946 /* remove sysfs entry */
1947 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1948 }
1949
1950 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1951 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1952 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1953
1954 /*
1955 * at this point, the device is zero sized and detached from
1956 * the devices list. All that's left is to zero out the old
1957 * supers and free the device.
1958 */
1959 if (device->writeable)
1960 btrfs_scratch_superblocks(device->bdev, device->name->str);
1961
1962 btrfs_close_bdev(device);
1963 call_rcu(&device->rcu, free_device);
1964
1965 if (cur_devices->open_devices == 0) {
1966 struct btrfs_fs_devices *fs_devices;
1967 fs_devices = fs_info->fs_devices;
1968 while (fs_devices) {
1969 if (fs_devices->seed == cur_devices) {
1970 fs_devices->seed = cur_devices->seed;
1971 break;
1972 }
1973 fs_devices = fs_devices->seed;
1974 }
1975 cur_devices->seed = NULL;
1976 __btrfs_close_devices(cur_devices);
1977 free_fs_devices(cur_devices);
1978 }
1979
1980 fs_info->num_tolerated_disk_barrier_failures =
1981 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
1982
1983 out:
1984 mutex_unlock(&uuid_mutex);
1985 return ret;
1986
1987 error_undo:
1988 if (device->writeable) {
1989 mutex_lock(&fs_info->chunk_mutex);
1990 list_add(&device->dev_alloc_list,
1991 &fs_info->fs_devices->alloc_list);
1992 device->fs_devices->rw_devices++;
1993 mutex_unlock(&fs_info->chunk_mutex);
1994 }
1995 goto out;
1996 }
1997
1998 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1999 struct btrfs_device *srcdev)
2000 {
2001 struct btrfs_fs_devices *fs_devices;
2002
2003 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2004
2005 /*
2006 * in case of fs with no seed, srcdev->fs_devices will point
2007 * to fs_devices of fs_info. However when the dev being replaced is
2008 * a seed dev it will point to the seed's local fs_devices. In short
2009 * srcdev will have its correct fs_devices in both the cases.
2010 */
2011 fs_devices = srcdev->fs_devices;
2012
2013 list_del_rcu(&srcdev->dev_list);
2014 list_del_rcu(&srcdev->dev_alloc_list);
2015 fs_devices->num_devices--;
2016 if (srcdev->missing)
2017 fs_devices->missing_devices--;
2018
2019 if (srcdev->writeable)
2020 fs_devices->rw_devices--;
2021
2022 if (srcdev->bdev)
2023 fs_devices->open_devices--;
2024 }
2025
2026 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2027 struct btrfs_device *srcdev)
2028 {
2029 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2030
2031 if (srcdev->writeable) {
2032 /* zero out the old super if it is writable */
2033 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2034 }
2035
2036 btrfs_close_bdev(srcdev);
2037
2038 call_rcu(&srcdev->rcu, free_device);
2039
2040 /*
2041 * unless fs_devices is seed fs, num_devices shouldn't go
2042 * zero
2043 */
2044 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2045
2046 /* if this is no devs we rather delete the fs_devices */
2047 if (!fs_devices->num_devices) {
2048 struct btrfs_fs_devices *tmp_fs_devices;
2049
2050 tmp_fs_devices = fs_info->fs_devices;
2051 while (tmp_fs_devices) {
2052 if (tmp_fs_devices->seed == fs_devices) {
2053 tmp_fs_devices->seed = fs_devices->seed;
2054 break;
2055 }
2056 tmp_fs_devices = tmp_fs_devices->seed;
2057 }
2058 fs_devices->seed = NULL;
2059 __btrfs_close_devices(fs_devices);
2060 free_fs_devices(fs_devices);
2061 }
2062 }
2063
2064 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2065 struct btrfs_device *tgtdev)
2066 {
2067 mutex_lock(&uuid_mutex);
2068 WARN_ON(!tgtdev);
2069 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2070
2071 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2072
2073 if (tgtdev->bdev)
2074 fs_info->fs_devices->open_devices--;
2075
2076 fs_info->fs_devices->num_devices--;
2077
2078 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2079
2080 list_del_rcu(&tgtdev->dev_list);
2081
2082 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2083 mutex_unlock(&uuid_mutex);
2084
2085 /*
2086 * The update_dev_time() with in btrfs_scratch_superblocks()
2087 * may lead to a call to btrfs_show_devname() which will try
2088 * to hold device_list_mutex. And here this device
2089 * is already out of device list, so we don't have to hold
2090 * the device_list_mutex lock.
2091 */
2092 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2093
2094 btrfs_close_bdev(tgtdev);
2095 call_rcu(&tgtdev->rcu, free_device);
2096 }
2097
2098 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2099 const char *device_path,
2100 struct btrfs_device **device)
2101 {
2102 int ret = 0;
2103 struct btrfs_super_block *disk_super;
2104 u64 devid;
2105 u8 *dev_uuid;
2106 struct block_device *bdev;
2107 struct buffer_head *bh;
2108
2109 *device = NULL;
2110 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2111 fs_info->bdev_holder, 0, &bdev, &bh);
2112 if (ret)
2113 return ret;
2114 disk_super = (struct btrfs_super_block *)bh->b_data;
2115 devid = btrfs_stack_device_id(&disk_super->dev_item);
2116 dev_uuid = disk_super->dev_item.uuid;
2117 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2118 brelse(bh);
2119 if (!*device)
2120 ret = -ENOENT;
2121 blkdev_put(bdev, FMODE_READ);
2122 return ret;
2123 }
2124
2125 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2126 const char *device_path,
2127 struct btrfs_device **device)
2128 {
2129 *device = NULL;
2130 if (strcmp(device_path, "missing") == 0) {
2131 struct list_head *devices;
2132 struct btrfs_device *tmp;
2133
2134 devices = &fs_info->fs_devices->devices;
2135 /*
2136 * It is safe to read the devices since the volume_mutex
2137 * is held by the caller.
2138 */
2139 list_for_each_entry(tmp, devices, dev_list) {
2140 if (tmp->in_fs_metadata && !tmp->bdev) {
2141 *device = tmp;
2142 break;
2143 }
2144 }
2145
2146 if (!*device)
2147 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2148
2149 return 0;
2150 } else {
2151 return btrfs_find_device_by_path(fs_info, device_path, device);
2152 }
2153 }
2154
2155 /*
2156 * Lookup a device given by device id, or the path if the id is 0.
2157 */
2158 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2159 const char *devpath,
2160 struct btrfs_device **device)
2161 {
2162 int ret;
2163
2164 if (devid) {
2165 ret = 0;
2166 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2167 if (!*device)
2168 ret = -ENOENT;
2169 } else {
2170 if (!devpath || !devpath[0])
2171 return -EINVAL;
2172
2173 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2174 device);
2175 }
2176 return ret;
2177 }
2178
2179 /*
2180 * does all the dirty work required for changing file system's UUID.
2181 */
2182 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2183 {
2184 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2185 struct btrfs_fs_devices *old_devices;
2186 struct btrfs_fs_devices *seed_devices;
2187 struct btrfs_super_block *disk_super = fs_info->super_copy;
2188 struct btrfs_device *device;
2189 u64 super_flags;
2190
2191 BUG_ON(!mutex_is_locked(&uuid_mutex));
2192 if (!fs_devices->seeding)
2193 return -EINVAL;
2194
2195 seed_devices = __alloc_fs_devices();
2196 if (IS_ERR(seed_devices))
2197 return PTR_ERR(seed_devices);
2198
2199 old_devices = clone_fs_devices(fs_devices);
2200 if (IS_ERR(old_devices)) {
2201 kfree(seed_devices);
2202 return PTR_ERR(old_devices);
2203 }
2204
2205 list_add(&old_devices->list, &fs_uuids);
2206
2207 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2208 seed_devices->opened = 1;
2209 INIT_LIST_HEAD(&seed_devices->devices);
2210 INIT_LIST_HEAD(&seed_devices->alloc_list);
2211 mutex_init(&seed_devices->device_list_mutex);
2212
2213 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2214 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2215 synchronize_rcu);
2216 list_for_each_entry(device, &seed_devices->devices, dev_list)
2217 device->fs_devices = seed_devices;
2218
2219 mutex_lock(&fs_info->chunk_mutex);
2220 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2221 mutex_unlock(&fs_info->chunk_mutex);
2222
2223 fs_devices->seeding = 0;
2224 fs_devices->num_devices = 0;
2225 fs_devices->open_devices = 0;
2226 fs_devices->missing_devices = 0;
2227 fs_devices->rotating = 0;
2228 fs_devices->seed = seed_devices;
2229
2230 generate_random_uuid(fs_devices->fsid);
2231 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2232 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2233 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2234
2235 super_flags = btrfs_super_flags(disk_super) &
2236 ~BTRFS_SUPER_FLAG_SEEDING;
2237 btrfs_set_super_flags(disk_super, super_flags);
2238
2239 return 0;
2240 }
2241
2242 /*
2243 * Store the expected generation for seed devices in device items.
2244 */
2245 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2246 struct btrfs_fs_info *fs_info)
2247 {
2248 struct btrfs_root *root = fs_info->chunk_root;
2249 struct btrfs_path *path;
2250 struct extent_buffer *leaf;
2251 struct btrfs_dev_item *dev_item;
2252 struct btrfs_device *device;
2253 struct btrfs_key key;
2254 u8 fs_uuid[BTRFS_UUID_SIZE];
2255 u8 dev_uuid[BTRFS_UUID_SIZE];
2256 u64 devid;
2257 int ret;
2258
2259 path = btrfs_alloc_path();
2260 if (!path)
2261 return -ENOMEM;
2262
2263 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2264 key.offset = 0;
2265 key.type = BTRFS_DEV_ITEM_KEY;
2266
2267 while (1) {
2268 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2269 if (ret < 0)
2270 goto error;
2271
2272 leaf = path->nodes[0];
2273 next_slot:
2274 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2275 ret = btrfs_next_leaf(root, path);
2276 if (ret > 0)
2277 break;
2278 if (ret < 0)
2279 goto error;
2280 leaf = path->nodes[0];
2281 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2282 btrfs_release_path(path);
2283 continue;
2284 }
2285
2286 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2287 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2288 key.type != BTRFS_DEV_ITEM_KEY)
2289 break;
2290
2291 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2292 struct btrfs_dev_item);
2293 devid = btrfs_device_id(leaf, dev_item);
2294 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2295 BTRFS_UUID_SIZE);
2296 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2297 BTRFS_UUID_SIZE);
2298 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2299 BUG_ON(!device); /* Logic error */
2300
2301 if (device->fs_devices->seeding) {
2302 btrfs_set_device_generation(leaf, dev_item,
2303 device->generation);
2304 btrfs_mark_buffer_dirty(leaf);
2305 }
2306
2307 path->slots[0]++;
2308 goto next_slot;
2309 }
2310 ret = 0;
2311 error:
2312 btrfs_free_path(path);
2313 return ret;
2314 }
2315
2316 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2317 {
2318 struct btrfs_root *root = fs_info->dev_root;
2319 struct request_queue *q;
2320 struct btrfs_trans_handle *trans;
2321 struct btrfs_device *device;
2322 struct block_device *bdev;
2323 struct list_head *devices;
2324 struct super_block *sb = fs_info->sb;
2325 struct rcu_string *name;
2326 u64 tmp;
2327 int seeding_dev = 0;
2328 int ret = 0;
2329
2330 if ((sb->s_flags & MS_RDONLY) && !fs_info->fs_devices->seeding)
2331 return -EROFS;
2332
2333 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2334 fs_info->bdev_holder);
2335 if (IS_ERR(bdev))
2336 return PTR_ERR(bdev);
2337
2338 if (fs_info->fs_devices->seeding) {
2339 seeding_dev = 1;
2340 down_write(&sb->s_umount);
2341 mutex_lock(&uuid_mutex);
2342 }
2343
2344 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2345
2346 devices = &fs_info->fs_devices->devices;
2347
2348 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2349 list_for_each_entry(device, devices, dev_list) {
2350 if (device->bdev == bdev) {
2351 ret = -EEXIST;
2352 mutex_unlock(
2353 &fs_info->fs_devices->device_list_mutex);
2354 goto error;
2355 }
2356 }
2357 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2358
2359 device = btrfs_alloc_device(fs_info, NULL, NULL);
2360 if (IS_ERR(device)) {
2361 /* we can safely leave the fs_devices entry around */
2362 ret = PTR_ERR(device);
2363 goto error;
2364 }
2365
2366 name = rcu_string_strdup(device_path, GFP_KERNEL);
2367 if (!name) {
2368 kfree(device);
2369 ret = -ENOMEM;
2370 goto error;
2371 }
2372 rcu_assign_pointer(device->name, name);
2373
2374 trans = btrfs_start_transaction(root, 0);
2375 if (IS_ERR(trans)) {
2376 rcu_string_free(device->name);
2377 kfree(device);
2378 ret = PTR_ERR(trans);
2379 goto error;
2380 }
2381
2382 q = bdev_get_queue(bdev);
2383 if (blk_queue_discard(q))
2384 device->can_discard = 1;
2385 device->writeable = 1;
2386 device->generation = trans->transid;
2387 device->io_width = fs_info->sectorsize;
2388 device->io_align = fs_info->sectorsize;
2389 device->sector_size = fs_info->sectorsize;
2390 device->total_bytes = i_size_read(bdev->bd_inode);
2391 device->disk_total_bytes = device->total_bytes;
2392 device->commit_total_bytes = device->total_bytes;
2393 device->fs_info = fs_info;
2394 device->bdev = bdev;
2395 device->in_fs_metadata = 1;
2396 device->is_tgtdev_for_dev_replace = 0;
2397 device->mode = FMODE_EXCL;
2398 device->dev_stats_valid = 1;
2399 set_blocksize(device->bdev, 4096);
2400
2401 if (seeding_dev) {
2402 sb->s_flags &= ~MS_RDONLY;
2403 ret = btrfs_prepare_sprout(fs_info);
2404 BUG_ON(ret); /* -ENOMEM */
2405 }
2406
2407 device->fs_devices = fs_info->fs_devices;
2408
2409 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2410 mutex_lock(&fs_info->chunk_mutex);
2411 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2412 list_add(&device->dev_alloc_list,
2413 &fs_info->fs_devices->alloc_list);
2414 fs_info->fs_devices->num_devices++;
2415 fs_info->fs_devices->open_devices++;
2416 fs_info->fs_devices->rw_devices++;
2417 fs_info->fs_devices->total_devices++;
2418 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2419
2420 spin_lock(&fs_info->free_chunk_lock);
2421 fs_info->free_chunk_space += device->total_bytes;
2422 spin_unlock(&fs_info->free_chunk_lock);
2423
2424 if (!blk_queue_nonrot(q))
2425 fs_info->fs_devices->rotating = 1;
2426
2427 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2428 btrfs_set_super_total_bytes(fs_info->super_copy,
2429 tmp + device->total_bytes);
2430
2431 tmp = btrfs_super_num_devices(fs_info->super_copy);
2432 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2433
2434 /* add sysfs device entry */
2435 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2436
2437 /*
2438 * we've got more storage, clear any full flags on the space
2439 * infos
2440 */
2441 btrfs_clear_space_info_full(fs_info);
2442
2443 mutex_unlock(&fs_info->chunk_mutex);
2444 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2445
2446 if (seeding_dev) {
2447 mutex_lock(&fs_info->chunk_mutex);
2448 ret = init_first_rw_device(trans, fs_info);
2449 mutex_unlock(&fs_info->chunk_mutex);
2450 if (ret) {
2451 btrfs_abort_transaction(trans, ret);
2452 goto error_trans;
2453 }
2454 }
2455
2456 ret = btrfs_add_device(trans, fs_info, device);
2457 if (ret) {
2458 btrfs_abort_transaction(trans, ret);
2459 goto error_trans;
2460 }
2461
2462 if (seeding_dev) {
2463 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2464
2465 ret = btrfs_finish_sprout(trans, fs_info);
2466 if (ret) {
2467 btrfs_abort_transaction(trans, ret);
2468 goto error_trans;
2469 }
2470
2471 /* Sprouting would change fsid of the mounted root,
2472 * so rename the fsid on the sysfs
2473 */
2474 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2475 fs_info->fsid);
2476 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2477 btrfs_warn(fs_info,
2478 "sysfs: failed to create fsid for sprout");
2479 }
2480
2481 fs_info->num_tolerated_disk_barrier_failures =
2482 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2483 ret = btrfs_commit_transaction(trans);
2484
2485 if (seeding_dev) {
2486 mutex_unlock(&uuid_mutex);
2487 up_write(&sb->s_umount);
2488
2489 if (ret) /* transaction commit */
2490 return ret;
2491
2492 ret = btrfs_relocate_sys_chunks(fs_info);
2493 if (ret < 0)
2494 btrfs_handle_fs_error(fs_info, ret,
2495 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2496 trans = btrfs_attach_transaction(root);
2497 if (IS_ERR(trans)) {
2498 if (PTR_ERR(trans) == -ENOENT)
2499 return 0;
2500 return PTR_ERR(trans);
2501 }
2502 ret = btrfs_commit_transaction(trans);
2503 }
2504
2505 /* Update ctime/mtime for libblkid */
2506 update_dev_time(device_path);
2507 return ret;
2508
2509 error_trans:
2510 btrfs_end_transaction(trans);
2511 rcu_string_free(device->name);
2512 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2513 kfree(device);
2514 error:
2515 blkdev_put(bdev, FMODE_EXCL);
2516 if (seeding_dev) {
2517 mutex_unlock(&uuid_mutex);
2518 up_write(&sb->s_umount);
2519 }
2520 return ret;
2521 }
2522
2523 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2524 const char *device_path,
2525 struct btrfs_device *srcdev,
2526 struct btrfs_device **device_out)
2527 {
2528 struct request_queue *q;
2529 struct btrfs_device *device;
2530 struct block_device *bdev;
2531 struct list_head *devices;
2532 struct rcu_string *name;
2533 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2534 int ret = 0;
2535
2536 *device_out = NULL;
2537 if (fs_info->fs_devices->seeding) {
2538 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2539 return -EINVAL;
2540 }
2541
2542 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2543 fs_info->bdev_holder);
2544 if (IS_ERR(bdev)) {
2545 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2546 return PTR_ERR(bdev);
2547 }
2548
2549 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2550
2551 devices = &fs_info->fs_devices->devices;
2552 list_for_each_entry(device, devices, dev_list) {
2553 if (device->bdev == bdev) {
2554 btrfs_err(fs_info,
2555 "target device is in the filesystem!");
2556 ret = -EEXIST;
2557 goto error;
2558 }
2559 }
2560
2561
2562 if (i_size_read(bdev->bd_inode) <
2563 btrfs_device_get_total_bytes(srcdev)) {
2564 btrfs_err(fs_info,
2565 "target device is smaller than source device!");
2566 ret = -EINVAL;
2567 goto error;
2568 }
2569
2570
2571 device = btrfs_alloc_device(NULL, &devid, NULL);
2572 if (IS_ERR(device)) {
2573 ret = PTR_ERR(device);
2574 goto error;
2575 }
2576
2577 name = rcu_string_strdup(device_path, GFP_NOFS);
2578 if (!name) {
2579 kfree(device);
2580 ret = -ENOMEM;
2581 goto error;
2582 }
2583 rcu_assign_pointer(device->name, name);
2584
2585 q = bdev_get_queue(bdev);
2586 if (blk_queue_discard(q))
2587 device->can_discard = 1;
2588 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2589 device->writeable = 1;
2590 device->generation = 0;
2591 device->io_width = fs_info->sectorsize;
2592 device->io_align = fs_info->sectorsize;
2593 device->sector_size = fs_info->sectorsize;
2594 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2595 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2596 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2597 ASSERT(list_empty(&srcdev->resized_list));
2598 device->commit_total_bytes = srcdev->commit_total_bytes;
2599 device->commit_bytes_used = device->bytes_used;
2600 device->fs_info = fs_info;
2601 device->bdev = bdev;
2602 device->in_fs_metadata = 1;
2603 device->is_tgtdev_for_dev_replace = 1;
2604 device->mode = FMODE_EXCL;
2605 device->dev_stats_valid = 1;
2606 set_blocksize(device->bdev, 4096);
2607 device->fs_devices = fs_info->fs_devices;
2608 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2609 fs_info->fs_devices->num_devices++;
2610 fs_info->fs_devices->open_devices++;
2611 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2612
2613 *device_out = device;
2614 return ret;
2615
2616 error:
2617 blkdev_put(bdev, FMODE_EXCL);
2618 return ret;
2619 }
2620
2621 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2622 struct btrfs_device *tgtdev)
2623 {
2624 u32 sectorsize = fs_info->sectorsize;
2625
2626 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2627 tgtdev->io_width = sectorsize;
2628 tgtdev->io_align = sectorsize;
2629 tgtdev->sector_size = sectorsize;
2630 tgtdev->fs_info = fs_info;
2631 tgtdev->in_fs_metadata = 1;
2632 }
2633
2634 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2635 struct btrfs_device *device)
2636 {
2637 int ret;
2638 struct btrfs_path *path;
2639 struct btrfs_root *root = device->fs_info->chunk_root;
2640 struct btrfs_dev_item *dev_item;
2641 struct extent_buffer *leaf;
2642 struct btrfs_key key;
2643
2644 path = btrfs_alloc_path();
2645 if (!path)
2646 return -ENOMEM;
2647
2648 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2649 key.type = BTRFS_DEV_ITEM_KEY;
2650 key.offset = device->devid;
2651
2652 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2653 if (ret < 0)
2654 goto out;
2655
2656 if (ret > 0) {
2657 ret = -ENOENT;
2658 goto out;
2659 }
2660
2661 leaf = path->nodes[0];
2662 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2663
2664 btrfs_set_device_id(leaf, dev_item, device->devid);
2665 btrfs_set_device_type(leaf, dev_item, device->type);
2666 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2667 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2668 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2669 btrfs_set_device_total_bytes(leaf, dev_item,
2670 btrfs_device_get_disk_total_bytes(device));
2671 btrfs_set_device_bytes_used(leaf, dev_item,
2672 btrfs_device_get_bytes_used(device));
2673 btrfs_mark_buffer_dirty(leaf);
2674
2675 out:
2676 btrfs_free_path(path);
2677 return ret;
2678 }
2679
2680 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2681 struct btrfs_device *device, u64 new_size)
2682 {
2683 struct btrfs_fs_info *fs_info = device->fs_info;
2684 struct btrfs_super_block *super_copy = fs_info->super_copy;
2685 struct btrfs_fs_devices *fs_devices;
2686 u64 old_total;
2687 u64 diff;
2688
2689 if (!device->writeable)
2690 return -EACCES;
2691
2692 mutex_lock(&fs_info->chunk_mutex);
2693 old_total = btrfs_super_total_bytes(super_copy);
2694 diff = new_size - device->total_bytes;
2695
2696 if (new_size <= device->total_bytes ||
2697 device->is_tgtdev_for_dev_replace) {
2698 mutex_unlock(&fs_info->chunk_mutex);
2699 return -EINVAL;
2700 }
2701
2702 fs_devices = fs_info->fs_devices;
2703
2704 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2705 device->fs_devices->total_rw_bytes += diff;
2706
2707 btrfs_device_set_total_bytes(device, new_size);
2708 btrfs_device_set_disk_total_bytes(device, new_size);
2709 btrfs_clear_space_info_full(device->fs_info);
2710 if (list_empty(&device->resized_list))
2711 list_add_tail(&device->resized_list,
2712 &fs_devices->resized_devices);
2713 mutex_unlock(&fs_info->chunk_mutex);
2714
2715 return btrfs_update_device(trans, device);
2716 }
2717
2718 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2719 struct btrfs_fs_info *fs_info, u64 chunk_objectid,
2720 u64 chunk_offset)
2721 {
2722 struct btrfs_root *root = fs_info->chunk_root;
2723 int ret;
2724 struct btrfs_path *path;
2725 struct btrfs_key key;
2726
2727 path = btrfs_alloc_path();
2728 if (!path)
2729 return -ENOMEM;
2730
2731 key.objectid = chunk_objectid;
2732 key.offset = chunk_offset;
2733 key.type = BTRFS_CHUNK_ITEM_KEY;
2734
2735 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2736 if (ret < 0)
2737 goto out;
2738 else if (ret > 0) { /* Logic error or corruption */
2739 btrfs_handle_fs_error(fs_info, -ENOENT,
2740 "Failed lookup while freeing chunk.");
2741 ret = -ENOENT;
2742 goto out;
2743 }
2744
2745 ret = btrfs_del_item(trans, root, path);
2746 if (ret < 0)
2747 btrfs_handle_fs_error(fs_info, ret,
2748 "Failed to delete chunk item.");
2749 out:
2750 btrfs_free_path(path);
2751 return ret;
2752 }
2753
2754 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info,
2755 u64 chunk_objectid, u64 chunk_offset)
2756 {
2757 struct btrfs_super_block *super_copy = fs_info->super_copy;
2758 struct btrfs_disk_key *disk_key;
2759 struct btrfs_chunk *chunk;
2760 u8 *ptr;
2761 int ret = 0;
2762 u32 num_stripes;
2763 u32 array_size;
2764 u32 len = 0;
2765 u32 cur;
2766 struct btrfs_key key;
2767
2768 mutex_lock(&fs_info->chunk_mutex);
2769 array_size = btrfs_super_sys_array_size(super_copy);
2770
2771 ptr = super_copy->sys_chunk_array;
2772 cur = 0;
2773
2774 while (cur < array_size) {
2775 disk_key = (struct btrfs_disk_key *)ptr;
2776 btrfs_disk_key_to_cpu(&key, disk_key);
2777
2778 len = sizeof(*disk_key);
2779
2780 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2781 chunk = (struct btrfs_chunk *)(ptr + len);
2782 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2783 len += btrfs_chunk_item_size(num_stripes);
2784 } else {
2785 ret = -EIO;
2786 break;
2787 }
2788 if (key.objectid == chunk_objectid &&
2789 key.offset == chunk_offset) {
2790 memmove(ptr, ptr + len, array_size - (cur + len));
2791 array_size -= len;
2792 btrfs_set_super_sys_array_size(super_copy, array_size);
2793 } else {
2794 ptr += len;
2795 cur += len;
2796 }
2797 }
2798 mutex_unlock(&fs_info->chunk_mutex);
2799 return ret;
2800 }
2801
2802 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2803 u64 logical, u64 length)
2804 {
2805 struct extent_map_tree *em_tree;
2806 struct extent_map *em;
2807
2808 em_tree = &fs_info->mapping_tree.map_tree;
2809 read_lock(&em_tree->lock);
2810 em = lookup_extent_mapping(em_tree, logical, length);
2811 read_unlock(&em_tree->lock);
2812
2813 if (!em) {
2814 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2815 logical, length);
2816 return ERR_PTR(-EINVAL);
2817 }
2818
2819 if (em->start > logical || em->start + em->len < logical) {
2820 btrfs_crit(fs_info,
2821 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2822 logical, length, em->start, em->start + em->len);
2823 free_extent_map(em);
2824 return ERR_PTR(-EINVAL);
2825 }
2826
2827 /* callers are responsible for dropping em's ref. */
2828 return em;
2829 }
2830
2831 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2832 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2833 {
2834 struct extent_map *em;
2835 struct map_lookup *map;
2836 u64 dev_extent_len = 0;
2837 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2838 int i, ret = 0;
2839 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2840
2841 em = get_chunk_map(fs_info, chunk_offset, 1);
2842 if (IS_ERR(em)) {
2843 /*
2844 * This is a logic error, but we don't want to just rely on the
2845 * user having built with ASSERT enabled, so if ASSERT doesn't
2846 * do anything we still error out.
2847 */
2848 ASSERT(0);
2849 return PTR_ERR(em);
2850 }
2851 map = em->map_lookup;
2852 mutex_lock(&fs_info->chunk_mutex);
2853 check_system_chunk(trans, fs_info, map->type);
2854 mutex_unlock(&fs_info->chunk_mutex);
2855
2856 /*
2857 * Take the device list mutex to prevent races with the final phase of
2858 * a device replace operation that replaces the device object associated
2859 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2860 */
2861 mutex_lock(&fs_devices->device_list_mutex);
2862 for (i = 0; i < map->num_stripes; i++) {
2863 struct btrfs_device *device = map->stripes[i].dev;
2864 ret = btrfs_free_dev_extent(trans, device,
2865 map->stripes[i].physical,
2866 &dev_extent_len);
2867 if (ret) {
2868 mutex_unlock(&fs_devices->device_list_mutex);
2869 btrfs_abort_transaction(trans, ret);
2870 goto out;
2871 }
2872
2873 if (device->bytes_used > 0) {
2874 mutex_lock(&fs_info->chunk_mutex);
2875 btrfs_device_set_bytes_used(device,
2876 device->bytes_used - dev_extent_len);
2877 spin_lock(&fs_info->free_chunk_lock);
2878 fs_info->free_chunk_space += dev_extent_len;
2879 spin_unlock(&fs_info->free_chunk_lock);
2880 btrfs_clear_space_info_full(fs_info);
2881 mutex_unlock(&fs_info->chunk_mutex);
2882 }
2883
2884 if (map->stripes[i].dev) {
2885 ret = btrfs_update_device(trans, map->stripes[i].dev);
2886 if (ret) {
2887 mutex_unlock(&fs_devices->device_list_mutex);
2888 btrfs_abort_transaction(trans, ret);
2889 goto out;
2890 }
2891 }
2892 }
2893 mutex_unlock(&fs_devices->device_list_mutex);
2894
2895 ret = btrfs_free_chunk(trans, fs_info, chunk_objectid, chunk_offset);
2896 if (ret) {
2897 btrfs_abort_transaction(trans, ret);
2898 goto out;
2899 }
2900
2901 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2902
2903 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2904 ret = btrfs_del_sys_chunk(fs_info, chunk_objectid,
2905 chunk_offset);
2906 if (ret) {
2907 btrfs_abort_transaction(trans, ret);
2908 goto out;
2909 }
2910 }
2911
2912 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2913 if (ret) {
2914 btrfs_abort_transaction(trans, ret);
2915 goto out;
2916 }
2917
2918 out:
2919 /* once for us */
2920 free_extent_map(em);
2921 return ret;
2922 }
2923
2924 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2925 {
2926 struct btrfs_root *root = fs_info->chunk_root;
2927 struct btrfs_trans_handle *trans;
2928 int ret;
2929
2930 /*
2931 * Prevent races with automatic removal of unused block groups.
2932 * After we relocate and before we remove the chunk with offset
2933 * chunk_offset, automatic removal of the block group can kick in,
2934 * resulting in a failure when calling btrfs_remove_chunk() below.
2935 *
2936 * Make sure to acquire this mutex before doing a tree search (dev
2937 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2938 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2939 * we release the path used to search the chunk/dev tree and before
2940 * the current task acquires this mutex and calls us.
2941 */
2942 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2943
2944 ret = btrfs_can_relocate(fs_info, chunk_offset);
2945 if (ret)
2946 return -ENOSPC;
2947
2948 /* step one, relocate all the extents inside this chunk */
2949 btrfs_scrub_pause(fs_info);
2950 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2951 btrfs_scrub_continue(fs_info);
2952 if (ret)
2953 return ret;
2954
2955 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2956 chunk_offset);
2957 if (IS_ERR(trans)) {
2958 ret = PTR_ERR(trans);
2959 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2960 return ret;
2961 }
2962
2963 /*
2964 * step two, delete the device extents and the
2965 * chunk tree entries
2966 */
2967 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2968 btrfs_end_transaction(trans);
2969 return ret;
2970 }
2971
2972 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2973 {
2974 struct btrfs_root *chunk_root = fs_info->chunk_root;
2975 struct btrfs_path *path;
2976 struct extent_buffer *leaf;
2977 struct btrfs_chunk *chunk;
2978 struct btrfs_key key;
2979 struct btrfs_key found_key;
2980 u64 chunk_type;
2981 bool retried = false;
2982 int failed = 0;
2983 int ret;
2984
2985 path = btrfs_alloc_path();
2986 if (!path)
2987 return -ENOMEM;
2988
2989 again:
2990 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2991 key.offset = (u64)-1;
2992 key.type = BTRFS_CHUNK_ITEM_KEY;
2993
2994 while (1) {
2995 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2996 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2997 if (ret < 0) {
2998 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2999 goto error;
3000 }
3001 BUG_ON(ret == 0); /* Corruption */
3002
3003 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3004 key.type);
3005 if (ret)
3006 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3007 if (ret < 0)
3008 goto error;
3009 if (ret > 0)
3010 break;
3011
3012 leaf = path->nodes[0];
3013 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3014
3015 chunk = btrfs_item_ptr(leaf, path->slots[0],
3016 struct btrfs_chunk);
3017 chunk_type = btrfs_chunk_type(leaf, chunk);
3018 btrfs_release_path(path);
3019
3020 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3021 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3022 if (ret == -ENOSPC)
3023 failed++;
3024 else
3025 BUG_ON(ret);
3026 }
3027 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3028
3029 if (found_key.offset == 0)
3030 break;
3031 key.offset = found_key.offset - 1;
3032 }
3033 ret = 0;
3034 if (failed && !retried) {
3035 failed = 0;
3036 retried = true;
3037 goto again;
3038 } else if (WARN_ON(failed && retried)) {
3039 ret = -ENOSPC;
3040 }
3041 error:
3042 btrfs_free_path(path);
3043 return ret;
3044 }
3045
3046 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3047 struct btrfs_balance_control *bctl)
3048 {
3049 struct btrfs_root *root = fs_info->tree_root;
3050 struct btrfs_trans_handle *trans;
3051 struct btrfs_balance_item *item;
3052 struct btrfs_disk_balance_args disk_bargs;
3053 struct btrfs_path *path;
3054 struct extent_buffer *leaf;
3055 struct btrfs_key key;
3056 int ret, err;
3057
3058 path = btrfs_alloc_path();
3059 if (!path)
3060 return -ENOMEM;
3061
3062 trans = btrfs_start_transaction(root, 0);
3063 if (IS_ERR(trans)) {
3064 btrfs_free_path(path);
3065 return PTR_ERR(trans);
3066 }
3067
3068 key.objectid = BTRFS_BALANCE_OBJECTID;
3069 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3070 key.offset = 0;
3071
3072 ret = btrfs_insert_empty_item(trans, root, path, &key,
3073 sizeof(*item));
3074 if (ret)
3075 goto out;
3076
3077 leaf = path->nodes[0];
3078 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3079
3080 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3081
3082 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3083 btrfs_set_balance_data(leaf, item, &disk_bargs);
3084 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3085 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3086 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3087 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3088
3089 btrfs_set_balance_flags(leaf, item, bctl->flags);
3090
3091 btrfs_mark_buffer_dirty(leaf);
3092 out:
3093 btrfs_free_path(path);
3094 err = btrfs_commit_transaction(trans);
3095 if (err && !ret)
3096 ret = err;
3097 return ret;
3098 }
3099
3100 static int del_balance_item(struct btrfs_fs_info *fs_info)
3101 {
3102 struct btrfs_root *root = fs_info->tree_root;
3103 struct btrfs_trans_handle *trans;
3104 struct btrfs_path *path;
3105 struct btrfs_key key;
3106 int ret, err;
3107
3108 path = btrfs_alloc_path();
3109 if (!path)
3110 return -ENOMEM;
3111
3112 trans = btrfs_start_transaction(root, 0);
3113 if (IS_ERR(trans)) {
3114 btrfs_free_path(path);
3115 return PTR_ERR(trans);
3116 }
3117
3118 key.objectid = BTRFS_BALANCE_OBJECTID;
3119 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3120 key.offset = 0;
3121
3122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3123 if (ret < 0)
3124 goto out;
3125 if (ret > 0) {
3126 ret = -ENOENT;
3127 goto out;
3128 }
3129
3130 ret = btrfs_del_item(trans, root, path);
3131 out:
3132 btrfs_free_path(path);
3133 err = btrfs_commit_transaction(trans);
3134 if (err && !ret)
3135 ret = err;
3136 return ret;
3137 }
3138
3139 /*
3140 * This is a heuristic used to reduce the number of chunks balanced on
3141 * resume after balance was interrupted.
3142 */
3143 static void update_balance_args(struct btrfs_balance_control *bctl)
3144 {
3145 /*
3146 * Turn on soft mode for chunk types that were being converted.
3147 */
3148 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3149 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3150 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3151 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3152 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3153 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3154
3155 /*
3156 * Turn on usage filter if is not already used. The idea is
3157 * that chunks that we have already balanced should be
3158 * reasonably full. Don't do it for chunks that are being
3159 * converted - that will keep us from relocating unconverted
3160 * (albeit full) chunks.
3161 */
3162 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3163 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3164 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3165 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3166 bctl->data.usage = 90;
3167 }
3168 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3169 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3170 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3171 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3172 bctl->sys.usage = 90;
3173 }
3174 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3175 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3176 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3177 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3178 bctl->meta.usage = 90;
3179 }
3180 }
3181
3182 /*
3183 * Should be called with both balance and volume mutexes held to
3184 * serialize other volume operations (add_dev/rm_dev/resize) with
3185 * restriper. Same goes for unset_balance_control.
3186 */
3187 static void set_balance_control(struct btrfs_balance_control *bctl)
3188 {
3189 struct btrfs_fs_info *fs_info = bctl->fs_info;
3190
3191 BUG_ON(fs_info->balance_ctl);
3192
3193 spin_lock(&fs_info->balance_lock);
3194 fs_info->balance_ctl = bctl;
3195 spin_unlock(&fs_info->balance_lock);
3196 }
3197
3198 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3199 {
3200 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3201
3202 BUG_ON(!fs_info->balance_ctl);
3203
3204 spin_lock(&fs_info->balance_lock);
3205 fs_info->balance_ctl = NULL;
3206 spin_unlock(&fs_info->balance_lock);
3207
3208 kfree(bctl);
3209 }
3210
3211 /*
3212 * Balance filters. Return 1 if chunk should be filtered out
3213 * (should not be balanced).
3214 */
3215 static int chunk_profiles_filter(u64 chunk_type,
3216 struct btrfs_balance_args *bargs)
3217 {
3218 chunk_type = chunk_to_extended(chunk_type) &
3219 BTRFS_EXTENDED_PROFILE_MASK;
3220
3221 if (bargs->profiles & chunk_type)
3222 return 0;
3223
3224 return 1;
3225 }
3226
3227 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3228 struct btrfs_balance_args *bargs)
3229 {
3230 struct btrfs_block_group_cache *cache;
3231 u64 chunk_used;
3232 u64 user_thresh_min;
3233 u64 user_thresh_max;
3234 int ret = 1;
3235
3236 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3237 chunk_used = btrfs_block_group_used(&cache->item);
3238
3239 if (bargs->usage_min == 0)
3240 user_thresh_min = 0;
3241 else
3242 user_thresh_min = div_factor_fine(cache->key.offset,
3243 bargs->usage_min);
3244
3245 if (bargs->usage_max == 0)
3246 user_thresh_max = 1;
3247 else if (bargs->usage_max > 100)
3248 user_thresh_max = cache->key.offset;
3249 else
3250 user_thresh_max = div_factor_fine(cache->key.offset,
3251 bargs->usage_max);
3252
3253 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3254 ret = 0;
3255
3256 btrfs_put_block_group(cache);
3257 return ret;
3258 }
3259
3260 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3261 u64 chunk_offset, struct btrfs_balance_args *bargs)
3262 {
3263 struct btrfs_block_group_cache *cache;
3264 u64 chunk_used, user_thresh;
3265 int ret = 1;
3266
3267 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3268 chunk_used = btrfs_block_group_used(&cache->item);
3269
3270 if (bargs->usage_min == 0)
3271 user_thresh = 1;
3272 else if (bargs->usage > 100)
3273 user_thresh = cache->key.offset;
3274 else
3275 user_thresh = div_factor_fine(cache->key.offset,
3276 bargs->usage);
3277
3278 if (chunk_used < user_thresh)
3279 ret = 0;
3280
3281 btrfs_put_block_group(cache);
3282 return ret;
3283 }
3284
3285 static int chunk_devid_filter(struct extent_buffer *leaf,
3286 struct btrfs_chunk *chunk,
3287 struct btrfs_balance_args *bargs)
3288 {
3289 struct btrfs_stripe *stripe;
3290 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3291 int i;
3292
3293 for (i = 0; i < num_stripes; i++) {
3294 stripe = btrfs_stripe_nr(chunk, i);
3295 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3296 return 0;
3297 }
3298
3299 return 1;
3300 }
3301
3302 /* [pstart, pend) */
3303 static int chunk_drange_filter(struct extent_buffer *leaf,
3304 struct btrfs_chunk *chunk,
3305 u64 chunk_offset,
3306 struct btrfs_balance_args *bargs)
3307 {
3308 struct btrfs_stripe *stripe;
3309 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3310 u64 stripe_offset;
3311 u64 stripe_length;
3312 int factor;
3313 int i;
3314
3315 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3316 return 0;
3317
3318 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3319 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3320 factor = num_stripes / 2;
3321 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3322 factor = num_stripes - 1;
3323 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3324 factor = num_stripes - 2;
3325 } else {
3326 factor = num_stripes;
3327 }
3328
3329 for (i = 0; i < num_stripes; i++) {
3330 stripe = btrfs_stripe_nr(chunk, i);
3331 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3332 continue;
3333
3334 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3335 stripe_length = btrfs_chunk_length(leaf, chunk);
3336 stripe_length = div_u64(stripe_length, factor);
3337
3338 if (stripe_offset < bargs->pend &&
3339 stripe_offset + stripe_length > bargs->pstart)
3340 return 0;
3341 }
3342
3343 return 1;
3344 }
3345
3346 /* [vstart, vend) */
3347 static int chunk_vrange_filter(struct extent_buffer *leaf,
3348 struct btrfs_chunk *chunk,
3349 u64 chunk_offset,
3350 struct btrfs_balance_args *bargs)
3351 {
3352 if (chunk_offset < bargs->vend &&
3353 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3354 /* at least part of the chunk is inside this vrange */
3355 return 0;
3356
3357 return 1;
3358 }
3359
3360 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3361 struct btrfs_chunk *chunk,
3362 struct btrfs_balance_args *bargs)
3363 {
3364 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3365
3366 if (bargs->stripes_min <= num_stripes
3367 && num_stripes <= bargs->stripes_max)
3368 return 0;
3369
3370 return 1;
3371 }
3372
3373 static int chunk_soft_convert_filter(u64 chunk_type,
3374 struct btrfs_balance_args *bargs)
3375 {
3376 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3377 return 0;
3378
3379 chunk_type = chunk_to_extended(chunk_type) &
3380 BTRFS_EXTENDED_PROFILE_MASK;
3381
3382 if (bargs->target == chunk_type)
3383 return 1;
3384
3385 return 0;
3386 }
3387
3388 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3389 struct extent_buffer *leaf,
3390 struct btrfs_chunk *chunk, u64 chunk_offset)
3391 {
3392 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3393 struct btrfs_balance_args *bargs = NULL;
3394 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3395
3396 /* type filter */
3397 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3398 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3399 return 0;
3400 }
3401
3402 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3403 bargs = &bctl->data;
3404 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3405 bargs = &bctl->sys;
3406 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3407 bargs = &bctl->meta;
3408
3409 /* profiles filter */
3410 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3411 chunk_profiles_filter(chunk_type, bargs)) {
3412 return 0;
3413 }
3414
3415 /* usage filter */
3416 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3417 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3418 return 0;
3419 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3420 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3421 return 0;
3422 }
3423
3424 /* devid filter */
3425 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3426 chunk_devid_filter(leaf, chunk, bargs)) {
3427 return 0;
3428 }
3429
3430 /* drange filter, makes sense only with devid filter */
3431 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3432 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3433 return 0;
3434 }
3435
3436 /* vrange filter */
3437 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3438 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3439 return 0;
3440 }
3441
3442 /* stripes filter */
3443 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3444 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3445 return 0;
3446 }
3447
3448 /* soft profile changing mode */
3449 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3450 chunk_soft_convert_filter(chunk_type, bargs)) {
3451 return 0;
3452 }
3453
3454 /*
3455 * limited by count, must be the last filter
3456 */
3457 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3458 if (bargs->limit == 0)
3459 return 0;
3460 else
3461 bargs->limit--;
3462 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3463 /*
3464 * Same logic as the 'limit' filter; the minimum cannot be
3465 * determined here because we do not have the global information
3466 * about the count of all chunks that satisfy the filters.
3467 */
3468 if (bargs->limit_max == 0)
3469 return 0;
3470 else
3471 bargs->limit_max--;
3472 }
3473
3474 return 1;
3475 }
3476
3477 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3478 {
3479 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3480 struct btrfs_root *chunk_root = fs_info->chunk_root;
3481 struct btrfs_root *dev_root = fs_info->dev_root;
3482 struct list_head *devices;
3483 struct btrfs_device *device;
3484 u64 old_size;
3485 u64 size_to_free;
3486 u64 chunk_type;
3487 struct btrfs_chunk *chunk;
3488 struct btrfs_path *path = NULL;
3489 struct btrfs_key key;
3490 struct btrfs_key found_key;
3491 struct btrfs_trans_handle *trans;
3492 struct extent_buffer *leaf;
3493 int slot;
3494 int ret;
3495 int enospc_errors = 0;
3496 bool counting = true;
3497 /* The single value limit and min/max limits use the same bytes in the */
3498 u64 limit_data = bctl->data.limit;
3499 u64 limit_meta = bctl->meta.limit;
3500 u64 limit_sys = bctl->sys.limit;
3501 u32 count_data = 0;
3502 u32 count_meta = 0;
3503 u32 count_sys = 0;
3504 int chunk_reserved = 0;
3505 u64 bytes_used = 0;
3506
3507 /* step one make some room on all the devices */
3508 devices = &fs_info->fs_devices->devices;
3509 list_for_each_entry(device, devices, dev_list) {
3510 old_size = btrfs_device_get_total_bytes(device);
3511 size_to_free = div_factor(old_size, 1);
3512 size_to_free = min_t(u64, size_to_free, SZ_1M);
3513 if (!device->writeable ||
3514 btrfs_device_get_total_bytes(device) -
3515 btrfs_device_get_bytes_used(device) > size_to_free ||
3516 device->is_tgtdev_for_dev_replace)
3517 continue;
3518
3519 ret = btrfs_shrink_device(device, old_size - size_to_free);
3520 if (ret == -ENOSPC)
3521 break;
3522 if (ret) {
3523 /* btrfs_shrink_device never returns ret > 0 */
3524 WARN_ON(ret > 0);
3525 goto error;
3526 }
3527
3528 trans = btrfs_start_transaction(dev_root, 0);
3529 if (IS_ERR(trans)) {
3530 ret = PTR_ERR(trans);
3531 btrfs_info_in_rcu(fs_info,
3532 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3533 rcu_str_deref(device->name), ret,
3534 old_size, old_size - size_to_free);
3535 goto error;
3536 }
3537
3538 ret = btrfs_grow_device(trans, device, old_size);
3539 if (ret) {
3540 btrfs_end_transaction(trans);
3541 /* btrfs_grow_device never returns ret > 0 */
3542 WARN_ON(ret > 0);
3543 btrfs_info_in_rcu(fs_info,
3544 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3545 rcu_str_deref(device->name), ret,
3546 old_size, old_size - size_to_free);
3547 goto error;
3548 }
3549
3550 btrfs_end_transaction(trans);
3551 }
3552
3553 /* step two, relocate all the chunks */
3554 path = btrfs_alloc_path();
3555 if (!path) {
3556 ret = -ENOMEM;
3557 goto error;
3558 }
3559
3560 /* zero out stat counters */
3561 spin_lock(&fs_info->balance_lock);
3562 memset(&bctl->stat, 0, sizeof(bctl->stat));
3563 spin_unlock(&fs_info->balance_lock);
3564 again:
3565 if (!counting) {
3566 /*
3567 * The single value limit and min/max limits use the same bytes
3568 * in the
3569 */
3570 bctl->data.limit = limit_data;
3571 bctl->meta.limit = limit_meta;
3572 bctl->sys.limit = limit_sys;
3573 }
3574 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3575 key.offset = (u64)-1;
3576 key.type = BTRFS_CHUNK_ITEM_KEY;
3577
3578 while (1) {
3579 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3580 atomic_read(&fs_info->balance_cancel_req)) {
3581 ret = -ECANCELED;
3582 goto error;
3583 }
3584
3585 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3586 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3587 if (ret < 0) {
3588 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3589 goto error;
3590 }
3591
3592 /*
3593 * this shouldn't happen, it means the last relocate
3594 * failed
3595 */
3596 if (ret == 0)
3597 BUG(); /* FIXME break ? */
3598
3599 ret = btrfs_previous_item(chunk_root, path, 0,
3600 BTRFS_CHUNK_ITEM_KEY);
3601 if (ret) {
3602 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3603 ret = 0;
3604 break;
3605 }
3606
3607 leaf = path->nodes[0];
3608 slot = path->slots[0];
3609 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3610
3611 if (found_key.objectid != key.objectid) {
3612 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3613 break;
3614 }
3615
3616 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3617 chunk_type = btrfs_chunk_type(leaf, chunk);
3618
3619 if (!counting) {
3620 spin_lock(&fs_info->balance_lock);
3621 bctl->stat.considered++;
3622 spin_unlock(&fs_info->balance_lock);
3623 }
3624
3625 ret = should_balance_chunk(fs_info, leaf, chunk,
3626 found_key.offset);
3627
3628 btrfs_release_path(path);
3629 if (!ret) {
3630 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3631 goto loop;
3632 }
3633
3634 if (counting) {
3635 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3636 spin_lock(&fs_info->balance_lock);
3637 bctl->stat.expected++;
3638 spin_unlock(&fs_info->balance_lock);
3639
3640 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3641 count_data++;
3642 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3643 count_sys++;
3644 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3645 count_meta++;
3646
3647 goto loop;
3648 }
3649
3650 /*
3651 * Apply limit_min filter, no need to check if the LIMITS
3652 * filter is used, limit_min is 0 by default
3653 */
3654 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3655 count_data < bctl->data.limit_min)
3656 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3657 count_meta < bctl->meta.limit_min)
3658 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3659 count_sys < bctl->sys.limit_min)) {
3660 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3661 goto loop;
3662 }
3663
3664 ASSERT(fs_info->data_sinfo);
3665 spin_lock(&fs_info->data_sinfo->lock);
3666 bytes_used = fs_info->data_sinfo->bytes_used;
3667 spin_unlock(&fs_info->data_sinfo->lock);
3668
3669 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3670 !chunk_reserved && !bytes_used) {
3671 trans = btrfs_start_transaction(chunk_root, 0);
3672 if (IS_ERR(trans)) {
3673 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3674 ret = PTR_ERR(trans);
3675 goto error;
3676 }
3677
3678 ret = btrfs_force_chunk_alloc(trans, fs_info,
3679 BTRFS_BLOCK_GROUP_DATA);
3680 btrfs_end_transaction(trans);
3681 if (ret < 0) {
3682 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3683 goto error;
3684 }
3685 chunk_reserved = 1;
3686 }
3687
3688 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3689 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3690 if (ret && ret != -ENOSPC)
3691 goto error;
3692 if (ret == -ENOSPC) {
3693 enospc_errors++;
3694 } else {
3695 spin_lock(&fs_info->balance_lock);
3696 bctl->stat.completed++;
3697 spin_unlock(&fs_info->balance_lock);
3698 }
3699 loop:
3700 if (found_key.offset == 0)
3701 break;
3702 key.offset = found_key.offset - 1;
3703 }
3704
3705 if (counting) {
3706 btrfs_release_path(path);
3707 counting = false;
3708 goto again;
3709 }
3710 error:
3711 btrfs_free_path(path);
3712 if (enospc_errors) {
3713 btrfs_info(fs_info, "%d enospc errors during balance",
3714 enospc_errors);
3715 if (!ret)
3716 ret = -ENOSPC;
3717 }
3718
3719 return ret;
3720 }
3721
3722 /**
3723 * alloc_profile_is_valid - see if a given profile is valid and reduced
3724 * @flags: profile to validate
3725 * @extended: if true @flags is treated as an extended profile
3726 */
3727 static int alloc_profile_is_valid(u64 flags, int extended)
3728 {
3729 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3730 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3731
3732 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3733
3734 /* 1) check that all other bits are zeroed */
3735 if (flags & ~mask)
3736 return 0;
3737
3738 /* 2) see if profile is reduced */
3739 if (flags == 0)
3740 return !extended; /* "0" is valid for usual profiles */
3741
3742 /* true if exactly one bit set */
3743 return (flags & (flags - 1)) == 0;
3744 }
3745
3746 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3747 {
3748 /* cancel requested || normal exit path */
3749 return atomic_read(&fs_info->balance_cancel_req) ||
3750 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3751 atomic_read(&fs_info->balance_cancel_req) == 0);
3752 }
3753
3754 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3755 {
3756 int ret;
3757
3758 unset_balance_control(fs_info);
3759 ret = del_balance_item(fs_info);
3760 if (ret)
3761 btrfs_handle_fs_error(fs_info, ret, NULL);
3762
3763 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3764 }
3765
3766 /* Non-zero return value signifies invalidity */
3767 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3768 u64 allowed)
3769 {
3770 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3771 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3772 (bctl_arg->target & ~allowed)));
3773 }
3774
3775 /*
3776 * Should be called with both balance and volume mutexes held
3777 */
3778 int btrfs_balance(struct btrfs_balance_control *bctl,
3779 struct btrfs_ioctl_balance_args *bargs)
3780 {
3781 struct btrfs_fs_info *fs_info = bctl->fs_info;
3782 u64 meta_target, data_target;
3783 u64 allowed;
3784 int mixed = 0;
3785 int ret;
3786 u64 num_devices;
3787 unsigned seq;
3788
3789 if (btrfs_fs_closing(fs_info) ||
3790 atomic_read(&fs_info->balance_pause_req) ||
3791 atomic_read(&fs_info->balance_cancel_req)) {
3792 ret = -EINVAL;
3793 goto out;
3794 }
3795
3796 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3797 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3798 mixed = 1;
3799
3800 /*
3801 * In case of mixed groups both data and meta should be picked,
3802 * and identical options should be given for both of them.
3803 */
3804 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3805 if (mixed && (bctl->flags & allowed)) {
3806 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3807 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3808 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3809 btrfs_err(fs_info,
3810 "with mixed groups data and metadata balance options must be the same");
3811 ret = -EINVAL;
3812 goto out;
3813 }
3814 }
3815
3816 num_devices = fs_info->fs_devices->num_devices;
3817 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3818 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3819 BUG_ON(num_devices < 1);
3820 num_devices--;
3821 }
3822 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3823 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3824 if (num_devices > 1)
3825 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3826 if (num_devices > 2)
3827 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3828 if (num_devices > 3)
3829 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3830 BTRFS_BLOCK_GROUP_RAID6);
3831 if (validate_convert_profile(&bctl->data, allowed)) {
3832 btrfs_err(fs_info,
3833 "unable to start balance with target data profile %llu",
3834 bctl->data.target);
3835 ret = -EINVAL;
3836 goto out;
3837 }
3838 if (validate_convert_profile(&bctl->meta, allowed)) {
3839 btrfs_err(fs_info,
3840 "unable to start balance with target metadata profile %llu",
3841 bctl->meta.target);
3842 ret = -EINVAL;
3843 goto out;
3844 }
3845 if (validate_convert_profile(&bctl->sys, allowed)) {
3846 btrfs_err(fs_info,
3847 "unable to start balance with target system profile %llu",
3848 bctl->sys.target);
3849 ret = -EINVAL;
3850 goto out;
3851 }
3852
3853 /* allow to reduce meta or sys integrity only if force set */
3854 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3855 BTRFS_BLOCK_GROUP_RAID10 |
3856 BTRFS_BLOCK_GROUP_RAID5 |
3857 BTRFS_BLOCK_GROUP_RAID6;
3858 do {
3859 seq = read_seqbegin(&fs_info->profiles_lock);
3860
3861 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3862 (fs_info->avail_system_alloc_bits & allowed) &&
3863 !(bctl->sys.target & allowed)) ||
3864 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3865 (fs_info->avail_metadata_alloc_bits & allowed) &&
3866 !(bctl->meta.target & allowed))) {
3867 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3868 btrfs_info(fs_info,
3869 "force reducing metadata integrity");
3870 } else {
3871 btrfs_err(fs_info,
3872 "balance will reduce metadata integrity, use force if you want this");
3873 ret = -EINVAL;
3874 goto out;
3875 }
3876 }
3877 } while (read_seqretry(&fs_info->profiles_lock, seq));
3878
3879 /* if we're not converting, the target field is uninitialized */
3880 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3881 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3882 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3883 bctl->data.target : fs_info->avail_data_alloc_bits;
3884 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3885 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3886 btrfs_warn(fs_info,
3887 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3888 meta_target, data_target);
3889 }
3890
3891 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3892 fs_info->num_tolerated_disk_barrier_failures = min(
3893 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3894 btrfs_get_num_tolerated_disk_barrier_failures(
3895 bctl->sys.target));
3896 }
3897
3898 ret = insert_balance_item(fs_info, bctl);
3899 if (ret && ret != -EEXIST)
3900 goto out;
3901
3902 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3903 BUG_ON(ret == -EEXIST);
3904 set_balance_control(bctl);
3905 } else {
3906 BUG_ON(ret != -EEXIST);
3907 spin_lock(&fs_info->balance_lock);
3908 update_balance_args(bctl);
3909 spin_unlock(&fs_info->balance_lock);
3910 }
3911
3912 atomic_inc(&fs_info->balance_running);
3913 mutex_unlock(&fs_info->balance_mutex);
3914
3915 ret = __btrfs_balance(fs_info);
3916
3917 mutex_lock(&fs_info->balance_mutex);
3918 atomic_dec(&fs_info->balance_running);
3919
3920 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3921 fs_info->num_tolerated_disk_barrier_failures =
3922 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3923 }
3924
3925 if (bargs) {
3926 memset(bargs, 0, sizeof(*bargs));
3927 update_ioctl_balance_args(fs_info, 0, bargs);
3928 }
3929
3930 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3931 balance_need_close(fs_info)) {
3932 __cancel_balance(fs_info);
3933 }
3934
3935 wake_up(&fs_info->balance_wait_q);
3936
3937 return ret;
3938 out:
3939 if (bctl->flags & BTRFS_BALANCE_RESUME)
3940 __cancel_balance(fs_info);
3941 else {
3942 kfree(bctl);
3943 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3944 }
3945 return ret;
3946 }
3947
3948 static int balance_kthread(void *data)
3949 {
3950 struct btrfs_fs_info *fs_info = data;
3951 int ret = 0;
3952
3953 mutex_lock(&fs_info->volume_mutex);
3954 mutex_lock(&fs_info->balance_mutex);
3955
3956 if (fs_info->balance_ctl) {
3957 btrfs_info(fs_info, "continuing balance");
3958 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3959 }
3960
3961 mutex_unlock(&fs_info->balance_mutex);
3962 mutex_unlock(&fs_info->volume_mutex);
3963
3964 return ret;
3965 }
3966
3967 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3968 {
3969 struct task_struct *tsk;
3970
3971 spin_lock(&fs_info->balance_lock);
3972 if (!fs_info->balance_ctl) {
3973 spin_unlock(&fs_info->balance_lock);
3974 return 0;
3975 }
3976 spin_unlock(&fs_info->balance_lock);
3977
3978 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3979 btrfs_info(fs_info, "force skipping balance");
3980 return 0;
3981 }
3982
3983 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3984 return PTR_ERR_OR_ZERO(tsk);
3985 }
3986
3987 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3988 {
3989 struct btrfs_balance_control *bctl;
3990 struct btrfs_balance_item *item;
3991 struct btrfs_disk_balance_args disk_bargs;
3992 struct btrfs_path *path;
3993 struct extent_buffer *leaf;
3994 struct btrfs_key key;
3995 int ret;
3996
3997 path = btrfs_alloc_path();
3998 if (!path)
3999 return -ENOMEM;
4000
4001 key.objectid = BTRFS_BALANCE_OBJECTID;
4002 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4003 key.offset = 0;
4004
4005 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4006 if (ret < 0)
4007 goto out;
4008 if (ret > 0) { /* ret = -ENOENT; */
4009 ret = 0;
4010 goto out;
4011 }
4012
4013 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4014 if (!bctl) {
4015 ret = -ENOMEM;
4016 goto out;
4017 }
4018
4019 leaf = path->nodes[0];
4020 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4021
4022 bctl->fs_info = fs_info;
4023 bctl->flags = btrfs_balance_flags(leaf, item);
4024 bctl->flags |= BTRFS_BALANCE_RESUME;
4025
4026 btrfs_balance_data(leaf, item, &disk_bargs);
4027 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4028 btrfs_balance_meta(leaf, item, &disk_bargs);
4029 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4030 btrfs_balance_sys(leaf, item, &disk_bargs);
4031 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4032
4033 WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4034
4035 mutex_lock(&fs_info->volume_mutex);
4036 mutex_lock(&fs_info->balance_mutex);
4037
4038 set_balance_control(bctl);
4039
4040 mutex_unlock(&fs_info->balance_mutex);
4041 mutex_unlock(&fs_info->volume_mutex);
4042 out:
4043 btrfs_free_path(path);
4044 return ret;
4045 }
4046
4047 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4048 {
4049 int ret = 0;
4050
4051 mutex_lock(&fs_info->balance_mutex);
4052 if (!fs_info->balance_ctl) {
4053 mutex_unlock(&fs_info->balance_mutex);
4054 return -ENOTCONN;
4055 }
4056
4057 if (atomic_read(&fs_info->balance_running)) {
4058 atomic_inc(&fs_info->balance_pause_req);
4059 mutex_unlock(&fs_info->balance_mutex);
4060
4061 wait_event(fs_info->balance_wait_q,
4062 atomic_read(&fs_info->balance_running) == 0);
4063
4064 mutex_lock(&fs_info->balance_mutex);
4065 /* we are good with balance_ctl ripped off from under us */
4066 BUG_ON(atomic_read(&fs_info->balance_running));
4067 atomic_dec(&fs_info->balance_pause_req);
4068 } else {
4069 ret = -ENOTCONN;
4070 }
4071
4072 mutex_unlock(&fs_info->balance_mutex);
4073 return ret;
4074 }
4075
4076 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4077 {
4078 if (fs_info->sb->s_flags & MS_RDONLY)
4079 return -EROFS;
4080
4081 mutex_lock(&fs_info->balance_mutex);
4082 if (!fs_info->balance_ctl) {
4083 mutex_unlock(&fs_info->balance_mutex);
4084 return -ENOTCONN;
4085 }
4086
4087 atomic_inc(&fs_info->balance_cancel_req);
4088 /*
4089 * if we are running just wait and return, balance item is
4090 * deleted in btrfs_balance in this case
4091 */
4092 if (atomic_read(&fs_info->balance_running)) {
4093 mutex_unlock(&fs_info->balance_mutex);
4094 wait_event(fs_info->balance_wait_q,
4095 atomic_read(&fs_info->balance_running) == 0);
4096 mutex_lock(&fs_info->balance_mutex);
4097 } else {
4098 /* __cancel_balance needs volume_mutex */
4099 mutex_unlock(&fs_info->balance_mutex);
4100 mutex_lock(&fs_info->volume_mutex);
4101 mutex_lock(&fs_info->balance_mutex);
4102
4103 if (fs_info->balance_ctl)
4104 __cancel_balance(fs_info);
4105
4106 mutex_unlock(&fs_info->volume_mutex);
4107 }
4108
4109 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4110 atomic_dec(&fs_info->balance_cancel_req);
4111 mutex_unlock(&fs_info->balance_mutex);
4112 return 0;
4113 }
4114
4115 static int btrfs_uuid_scan_kthread(void *data)
4116 {
4117 struct btrfs_fs_info *fs_info = data;
4118 struct btrfs_root *root = fs_info->tree_root;
4119 struct btrfs_key key;
4120 struct btrfs_key max_key;
4121 struct btrfs_path *path = NULL;
4122 int ret = 0;
4123 struct extent_buffer *eb;
4124 int slot;
4125 struct btrfs_root_item root_item;
4126 u32 item_size;
4127 struct btrfs_trans_handle *trans = NULL;
4128
4129 path = btrfs_alloc_path();
4130 if (!path) {
4131 ret = -ENOMEM;
4132 goto out;
4133 }
4134
4135 key.objectid = 0;
4136 key.type = BTRFS_ROOT_ITEM_KEY;
4137 key.offset = 0;
4138
4139 max_key.objectid = (u64)-1;
4140 max_key.type = BTRFS_ROOT_ITEM_KEY;
4141 max_key.offset = (u64)-1;
4142
4143 while (1) {
4144 ret = btrfs_search_forward(root, &key, path, 0);
4145 if (ret) {
4146 if (ret > 0)
4147 ret = 0;
4148 break;
4149 }
4150
4151 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4152 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4153 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4154 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4155 goto skip;
4156
4157 eb = path->nodes[0];
4158 slot = path->slots[0];
4159 item_size = btrfs_item_size_nr(eb, slot);
4160 if (item_size < sizeof(root_item))
4161 goto skip;
4162
4163 read_extent_buffer(eb, &root_item,
4164 btrfs_item_ptr_offset(eb, slot),
4165 (int)sizeof(root_item));
4166 if (btrfs_root_refs(&root_item) == 0)
4167 goto skip;
4168
4169 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4170 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4171 if (trans)
4172 goto update_tree;
4173
4174 btrfs_release_path(path);
4175 /*
4176 * 1 - subvol uuid item
4177 * 1 - received_subvol uuid item
4178 */
4179 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4180 if (IS_ERR(trans)) {
4181 ret = PTR_ERR(trans);
4182 break;
4183 }
4184 continue;
4185 } else {
4186 goto skip;
4187 }
4188 update_tree:
4189 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4190 ret = btrfs_uuid_tree_add(trans, fs_info,
4191 root_item.uuid,
4192 BTRFS_UUID_KEY_SUBVOL,
4193 key.objectid);
4194 if (ret < 0) {
4195 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4196 ret);
4197 break;
4198 }
4199 }
4200
4201 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4202 ret = btrfs_uuid_tree_add(trans, fs_info,
4203 root_item.received_uuid,
4204 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4205 key.objectid);
4206 if (ret < 0) {
4207 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4208 ret);
4209 break;
4210 }
4211 }
4212
4213 skip:
4214 if (trans) {
4215 ret = btrfs_end_transaction(trans);
4216 trans = NULL;
4217 if (ret)
4218 break;
4219 }
4220
4221 btrfs_release_path(path);
4222 if (key.offset < (u64)-1) {
4223 key.offset++;
4224 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4225 key.offset = 0;
4226 key.type = BTRFS_ROOT_ITEM_KEY;
4227 } else if (key.objectid < (u64)-1) {
4228 key.offset = 0;
4229 key.type = BTRFS_ROOT_ITEM_KEY;
4230 key.objectid++;
4231 } else {
4232 break;
4233 }
4234 cond_resched();
4235 }
4236
4237 out:
4238 btrfs_free_path(path);
4239 if (trans && !IS_ERR(trans))
4240 btrfs_end_transaction(trans);
4241 if (ret)
4242 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4243 else
4244 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4245 up(&fs_info->uuid_tree_rescan_sem);
4246 return 0;
4247 }
4248
4249 /*
4250 * Callback for btrfs_uuid_tree_iterate().
4251 * returns:
4252 * 0 check succeeded, the entry is not outdated.
4253 * < 0 if an error occurred.
4254 * > 0 if the check failed, which means the caller shall remove the entry.
4255 */
4256 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4257 u8 *uuid, u8 type, u64 subid)
4258 {
4259 struct btrfs_key key;
4260 int ret = 0;
4261 struct btrfs_root *subvol_root;
4262
4263 if (type != BTRFS_UUID_KEY_SUBVOL &&
4264 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4265 goto out;
4266
4267 key.objectid = subid;
4268 key.type = BTRFS_ROOT_ITEM_KEY;
4269 key.offset = (u64)-1;
4270 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4271 if (IS_ERR(subvol_root)) {
4272 ret = PTR_ERR(subvol_root);
4273 if (ret == -ENOENT)
4274 ret = 1;
4275 goto out;
4276 }
4277
4278 switch (type) {
4279 case BTRFS_UUID_KEY_SUBVOL:
4280 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4281 ret = 1;
4282 break;
4283 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4284 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4285 BTRFS_UUID_SIZE))
4286 ret = 1;
4287 break;
4288 }
4289
4290 out:
4291 return ret;
4292 }
4293
4294 static int btrfs_uuid_rescan_kthread(void *data)
4295 {
4296 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4297 int ret;
4298
4299 /*
4300 * 1st step is to iterate through the existing UUID tree and
4301 * to delete all entries that contain outdated data.
4302 * 2nd step is to add all missing entries to the UUID tree.
4303 */
4304 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4305 if (ret < 0) {
4306 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4307 up(&fs_info->uuid_tree_rescan_sem);
4308 return ret;
4309 }
4310 return btrfs_uuid_scan_kthread(data);
4311 }
4312
4313 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4314 {
4315 struct btrfs_trans_handle *trans;
4316 struct btrfs_root *tree_root = fs_info->tree_root;
4317 struct btrfs_root *uuid_root;
4318 struct task_struct *task;
4319 int ret;
4320
4321 /*
4322 * 1 - root node
4323 * 1 - root item
4324 */
4325 trans = btrfs_start_transaction(tree_root, 2);
4326 if (IS_ERR(trans))
4327 return PTR_ERR(trans);
4328
4329 uuid_root = btrfs_create_tree(trans, fs_info,
4330 BTRFS_UUID_TREE_OBJECTID);
4331 if (IS_ERR(uuid_root)) {
4332 ret = PTR_ERR(uuid_root);
4333 btrfs_abort_transaction(trans, ret);
4334 btrfs_end_transaction(trans);
4335 return ret;
4336 }
4337
4338 fs_info->uuid_root = uuid_root;
4339
4340 ret = btrfs_commit_transaction(trans);
4341 if (ret)
4342 return ret;
4343
4344 down(&fs_info->uuid_tree_rescan_sem);
4345 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4346 if (IS_ERR(task)) {
4347 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4348 btrfs_warn(fs_info, "failed to start uuid_scan task");
4349 up(&fs_info->uuid_tree_rescan_sem);
4350 return PTR_ERR(task);
4351 }
4352
4353 return 0;
4354 }
4355
4356 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4357 {
4358 struct task_struct *task;
4359
4360 down(&fs_info->uuid_tree_rescan_sem);
4361 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4362 if (IS_ERR(task)) {
4363 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4364 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4365 up(&fs_info->uuid_tree_rescan_sem);
4366 return PTR_ERR(task);
4367 }
4368
4369 return 0;
4370 }
4371
4372 /*
4373 * shrinking a device means finding all of the device extents past
4374 * the new size, and then following the back refs to the chunks.
4375 * The chunk relocation code actually frees the device extent
4376 */
4377 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4378 {
4379 struct btrfs_fs_info *fs_info = device->fs_info;
4380 struct btrfs_root *root = fs_info->dev_root;
4381 struct btrfs_trans_handle *trans;
4382 struct btrfs_dev_extent *dev_extent = NULL;
4383 struct btrfs_path *path;
4384 u64 length;
4385 u64 chunk_offset;
4386 int ret;
4387 int slot;
4388 int failed = 0;
4389 bool retried = false;
4390 bool checked_pending_chunks = false;
4391 struct extent_buffer *l;
4392 struct btrfs_key key;
4393 struct btrfs_super_block *super_copy = fs_info->super_copy;
4394 u64 old_total = btrfs_super_total_bytes(super_copy);
4395 u64 old_size = btrfs_device_get_total_bytes(device);
4396 u64 diff = old_size - new_size;
4397
4398 if (device->is_tgtdev_for_dev_replace)
4399 return -EINVAL;
4400
4401 path = btrfs_alloc_path();
4402 if (!path)
4403 return -ENOMEM;
4404
4405 path->reada = READA_FORWARD;
4406
4407 mutex_lock(&fs_info->chunk_mutex);
4408
4409 btrfs_device_set_total_bytes(device, new_size);
4410 if (device->writeable) {
4411 device->fs_devices->total_rw_bytes -= diff;
4412 spin_lock(&fs_info->free_chunk_lock);
4413 fs_info->free_chunk_space -= diff;
4414 spin_unlock(&fs_info->free_chunk_lock);
4415 }
4416 mutex_unlock(&fs_info->chunk_mutex);
4417
4418 again:
4419 key.objectid = device->devid;
4420 key.offset = (u64)-1;
4421 key.type = BTRFS_DEV_EXTENT_KEY;
4422
4423 do {
4424 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4425 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4426 if (ret < 0) {
4427 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4428 goto done;
4429 }
4430
4431 ret = btrfs_previous_item(root, path, 0, key.type);
4432 if (ret)
4433 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4434 if (ret < 0)
4435 goto done;
4436 if (ret) {
4437 ret = 0;
4438 btrfs_release_path(path);
4439 break;
4440 }
4441
4442 l = path->nodes[0];
4443 slot = path->slots[0];
4444 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4445
4446 if (key.objectid != device->devid) {
4447 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4448 btrfs_release_path(path);
4449 break;
4450 }
4451
4452 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4453 length = btrfs_dev_extent_length(l, dev_extent);
4454
4455 if (key.offset + length <= new_size) {
4456 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4457 btrfs_release_path(path);
4458 break;
4459 }
4460
4461 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4462 btrfs_release_path(path);
4463
4464 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4465 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4466 if (ret && ret != -ENOSPC)
4467 goto done;
4468 if (ret == -ENOSPC)
4469 failed++;
4470 } while (key.offset-- > 0);
4471
4472 if (failed && !retried) {
4473 failed = 0;
4474 retried = true;
4475 goto again;
4476 } else if (failed && retried) {
4477 ret = -ENOSPC;
4478 goto done;
4479 }
4480
4481 /* Shrinking succeeded, else we would be at "done". */
4482 trans = btrfs_start_transaction(root, 0);
4483 if (IS_ERR(trans)) {
4484 ret = PTR_ERR(trans);
4485 goto done;
4486 }
4487
4488 mutex_lock(&fs_info->chunk_mutex);
4489
4490 /*
4491 * We checked in the above loop all device extents that were already in
4492 * the device tree. However before we have updated the device's
4493 * total_bytes to the new size, we might have had chunk allocations that
4494 * have not complete yet (new block groups attached to transaction
4495 * handles), and therefore their device extents were not yet in the
4496 * device tree and we missed them in the loop above. So if we have any
4497 * pending chunk using a device extent that overlaps the device range
4498 * that we can not use anymore, commit the current transaction and
4499 * repeat the search on the device tree - this way we guarantee we will
4500 * not have chunks using device extents that end beyond 'new_size'.
4501 */
4502 if (!checked_pending_chunks) {
4503 u64 start = new_size;
4504 u64 len = old_size - new_size;
4505
4506 if (contains_pending_extent(trans->transaction, device,
4507 &start, len)) {
4508 mutex_unlock(&fs_info->chunk_mutex);
4509 checked_pending_chunks = true;
4510 failed = 0;
4511 retried = false;
4512 ret = btrfs_commit_transaction(trans);
4513 if (ret)
4514 goto done;
4515 goto again;
4516 }
4517 }
4518
4519 btrfs_device_set_disk_total_bytes(device, new_size);
4520 if (list_empty(&device->resized_list))
4521 list_add_tail(&device->resized_list,
4522 &fs_info->fs_devices->resized_devices);
4523
4524 WARN_ON(diff > old_total);
4525 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4526 mutex_unlock(&fs_info->chunk_mutex);
4527
4528 /* Now btrfs_update_device() will change the on-disk size. */
4529 ret = btrfs_update_device(trans, device);
4530 btrfs_end_transaction(trans);
4531 done:
4532 btrfs_free_path(path);
4533 if (ret) {
4534 mutex_lock(&fs_info->chunk_mutex);
4535 btrfs_device_set_total_bytes(device, old_size);
4536 if (device->writeable)
4537 device->fs_devices->total_rw_bytes += diff;
4538 spin_lock(&fs_info->free_chunk_lock);
4539 fs_info->free_chunk_space += diff;
4540 spin_unlock(&fs_info->free_chunk_lock);
4541 mutex_unlock(&fs_info->chunk_mutex);
4542 }
4543 return ret;
4544 }
4545
4546 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4547 struct btrfs_key *key,
4548 struct btrfs_chunk *chunk, int item_size)
4549 {
4550 struct btrfs_super_block *super_copy = fs_info->super_copy;
4551 struct btrfs_disk_key disk_key;
4552 u32 array_size;
4553 u8 *ptr;
4554
4555 mutex_lock(&fs_info->chunk_mutex);
4556 array_size = btrfs_super_sys_array_size(super_copy);
4557 if (array_size + item_size + sizeof(disk_key)
4558 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4559 mutex_unlock(&fs_info->chunk_mutex);
4560 return -EFBIG;
4561 }
4562
4563 ptr = super_copy->sys_chunk_array + array_size;
4564 btrfs_cpu_key_to_disk(&disk_key, key);
4565 memcpy(ptr, &disk_key, sizeof(disk_key));
4566 ptr += sizeof(disk_key);
4567 memcpy(ptr, chunk, item_size);
4568 item_size += sizeof(disk_key);
4569 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4570 mutex_unlock(&fs_info->chunk_mutex);
4571
4572 return 0;
4573 }
4574
4575 /*
4576 * sort the devices in descending order by max_avail, total_avail
4577 */
4578 static int btrfs_cmp_device_info(const void *a, const void *b)
4579 {
4580 const struct btrfs_device_info *di_a = a;
4581 const struct btrfs_device_info *di_b = b;
4582
4583 if (di_a->max_avail > di_b->max_avail)
4584 return -1;
4585 if (di_a->max_avail < di_b->max_avail)
4586 return 1;
4587 if (di_a->total_avail > di_b->total_avail)
4588 return -1;
4589 if (di_a->total_avail < di_b->total_avail)
4590 return 1;
4591 return 0;
4592 }
4593
4594 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4595 {
4596 /* TODO allow them to set a preferred stripe size */
4597 return SZ_64K;
4598 }
4599
4600 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4601 {
4602 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4603 return;
4604
4605 btrfs_set_fs_incompat(info, RAID56);
4606 }
4607
4608 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
4609 - sizeof(struct btrfs_chunk)) \
4610 / sizeof(struct btrfs_stripe) + 1)
4611
4612 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4613 - 2 * sizeof(struct btrfs_disk_key) \
4614 - 2 * sizeof(struct btrfs_chunk)) \
4615 / sizeof(struct btrfs_stripe) + 1)
4616
4617 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4618 u64 start, u64 type)
4619 {
4620 struct btrfs_fs_info *info = trans->fs_info;
4621 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4622 struct list_head *cur;
4623 struct map_lookup *map = NULL;
4624 struct extent_map_tree *em_tree;
4625 struct extent_map *em;
4626 struct btrfs_device_info *devices_info = NULL;
4627 u64 total_avail;
4628 int num_stripes; /* total number of stripes to allocate */
4629 int data_stripes; /* number of stripes that count for
4630 block group size */
4631 int sub_stripes; /* sub_stripes info for map */
4632 int dev_stripes; /* stripes per dev */
4633 int devs_max; /* max devs to use */
4634 int devs_min; /* min devs needed */
4635 int devs_increment; /* ndevs has to be a multiple of this */
4636 int ncopies; /* how many copies to data has */
4637 int ret;
4638 u64 max_stripe_size;
4639 u64 max_chunk_size;
4640 u64 stripe_size;
4641 u64 num_bytes;
4642 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4643 int ndevs;
4644 int i;
4645 int j;
4646 int index;
4647
4648 BUG_ON(!alloc_profile_is_valid(type, 0));
4649
4650 if (list_empty(&fs_devices->alloc_list))
4651 return -ENOSPC;
4652
4653 index = __get_raid_index(type);
4654
4655 sub_stripes = btrfs_raid_array[index].sub_stripes;
4656 dev_stripes = btrfs_raid_array[index].dev_stripes;
4657 devs_max = btrfs_raid_array[index].devs_max;
4658 devs_min = btrfs_raid_array[index].devs_min;
4659 devs_increment = btrfs_raid_array[index].devs_increment;
4660 ncopies = btrfs_raid_array[index].ncopies;
4661
4662 if (type & BTRFS_BLOCK_GROUP_DATA) {
4663 max_stripe_size = SZ_1G;
4664 max_chunk_size = 10 * max_stripe_size;
4665 if (!devs_max)
4666 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4667 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4668 /* for larger filesystems, use larger metadata chunks */
4669 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4670 max_stripe_size = SZ_1G;
4671 else
4672 max_stripe_size = SZ_256M;
4673 max_chunk_size = max_stripe_size;
4674 if (!devs_max)
4675 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4676 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4677 max_stripe_size = SZ_32M;
4678 max_chunk_size = 2 * max_stripe_size;
4679 if (!devs_max)
4680 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4681 } else {
4682 btrfs_err(info, "invalid chunk type 0x%llx requested",
4683 type);
4684 BUG_ON(1);
4685 }
4686
4687 /* we don't want a chunk larger than 10% of writeable space */
4688 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4689 max_chunk_size);
4690
4691 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4692 GFP_NOFS);
4693 if (!devices_info)
4694 return -ENOMEM;
4695
4696 cur = fs_devices->alloc_list.next;
4697
4698 /*
4699 * in the first pass through the devices list, we gather information
4700 * about the available holes on each device.
4701 */
4702 ndevs = 0;
4703 while (cur != &fs_devices->alloc_list) {
4704 struct btrfs_device *device;
4705 u64 max_avail;
4706 u64 dev_offset;
4707
4708 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4709
4710 cur = cur->next;
4711
4712 if (!device->writeable) {
4713 WARN(1, KERN_ERR
4714 "BTRFS: read-only device in alloc_list\n");
4715 continue;
4716 }
4717
4718 if (!device->in_fs_metadata ||
4719 device->is_tgtdev_for_dev_replace)
4720 continue;
4721
4722 if (device->total_bytes > device->bytes_used)
4723 total_avail = device->total_bytes - device->bytes_used;
4724 else
4725 total_avail = 0;
4726
4727 /* If there is no space on this device, skip it. */
4728 if (total_avail == 0)
4729 continue;
4730
4731 ret = find_free_dev_extent(trans, device,
4732 max_stripe_size * dev_stripes,
4733 &dev_offset, &max_avail);
4734 if (ret && ret != -ENOSPC)
4735 goto error;
4736
4737 if (ret == 0)
4738 max_avail = max_stripe_size * dev_stripes;
4739
4740 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4741 continue;
4742
4743 if (ndevs == fs_devices->rw_devices) {
4744 WARN(1, "%s: found more than %llu devices\n",
4745 __func__, fs_devices->rw_devices);
4746 break;
4747 }
4748 devices_info[ndevs].dev_offset = dev_offset;
4749 devices_info[ndevs].max_avail = max_avail;
4750 devices_info[ndevs].total_avail = total_avail;
4751 devices_info[ndevs].dev = device;
4752 ++ndevs;
4753 }
4754
4755 /*
4756 * now sort the devices by hole size / available space
4757 */
4758 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4759 btrfs_cmp_device_info, NULL);
4760
4761 /* round down to number of usable stripes */
4762 ndevs -= ndevs % devs_increment;
4763
4764 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4765 ret = -ENOSPC;
4766 goto error;
4767 }
4768
4769 if (devs_max && ndevs > devs_max)
4770 ndevs = devs_max;
4771 /*
4772 * the primary goal is to maximize the number of stripes, so use as many
4773 * devices as possible, even if the stripes are not maximum sized.
4774 */
4775 stripe_size = devices_info[ndevs-1].max_avail;
4776 num_stripes = ndevs * dev_stripes;
4777
4778 /*
4779 * this will have to be fixed for RAID1 and RAID10 over
4780 * more drives
4781 */
4782 data_stripes = num_stripes / ncopies;
4783
4784 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4785 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4786 info->stripesize);
4787 data_stripes = num_stripes - 1;
4788 }
4789 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4790 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4791 info->stripesize);
4792 data_stripes = num_stripes - 2;
4793 }
4794
4795 /*
4796 * Use the number of data stripes to figure out how big this chunk
4797 * is really going to be in terms of logical address space,
4798 * and compare that answer with the max chunk size
4799 */
4800 if (stripe_size * data_stripes > max_chunk_size) {
4801 u64 mask = (1ULL << 24) - 1;
4802
4803 stripe_size = div_u64(max_chunk_size, data_stripes);
4804
4805 /* bump the answer up to a 16MB boundary */
4806 stripe_size = (stripe_size + mask) & ~mask;
4807
4808 /* but don't go higher than the limits we found
4809 * while searching for free extents
4810 */
4811 if (stripe_size > devices_info[ndevs-1].max_avail)
4812 stripe_size = devices_info[ndevs-1].max_avail;
4813 }
4814
4815 stripe_size = div_u64(stripe_size, dev_stripes);
4816
4817 /* align to BTRFS_STRIPE_LEN */
4818 stripe_size = div64_u64(stripe_size, raid_stripe_len);
4819 stripe_size *= raid_stripe_len;
4820
4821 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4822 if (!map) {
4823 ret = -ENOMEM;
4824 goto error;
4825 }
4826 map->num_stripes = num_stripes;
4827
4828 for (i = 0; i < ndevs; ++i) {
4829 for (j = 0; j < dev_stripes; ++j) {
4830 int s = i * dev_stripes + j;
4831 map->stripes[s].dev = devices_info[i].dev;
4832 map->stripes[s].physical = devices_info[i].dev_offset +
4833 j * stripe_size;
4834 }
4835 }
4836 map->sector_size = info->sectorsize;
4837 map->stripe_len = raid_stripe_len;
4838 map->io_align = raid_stripe_len;
4839 map->io_width = raid_stripe_len;
4840 map->type = type;
4841 map->sub_stripes = sub_stripes;
4842
4843 num_bytes = stripe_size * data_stripes;
4844
4845 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4846
4847 em = alloc_extent_map();
4848 if (!em) {
4849 kfree(map);
4850 ret = -ENOMEM;
4851 goto error;
4852 }
4853 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4854 em->map_lookup = map;
4855 em->start = start;
4856 em->len = num_bytes;
4857 em->block_start = 0;
4858 em->block_len = em->len;
4859 em->orig_block_len = stripe_size;
4860
4861 em_tree = &info->mapping_tree.map_tree;
4862 write_lock(&em_tree->lock);
4863 ret = add_extent_mapping(em_tree, em, 0);
4864 if (!ret) {
4865 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4866 refcount_inc(&em->refs);
4867 }
4868 write_unlock(&em_tree->lock);
4869 if (ret) {
4870 free_extent_map(em);
4871 goto error;
4872 }
4873
4874 ret = btrfs_make_block_group(trans, info, 0, type,
4875 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4876 start, num_bytes);
4877 if (ret)
4878 goto error_del_extent;
4879
4880 for (i = 0; i < map->num_stripes; i++) {
4881 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4882 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4883 }
4884
4885 spin_lock(&info->free_chunk_lock);
4886 info->free_chunk_space -= (stripe_size * map->num_stripes);
4887 spin_unlock(&info->free_chunk_lock);
4888
4889 free_extent_map(em);
4890 check_raid56_incompat_flag(info, type);
4891
4892 kfree(devices_info);
4893 return 0;
4894
4895 error_del_extent:
4896 write_lock(&em_tree->lock);
4897 remove_extent_mapping(em_tree, em);
4898 write_unlock(&em_tree->lock);
4899
4900 /* One for our allocation */
4901 free_extent_map(em);
4902 /* One for the tree reference */
4903 free_extent_map(em);
4904 /* One for the pending_chunks list reference */
4905 free_extent_map(em);
4906 error:
4907 kfree(devices_info);
4908 return ret;
4909 }
4910
4911 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4912 struct btrfs_fs_info *fs_info,
4913 u64 chunk_offset, u64 chunk_size)
4914 {
4915 struct btrfs_root *extent_root = fs_info->extent_root;
4916 struct btrfs_root *chunk_root = fs_info->chunk_root;
4917 struct btrfs_key key;
4918 struct btrfs_device *device;
4919 struct btrfs_chunk *chunk;
4920 struct btrfs_stripe *stripe;
4921 struct extent_map *em;
4922 struct map_lookup *map;
4923 size_t item_size;
4924 u64 dev_offset;
4925 u64 stripe_size;
4926 int i = 0;
4927 int ret = 0;
4928
4929 em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4930 if (IS_ERR(em))
4931 return PTR_ERR(em);
4932
4933 map = em->map_lookup;
4934 item_size = btrfs_chunk_item_size(map->num_stripes);
4935 stripe_size = em->orig_block_len;
4936
4937 chunk = kzalloc(item_size, GFP_NOFS);
4938 if (!chunk) {
4939 ret = -ENOMEM;
4940 goto out;
4941 }
4942
4943 /*
4944 * Take the device list mutex to prevent races with the final phase of
4945 * a device replace operation that replaces the device object associated
4946 * with the map's stripes, because the device object's id can change
4947 * at any time during that final phase of the device replace operation
4948 * (dev-replace.c:btrfs_dev_replace_finishing()).
4949 */
4950 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4951 for (i = 0; i < map->num_stripes; i++) {
4952 device = map->stripes[i].dev;
4953 dev_offset = map->stripes[i].physical;
4954
4955 ret = btrfs_update_device(trans, device);
4956 if (ret)
4957 break;
4958 ret = btrfs_alloc_dev_extent(trans, device,
4959 chunk_root->root_key.objectid,
4960 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4961 chunk_offset, dev_offset,
4962 stripe_size);
4963 if (ret)
4964 break;
4965 }
4966 if (ret) {
4967 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4968 goto out;
4969 }
4970
4971 stripe = &chunk->stripe;
4972 for (i = 0; i < map->num_stripes; i++) {
4973 device = map->stripes[i].dev;
4974 dev_offset = map->stripes[i].physical;
4975
4976 btrfs_set_stack_stripe_devid(stripe, device->devid);
4977 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4978 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4979 stripe++;
4980 }
4981 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4982
4983 btrfs_set_stack_chunk_length(chunk, chunk_size);
4984 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4985 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4986 btrfs_set_stack_chunk_type(chunk, map->type);
4987 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4988 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4989 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4990 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4991 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4992
4993 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4994 key.type = BTRFS_CHUNK_ITEM_KEY;
4995 key.offset = chunk_offset;
4996
4997 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4998 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4999 /*
5000 * TODO: Cleanup of inserted chunk root in case of
5001 * failure.
5002 */
5003 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5004 }
5005
5006 out:
5007 kfree(chunk);
5008 free_extent_map(em);
5009 return ret;
5010 }
5011
5012 /*
5013 * Chunk allocation falls into two parts. The first part does works
5014 * that make the new allocated chunk useable, but not do any operation
5015 * that modifies the chunk tree. The second part does the works that
5016 * require modifying the chunk tree. This division is important for the
5017 * bootstrap process of adding storage to a seed btrfs.
5018 */
5019 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5020 struct btrfs_fs_info *fs_info, u64 type)
5021 {
5022 u64 chunk_offset;
5023
5024 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
5025 chunk_offset = find_next_chunk(fs_info);
5026 return __btrfs_alloc_chunk(trans, chunk_offset, type);
5027 }
5028
5029 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5030 struct btrfs_fs_info *fs_info)
5031 {
5032 struct btrfs_root *extent_root = fs_info->extent_root;
5033 u64 chunk_offset;
5034 u64 sys_chunk_offset;
5035 u64 alloc_profile;
5036 int ret;
5037
5038 chunk_offset = find_next_chunk(fs_info);
5039 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
5040 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5041 if (ret)
5042 return ret;
5043
5044 sys_chunk_offset = find_next_chunk(fs_info);
5045 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
5046 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5047 return ret;
5048 }
5049
5050 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5051 {
5052 int max_errors;
5053
5054 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5055 BTRFS_BLOCK_GROUP_RAID10 |
5056 BTRFS_BLOCK_GROUP_RAID5 |
5057 BTRFS_BLOCK_GROUP_DUP)) {
5058 max_errors = 1;
5059 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5060 max_errors = 2;
5061 } else {
5062 max_errors = 0;
5063 }
5064
5065 return max_errors;
5066 }
5067
5068 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5069 {
5070 struct extent_map *em;
5071 struct map_lookup *map;
5072 int readonly = 0;
5073 int miss_ndevs = 0;
5074 int i;
5075
5076 em = get_chunk_map(fs_info, chunk_offset, 1);
5077 if (IS_ERR(em))
5078 return 1;
5079
5080 map = em->map_lookup;
5081 for (i = 0; i < map->num_stripes; i++) {
5082 if (map->stripes[i].dev->missing) {
5083 miss_ndevs++;
5084 continue;
5085 }
5086
5087 if (!map->stripes[i].dev->writeable) {
5088 readonly = 1;
5089 goto end;
5090 }
5091 }
5092
5093 /*
5094 * If the number of missing devices is larger than max errors,
5095 * we can not write the data into that chunk successfully, so
5096 * set it readonly.
5097 */
5098 if (miss_ndevs > btrfs_chunk_max_errors(map))
5099 readonly = 1;
5100 end:
5101 free_extent_map(em);
5102 return readonly;
5103 }
5104
5105 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5106 {
5107 extent_map_tree_init(&tree->map_tree);
5108 }
5109
5110 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5111 {
5112 struct extent_map *em;
5113
5114 while (1) {
5115 write_lock(&tree->map_tree.lock);
5116 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5117 if (em)
5118 remove_extent_mapping(&tree->map_tree, em);
5119 write_unlock(&tree->map_tree.lock);
5120 if (!em)
5121 break;
5122 /* once for us */
5123 free_extent_map(em);
5124 /* once for the tree */
5125 free_extent_map(em);
5126 }
5127 }
5128
5129 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5130 {
5131 struct extent_map *em;
5132 struct map_lookup *map;
5133 int ret;
5134
5135 em = get_chunk_map(fs_info, logical, len);
5136 if (IS_ERR(em))
5137 /*
5138 * We could return errors for these cases, but that could get
5139 * ugly and we'd probably do the same thing which is just not do
5140 * anything else and exit, so return 1 so the callers don't try
5141 * to use other copies.
5142 */
5143 return 1;
5144
5145 map = em->map_lookup;
5146 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5147 ret = map->num_stripes;
5148 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5149 ret = map->sub_stripes;
5150 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5151 ret = 2;
5152 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5153 ret = 3;
5154 else
5155 ret = 1;
5156 free_extent_map(em);
5157
5158 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5159 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5160 fs_info->dev_replace.tgtdev)
5161 ret++;
5162 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5163
5164 return ret;
5165 }
5166
5167 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5168 struct btrfs_mapping_tree *map_tree,
5169 u64 logical)
5170 {
5171 struct extent_map *em;
5172 struct map_lookup *map;
5173 unsigned long len = fs_info->sectorsize;
5174
5175 em = get_chunk_map(fs_info, logical, len);
5176 WARN_ON(IS_ERR(em));
5177
5178 map = em->map_lookup;
5179 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5180 len = map->stripe_len * nr_data_stripes(map);
5181 free_extent_map(em);
5182 return len;
5183 }
5184
5185 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
5186 u64 logical, u64 len, int mirror_num)
5187 {
5188 struct extent_map *em;
5189 struct map_lookup *map;
5190 int ret = 0;
5191
5192 em = get_chunk_map(fs_info, logical, len);
5193 WARN_ON(IS_ERR(em));
5194
5195 map = em->map_lookup;
5196 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5197 ret = 1;
5198 free_extent_map(em);
5199 return ret;
5200 }
5201
5202 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5203 struct map_lookup *map, int first, int num,
5204 int optimal, int dev_replace_is_ongoing)
5205 {
5206 int i;
5207 int tolerance;
5208 struct btrfs_device *srcdev;
5209
5210 if (dev_replace_is_ongoing &&
5211 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5212 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5213 srcdev = fs_info->dev_replace.srcdev;
5214 else
5215 srcdev = NULL;
5216
5217 /*
5218 * try to avoid the drive that is the source drive for a
5219 * dev-replace procedure, only choose it if no other non-missing
5220 * mirror is available
5221 */
5222 for (tolerance = 0; tolerance < 2; tolerance++) {
5223 if (map->stripes[optimal].dev->bdev &&
5224 (tolerance || map->stripes[optimal].dev != srcdev))
5225 return optimal;
5226 for (i = first; i < first + num; i++) {
5227 if (map->stripes[i].dev->bdev &&
5228 (tolerance || map->stripes[i].dev != srcdev))
5229 return i;
5230 }
5231 }
5232
5233 /* we couldn't find one that doesn't fail. Just return something
5234 * and the io error handling code will clean up eventually
5235 */
5236 return optimal;
5237 }
5238
5239 static inline int parity_smaller(u64 a, u64 b)
5240 {
5241 return a > b;
5242 }
5243
5244 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5245 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5246 {
5247 struct btrfs_bio_stripe s;
5248 int i;
5249 u64 l;
5250 int again = 1;
5251
5252 while (again) {
5253 again = 0;
5254 for (i = 0; i < num_stripes - 1; i++) {
5255 if (parity_smaller(bbio->raid_map[i],
5256 bbio->raid_map[i+1])) {
5257 s = bbio->stripes[i];
5258 l = bbio->raid_map[i];
5259 bbio->stripes[i] = bbio->stripes[i+1];
5260 bbio->raid_map[i] = bbio->raid_map[i+1];
5261 bbio->stripes[i+1] = s;
5262 bbio->raid_map[i+1] = l;
5263
5264 again = 1;
5265 }
5266 }
5267 }
5268 }
5269
5270 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5271 {
5272 struct btrfs_bio *bbio = kzalloc(
5273 /* the size of the btrfs_bio */
5274 sizeof(struct btrfs_bio) +
5275 /* plus the variable array for the stripes */
5276 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5277 /* plus the variable array for the tgt dev */
5278 sizeof(int) * (real_stripes) +
5279 /*
5280 * plus the raid_map, which includes both the tgt dev
5281 * and the stripes
5282 */
5283 sizeof(u64) * (total_stripes),
5284 GFP_NOFS|__GFP_NOFAIL);
5285
5286 atomic_set(&bbio->error, 0);
5287 refcount_set(&bbio->refs, 1);
5288
5289 return bbio;
5290 }
5291
5292 void btrfs_get_bbio(struct btrfs_bio *bbio)
5293 {
5294 WARN_ON(!refcount_read(&bbio->refs));
5295 refcount_inc(&bbio->refs);
5296 }
5297
5298 void btrfs_put_bbio(struct btrfs_bio *bbio)
5299 {
5300 if (!bbio)
5301 return;
5302 if (refcount_dec_and_test(&bbio->refs))
5303 kfree(bbio);
5304 }
5305
5306 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5307 /*
5308 * Please note that, discard won't be sent to target device of device
5309 * replace.
5310 */
5311 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5312 u64 logical, u64 length,
5313 struct btrfs_bio **bbio_ret)
5314 {
5315 struct extent_map *em;
5316 struct map_lookup *map;
5317 struct btrfs_bio *bbio;
5318 u64 offset;
5319 u64 stripe_nr;
5320 u64 stripe_nr_end;
5321 u64 stripe_end_offset;
5322 u64 stripe_cnt;
5323 u64 stripe_len;
5324 u64 stripe_offset;
5325 u64 num_stripes;
5326 u32 stripe_index;
5327 u32 factor = 0;
5328 u32 sub_stripes = 0;
5329 u64 stripes_per_dev = 0;
5330 u32 remaining_stripes = 0;
5331 u32 last_stripe = 0;
5332 int ret = 0;
5333 int i;
5334
5335 /* discard always return a bbio */
5336 ASSERT(bbio_ret);
5337
5338 em = get_chunk_map(fs_info, logical, length);
5339 if (IS_ERR(em))
5340 return PTR_ERR(em);
5341
5342 map = em->map_lookup;
5343 /* we don't discard raid56 yet */
5344 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5345 ret = -EOPNOTSUPP;
5346 goto out;
5347 }
5348
5349 offset = logical - em->start;
5350 length = min_t(u64, em->len - offset, length);
5351
5352 stripe_len = map->stripe_len;
5353 /*
5354 * stripe_nr counts the total number of stripes we have to stride
5355 * to get to this block
5356 */
5357 stripe_nr = div64_u64(offset, stripe_len);
5358
5359 /* stripe_offset is the offset of this block in its stripe */
5360 stripe_offset = offset - stripe_nr * stripe_len;
5361
5362 stripe_nr_end = round_up(offset + length, map->stripe_len);
5363 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5364 stripe_cnt = stripe_nr_end - stripe_nr;
5365 stripe_end_offset = stripe_nr_end * map->stripe_len -
5366 (offset + length);
5367 /*
5368 * after this, stripe_nr is the number of stripes on this
5369 * device we have to walk to find the data, and stripe_index is
5370 * the number of our device in the stripe array
5371 */
5372 num_stripes = 1;
5373 stripe_index = 0;
5374 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5375 BTRFS_BLOCK_GROUP_RAID10)) {
5376 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5377 sub_stripes = 1;
5378 else
5379 sub_stripes = map->sub_stripes;
5380
5381 factor = map->num_stripes / sub_stripes;
5382 num_stripes = min_t(u64, map->num_stripes,
5383 sub_stripes * stripe_cnt);
5384 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5385 stripe_index *= sub_stripes;
5386 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5387 &remaining_stripes);
5388 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5389 last_stripe *= sub_stripes;
5390 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5391 BTRFS_BLOCK_GROUP_DUP)) {
5392 num_stripes = map->num_stripes;
5393 } else {
5394 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5395 &stripe_index);
5396 }
5397
5398 bbio = alloc_btrfs_bio(num_stripes, 0);
5399 if (!bbio) {
5400 ret = -ENOMEM;
5401 goto out;
5402 }
5403
5404 for (i = 0; i < num_stripes; i++) {
5405 bbio->stripes[i].physical =
5406 map->stripes[stripe_index].physical +
5407 stripe_offset + stripe_nr * map->stripe_len;
5408 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5409
5410 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5411 BTRFS_BLOCK_GROUP_RAID10)) {
5412 bbio->stripes[i].length = stripes_per_dev *
5413 map->stripe_len;
5414
5415 if (i / sub_stripes < remaining_stripes)
5416 bbio->stripes[i].length +=
5417 map->stripe_len;
5418
5419 /*
5420 * Special for the first stripe and
5421 * the last stripe:
5422 *
5423 * |-------|...|-------|
5424 * |----------|
5425 * off end_off
5426 */
5427 if (i < sub_stripes)
5428 bbio->stripes[i].length -=
5429 stripe_offset;
5430
5431 if (stripe_index >= last_stripe &&
5432 stripe_index <= (last_stripe +
5433 sub_stripes - 1))
5434 bbio->stripes[i].length -=
5435 stripe_end_offset;
5436
5437 if (i == sub_stripes - 1)
5438 stripe_offset = 0;
5439 } else {
5440 bbio->stripes[i].length = length;
5441 }
5442
5443 stripe_index++;
5444 if (stripe_index == map->num_stripes) {
5445 stripe_index = 0;
5446 stripe_nr++;
5447 }
5448 }
5449
5450 *bbio_ret = bbio;
5451 bbio->map_type = map->type;
5452 bbio->num_stripes = num_stripes;
5453 out:
5454 free_extent_map(em);
5455 return ret;
5456 }
5457
5458 /*
5459 * In dev-replace case, for repair case (that's the only case where the mirror
5460 * is selected explicitly when calling btrfs_map_block), blocks left of the
5461 * left cursor can also be read from the target drive.
5462 *
5463 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5464 * array of stripes.
5465 * For READ, it also needs to be supported using the same mirror number.
5466 *
5467 * If the requested block is not left of the left cursor, EIO is returned. This
5468 * can happen because btrfs_num_copies() returns one more in the dev-replace
5469 * case.
5470 */
5471 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5472 u64 logical, u64 length,
5473 u64 srcdev_devid, int *mirror_num,
5474 u64 *physical)
5475 {
5476 struct btrfs_bio *bbio = NULL;
5477 int num_stripes;
5478 int index_srcdev = 0;
5479 int found = 0;
5480 u64 physical_of_found = 0;
5481 int i;
5482 int ret = 0;
5483
5484 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5485 logical, &length, &bbio, 0, 0);
5486 if (ret) {
5487 ASSERT(bbio == NULL);
5488 return ret;
5489 }
5490
5491 num_stripes = bbio->num_stripes;
5492 if (*mirror_num > num_stripes) {
5493 /*
5494 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5495 * that means that the requested area is not left of the left
5496 * cursor
5497 */
5498 btrfs_put_bbio(bbio);
5499 return -EIO;
5500 }
5501
5502 /*
5503 * process the rest of the function using the mirror_num of the source
5504 * drive. Therefore look it up first. At the end, patch the device
5505 * pointer to the one of the target drive.
5506 */
5507 for (i = 0; i < num_stripes; i++) {
5508 if (bbio->stripes[i].dev->devid != srcdev_devid)
5509 continue;
5510
5511 /*
5512 * In case of DUP, in order to keep it simple, only add the
5513 * mirror with the lowest physical address
5514 */
5515 if (found &&
5516 physical_of_found <= bbio->stripes[i].physical)
5517 continue;
5518
5519 index_srcdev = i;
5520 found = 1;
5521 physical_of_found = bbio->stripes[i].physical;
5522 }
5523
5524 btrfs_put_bbio(bbio);
5525
5526 ASSERT(found);
5527 if (!found)
5528 return -EIO;
5529
5530 *mirror_num = index_srcdev + 1;
5531 *physical = physical_of_found;
5532 return ret;
5533 }
5534
5535 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5536 struct btrfs_bio **bbio_ret,
5537 struct btrfs_dev_replace *dev_replace,
5538 int *num_stripes_ret, int *max_errors_ret)
5539 {
5540 struct btrfs_bio *bbio = *bbio_ret;
5541 u64 srcdev_devid = dev_replace->srcdev->devid;
5542 int tgtdev_indexes = 0;
5543 int num_stripes = *num_stripes_ret;
5544 int max_errors = *max_errors_ret;
5545 int i;
5546
5547 if (op == BTRFS_MAP_WRITE) {
5548 int index_where_to_add;
5549
5550 /*
5551 * duplicate the write operations while the dev replace
5552 * procedure is running. Since the copying of the old disk to
5553 * the new disk takes place at run time while the filesystem is
5554 * mounted writable, the regular write operations to the old
5555 * disk have to be duplicated to go to the new disk as well.
5556 *
5557 * Note that device->missing is handled by the caller, and that
5558 * the write to the old disk is already set up in the stripes
5559 * array.
5560 */
5561 index_where_to_add = num_stripes;
5562 for (i = 0; i < num_stripes; i++) {
5563 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5564 /* write to new disk, too */
5565 struct btrfs_bio_stripe *new =
5566 bbio->stripes + index_where_to_add;
5567 struct btrfs_bio_stripe *old =
5568 bbio->stripes + i;
5569
5570 new->physical = old->physical;
5571 new->length = old->length;
5572 new->dev = dev_replace->tgtdev;
5573 bbio->tgtdev_map[i] = index_where_to_add;
5574 index_where_to_add++;
5575 max_errors++;
5576 tgtdev_indexes++;
5577 }
5578 }
5579 num_stripes = index_where_to_add;
5580 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5581 int index_srcdev = 0;
5582 int found = 0;
5583 u64 physical_of_found = 0;
5584
5585 /*
5586 * During the dev-replace procedure, the target drive can also
5587 * be used to read data in case it is needed to repair a corrupt
5588 * block elsewhere. This is possible if the requested area is
5589 * left of the left cursor. In this area, the target drive is a
5590 * full copy of the source drive.
5591 */
5592 for (i = 0; i < num_stripes; i++) {
5593 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5594 /*
5595 * In case of DUP, in order to keep it simple,
5596 * only add the mirror with the lowest physical
5597 * address
5598 */
5599 if (found &&
5600 physical_of_found <=
5601 bbio->stripes[i].physical)
5602 continue;
5603 index_srcdev = i;
5604 found = 1;
5605 physical_of_found = bbio->stripes[i].physical;
5606 }
5607 }
5608 if (found) {
5609 struct btrfs_bio_stripe *tgtdev_stripe =
5610 bbio->stripes + num_stripes;
5611
5612 tgtdev_stripe->physical = physical_of_found;
5613 tgtdev_stripe->length =
5614 bbio->stripes[index_srcdev].length;
5615 tgtdev_stripe->dev = dev_replace->tgtdev;
5616 bbio->tgtdev_map[index_srcdev] = num_stripes;
5617
5618 tgtdev_indexes++;
5619 num_stripes++;
5620 }
5621 }
5622
5623 *num_stripes_ret = num_stripes;
5624 *max_errors_ret = max_errors;
5625 bbio->num_tgtdevs = tgtdev_indexes;
5626 *bbio_ret = bbio;
5627 }
5628
5629 static bool need_full_stripe(enum btrfs_map_op op)
5630 {
5631 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5632 }
5633
5634 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5635 enum btrfs_map_op op,
5636 u64 logical, u64 *length,
5637 struct btrfs_bio **bbio_ret,
5638 int mirror_num, int need_raid_map)
5639 {
5640 struct extent_map *em;
5641 struct map_lookup *map;
5642 u64 offset;
5643 u64 stripe_offset;
5644 u64 stripe_nr;
5645 u64 stripe_len;
5646 u32 stripe_index;
5647 int i;
5648 int ret = 0;
5649 int num_stripes;
5650 int max_errors = 0;
5651 int tgtdev_indexes = 0;
5652 struct btrfs_bio *bbio = NULL;
5653 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5654 int dev_replace_is_ongoing = 0;
5655 int num_alloc_stripes;
5656 int patch_the_first_stripe_for_dev_replace = 0;
5657 u64 physical_to_patch_in_first_stripe = 0;
5658 u64 raid56_full_stripe_start = (u64)-1;
5659
5660 if (op == BTRFS_MAP_DISCARD)
5661 return __btrfs_map_block_for_discard(fs_info, logical,
5662 *length, bbio_ret);
5663
5664 em = get_chunk_map(fs_info, logical, *length);
5665 if (IS_ERR(em))
5666 return PTR_ERR(em);
5667
5668 map = em->map_lookup;
5669 offset = logical - em->start;
5670
5671 stripe_len = map->stripe_len;
5672 stripe_nr = offset;
5673 /*
5674 * stripe_nr counts the total number of stripes we have to stride
5675 * to get to this block
5676 */
5677 stripe_nr = div64_u64(stripe_nr, stripe_len);
5678
5679 stripe_offset = stripe_nr * stripe_len;
5680 if (offset < stripe_offset) {
5681 btrfs_crit(fs_info,
5682 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5683 stripe_offset, offset, em->start, logical,
5684 stripe_len);
5685 free_extent_map(em);
5686 return -EINVAL;
5687 }
5688
5689 /* stripe_offset is the offset of this block in its stripe*/
5690 stripe_offset = offset - stripe_offset;
5691
5692 /* if we're here for raid56, we need to know the stripe aligned start */
5693 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5694 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5695 raid56_full_stripe_start = offset;
5696
5697 /* allow a write of a full stripe, but make sure we don't
5698 * allow straddling of stripes
5699 */
5700 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5701 full_stripe_len);
5702 raid56_full_stripe_start *= full_stripe_len;
5703 }
5704
5705 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5706 u64 max_len;
5707 /* For writes to RAID[56], allow a full stripeset across all disks.
5708 For other RAID types and for RAID[56] reads, just allow a single
5709 stripe (on a single disk). */
5710 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5711 (op == BTRFS_MAP_WRITE)) {
5712 max_len = stripe_len * nr_data_stripes(map) -
5713 (offset - raid56_full_stripe_start);
5714 } else {
5715 /* we limit the length of each bio to what fits in a stripe */
5716 max_len = stripe_len - stripe_offset;
5717 }
5718 *length = min_t(u64, em->len - offset, max_len);
5719 } else {
5720 *length = em->len - offset;
5721 }
5722
5723 /* This is for when we're called from btrfs_merge_bio_hook() and all
5724 it cares about is the length */
5725 if (!bbio_ret)
5726 goto out;
5727
5728 btrfs_dev_replace_lock(dev_replace, 0);
5729 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5730 if (!dev_replace_is_ongoing)
5731 btrfs_dev_replace_unlock(dev_replace, 0);
5732 else
5733 btrfs_dev_replace_set_lock_blocking(dev_replace);
5734
5735 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5736 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5737 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5738 dev_replace->srcdev->devid,
5739 &mirror_num,
5740 &physical_to_patch_in_first_stripe);
5741 if (ret)
5742 goto out;
5743 else
5744 patch_the_first_stripe_for_dev_replace = 1;
5745 } else if (mirror_num > map->num_stripes) {
5746 mirror_num = 0;
5747 }
5748
5749 num_stripes = 1;
5750 stripe_index = 0;
5751 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5752 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5753 &stripe_index);
5754 if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_GET_READ_MIRRORS)
5755 mirror_num = 1;
5756 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5757 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5758 num_stripes = map->num_stripes;
5759 else if (mirror_num)
5760 stripe_index = mirror_num - 1;
5761 else {
5762 stripe_index = find_live_mirror(fs_info, map, 0,
5763 map->num_stripes,
5764 current->pid % map->num_stripes,
5765 dev_replace_is_ongoing);
5766 mirror_num = stripe_index + 1;
5767 }
5768
5769 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5770 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) {
5771 num_stripes = map->num_stripes;
5772 } else if (mirror_num) {
5773 stripe_index = mirror_num - 1;
5774 } else {
5775 mirror_num = 1;
5776 }
5777
5778 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5779 u32 factor = map->num_stripes / map->sub_stripes;
5780
5781 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5782 stripe_index *= map->sub_stripes;
5783
5784 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5785 num_stripes = map->sub_stripes;
5786 else if (mirror_num)
5787 stripe_index += mirror_num - 1;
5788 else {
5789 int old_stripe_index = stripe_index;
5790 stripe_index = find_live_mirror(fs_info, map,
5791 stripe_index,
5792 map->sub_stripes, stripe_index +
5793 current->pid % map->sub_stripes,
5794 dev_replace_is_ongoing);
5795 mirror_num = stripe_index - old_stripe_index + 1;
5796 }
5797
5798 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5799 if (need_raid_map &&
5800 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS ||
5801 mirror_num > 1)) {
5802 /* push stripe_nr back to the start of the full stripe */
5803 stripe_nr = div64_u64(raid56_full_stripe_start,
5804 stripe_len * nr_data_stripes(map));
5805
5806 /* RAID[56] write or recovery. Return all stripes */
5807 num_stripes = map->num_stripes;
5808 max_errors = nr_parity_stripes(map);
5809
5810 *length = map->stripe_len;
5811 stripe_index = 0;
5812 stripe_offset = 0;
5813 } else {
5814 /*
5815 * Mirror #0 or #1 means the original data block.
5816 * Mirror #2 is RAID5 parity block.
5817 * Mirror #3 is RAID6 Q block.
5818 */
5819 stripe_nr = div_u64_rem(stripe_nr,
5820 nr_data_stripes(map), &stripe_index);
5821 if (mirror_num > 1)
5822 stripe_index = nr_data_stripes(map) +
5823 mirror_num - 2;
5824
5825 /* We distribute the parity blocks across stripes */
5826 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5827 &stripe_index);
5828 if ((op != BTRFS_MAP_WRITE &&
5829 op != BTRFS_MAP_GET_READ_MIRRORS) &&
5830 mirror_num <= 1)
5831 mirror_num = 1;
5832 }
5833 } else {
5834 /*
5835 * after this, stripe_nr is the number of stripes on this
5836 * device we have to walk to find the data, and stripe_index is
5837 * the number of our device in the stripe array
5838 */
5839 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5840 &stripe_index);
5841 mirror_num = stripe_index + 1;
5842 }
5843 if (stripe_index >= map->num_stripes) {
5844 btrfs_crit(fs_info,
5845 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5846 stripe_index, map->num_stripes);
5847 ret = -EINVAL;
5848 goto out;
5849 }
5850
5851 num_alloc_stripes = num_stripes;
5852 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5853 if (op == BTRFS_MAP_WRITE)
5854 num_alloc_stripes <<= 1;
5855 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5856 num_alloc_stripes++;
5857 tgtdev_indexes = num_stripes;
5858 }
5859
5860 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5861 if (!bbio) {
5862 ret = -ENOMEM;
5863 goto out;
5864 }
5865 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5866 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5867
5868 /* build raid_map */
5869 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5870 (need_full_stripe(op) || mirror_num > 1)) {
5871 u64 tmp;
5872 unsigned rot;
5873
5874 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5875 sizeof(struct btrfs_bio_stripe) *
5876 num_alloc_stripes +
5877 sizeof(int) * tgtdev_indexes);
5878
5879 /* Work out the disk rotation on this stripe-set */
5880 div_u64_rem(stripe_nr, num_stripes, &rot);
5881
5882 /* Fill in the logical address of each stripe */
5883 tmp = stripe_nr * nr_data_stripes(map);
5884 for (i = 0; i < nr_data_stripes(map); i++)
5885 bbio->raid_map[(i+rot) % num_stripes] =
5886 em->start + (tmp + i) * map->stripe_len;
5887
5888 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5889 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5890 bbio->raid_map[(i+rot+1) % num_stripes] =
5891 RAID6_Q_STRIPE;
5892 }
5893
5894
5895 for (i = 0; i < num_stripes; i++) {
5896 bbio->stripes[i].physical =
5897 map->stripes[stripe_index].physical +
5898 stripe_offset +
5899 stripe_nr * map->stripe_len;
5900 bbio->stripes[i].dev =
5901 map->stripes[stripe_index].dev;
5902 stripe_index++;
5903 }
5904
5905 if (need_full_stripe(op))
5906 max_errors = btrfs_chunk_max_errors(map);
5907
5908 if (bbio->raid_map)
5909 sort_parity_stripes(bbio, num_stripes);
5910
5911 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5912 need_full_stripe(op)) {
5913 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5914 &max_errors);
5915 }
5916
5917 *bbio_ret = bbio;
5918 bbio->map_type = map->type;
5919 bbio->num_stripes = num_stripes;
5920 bbio->max_errors = max_errors;
5921 bbio->mirror_num = mirror_num;
5922
5923 /*
5924 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5925 * mirror_num == num_stripes + 1 && dev_replace target drive is
5926 * available as a mirror
5927 */
5928 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5929 WARN_ON(num_stripes > 1);
5930 bbio->stripes[0].dev = dev_replace->tgtdev;
5931 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5932 bbio->mirror_num = map->num_stripes + 1;
5933 }
5934 out:
5935 if (dev_replace_is_ongoing) {
5936 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5937 btrfs_dev_replace_unlock(dev_replace, 0);
5938 }
5939 free_extent_map(em);
5940 return ret;
5941 }
5942
5943 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5944 u64 logical, u64 *length,
5945 struct btrfs_bio **bbio_ret, int mirror_num)
5946 {
5947 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5948 mirror_num, 0);
5949 }
5950
5951 /* For Scrub/replace */
5952 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5953 u64 logical, u64 *length,
5954 struct btrfs_bio **bbio_ret)
5955 {
5956 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5957 }
5958
5959 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5960 u64 chunk_start, u64 physical, u64 devid,
5961 u64 **logical, int *naddrs, int *stripe_len)
5962 {
5963 struct extent_map *em;
5964 struct map_lookup *map;
5965 u64 *buf;
5966 u64 bytenr;
5967 u64 length;
5968 u64 stripe_nr;
5969 u64 rmap_len;
5970 int i, j, nr = 0;
5971
5972 em = get_chunk_map(fs_info, chunk_start, 1);
5973 if (IS_ERR(em))
5974 return -EIO;
5975
5976 map = em->map_lookup;
5977 length = em->len;
5978 rmap_len = map->stripe_len;
5979
5980 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5981 length = div_u64(length, map->num_stripes / map->sub_stripes);
5982 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5983 length = div_u64(length, map->num_stripes);
5984 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5985 length = div_u64(length, nr_data_stripes(map));
5986 rmap_len = map->stripe_len * nr_data_stripes(map);
5987 }
5988
5989 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5990 BUG_ON(!buf); /* -ENOMEM */
5991
5992 for (i = 0; i < map->num_stripes; i++) {
5993 if (devid && map->stripes[i].dev->devid != devid)
5994 continue;
5995 if (map->stripes[i].physical > physical ||
5996 map->stripes[i].physical + length <= physical)
5997 continue;
5998
5999 stripe_nr = physical - map->stripes[i].physical;
6000 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6001
6002 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6003 stripe_nr = stripe_nr * map->num_stripes + i;
6004 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6005 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6006 stripe_nr = stripe_nr * map->num_stripes + i;
6007 } /* else if RAID[56], multiply by nr_data_stripes().
6008 * Alternatively, just use rmap_len below instead of
6009 * map->stripe_len */
6010
6011 bytenr = chunk_start + stripe_nr * rmap_len;
6012 WARN_ON(nr >= map->num_stripes);
6013 for (j = 0; j < nr; j++) {
6014 if (buf[j] == bytenr)
6015 break;
6016 }
6017 if (j == nr) {
6018 WARN_ON(nr >= map->num_stripes);
6019 buf[nr++] = bytenr;
6020 }
6021 }
6022
6023 *logical = buf;
6024 *naddrs = nr;
6025 *stripe_len = rmap_len;
6026
6027 free_extent_map(em);
6028 return 0;
6029 }
6030
6031 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6032 {
6033 bio->bi_private = bbio->private;
6034 bio->bi_end_io = bbio->end_io;
6035 bio_endio(bio);
6036
6037 btrfs_put_bbio(bbio);
6038 }
6039
6040 static void btrfs_end_bio(struct bio *bio)
6041 {
6042 struct btrfs_bio *bbio = bio->bi_private;
6043 int is_orig_bio = 0;
6044
6045 if (bio->bi_status) {
6046 atomic_inc(&bbio->error);
6047 if (bio->bi_status == BLK_STS_IOERR ||
6048 bio->bi_status == BLK_STS_TARGET) {
6049 unsigned int stripe_index =
6050 btrfs_io_bio(bio)->stripe_index;
6051 struct btrfs_device *dev;
6052
6053 BUG_ON(stripe_index >= bbio->num_stripes);
6054 dev = bbio->stripes[stripe_index].dev;
6055 if (dev->bdev) {
6056 if (bio_op(bio) == REQ_OP_WRITE)
6057 btrfs_dev_stat_inc(dev,
6058 BTRFS_DEV_STAT_WRITE_ERRS);
6059 else
6060 btrfs_dev_stat_inc(dev,
6061 BTRFS_DEV_STAT_READ_ERRS);
6062 if (bio->bi_opf & REQ_PREFLUSH)
6063 btrfs_dev_stat_inc(dev,
6064 BTRFS_DEV_STAT_FLUSH_ERRS);
6065 btrfs_dev_stat_print_on_error(dev);
6066 }
6067 }
6068 }
6069
6070 if (bio == bbio->orig_bio)
6071 is_orig_bio = 1;
6072
6073 btrfs_bio_counter_dec(bbio->fs_info);
6074
6075 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6076 if (!is_orig_bio) {
6077 bio_put(bio);
6078 bio = bbio->orig_bio;
6079 }
6080
6081 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6082 /* only send an error to the higher layers if it is
6083 * beyond the tolerance of the btrfs bio
6084 */
6085 if (atomic_read(&bbio->error) > bbio->max_errors) {
6086 bio->bi_status = BLK_STS_IOERR;
6087 } else {
6088 /*
6089 * this bio is actually up to date, we didn't
6090 * go over the max number of errors
6091 */
6092 bio->bi_status = 0;
6093 }
6094
6095 btrfs_end_bbio(bbio, bio);
6096 } else if (!is_orig_bio) {
6097 bio_put(bio);
6098 }
6099 }
6100
6101 /*
6102 * see run_scheduled_bios for a description of why bios are collected for
6103 * async submit.
6104 *
6105 * This will add one bio to the pending list for a device and make sure
6106 * the work struct is scheduled.
6107 */
6108 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6109 struct bio *bio)
6110 {
6111 struct btrfs_fs_info *fs_info = device->fs_info;
6112 int should_queue = 1;
6113 struct btrfs_pending_bios *pending_bios;
6114
6115 if (device->missing || !device->bdev) {
6116 bio_io_error(bio);
6117 return;
6118 }
6119
6120 /* don't bother with additional async steps for reads, right now */
6121 if (bio_op(bio) == REQ_OP_READ) {
6122 bio_get(bio);
6123 btrfsic_submit_bio(bio);
6124 bio_put(bio);
6125 return;
6126 }
6127
6128 /*
6129 * nr_async_bios allows us to reliably return congestion to the
6130 * higher layers. Otherwise, the async bio makes it appear we have
6131 * made progress against dirty pages when we've really just put it
6132 * on a queue for later
6133 */
6134 atomic_inc(&fs_info->nr_async_bios);
6135 WARN_ON(bio->bi_next);
6136 bio->bi_next = NULL;
6137
6138 spin_lock(&device->io_lock);
6139 if (op_is_sync(bio->bi_opf))
6140 pending_bios = &device->pending_sync_bios;
6141 else
6142 pending_bios = &device->pending_bios;
6143
6144 if (pending_bios->tail)
6145 pending_bios->tail->bi_next = bio;
6146
6147 pending_bios->tail = bio;
6148 if (!pending_bios->head)
6149 pending_bios->head = bio;
6150 if (device->running_pending)
6151 should_queue = 0;
6152
6153 spin_unlock(&device->io_lock);
6154
6155 if (should_queue)
6156 btrfs_queue_work(fs_info->submit_workers, &device->work);
6157 }
6158
6159 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6160 u64 physical, int dev_nr, int async)
6161 {
6162 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6163 struct btrfs_fs_info *fs_info = bbio->fs_info;
6164
6165 bio->bi_private = bbio;
6166 btrfs_io_bio(bio)->stripe_index = dev_nr;
6167 bio->bi_end_io = btrfs_end_bio;
6168 bio->bi_iter.bi_sector = physical >> 9;
6169 #ifdef DEBUG
6170 {
6171 struct rcu_string *name;
6172
6173 rcu_read_lock();
6174 name = rcu_dereference(dev->name);
6175 btrfs_debug(fs_info,
6176 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6177 bio_op(bio), bio->bi_opf,
6178 (u64)bio->bi_iter.bi_sector,
6179 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6180 bio->bi_iter.bi_size);
6181 rcu_read_unlock();
6182 }
6183 #endif
6184 bio->bi_bdev = dev->bdev;
6185
6186 btrfs_bio_counter_inc_noblocked(fs_info);
6187
6188 if (async)
6189 btrfs_schedule_bio(dev, bio);
6190 else
6191 btrfsic_submit_bio(bio);
6192 }
6193
6194 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6195 {
6196 atomic_inc(&bbio->error);
6197 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6198 /* Should be the original bio. */
6199 WARN_ON(bio != bbio->orig_bio);
6200
6201 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6202 bio->bi_iter.bi_sector = logical >> 9;
6203 bio->bi_status = BLK_STS_IOERR;
6204 btrfs_end_bbio(bbio, bio);
6205 }
6206 }
6207
6208 int btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6209 int mirror_num, int async_submit)
6210 {
6211 struct btrfs_device *dev;
6212 struct bio *first_bio = bio;
6213 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6214 u64 length = 0;
6215 u64 map_length;
6216 int ret;
6217 int dev_nr;
6218 int total_devs;
6219 struct btrfs_bio *bbio = NULL;
6220
6221 length = bio->bi_iter.bi_size;
6222 map_length = length;
6223
6224 btrfs_bio_counter_inc_blocked(fs_info);
6225 ret = __btrfs_map_block(fs_info, bio_op(bio), logical,
6226 &map_length, &bbio, mirror_num, 1);
6227 if (ret) {
6228 btrfs_bio_counter_dec(fs_info);
6229 return ret;
6230 }
6231
6232 total_devs = bbio->num_stripes;
6233 bbio->orig_bio = first_bio;
6234 bbio->private = first_bio->bi_private;
6235 bbio->end_io = first_bio->bi_end_io;
6236 bbio->fs_info = fs_info;
6237 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6238
6239 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6240 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6241 /* In this case, map_length has been set to the length of
6242 a single stripe; not the whole write */
6243 if (bio_op(bio) == REQ_OP_WRITE) {
6244 ret = raid56_parity_write(fs_info, bio, bbio,
6245 map_length);
6246 } else {
6247 ret = raid56_parity_recover(fs_info, bio, bbio,
6248 map_length, mirror_num, 1);
6249 }
6250
6251 btrfs_bio_counter_dec(fs_info);
6252 return ret;
6253 }
6254
6255 if (map_length < length) {
6256 btrfs_crit(fs_info,
6257 "mapping failed logical %llu bio len %llu len %llu",
6258 logical, length, map_length);
6259 BUG();
6260 }
6261
6262 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6263 dev = bbio->stripes[dev_nr].dev;
6264 if (!dev || !dev->bdev ||
6265 (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
6266 bbio_error(bbio, first_bio, logical);
6267 continue;
6268 }
6269
6270 if (dev_nr < total_devs - 1) {
6271 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6272 BUG_ON(!bio); /* -ENOMEM */
6273 } else
6274 bio = first_bio;
6275
6276 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6277 dev_nr, async_submit);
6278 }
6279 btrfs_bio_counter_dec(fs_info);
6280 return 0;
6281 }
6282
6283 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6284 u8 *uuid, u8 *fsid)
6285 {
6286 struct btrfs_device *device;
6287 struct btrfs_fs_devices *cur_devices;
6288
6289 cur_devices = fs_info->fs_devices;
6290 while (cur_devices) {
6291 if (!fsid ||
6292 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6293 device = __find_device(&cur_devices->devices,
6294 devid, uuid);
6295 if (device)
6296 return device;
6297 }
6298 cur_devices = cur_devices->seed;
6299 }
6300 return NULL;
6301 }
6302
6303 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6304 u64 devid, u8 *dev_uuid)
6305 {
6306 struct btrfs_device *device;
6307
6308 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6309 if (IS_ERR(device))
6310 return NULL;
6311
6312 list_add(&device->dev_list, &fs_devices->devices);
6313 device->fs_devices = fs_devices;
6314 fs_devices->num_devices++;
6315
6316 device->missing = 1;
6317 fs_devices->missing_devices++;
6318
6319 return device;
6320 }
6321
6322 /**
6323 * btrfs_alloc_device - allocate struct btrfs_device
6324 * @fs_info: used only for generating a new devid, can be NULL if
6325 * devid is provided (i.e. @devid != NULL).
6326 * @devid: a pointer to devid for this device. If NULL a new devid
6327 * is generated.
6328 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6329 * is generated.
6330 *
6331 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6332 * on error. Returned struct is not linked onto any lists and can be
6333 * destroyed with kfree() right away.
6334 */
6335 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6336 const u64 *devid,
6337 const u8 *uuid)
6338 {
6339 struct btrfs_device *dev;
6340 u64 tmp;
6341
6342 if (WARN_ON(!devid && !fs_info))
6343 return ERR_PTR(-EINVAL);
6344
6345 dev = __alloc_device();
6346 if (IS_ERR(dev))
6347 return dev;
6348
6349 if (devid)
6350 tmp = *devid;
6351 else {
6352 int ret;
6353
6354 ret = find_next_devid(fs_info, &tmp);
6355 if (ret) {
6356 kfree(dev);
6357 return ERR_PTR(ret);
6358 }
6359 }
6360 dev->devid = tmp;
6361
6362 if (uuid)
6363 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6364 else
6365 generate_random_uuid(dev->uuid);
6366
6367 btrfs_init_work(&dev->work, btrfs_submit_helper,
6368 pending_bios_fn, NULL, NULL);
6369
6370 return dev;
6371 }
6372
6373 /* Return -EIO if any error, otherwise return 0. */
6374 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6375 struct extent_buffer *leaf,
6376 struct btrfs_chunk *chunk, u64 logical)
6377 {
6378 u64 length;
6379 u64 stripe_len;
6380 u16 num_stripes;
6381 u16 sub_stripes;
6382 u64 type;
6383
6384 length = btrfs_chunk_length(leaf, chunk);
6385 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6386 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6387 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6388 type = btrfs_chunk_type(leaf, chunk);
6389
6390 if (!num_stripes) {
6391 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6392 num_stripes);
6393 return -EIO;
6394 }
6395 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6396 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6397 return -EIO;
6398 }
6399 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6400 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6401 btrfs_chunk_sector_size(leaf, chunk));
6402 return -EIO;
6403 }
6404 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6405 btrfs_err(fs_info, "invalid chunk length %llu", length);
6406 return -EIO;
6407 }
6408 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6409 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6410 stripe_len);
6411 return -EIO;
6412 }
6413 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6414 type) {
6415 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6416 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6417 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6418 btrfs_chunk_type(leaf, chunk));
6419 return -EIO;
6420 }
6421 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6422 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6423 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6424 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6425 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6426 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6427 num_stripes != 1)) {
6428 btrfs_err(fs_info,
6429 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6430 num_stripes, sub_stripes,
6431 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6432 return -EIO;
6433 }
6434
6435 return 0;
6436 }
6437
6438 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6439 struct extent_buffer *leaf,
6440 struct btrfs_chunk *chunk)
6441 {
6442 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6443 struct map_lookup *map;
6444 struct extent_map *em;
6445 u64 logical;
6446 u64 length;
6447 u64 stripe_len;
6448 u64 devid;
6449 u8 uuid[BTRFS_UUID_SIZE];
6450 int num_stripes;
6451 int ret;
6452 int i;
6453
6454 logical = key->offset;
6455 length = btrfs_chunk_length(leaf, chunk);
6456 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6457 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6458
6459 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6460 if (ret)
6461 return ret;
6462
6463 read_lock(&map_tree->map_tree.lock);
6464 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6465 read_unlock(&map_tree->map_tree.lock);
6466
6467 /* already mapped? */
6468 if (em && em->start <= logical && em->start + em->len > logical) {
6469 free_extent_map(em);
6470 return 0;
6471 } else if (em) {
6472 free_extent_map(em);
6473 }
6474
6475 em = alloc_extent_map();
6476 if (!em)
6477 return -ENOMEM;
6478 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6479 if (!map) {
6480 free_extent_map(em);
6481 return -ENOMEM;
6482 }
6483
6484 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6485 em->map_lookup = map;
6486 em->start = logical;
6487 em->len = length;
6488 em->orig_start = 0;
6489 em->block_start = 0;
6490 em->block_len = em->len;
6491
6492 map->num_stripes = num_stripes;
6493 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6494 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6495 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6496 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6497 map->type = btrfs_chunk_type(leaf, chunk);
6498 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6499 for (i = 0; i < num_stripes; i++) {
6500 map->stripes[i].physical =
6501 btrfs_stripe_offset_nr(leaf, chunk, i);
6502 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6503 read_extent_buffer(leaf, uuid, (unsigned long)
6504 btrfs_stripe_dev_uuid_nr(chunk, i),
6505 BTRFS_UUID_SIZE);
6506 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6507 uuid, NULL);
6508 if (!map->stripes[i].dev &&
6509 !btrfs_test_opt(fs_info, DEGRADED)) {
6510 free_extent_map(em);
6511 return -EIO;
6512 }
6513 if (!map->stripes[i].dev) {
6514 map->stripes[i].dev =
6515 add_missing_dev(fs_info->fs_devices, devid,
6516 uuid);
6517 if (!map->stripes[i].dev) {
6518 free_extent_map(em);
6519 return -EIO;
6520 }
6521 btrfs_warn(fs_info, "devid %llu uuid %pU is missing",
6522 devid, uuid);
6523 }
6524 map->stripes[i].dev->in_fs_metadata = 1;
6525 }
6526
6527 write_lock(&map_tree->map_tree.lock);
6528 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6529 write_unlock(&map_tree->map_tree.lock);
6530 BUG_ON(ret); /* Tree corruption */
6531 free_extent_map(em);
6532
6533 return 0;
6534 }
6535
6536 static void fill_device_from_item(struct extent_buffer *leaf,
6537 struct btrfs_dev_item *dev_item,
6538 struct btrfs_device *device)
6539 {
6540 unsigned long ptr;
6541
6542 device->devid = btrfs_device_id(leaf, dev_item);
6543 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6544 device->total_bytes = device->disk_total_bytes;
6545 device->commit_total_bytes = device->disk_total_bytes;
6546 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6547 device->commit_bytes_used = device->bytes_used;
6548 device->type = btrfs_device_type(leaf, dev_item);
6549 device->io_align = btrfs_device_io_align(leaf, dev_item);
6550 device->io_width = btrfs_device_io_width(leaf, dev_item);
6551 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6552 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6553 device->is_tgtdev_for_dev_replace = 0;
6554
6555 ptr = btrfs_device_uuid(dev_item);
6556 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6557 }
6558
6559 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6560 u8 *fsid)
6561 {
6562 struct btrfs_fs_devices *fs_devices;
6563 int ret;
6564
6565 BUG_ON(!mutex_is_locked(&uuid_mutex));
6566
6567 fs_devices = fs_info->fs_devices->seed;
6568 while (fs_devices) {
6569 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6570 return fs_devices;
6571
6572 fs_devices = fs_devices->seed;
6573 }
6574
6575 fs_devices = find_fsid(fsid);
6576 if (!fs_devices) {
6577 if (!btrfs_test_opt(fs_info, DEGRADED))
6578 return ERR_PTR(-ENOENT);
6579
6580 fs_devices = alloc_fs_devices(fsid);
6581 if (IS_ERR(fs_devices))
6582 return fs_devices;
6583
6584 fs_devices->seeding = 1;
6585 fs_devices->opened = 1;
6586 return fs_devices;
6587 }
6588
6589 fs_devices = clone_fs_devices(fs_devices);
6590 if (IS_ERR(fs_devices))
6591 return fs_devices;
6592
6593 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6594 fs_info->bdev_holder);
6595 if (ret) {
6596 free_fs_devices(fs_devices);
6597 fs_devices = ERR_PTR(ret);
6598 goto out;
6599 }
6600
6601 if (!fs_devices->seeding) {
6602 __btrfs_close_devices(fs_devices);
6603 free_fs_devices(fs_devices);
6604 fs_devices = ERR_PTR(-EINVAL);
6605 goto out;
6606 }
6607
6608 fs_devices->seed = fs_info->fs_devices->seed;
6609 fs_info->fs_devices->seed = fs_devices;
6610 out:
6611 return fs_devices;
6612 }
6613
6614 static int read_one_dev(struct btrfs_fs_info *fs_info,
6615 struct extent_buffer *leaf,
6616 struct btrfs_dev_item *dev_item)
6617 {
6618 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6619 struct btrfs_device *device;
6620 u64 devid;
6621 int ret;
6622 u8 fs_uuid[BTRFS_UUID_SIZE];
6623 u8 dev_uuid[BTRFS_UUID_SIZE];
6624
6625 devid = btrfs_device_id(leaf, dev_item);
6626 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6627 BTRFS_UUID_SIZE);
6628 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6629 BTRFS_UUID_SIZE);
6630
6631 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_UUID_SIZE)) {
6632 fs_devices = open_seed_devices(fs_info, fs_uuid);
6633 if (IS_ERR(fs_devices))
6634 return PTR_ERR(fs_devices);
6635 }
6636
6637 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6638 if (!device) {
6639 if (!btrfs_test_opt(fs_info, DEGRADED))
6640 return -EIO;
6641
6642 device = add_missing_dev(fs_devices, devid, dev_uuid);
6643 if (!device)
6644 return -ENOMEM;
6645 btrfs_warn(fs_info, "devid %llu uuid %pU missing",
6646 devid, dev_uuid);
6647 } else {
6648 if (!device->bdev && !btrfs_test_opt(fs_info, DEGRADED))
6649 return -EIO;
6650
6651 if(!device->bdev && !device->missing) {
6652 /*
6653 * this happens when a device that was properly setup
6654 * in the device info lists suddenly goes bad.
6655 * device->bdev is NULL, and so we have to set
6656 * device->missing to one here
6657 */
6658 device->fs_devices->missing_devices++;
6659 device->missing = 1;
6660 }
6661
6662 /* Move the device to its own fs_devices */
6663 if (device->fs_devices != fs_devices) {
6664 ASSERT(device->missing);
6665
6666 list_move(&device->dev_list, &fs_devices->devices);
6667 device->fs_devices->num_devices--;
6668 fs_devices->num_devices++;
6669
6670 device->fs_devices->missing_devices--;
6671 fs_devices->missing_devices++;
6672
6673 device->fs_devices = fs_devices;
6674 }
6675 }
6676
6677 if (device->fs_devices != fs_info->fs_devices) {
6678 BUG_ON(device->writeable);
6679 if (device->generation !=
6680 btrfs_device_generation(leaf, dev_item))
6681 return -EINVAL;
6682 }
6683
6684 fill_device_from_item(leaf, dev_item, device);
6685 device->in_fs_metadata = 1;
6686 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6687 device->fs_devices->total_rw_bytes += device->total_bytes;
6688 spin_lock(&fs_info->free_chunk_lock);
6689 fs_info->free_chunk_space += device->total_bytes -
6690 device->bytes_used;
6691 spin_unlock(&fs_info->free_chunk_lock);
6692 }
6693 ret = 0;
6694 return ret;
6695 }
6696
6697 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6698 {
6699 struct btrfs_root *root = fs_info->tree_root;
6700 struct btrfs_super_block *super_copy = fs_info->super_copy;
6701 struct extent_buffer *sb;
6702 struct btrfs_disk_key *disk_key;
6703 struct btrfs_chunk *chunk;
6704 u8 *array_ptr;
6705 unsigned long sb_array_offset;
6706 int ret = 0;
6707 u32 num_stripes;
6708 u32 array_size;
6709 u32 len = 0;
6710 u32 cur_offset;
6711 u64 type;
6712 struct btrfs_key key;
6713
6714 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6715 /*
6716 * This will create extent buffer of nodesize, superblock size is
6717 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6718 * overallocate but we can keep it as-is, only the first page is used.
6719 */
6720 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6721 if (IS_ERR(sb))
6722 return PTR_ERR(sb);
6723 set_extent_buffer_uptodate(sb);
6724 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6725 /*
6726 * The sb extent buffer is artificial and just used to read the system array.
6727 * set_extent_buffer_uptodate() call does not properly mark all it's
6728 * pages up-to-date when the page is larger: extent does not cover the
6729 * whole page and consequently check_page_uptodate does not find all
6730 * the page's extents up-to-date (the hole beyond sb),
6731 * write_extent_buffer then triggers a WARN_ON.
6732 *
6733 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6734 * but sb spans only this function. Add an explicit SetPageUptodate call
6735 * to silence the warning eg. on PowerPC 64.
6736 */
6737 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6738 SetPageUptodate(sb->pages[0]);
6739
6740 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6741 array_size = btrfs_super_sys_array_size(super_copy);
6742
6743 array_ptr = super_copy->sys_chunk_array;
6744 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6745 cur_offset = 0;
6746
6747 while (cur_offset < array_size) {
6748 disk_key = (struct btrfs_disk_key *)array_ptr;
6749 len = sizeof(*disk_key);
6750 if (cur_offset + len > array_size)
6751 goto out_short_read;
6752
6753 btrfs_disk_key_to_cpu(&key, disk_key);
6754
6755 array_ptr += len;
6756 sb_array_offset += len;
6757 cur_offset += len;
6758
6759 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6760 chunk = (struct btrfs_chunk *)sb_array_offset;
6761 /*
6762 * At least one btrfs_chunk with one stripe must be
6763 * present, exact stripe count check comes afterwards
6764 */
6765 len = btrfs_chunk_item_size(1);
6766 if (cur_offset + len > array_size)
6767 goto out_short_read;
6768
6769 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6770 if (!num_stripes) {
6771 btrfs_err(fs_info,
6772 "invalid number of stripes %u in sys_array at offset %u",
6773 num_stripes, cur_offset);
6774 ret = -EIO;
6775 break;
6776 }
6777
6778 type = btrfs_chunk_type(sb, chunk);
6779 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6780 btrfs_err(fs_info,
6781 "invalid chunk type %llu in sys_array at offset %u",
6782 type, cur_offset);
6783 ret = -EIO;
6784 break;
6785 }
6786
6787 len = btrfs_chunk_item_size(num_stripes);
6788 if (cur_offset + len > array_size)
6789 goto out_short_read;
6790
6791 ret = read_one_chunk(fs_info, &key, sb, chunk);
6792 if (ret)
6793 break;
6794 } else {
6795 btrfs_err(fs_info,
6796 "unexpected item type %u in sys_array at offset %u",
6797 (u32)key.type, cur_offset);
6798 ret = -EIO;
6799 break;
6800 }
6801 array_ptr += len;
6802 sb_array_offset += len;
6803 cur_offset += len;
6804 }
6805 clear_extent_buffer_uptodate(sb);
6806 free_extent_buffer_stale(sb);
6807 return ret;
6808
6809 out_short_read:
6810 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6811 len, cur_offset);
6812 clear_extent_buffer_uptodate(sb);
6813 free_extent_buffer_stale(sb);
6814 return -EIO;
6815 }
6816
6817 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6818 {
6819 struct btrfs_root *root = fs_info->chunk_root;
6820 struct btrfs_path *path;
6821 struct extent_buffer *leaf;
6822 struct btrfs_key key;
6823 struct btrfs_key found_key;
6824 int ret;
6825 int slot;
6826 u64 total_dev = 0;
6827
6828 path = btrfs_alloc_path();
6829 if (!path)
6830 return -ENOMEM;
6831
6832 mutex_lock(&uuid_mutex);
6833 mutex_lock(&fs_info->chunk_mutex);
6834
6835 /*
6836 * Read all device items, and then all the chunk items. All
6837 * device items are found before any chunk item (their object id
6838 * is smaller than the lowest possible object id for a chunk
6839 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6840 */
6841 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6842 key.offset = 0;
6843 key.type = 0;
6844 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6845 if (ret < 0)
6846 goto error;
6847 while (1) {
6848 leaf = path->nodes[0];
6849 slot = path->slots[0];
6850 if (slot >= btrfs_header_nritems(leaf)) {
6851 ret = btrfs_next_leaf(root, path);
6852 if (ret == 0)
6853 continue;
6854 if (ret < 0)
6855 goto error;
6856 break;
6857 }
6858 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6859 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6860 struct btrfs_dev_item *dev_item;
6861 dev_item = btrfs_item_ptr(leaf, slot,
6862 struct btrfs_dev_item);
6863 ret = read_one_dev(fs_info, leaf, dev_item);
6864 if (ret)
6865 goto error;
6866 total_dev++;
6867 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6868 struct btrfs_chunk *chunk;
6869 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6870 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6871 if (ret)
6872 goto error;
6873 }
6874 path->slots[0]++;
6875 }
6876
6877 /*
6878 * After loading chunk tree, we've got all device information,
6879 * do another round of validation checks.
6880 */
6881 if (total_dev != fs_info->fs_devices->total_devices) {
6882 btrfs_err(fs_info,
6883 "super_num_devices %llu mismatch with num_devices %llu found here",
6884 btrfs_super_num_devices(fs_info->super_copy),
6885 total_dev);
6886 ret = -EINVAL;
6887 goto error;
6888 }
6889 if (btrfs_super_total_bytes(fs_info->super_copy) <
6890 fs_info->fs_devices->total_rw_bytes) {
6891 btrfs_err(fs_info,
6892 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6893 btrfs_super_total_bytes(fs_info->super_copy),
6894 fs_info->fs_devices->total_rw_bytes);
6895 ret = -EINVAL;
6896 goto error;
6897 }
6898 ret = 0;
6899 error:
6900 mutex_unlock(&fs_info->chunk_mutex);
6901 mutex_unlock(&uuid_mutex);
6902
6903 btrfs_free_path(path);
6904 return ret;
6905 }
6906
6907 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6908 {
6909 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6910 struct btrfs_device *device;
6911
6912 while (fs_devices) {
6913 mutex_lock(&fs_devices->device_list_mutex);
6914 list_for_each_entry(device, &fs_devices->devices, dev_list)
6915 device->fs_info = fs_info;
6916 mutex_unlock(&fs_devices->device_list_mutex);
6917
6918 fs_devices = fs_devices->seed;
6919 }
6920 }
6921
6922 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6923 {
6924 int i;
6925
6926 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6927 btrfs_dev_stat_reset(dev, i);
6928 }
6929
6930 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6931 {
6932 struct btrfs_key key;
6933 struct btrfs_key found_key;
6934 struct btrfs_root *dev_root = fs_info->dev_root;
6935 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6936 struct extent_buffer *eb;
6937 int slot;
6938 int ret = 0;
6939 struct btrfs_device *device;
6940 struct btrfs_path *path = NULL;
6941 int i;
6942
6943 path = btrfs_alloc_path();
6944 if (!path) {
6945 ret = -ENOMEM;
6946 goto out;
6947 }
6948
6949 mutex_lock(&fs_devices->device_list_mutex);
6950 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6951 int item_size;
6952 struct btrfs_dev_stats_item *ptr;
6953
6954 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6955 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6956 key.offset = device->devid;
6957 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6958 if (ret) {
6959 __btrfs_reset_dev_stats(device);
6960 device->dev_stats_valid = 1;
6961 btrfs_release_path(path);
6962 continue;
6963 }
6964 slot = path->slots[0];
6965 eb = path->nodes[0];
6966 btrfs_item_key_to_cpu(eb, &found_key, slot);
6967 item_size = btrfs_item_size_nr(eb, slot);
6968
6969 ptr = btrfs_item_ptr(eb, slot,
6970 struct btrfs_dev_stats_item);
6971
6972 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6973 if (item_size >= (1 + i) * sizeof(__le64))
6974 btrfs_dev_stat_set(device, i,
6975 btrfs_dev_stats_value(eb, ptr, i));
6976 else
6977 btrfs_dev_stat_reset(device, i);
6978 }
6979
6980 device->dev_stats_valid = 1;
6981 btrfs_dev_stat_print_on_load(device);
6982 btrfs_release_path(path);
6983 }
6984 mutex_unlock(&fs_devices->device_list_mutex);
6985
6986 out:
6987 btrfs_free_path(path);
6988 return ret < 0 ? ret : 0;
6989 }
6990
6991 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6992 struct btrfs_fs_info *fs_info,
6993 struct btrfs_device *device)
6994 {
6995 struct btrfs_root *dev_root = fs_info->dev_root;
6996 struct btrfs_path *path;
6997 struct btrfs_key key;
6998 struct extent_buffer *eb;
6999 struct btrfs_dev_stats_item *ptr;
7000 int ret;
7001 int i;
7002
7003 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7004 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7005 key.offset = device->devid;
7006
7007 path = btrfs_alloc_path();
7008 if (!path)
7009 return -ENOMEM;
7010 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7011 if (ret < 0) {
7012 btrfs_warn_in_rcu(fs_info,
7013 "error %d while searching for dev_stats item for device %s",
7014 ret, rcu_str_deref(device->name));
7015 goto out;
7016 }
7017
7018 if (ret == 0 &&
7019 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7020 /* need to delete old one and insert a new one */
7021 ret = btrfs_del_item(trans, dev_root, path);
7022 if (ret != 0) {
7023 btrfs_warn_in_rcu(fs_info,
7024 "delete too small dev_stats item for device %s failed %d",
7025 rcu_str_deref(device->name), ret);
7026 goto out;
7027 }
7028 ret = 1;
7029 }
7030
7031 if (ret == 1) {
7032 /* need to insert a new item */
7033 btrfs_release_path(path);
7034 ret = btrfs_insert_empty_item(trans, dev_root, path,
7035 &key, sizeof(*ptr));
7036 if (ret < 0) {
7037 btrfs_warn_in_rcu(fs_info,
7038 "insert dev_stats item for device %s failed %d",
7039 rcu_str_deref(device->name), ret);
7040 goto out;
7041 }
7042 }
7043
7044 eb = path->nodes[0];
7045 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7046 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7047 btrfs_set_dev_stats_value(eb, ptr, i,
7048 btrfs_dev_stat_read(device, i));
7049 btrfs_mark_buffer_dirty(eb);
7050
7051 out:
7052 btrfs_free_path(path);
7053 return ret;
7054 }
7055
7056 /*
7057 * called from commit_transaction. Writes all changed device stats to disk.
7058 */
7059 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7060 struct btrfs_fs_info *fs_info)
7061 {
7062 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7063 struct btrfs_device *device;
7064 int stats_cnt;
7065 int ret = 0;
7066
7067 mutex_lock(&fs_devices->device_list_mutex);
7068 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7069 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7070 continue;
7071
7072 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7073 ret = update_dev_stat_item(trans, fs_info, device);
7074 if (!ret)
7075 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7076 }
7077 mutex_unlock(&fs_devices->device_list_mutex);
7078
7079 return ret;
7080 }
7081
7082 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7083 {
7084 btrfs_dev_stat_inc(dev, index);
7085 btrfs_dev_stat_print_on_error(dev);
7086 }
7087
7088 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7089 {
7090 if (!dev->dev_stats_valid)
7091 return;
7092 btrfs_err_rl_in_rcu(dev->fs_info,
7093 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7094 rcu_str_deref(dev->name),
7095 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7096 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7097 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7098 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7099 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7100 }
7101
7102 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7103 {
7104 int i;
7105
7106 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7107 if (btrfs_dev_stat_read(dev, i) != 0)
7108 break;
7109 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7110 return; /* all values == 0, suppress message */
7111
7112 btrfs_info_in_rcu(dev->fs_info,
7113 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7114 rcu_str_deref(dev->name),
7115 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7116 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7117 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7118 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7119 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7120 }
7121
7122 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7123 struct btrfs_ioctl_get_dev_stats *stats)
7124 {
7125 struct btrfs_device *dev;
7126 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7127 int i;
7128
7129 mutex_lock(&fs_devices->device_list_mutex);
7130 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7131 mutex_unlock(&fs_devices->device_list_mutex);
7132
7133 if (!dev) {
7134 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7135 return -ENODEV;
7136 } else if (!dev->dev_stats_valid) {
7137 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7138 return -ENODEV;
7139 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7140 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7141 if (stats->nr_items > i)
7142 stats->values[i] =
7143 btrfs_dev_stat_read_and_reset(dev, i);
7144 else
7145 btrfs_dev_stat_reset(dev, i);
7146 }
7147 } else {
7148 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7149 if (stats->nr_items > i)
7150 stats->values[i] = btrfs_dev_stat_read(dev, i);
7151 }
7152 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7153 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7154 return 0;
7155 }
7156
7157 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7158 {
7159 struct buffer_head *bh;
7160 struct btrfs_super_block *disk_super;
7161 int copy_num;
7162
7163 if (!bdev)
7164 return;
7165
7166 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7167 copy_num++) {
7168
7169 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7170 continue;
7171
7172 disk_super = (struct btrfs_super_block *)bh->b_data;
7173
7174 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7175 set_buffer_dirty(bh);
7176 sync_dirty_buffer(bh);
7177 brelse(bh);
7178 }
7179
7180 /* Notify udev that device has changed */
7181 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7182
7183 /* Update ctime/mtime for device path for libblkid */
7184 update_dev_time(device_path);
7185 }
7186
7187 /*
7188 * Update the size of all devices, which is used for writing out the
7189 * super blocks.
7190 */
7191 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7192 {
7193 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7194 struct btrfs_device *curr, *next;
7195
7196 if (list_empty(&fs_devices->resized_devices))
7197 return;
7198
7199 mutex_lock(&fs_devices->device_list_mutex);
7200 mutex_lock(&fs_info->chunk_mutex);
7201 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7202 resized_list) {
7203 list_del_init(&curr->resized_list);
7204 curr->commit_total_bytes = curr->disk_total_bytes;
7205 }
7206 mutex_unlock(&fs_info->chunk_mutex);
7207 mutex_unlock(&fs_devices->device_list_mutex);
7208 }
7209
7210 /* Must be invoked during the transaction commit */
7211 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7212 struct btrfs_transaction *transaction)
7213 {
7214 struct extent_map *em;
7215 struct map_lookup *map;
7216 struct btrfs_device *dev;
7217 int i;
7218
7219 if (list_empty(&transaction->pending_chunks))
7220 return;
7221
7222 /* In order to kick the device replace finish process */
7223 mutex_lock(&fs_info->chunk_mutex);
7224 list_for_each_entry(em, &transaction->pending_chunks, list) {
7225 map = em->map_lookup;
7226
7227 for (i = 0; i < map->num_stripes; i++) {
7228 dev = map->stripes[i].dev;
7229 dev->commit_bytes_used = dev->bytes_used;
7230 }
7231 }
7232 mutex_unlock(&fs_info->chunk_mutex);
7233 }
7234
7235 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7236 {
7237 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7238 while (fs_devices) {
7239 fs_devices->fs_info = fs_info;
7240 fs_devices = fs_devices->seed;
7241 }
7242 }
7243
7244 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7245 {
7246 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7247 while (fs_devices) {
7248 fs_devices->fs_info = NULL;
7249 fs_devices = fs_devices->seed;
7250 }
7251 }