Merge branch 'core/debug' into core/urgent
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / tree-log.c
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "locking.h"
25 #include "print-tree.h"
26 #include "compat.h"
27 #include "tree-log.h"
28
29 /* magic values for the inode_only field in btrfs_log_inode:
30 *
31 * LOG_INODE_ALL means to log everything
32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
33 * during log replay
34 */
35 #define LOG_INODE_ALL 0
36 #define LOG_INODE_EXISTS 1
37
38 /*
39 * directory trouble cases
40 *
41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42 * log, we must force a full commit before doing an fsync of the directory
43 * where the unlink was done.
44 * ---> record transid of last unlink/rename per directory
45 *
46 * mkdir foo/some_dir
47 * normal commit
48 * rename foo/some_dir foo2/some_dir
49 * mkdir foo/some_dir
50 * fsync foo/some_dir/some_file
51 *
52 * The fsync above will unlink the original some_dir without recording
53 * it in its new location (foo2). After a crash, some_dir will be gone
54 * unless the fsync of some_file forces a full commit
55 *
56 * 2) we must log any new names for any file or dir that is in the fsync
57 * log. ---> check inode while renaming/linking.
58 *
59 * 2a) we must log any new names for any file or dir during rename
60 * when the directory they are being removed from was logged.
61 * ---> check inode and old parent dir during rename
62 *
63 * 2a is actually the more important variant. With the extra logging
64 * a crash might unlink the old name without recreating the new one
65 *
66 * 3) after a crash, we must go through any directories with a link count
67 * of zero and redo the rm -rf
68 *
69 * mkdir f1/foo
70 * normal commit
71 * rm -rf f1/foo
72 * fsync(f1)
73 *
74 * The directory f1 was fully removed from the FS, but fsync was never
75 * called on f1, only its parent dir. After a crash the rm -rf must
76 * be replayed. This must be able to recurse down the entire
77 * directory tree. The inode link count fixup code takes care of the
78 * ugly details.
79 */
80
81 /*
82 * stages for the tree walking. The first
83 * stage (0) is to only pin down the blocks we find
84 * the second stage (1) is to make sure that all the inodes
85 * we find in the log are created in the subvolume.
86 *
87 * The last stage is to deal with directories and links and extents
88 * and all the other fun semantics
89 */
90 #define LOG_WALK_PIN_ONLY 0
91 #define LOG_WALK_REPLAY_INODES 1
92 #define LOG_WALK_REPLAY_ALL 2
93
94 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root, struct inode *inode,
96 int inode_only);
97 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root,
99 struct btrfs_path *path, u64 objectid);
100 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_root *log,
103 struct btrfs_path *path,
104 u64 dirid, int del_all);
105
106 /*
107 * tree logging is a special write ahead log used to make sure that
108 * fsyncs and O_SYNCs can happen without doing full tree commits.
109 *
110 * Full tree commits are expensive because they require commonly
111 * modified blocks to be recowed, creating many dirty pages in the
112 * extent tree an 4x-6x higher write load than ext3.
113 *
114 * Instead of doing a tree commit on every fsync, we use the
115 * key ranges and transaction ids to find items for a given file or directory
116 * that have changed in this transaction. Those items are copied into
117 * a special tree (one per subvolume root), that tree is written to disk
118 * and then the fsync is considered complete.
119 *
120 * After a crash, items are copied out of the log-tree back into the
121 * subvolume tree. Any file data extents found are recorded in the extent
122 * allocation tree, and the log-tree freed.
123 *
124 * The log tree is read three times, once to pin down all the extents it is
125 * using in ram and once, once to create all the inodes logged in the tree
126 * and once to do all the other items.
127 */
128
129 /*
130 * start a sub transaction and setup the log tree
131 * this increments the log tree writer count to make the people
132 * syncing the tree wait for us to finish
133 */
134 static int start_log_trans(struct btrfs_trans_handle *trans,
135 struct btrfs_root *root)
136 {
137 int ret;
138 int err = 0;
139
140 mutex_lock(&root->log_mutex);
141 if (root->log_root) {
142 if (!root->log_start_pid) {
143 root->log_start_pid = current->pid;
144 root->log_multiple_pids = false;
145 } else if (root->log_start_pid != current->pid) {
146 root->log_multiple_pids = true;
147 }
148
149 root->log_batch++;
150 atomic_inc(&root->log_writers);
151 mutex_unlock(&root->log_mutex);
152 return 0;
153 }
154 root->log_multiple_pids = false;
155 root->log_start_pid = current->pid;
156 mutex_lock(&root->fs_info->tree_log_mutex);
157 if (!root->fs_info->log_root_tree) {
158 ret = btrfs_init_log_root_tree(trans, root->fs_info);
159 if (ret)
160 err = ret;
161 }
162 if (err == 0 && !root->log_root) {
163 ret = btrfs_add_log_tree(trans, root);
164 if (ret)
165 err = ret;
166 }
167 mutex_unlock(&root->fs_info->tree_log_mutex);
168 root->log_batch++;
169 atomic_inc(&root->log_writers);
170 mutex_unlock(&root->log_mutex);
171 return err;
172 }
173
174 /*
175 * returns 0 if there was a log transaction running and we were able
176 * to join, or returns -ENOENT if there were not transactions
177 * in progress
178 */
179 static int join_running_log_trans(struct btrfs_root *root)
180 {
181 int ret = -ENOENT;
182
183 smp_mb();
184 if (!root->log_root)
185 return -ENOENT;
186
187 mutex_lock(&root->log_mutex);
188 if (root->log_root) {
189 ret = 0;
190 atomic_inc(&root->log_writers);
191 }
192 mutex_unlock(&root->log_mutex);
193 return ret;
194 }
195
196 /*
197 * This either makes the current running log transaction wait
198 * until you call btrfs_end_log_trans() or it makes any future
199 * log transactions wait until you call btrfs_end_log_trans()
200 */
201 int btrfs_pin_log_trans(struct btrfs_root *root)
202 {
203 int ret = -ENOENT;
204
205 mutex_lock(&root->log_mutex);
206 atomic_inc(&root->log_writers);
207 mutex_unlock(&root->log_mutex);
208 return ret;
209 }
210
211 /*
212 * indicate we're done making changes to the log tree
213 * and wake up anyone waiting to do a sync
214 */
215 void btrfs_end_log_trans(struct btrfs_root *root)
216 {
217 if (atomic_dec_and_test(&root->log_writers)) {
218 smp_mb();
219 if (waitqueue_active(&root->log_writer_wait))
220 wake_up(&root->log_writer_wait);
221 }
222 }
223
224
225 /*
226 * the walk control struct is used to pass state down the chain when
227 * processing the log tree. The stage field tells us which part
228 * of the log tree processing we are currently doing. The others
229 * are state fields used for that specific part
230 */
231 struct walk_control {
232 /* should we free the extent on disk when done? This is used
233 * at transaction commit time while freeing a log tree
234 */
235 int free;
236
237 /* should we write out the extent buffer? This is used
238 * while flushing the log tree to disk during a sync
239 */
240 int write;
241
242 /* should we wait for the extent buffer io to finish? Also used
243 * while flushing the log tree to disk for a sync
244 */
245 int wait;
246
247 /* pin only walk, we record which extents on disk belong to the
248 * log trees
249 */
250 int pin;
251
252 /* what stage of the replay code we're currently in */
253 int stage;
254
255 /* the root we are currently replaying */
256 struct btrfs_root *replay_dest;
257
258 /* the trans handle for the current replay */
259 struct btrfs_trans_handle *trans;
260
261 /* the function that gets used to process blocks we find in the
262 * tree. Note the extent_buffer might not be up to date when it is
263 * passed in, and it must be checked or read if you need the data
264 * inside it
265 */
266 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
267 struct walk_control *wc, u64 gen);
268 };
269
270 /*
271 * process_func used to pin down extents, write them or wait on them
272 */
273 static int process_one_buffer(struct btrfs_root *log,
274 struct extent_buffer *eb,
275 struct walk_control *wc, u64 gen)
276 {
277 if (wc->pin)
278 btrfs_pin_extent_for_log_replay(wc->trans,
279 log->fs_info->extent_root,
280 eb->start, eb->len);
281
282 if (btrfs_buffer_uptodate(eb, gen, 0)) {
283 if (wc->write)
284 btrfs_write_tree_block(eb);
285 if (wc->wait)
286 btrfs_wait_tree_block_writeback(eb);
287 }
288 return 0;
289 }
290
291 /*
292 * Item overwrite used by replay and tree logging. eb, slot and key all refer
293 * to the src data we are copying out.
294 *
295 * root is the tree we are copying into, and path is a scratch
296 * path for use in this function (it should be released on entry and
297 * will be released on exit).
298 *
299 * If the key is already in the destination tree the existing item is
300 * overwritten. If the existing item isn't big enough, it is extended.
301 * If it is too large, it is truncated.
302 *
303 * If the key isn't in the destination yet, a new item is inserted.
304 */
305 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
306 struct btrfs_root *root,
307 struct btrfs_path *path,
308 struct extent_buffer *eb, int slot,
309 struct btrfs_key *key)
310 {
311 int ret;
312 u32 item_size;
313 u64 saved_i_size = 0;
314 int save_old_i_size = 0;
315 unsigned long src_ptr;
316 unsigned long dst_ptr;
317 int overwrite_root = 0;
318
319 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
320 overwrite_root = 1;
321
322 item_size = btrfs_item_size_nr(eb, slot);
323 src_ptr = btrfs_item_ptr_offset(eb, slot);
324
325 /* look for the key in the destination tree */
326 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
327 if (ret == 0) {
328 char *src_copy;
329 char *dst_copy;
330 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
331 path->slots[0]);
332 if (dst_size != item_size)
333 goto insert;
334
335 if (item_size == 0) {
336 btrfs_release_path(path);
337 return 0;
338 }
339 dst_copy = kmalloc(item_size, GFP_NOFS);
340 src_copy = kmalloc(item_size, GFP_NOFS);
341 if (!dst_copy || !src_copy) {
342 btrfs_release_path(path);
343 kfree(dst_copy);
344 kfree(src_copy);
345 return -ENOMEM;
346 }
347
348 read_extent_buffer(eb, src_copy, src_ptr, item_size);
349
350 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
351 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
352 item_size);
353 ret = memcmp(dst_copy, src_copy, item_size);
354
355 kfree(dst_copy);
356 kfree(src_copy);
357 /*
358 * they have the same contents, just return, this saves
359 * us from cowing blocks in the destination tree and doing
360 * extra writes that may not have been done by a previous
361 * sync
362 */
363 if (ret == 0) {
364 btrfs_release_path(path);
365 return 0;
366 }
367
368 }
369 insert:
370 btrfs_release_path(path);
371 /* try to insert the key into the destination tree */
372 ret = btrfs_insert_empty_item(trans, root, path,
373 key, item_size);
374
375 /* make sure any existing item is the correct size */
376 if (ret == -EEXIST) {
377 u32 found_size;
378 found_size = btrfs_item_size_nr(path->nodes[0],
379 path->slots[0]);
380 if (found_size > item_size)
381 btrfs_truncate_item(trans, root, path, item_size, 1);
382 else if (found_size < item_size)
383 btrfs_extend_item(trans, root, path,
384 item_size - found_size);
385 } else if (ret) {
386 return ret;
387 }
388 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
389 path->slots[0]);
390
391 /* don't overwrite an existing inode if the generation number
392 * was logged as zero. This is done when the tree logging code
393 * is just logging an inode to make sure it exists after recovery.
394 *
395 * Also, don't overwrite i_size on directories during replay.
396 * log replay inserts and removes directory items based on the
397 * state of the tree found in the subvolume, and i_size is modified
398 * as it goes
399 */
400 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
401 struct btrfs_inode_item *src_item;
402 struct btrfs_inode_item *dst_item;
403
404 src_item = (struct btrfs_inode_item *)src_ptr;
405 dst_item = (struct btrfs_inode_item *)dst_ptr;
406
407 if (btrfs_inode_generation(eb, src_item) == 0)
408 goto no_copy;
409
410 if (overwrite_root &&
411 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
412 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
413 save_old_i_size = 1;
414 saved_i_size = btrfs_inode_size(path->nodes[0],
415 dst_item);
416 }
417 }
418
419 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
420 src_ptr, item_size);
421
422 if (save_old_i_size) {
423 struct btrfs_inode_item *dst_item;
424 dst_item = (struct btrfs_inode_item *)dst_ptr;
425 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
426 }
427
428 /* make sure the generation is filled in */
429 if (key->type == BTRFS_INODE_ITEM_KEY) {
430 struct btrfs_inode_item *dst_item;
431 dst_item = (struct btrfs_inode_item *)dst_ptr;
432 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
433 btrfs_set_inode_generation(path->nodes[0], dst_item,
434 trans->transid);
435 }
436 }
437 no_copy:
438 btrfs_mark_buffer_dirty(path->nodes[0]);
439 btrfs_release_path(path);
440 return 0;
441 }
442
443 /*
444 * simple helper to read an inode off the disk from a given root
445 * This can only be called for subvolume roots and not for the log
446 */
447 static noinline struct inode *read_one_inode(struct btrfs_root *root,
448 u64 objectid)
449 {
450 struct btrfs_key key;
451 struct inode *inode;
452
453 key.objectid = objectid;
454 key.type = BTRFS_INODE_ITEM_KEY;
455 key.offset = 0;
456 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
457 if (IS_ERR(inode)) {
458 inode = NULL;
459 } else if (is_bad_inode(inode)) {
460 iput(inode);
461 inode = NULL;
462 }
463 return inode;
464 }
465
466 /* replays a single extent in 'eb' at 'slot' with 'key' into the
467 * subvolume 'root'. path is released on entry and should be released
468 * on exit.
469 *
470 * extents in the log tree have not been allocated out of the extent
471 * tree yet. So, this completes the allocation, taking a reference
472 * as required if the extent already exists or creating a new extent
473 * if it isn't in the extent allocation tree yet.
474 *
475 * The extent is inserted into the file, dropping any existing extents
476 * from the file that overlap the new one.
477 */
478 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
479 struct btrfs_root *root,
480 struct btrfs_path *path,
481 struct extent_buffer *eb, int slot,
482 struct btrfs_key *key)
483 {
484 int found_type;
485 u64 mask = root->sectorsize - 1;
486 u64 extent_end;
487 u64 alloc_hint;
488 u64 start = key->offset;
489 u64 saved_nbytes;
490 struct btrfs_file_extent_item *item;
491 struct inode *inode = NULL;
492 unsigned long size;
493 int ret = 0;
494
495 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
496 found_type = btrfs_file_extent_type(eb, item);
497
498 if (found_type == BTRFS_FILE_EXTENT_REG ||
499 found_type == BTRFS_FILE_EXTENT_PREALLOC)
500 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
501 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
502 size = btrfs_file_extent_inline_len(eb, item);
503 extent_end = (start + size + mask) & ~mask;
504 } else {
505 ret = 0;
506 goto out;
507 }
508
509 inode = read_one_inode(root, key->objectid);
510 if (!inode) {
511 ret = -EIO;
512 goto out;
513 }
514
515 /*
516 * first check to see if we already have this extent in the
517 * file. This must be done before the btrfs_drop_extents run
518 * so we don't try to drop this extent.
519 */
520 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
521 start, 0);
522
523 if (ret == 0 &&
524 (found_type == BTRFS_FILE_EXTENT_REG ||
525 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
526 struct btrfs_file_extent_item cmp1;
527 struct btrfs_file_extent_item cmp2;
528 struct btrfs_file_extent_item *existing;
529 struct extent_buffer *leaf;
530
531 leaf = path->nodes[0];
532 existing = btrfs_item_ptr(leaf, path->slots[0],
533 struct btrfs_file_extent_item);
534
535 read_extent_buffer(eb, &cmp1, (unsigned long)item,
536 sizeof(cmp1));
537 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
538 sizeof(cmp2));
539
540 /*
541 * we already have a pointer to this exact extent,
542 * we don't have to do anything
543 */
544 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
545 btrfs_release_path(path);
546 goto out;
547 }
548 }
549 btrfs_release_path(path);
550
551 saved_nbytes = inode_get_bytes(inode);
552 /* drop any overlapping extents */
553 ret = btrfs_drop_extents(trans, inode, start, extent_end,
554 &alloc_hint, 1);
555 BUG_ON(ret);
556
557 if (found_type == BTRFS_FILE_EXTENT_REG ||
558 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
559 u64 offset;
560 unsigned long dest_offset;
561 struct btrfs_key ins;
562
563 ret = btrfs_insert_empty_item(trans, root, path, key,
564 sizeof(*item));
565 BUG_ON(ret);
566 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
567 path->slots[0]);
568 copy_extent_buffer(path->nodes[0], eb, dest_offset,
569 (unsigned long)item, sizeof(*item));
570
571 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
572 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
573 ins.type = BTRFS_EXTENT_ITEM_KEY;
574 offset = key->offset - btrfs_file_extent_offset(eb, item);
575
576 if (ins.objectid > 0) {
577 u64 csum_start;
578 u64 csum_end;
579 LIST_HEAD(ordered_sums);
580 /*
581 * is this extent already allocated in the extent
582 * allocation tree? If so, just add a reference
583 */
584 ret = btrfs_lookup_extent(root, ins.objectid,
585 ins.offset);
586 if (ret == 0) {
587 ret = btrfs_inc_extent_ref(trans, root,
588 ins.objectid, ins.offset,
589 0, root->root_key.objectid,
590 key->objectid, offset, 0);
591 BUG_ON(ret);
592 } else {
593 /*
594 * insert the extent pointer in the extent
595 * allocation tree
596 */
597 ret = btrfs_alloc_logged_file_extent(trans,
598 root, root->root_key.objectid,
599 key->objectid, offset, &ins);
600 BUG_ON(ret);
601 }
602 btrfs_release_path(path);
603
604 if (btrfs_file_extent_compression(eb, item)) {
605 csum_start = ins.objectid;
606 csum_end = csum_start + ins.offset;
607 } else {
608 csum_start = ins.objectid +
609 btrfs_file_extent_offset(eb, item);
610 csum_end = csum_start +
611 btrfs_file_extent_num_bytes(eb, item);
612 }
613
614 ret = btrfs_lookup_csums_range(root->log_root,
615 csum_start, csum_end - 1,
616 &ordered_sums, 0);
617 BUG_ON(ret);
618 while (!list_empty(&ordered_sums)) {
619 struct btrfs_ordered_sum *sums;
620 sums = list_entry(ordered_sums.next,
621 struct btrfs_ordered_sum,
622 list);
623 ret = btrfs_csum_file_blocks(trans,
624 root->fs_info->csum_root,
625 sums);
626 BUG_ON(ret);
627 list_del(&sums->list);
628 kfree(sums);
629 }
630 } else {
631 btrfs_release_path(path);
632 }
633 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
634 /* inline extents are easy, we just overwrite them */
635 ret = overwrite_item(trans, root, path, eb, slot, key);
636 BUG_ON(ret);
637 }
638
639 inode_set_bytes(inode, saved_nbytes);
640 btrfs_update_inode(trans, root, inode);
641 out:
642 if (inode)
643 iput(inode);
644 return ret;
645 }
646
647 /*
648 * when cleaning up conflicts between the directory names in the
649 * subvolume, directory names in the log and directory names in the
650 * inode back references, we may have to unlink inodes from directories.
651 *
652 * This is a helper function to do the unlink of a specific directory
653 * item
654 */
655 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
656 struct btrfs_root *root,
657 struct btrfs_path *path,
658 struct inode *dir,
659 struct btrfs_dir_item *di)
660 {
661 struct inode *inode;
662 char *name;
663 int name_len;
664 struct extent_buffer *leaf;
665 struct btrfs_key location;
666 int ret;
667
668 leaf = path->nodes[0];
669
670 btrfs_dir_item_key_to_cpu(leaf, di, &location);
671 name_len = btrfs_dir_name_len(leaf, di);
672 name = kmalloc(name_len, GFP_NOFS);
673 if (!name)
674 return -ENOMEM;
675
676 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
677 btrfs_release_path(path);
678
679 inode = read_one_inode(root, location.objectid);
680 if (!inode) {
681 kfree(name);
682 return -EIO;
683 }
684
685 ret = link_to_fixup_dir(trans, root, path, location.objectid);
686 BUG_ON(ret);
687
688 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
689 BUG_ON(ret);
690 kfree(name);
691
692 iput(inode);
693 return ret;
694 }
695
696 /*
697 * helper function to see if a given name and sequence number found
698 * in an inode back reference are already in a directory and correctly
699 * point to this inode
700 */
701 static noinline int inode_in_dir(struct btrfs_root *root,
702 struct btrfs_path *path,
703 u64 dirid, u64 objectid, u64 index,
704 const char *name, int name_len)
705 {
706 struct btrfs_dir_item *di;
707 struct btrfs_key location;
708 int match = 0;
709
710 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
711 index, name, name_len, 0);
712 if (di && !IS_ERR(di)) {
713 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
714 if (location.objectid != objectid)
715 goto out;
716 } else
717 goto out;
718 btrfs_release_path(path);
719
720 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
721 if (di && !IS_ERR(di)) {
722 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
723 if (location.objectid != objectid)
724 goto out;
725 } else
726 goto out;
727 match = 1;
728 out:
729 btrfs_release_path(path);
730 return match;
731 }
732
733 /*
734 * helper function to check a log tree for a named back reference in
735 * an inode. This is used to decide if a back reference that is
736 * found in the subvolume conflicts with what we find in the log.
737 *
738 * inode backreferences may have multiple refs in a single item,
739 * during replay we process one reference at a time, and we don't
740 * want to delete valid links to a file from the subvolume if that
741 * link is also in the log.
742 */
743 static noinline int backref_in_log(struct btrfs_root *log,
744 struct btrfs_key *key,
745 char *name, int namelen)
746 {
747 struct btrfs_path *path;
748 struct btrfs_inode_ref *ref;
749 unsigned long ptr;
750 unsigned long ptr_end;
751 unsigned long name_ptr;
752 int found_name_len;
753 int item_size;
754 int ret;
755 int match = 0;
756
757 path = btrfs_alloc_path();
758 if (!path)
759 return -ENOMEM;
760
761 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
762 if (ret != 0)
763 goto out;
764
765 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
766 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
767 ptr_end = ptr + item_size;
768 while (ptr < ptr_end) {
769 ref = (struct btrfs_inode_ref *)ptr;
770 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
771 if (found_name_len == namelen) {
772 name_ptr = (unsigned long)(ref + 1);
773 ret = memcmp_extent_buffer(path->nodes[0], name,
774 name_ptr, namelen);
775 if (ret == 0) {
776 match = 1;
777 goto out;
778 }
779 }
780 ptr = (unsigned long)(ref + 1) + found_name_len;
781 }
782 out:
783 btrfs_free_path(path);
784 return match;
785 }
786
787
788 /*
789 * replay one inode back reference item found in the log tree.
790 * eb, slot and key refer to the buffer and key found in the log tree.
791 * root is the destination we are replaying into, and path is for temp
792 * use by this function. (it should be released on return).
793 */
794 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
795 struct btrfs_root *root,
796 struct btrfs_root *log,
797 struct btrfs_path *path,
798 struct extent_buffer *eb, int slot,
799 struct btrfs_key *key)
800 {
801 struct btrfs_inode_ref *ref;
802 struct btrfs_dir_item *di;
803 struct inode *dir;
804 struct inode *inode;
805 unsigned long ref_ptr;
806 unsigned long ref_end;
807 char *name;
808 int namelen;
809 int ret;
810 int search_done = 0;
811
812 /*
813 * it is possible that we didn't log all the parent directories
814 * for a given inode. If we don't find the dir, just don't
815 * copy the back ref in. The link count fixup code will take
816 * care of the rest
817 */
818 dir = read_one_inode(root, key->offset);
819 if (!dir)
820 return -ENOENT;
821
822 inode = read_one_inode(root, key->objectid);
823 if (!inode) {
824 iput(dir);
825 return -EIO;
826 }
827
828 ref_ptr = btrfs_item_ptr_offset(eb, slot);
829 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
830
831 again:
832 ref = (struct btrfs_inode_ref *)ref_ptr;
833
834 namelen = btrfs_inode_ref_name_len(eb, ref);
835 name = kmalloc(namelen, GFP_NOFS);
836 BUG_ON(!name);
837
838 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
839
840 /* if we already have a perfect match, we're done */
841 if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
842 btrfs_inode_ref_index(eb, ref),
843 name, namelen)) {
844 goto out;
845 }
846
847 /*
848 * look for a conflicting back reference in the metadata.
849 * if we find one we have to unlink that name of the file
850 * before we add our new link. Later on, we overwrite any
851 * existing back reference, and we don't want to create
852 * dangling pointers in the directory.
853 */
854
855 if (search_done)
856 goto insert;
857
858 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
859 if (ret == 0) {
860 char *victim_name;
861 int victim_name_len;
862 struct btrfs_inode_ref *victim_ref;
863 unsigned long ptr;
864 unsigned long ptr_end;
865 struct extent_buffer *leaf = path->nodes[0];
866
867 /* are we trying to overwrite a back ref for the root directory
868 * if so, just jump out, we're done
869 */
870 if (key->objectid == key->offset)
871 goto out_nowrite;
872
873 /* check all the names in this back reference to see
874 * if they are in the log. if so, we allow them to stay
875 * otherwise they must be unlinked as a conflict
876 */
877 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
878 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
879 while (ptr < ptr_end) {
880 victim_ref = (struct btrfs_inode_ref *)ptr;
881 victim_name_len = btrfs_inode_ref_name_len(leaf,
882 victim_ref);
883 victim_name = kmalloc(victim_name_len, GFP_NOFS);
884 BUG_ON(!victim_name);
885
886 read_extent_buffer(leaf, victim_name,
887 (unsigned long)(victim_ref + 1),
888 victim_name_len);
889
890 if (!backref_in_log(log, key, victim_name,
891 victim_name_len)) {
892 btrfs_inc_nlink(inode);
893 btrfs_release_path(path);
894
895 ret = btrfs_unlink_inode(trans, root, dir,
896 inode, victim_name,
897 victim_name_len);
898 }
899 kfree(victim_name);
900 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
901 }
902 BUG_ON(ret);
903
904 /*
905 * NOTE: we have searched root tree and checked the
906 * coresponding ref, it does not need to check again.
907 */
908 search_done = 1;
909 }
910 btrfs_release_path(path);
911
912 /* look for a conflicting sequence number */
913 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
914 btrfs_inode_ref_index(eb, ref),
915 name, namelen, 0);
916 if (di && !IS_ERR(di)) {
917 ret = drop_one_dir_item(trans, root, path, dir, di);
918 BUG_ON(ret);
919 }
920 btrfs_release_path(path);
921
922 /* look for a conflicing name */
923 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
924 name, namelen, 0);
925 if (di && !IS_ERR(di)) {
926 ret = drop_one_dir_item(trans, root, path, dir, di);
927 BUG_ON(ret);
928 }
929 btrfs_release_path(path);
930
931 insert:
932 /* insert our name */
933 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
934 btrfs_inode_ref_index(eb, ref));
935 BUG_ON(ret);
936
937 btrfs_update_inode(trans, root, inode);
938
939 out:
940 ref_ptr = (unsigned long)(ref + 1) + namelen;
941 kfree(name);
942 if (ref_ptr < ref_end)
943 goto again;
944
945 /* finally write the back reference in the inode */
946 ret = overwrite_item(trans, root, path, eb, slot, key);
947 BUG_ON(ret);
948
949 out_nowrite:
950 btrfs_release_path(path);
951 iput(dir);
952 iput(inode);
953 return 0;
954 }
955
956 static int insert_orphan_item(struct btrfs_trans_handle *trans,
957 struct btrfs_root *root, u64 offset)
958 {
959 int ret;
960 ret = btrfs_find_orphan_item(root, offset);
961 if (ret > 0)
962 ret = btrfs_insert_orphan_item(trans, root, offset);
963 return ret;
964 }
965
966
967 /*
968 * There are a few corners where the link count of the file can't
969 * be properly maintained during replay. So, instead of adding
970 * lots of complexity to the log code, we just scan the backrefs
971 * for any file that has been through replay.
972 *
973 * The scan will update the link count on the inode to reflect the
974 * number of back refs found. If it goes down to zero, the iput
975 * will free the inode.
976 */
977 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
978 struct btrfs_root *root,
979 struct inode *inode)
980 {
981 struct btrfs_path *path;
982 int ret;
983 struct btrfs_key key;
984 u64 nlink = 0;
985 unsigned long ptr;
986 unsigned long ptr_end;
987 int name_len;
988 u64 ino = btrfs_ino(inode);
989
990 key.objectid = ino;
991 key.type = BTRFS_INODE_REF_KEY;
992 key.offset = (u64)-1;
993
994 path = btrfs_alloc_path();
995 if (!path)
996 return -ENOMEM;
997
998 while (1) {
999 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1000 if (ret < 0)
1001 break;
1002 if (ret > 0) {
1003 if (path->slots[0] == 0)
1004 break;
1005 path->slots[0]--;
1006 }
1007 btrfs_item_key_to_cpu(path->nodes[0], &key,
1008 path->slots[0]);
1009 if (key.objectid != ino ||
1010 key.type != BTRFS_INODE_REF_KEY)
1011 break;
1012 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1013 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1014 path->slots[0]);
1015 while (ptr < ptr_end) {
1016 struct btrfs_inode_ref *ref;
1017
1018 ref = (struct btrfs_inode_ref *)ptr;
1019 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1020 ref);
1021 ptr = (unsigned long)(ref + 1) + name_len;
1022 nlink++;
1023 }
1024
1025 if (key.offset == 0)
1026 break;
1027 key.offset--;
1028 btrfs_release_path(path);
1029 }
1030 btrfs_release_path(path);
1031 if (nlink != inode->i_nlink) {
1032 set_nlink(inode, nlink);
1033 btrfs_update_inode(trans, root, inode);
1034 }
1035 BTRFS_I(inode)->index_cnt = (u64)-1;
1036
1037 if (inode->i_nlink == 0) {
1038 if (S_ISDIR(inode->i_mode)) {
1039 ret = replay_dir_deletes(trans, root, NULL, path,
1040 ino, 1);
1041 BUG_ON(ret);
1042 }
1043 ret = insert_orphan_item(trans, root, ino);
1044 BUG_ON(ret);
1045 }
1046 btrfs_free_path(path);
1047
1048 return 0;
1049 }
1050
1051 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1052 struct btrfs_root *root,
1053 struct btrfs_path *path)
1054 {
1055 int ret;
1056 struct btrfs_key key;
1057 struct inode *inode;
1058
1059 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1060 key.type = BTRFS_ORPHAN_ITEM_KEY;
1061 key.offset = (u64)-1;
1062 while (1) {
1063 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1064 if (ret < 0)
1065 break;
1066
1067 if (ret == 1) {
1068 if (path->slots[0] == 0)
1069 break;
1070 path->slots[0]--;
1071 }
1072
1073 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1074 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1075 key.type != BTRFS_ORPHAN_ITEM_KEY)
1076 break;
1077
1078 ret = btrfs_del_item(trans, root, path);
1079 if (ret)
1080 goto out;
1081
1082 btrfs_release_path(path);
1083 inode = read_one_inode(root, key.offset);
1084 if (!inode)
1085 return -EIO;
1086
1087 ret = fixup_inode_link_count(trans, root, inode);
1088 BUG_ON(ret);
1089
1090 iput(inode);
1091
1092 /*
1093 * fixup on a directory may create new entries,
1094 * make sure we always look for the highset possible
1095 * offset
1096 */
1097 key.offset = (u64)-1;
1098 }
1099 ret = 0;
1100 out:
1101 btrfs_release_path(path);
1102 return ret;
1103 }
1104
1105
1106 /*
1107 * record a given inode in the fixup dir so we can check its link
1108 * count when replay is done. The link count is incremented here
1109 * so the inode won't go away until we check it
1110 */
1111 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1112 struct btrfs_root *root,
1113 struct btrfs_path *path,
1114 u64 objectid)
1115 {
1116 struct btrfs_key key;
1117 int ret = 0;
1118 struct inode *inode;
1119
1120 inode = read_one_inode(root, objectid);
1121 if (!inode)
1122 return -EIO;
1123
1124 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1125 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1126 key.offset = objectid;
1127
1128 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1129
1130 btrfs_release_path(path);
1131 if (ret == 0) {
1132 btrfs_inc_nlink(inode);
1133 btrfs_update_inode(trans, root, inode);
1134 } else if (ret == -EEXIST) {
1135 ret = 0;
1136 } else {
1137 BUG();
1138 }
1139 iput(inode);
1140
1141 return ret;
1142 }
1143
1144 /*
1145 * when replaying the log for a directory, we only insert names
1146 * for inodes that actually exist. This means an fsync on a directory
1147 * does not implicitly fsync all the new files in it
1148 */
1149 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1150 struct btrfs_root *root,
1151 struct btrfs_path *path,
1152 u64 dirid, u64 index,
1153 char *name, int name_len, u8 type,
1154 struct btrfs_key *location)
1155 {
1156 struct inode *inode;
1157 struct inode *dir;
1158 int ret;
1159
1160 inode = read_one_inode(root, location->objectid);
1161 if (!inode)
1162 return -ENOENT;
1163
1164 dir = read_one_inode(root, dirid);
1165 if (!dir) {
1166 iput(inode);
1167 return -EIO;
1168 }
1169 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1170
1171 /* FIXME, put inode into FIXUP list */
1172
1173 iput(inode);
1174 iput(dir);
1175 return ret;
1176 }
1177
1178 /*
1179 * take a single entry in a log directory item and replay it into
1180 * the subvolume.
1181 *
1182 * if a conflicting item exists in the subdirectory already,
1183 * the inode it points to is unlinked and put into the link count
1184 * fix up tree.
1185 *
1186 * If a name from the log points to a file or directory that does
1187 * not exist in the FS, it is skipped. fsyncs on directories
1188 * do not force down inodes inside that directory, just changes to the
1189 * names or unlinks in a directory.
1190 */
1191 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1192 struct btrfs_root *root,
1193 struct btrfs_path *path,
1194 struct extent_buffer *eb,
1195 struct btrfs_dir_item *di,
1196 struct btrfs_key *key)
1197 {
1198 char *name;
1199 int name_len;
1200 struct btrfs_dir_item *dst_di;
1201 struct btrfs_key found_key;
1202 struct btrfs_key log_key;
1203 struct inode *dir;
1204 u8 log_type;
1205 int exists;
1206 int ret;
1207
1208 dir = read_one_inode(root, key->objectid);
1209 if (!dir)
1210 return -EIO;
1211
1212 name_len = btrfs_dir_name_len(eb, di);
1213 name = kmalloc(name_len, GFP_NOFS);
1214 if (!name)
1215 return -ENOMEM;
1216
1217 log_type = btrfs_dir_type(eb, di);
1218 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1219 name_len);
1220
1221 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1222 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1223 if (exists == 0)
1224 exists = 1;
1225 else
1226 exists = 0;
1227 btrfs_release_path(path);
1228
1229 if (key->type == BTRFS_DIR_ITEM_KEY) {
1230 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1231 name, name_len, 1);
1232 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1233 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1234 key->objectid,
1235 key->offset, name,
1236 name_len, 1);
1237 } else {
1238 BUG();
1239 }
1240 if (IS_ERR_OR_NULL(dst_di)) {
1241 /* we need a sequence number to insert, so we only
1242 * do inserts for the BTRFS_DIR_INDEX_KEY types
1243 */
1244 if (key->type != BTRFS_DIR_INDEX_KEY)
1245 goto out;
1246 goto insert;
1247 }
1248
1249 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1250 /* the existing item matches the logged item */
1251 if (found_key.objectid == log_key.objectid &&
1252 found_key.type == log_key.type &&
1253 found_key.offset == log_key.offset &&
1254 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1255 goto out;
1256 }
1257
1258 /*
1259 * don't drop the conflicting directory entry if the inode
1260 * for the new entry doesn't exist
1261 */
1262 if (!exists)
1263 goto out;
1264
1265 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1266 BUG_ON(ret);
1267
1268 if (key->type == BTRFS_DIR_INDEX_KEY)
1269 goto insert;
1270 out:
1271 btrfs_release_path(path);
1272 kfree(name);
1273 iput(dir);
1274 return 0;
1275
1276 insert:
1277 btrfs_release_path(path);
1278 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1279 name, name_len, log_type, &log_key);
1280
1281 BUG_ON(ret && ret != -ENOENT);
1282 goto out;
1283 }
1284
1285 /*
1286 * find all the names in a directory item and reconcile them into
1287 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1288 * one name in a directory item, but the same code gets used for
1289 * both directory index types
1290 */
1291 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1292 struct btrfs_root *root,
1293 struct btrfs_path *path,
1294 struct extent_buffer *eb, int slot,
1295 struct btrfs_key *key)
1296 {
1297 int ret;
1298 u32 item_size = btrfs_item_size_nr(eb, slot);
1299 struct btrfs_dir_item *di;
1300 int name_len;
1301 unsigned long ptr;
1302 unsigned long ptr_end;
1303
1304 ptr = btrfs_item_ptr_offset(eb, slot);
1305 ptr_end = ptr + item_size;
1306 while (ptr < ptr_end) {
1307 di = (struct btrfs_dir_item *)ptr;
1308 if (verify_dir_item(root, eb, di))
1309 return -EIO;
1310 name_len = btrfs_dir_name_len(eb, di);
1311 ret = replay_one_name(trans, root, path, eb, di, key);
1312 BUG_ON(ret);
1313 ptr = (unsigned long)(di + 1);
1314 ptr += name_len;
1315 }
1316 return 0;
1317 }
1318
1319 /*
1320 * directory replay has two parts. There are the standard directory
1321 * items in the log copied from the subvolume, and range items
1322 * created in the log while the subvolume was logged.
1323 *
1324 * The range items tell us which parts of the key space the log
1325 * is authoritative for. During replay, if a key in the subvolume
1326 * directory is in a logged range item, but not actually in the log
1327 * that means it was deleted from the directory before the fsync
1328 * and should be removed.
1329 */
1330 static noinline int find_dir_range(struct btrfs_root *root,
1331 struct btrfs_path *path,
1332 u64 dirid, int key_type,
1333 u64 *start_ret, u64 *end_ret)
1334 {
1335 struct btrfs_key key;
1336 u64 found_end;
1337 struct btrfs_dir_log_item *item;
1338 int ret;
1339 int nritems;
1340
1341 if (*start_ret == (u64)-1)
1342 return 1;
1343
1344 key.objectid = dirid;
1345 key.type = key_type;
1346 key.offset = *start_ret;
1347
1348 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1349 if (ret < 0)
1350 goto out;
1351 if (ret > 0) {
1352 if (path->slots[0] == 0)
1353 goto out;
1354 path->slots[0]--;
1355 }
1356 if (ret != 0)
1357 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1358
1359 if (key.type != key_type || key.objectid != dirid) {
1360 ret = 1;
1361 goto next;
1362 }
1363 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1364 struct btrfs_dir_log_item);
1365 found_end = btrfs_dir_log_end(path->nodes[0], item);
1366
1367 if (*start_ret >= key.offset && *start_ret <= found_end) {
1368 ret = 0;
1369 *start_ret = key.offset;
1370 *end_ret = found_end;
1371 goto out;
1372 }
1373 ret = 1;
1374 next:
1375 /* check the next slot in the tree to see if it is a valid item */
1376 nritems = btrfs_header_nritems(path->nodes[0]);
1377 if (path->slots[0] >= nritems) {
1378 ret = btrfs_next_leaf(root, path);
1379 if (ret)
1380 goto out;
1381 } else {
1382 path->slots[0]++;
1383 }
1384
1385 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1386
1387 if (key.type != key_type || key.objectid != dirid) {
1388 ret = 1;
1389 goto out;
1390 }
1391 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1392 struct btrfs_dir_log_item);
1393 found_end = btrfs_dir_log_end(path->nodes[0], item);
1394 *start_ret = key.offset;
1395 *end_ret = found_end;
1396 ret = 0;
1397 out:
1398 btrfs_release_path(path);
1399 return ret;
1400 }
1401
1402 /*
1403 * this looks for a given directory item in the log. If the directory
1404 * item is not in the log, the item is removed and the inode it points
1405 * to is unlinked
1406 */
1407 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1408 struct btrfs_root *root,
1409 struct btrfs_root *log,
1410 struct btrfs_path *path,
1411 struct btrfs_path *log_path,
1412 struct inode *dir,
1413 struct btrfs_key *dir_key)
1414 {
1415 int ret;
1416 struct extent_buffer *eb;
1417 int slot;
1418 u32 item_size;
1419 struct btrfs_dir_item *di;
1420 struct btrfs_dir_item *log_di;
1421 int name_len;
1422 unsigned long ptr;
1423 unsigned long ptr_end;
1424 char *name;
1425 struct inode *inode;
1426 struct btrfs_key location;
1427
1428 again:
1429 eb = path->nodes[0];
1430 slot = path->slots[0];
1431 item_size = btrfs_item_size_nr(eb, slot);
1432 ptr = btrfs_item_ptr_offset(eb, slot);
1433 ptr_end = ptr + item_size;
1434 while (ptr < ptr_end) {
1435 di = (struct btrfs_dir_item *)ptr;
1436 if (verify_dir_item(root, eb, di)) {
1437 ret = -EIO;
1438 goto out;
1439 }
1440
1441 name_len = btrfs_dir_name_len(eb, di);
1442 name = kmalloc(name_len, GFP_NOFS);
1443 if (!name) {
1444 ret = -ENOMEM;
1445 goto out;
1446 }
1447 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1448 name_len);
1449 log_di = NULL;
1450 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1451 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1452 dir_key->objectid,
1453 name, name_len, 0);
1454 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1455 log_di = btrfs_lookup_dir_index_item(trans, log,
1456 log_path,
1457 dir_key->objectid,
1458 dir_key->offset,
1459 name, name_len, 0);
1460 }
1461 if (IS_ERR_OR_NULL(log_di)) {
1462 btrfs_dir_item_key_to_cpu(eb, di, &location);
1463 btrfs_release_path(path);
1464 btrfs_release_path(log_path);
1465 inode = read_one_inode(root, location.objectid);
1466 if (!inode) {
1467 kfree(name);
1468 return -EIO;
1469 }
1470
1471 ret = link_to_fixup_dir(trans, root,
1472 path, location.objectid);
1473 BUG_ON(ret);
1474 btrfs_inc_nlink(inode);
1475 ret = btrfs_unlink_inode(trans, root, dir, inode,
1476 name, name_len);
1477 BUG_ON(ret);
1478 kfree(name);
1479 iput(inode);
1480
1481 /* there might still be more names under this key
1482 * check and repeat if required
1483 */
1484 ret = btrfs_search_slot(NULL, root, dir_key, path,
1485 0, 0);
1486 if (ret == 0)
1487 goto again;
1488 ret = 0;
1489 goto out;
1490 }
1491 btrfs_release_path(log_path);
1492 kfree(name);
1493
1494 ptr = (unsigned long)(di + 1);
1495 ptr += name_len;
1496 }
1497 ret = 0;
1498 out:
1499 btrfs_release_path(path);
1500 btrfs_release_path(log_path);
1501 return ret;
1502 }
1503
1504 /*
1505 * deletion replay happens before we copy any new directory items
1506 * out of the log or out of backreferences from inodes. It
1507 * scans the log to find ranges of keys that log is authoritative for,
1508 * and then scans the directory to find items in those ranges that are
1509 * not present in the log.
1510 *
1511 * Anything we don't find in the log is unlinked and removed from the
1512 * directory.
1513 */
1514 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1515 struct btrfs_root *root,
1516 struct btrfs_root *log,
1517 struct btrfs_path *path,
1518 u64 dirid, int del_all)
1519 {
1520 u64 range_start;
1521 u64 range_end;
1522 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1523 int ret = 0;
1524 struct btrfs_key dir_key;
1525 struct btrfs_key found_key;
1526 struct btrfs_path *log_path;
1527 struct inode *dir;
1528
1529 dir_key.objectid = dirid;
1530 dir_key.type = BTRFS_DIR_ITEM_KEY;
1531 log_path = btrfs_alloc_path();
1532 if (!log_path)
1533 return -ENOMEM;
1534
1535 dir = read_one_inode(root, dirid);
1536 /* it isn't an error if the inode isn't there, that can happen
1537 * because we replay the deletes before we copy in the inode item
1538 * from the log
1539 */
1540 if (!dir) {
1541 btrfs_free_path(log_path);
1542 return 0;
1543 }
1544 again:
1545 range_start = 0;
1546 range_end = 0;
1547 while (1) {
1548 if (del_all)
1549 range_end = (u64)-1;
1550 else {
1551 ret = find_dir_range(log, path, dirid, key_type,
1552 &range_start, &range_end);
1553 if (ret != 0)
1554 break;
1555 }
1556
1557 dir_key.offset = range_start;
1558 while (1) {
1559 int nritems;
1560 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1561 0, 0);
1562 if (ret < 0)
1563 goto out;
1564
1565 nritems = btrfs_header_nritems(path->nodes[0]);
1566 if (path->slots[0] >= nritems) {
1567 ret = btrfs_next_leaf(root, path);
1568 if (ret)
1569 break;
1570 }
1571 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1572 path->slots[0]);
1573 if (found_key.objectid != dirid ||
1574 found_key.type != dir_key.type)
1575 goto next_type;
1576
1577 if (found_key.offset > range_end)
1578 break;
1579
1580 ret = check_item_in_log(trans, root, log, path,
1581 log_path, dir,
1582 &found_key);
1583 BUG_ON(ret);
1584 if (found_key.offset == (u64)-1)
1585 break;
1586 dir_key.offset = found_key.offset + 1;
1587 }
1588 btrfs_release_path(path);
1589 if (range_end == (u64)-1)
1590 break;
1591 range_start = range_end + 1;
1592 }
1593
1594 next_type:
1595 ret = 0;
1596 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1597 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1598 dir_key.type = BTRFS_DIR_INDEX_KEY;
1599 btrfs_release_path(path);
1600 goto again;
1601 }
1602 out:
1603 btrfs_release_path(path);
1604 btrfs_free_path(log_path);
1605 iput(dir);
1606 return ret;
1607 }
1608
1609 /*
1610 * the process_func used to replay items from the log tree. This
1611 * gets called in two different stages. The first stage just looks
1612 * for inodes and makes sure they are all copied into the subvolume.
1613 *
1614 * The second stage copies all the other item types from the log into
1615 * the subvolume. The two stage approach is slower, but gets rid of
1616 * lots of complexity around inodes referencing other inodes that exist
1617 * only in the log (references come from either directory items or inode
1618 * back refs).
1619 */
1620 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1621 struct walk_control *wc, u64 gen)
1622 {
1623 int nritems;
1624 struct btrfs_path *path;
1625 struct btrfs_root *root = wc->replay_dest;
1626 struct btrfs_key key;
1627 int level;
1628 int i;
1629 int ret;
1630
1631 ret = btrfs_read_buffer(eb, gen);
1632 if (ret)
1633 return ret;
1634
1635 level = btrfs_header_level(eb);
1636
1637 if (level != 0)
1638 return 0;
1639
1640 path = btrfs_alloc_path();
1641 if (!path)
1642 return -ENOMEM;
1643
1644 nritems = btrfs_header_nritems(eb);
1645 for (i = 0; i < nritems; i++) {
1646 btrfs_item_key_to_cpu(eb, &key, i);
1647
1648 /* inode keys are done during the first stage */
1649 if (key.type == BTRFS_INODE_ITEM_KEY &&
1650 wc->stage == LOG_WALK_REPLAY_INODES) {
1651 struct btrfs_inode_item *inode_item;
1652 u32 mode;
1653
1654 inode_item = btrfs_item_ptr(eb, i,
1655 struct btrfs_inode_item);
1656 mode = btrfs_inode_mode(eb, inode_item);
1657 if (S_ISDIR(mode)) {
1658 ret = replay_dir_deletes(wc->trans,
1659 root, log, path, key.objectid, 0);
1660 BUG_ON(ret);
1661 }
1662 ret = overwrite_item(wc->trans, root, path,
1663 eb, i, &key);
1664 BUG_ON(ret);
1665
1666 /* for regular files, make sure corresponding
1667 * orhpan item exist. extents past the new EOF
1668 * will be truncated later by orphan cleanup.
1669 */
1670 if (S_ISREG(mode)) {
1671 ret = insert_orphan_item(wc->trans, root,
1672 key.objectid);
1673 BUG_ON(ret);
1674 }
1675
1676 ret = link_to_fixup_dir(wc->trans, root,
1677 path, key.objectid);
1678 BUG_ON(ret);
1679 }
1680 if (wc->stage < LOG_WALK_REPLAY_ALL)
1681 continue;
1682
1683 /* these keys are simply copied */
1684 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1685 ret = overwrite_item(wc->trans, root, path,
1686 eb, i, &key);
1687 BUG_ON(ret);
1688 } else if (key.type == BTRFS_INODE_REF_KEY) {
1689 ret = add_inode_ref(wc->trans, root, log, path,
1690 eb, i, &key);
1691 BUG_ON(ret && ret != -ENOENT);
1692 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1693 ret = replay_one_extent(wc->trans, root, path,
1694 eb, i, &key);
1695 BUG_ON(ret);
1696 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1697 key.type == BTRFS_DIR_INDEX_KEY) {
1698 ret = replay_one_dir_item(wc->trans, root, path,
1699 eb, i, &key);
1700 BUG_ON(ret);
1701 }
1702 }
1703 btrfs_free_path(path);
1704 return 0;
1705 }
1706
1707 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1708 struct btrfs_root *root,
1709 struct btrfs_path *path, int *level,
1710 struct walk_control *wc)
1711 {
1712 u64 root_owner;
1713 u64 bytenr;
1714 u64 ptr_gen;
1715 struct extent_buffer *next;
1716 struct extent_buffer *cur;
1717 struct extent_buffer *parent;
1718 u32 blocksize;
1719 int ret = 0;
1720
1721 WARN_ON(*level < 0);
1722 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1723
1724 while (*level > 0) {
1725 WARN_ON(*level < 0);
1726 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1727 cur = path->nodes[*level];
1728
1729 if (btrfs_header_level(cur) != *level)
1730 WARN_ON(1);
1731
1732 if (path->slots[*level] >=
1733 btrfs_header_nritems(cur))
1734 break;
1735
1736 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1737 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1738 blocksize = btrfs_level_size(root, *level - 1);
1739
1740 parent = path->nodes[*level];
1741 root_owner = btrfs_header_owner(parent);
1742
1743 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1744 if (!next)
1745 return -ENOMEM;
1746
1747 if (*level == 1) {
1748 ret = wc->process_func(root, next, wc, ptr_gen);
1749 if (ret)
1750 return ret;
1751
1752 path->slots[*level]++;
1753 if (wc->free) {
1754 ret = btrfs_read_buffer(next, ptr_gen);
1755 if (ret) {
1756 free_extent_buffer(next);
1757 return ret;
1758 }
1759
1760 btrfs_tree_lock(next);
1761 btrfs_set_lock_blocking(next);
1762 clean_tree_block(trans, root, next);
1763 btrfs_wait_tree_block_writeback(next);
1764 btrfs_tree_unlock(next);
1765
1766 WARN_ON(root_owner !=
1767 BTRFS_TREE_LOG_OBJECTID);
1768 ret = btrfs_free_and_pin_reserved_extent(root,
1769 bytenr, blocksize);
1770 BUG_ON(ret); /* -ENOMEM or logic errors */
1771 }
1772 free_extent_buffer(next);
1773 continue;
1774 }
1775 ret = btrfs_read_buffer(next, ptr_gen);
1776 if (ret) {
1777 free_extent_buffer(next);
1778 return ret;
1779 }
1780
1781 WARN_ON(*level <= 0);
1782 if (path->nodes[*level-1])
1783 free_extent_buffer(path->nodes[*level-1]);
1784 path->nodes[*level-1] = next;
1785 *level = btrfs_header_level(next);
1786 path->slots[*level] = 0;
1787 cond_resched();
1788 }
1789 WARN_ON(*level < 0);
1790 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1791
1792 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
1793
1794 cond_resched();
1795 return 0;
1796 }
1797
1798 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1799 struct btrfs_root *root,
1800 struct btrfs_path *path, int *level,
1801 struct walk_control *wc)
1802 {
1803 u64 root_owner;
1804 int i;
1805 int slot;
1806 int ret;
1807
1808 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1809 slot = path->slots[i];
1810 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
1811 path->slots[i]++;
1812 *level = i;
1813 WARN_ON(*level == 0);
1814 return 0;
1815 } else {
1816 struct extent_buffer *parent;
1817 if (path->nodes[*level] == root->node)
1818 parent = path->nodes[*level];
1819 else
1820 parent = path->nodes[*level + 1];
1821
1822 root_owner = btrfs_header_owner(parent);
1823 ret = wc->process_func(root, path->nodes[*level], wc,
1824 btrfs_header_generation(path->nodes[*level]));
1825 if (ret)
1826 return ret;
1827
1828 if (wc->free) {
1829 struct extent_buffer *next;
1830
1831 next = path->nodes[*level];
1832
1833 btrfs_tree_lock(next);
1834 btrfs_set_lock_blocking(next);
1835 clean_tree_block(trans, root, next);
1836 btrfs_wait_tree_block_writeback(next);
1837 btrfs_tree_unlock(next);
1838
1839 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1840 ret = btrfs_free_and_pin_reserved_extent(root,
1841 path->nodes[*level]->start,
1842 path->nodes[*level]->len);
1843 BUG_ON(ret);
1844 }
1845 free_extent_buffer(path->nodes[*level]);
1846 path->nodes[*level] = NULL;
1847 *level = i + 1;
1848 }
1849 }
1850 return 1;
1851 }
1852
1853 /*
1854 * drop the reference count on the tree rooted at 'snap'. This traverses
1855 * the tree freeing any blocks that have a ref count of zero after being
1856 * decremented.
1857 */
1858 static int walk_log_tree(struct btrfs_trans_handle *trans,
1859 struct btrfs_root *log, struct walk_control *wc)
1860 {
1861 int ret = 0;
1862 int wret;
1863 int level;
1864 struct btrfs_path *path;
1865 int i;
1866 int orig_level;
1867
1868 path = btrfs_alloc_path();
1869 if (!path)
1870 return -ENOMEM;
1871
1872 level = btrfs_header_level(log->node);
1873 orig_level = level;
1874 path->nodes[level] = log->node;
1875 extent_buffer_get(log->node);
1876 path->slots[level] = 0;
1877
1878 while (1) {
1879 wret = walk_down_log_tree(trans, log, path, &level, wc);
1880 if (wret > 0)
1881 break;
1882 if (wret < 0) {
1883 ret = wret;
1884 goto out;
1885 }
1886
1887 wret = walk_up_log_tree(trans, log, path, &level, wc);
1888 if (wret > 0)
1889 break;
1890 if (wret < 0) {
1891 ret = wret;
1892 goto out;
1893 }
1894 }
1895
1896 /* was the root node processed? if not, catch it here */
1897 if (path->nodes[orig_level]) {
1898 ret = wc->process_func(log, path->nodes[orig_level], wc,
1899 btrfs_header_generation(path->nodes[orig_level]));
1900 if (ret)
1901 goto out;
1902 if (wc->free) {
1903 struct extent_buffer *next;
1904
1905 next = path->nodes[orig_level];
1906
1907 btrfs_tree_lock(next);
1908 btrfs_set_lock_blocking(next);
1909 clean_tree_block(trans, log, next);
1910 btrfs_wait_tree_block_writeback(next);
1911 btrfs_tree_unlock(next);
1912
1913 WARN_ON(log->root_key.objectid !=
1914 BTRFS_TREE_LOG_OBJECTID);
1915 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
1916 next->len);
1917 BUG_ON(ret); /* -ENOMEM or logic errors */
1918 }
1919 }
1920
1921 out:
1922 for (i = 0; i <= orig_level; i++) {
1923 if (path->nodes[i]) {
1924 free_extent_buffer(path->nodes[i]);
1925 path->nodes[i] = NULL;
1926 }
1927 }
1928 btrfs_free_path(path);
1929 return ret;
1930 }
1931
1932 /*
1933 * helper function to update the item for a given subvolumes log root
1934 * in the tree of log roots
1935 */
1936 static int update_log_root(struct btrfs_trans_handle *trans,
1937 struct btrfs_root *log)
1938 {
1939 int ret;
1940
1941 if (log->log_transid == 1) {
1942 /* insert root item on the first sync */
1943 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1944 &log->root_key, &log->root_item);
1945 } else {
1946 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1947 &log->root_key, &log->root_item);
1948 }
1949 return ret;
1950 }
1951
1952 static int wait_log_commit(struct btrfs_trans_handle *trans,
1953 struct btrfs_root *root, unsigned long transid)
1954 {
1955 DEFINE_WAIT(wait);
1956 int index = transid % 2;
1957
1958 /*
1959 * we only allow two pending log transactions at a time,
1960 * so we know that if ours is more than 2 older than the
1961 * current transaction, we're done
1962 */
1963 do {
1964 prepare_to_wait(&root->log_commit_wait[index],
1965 &wait, TASK_UNINTERRUPTIBLE);
1966 mutex_unlock(&root->log_mutex);
1967
1968 if (root->fs_info->last_trans_log_full_commit !=
1969 trans->transid && root->log_transid < transid + 2 &&
1970 atomic_read(&root->log_commit[index]))
1971 schedule();
1972
1973 finish_wait(&root->log_commit_wait[index], &wait);
1974 mutex_lock(&root->log_mutex);
1975 } while (root->fs_info->last_trans_log_full_commit !=
1976 trans->transid && root->log_transid < transid + 2 &&
1977 atomic_read(&root->log_commit[index]));
1978 return 0;
1979 }
1980
1981 static void wait_for_writer(struct btrfs_trans_handle *trans,
1982 struct btrfs_root *root)
1983 {
1984 DEFINE_WAIT(wait);
1985 while (root->fs_info->last_trans_log_full_commit !=
1986 trans->transid && atomic_read(&root->log_writers)) {
1987 prepare_to_wait(&root->log_writer_wait,
1988 &wait, TASK_UNINTERRUPTIBLE);
1989 mutex_unlock(&root->log_mutex);
1990 if (root->fs_info->last_trans_log_full_commit !=
1991 trans->transid && atomic_read(&root->log_writers))
1992 schedule();
1993 mutex_lock(&root->log_mutex);
1994 finish_wait(&root->log_writer_wait, &wait);
1995 }
1996 }
1997
1998 /*
1999 * btrfs_sync_log does sends a given tree log down to the disk and
2000 * updates the super blocks to record it. When this call is done,
2001 * you know that any inodes previously logged are safely on disk only
2002 * if it returns 0.
2003 *
2004 * Any other return value means you need to call btrfs_commit_transaction.
2005 * Some of the edge cases for fsyncing directories that have had unlinks
2006 * or renames done in the past mean that sometimes the only safe
2007 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2008 * that has happened.
2009 */
2010 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2011 struct btrfs_root *root)
2012 {
2013 int index1;
2014 int index2;
2015 int mark;
2016 int ret;
2017 struct btrfs_root *log = root->log_root;
2018 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2019 unsigned long log_transid = 0;
2020
2021 mutex_lock(&root->log_mutex);
2022 index1 = root->log_transid % 2;
2023 if (atomic_read(&root->log_commit[index1])) {
2024 wait_log_commit(trans, root, root->log_transid);
2025 mutex_unlock(&root->log_mutex);
2026 return 0;
2027 }
2028 atomic_set(&root->log_commit[index1], 1);
2029
2030 /* wait for previous tree log sync to complete */
2031 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2032 wait_log_commit(trans, root, root->log_transid - 1);
2033 while (1) {
2034 unsigned long batch = root->log_batch;
2035 /* when we're on an ssd, just kick the log commit out */
2036 if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2037 mutex_unlock(&root->log_mutex);
2038 schedule_timeout_uninterruptible(1);
2039 mutex_lock(&root->log_mutex);
2040 }
2041 wait_for_writer(trans, root);
2042 if (batch == root->log_batch)
2043 break;
2044 }
2045
2046 /* bail out if we need to do a full commit */
2047 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2048 ret = -EAGAIN;
2049 mutex_unlock(&root->log_mutex);
2050 goto out;
2051 }
2052
2053 log_transid = root->log_transid;
2054 if (log_transid % 2 == 0)
2055 mark = EXTENT_DIRTY;
2056 else
2057 mark = EXTENT_NEW;
2058
2059 /* we start IO on all the marked extents here, but we don't actually
2060 * wait for them until later.
2061 */
2062 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2063 if (ret) {
2064 btrfs_abort_transaction(trans, root, ret);
2065 mutex_unlock(&root->log_mutex);
2066 goto out;
2067 }
2068
2069 btrfs_set_root_node(&log->root_item, log->node);
2070
2071 root->log_batch = 0;
2072 root->log_transid++;
2073 log->log_transid = root->log_transid;
2074 root->log_start_pid = 0;
2075 smp_mb();
2076 /*
2077 * IO has been started, blocks of the log tree have WRITTEN flag set
2078 * in their headers. new modifications of the log will be written to
2079 * new positions. so it's safe to allow log writers to go in.
2080 */
2081 mutex_unlock(&root->log_mutex);
2082
2083 mutex_lock(&log_root_tree->log_mutex);
2084 log_root_tree->log_batch++;
2085 atomic_inc(&log_root_tree->log_writers);
2086 mutex_unlock(&log_root_tree->log_mutex);
2087
2088 ret = update_log_root(trans, log);
2089
2090 mutex_lock(&log_root_tree->log_mutex);
2091 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2092 smp_mb();
2093 if (waitqueue_active(&log_root_tree->log_writer_wait))
2094 wake_up(&log_root_tree->log_writer_wait);
2095 }
2096
2097 if (ret) {
2098 if (ret != -ENOSPC) {
2099 btrfs_abort_transaction(trans, root, ret);
2100 mutex_unlock(&log_root_tree->log_mutex);
2101 goto out;
2102 }
2103 root->fs_info->last_trans_log_full_commit = trans->transid;
2104 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2105 mutex_unlock(&log_root_tree->log_mutex);
2106 ret = -EAGAIN;
2107 goto out;
2108 }
2109
2110 index2 = log_root_tree->log_transid % 2;
2111 if (atomic_read(&log_root_tree->log_commit[index2])) {
2112 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2113 wait_log_commit(trans, log_root_tree,
2114 log_root_tree->log_transid);
2115 mutex_unlock(&log_root_tree->log_mutex);
2116 ret = 0;
2117 goto out;
2118 }
2119 atomic_set(&log_root_tree->log_commit[index2], 1);
2120
2121 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2122 wait_log_commit(trans, log_root_tree,
2123 log_root_tree->log_transid - 1);
2124 }
2125
2126 wait_for_writer(trans, log_root_tree);
2127
2128 /*
2129 * now that we've moved on to the tree of log tree roots,
2130 * check the full commit flag again
2131 */
2132 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2133 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2134 mutex_unlock(&log_root_tree->log_mutex);
2135 ret = -EAGAIN;
2136 goto out_wake_log_root;
2137 }
2138
2139 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2140 &log_root_tree->dirty_log_pages,
2141 EXTENT_DIRTY | EXTENT_NEW);
2142 if (ret) {
2143 btrfs_abort_transaction(trans, root, ret);
2144 mutex_unlock(&log_root_tree->log_mutex);
2145 goto out_wake_log_root;
2146 }
2147 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2148
2149 btrfs_set_super_log_root(root->fs_info->super_for_commit,
2150 log_root_tree->node->start);
2151 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2152 btrfs_header_level(log_root_tree->node));
2153
2154 log_root_tree->log_batch = 0;
2155 log_root_tree->log_transid++;
2156 smp_mb();
2157
2158 mutex_unlock(&log_root_tree->log_mutex);
2159
2160 /*
2161 * nobody else is going to jump in and write the the ctree
2162 * super here because the log_commit atomic below is protecting
2163 * us. We must be called with a transaction handle pinning
2164 * the running transaction open, so a full commit can't hop
2165 * in and cause problems either.
2166 */
2167 btrfs_scrub_pause_super(root);
2168 write_ctree_super(trans, root->fs_info->tree_root, 1);
2169 btrfs_scrub_continue_super(root);
2170 ret = 0;
2171
2172 mutex_lock(&root->log_mutex);
2173 if (root->last_log_commit < log_transid)
2174 root->last_log_commit = log_transid;
2175 mutex_unlock(&root->log_mutex);
2176
2177 out_wake_log_root:
2178 atomic_set(&log_root_tree->log_commit[index2], 0);
2179 smp_mb();
2180 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2181 wake_up(&log_root_tree->log_commit_wait[index2]);
2182 out:
2183 atomic_set(&root->log_commit[index1], 0);
2184 smp_mb();
2185 if (waitqueue_active(&root->log_commit_wait[index1]))
2186 wake_up(&root->log_commit_wait[index1]);
2187 return ret;
2188 }
2189
2190 static void free_log_tree(struct btrfs_trans_handle *trans,
2191 struct btrfs_root *log)
2192 {
2193 int ret;
2194 u64 start;
2195 u64 end;
2196 struct walk_control wc = {
2197 .free = 1,
2198 .process_func = process_one_buffer
2199 };
2200
2201 ret = walk_log_tree(trans, log, &wc);
2202 BUG_ON(ret);
2203
2204 while (1) {
2205 ret = find_first_extent_bit(&log->dirty_log_pages,
2206 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
2207 if (ret)
2208 break;
2209
2210 clear_extent_bits(&log->dirty_log_pages, start, end,
2211 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2212 }
2213
2214 free_extent_buffer(log->node);
2215 kfree(log);
2216 }
2217
2218 /*
2219 * free all the extents used by the tree log. This should be called
2220 * at commit time of the full transaction
2221 */
2222 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2223 {
2224 if (root->log_root) {
2225 free_log_tree(trans, root->log_root);
2226 root->log_root = NULL;
2227 }
2228 return 0;
2229 }
2230
2231 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2232 struct btrfs_fs_info *fs_info)
2233 {
2234 if (fs_info->log_root_tree) {
2235 free_log_tree(trans, fs_info->log_root_tree);
2236 fs_info->log_root_tree = NULL;
2237 }
2238 return 0;
2239 }
2240
2241 /*
2242 * If both a file and directory are logged, and unlinks or renames are
2243 * mixed in, we have a few interesting corners:
2244 *
2245 * create file X in dir Y
2246 * link file X to X.link in dir Y
2247 * fsync file X
2248 * unlink file X but leave X.link
2249 * fsync dir Y
2250 *
2251 * After a crash we would expect only X.link to exist. But file X
2252 * didn't get fsync'd again so the log has back refs for X and X.link.
2253 *
2254 * We solve this by removing directory entries and inode backrefs from the
2255 * log when a file that was logged in the current transaction is
2256 * unlinked. Any later fsync will include the updated log entries, and
2257 * we'll be able to reconstruct the proper directory items from backrefs.
2258 *
2259 * This optimizations allows us to avoid relogging the entire inode
2260 * or the entire directory.
2261 */
2262 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2263 struct btrfs_root *root,
2264 const char *name, int name_len,
2265 struct inode *dir, u64 index)
2266 {
2267 struct btrfs_root *log;
2268 struct btrfs_dir_item *di;
2269 struct btrfs_path *path;
2270 int ret;
2271 int err = 0;
2272 int bytes_del = 0;
2273 u64 dir_ino = btrfs_ino(dir);
2274
2275 if (BTRFS_I(dir)->logged_trans < trans->transid)
2276 return 0;
2277
2278 ret = join_running_log_trans(root);
2279 if (ret)
2280 return 0;
2281
2282 mutex_lock(&BTRFS_I(dir)->log_mutex);
2283
2284 log = root->log_root;
2285 path = btrfs_alloc_path();
2286 if (!path) {
2287 err = -ENOMEM;
2288 goto out_unlock;
2289 }
2290
2291 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2292 name, name_len, -1);
2293 if (IS_ERR(di)) {
2294 err = PTR_ERR(di);
2295 goto fail;
2296 }
2297 if (di) {
2298 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2299 bytes_del += name_len;
2300 BUG_ON(ret);
2301 }
2302 btrfs_release_path(path);
2303 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2304 index, name, name_len, -1);
2305 if (IS_ERR(di)) {
2306 err = PTR_ERR(di);
2307 goto fail;
2308 }
2309 if (di) {
2310 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2311 bytes_del += name_len;
2312 BUG_ON(ret);
2313 }
2314
2315 /* update the directory size in the log to reflect the names
2316 * we have removed
2317 */
2318 if (bytes_del) {
2319 struct btrfs_key key;
2320
2321 key.objectid = dir_ino;
2322 key.offset = 0;
2323 key.type = BTRFS_INODE_ITEM_KEY;
2324 btrfs_release_path(path);
2325
2326 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2327 if (ret < 0) {
2328 err = ret;
2329 goto fail;
2330 }
2331 if (ret == 0) {
2332 struct btrfs_inode_item *item;
2333 u64 i_size;
2334
2335 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2336 struct btrfs_inode_item);
2337 i_size = btrfs_inode_size(path->nodes[0], item);
2338 if (i_size > bytes_del)
2339 i_size -= bytes_del;
2340 else
2341 i_size = 0;
2342 btrfs_set_inode_size(path->nodes[0], item, i_size);
2343 btrfs_mark_buffer_dirty(path->nodes[0]);
2344 } else
2345 ret = 0;
2346 btrfs_release_path(path);
2347 }
2348 fail:
2349 btrfs_free_path(path);
2350 out_unlock:
2351 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2352 if (ret == -ENOSPC) {
2353 root->fs_info->last_trans_log_full_commit = trans->transid;
2354 ret = 0;
2355 } else if (ret < 0)
2356 btrfs_abort_transaction(trans, root, ret);
2357
2358 btrfs_end_log_trans(root);
2359
2360 return err;
2361 }
2362
2363 /* see comments for btrfs_del_dir_entries_in_log */
2364 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2365 struct btrfs_root *root,
2366 const char *name, int name_len,
2367 struct inode *inode, u64 dirid)
2368 {
2369 struct btrfs_root *log;
2370 u64 index;
2371 int ret;
2372
2373 if (BTRFS_I(inode)->logged_trans < trans->transid)
2374 return 0;
2375
2376 ret = join_running_log_trans(root);
2377 if (ret)
2378 return 0;
2379 log = root->log_root;
2380 mutex_lock(&BTRFS_I(inode)->log_mutex);
2381
2382 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2383 dirid, &index);
2384 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2385 if (ret == -ENOSPC) {
2386 root->fs_info->last_trans_log_full_commit = trans->transid;
2387 ret = 0;
2388 } else if (ret < 0 && ret != -ENOENT)
2389 btrfs_abort_transaction(trans, root, ret);
2390 btrfs_end_log_trans(root);
2391
2392 return ret;
2393 }
2394
2395 /*
2396 * creates a range item in the log for 'dirid'. first_offset and
2397 * last_offset tell us which parts of the key space the log should
2398 * be considered authoritative for.
2399 */
2400 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2401 struct btrfs_root *log,
2402 struct btrfs_path *path,
2403 int key_type, u64 dirid,
2404 u64 first_offset, u64 last_offset)
2405 {
2406 int ret;
2407 struct btrfs_key key;
2408 struct btrfs_dir_log_item *item;
2409
2410 key.objectid = dirid;
2411 key.offset = first_offset;
2412 if (key_type == BTRFS_DIR_ITEM_KEY)
2413 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2414 else
2415 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2416 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2417 if (ret)
2418 return ret;
2419
2420 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2421 struct btrfs_dir_log_item);
2422 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2423 btrfs_mark_buffer_dirty(path->nodes[0]);
2424 btrfs_release_path(path);
2425 return 0;
2426 }
2427
2428 /*
2429 * log all the items included in the current transaction for a given
2430 * directory. This also creates the range items in the log tree required
2431 * to replay anything deleted before the fsync
2432 */
2433 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2434 struct btrfs_root *root, struct inode *inode,
2435 struct btrfs_path *path,
2436 struct btrfs_path *dst_path, int key_type,
2437 u64 min_offset, u64 *last_offset_ret)
2438 {
2439 struct btrfs_key min_key;
2440 struct btrfs_key max_key;
2441 struct btrfs_root *log = root->log_root;
2442 struct extent_buffer *src;
2443 int err = 0;
2444 int ret;
2445 int i;
2446 int nritems;
2447 u64 first_offset = min_offset;
2448 u64 last_offset = (u64)-1;
2449 u64 ino = btrfs_ino(inode);
2450
2451 log = root->log_root;
2452 max_key.objectid = ino;
2453 max_key.offset = (u64)-1;
2454 max_key.type = key_type;
2455
2456 min_key.objectid = ino;
2457 min_key.type = key_type;
2458 min_key.offset = min_offset;
2459
2460 path->keep_locks = 1;
2461
2462 ret = btrfs_search_forward(root, &min_key, &max_key,
2463 path, 0, trans->transid);
2464
2465 /*
2466 * we didn't find anything from this transaction, see if there
2467 * is anything at all
2468 */
2469 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2470 min_key.objectid = ino;
2471 min_key.type = key_type;
2472 min_key.offset = (u64)-1;
2473 btrfs_release_path(path);
2474 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2475 if (ret < 0) {
2476 btrfs_release_path(path);
2477 return ret;
2478 }
2479 ret = btrfs_previous_item(root, path, ino, key_type);
2480
2481 /* if ret == 0 there are items for this type,
2482 * create a range to tell us the last key of this type.
2483 * otherwise, there are no items in this directory after
2484 * *min_offset, and we create a range to indicate that.
2485 */
2486 if (ret == 0) {
2487 struct btrfs_key tmp;
2488 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2489 path->slots[0]);
2490 if (key_type == tmp.type)
2491 first_offset = max(min_offset, tmp.offset) + 1;
2492 }
2493 goto done;
2494 }
2495
2496 /* go backward to find any previous key */
2497 ret = btrfs_previous_item(root, path, ino, key_type);
2498 if (ret == 0) {
2499 struct btrfs_key tmp;
2500 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2501 if (key_type == tmp.type) {
2502 first_offset = tmp.offset;
2503 ret = overwrite_item(trans, log, dst_path,
2504 path->nodes[0], path->slots[0],
2505 &tmp);
2506 if (ret) {
2507 err = ret;
2508 goto done;
2509 }
2510 }
2511 }
2512 btrfs_release_path(path);
2513
2514 /* find the first key from this transaction again */
2515 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2516 if (ret != 0) {
2517 WARN_ON(1);
2518 goto done;
2519 }
2520
2521 /*
2522 * we have a block from this transaction, log every item in it
2523 * from our directory
2524 */
2525 while (1) {
2526 struct btrfs_key tmp;
2527 src = path->nodes[0];
2528 nritems = btrfs_header_nritems(src);
2529 for (i = path->slots[0]; i < nritems; i++) {
2530 btrfs_item_key_to_cpu(src, &min_key, i);
2531
2532 if (min_key.objectid != ino || min_key.type != key_type)
2533 goto done;
2534 ret = overwrite_item(trans, log, dst_path, src, i,
2535 &min_key);
2536 if (ret) {
2537 err = ret;
2538 goto done;
2539 }
2540 }
2541 path->slots[0] = nritems;
2542
2543 /*
2544 * look ahead to the next item and see if it is also
2545 * from this directory and from this transaction
2546 */
2547 ret = btrfs_next_leaf(root, path);
2548 if (ret == 1) {
2549 last_offset = (u64)-1;
2550 goto done;
2551 }
2552 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2553 if (tmp.objectid != ino || tmp.type != key_type) {
2554 last_offset = (u64)-1;
2555 goto done;
2556 }
2557 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2558 ret = overwrite_item(trans, log, dst_path,
2559 path->nodes[0], path->slots[0],
2560 &tmp);
2561 if (ret)
2562 err = ret;
2563 else
2564 last_offset = tmp.offset;
2565 goto done;
2566 }
2567 }
2568 done:
2569 btrfs_release_path(path);
2570 btrfs_release_path(dst_path);
2571
2572 if (err == 0) {
2573 *last_offset_ret = last_offset;
2574 /*
2575 * insert the log range keys to indicate where the log
2576 * is valid
2577 */
2578 ret = insert_dir_log_key(trans, log, path, key_type,
2579 ino, first_offset, last_offset);
2580 if (ret)
2581 err = ret;
2582 }
2583 return err;
2584 }
2585
2586 /*
2587 * logging directories is very similar to logging inodes, We find all the items
2588 * from the current transaction and write them to the log.
2589 *
2590 * The recovery code scans the directory in the subvolume, and if it finds a
2591 * key in the range logged that is not present in the log tree, then it means
2592 * that dir entry was unlinked during the transaction.
2593 *
2594 * In order for that scan to work, we must include one key smaller than
2595 * the smallest logged by this transaction and one key larger than the largest
2596 * key logged by this transaction.
2597 */
2598 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2599 struct btrfs_root *root, struct inode *inode,
2600 struct btrfs_path *path,
2601 struct btrfs_path *dst_path)
2602 {
2603 u64 min_key;
2604 u64 max_key;
2605 int ret;
2606 int key_type = BTRFS_DIR_ITEM_KEY;
2607
2608 again:
2609 min_key = 0;
2610 max_key = 0;
2611 while (1) {
2612 ret = log_dir_items(trans, root, inode, path,
2613 dst_path, key_type, min_key,
2614 &max_key);
2615 if (ret)
2616 return ret;
2617 if (max_key == (u64)-1)
2618 break;
2619 min_key = max_key + 1;
2620 }
2621
2622 if (key_type == BTRFS_DIR_ITEM_KEY) {
2623 key_type = BTRFS_DIR_INDEX_KEY;
2624 goto again;
2625 }
2626 return 0;
2627 }
2628
2629 /*
2630 * a helper function to drop items from the log before we relog an
2631 * inode. max_key_type indicates the highest item type to remove.
2632 * This cannot be run for file data extents because it does not
2633 * free the extents they point to.
2634 */
2635 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2636 struct btrfs_root *log,
2637 struct btrfs_path *path,
2638 u64 objectid, int max_key_type)
2639 {
2640 int ret;
2641 struct btrfs_key key;
2642 struct btrfs_key found_key;
2643
2644 key.objectid = objectid;
2645 key.type = max_key_type;
2646 key.offset = (u64)-1;
2647
2648 while (1) {
2649 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2650 BUG_ON(ret == 0);
2651 if (ret < 0)
2652 break;
2653
2654 if (path->slots[0] == 0)
2655 break;
2656
2657 path->slots[0]--;
2658 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2659 path->slots[0]);
2660
2661 if (found_key.objectid != objectid)
2662 break;
2663
2664 ret = btrfs_del_item(trans, log, path);
2665 if (ret)
2666 break;
2667 btrfs_release_path(path);
2668 }
2669 btrfs_release_path(path);
2670 if (ret > 0)
2671 ret = 0;
2672 return ret;
2673 }
2674
2675 static noinline int copy_items(struct btrfs_trans_handle *trans,
2676 struct btrfs_root *log,
2677 struct btrfs_path *dst_path,
2678 struct extent_buffer *src,
2679 int start_slot, int nr, int inode_only)
2680 {
2681 unsigned long src_offset;
2682 unsigned long dst_offset;
2683 struct btrfs_file_extent_item *extent;
2684 struct btrfs_inode_item *inode_item;
2685 int ret;
2686 struct btrfs_key *ins_keys;
2687 u32 *ins_sizes;
2688 char *ins_data;
2689 int i;
2690 struct list_head ordered_sums;
2691
2692 INIT_LIST_HEAD(&ordered_sums);
2693
2694 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2695 nr * sizeof(u32), GFP_NOFS);
2696 if (!ins_data)
2697 return -ENOMEM;
2698
2699 ins_sizes = (u32 *)ins_data;
2700 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2701
2702 for (i = 0; i < nr; i++) {
2703 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2704 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2705 }
2706 ret = btrfs_insert_empty_items(trans, log, dst_path,
2707 ins_keys, ins_sizes, nr);
2708 if (ret) {
2709 kfree(ins_data);
2710 return ret;
2711 }
2712
2713 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2714 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2715 dst_path->slots[0]);
2716
2717 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2718
2719 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2720 src_offset, ins_sizes[i]);
2721
2722 if (inode_only == LOG_INODE_EXISTS &&
2723 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2724 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2725 dst_path->slots[0],
2726 struct btrfs_inode_item);
2727 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2728
2729 /* set the generation to zero so the recover code
2730 * can tell the difference between an logging
2731 * just to say 'this inode exists' and a logging
2732 * to say 'update this inode with these values'
2733 */
2734 btrfs_set_inode_generation(dst_path->nodes[0],
2735 inode_item, 0);
2736 }
2737 /* take a reference on file data extents so that truncates
2738 * or deletes of this inode don't have to relog the inode
2739 * again
2740 */
2741 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2742 int found_type;
2743 extent = btrfs_item_ptr(src, start_slot + i,
2744 struct btrfs_file_extent_item);
2745
2746 if (btrfs_file_extent_generation(src, extent) < trans->transid)
2747 continue;
2748
2749 found_type = btrfs_file_extent_type(src, extent);
2750 if (found_type == BTRFS_FILE_EXTENT_REG ||
2751 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2752 u64 ds, dl, cs, cl;
2753 ds = btrfs_file_extent_disk_bytenr(src,
2754 extent);
2755 /* ds == 0 is a hole */
2756 if (ds == 0)
2757 continue;
2758
2759 dl = btrfs_file_extent_disk_num_bytes(src,
2760 extent);
2761 cs = btrfs_file_extent_offset(src, extent);
2762 cl = btrfs_file_extent_num_bytes(src,
2763 extent);
2764 if (btrfs_file_extent_compression(src,
2765 extent)) {
2766 cs = 0;
2767 cl = dl;
2768 }
2769
2770 ret = btrfs_lookup_csums_range(
2771 log->fs_info->csum_root,
2772 ds + cs, ds + cs + cl - 1,
2773 &ordered_sums, 0);
2774 BUG_ON(ret);
2775 }
2776 }
2777 }
2778
2779 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2780 btrfs_release_path(dst_path);
2781 kfree(ins_data);
2782
2783 /*
2784 * we have to do this after the loop above to avoid changing the
2785 * log tree while trying to change the log tree.
2786 */
2787 ret = 0;
2788 while (!list_empty(&ordered_sums)) {
2789 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2790 struct btrfs_ordered_sum,
2791 list);
2792 if (!ret)
2793 ret = btrfs_csum_file_blocks(trans, log, sums);
2794 list_del(&sums->list);
2795 kfree(sums);
2796 }
2797 return ret;
2798 }
2799
2800 /* log a single inode in the tree log.
2801 * At least one parent directory for this inode must exist in the tree
2802 * or be logged already.
2803 *
2804 * Any items from this inode changed by the current transaction are copied
2805 * to the log tree. An extra reference is taken on any extents in this
2806 * file, allowing us to avoid a whole pile of corner cases around logging
2807 * blocks that have been removed from the tree.
2808 *
2809 * See LOG_INODE_ALL and related defines for a description of what inode_only
2810 * does.
2811 *
2812 * This handles both files and directories.
2813 */
2814 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2815 struct btrfs_root *root, struct inode *inode,
2816 int inode_only)
2817 {
2818 struct btrfs_path *path;
2819 struct btrfs_path *dst_path;
2820 struct btrfs_key min_key;
2821 struct btrfs_key max_key;
2822 struct btrfs_root *log = root->log_root;
2823 struct extent_buffer *src = NULL;
2824 int err = 0;
2825 int ret;
2826 int nritems;
2827 int ins_start_slot = 0;
2828 int ins_nr;
2829 u64 ino = btrfs_ino(inode);
2830
2831 log = root->log_root;
2832
2833 path = btrfs_alloc_path();
2834 if (!path)
2835 return -ENOMEM;
2836 dst_path = btrfs_alloc_path();
2837 if (!dst_path) {
2838 btrfs_free_path(path);
2839 return -ENOMEM;
2840 }
2841
2842 min_key.objectid = ino;
2843 min_key.type = BTRFS_INODE_ITEM_KEY;
2844 min_key.offset = 0;
2845
2846 max_key.objectid = ino;
2847
2848 /* today the code can only do partial logging of directories */
2849 if (!S_ISDIR(inode->i_mode))
2850 inode_only = LOG_INODE_ALL;
2851
2852 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2853 max_key.type = BTRFS_XATTR_ITEM_KEY;
2854 else
2855 max_key.type = (u8)-1;
2856 max_key.offset = (u64)-1;
2857
2858 ret = btrfs_commit_inode_delayed_items(trans, inode);
2859 if (ret) {
2860 btrfs_free_path(path);
2861 btrfs_free_path(dst_path);
2862 return ret;
2863 }
2864
2865 mutex_lock(&BTRFS_I(inode)->log_mutex);
2866
2867 /*
2868 * a brute force approach to making sure we get the most uptodate
2869 * copies of everything.
2870 */
2871 if (S_ISDIR(inode->i_mode)) {
2872 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2873
2874 if (inode_only == LOG_INODE_EXISTS)
2875 max_key_type = BTRFS_XATTR_ITEM_KEY;
2876 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
2877 } else {
2878 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2879 }
2880 if (ret) {
2881 err = ret;
2882 goto out_unlock;
2883 }
2884 path->keep_locks = 1;
2885
2886 while (1) {
2887 ins_nr = 0;
2888 ret = btrfs_search_forward(root, &min_key, &max_key,
2889 path, 0, trans->transid);
2890 if (ret != 0)
2891 break;
2892 again:
2893 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2894 if (min_key.objectid != ino)
2895 break;
2896 if (min_key.type > max_key.type)
2897 break;
2898
2899 src = path->nodes[0];
2900 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2901 ins_nr++;
2902 goto next_slot;
2903 } else if (!ins_nr) {
2904 ins_start_slot = path->slots[0];
2905 ins_nr = 1;
2906 goto next_slot;
2907 }
2908
2909 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2910 ins_nr, inode_only);
2911 if (ret) {
2912 err = ret;
2913 goto out_unlock;
2914 }
2915 ins_nr = 1;
2916 ins_start_slot = path->slots[0];
2917 next_slot:
2918
2919 nritems = btrfs_header_nritems(path->nodes[0]);
2920 path->slots[0]++;
2921 if (path->slots[0] < nritems) {
2922 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2923 path->slots[0]);
2924 goto again;
2925 }
2926 if (ins_nr) {
2927 ret = copy_items(trans, log, dst_path, src,
2928 ins_start_slot,
2929 ins_nr, inode_only);
2930 if (ret) {
2931 err = ret;
2932 goto out_unlock;
2933 }
2934 ins_nr = 0;
2935 }
2936 btrfs_release_path(path);
2937
2938 if (min_key.offset < (u64)-1)
2939 min_key.offset++;
2940 else if (min_key.type < (u8)-1)
2941 min_key.type++;
2942 else if (min_key.objectid < (u64)-1)
2943 min_key.objectid++;
2944 else
2945 break;
2946 }
2947 if (ins_nr) {
2948 ret = copy_items(trans, log, dst_path, src,
2949 ins_start_slot,
2950 ins_nr, inode_only);
2951 if (ret) {
2952 err = ret;
2953 goto out_unlock;
2954 }
2955 ins_nr = 0;
2956 }
2957 WARN_ON(ins_nr);
2958 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2959 btrfs_release_path(path);
2960 btrfs_release_path(dst_path);
2961 ret = log_directory_changes(trans, root, inode, path, dst_path);
2962 if (ret) {
2963 err = ret;
2964 goto out_unlock;
2965 }
2966 }
2967 BTRFS_I(inode)->logged_trans = trans->transid;
2968 out_unlock:
2969 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2970
2971 btrfs_free_path(path);
2972 btrfs_free_path(dst_path);
2973 return err;
2974 }
2975
2976 /*
2977 * follow the dentry parent pointers up the chain and see if any
2978 * of the directories in it require a full commit before they can
2979 * be logged. Returns zero if nothing special needs to be done or 1 if
2980 * a full commit is required.
2981 */
2982 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2983 struct inode *inode,
2984 struct dentry *parent,
2985 struct super_block *sb,
2986 u64 last_committed)
2987 {
2988 int ret = 0;
2989 struct btrfs_root *root;
2990 struct dentry *old_parent = NULL;
2991
2992 /*
2993 * for regular files, if its inode is already on disk, we don't
2994 * have to worry about the parents at all. This is because
2995 * we can use the last_unlink_trans field to record renames
2996 * and other fun in this file.
2997 */
2998 if (S_ISREG(inode->i_mode) &&
2999 BTRFS_I(inode)->generation <= last_committed &&
3000 BTRFS_I(inode)->last_unlink_trans <= last_committed)
3001 goto out;
3002
3003 if (!S_ISDIR(inode->i_mode)) {
3004 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3005 goto out;
3006 inode = parent->d_inode;
3007 }
3008
3009 while (1) {
3010 BTRFS_I(inode)->logged_trans = trans->transid;
3011 smp_mb();
3012
3013 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3014 root = BTRFS_I(inode)->root;
3015
3016 /*
3017 * make sure any commits to the log are forced
3018 * to be full commits
3019 */
3020 root->fs_info->last_trans_log_full_commit =
3021 trans->transid;
3022 ret = 1;
3023 break;
3024 }
3025
3026 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3027 break;
3028
3029 if (IS_ROOT(parent))
3030 break;
3031
3032 parent = dget_parent(parent);
3033 dput(old_parent);
3034 old_parent = parent;
3035 inode = parent->d_inode;
3036
3037 }
3038 dput(old_parent);
3039 out:
3040 return ret;
3041 }
3042
3043 /*
3044 * helper function around btrfs_log_inode to make sure newly created
3045 * parent directories also end up in the log. A minimal inode and backref
3046 * only logging is done of any parent directories that are older than
3047 * the last committed transaction
3048 */
3049 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3050 struct btrfs_root *root, struct inode *inode,
3051 struct dentry *parent, int exists_only)
3052 {
3053 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3054 struct super_block *sb;
3055 struct dentry *old_parent = NULL;
3056 int ret = 0;
3057 u64 last_committed = root->fs_info->last_trans_committed;
3058
3059 sb = inode->i_sb;
3060
3061 if (btrfs_test_opt(root, NOTREELOG)) {
3062 ret = 1;
3063 goto end_no_trans;
3064 }
3065
3066 if (root->fs_info->last_trans_log_full_commit >
3067 root->fs_info->last_trans_committed) {
3068 ret = 1;
3069 goto end_no_trans;
3070 }
3071
3072 if (root != BTRFS_I(inode)->root ||
3073 btrfs_root_refs(&root->root_item) == 0) {
3074 ret = 1;
3075 goto end_no_trans;
3076 }
3077
3078 ret = check_parent_dirs_for_sync(trans, inode, parent,
3079 sb, last_committed);
3080 if (ret)
3081 goto end_no_trans;
3082
3083 if (btrfs_inode_in_log(inode, trans->transid)) {
3084 ret = BTRFS_NO_LOG_SYNC;
3085 goto end_no_trans;
3086 }
3087
3088 ret = start_log_trans(trans, root);
3089 if (ret)
3090 goto end_trans;
3091
3092 ret = btrfs_log_inode(trans, root, inode, inode_only);
3093 if (ret)
3094 goto end_trans;
3095
3096 /*
3097 * for regular files, if its inode is already on disk, we don't
3098 * have to worry about the parents at all. This is because
3099 * we can use the last_unlink_trans field to record renames
3100 * and other fun in this file.
3101 */
3102 if (S_ISREG(inode->i_mode) &&
3103 BTRFS_I(inode)->generation <= last_committed &&
3104 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3105 ret = 0;
3106 goto end_trans;
3107 }
3108
3109 inode_only = LOG_INODE_EXISTS;
3110 while (1) {
3111 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3112 break;
3113
3114 inode = parent->d_inode;
3115 if (root != BTRFS_I(inode)->root)
3116 break;
3117
3118 if (BTRFS_I(inode)->generation >
3119 root->fs_info->last_trans_committed) {
3120 ret = btrfs_log_inode(trans, root, inode, inode_only);
3121 if (ret)
3122 goto end_trans;
3123 }
3124 if (IS_ROOT(parent))
3125 break;
3126
3127 parent = dget_parent(parent);
3128 dput(old_parent);
3129 old_parent = parent;
3130 }
3131 ret = 0;
3132 end_trans:
3133 dput(old_parent);
3134 if (ret < 0) {
3135 BUG_ON(ret != -ENOSPC);
3136 root->fs_info->last_trans_log_full_commit = trans->transid;
3137 ret = 1;
3138 }
3139 btrfs_end_log_trans(root);
3140 end_no_trans:
3141 return ret;
3142 }
3143
3144 /*
3145 * it is not safe to log dentry if the chunk root has added new
3146 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3147 * If this returns 1, you must commit the transaction to safely get your
3148 * data on disk.
3149 */
3150 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3151 struct btrfs_root *root, struct dentry *dentry)
3152 {
3153 struct dentry *parent = dget_parent(dentry);
3154 int ret;
3155
3156 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3157 dput(parent);
3158
3159 return ret;
3160 }
3161
3162 /*
3163 * should be called during mount to recover any replay any log trees
3164 * from the FS
3165 */
3166 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3167 {
3168 int ret;
3169 struct btrfs_path *path;
3170 struct btrfs_trans_handle *trans;
3171 struct btrfs_key key;
3172 struct btrfs_key found_key;
3173 struct btrfs_key tmp_key;
3174 struct btrfs_root *log;
3175 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3176 struct walk_control wc = {
3177 .process_func = process_one_buffer,
3178 .stage = 0,
3179 };
3180
3181 path = btrfs_alloc_path();
3182 if (!path)
3183 return -ENOMEM;
3184
3185 fs_info->log_root_recovering = 1;
3186
3187 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3188 if (IS_ERR(trans)) {
3189 ret = PTR_ERR(trans);
3190 goto error;
3191 }
3192
3193 wc.trans = trans;
3194 wc.pin = 1;
3195
3196 ret = walk_log_tree(trans, log_root_tree, &wc);
3197 if (ret) {
3198 btrfs_error(fs_info, ret, "Failed to pin buffers while "
3199 "recovering log root tree.");
3200 goto error;
3201 }
3202
3203 again:
3204 key.objectid = BTRFS_TREE_LOG_OBJECTID;
3205 key.offset = (u64)-1;
3206 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3207
3208 while (1) {
3209 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3210
3211 if (ret < 0) {
3212 btrfs_error(fs_info, ret,
3213 "Couldn't find tree log root.");
3214 goto error;
3215 }
3216 if (ret > 0) {
3217 if (path->slots[0] == 0)
3218 break;
3219 path->slots[0]--;
3220 }
3221 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3222 path->slots[0]);
3223 btrfs_release_path(path);
3224 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3225 break;
3226
3227 log = btrfs_read_fs_root_no_radix(log_root_tree,
3228 &found_key);
3229 if (IS_ERR(log)) {
3230 ret = PTR_ERR(log);
3231 btrfs_error(fs_info, ret,
3232 "Couldn't read tree log root.");
3233 goto error;
3234 }
3235
3236 tmp_key.objectid = found_key.offset;
3237 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3238 tmp_key.offset = (u64)-1;
3239
3240 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3241 if (IS_ERR(wc.replay_dest)) {
3242 ret = PTR_ERR(wc.replay_dest);
3243 btrfs_error(fs_info, ret, "Couldn't read target root "
3244 "for tree log recovery.");
3245 goto error;
3246 }
3247
3248 wc.replay_dest->log_root = log;
3249 btrfs_record_root_in_trans(trans, wc.replay_dest);
3250 ret = walk_log_tree(trans, log, &wc);
3251 BUG_ON(ret);
3252
3253 if (wc.stage == LOG_WALK_REPLAY_ALL) {
3254 ret = fixup_inode_link_counts(trans, wc.replay_dest,
3255 path);
3256 BUG_ON(ret);
3257 }
3258
3259 key.offset = found_key.offset - 1;
3260 wc.replay_dest->log_root = NULL;
3261 free_extent_buffer(log->node);
3262 free_extent_buffer(log->commit_root);
3263 kfree(log);
3264
3265 if (found_key.offset == 0)
3266 break;
3267 }
3268 btrfs_release_path(path);
3269
3270 /* step one is to pin it all, step two is to replay just inodes */
3271 if (wc.pin) {
3272 wc.pin = 0;
3273 wc.process_func = replay_one_buffer;
3274 wc.stage = LOG_WALK_REPLAY_INODES;
3275 goto again;
3276 }
3277 /* step three is to replay everything */
3278 if (wc.stage < LOG_WALK_REPLAY_ALL) {
3279 wc.stage++;
3280 goto again;
3281 }
3282
3283 btrfs_free_path(path);
3284
3285 free_extent_buffer(log_root_tree->node);
3286 log_root_tree->log_root = NULL;
3287 fs_info->log_root_recovering = 0;
3288
3289 /* step 4: commit the transaction, which also unpins the blocks */
3290 btrfs_commit_transaction(trans, fs_info->tree_root);
3291
3292 kfree(log_root_tree);
3293 return 0;
3294
3295 error:
3296 btrfs_free_path(path);
3297 return ret;
3298 }
3299
3300 /*
3301 * there are some corner cases where we want to force a full
3302 * commit instead of allowing a directory to be logged.
3303 *
3304 * They revolve around files there were unlinked from the directory, and
3305 * this function updates the parent directory so that a full commit is
3306 * properly done if it is fsync'd later after the unlinks are done.
3307 */
3308 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3309 struct inode *dir, struct inode *inode,
3310 int for_rename)
3311 {
3312 /*
3313 * when we're logging a file, if it hasn't been renamed
3314 * or unlinked, and its inode is fully committed on disk,
3315 * we don't have to worry about walking up the directory chain
3316 * to log its parents.
3317 *
3318 * So, we use the last_unlink_trans field to put this transid
3319 * into the file. When the file is logged we check it and
3320 * don't log the parents if the file is fully on disk.
3321 */
3322 if (S_ISREG(inode->i_mode))
3323 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3324
3325 /*
3326 * if this directory was already logged any new
3327 * names for this file/dir will get recorded
3328 */
3329 smp_mb();
3330 if (BTRFS_I(dir)->logged_trans == trans->transid)
3331 return;
3332
3333 /*
3334 * if the inode we're about to unlink was logged,
3335 * the log will be properly updated for any new names
3336 */
3337 if (BTRFS_I(inode)->logged_trans == trans->transid)
3338 return;
3339
3340 /*
3341 * when renaming files across directories, if the directory
3342 * there we're unlinking from gets fsync'd later on, there's
3343 * no way to find the destination directory later and fsync it
3344 * properly. So, we have to be conservative and force commits
3345 * so the new name gets discovered.
3346 */
3347 if (for_rename)
3348 goto record;
3349
3350 /* we can safely do the unlink without any special recording */
3351 return;
3352
3353 record:
3354 BTRFS_I(dir)->last_unlink_trans = trans->transid;
3355 }
3356
3357 /*
3358 * Call this after adding a new name for a file and it will properly
3359 * update the log to reflect the new name.
3360 *
3361 * It will return zero if all goes well, and it will return 1 if a
3362 * full transaction commit is required.
3363 */
3364 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3365 struct inode *inode, struct inode *old_dir,
3366 struct dentry *parent)
3367 {
3368 struct btrfs_root * root = BTRFS_I(inode)->root;
3369
3370 /*
3371 * this will force the logging code to walk the dentry chain
3372 * up for the file
3373 */
3374 if (S_ISREG(inode->i_mode))
3375 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3376
3377 /*
3378 * if this inode hasn't been logged and directory we're renaming it
3379 * from hasn't been logged, we don't need to log it
3380 */
3381 if (BTRFS_I(inode)->logged_trans <=
3382 root->fs_info->last_trans_committed &&
3383 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3384 root->fs_info->last_trans_committed))
3385 return 0;
3386
3387 return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3388 }
3389