spi: spi-gpio: fix compilation warning on 64 bits systems
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / tree-log.c
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/list_sort.h>
22 #include "ctree.h"
23 #include "transaction.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "compat.h"
29 #include "tree-log.h"
30 #include "hash.h"
31
32 /* magic values for the inode_only field in btrfs_log_inode:
33 *
34 * LOG_INODE_ALL means to log everything
35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
36 * during log replay
37 */
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
40
41 /*
42 * directory trouble cases
43 *
44 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45 * log, we must force a full commit before doing an fsync of the directory
46 * where the unlink was done.
47 * ---> record transid of last unlink/rename per directory
48 *
49 * mkdir foo/some_dir
50 * normal commit
51 * rename foo/some_dir foo2/some_dir
52 * mkdir foo/some_dir
53 * fsync foo/some_dir/some_file
54 *
55 * The fsync above will unlink the original some_dir without recording
56 * it in its new location (foo2). After a crash, some_dir will be gone
57 * unless the fsync of some_file forces a full commit
58 *
59 * 2) we must log any new names for any file or dir that is in the fsync
60 * log. ---> check inode while renaming/linking.
61 *
62 * 2a) we must log any new names for any file or dir during rename
63 * when the directory they are being removed from was logged.
64 * ---> check inode and old parent dir during rename
65 *
66 * 2a is actually the more important variant. With the extra logging
67 * a crash might unlink the old name without recreating the new one
68 *
69 * 3) after a crash, we must go through any directories with a link count
70 * of zero and redo the rm -rf
71 *
72 * mkdir f1/foo
73 * normal commit
74 * rm -rf f1/foo
75 * fsync(f1)
76 *
77 * The directory f1 was fully removed from the FS, but fsync was never
78 * called on f1, only its parent dir. After a crash the rm -rf must
79 * be replayed. This must be able to recurse down the entire
80 * directory tree. The inode link count fixup code takes care of the
81 * ugly details.
82 */
83
84 /*
85 * stages for the tree walking. The first
86 * stage (0) is to only pin down the blocks we find
87 * the second stage (1) is to make sure that all the inodes
88 * we find in the log are created in the subvolume.
89 *
90 * The last stage is to deal with directories and links and extents
91 * and all the other fun semantics
92 */
93 #define LOG_WALK_PIN_ONLY 0
94 #define LOG_WALK_REPLAY_INODES 1
95 #define LOG_WALK_REPLAY_ALL 2
96
97 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode,
99 int inode_only);
100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_path *path, u64 objectid);
103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root,
105 struct btrfs_root *log,
106 struct btrfs_path *path,
107 u64 dirid, int del_all);
108
109 /*
110 * tree logging is a special write ahead log used to make sure that
111 * fsyncs and O_SYNCs can happen without doing full tree commits.
112 *
113 * Full tree commits are expensive because they require commonly
114 * modified blocks to be recowed, creating many dirty pages in the
115 * extent tree an 4x-6x higher write load than ext3.
116 *
117 * Instead of doing a tree commit on every fsync, we use the
118 * key ranges and transaction ids to find items for a given file or directory
119 * that have changed in this transaction. Those items are copied into
120 * a special tree (one per subvolume root), that tree is written to disk
121 * and then the fsync is considered complete.
122 *
123 * After a crash, items are copied out of the log-tree back into the
124 * subvolume tree. Any file data extents found are recorded in the extent
125 * allocation tree, and the log-tree freed.
126 *
127 * The log tree is read three times, once to pin down all the extents it is
128 * using in ram and once, once to create all the inodes logged in the tree
129 * and once to do all the other items.
130 */
131
132 /*
133 * start a sub transaction and setup the log tree
134 * this increments the log tree writer count to make the people
135 * syncing the tree wait for us to finish
136 */
137 static int start_log_trans(struct btrfs_trans_handle *trans,
138 struct btrfs_root *root)
139 {
140 int ret;
141 int err = 0;
142
143 mutex_lock(&root->log_mutex);
144 if (root->log_root) {
145 if (!root->log_start_pid) {
146 root->log_start_pid = current->pid;
147 root->log_multiple_pids = false;
148 } else if (root->log_start_pid != current->pid) {
149 root->log_multiple_pids = true;
150 }
151
152 atomic_inc(&root->log_batch);
153 atomic_inc(&root->log_writers);
154 mutex_unlock(&root->log_mutex);
155 return 0;
156 }
157 root->log_multiple_pids = false;
158 root->log_start_pid = current->pid;
159 mutex_lock(&root->fs_info->tree_log_mutex);
160 if (!root->fs_info->log_root_tree) {
161 ret = btrfs_init_log_root_tree(trans, root->fs_info);
162 if (ret)
163 err = ret;
164 }
165 if (err == 0 && !root->log_root) {
166 ret = btrfs_add_log_tree(trans, root);
167 if (ret)
168 err = ret;
169 }
170 mutex_unlock(&root->fs_info->tree_log_mutex);
171 atomic_inc(&root->log_batch);
172 atomic_inc(&root->log_writers);
173 mutex_unlock(&root->log_mutex);
174 return err;
175 }
176
177 /*
178 * returns 0 if there was a log transaction running and we were able
179 * to join, or returns -ENOENT if there were not transactions
180 * in progress
181 */
182 static int join_running_log_trans(struct btrfs_root *root)
183 {
184 int ret = -ENOENT;
185
186 smp_mb();
187 if (!root->log_root)
188 return -ENOENT;
189
190 mutex_lock(&root->log_mutex);
191 if (root->log_root) {
192 ret = 0;
193 atomic_inc(&root->log_writers);
194 }
195 mutex_unlock(&root->log_mutex);
196 return ret;
197 }
198
199 /*
200 * This either makes the current running log transaction wait
201 * until you call btrfs_end_log_trans() or it makes any future
202 * log transactions wait until you call btrfs_end_log_trans()
203 */
204 int btrfs_pin_log_trans(struct btrfs_root *root)
205 {
206 int ret = -ENOENT;
207
208 mutex_lock(&root->log_mutex);
209 atomic_inc(&root->log_writers);
210 mutex_unlock(&root->log_mutex);
211 return ret;
212 }
213
214 /*
215 * indicate we're done making changes to the log tree
216 * and wake up anyone waiting to do a sync
217 */
218 void btrfs_end_log_trans(struct btrfs_root *root)
219 {
220 if (atomic_dec_and_test(&root->log_writers)) {
221 smp_mb();
222 if (waitqueue_active(&root->log_writer_wait))
223 wake_up(&root->log_writer_wait);
224 }
225 }
226
227
228 /*
229 * the walk control struct is used to pass state down the chain when
230 * processing the log tree. The stage field tells us which part
231 * of the log tree processing we are currently doing. The others
232 * are state fields used for that specific part
233 */
234 struct walk_control {
235 /* should we free the extent on disk when done? This is used
236 * at transaction commit time while freeing a log tree
237 */
238 int free;
239
240 /* should we write out the extent buffer? This is used
241 * while flushing the log tree to disk during a sync
242 */
243 int write;
244
245 /* should we wait for the extent buffer io to finish? Also used
246 * while flushing the log tree to disk for a sync
247 */
248 int wait;
249
250 /* pin only walk, we record which extents on disk belong to the
251 * log trees
252 */
253 int pin;
254
255 /* what stage of the replay code we're currently in */
256 int stage;
257
258 /* the root we are currently replaying */
259 struct btrfs_root *replay_dest;
260
261 /* the trans handle for the current replay */
262 struct btrfs_trans_handle *trans;
263
264 /* the function that gets used to process blocks we find in the
265 * tree. Note the extent_buffer might not be up to date when it is
266 * passed in, and it must be checked or read if you need the data
267 * inside it
268 */
269 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
270 struct walk_control *wc, u64 gen);
271 };
272
273 /*
274 * process_func used to pin down extents, write them or wait on them
275 */
276 static int process_one_buffer(struct btrfs_root *log,
277 struct extent_buffer *eb,
278 struct walk_control *wc, u64 gen)
279 {
280 if (wc->pin)
281 btrfs_pin_extent_for_log_replay(wc->trans,
282 log->fs_info->extent_root,
283 eb->start, eb->len);
284
285 if (btrfs_buffer_uptodate(eb, gen, 0)) {
286 if (wc->write)
287 btrfs_write_tree_block(eb);
288 if (wc->wait)
289 btrfs_wait_tree_block_writeback(eb);
290 }
291 return 0;
292 }
293
294 /*
295 * Item overwrite used by replay and tree logging. eb, slot and key all refer
296 * to the src data we are copying out.
297 *
298 * root is the tree we are copying into, and path is a scratch
299 * path for use in this function (it should be released on entry and
300 * will be released on exit).
301 *
302 * If the key is already in the destination tree the existing item is
303 * overwritten. If the existing item isn't big enough, it is extended.
304 * If it is too large, it is truncated.
305 *
306 * If the key isn't in the destination yet, a new item is inserted.
307 */
308 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
309 struct btrfs_root *root,
310 struct btrfs_path *path,
311 struct extent_buffer *eb, int slot,
312 struct btrfs_key *key)
313 {
314 int ret;
315 u32 item_size;
316 u64 saved_i_size = 0;
317 int save_old_i_size = 0;
318 unsigned long src_ptr;
319 unsigned long dst_ptr;
320 int overwrite_root = 0;
321
322 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
323 overwrite_root = 1;
324
325 item_size = btrfs_item_size_nr(eb, slot);
326 src_ptr = btrfs_item_ptr_offset(eb, slot);
327
328 /* look for the key in the destination tree */
329 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
330 if (ret == 0) {
331 char *src_copy;
332 char *dst_copy;
333 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
334 path->slots[0]);
335 if (dst_size != item_size)
336 goto insert;
337
338 if (item_size == 0) {
339 btrfs_release_path(path);
340 return 0;
341 }
342 dst_copy = kmalloc(item_size, GFP_NOFS);
343 src_copy = kmalloc(item_size, GFP_NOFS);
344 if (!dst_copy || !src_copy) {
345 btrfs_release_path(path);
346 kfree(dst_copy);
347 kfree(src_copy);
348 return -ENOMEM;
349 }
350
351 read_extent_buffer(eb, src_copy, src_ptr, item_size);
352
353 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
354 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
355 item_size);
356 ret = memcmp(dst_copy, src_copy, item_size);
357
358 kfree(dst_copy);
359 kfree(src_copy);
360 /*
361 * they have the same contents, just return, this saves
362 * us from cowing blocks in the destination tree and doing
363 * extra writes that may not have been done by a previous
364 * sync
365 */
366 if (ret == 0) {
367 btrfs_release_path(path);
368 return 0;
369 }
370
371 }
372 insert:
373 btrfs_release_path(path);
374 /* try to insert the key into the destination tree */
375 ret = btrfs_insert_empty_item(trans, root, path,
376 key, item_size);
377
378 /* make sure any existing item is the correct size */
379 if (ret == -EEXIST) {
380 u32 found_size;
381 found_size = btrfs_item_size_nr(path->nodes[0],
382 path->slots[0]);
383 if (found_size > item_size)
384 btrfs_truncate_item(trans, root, path, item_size, 1);
385 else if (found_size < item_size)
386 btrfs_extend_item(trans, root, path,
387 item_size - found_size);
388 } else if (ret) {
389 return ret;
390 }
391 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
392 path->slots[0]);
393
394 /* don't overwrite an existing inode if the generation number
395 * was logged as zero. This is done when the tree logging code
396 * is just logging an inode to make sure it exists after recovery.
397 *
398 * Also, don't overwrite i_size on directories during replay.
399 * log replay inserts and removes directory items based on the
400 * state of the tree found in the subvolume, and i_size is modified
401 * as it goes
402 */
403 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
404 struct btrfs_inode_item *src_item;
405 struct btrfs_inode_item *dst_item;
406
407 src_item = (struct btrfs_inode_item *)src_ptr;
408 dst_item = (struct btrfs_inode_item *)dst_ptr;
409
410 if (btrfs_inode_generation(eb, src_item) == 0)
411 goto no_copy;
412
413 if (overwrite_root &&
414 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
415 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
416 save_old_i_size = 1;
417 saved_i_size = btrfs_inode_size(path->nodes[0],
418 dst_item);
419 }
420 }
421
422 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
423 src_ptr, item_size);
424
425 if (save_old_i_size) {
426 struct btrfs_inode_item *dst_item;
427 dst_item = (struct btrfs_inode_item *)dst_ptr;
428 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
429 }
430
431 /* make sure the generation is filled in */
432 if (key->type == BTRFS_INODE_ITEM_KEY) {
433 struct btrfs_inode_item *dst_item;
434 dst_item = (struct btrfs_inode_item *)dst_ptr;
435 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
436 btrfs_set_inode_generation(path->nodes[0], dst_item,
437 trans->transid);
438 }
439 }
440 no_copy:
441 btrfs_mark_buffer_dirty(path->nodes[0]);
442 btrfs_release_path(path);
443 return 0;
444 }
445
446 /*
447 * simple helper to read an inode off the disk from a given root
448 * This can only be called for subvolume roots and not for the log
449 */
450 static noinline struct inode *read_one_inode(struct btrfs_root *root,
451 u64 objectid)
452 {
453 struct btrfs_key key;
454 struct inode *inode;
455
456 key.objectid = objectid;
457 key.type = BTRFS_INODE_ITEM_KEY;
458 key.offset = 0;
459 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
460 if (IS_ERR(inode)) {
461 inode = NULL;
462 } else if (is_bad_inode(inode)) {
463 iput(inode);
464 inode = NULL;
465 }
466 return inode;
467 }
468
469 /* replays a single extent in 'eb' at 'slot' with 'key' into the
470 * subvolume 'root'. path is released on entry and should be released
471 * on exit.
472 *
473 * extents in the log tree have not been allocated out of the extent
474 * tree yet. So, this completes the allocation, taking a reference
475 * as required if the extent already exists or creating a new extent
476 * if it isn't in the extent allocation tree yet.
477 *
478 * The extent is inserted into the file, dropping any existing extents
479 * from the file that overlap the new one.
480 */
481 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
482 struct btrfs_root *root,
483 struct btrfs_path *path,
484 struct extent_buffer *eb, int slot,
485 struct btrfs_key *key)
486 {
487 int found_type;
488 u64 mask = root->sectorsize - 1;
489 u64 extent_end;
490 u64 start = key->offset;
491 u64 saved_nbytes;
492 struct btrfs_file_extent_item *item;
493 struct inode *inode = NULL;
494 unsigned long size;
495 int ret = 0;
496
497 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
498 found_type = btrfs_file_extent_type(eb, item);
499
500 if (found_type == BTRFS_FILE_EXTENT_REG ||
501 found_type == BTRFS_FILE_EXTENT_PREALLOC)
502 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
503 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
504 size = btrfs_file_extent_inline_len(eb, item);
505 extent_end = (start + size + mask) & ~mask;
506 } else {
507 ret = 0;
508 goto out;
509 }
510
511 inode = read_one_inode(root, key->objectid);
512 if (!inode) {
513 ret = -EIO;
514 goto out;
515 }
516
517 /*
518 * first check to see if we already have this extent in the
519 * file. This must be done before the btrfs_drop_extents run
520 * so we don't try to drop this extent.
521 */
522 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
523 start, 0);
524
525 if (ret == 0 &&
526 (found_type == BTRFS_FILE_EXTENT_REG ||
527 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
528 struct btrfs_file_extent_item cmp1;
529 struct btrfs_file_extent_item cmp2;
530 struct btrfs_file_extent_item *existing;
531 struct extent_buffer *leaf;
532
533 leaf = path->nodes[0];
534 existing = btrfs_item_ptr(leaf, path->slots[0],
535 struct btrfs_file_extent_item);
536
537 read_extent_buffer(eb, &cmp1, (unsigned long)item,
538 sizeof(cmp1));
539 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
540 sizeof(cmp2));
541
542 /*
543 * we already have a pointer to this exact extent,
544 * we don't have to do anything
545 */
546 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
547 btrfs_release_path(path);
548 goto out;
549 }
550 }
551 btrfs_release_path(path);
552
553 saved_nbytes = inode_get_bytes(inode);
554 /* drop any overlapping extents */
555 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
556 BUG_ON(ret);
557
558 if (found_type == BTRFS_FILE_EXTENT_REG ||
559 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
560 u64 offset;
561 unsigned long dest_offset;
562 struct btrfs_key ins;
563
564 ret = btrfs_insert_empty_item(trans, root, path, key,
565 sizeof(*item));
566 BUG_ON(ret);
567 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
568 path->slots[0]);
569 copy_extent_buffer(path->nodes[0], eb, dest_offset,
570 (unsigned long)item, sizeof(*item));
571
572 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
573 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
574 ins.type = BTRFS_EXTENT_ITEM_KEY;
575 offset = key->offset - btrfs_file_extent_offset(eb, item);
576
577 if (ins.objectid > 0) {
578 u64 csum_start;
579 u64 csum_end;
580 LIST_HEAD(ordered_sums);
581 /*
582 * is this extent already allocated in the extent
583 * allocation tree? If so, just add a reference
584 */
585 ret = btrfs_lookup_extent(root, ins.objectid,
586 ins.offset);
587 if (ret == 0) {
588 ret = btrfs_inc_extent_ref(trans, root,
589 ins.objectid, ins.offset,
590 0, root->root_key.objectid,
591 key->objectid, offset, 0);
592 BUG_ON(ret);
593 } else {
594 /*
595 * insert the extent pointer in the extent
596 * allocation tree
597 */
598 ret = btrfs_alloc_logged_file_extent(trans,
599 root, root->root_key.objectid,
600 key->objectid, offset, &ins);
601 BUG_ON(ret);
602 }
603 btrfs_release_path(path);
604
605 if (btrfs_file_extent_compression(eb, item)) {
606 csum_start = ins.objectid;
607 csum_end = csum_start + ins.offset;
608 } else {
609 csum_start = ins.objectid +
610 btrfs_file_extent_offset(eb, item);
611 csum_end = csum_start +
612 btrfs_file_extent_num_bytes(eb, item);
613 }
614
615 ret = btrfs_lookup_csums_range(root->log_root,
616 csum_start, csum_end - 1,
617 &ordered_sums, 0);
618 BUG_ON(ret);
619 while (!list_empty(&ordered_sums)) {
620 struct btrfs_ordered_sum *sums;
621 sums = list_entry(ordered_sums.next,
622 struct btrfs_ordered_sum,
623 list);
624 ret = btrfs_csum_file_blocks(trans,
625 root->fs_info->csum_root,
626 sums);
627 BUG_ON(ret);
628 list_del(&sums->list);
629 kfree(sums);
630 }
631 } else {
632 btrfs_release_path(path);
633 }
634 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
635 /* inline extents are easy, we just overwrite them */
636 ret = overwrite_item(trans, root, path, eb, slot, key);
637 BUG_ON(ret);
638 }
639
640 inode_set_bytes(inode, saved_nbytes);
641 ret = btrfs_update_inode(trans, root, inode);
642 out:
643 if (inode)
644 iput(inode);
645 return ret;
646 }
647
648 /*
649 * when cleaning up conflicts between the directory names in the
650 * subvolume, directory names in the log and directory names in the
651 * inode back references, we may have to unlink inodes from directories.
652 *
653 * This is a helper function to do the unlink of a specific directory
654 * item
655 */
656 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
657 struct btrfs_root *root,
658 struct btrfs_path *path,
659 struct inode *dir,
660 struct btrfs_dir_item *di)
661 {
662 struct inode *inode;
663 char *name;
664 int name_len;
665 struct extent_buffer *leaf;
666 struct btrfs_key location;
667 int ret;
668
669 leaf = path->nodes[0];
670
671 btrfs_dir_item_key_to_cpu(leaf, di, &location);
672 name_len = btrfs_dir_name_len(leaf, di);
673 name = kmalloc(name_len, GFP_NOFS);
674 if (!name)
675 return -ENOMEM;
676
677 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
678 btrfs_release_path(path);
679
680 inode = read_one_inode(root, location.objectid);
681 if (!inode) {
682 kfree(name);
683 return -EIO;
684 }
685
686 ret = link_to_fixup_dir(trans, root, path, location.objectid);
687 BUG_ON(ret);
688
689 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
690 BUG_ON(ret);
691 kfree(name);
692
693 iput(inode);
694
695 btrfs_run_delayed_items(trans, root);
696 return ret;
697 }
698
699 /*
700 * helper function to see if a given name and sequence number found
701 * in an inode back reference are already in a directory and correctly
702 * point to this inode
703 */
704 static noinline int inode_in_dir(struct btrfs_root *root,
705 struct btrfs_path *path,
706 u64 dirid, u64 objectid, u64 index,
707 const char *name, int name_len)
708 {
709 struct btrfs_dir_item *di;
710 struct btrfs_key location;
711 int match = 0;
712
713 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
714 index, name, name_len, 0);
715 if (di && !IS_ERR(di)) {
716 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
717 if (location.objectid != objectid)
718 goto out;
719 } else
720 goto out;
721 btrfs_release_path(path);
722
723 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
724 if (di && !IS_ERR(di)) {
725 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
726 if (location.objectid != objectid)
727 goto out;
728 } else
729 goto out;
730 match = 1;
731 out:
732 btrfs_release_path(path);
733 return match;
734 }
735
736 /*
737 * helper function to check a log tree for a named back reference in
738 * an inode. This is used to decide if a back reference that is
739 * found in the subvolume conflicts with what we find in the log.
740 *
741 * inode backreferences may have multiple refs in a single item,
742 * during replay we process one reference at a time, and we don't
743 * want to delete valid links to a file from the subvolume if that
744 * link is also in the log.
745 */
746 static noinline int backref_in_log(struct btrfs_root *log,
747 struct btrfs_key *key,
748 u64 ref_objectid,
749 char *name, int namelen)
750 {
751 struct btrfs_path *path;
752 struct btrfs_inode_ref *ref;
753 unsigned long ptr;
754 unsigned long ptr_end;
755 unsigned long name_ptr;
756 int found_name_len;
757 int item_size;
758 int ret;
759 int match = 0;
760
761 path = btrfs_alloc_path();
762 if (!path)
763 return -ENOMEM;
764
765 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
766 if (ret != 0)
767 goto out;
768
769 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
770
771 if (key->type == BTRFS_INODE_EXTREF_KEY) {
772 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
773 name, namelen, NULL))
774 match = 1;
775
776 goto out;
777 }
778
779 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
780 ptr_end = ptr + item_size;
781 while (ptr < ptr_end) {
782 ref = (struct btrfs_inode_ref *)ptr;
783 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
784 if (found_name_len == namelen) {
785 name_ptr = (unsigned long)(ref + 1);
786 ret = memcmp_extent_buffer(path->nodes[0], name,
787 name_ptr, namelen);
788 if (ret == 0) {
789 match = 1;
790 goto out;
791 }
792 }
793 ptr = (unsigned long)(ref + 1) + found_name_len;
794 }
795 out:
796 btrfs_free_path(path);
797 return match;
798 }
799
800 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
801 struct btrfs_root *root,
802 struct btrfs_path *path,
803 struct btrfs_root *log_root,
804 struct inode *dir, struct inode *inode,
805 struct extent_buffer *eb,
806 u64 inode_objectid, u64 parent_objectid,
807 u64 ref_index, char *name, int namelen,
808 int *search_done)
809 {
810 int ret;
811 char *victim_name;
812 int victim_name_len;
813 struct extent_buffer *leaf;
814 struct btrfs_dir_item *di;
815 struct btrfs_key search_key;
816 struct btrfs_inode_extref *extref;
817
818 again:
819 /* Search old style refs */
820 search_key.objectid = inode_objectid;
821 search_key.type = BTRFS_INODE_REF_KEY;
822 search_key.offset = parent_objectid;
823 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
824 if (ret == 0) {
825 struct btrfs_inode_ref *victim_ref;
826 unsigned long ptr;
827 unsigned long ptr_end;
828
829 leaf = path->nodes[0];
830
831 /* are we trying to overwrite a back ref for the root directory
832 * if so, just jump out, we're done
833 */
834 if (search_key.objectid == search_key.offset)
835 return 1;
836
837 /* check all the names in this back reference to see
838 * if they are in the log. if so, we allow them to stay
839 * otherwise they must be unlinked as a conflict
840 */
841 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
842 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
843 while (ptr < ptr_end) {
844 victim_ref = (struct btrfs_inode_ref *)ptr;
845 victim_name_len = btrfs_inode_ref_name_len(leaf,
846 victim_ref);
847 victim_name = kmalloc(victim_name_len, GFP_NOFS);
848 BUG_ON(!victim_name);
849
850 read_extent_buffer(leaf, victim_name,
851 (unsigned long)(victim_ref + 1),
852 victim_name_len);
853
854 if (!backref_in_log(log_root, &search_key,
855 parent_objectid,
856 victim_name,
857 victim_name_len)) {
858 btrfs_inc_nlink(inode);
859 btrfs_release_path(path);
860
861 ret = btrfs_unlink_inode(trans, root, dir,
862 inode, victim_name,
863 victim_name_len);
864 BUG_ON(ret);
865 btrfs_run_delayed_items(trans, root);
866 kfree(victim_name);
867 *search_done = 1;
868 goto again;
869 }
870 kfree(victim_name);
871
872 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
873 }
874 BUG_ON(ret);
875
876 /*
877 * NOTE: we have searched root tree and checked the
878 * coresponding ref, it does not need to check again.
879 */
880 *search_done = 1;
881 }
882 btrfs_release_path(path);
883
884 /* Same search but for extended refs */
885 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
886 inode_objectid, parent_objectid, 0,
887 0);
888 if (!IS_ERR_OR_NULL(extref)) {
889 u32 item_size;
890 u32 cur_offset = 0;
891 unsigned long base;
892 struct inode *victim_parent;
893
894 leaf = path->nodes[0];
895
896 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
897 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
898
899 while (cur_offset < item_size) {
900 extref = (struct btrfs_inode_extref *)base + cur_offset;
901
902 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
903
904 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
905 goto next;
906
907 victim_name = kmalloc(victim_name_len, GFP_NOFS);
908 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
909 victim_name_len);
910
911 search_key.objectid = inode_objectid;
912 search_key.type = BTRFS_INODE_EXTREF_KEY;
913 search_key.offset = btrfs_extref_hash(parent_objectid,
914 victim_name,
915 victim_name_len);
916 ret = 0;
917 if (!backref_in_log(log_root, &search_key,
918 parent_objectid, victim_name,
919 victim_name_len)) {
920 ret = -ENOENT;
921 victim_parent = read_one_inode(root,
922 parent_objectid);
923 if (victim_parent) {
924 btrfs_inc_nlink(inode);
925 btrfs_release_path(path);
926
927 ret = btrfs_unlink_inode(trans, root,
928 victim_parent,
929 inode,
930 victim_name,
931 victim_name_len);
932 btrfs_run_delayed_items(trans, root);
933 }
934 BUG_ON(ret);
935 iput(victim_parent);
936 kfree(victim_name);
937 *search_done = 1;
938 goto again;
939 }
940 kfree(victim_name);
941 BUG_ON(ret);
942 next:
943 cur_offset += victim_name_len + sizeof(*extref);
944 }
945 *search_done = 1;
946 }
947 btrfs_release_path(path);
948
949 /* look for a conflicting sequence number */
950 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
951 ref_index, name, namelen, 0);
952 if (di && !IS_ERR(di)) {
953 ret = drop_one_dir_item(trans, root, path, dir, di);
954 BUG_ON(ret);
955 }
956 btrfs_release_path(path);
957
958 /* look for a conflicing name */
959 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
960 name, namelen, 0);
961 if (di && !IS_ERR(di)) {
962 ret = drop_one_dir_item(trans, root, path, dir, di);
963 BUG_ON(ret);
964 }
965 btrfs_release_path(path);
966
967 return 0;
968 }
969
970 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
971 u32 *namelen, char **name, u64 *index,
972 u64 *parent_objectid)
973 {
974 struct btrfs_inode_extref *extref;
975
976 extref = (struct btrfs_inode_extref *)ref_ptr;
977
978 *namelen = btrfs_inode_extref_name_len(eb, extref);
979 *name = kmalloc(*namelen, GFP_NOFS);
980 if (*name == NULL)
981 return -ENOMEM;
982
983 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
984 *namelen);
985
986 *index = btrfs_inode_extref_index(eb, extref);
987 if (parent_objectid)
988 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
989
990 return 0;
991 }
992
993 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
994 u32 *namelen, char **name, u64 *index)
995 {
996 struct btrfs_inode_ref *ref;
997
998 ref = (struct btrfs_inode_ref *)ref_ptr;
999
1000 *namelen = btrfs_inode_ref_name_len(eb, ref);
1001 *name = kmalloc(*namelen, GFP_NOFS);
1002 if (*name == NULL)
1003 return -ENOMEM;
1004
1005 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1006
1007 *index = btrfs_inode_ref_index(eb, ref);
1008
1009 return 0;
1010 }
1011
1012 /*
1013 * replay one inode back reference item found in the log tree.
1014 * eb, slot and key refer to the buffer and key found in the log tree.
1015 * root is the destination we are replaying into, and path is for temp
1016 * use by this function. (it should be released on return).
1017 */
1018 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1019 struct btrfs_root *root,
1020 struct btrfs_root *log,
1021 struct btrfs_path *path,
1022 struct extent_buffer *eb, int slot,
1023 struct btrfs_key *key)
1024 {
1025 struct inode *dir;
1026 struct inode *inode;
1027 unsigned long ref_ptr;
1028 unsigned long ref_end;
1029 char *name;
1030 int namelen;
1031 int ret;
1032 int search_done = 0;
1033 int log_ref_ver = 0;
1034 u64 parent_objectid;
1035 u64 inode_objectid;
1036 u64 ref_index = 0;
1037 int ref_struct_size;
1038
1039 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1040 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1041
1042 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1043 struct btrfs_inode_extref *r;
1044
1045 ref_struct_size = sizeof(struct btrfs_inode_extref);
1046 log_ref_ver = 1;
1047 r = (struct btrfs_inode_extref *)ref_ptr;
1048 parent_objectid = btrfs_inode_extref_parent(eb, r);
1049 } else {
1050 ref_struct_size = sizeof(struct btrfs_inode_ref);
1051 parent_objectid = key->offset;
1052 }
1053 inode_objectid = key->objectid;
1054
1055 /*
1056 * it is possible that we didn't log all the parent directories
1057 * for a given inode. If we don't find the dir, just don't
1058 * copy the back ref in. The link count fixup code will take
1059 * care of the rest
1060 */
1061 dir = read_one_inode(root, parent_objectid);
1062 if (!dir)
1063 return -ENOENT;
1064
1065 inode = read_one_inode(root, inode_objectid);
1066 if (!inode) {
1067 iput(dir);
1068 return -EIO;
1069 }
1070
1071 while (ref_ptr < ref_end) {
1072 if (log_ref_ver) {
1073 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1074 &ref_index, &parent_objectid);
1075 /*
1076 * parent object can change from one array
1077 * item to another.
1078 */
1079 if (!dir)
1080 dir = read_one_inode(root, parent_objectid);
1081 if (!dir)
1082 return -ENOENT;
1083 } else {
1084 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1085 &ref_index);
1086 }
1087 if (ret)
1088 return ret;
1089
1090 /* if we already have a perfect match, we're done */
1091 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1092 ref_index, name, namelen)) {
1093 /*
1094 * look for a conflicting back reference in the
1095 * metadata. if we find one we have to unlink that name
1096 * of the file before we add our new link. Later on, we
1097 * overwrite any existing back reference, and we don't
1098 * want to create dangling pointers in the directory.
1099 */
1100
1101 if (!search_done) {
1102 ret = __add_inode_ref(trans, root, path, log,
1103 dir, inode, eb,
1104 inode_objectid,
1105 parent_objectid,
1106 ref_index, name, namelen,
1107 &search_done);
1108 if (ret == 1)
1109 goto out;
1110 BUG_ON(ret);
1111 }
1112
1113 /* insert our name */
1114 ret = btrfs_add_link(trans, dir, inode, name, namelen,
1115 0, ref_index);
1116 BUG_ON(ret);
1117
1118 btrfs_update_inode(trans, root, inode);
1119 }
1120
1121 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1122 kfree(name);
1123 if (log_ref_ver) {
1124 iput(dir);
1125 dir = NULL;
1126 }
1127 }
1128
1129 /* finally write the back reference in the inode */
1130 ret = overwrite_item(trans, root, path, eb, slot, key);
1131 BUG_ON(ret);
1132
1133 out:
1134 btrfs_release_path(path);
1135 iput(dir);
1136 iput(inode);
1137 return 0;
1138 }
1139
1140 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1141 struct btrfs_root *root, u64 offset)
1142 {
1143 int ret;
1144 ret = btrfs_find_orphan_item(root, offset);
1145 if (ret > 0)
1146 ret = btrfs_insert_orphan_item(trans, root, offset);
1147 return ret;
1148 }
1149
1150 static int count_inode_extrefs(struct btrfs_root *root,
1151 struct inode *inode, struct btrfs_path *path)
1152 {
1153 int ret = 0;
1154 int name_len;
1155 unsigned int nlink = 0;
1156 u32 item_size;
1157 u32 cur_offset = 0;
1158 u64 inode_objectid = btrfs_ino(inode);
1159 u64 offset = 0;
1160 unsigned long ptr;
1161 struct btrfs_inode_extref *extref;
1162 struct extent_buffer *leaf;
1163
1164 while (1) {
1165 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1166 &extref, &offset);
1167 if (ret)
1168 break;
1169
1170 leaf = path->nodes[0];
1171 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1172 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1173
1174 while (cur_offset < item_size) {
1175 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1176 name_len = btrfs_inode_extref_name_len(leaf, extref);
1177
1178 nlink++;
1179
1180 cur_offset += name_len + sizeof(*extref);
1181 }
1182
1183 offset++;
1184 btrfs_release_path(path);
1185 }
1186 btrfs_release_path(path);
1187
1188 if (ret < 0)
1189 return ret;
1190 return nlink;
1191 }
1192
1193 static int count_inode_refs(struct btrfs_root *root,
1194 struct inode *inode, struct btrfs_path *path)
1195 {
1196 int ret;
1197 struct btrfs_key key;
1198 unsigned int nlink = 0;
1199 unsigned long ptr;
1200 unsigned long ptr_end;
1201 int name_len;
1202 u64 ino = btrfs_ino(inode);
1203
1204 key.objectid = ino;
1205 key.type = BTRFS_INODE_REF_KEY;
1206 key.offset = (u64)-1;
1207
1208 while (1) {
1209 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1210 if (ret < 0)
1211 break;
1212 if (ret > 0) {
1213 if (path->slots[0] == 0)
1214 break;
1215 path->slots[0]--;
1216 }
1217 btrfs_item_key_to_cpu(path->nodes[0], &key,
1218 path->slots[0]);
1219 if (key.objectid != ino ||
1220 key.type != BTRFS_INODE_REF_KEY)
1221 break;
1222 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1223 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1224 path->slots[0]);
1225 while (ptr < ptr_end) {
1226 struct btrfs_inode_ref *ref;
1227
1228 ref = (struct btrfs_inode_ref *)ptr;
1229 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1230 ref);
1231 ptr = (unsigned long)(ref + 1) + name_len;
1232 nlink++;
1233 }
1234
1235 if (key.offset == 0)
1236 break;
1237 key.offset--;
1238 btrfs_release_path(path);
1239 }
1240 btrfs_release_path(path);
1241
1242 return nlink;
1243 }
1244
1245 /*
1246 * There are a few corners where the link count of the file can't
1247 * be properly maintained during replay. So, instead of adding
1248 * lots of complexity to the log code, we just scan the backrefs
1249 * for any file that has been through replay.
1250 *
1251 * The scan will update the link count on the inode to reflect the
1252 * number of back refs found. If it goes down to zero, the iput
1253 * will free the inode.
1254 */
1255 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1256 struct btrfs_root *root,
1257 struct inode *inode)
1258 {
1259 struct btrfs_path *path;
1260 int ret;
1261 u64 nlink = 0;
1262 u64 ino = btrfs_ino(inode);
1263
1264 path = btrfs_alloc_path();
1265 if (!path)
1266 return -ENOMEM;
1267
1268 ret = count_inode_refs(root, inode, path);
1269 if (ret < 0)
1270 goto out;
1271
1272 nlink = ret;
1273
1274 ret = count_inode_extrefs(root, inode, path);
1275 if (ret == -ENOENT)
1276 ret = 0;
1277
1278 if (ret < 0)
1279 goto out;
1280
1281 nlink += ret;
1282
1283 ret = 0;
1284
1285 if (nlink != inode->i_nlink) {
1286 set_nlink(inode, nlink);
1287 btrfs_update_inode(trans, root, inode);
1288 }
1289 BTRFS_I(inode)->index_cnt = (u64)-1;
1290
1291 if (inode->i_nlink == 0) {
1292 if (S_ISDIR(inode->i_mode)) {
1293 ret = replay_dir_deletes(trans, root, NULL, path,
1294 ino, 1);
1295 BUG_ON(ret);
1296 }
1297 ret = insert_orphan_item(trans, root, ino);
1298 BUG_ON(ret);
1299 }
1300
1301 out:
1302 btrfs_free_path(path);
1303 return ret;
1304 }
1305
1306 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1307 struct btrfs_root *root,
1308 struct btrfs_path *path)
1309 {
1310 int ret;
1311 struct btrfs_key key;
1312 struct inode *inode;
1313
1314 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1315 key.type = BTRFS_ORPHAN_ITEM_KEY;
1316 key.offset = (u64)-1;
1317 while (1) {
1318 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1319 if (ret < 0)
1320 break;
1321
1322 if (ret == 1) {
1323 if (path->slots[0] == 0)
1324 break;
1325 path->slots[0]--;
1326 }
1327
1328 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1329 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1330 key.type != BTRFS_ORPHAN_ITEM_KEY)
1331 break;
1332
1333 ret = btrfs_del_item(trans, root, path);
1334 if (ret)
1335 goto out;
1336
1337 btrfs_release_path(path);
1338 inode = read_one_inode(root, key.offset);
1339 if (!inode)
1340 return -EIO;
1341
1342 ret = fixup_inode_link_count(trans, root, inode);
1343 BUG_ON(ret);
1344
1345 iput(inode);
1346
1347 /*
1348 * fixup on a directory may create new entries,
1349 * make sure we always look for the highset possible
1350 * offset
1351 */
1352 key.offset = (u64)-1;
1353 }
1354 ret = 0;
1355 out:
1356 btrfs_release_path(path);
1357 return ret;
1358 }
1359
1360
1361 /*
1362 * record a given inode in the fixup dir so we can check its link
1363 * count when replay is done. The link count is incremented here
1364 * so the inode won't go away until we check it
1365 */
1366 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1367 struct btrfs_root *root,
1368 struct btrfs_path *path,
1369 u64 objectid)
1370 {
1371 struct btrfs_key key;
1372 int ret = 0;
1373 struct inode *inode;
1374
1375 inode = read_one_inode(root, objectid);
1376 if (!inode)
1377 return -EIO;
1378
1379 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1380 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1381 key.offset = objectid;
1382
1383 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1384
1385 btrfs_release_path(path);
1386 if (ret == 0) {
1387 btrfs_inc_nlink(inode);
1388 ret = btrfs_update_inode(trans, root, inode);
1389 } else if (ret == -EEXIST) {
1390 ret = 0;
1391 } else {
1392 BUG();
1393 }
1394 iput(inode);
1395
1396 return ret;
1397 }
1398
1399 /*
1400 * when replaying the log for a directory, we only insert names
1401 * for inodes that actually exist. This means an fsync on a directory
1402 * does not implicitly fsync all the new files in it
1403 */
1404 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1405 struct btrfs_root *root,
1406 struct btrfs_path *path,
1407 u64 dirid, u64 index,
1408 char *name, int name_len, u8 type,
1409 struct btrfs_key *location)
1410 {
1411 struct inode *inode;
1412 struct inode *dir;
1413 int ret;
1414
1415 inode = read_one_inode(root, location->objectid);
1416 if (!inode)
1417 return -ENOENT;
1418
1419 dir = read_one_inode(root, dirid);
1420 if (!dir) {
1421 iput(inode);
1422 return -EIO;
1423 }
1424 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1425
1426 /* FIXME, put inode into FIXUP list */
1427
1428 iput(inode);
1429 iput(dir);
1430 return ret;
1431 }
1432
1433 /*
1434 * take a single entry in a log directory item and replay it into
1435 * the subvolume.
1436 *
1437 * if a conflicting item exists in the subdirectory already,
1438 * the inode it points to is unlinked and put into the link count
1439 * fix up tree.
1440 *
1441 * If a name from the log points to a file or directory that does
1442 * not exist in the FS, it is skipped. fsyncs on directories
1443 * do not force down inodes inside that directory, just changes to the
1444 * names or unlinks in a directory.
1445 */
1446 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1447 struct btrfs_root *root,
1448 struct btrfs_path *path,
1449 struct extent_buffer *eb,
1450 struct btrfs_dir_item *di,
1451 struct btrfs_key *key)
1452 {
1453 char *name;
1454 int name_len;
1455 struct btrfs_dir_item *dst_di;
1456 struct btrfs_key found_key;
1457 struct btrfs_key log_key;
1458 struct inode *dir;
1459 u8 log_type;
1460 int exists;
1461 int ret;
1462
1463 dir = read_one_inode(root, key->objectid);
1464 if (!dir)
1465 return -EIO;
1466
1467 name_len = btrfs_dir_name_len(eb, di);
1468 name = kmalloc(name_len, GFP_NOFS);
1469 if (!name)
1470 return -ENOMEM;
1471
1472 log_type = btrfs_dir_type(eb, di);
1473 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1474 name_len);
1475
1476 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1477 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1478 if (exists == 0)
1479 exists = 1;
1480 else
1481 exists = 0;
1482 btrfs_release_path(path);
1483
1484 if (key->type == BTRFS_DIR_ITEM_KEY) {
1485 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1486 name, name_len, 1);
1487 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1488 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1489 key->objectid,
1490 key->offset, name,
1491 name_len, 1);
1492 } else {
1493 BUG();
1494 }
1495 if (IS_ERR_OR_NULL(dst_di)) {
1496 /* we need a sequence number to insert, so we only
1497 * do inserts for the BTRFS_DIR_INDEX_KEY types
1498 */
1499 if (key->type != BTRFS_DIR_INDEX_KEY)
1500 goto out;
1501 goto insert;
1502 }
1503
1504 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1505 /* the existing item matches the logged item */
1506 if (found_key.objectid == log_key.objectid &&
1507 found_key.type == log_key.type &&
1508 found_key.offset == log_key.offset &&
1509 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1510 goto out;
1511 }
1512
1513 /*
1514 * don't drop the conflicting directory entry if the inode
1515 * for the new entry doesn't exist
1516 */
1517 if (!exists)
1518 goto out;
1519
1520 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1521 BUG_ON(ret);
1522
1523 if (key->type == BTRFS_DIR_INDEX_KEY)
1524 goto insert;
1525 out:
1526 btrfs_release_path(path);
1527 kfree(name);
1528 iput(dir);
1529 return 0;
1530
1531 insert:
1532 btrfs_release_path(path);
1533 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1534 name, name_len, log_type, &log_key);
1535
1536 BUG_ON(ret && ret != -ENOENT);
1537 goto out;
1538 }
1539
1540 /*
1541 * find all the names in a directory item and reconcile them into
1542 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1543 * one name in a directory item, but the same code gets used for
1544 * both directory index types
1545 */
1546 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1547 struct btrfs_root *root,
1548 struct btrfs_path *path,
1549 struct extent_buffer *eb, int slot,
1550 struct btrfs_key *key)
1551 {
1552 int ret;
1553 u32 item_size = btrfs_item_size_nr(eb, slot);
1554 struct btrfs_dir_item *di;
1555 int name_len;
1556 unsigned long ptr;
1557 unsigned long ptr_end;
1558
1559 ptr = btrfs_item_ptr_offset(eb, slot);
1560 ptr_end = ptr + item_size;
1561 while (ptr < ptr_end) {
1562 di = (struct btrfs_dir_item *)ptr;
1563 if (verify_dir_item(root, eb, di))
1564 return -EIO;
1565 name_len = btrfs_dir_name_len(eb, di);
1566 ret = replay_one_name(trans, root, path, eb, di, key);
1567 BUG_ON(ret);
1568 ptr = (unsigned long)(di + 1);
1569 ptr += name_len;
1570 }
1571 return 0;
1572 }
1573
1574 /*
1575 * directory replay has two parts. There are the standard directory
1576 * items in the log copied from the subvolume, and range items
1577 * created in the log while the subvolume was logged.
1578 *
1579 * The range items tell us which parts of the key space the log
1580 * is authoritative for. During replay, if a key in the subvolume
1581 * directory is in a logged range item, but not actually in the log
1582 * that means it was deleted from the directory before the fsync
1583 * and should be removed.
1584 */
1585 static noinline int find_dir_range(struct btrfs_root *root,
1586 struct btrfs_path *path,
1587 u64 dirid, int key_type,
1588 u64 *start_ret, u64 *end_ret)
1589 {
1590 struct btrfs_key key;
1591 u64 found_end;
1592 struct btrfs_dir_log_item *item;
1593 int ret;
1594 int nritems;
1595
1596 if (*start_ret == (u64)-1)
1597 return 1;
1598
1599 key.objectid = dirid;
1600 key.type = key_type;
1601 key.offset = *start_ret;
1602
1603 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1604 if (ret < 0)
1605 goto out;
1606 if (ret > 0) {
1607 if (path->slots[0] == 0)
1608 goto out;
1609 path->slots[0]--;
1610 }
1611 if (ret != 0)
1612 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1613
1614 if (key.type != key_type || key.objectid != dirid) {
1615 ret = 1;
1616 goto next;
1617 }
1618 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1619 struct btrfs_dir_log_item);
1620 found_end = btrfs_dir_log_end(path->nodes[0], item);
1621
1622 if (*start_ret >= key.offset && *start_ret <= found_end) {
1623 ret = 0;
1624 *start_ret = key.offset;
1625 *end_ret = found_end;
1626 goto out;
1627 }
1628 ret = 1;
1629 next:
1630 /* check the next slot in the tree to see if it is a valid item */
1631 nritems = btrfs_header_nritems(path->nodes[0]);
1632 if (path->slots[0] >= nritems) {
1633 ret = btrfs_next_leaf(root, path);
1634 if (ret)
1635 goto out;
1636 } else {
1637 path->slots[0]++;
1638 }
1639
1640 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1641
1642 if (key.type != key_type || key.objectid != dirid) {
1643 ret = 1;
1644 goto out;
1645 }
1646 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1647 struct btrfs_dir_log_item);
1648 found_end = btrfs_dir_log_end(path->nodes[0], item);
1649 *start_ret = key.offset;
1650 *end_ret = found_end;
1651 ret = 0;
1652 out:
1653 btrfs_release_path(path);
1654 return ret;
1655 }
1656
1657 /*
1658 * this looks for a given directory item in the log. If the directory
1659 * item is not in the log, the item is removed and the inode it points
1660 * to is unlinked
1661 */
1662 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1663 struct btrfs_root *root,
1664 struct btrfs_root *log,
1665 struct btrfs_path *path,
1666 struct btrfs_path *log_path,
1667 struct inode *dir,
1668 struct btrfs_key *dir_key)
1669 {
1670 int ret;
1671 struct extent_buffer *eb;
1672 int slot;
1673 u32 item_size;
1674 struct btrfs_dir_item *di;
1675 struct btrfs_dir_item *log_di;
1676 int name_len;
1677 unsigned long ptr;
1678 unsigned long ptr_end;
1679 char *name;
1680 struct inode *inode;
1681 struct btrfs_key location;
1682
1683 again:
1684 eb = path->nodes[0];
1685 slot = path->slots[0];
1686 item_size = btrfs_item_size_nr(eb, slot);
1687 ptr = btrfs_item_ptr_offset(eb, slot);
1688 ptr_end = ptr + item_size;
1689 while (ptr < ptr_end) {
1690 di = (struct btrfs_dir_item *)ptr;
1691 if (verify_dir_item(root, eb, di)) {
1692 ret = -EIO;
1693 goto out;
1694 }
1695
1696 name_len = btrfs_dir_name_len(eb, di);
1697 name = kmalloc(name_len, GFP_NOFS);
1698 if (!name) {
1699 ret = -ENOMEM;
1700 goto out;
1701 }
1702 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1703 name_len);
1704 log_di = NULL;
1705 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1706 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1707 dir_key->objectid,
1708 name, name_len, 0);
1709 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1710 log_di = btrfs_lookup_dir_index_item(trans, log,
1711 log_path,
1712 dir_key->objectid,
1713 dir_key->offset,
1714 name, name_len, 0);
1715 }
1716 if (IS_ERR_OR_NULL(log_di)) {
1717 btrfs_dir_item_key_to_cpu(eb, di, &location);
1718 btrfs_release_path(path);
1719 btrfs_release_path(log_path);
1720 inode = read_one_inode(root, location.objectid);
1721 if (!inode) {
1722 kfree(name);
1723 return -EIO;
1724 }
1725
1726 ret = link_to_fixup_dir(trans, root,
1727 path, location.objectid);
1728 BUG_ON(ret);
1729 btrfs_inc_nlink(inode);
1730 ret = btrfs_unlink_inode(trans, root, dir, inode,
1731 name, name_len);
1732 BUG_ON(ret);
1733
1734 btrfs_run_delayed_items(trans, root);
1735
1736 kfree(name);
1737 iput(inode);
1738
1739 /* there might still be more names under this key
1740 * check and repeat if required
1741 */
1742 ret = btrfs_search_slot(NULL, root, dir_key, path,
1743 0, 0);
1744 if (ret == 0)
1745 goto again;
1746 ret = 0;
1747 goto out;
1748 }
1749 btrfs_release_path(log_path);
1750 kfree(name);
1751
1752 ptr = (unsigned long)(di + 1);
1753 ptr += name_len;
1754 }
1755 ret = 0;
1756 out:
1757 btrfs_release_path(path);
1758 btrfs_release_path(log_path);
1759 return ret;
1760 }
1761
1762 /*
1763 * deletion replay happens before we copy any new directory items
1764 * out of the log or out of backreferences from inodes. It
1765 * scans the log to find ranges of keys that log is authoritative for,
1766 * and then scans the directory to find items in those ranges that are
1767 * not present in the log.
1768 *
1769 * Anything we don't find in the log is unlinked and removed from the
1770 * directory.
1771 */
1772 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1773 struct btrfs_root *root,
1774 struct btrfs_root *log,
1775 struct btrfs_path *path,
1776 u64 dirid, int del_all)
1777 {
1778 u64 range_start;
1779 u64 range_end;
1780 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1781 int ret = 0;
1782 struct btrfs_key dir_key;
1783 struct btrfs_key found_key;
1784 struct btrfs_path *log_path;
1785 struct inode *dir;
1786
1787 dir_key.objectid = dirid;
1788 dir_key.type = BTRFS_DIR_ITEM_KEY;
1789 log_path = btrfs_alloc_path();
1790 if (!log_path)
1791 return -ENOMEM;
1792
1793 dir = read_one_inode(root, dirid);
1794 /* it isn't an error if the inode isn't there, that can happen
1795 * because we replay the deletes before we copy in the inode item
1796 * from the log
1797 */
1798 if (!dir) {
1799 btrfs_free_path(log_path);
1800 return 0;
1801 }
1802 again:
1803 range_start = 0;
1804 range_end = 0;
1805 while (1) {
1806 if (del_all)
1807 range_end = (u64)-1;
1808 else {
1809 ret = find_dir_range(log, path, dirid, key_type,
1810 &range_start, &range_end);
1811 if (ret != 0)
1812 break;
1813 }
1814
1815 dir_key.offset = range_start;
1816 while (1) {
1817 int nritems;
1818 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1819 0, 0);
1820 if (ret < 0)
1821 goto out;
1822
1823 nritems = btrfs_header_nritems(path->nodes[0]);
1824 if (path->slots[0] >= nritems) {
1825 ret = btrfs_next_leaf(root, path);
1826 if (ret)
1827 break;
1828 }
1829 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1830 path->slots[0]);
1831 if (found_key.objectid != dirid ||
1832 found_key.type != dir_key.type)
1833 goto next_type;
1834
1835 if (found_key.offset > range_end)
1836 break;
1837
1838 ret = check_item_in_log(trans, root, log, path,
1839 log_path, dir,
1840 &found_key);
1841 BUG_ON(ret);
1842 if (found_key.offset == (u64)-1)
1843 break;
1844 dir_key.offset = found_key.offset + 1;
1845 }
1846 btrfs_release_path(path);
1847 if (range_end == (u64)-1)
1848 break;
1849 range_start = range_end + 1;
1850 }
1851
1852 next_type:
1853 ret = 0;
1854 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1855 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1856 dir_key.type = BTRFS_DIR_INDEX_KEY;
1857 btrfs_release_path(path);
1858 goto again;
1859 }
1860 out:
1861 btrfs_release_path(path);
1862 btrfs_free_path(log_path);
1863 iput(dir);
1864 return ret;
1865 }
1866
1867 /*
1868 * the process_func used to replay items from the log tree. This
1869 * gets called in two different stages. The first stage just looks
1870 * for inodes and makes sure they are all copied into the subvolume.
1871 *
1872 * The second stage copies all the other item types from the log into
1873 * the subvolume. The two stage approach is slower, but gets rid of
1874 * lots of complexity around inodes referencing other inodes that exist
1875 * only in the log (references come from either directory items or inode
1876 * back refs).
1877 */
1878 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1879 struct walk_control *wc, u64 gen)
1880 {
1881 int nritems;
1882 struct btrfs_path *path;
1883 struct btrfs_root *root = wc->replay_dest;
1884 struct btrfs_key key;
1885 int level;
1886 int i;
1887 int ret;
1888
1889 ret = btrfs_read_buffer(eb, gen);
1890 if (ret)
1891 return ret;
1892
1893 level = btrfs_header_level(eb);
1894
1895 if (level != 0)
1896 return 0;
1897
1898 path = btrfs_alloc_path();
1899 if (!path)
1900 return -ENOMEM;
1901
1902 nritems = btrfs_header_nritems(eb);
1903 for (i = 0; i < nritems; i++) {
1904 btrfs_item_key_to_cpu(eb, &key, i);
1905
1906 /* inode keys are done during the first stage */
1907 if (key.type == BTRFS_INODE_ITEM_KEY &&
1908 wc->stage == LOG_WALK_REPLAY_INODES) {
1909 struct btrfs_inode_item *inode_item;
1910 u32 mode;
1911
1912 inode_item = btrfs_item_ptr(eb, i,
1913 struct btrfs_inode_item);
1914 mode = btrfs_inode_mode(eb, inode_item);
1915 if (S_ISDIR(mode)) {
1916 ret = replay_dir_deletes(wc->trans,
1917 root, log, path, key.objectid, 0);
1918 BUG_ON(ret);
1919 }
1920 ret = overwrite_item(wc->trans, root, path,
1921 eb, i, &key);
1922 BUG_ON(ret);
1923
1924 /* for regular files, make sure corresponding
1925 * orhpan item exist. extents past the new EOF
1926 * will be truncated later by orphan cleanup.
1927 */
1928 if (S_ISREG(mode)) {
1929 ret = insert_orphan_item(wc->trans, root,
1930 key.objectid);
1931 BUG_ON(ret);
1932 }
1933
1934 ret = link_to_fixup_dir(wc->trans, root,
1935 path, key.objectid);
1936 BUG_ON(ret);
1937 }
1938 if (wc->stage < LOG_WALK_REPLAY_ALL)
1939 continue;
1940
1941 /* these keys are simply copied */
1942 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1943 ret = overwrite_item(wc->trans, root, path,
1944 eb, i, &key);
1945 BUG_ON(ret);
1946 } else if (key.type == BTRFS_INODE_REF_KEY) {
1947 ret = add_inode_ref(wc->trans, root, log, path,
1948 eb, i, &key);
1949 BUG_ON(ret && ret != -ENOENT);
1950 } else if (key.type == BTRFS_INODE_EXTREF_KEY) {
1951 ret = add_inode_ref(wc->trans, root, log, path,
1952 eb, i, &key);
1953 BUG_ON(ret && ret != -ENOENT);
1954 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1955 ret = replay_one_extent(wc->trans, root, path,
1956 eb, i, &key);
1957 BUG_ON(ret);
1958 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1959 key.type == BTRFS_DIR_INDEX_KEY) {
1960 ret = replay_one_dir_item(wc->trans, root, path,
1961 eb, i, &key);
1962 BUG_ON(ret);
1963 }
1964 }
1965 btrfs_free_path(path);
1966 return 0;
1967 }
1968
1969 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1970 struct btrfs_root *root,
1971 struct btrfs_path *path, int *level,
1972 struct walk_control *wc)
1973 {
1974 u64 root_owner;
1975 u64 bytenr;
1976 u64 ptr_gen;
1977 struct extent_buffer *next;
1978 struct extent_buffer *cur;
1979 struct extent_buffer *parent;
1980 u32 blocksize;
1981 int ret = 0;
1982
1983 WARN_ON(*level < 0);
1984 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1985
1986 while (*level > 0) {
1987 WARN_ON(*level < 0);
1988 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1989 cur = path->nodes[*level];
1990
1991 if (btrfs_header_level(cur) != *level)
1992 WARN_ON(1);
1993
1994 if (path->slots[*level] >=
1995 btrfs_header_nritems(cur))
1996 break;
1997
1998 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1999 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2000 blocksize = btrfs_level_size(root, *level - 1);
2001
2002 parent = path->nodes[*level];
2003 root_owner = btrfs_header_owner(parent);
2004
2005 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2006 if (!next)
2007 return -ENOMEM;
2008
2009 if (*level == 1) {
2010 ret = wc->process_func(root, next, wc, ptr_gen);
2011 if (ret)
2012 return ret;
2013
2014 path->slots[*level]++;
2015 if (wc->free) {
2016 ret = btrfs_read_buffer(next, ptr_gen);
2017 if (ret) {
2018 free_extent_buffer(next);
2019 return ret;
2020 }
2021
2022 btrfs_tree_lock(next);
2023 btrfs_set_lock_blocking(next);
2024 clean_tree_block(trans, root, next);
2025 btrfs_wait_tree_block_writeback(next);
2026 btrfs_tree_unlock(next);
2027
2028 WARN_ON(root_owner !=
2029 BTRFS_TREE_LOG_OBJECTID);
2030 ret = btrfs_free_and_pin_reserved_extent(root,
2031 bytenr, blocksize);
2032 BUG_ON(ret); /* -ENOMEM or logic errors */
2033 }
2034 free_extent_buffer(next);
2035 continue;
2036 }
2037 ret = btrfs_read_buffer(next, ptr_gen);
2038 if (ret) {
2039 free_extent_buffer(next);
2040 return ret;
2041 }
2042
2043 WARN_ON(*level <= 0);
2044 if (path->nodes[*level-1])
2045 free_extent_buffer(path->nodes[*level-1]);
2046 path->nodes[*level-1] = next;
2047 *level = btrfs_header_level(next);
2048 path->slots[*level] = 0;
2049 cond_resched();
2050 }
2051 WARN_ON(*level < 0);
2052 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2053
2054 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2055
2056 cond_resched();
2057 return 0;
2058 }
2059
2060 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2061 struct btrfs_root *root,
2062 struct btrfs_path *path, int *level,
2063 struct walk_control *wc)
2064 {
2065 u64 root_owner;
2066 int i;
2067 int slot;
2068 int ret;
2069
2070 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2071 slot = path->slots[i];
2072 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2073 path->slots[i]++;
2074 *level = i;
2075 WARN_ON(*level == 0);
2076 return 0;
2077 } else {
2078 struct extent_buffer *parent;
2079 if (path->nodes[*level] == root->node)
2080 parent = path->nodes[*level];
2081 else
2082 parent = path->nodes[*level + 1];
2083
2084 root_owner = btrfs_header_owner(parent);
2085 ret = wc->process_func(root, path->nodes[*level], wc,
2086 btrfs_header_generation(path->nodes[*level]));
2087 if (ret)
2088 return ret;
2089
2090 if (wc->free) {
2091 struct extent_buffer *next;
2092
2093 next = path->nodes[*level];
2094
2095 btrfs_tree_lock(next);
2096 btrfs_set_lock_blocking(next);
2097 clean_tree_block(trans, root, next);
2098 btrfs_wait_tree_block_writeback(next);
2099 btrfs_tree_unlock(next);
2100
2101 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2102 ret = btrfs_free_and_pin_reserved_extent(root,
2103 path->nodes[*level]->start,
2104 path->nodes[*level]->len);
2105 BUG_ON(ret);
2106 }
2107 free_extent_buffer(path->nodes[*level]);
2108 path->nodes[*level] = NULL;
2109 *level = i + 1;
2110 }
2111 }
2112 return 1;
2113 }
2114
2115 /*
2116 * drop the reference count on the tree rooted at 'snap'. This traverses
2117 * the tree freeing any blocks that have a ref count of zero after being
2118 * decremented.
2119 */
2120 static int walk_log_tree(struct btrfs_trans_handle *trans,
2121 struct btrfs_root *log, struct walk_control *wc)
2122 {
2123 int ret = 0;
2124 int wret;
2125 int level;
2126 struct btrfs_path *path;
2127 int i;
2128 int orig_level;
2129
2130 path = btrfs_alloc_path();
2131 if (!path)
2132 return -ENOMEM;
2133
2134 level = btrfs_header_level(log->node);
2135 orig_level = level;
2136 path->nodes[level] = log->node;
2137 extent_buffer_get(log->node);
2138 path->slots[level] = 0;
2139
2140 while (1) {
2141 wret = walk_down_log_tree(trans, log, path, &level, wc);
2142 if (wret > 0)
2143 break;
2144 if (wret < 0) {
2145 ret = wret;
2146 goto out;
2147 }
2148
2149 wret = walk_up_log_tree(trans, log, path, &level, wc);
2150 if (wret > 0)
2151 break;
2152 if (wret < 0) {
2153 ret = wret;
2154 goto out;
2155 }
2156 }
2157
2158 /* was the root node processed? if not, catch it here */
2159 if (path->nodes[orig_level]) {
2160 ret = wc->process_func(log, path->nodes[orig_level], wc,
2161 btrfs_header_generation(path->nodes[orig_level]));
2162 if (ret)
2163 goto out;
2164 if (wc->free) {
2165 struct extent_buffer *next;
2166
2167 next = path->nodes[orig_level];
2168
2169 btrfs_tree_lock(next);
2170 btrfs_set_lock_blocking(next);
2171 clean_tree_block(trans, log, next);
2172 btrfs_wait_tree_block_writeback(next);
2173 btrfs_tree_unlock(next);
2174
2175 WARN_ON(log->root_key.objectid !=
2176 BTRFS_TREE_LOG_OBJECTID);
2177 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2178 next->len);
2179 BUG_ON(ret); /* -ENOMEM or logic errors */
2180 }
2181 }
2182
2183 out:
2184 for (i = 0; i <= orig_level; i++) {
2185 if (path->nodes[i]) {
2186 free_extent_buffer(path->nodes[i]);
2187 path->nodes[i] = NULL;
2188 }
2189 }
2190 btrfs_free_path(path);
2191 return ret;
2192 }
2193
2194 /*
2195 * helper function to update the item for a given subvolumes log root
2196 * in the tree of log roots
2197 */
2198 static int update_log_root(struct btrfs_trans_handle *trans,
2199 struct btrfs_root *log)
2200 {
2201 int ret;
2202
2203 if (log->log_transid == 1) {
2204 /* insert root item on the first sync */
2205 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2206 &log->root_key, &log->root_item);
2207 } else {
2208 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2209 &log->root_key, &log->root_item);
2210 }
2211 return ret;
2212 }
2213
2214 static int wait_log_commit(struct btrfs_trans_handle *trans,
2215 struct btrfs_root *root, unsigned long transid)
2216 {
2217 DEFINE_WAIT(wait);
2218 int index = transid % 2;
2219
2220 /*
2221 * we only allow two pending log transactions at a time,
2222 * so we know that if ours is more than 2 older than the
2223 * current transaction, we're done
2224 */
2225 do {
2226 prepare_to_wait(&root->log_commit_wait[index],
2227 &wait, TASK_UNINTERRUPTIBLE);
2228 mutex_unlock(&root->log_mutex);
2229
2230 if (root->fs_info->last_trans_log_full_commit !=
2231 trans->transid && root->log_transid < transid + 2 &&
2232 atomic_read(&root->log_commit[index]))
2233 schedule();
2234
2235 finish_wait(&root->log_commit_wait[index], &wait);
2236 mutex_lock(&root->log_mutex);
2237 } while (root->fs_info->last_trans_log_full_commit !=
2238 trans->transid && root->log_transid < transid + 2 &&
2239 atomic_read(&root->log_commit[index]));
2240 return 0;
2241 }
2242
2243 static void wait_for_writer(struct btrfs_trans_handle *trans,
2244 struct btrfs_root *root)
2245 {
2246 DEFINE_WAIT(wait);
2247 while (root->fs_info->last_trans_log_full_commit !=
2248 trans->transid && atomic_read(&root->log_writers)) {
2249 prepare_to_wait(&root->log_writer_wait,
2250 &wait, TASK_UNINTERRUPTIBLE);
2251 mutex_unlock(&root->log_mutex);
2252 if (root->fs_info->last_trans_log_full_commit !=
2253 trans->transid && atomic_read(&root->log_writers))
2254 schedule();
2255 mutex_lock(&root->log_mutex);
2256 finish_wait(&root->log_writer_wait, &wait);
2257 }
2258 }
2259
2260 /*
2261 * btrfs_sync_log does sends a given tree log down to the disk and
2262 * updates the super blocks to record it. When this call is done,
2263 * you know that any inodes previously logged are safely on disk only
2264 * if it returns 0.
2265 *
2266 * Any other return value means you need to call btrfs_commit_transaction.
2267 * Some of the edge cases for fsyncing directories that have had unlinks
2268 * or renames done in the past mean that sometimes the only safe
2269 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2270 * that has happened.
2271 */
2272 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2273 struct btrfs_root *root)
2274 {
2275 int index1;
2276 int index2;
2277 int mark;
2278 int ret;
2279 struct btrfs_root *log = root->log_root;
2280 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2281 unsigned long log_transid = 0;
2282
2283 mutex_lock(&root->log_mutex);
2284 index1 = root->log_transid % 2;
2285 if (atomic_read(&root->log_commit[index1])) {
2286 wait_log_commit(trans, root, root->log_transid);
2287 mutex_unlock(&root->log_mutex);
2288 return 0;
2289 }
2290 atomic_set(&root->log_commit[index1], 1);
2291
2292 /* wait for previous tree log sync to complete */
2293 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2294 wait_log_commit(trans, root, root->log_transid - 1);
2295 while (1) {
2296 int batch = atomic_read(&root->log_batch);
2297 /* when we're on an ssd, just kick the log commit out */
2298 if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2299 mutex_unlock(&root->log_mutex);
2300 schedule_timeout_uninterruptible(1);
2301 mutex_lock(&root->log_mutex);
2302 }
2303 wait_for_writer(trans, root);
2304 if (batch == atomic_read(&root->log_batch))
2305 break;
2306 }
2307
2308 /* bail out if we need to do a full commit */
2309 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2310 ret = -EAGAIN;
2311 mutex_unlock(&root->log_mutex);
2312 goto out;
2313 }
2314
2315 log_transid = root->log_transid;
2316 if (log_transid % 2 == 0)
2317 mark = EXTENT_DIRTY;
2318 else
2319 mark = EXTENT_NEW;
2320
2321 /* we start IO on all the marked extents here, but we don't actually
2322 * wait for them until later.
2323 */
2324 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2325 if (ret) {
2326 btrfs_abort_transaction(trans, root, ret);
2327 mutex_unlock(&root->log_mutex);
2328 goto out;
2329 }
2330
2331 btrfs_set_root_node(&log->root_item, log->node);
2332
2333 root->log_transid++;
2334 log->log_transid = root->log_transid;
2335 root->log_start_pid = 0;
2336 smp_mb();
2337 /*
2338 * IO has been started, blocks of the log tree have WRITTEN flag set
2339 * in their headers. new modifications of the log will be written to
2340 * new positions. so it's safe to allow log writers to go in.
2341 */
2342 mutex_unlock(&root->log_mutex);
2343
2344 mutex_lock(&log_root_tree->log_mutex);
2345 atomic_inc(&log_root_tree->log_batch);
2346 atomic_inc(&log_root_tree->log_writers);
2347 mutex_unlock(&log_root_tree->log_mutex);
2348
2349 ret = update_log_root(trans, log);
2350
2351 mutex_lock(&log_root_tree->log_mutex);
2352 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2353 smp_mb();
2354 if (waitqueue_active(&log_root_tree->log_writer_wait))
2355 wake_up(&log_root_tree->log_writer_wait);
2356 }
2357
2358 if (ret) {
2359 if (ret != -ENOSPC) {
2360 btrfs_abort_transaction(trans, root, ret);
2361 mutex_unlock(&log_root_tree->log_mutex);
2362 goto out;
2363 }
2364 root->fs_info->last_trans_log_full_commit = trans->transid;
2365 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2366 mutex_unlock(&log_root_tree->log_mutex);
2367 ret = -EAGAIN;
2368 goto out;
2369 }
2370
2371 index2 = log_root_tree->log_transid % 2;
2372 if (atomic_read(&log_root_tree->log_commit[index2])) {
2373 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2374 wait_log_commit(trans, log_root_tree,
2375 log_root_tree->log_transid);
2376 mutex_unlock(&log_root_tree->log_mutex);
2377 ret = 0;
2378 goto out;
2379 }
2380 atomic_set(&log_root_tree->log_commit[index2], 1);
2381
2382 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2383 wait_log_commit(trans, log_root_tree,
2384 log_root_tree->log_transid - 1);
2385 }
2386
2387 wait_for_writer(trans, log_root_tree);
2388
2389 /*
2390 * now that we've moved on to the tree of log tree roots,
2391 * check the full commit flag again
2392 */
2393 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2394 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2395 mutex_unlock(&log_root_tree->log_mutex);
2396 ret = -EAGAIN;
2397 goto out_wake_log_root;
2398 }
2399
2400 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2401 &log_root_tree->dirty_log_pages,
2402 EXTENT_DIRTY | EXTENT_NEW);
2403 if (ret) {
2404 btrfs_abort_transaction(trans, root, ret);
2405 mutex_unlock(&log_root_tree->log_mutex);
2406 goto out_wake_log_root;
2407 }
2408 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2409
2410 btrfs_set_super_log_root(root->fs_info->super_for_commit,
2411 log_root_tree->node->start);
2412 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2413 btrfs_header_level(log_root_tree->node));
2414
2415 log_root_tree->log_transid++;
2416 smp_mb();
2417
2418 mutex_unlock(&log_root_tree->log_mutex);
2419
2420 /*
2421 * nobody else is going to jump in and write the the ctree
2422 * super here because the log_commit atomic below is protecting
2423 * us. We must be called with a transaction handle pinning
2424 * the running transaction open, so a full commit can't hop
2425 * in and cause problems either.
2426 */
2427 btrfs_scrub_pause_super(root);
2428 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2429 btrfs_scrub_continue_super(root);
2430 if (ret) {
2431 btrfs_abort_transaction(trans, root, ret);
2432 goto out_wake_log_root;
2433 }
2434
2435 mutex_lock(&root->log_mutex);
2436 if (root->last_log_commit < log_transid)
2437 root->last_log_commit = log_transid;
2438 mutex_unlock(&root->log_mutex);
2439
2440 out_wake_log_root:
2441 atomic_set(&log_root_tree->log_commit[index2], 0);
2442 smp_mb();
2443 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2444 wake_up(&log_root_tree->log_commit_wait[index2]);
2445 out:
2446 atomic_set(&root->log_commit[index1], 0);
2447 smp_mb();
2448 if (waitqueue_active(&root->log_commit_wait[index1]))
2449 wake_up(&root->log_commit_wait[index1]);
2450 return ret;
2451 }
2452
2453 static void free_log_tree(struct btrfs_trans_handle *trans,
2454 struct btrfs_root *log)
2455 {
2456 int ret;
2457 u64 start;
2458 u64 end;
2459 struct walk_control wc = {
2460 .free = 1,
2461 .process_func = process_one_buffer
2462 };
2463
2464 ret = walk_log_tree(trans, log, &wc);
2465 BUG_ON(ret);
2466
2467 while (1) {
2468 ret = find_first_extent_bit(&log->dirty_log_pages,
2469 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2470 NULL);
2471 if (ret)
2472 break;
2473
2474 clear_extent_bits(&log->dirty_log_pages, start, end,
2475 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2476 }
2477
2478 free_extent_buffer(log->node);
2479 kfree(log);
2480 }
2481
2482 /*
2483 * free all the extents used by the tree log. This should be called
2484 * at commit time of the full transaction
2485 */
2486 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2487 {
2488 if (root->log_root) {
2489 free_log_tree(trans, root->log_root);
2490 root->log_root = NULL;
2491 }
2492 return 0;
2493 }
2494
2495 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2496 struct btrfs_fs_info *fs_info)
2497 {
2498 if (fs_info->log_root_tree) {
2499 free_log_tree(trans, fs_info->log_root_tree);
2500 fs_info->log_root_tree = NULL;
2501 }
2502 return 0;
2503 }
2504
2505 /*
2506 * If both a file and directory are logged, and unlinks or renames are
2507 * mixed in, we have a few interesting corners:
2508 *
2509 * create file X in dir Y
2510 * link file X to X.link in dir Y
2511 * fsync file X
2512 * unlink file X but leave X.link
2513 * fsync dir Y
2514 *
2515 * After a crash we would expect only X.link to exist. But file X
2516 * didn't get fsync'd again so the log has back refs for X and X.link.
2517 *
2518 * We solve this by removing directory entries and inode backrefs from the
2519 * log when a file that was logged in the current transaction is
2520 * unlinked. Any later fsync will include the updated log entries, and
2521 * we'll be able to reconstruct the proper directory items from backrefs.
2522 *
2523 * This optimizations allows us to avoid relogging the entire inode
2524 * or the entire directory.
2525 */
2526 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2527 struct btrfs_root *root,
2528 const char *name, int name_len,
2529 struct inode *dir, u64 index)
2530 {
2531 struct btrfs_root *log;
2532 struct btrfs_dir_item *di;
2533 struct btrfs_path *path;
2534 int ret;
2535 int err = 0;
2536 int bytes_del = 0;
2537 u64 dir_ino = btrfs_ino(dir);
2538
2539 if (BTRFS_I(dir)->logged_trans < trans->transid)
2540 return 0;
2541
2542 ret = join_running_log_trans(root);
2543 if (ret)
2544 return 0;
2545
2546 mutex_lock(&BTRFS_I(dir)->log_mutex);
2547
2548 log = root->log_root;
2549 path = btrfs_alloc_path();
2550 if (!path) {
2551 err = -ENOMEM;
2552 goto out_unlock;
2553 }
2554
2555 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2556 name, name_len, -1);
2557 if (IS_ERR(di)) {
2558 err = PTR_ERR(di);
2559 goto fail;
2560 }
2561 if (di) {
2562 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2563 bytes_del += name_len;
2564 BUG_ON(ret);
2565 }
2566 btrfs_release_path(path);
2567 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2568 index, name, name_len, -1);
2569 if (IS_ERR(di)) {
2570 err = PTR_ERR(di);
2571 goto fail;
2572 }
2573 if (di) {
2574 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2575 bytes_del += name_len;
2576 BUG_ON(ret);
2577 }
2578
2579 /* update the directory size in the log to reflect the names
2580 * we have removed
2581 */
2582 if (bytes_del) {
2583 struct btrfs_key key;
2584
2585 key.objectid = dir_ino;
2586 key.offset = 0;
2587 key.type = BTRFS_INODE_ITEM_KEY;
2588 btrfs_release_path(path);
2589
2590 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2591 if (ret < 0) {
2592 err = ret;
2593 goto fail;
2594 }
2595 if (ret == 0) {
2596 struct btrfs_inode_item *item;
2597 u64 i_size;
2598
2599 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2600 struct btrfs_inode_item);
2601 i_size = btrfs_inode_size(path->nodes[0], item);
2602 if (i_size > bytes_del)
2603 i_size -= bytes_del;
2604 else
2605 i_size = 0;
2606 btrfs_set_inode_size(path->nodes[0], item, i_size);
2607 btrfs_mark_buffer_dirty(path->nodes[0]);
2608 } else
2609 ret = 0;
2610 btrfs_release_path(path);
2611 }
2612 fail:
2613 btrfs_free_path(path);
2614 out_unlock:
2615 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2616 if (ret == -ENOSPC) {
2617 root->fs_info->last_trans_log_full_commit = trans->transid;
2618 ret = 0;
2619 } else if (ret < 0)
2620 btrfs_abort_transaction(trans, root, ret);
2621
2622 btrfs_end_log_trans(root);
2623
2624 return err;
2625 }
2626
2627 /* see comments for btrfs_del_dir_entries_in_log */
2628 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2629 struct btrfs_root *root,
2630 const char *name, int name_len,
2631 struct inode *inode, u64 dirid)
2632 {
2633 struct btrfs_root *log;
2634 u64 index;
2635 int ret;
2636
2637 if (BTRFS_I(inode)->logged_trans < trans->transid)
2638 return 0;
2639
2640 ret = join_running_log_trans(root);
2641 if (ret)
2642 return 0;
2643 log = root->log_root;
2644 mutex_lock(&BTRFS_I(inode)->log_mutex);
2645
2646 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2647 dirid, &index);
2648 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2649 if (ret == -ENOSPC) {
2650 root->fs_info->last_trans_log_full_commit = trans->transid;
2651 ret = 0;
2652 } else if (ret < 0 && ret != -ENOENT)
2653 btrfs_abort_transaction(trans, root, ret);
2654 btrfs_end_log_trans(root);
2655
2656 return ret;
2657 }
2658
2659 /*
2660 * creates a range item in the log for 'dirid'. first_offset and
2661 * last_offset tell us which parts of the key space the log should
2662 * be considered authoritative for.
2663 */
2664 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2665 struct btrfs_root *log,
2666 struct btrfs_path *path,
2667 int key_type, u64 dirid,
2668 u64 first_offset, u64 last_offset)
2669 {
2670 int ret;
2671 struct btrfs_key key;
2672 struct btrfs_dir_log_item *item;
2673
2674 key.objectid = dirid;
2675 key.offset = first_offset;
2676 if (key_type == BTRFS_DIR_ITEM_KEY)
2677 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2678 else
2679 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2680 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2681 if (ret)
2682 return ret;
2683
2684 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2685 struct btrfs_dir_log_item);
2686 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2687 btrfs_mark_buffer_dirty(path->nodes[0]);
2688 btrfs_release_path(path);
2689 return 0;
2690 }
2691
2692 /*
2693 * log all the items included in the current transaction for a given
2694 * directory. This also creates the range items in the log tree required
2695 * to replay anything deleted before the fsync
2696 */
2697 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2698 struct btrfs_root *root, struct inode *inode,
2699 struct btrfs_path *path,
2700 struct btrfs_path *dst_path, int key_type,
2701 u64 min_offset, u64 *last_offset_ret)
2702 {
2703 struct btrfs_key min_key;
2704 struct btrfs_key max_key;
2705 struct btrfs_root *log = root->log_root;
2706 struct extent_buffer *src;
2707 int err = 0;
2708 int ret;
2709 int i;
2710 int nritems;
2711 u64 first_offset = min_offset;
2712 u64 last_offset = (u64)-1;
2713 u64 ino = btrfs_ino(inode);
2714
2715 log = root->log_root;
2716 max_key.objectid = ino;
2717 max_key.offset = (u64)-1;
2718 max_key.type = key_type;
2719
2720 min_key.objectid = ino;
2721 min_key.type = key_type;
2722 min_key.offset = min_offset;
2723
2724 path->keep_locks = 1;
2725
2726 ret = btrfs_search_forward(root, &min_key, &max_key,
2727 path, 0, trans->transid);
2728
2729 /*
2730 * we didn't find anything from this transaction, see if there
2731 * is anything at all
2732 */
2733 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2734 min_key.objectid = ino;
2735 min_key.type = key_type;
2736 min_key.offset = (u64)-1;
2737 btrfs_release_path(path);
2738 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2739 if (ret < 0) {
2740 btrfs_release_path(path);
2741 return ret;
2742 }
2743 ret = btrfs_previous_item(root, path, ino, key_type);
2744
2745 /* if ret == 0 there are items for this type,
2746 * create a range to tell us the last key of this type.
2747 * otherwise, there are no items in this directory after
2748 * *min_offset, and we create a range to indicate that.
2749 */
2750 if (ret == 0) {
2751 struct btrfs_key tmp;
2752 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2753 path->slots[0]);
2754 if (key_type == tmp.type)
2755 first_offset = max(min_offset, tmp.offset) + 1;
2756 }
2757 goto done;
2758 }
2759
2760 /* go backward to find any previous key */
2761 ret = btrfs_previous_item(root, path, ino, key_type);
2762 if (ret == 0) {
2763 struct btrfs_key tmp;
2764 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2765 if (key_type == tmp.type) {
2766 first_offset = tmp.offset;
2767 ret = overwrite_item(trans, log, dst_path,
2768 path->nodes[0], path->slots[0],
2769 &tmp);
2770 if (ret) {
2771 err = ret;
2772 goto done;
2773 }
2774 }
2775 }
2776 btrfs_release_path(path);
2777
2778 /* find the first key from this transaction again */
2779 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2780 if (ret != 0) {
2781 WARN_ON(1);
2782 goto done;
2783 }
2784
2785 /*
2786 * we have a block from this transaction, log every item in it
2787 * from our directory
2788 */
2789 while (1) {
2790 struct btrfs_key tmp;
2791 src = path->nodes[0];
2792 nritems = btrfs_header_nritems(src);
2793 for (i = path->slots[0]; i < nritems; i++) {
2794 btrfs_item_key_to_cpu(src, &min_key, i);
2795
2796 if (min_key.objectid != ino || min_key.type != key_type)
2797 goto done;
2798 ret = overwrite_item(trans, log, dst_path, src, i,
2799 &min_key);
2800 if (ret) {
2801 err = ret;
2802 goto done;
2803 }
2804 }
2805 path->slots[0] = nritems;
2806
2807 /*
2808 * look ahead to the next item and see if it is also
2809 * from this directory and from this transaction
2810 */
2811 ret = btrfs_next_leaf(root, path);
2812 if (ret == 1) {
2813 last_offset = (u64)-1;
2814 goto done;
2815 }
2816 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2817 if (tmp.objectid != ino || tmp.type != key_type) {
2818 last_offset = (u64)-1;
2819 goto done;
2820 }
2821 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2822 ret = overwrite_item(trans, log, dst_path,
2823 path->nodes[0], path->slots[0],
2824 &tmp);
2825 if (ret)
2826 err = ret;
2827 else
2828 last_offset = tmp.offset;
2829 goto done;
2830 }
2831 }
2832 done:
2833 btrfs_release_path(path);
2834 btrfs_release_path(dst_path);
2835
2836 if (err == 0) {
2837 *last_offset_ret = last_offset;
2838 /*
2839 * insert the log range keys to indicate where the log
2840 * is valid
2841 */
2842 ret = insert_dir_log_key(trans, log, path, key_type,
2843 ino, first_offset, last_offset);
2844 if (ret)
2845 err = ret;
2846 }
2847 return err;
2848 }
2849
2850 /*
2851 * logging directories is very similar to logging inodes, We find all the items
2852 * from the current transaction and write them to the log.
2853 *
2854 * The recovery code scans the directory in the subvolume, and if it finds a
2855 * key in the range logged that is not present in the log tree, then it means
2856 * that dir entry was unlinked during the transaction.
2857 *
2858 * In order for that scan to work, we must include one key smaller than
2859 * the smallest logged by this transaction and one key larger than the largest
2860 * key logged by this transaction.
2861 */
2862 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2863 struct btrfs_root *root, struct inode *inode,
2864 struct btrfs_path *path,
2865 struct btrfs_path *dst_path)
2866 {
2867 u64 min_key;
2868 u64 max_key;
2869 int ret;
2870 int key_type = BTRFS_DIR_ITEM_KEY;
2871
2872 again:
2873 min_key = 0;
2874 max_key = 0;
2875 while (1) {
2876 ret = log_dir_items(trans, root, inode, path,
2877 dst_path, key_type, min_key,
2878 &max_key);
2879 if (ret)
2880 return ret;
2881 if (max_key == (u64)-1)
2882 break;
2883 min_key = max_key + 1;
2884 }
2885
2886 if (key_type == BTRFS_DIR_ITEM_KEY) {
2887 key_type = BTRFS_DIR_INDEX_KEY;
2888 goto again;
2889 }
2890 return 0;
2891 }
2892
2893 /*
2894 * a helper function to drop items from the log before we relog an
2895 * inode. max_key_type indicates the highest item type to remove.
2896 * This cannot be run for file data extents because it does not
2897 * free the extents they point to.
2898 */
2899 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2900 struct btrfs_root *log,
2901 struct btrfs_path *path,
2902 u64 objectid, int max_key_type)
2903 {
2904 int ret;
2905 struct btrfs_key key;
2906 struct btrfs_key found_key;
2907 int start_slot;
2908
2909 key.objectid = objectid;
2910 key.type = max_key_type;
2911 key.offset = (u64)-1;
2912
2913 while (1) {
2914 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2915 BUG_ON(ret == 0);
2916 if (ret < 0)
2917 break;
2918
2919 if (path->slots[0] == 0)
2920 break;
2921
2922 path->slots[0]--;
2923 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2924 path->slots[0]);
2925
2926 if (found_key.objectid != objectid)
2927 break;
2928
2929 found_key.offset = 0;
2930 found_key.type = 0;
2931 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
2932 &start_slot);
2933
2934 ret = btrfs_del_items(trans, log, path, start_slot,
2935 path->slots[0] - start_slot + 1);
2936 /*
2937 * If start slot isn't 0 then we don't need to re-search, we've
2938 * found the last guy with the objectid in this tree.
2939 */
2940 if (ret || start_slot != 0)
2941 break;
2942 btrfs_release_path(path);
2943 }
2944 btrfs_release_path(path);
2945 if (ret > 0)
2946 ret = 0;
2947 return ret;
2948 }
2949
2950 static void fill_inode_item(struct btrfs_trans_handle *trans,
2951 struct extent_buffer *leaf,
2952 struct btrfs_inode_item *item,
2953 struct inode *inode, int log_inode_only)
2954 {
2955 struct btrfs_map_token token;
2956
2957 btrfs_init_map_token(&token);
2958
2959 if (log_inode_only) {
2960 /* set the generation to zero so the recover code
2961 * can tell the difference between an logging
2962 * just to say 'this inode exists' and a logging
2963 * to say 'update this inode with these values'
2964 */
2965 btrfs_set_token_inode_generation(leaf, item, 0, &token);
2966 btrfs_set_token_inode_size(leaf, item, 0, &token);
2967 } else {
2968 btrfs_set_token_inode_generation(leaf, item,
2969 BTRFS_I(inode)->generation,
2970 &token);
2971 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
2972 }
2973
2974 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
2975 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
2976 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
2977 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
2978
2979 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
2980 inode->i_atime.tv_sec, &token);
2981 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
2982 inode->i_atime.tv_nsec, &token);
2983
2984 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
2985 inode->i_mtime.tv_sec, &token);
2986 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
2987 inode->i_mtime.tv_nsec, &token);
2988
2989 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
2990 inode->i_ctime.tv_sec, &token);
2991 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
2992 inode->i_ctime.tv_nsec, &token);
2993
2994 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
2995 &token);
2996
2997 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
2998 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
2999 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3000 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3001 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3002 }
3003
3004 static int log_inode_item(struct btrfs_trans_handle *trans,
3005 struct btrfs_root *log, struct btrfs_path *path,
3006 struct inode *inode)
3007 {
3008 struct btrfs_inode_item *inode_item;
3009 struct btrfs_key key;
3010 int ret;
3011
3012 memcpy(&key, &BTRFS_I(inode)->location, sizeof(key));
3013 ret = btrfs_insert_empty_item(trans, log, path, &key,
3014 sizeof(*inode_item));
3015 if (ret && ret != -EEXIST)
3016 return ret;
3017 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3018 struct btrfs_inode_item);
3019 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3020 btrfs_release_path(path);
3021 return 0;
3022 }
3023
3024 static noinline int copy_items(struct btrfs_trans_handle *trans,
3025 struct inode *inode,
3026 struct btrfs_path *dst_path,
3027 struct extent_buffer *src,
3028 int start_slot, int nr, int inode_only)
3029 {
3030 unsigned long src_offset;
3031 unsigned long dst_offset;
3032 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3033 struct btrfs_file_extent_item *extent;
3034 struct btrfs_inode_item *inode_item;
3035 int ret;
3036 struct btrfs_key *ins_keys;
3037 u32 *ins_sizes;
3038 char *ins_data;
3039 int i;
3040 struct list_head ordered_sums;
3041 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3042
3043 INIT_LIST_HEAD(&ordered_sums);
3044
3045 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3046 nr * sizeof(u32), GFP_NOFS);
3047 if (!ins_data)
3048 return -ENOMEM;
3049
3050 ins_sizes = (u32 *)ins_data;
3051 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3052
3053 for (i = 0; i < nr; i++) {
3054 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3055 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3056 }
3057 ret = btrfs_insert_empty_items(trans, log, dst_path,
3058 ins_keys, ins_sizes, nr);
3059 if (ret) {
3060 kfree(ins_data);
3061 return ret;
3062 }
3063
3064 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3065 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3066 dst_path->slots[0]);
3067
3068 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3069
3070 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3071 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3072 dst_path->slots[0],
3073 struct btrfs_inode_item);
3074 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3075 inode, inode_only == LOG_INODE_EXISTS);
3076 } else {
3077 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3078 src_offset, ins_sizes[i]);
3079 }
3080
3081 /* take a reference on file data extents so that truncates
3082 * or deletes of this inode don't have to relog the inode
3083 * again
3084 */
3085 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3086 !skip_csum) {
3087 int found_type;
3088 extent = btrfs_item_ptr(src, start_slot + i,
3089 struct btrfs_file_extent_item);
3090
3091 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3092 continue;
3093
3094 found_type = btrfs_file_extent_type(src, extent);
3095 if (found_type == BTRFS_FILE_EXTENT_REG) {
3096 u64 ds, dl, cs, cl;
3097 ds = btrfs_file_extent_disk_bytenr(src,
3098 extent);
3099 /* ds == 0 is a hole */
3100 if (ds == 0)
3101 continue;
3102
3103 dl = btrfs_file_extent_disk_num_bytes(src,
3104 extent);
3105 cs = btrfs_file_extent_offset(src, extent);
3106 cl = btrfs_file_extent_num_bytes(src,
3107 extent);
3108 if (btrfs_file_extent_compression(src,
3109 extent)) {
3110 cs = 0;
3111 cl = dl;
3112 }
3113
3114 ret = btrfs_lookup_csums_range(
3115 log->fs_info->csum_root,
3116 ds + cs, ds + cs + cl - 1,
3117 &ordered_sums, 0);
3118 BUG_ON(ret);
3119 }
3120 }
3121 }
3122
3123 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3124 btrfs_release_path(dst_path);
3125 kfree(ins_data);
3126
3127 /*
3128 * we have to do this after the loop above to avoid changing the
3129 * log tree while trying to change the log tree.
3130 */
3131 ret = 0;
3132 while (!list_empty(&ordered_sums)) {
3133 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3134 struct btrfs_ordered_sum,
3135 list);
3136 if (!ret)
3137 ret = btrfs_csum_file_blocks(trans, log, sums);
3138 list_del(&sums->list);
3139 kfree(sums);
3140 }
3141 return ret;
3142 }
3143
3144 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3145 {
3146 struct extent_map *em1, *em2;
3147
3148 em1 = list_entry(a, struct extent_map, list);
3149 em2 = list_entry(b, struct extent_map, list);
3150
3151 if (em1->start < em2->start)
3152 return -1;
3153 else if (em1->start > em2->start)
3154 return 1;
3155 return 0;
3156 }
3157
3158 static int drop_adjacent_extents(struct btrfs_trans_handle *trans,
3159 struct btrfs_root *root, struct inode *inode,
3160 struct extent_map *em,
3161 struct btrfs_path *path)
3162 {
3163 struct btrfs_file_extent_item *fi;
3164 struct extent_buffer *leaf;
3165 struct btrfs_key key, new_key;
3166 struct btrfs_map_token token;
3167 u64 extent_end;
3168 u64 extent_offset = 0;
3169 int extent_type;
3170 int del_slot = 0;
3171 int del_nr = 0;
3172 int ret = 0;
3173
3174 while (1) {
3175 btrfs_init_map_token(&token);
3176 leaf = path->nodes[0];
3177 path->slots[0]++;
3178 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3179 if (del_nr) {
3180 ret = btrfs_del_items(trans, root, path,
3181 del_slot, del_nr);
3182 if (ret)
3183 return ret;
3184 del_nr = 0;
3185 }
3186
3187 ret = btrfs_next_leaf_write(trans, root, path, 1);
3188 if (ret < 0)
3189 return ret;
3190 if (ret > 0)
3191 return 0;
3192 leaf = path->nodes[0];
3193 }
3194
3195 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3196 if (key.objectid != btrfs_ino(inode) ||
3197 key.type != BTRFS_EXTENT_DATA_KEY ||
3198 key.offset >= em->start + em->len)
3199 break;
3200
3201 fi = btrfs_item_ptr(leaf, path->slots[0],
3202 struct btrfs_file_extent_item);
3203 extent_type = btrfs_token_file_extent_type(leaf, fi, &token);
3204 if (extent_type == BTRFS_FILE_EXTENT_REG ||
3205 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
3206 extent_offset = btrfs_token_file_extent_offset(leaf,
3207 fi, &token);
3208 extent_end = key.offset +
3209 btrfs_token_file_extent_num_bytes(leaf, fi,
3210 &token);
3211 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3212 extent_end = key.offset +
3213 btrfs_file_extent_inline_len(leaf, fi);
3214 } else {
3215 BUG();
3216 }
3217
3218 if (extent_end <= em->len + em->start) {
3219 if (!del_nr) {
3220 del_slot = path->slots[0];
3221 }
3222 del_nr++;
3223 continue;
3224 }
3225
3226 /*
3227 * Ok so we'll ignore previous items if we log a new extent,
3228 * which can lead to overlapping extents, so if we have an
3229 * existing extent we want to adjust we _have_ to check the next
3230 * guy to make sure we even need this extent anymore, this keeps
3231 * us from panicing in set_item_key_safe.
3232 */
3233 if (path->slots[0] < btrfs_header_nritems(leaf) - 1) {
3234 struct btrfs_key tmp_key;
3235
3236 btrfs_item_key_to_cpu(leaf, &tmp_key,
3237 path->slots[0] + 1);
3238 if (tmp_key.objectid == btrfs_ino(inode) &&
3239 tmp_key.type == BTRFS_EXTENT_DATA_KEY &&
3240 tmp_key.offset <= em->start + em->len) {
3241 if (!del_nr)
3242 del_slot = path->slots[0];
3243 del_nr++;
3244 continue;
3245 }
3246 }
3247
3248 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
3249 memcpy(&new_key, &key, sizeof(new_key));
3250 new_key.offset = em->start + em->len;
3251 btrfs_set_item_key_safe(trans, root, path, &new_key);
3252 extent_offset += em->start + em->len - key.offset;
3253 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset,
3254 &token);
3255 btrfs_set_token_file_extent_num_bytes(leaf, fi, extent_end -
3256 (em->start + em->len),
3257 &token);
3258 btrfs_mark_buffer_dirty(leaf);
3259 }
3260
3261 if (del_nr)
3262 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
3263
3264 return ret;
3265 }
3266
3267 static int log_one_extent(struct btrfs_trans_handle *trans,
3268 struct inode *inode, struct btrfs_root *root,
3269 struct extent_map *em, struct btrfs_path *path)
3270 {
3271 struct btrfs_root *log = root->log_root;
3272 struct btrfs_file_extent_item *fi;
3273 struct extent_buffer *leaf;
3274 struct list_head ordered_sums;
3275 struct btrfs_map_token token;
3276 struct btrfs_key key;
3277 u64 csum_offset = em->mod_start - em->start;
3278 u64 csum_len = em->mod_len;
3279 u64 extent_offset = em->start - em->orig_start;
3280 u64 block_len;
3281 int ret;
3282 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3283
3284 INIT_LIST_HEAD(&ordered_sums);
3285 btrfs_init_map_token(&token);
3286 key.objectid = btrfs_ino(inode);
3287 key.type = BTRFS_EXTENT_DATA_KEY;
3288 key.offset = em->start;
3289 path->really_keep_locks = 1;
3290
3291 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*fi));
3292 if (ret && ret != -EEXIST) {
3293 path->really_keep_locks = 0;
3294 return ret;
3295 }
3296 leaf = path->nodes[0];
3297 fi = btrfs_item_ptr(leaf, path->slots[0],
3298 struct btrfs_file_extent_item);
3299 btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3300 &token);
3301 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3302 skip_csum = true;
3303 btrfs_set_token_file_extent_type(leaf, fi,
3304 BTRFS_FILE_EXTENT_PREALLOC,
3305 &token);
3306 } else {
3307 btrfs_set_token_file_extent_type(leaf, fi,
3308 BTRFS_FILE_EXTENT_REG,
3309 &token);
3310 if (em->block_start == 0)
3311 skip_csum = true;
3312 }
3313
3314 block_len = max(em->block_len, em->orig_block_len);
3315 if (em->compress_type != BTRFS_COMPRESS_NONE) {
3316 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3317 em->block_start,
3318 &token);
3319 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3320 &token);
3321 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3322 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3323 em->block_start -
3324 extent_offset, &token);
3325 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3326 &token);
3327 } else {
3328 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3329 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3330 &token);
3331 }
3332
3333 btrfs_set_token_file_extent_offset(leaf, fi,
3334 em->start - em->orig_start,
3335 &token);
3336 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3337 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->len, &token);
3338 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3339 &token);
3340 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3341 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3342 btrfs_mark_buffer_dirty(leaf);
3343
3344 /*
3345 * Have to check the extent to the right of us to make sure it doesn't
3346 * fall in our current range. We're ok if the previous extent is in our
3347 * range since the recovery stuff will run us in key order and thus just
3348 * drop the part we overwrote.
3349 */
3350 ret = drop_adjacent_extents(trans, log, inode, em, path);
3351 btrfs_release_path(path);
3352 path->really_keep_locks = 0;
3353 if (ret) {
3354 return ret;
3355 }
3356
3357 if (skip_csum)
3358 return 0;
3359
3360 /* block start is already adjusted for the file extent offset. */
3361 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3362 em->block_start + csum_offset,
3363 em->block_start + csum_offset +
3364 csum_len - 1, &ordered_sums, 0);
3365 if (ret)
3366 return ret;
3367
3368 while (!list_empty(&ordered_sums)) {
3369 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3370 struct btrfs_ordered_sum,
3371 list);
3372 if (!ret)
3373 ret = btrfs_csum_file_blocks(trans, log, sums);
3374 list_del(&sums->list);
3375 kfree(sums);
3376 }
3377
3378 return ret;
3379 }
3380
3381 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3382 struct btrfs_root *root,
3383 struct inode *inode,
3384 struct btrfs_path *path)
3385 {
3386 struct extent_map *em, *n;
3387 struct list_head extents;
3388 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3389 u64 test_gen;
3390 int ret = 0;
3391
3392 INIT_LIST_HEAD(&extents);
3393
3394 write_lock(&tree->lock);
3395 test_gen = root->fs_info->last_trans_committed;
3396
3397 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3398 list_del_init(&em->list);
3399 if (em->generation <= test_gen)
3400 continue;
3401 /* Need a ref to keep it from getting evicted from cache */
3402 atomic_inc(&em->refs);
3403 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3404 list_add_tail(&em->list, &extents);
3405 }
3406
3407 list_sort(NULL, &extents, extent_cmp);
3408
3409 while (!list_empty(&extents)) {
3410 em = list_entry(extents.next, struct extent_map, list);
3411
3412 list_del_init(&em->list);
3413 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
3414
3415 /*
3416 * If we had an error we just need to delete everybody from our
3417 * private list.
3418 */
3419 if (ret) {
3420 free_extent_map(em);
3421 continue;
3422 }
3423
3424 write_unlock(&tree->lock);
3425
3426 ret = log_one_extent(trans, inode, root, em, path);
3427 free_extent_map(em);
3428 write_lock(&tree->lock);
3429 }
3430 WARN_ON(!list_empty(&extents));
3431 write_unlock(&tree->lock);
3432
3433 btrfs_release_path(path);
3434 return ret;
3435 }
3436
3437 /* log a single inode in the tree log.
3438 * At least one parent directory for this inode must exist in the tree
3439 * or be logged already.
3440 *
3441 * Any items from this inode changed by the current transaction are copied
3442 * to the log tree. An extra reference is taken on any extents in this
3443 * file, allowing us to avoid a whole pile of corner cases around logging
3444 * blocks that have been removed from the tree.
3445 *
3446 * See LOG_INODE_ALL and related defines for a description of what inode_only
3447 * does.
3448 *
3449 * This handles both files and directories.
3450 */
3451 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3452 struct btrfs_root *root, struct inode *inode,
3453 int inode_only)
3454 {
3455 struct btrfs_path *path;
3456 struct btrfs_path *dst_path;
3457 struct btrfs_key min_key;
3458 struct btrfs_key max_key;
3459 struct btrfs_root *log = root->log_root;
3460 struct extent_buffer *src = NULL;
3461 int err = 0;
3462 int ret;
3463 int nritems;
3464 int ins_start_slot = 0;
3465 int ins_nr;
3466 bool fast_search = false;
3467 u64 ino = btrfs_ino(inode);
3468
3469 log = root->log_root;
3470
3471 path = btrfs_alloc_path();
3472 if (!path)
3473 return -ENOMEM;
3474 dst_path = btrfs_alloc_path();
3475 if (!dst_path) {
3476 btrfs_free_path(path);
3477 return -ENOMEM;
3478 }
3479
3480 min_key.objectid = ino;
3481 min_key.type = BTRFS_INODE_ITEM_KEY;
3482 min_key.offset = 0;
3483
3484 max_key.objectid = ino;
3485
3486
3487 /* today the code can only do partial logging of directories */
3488 if (S_ISDIR(inode->i_mode) ||
3489 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3490 &BTRFS_I(inode)->runtime_flags) &&
3491 inode_only == LOG_INODE_EXISTS))
3492 max_key.type = BTRFS_XATTR_ITEM_KEY;
3493 else
3494 max_key.type = (u8)-1;
3495 max_key.offset = (u64)-1;
3496
3497 /* Only run delayed items if we are a dir or a new file */
3498 if (S_ISDIR(inode->i_mode) ||
3499 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3500 ret = btrfs_commit_inode_delayed_items(trans, inode);
3501 if (ret) {
3502 btrfs_free_path(path);
3503 btrfs_free_path(dst_path);
3504 return ret;
3505 }
3506 }
3507
3508 mutex_lock(&BTRFS_I(inode)->log_mutex);
3509
3510 /*
3511 * a brute force approach to making sure we get the most uptodate
3512 * copies of everything.
3513 */
3514 if (S_ISDIR(inode->i_mode)) {
3515 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3516
3517 if (inode_only == LOG_INODE_EXISTS)
3518 max_key_type = BTRFS_XATTR_ITEM_KEY;
3519 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3520 } else {
3521 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3522 &BTRFS_I(inode)->runtime_flags)) {
3523 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3524 &BTRFS_I(inode)->runtime_flags);
3525 ret = btrfs_truncate_inode_items(trans, log,
3526 inode, 0, 0);
3527 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3528 &BTRFS_I(inode)->runtime_flags)) {
3529 if (inode_only == LOG_INODE_ALL)
3530 fast_search = true;
3531 max_key.type = BTRFS_XATTR_ITEM_KEY;
3532 ret = drop_objectid_items(trans, log, path, ino,
3533 max_key.type);
3534 } else {
3535 if (inode_only == LOG_INODE_ALL)
3536 fast_search = true;
3537 ret = log_inode_item(trans, log, dst_path, inode);
3538 if (ret) {
3539 err = ret;
3540 goto out_unlock;
3541 }
3542 goto log_extents;
3543 }
3544
3545 }
3546 if (ret) {
3547 err = ret;
3548 goto out_unlock;
3549 }
3550 path->keep_locks = 1;
3551
3552 while (1) {
3553 ins_nr = 0;
3554 ret = btrfs_search_forward(root, &min_key, &max_key,
3555 path, 0, trans->transid);
3556 if (ret != 0)
3557 break;
3558 again:
3559 /* note, ins_nr might be > 0 here, cleanup outside the loop */
3560 if (min_key.objectid != ino)
3561 break;
3562 if (min_key.type > max_key.type)
3563 break;
3564
3565 src = path->nodes[0];
3566 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3567 ins_nr++;
3568 goto next_slot;
3569 } else if (!ins_nr) {
3570 ins_start_slot = path->slots[0];
3571 ins_nr = 1;
3572 goto next_slot;
3573 }
3574
3575 ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3576 ins_nr, inode_only);
3577 if (ret) {
3578 err = ret;
3579 goto out_unlock;
3580 }
3581 ins_nr = 1;
3582 ins_start_slot = path->slots[0];
3583 next_slot:
3584
3585 nritems = btrfs_header_nritems(path->nodes[0]);
3586 path->slots[0]++;
3587 if (path->slots[0] < nritems) {
3588 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
3589 path->slots[0]);
3590 goto again;
3591 }
3592 if (ins_nr) {
3593 ret = copy_items(trans, inode, dst_path, src,
3594 ins_start_slot,
3595 ins_nr, inode_only);
3596 if (ret) {
3597 err = ret;
3598 goto out_unlock;
3599 }
3600 ins_nr = 0;
3601 }
3602 btrfs_release_path(path);
3603
3604 if (min_key.offset < (u64)-1)
3605 min_key.offset++;
3606 else if (min_key.type < (u8)-1)
3607 min_key.type++;
3608 else if (min_key.objectid < (u64)-1)
3609 min_key.objectid++;
3610 else
3611 break;
3612 }
3613 if (ins_nr) {
3614 ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3615 ins_nr, inode_only);
3616 if (ret) {
3617 err = ret;
3618 goto out_unlock;
3619 }
3620 ins_nr = 0;
3621 }
3622
3623 log_extents:
3624 if (fast_search) {
3625 btrfs_release_path(dst_path);
3626 ret = btrfs_log_changed_extents(trans, root, inode, dst_path);
3627 if (ret) {
3628 err = ret;
3629 goto out_unlock;
3630 }
3631 } else {
3632 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3633 struct extent_map *em, *n;
3634
3635 write_lock(&tree->lock);
3636 list_for_each_entry_safe(em, n, &tree->modified_extents, list)
3637 list_del_init(&em->list);
3638 write_unlock(&tree->lock);
3639 }
3640
3641 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
3642 btrfs_release_path(path);
3643 btrfs_release_path(dst_path);
3644 ret = log_directory_changes(trans, root, inode, path, dst_path);
3645 if (ret) {
3646 err = ret;
3647 goto out_unlock;
3648 }
3649 }
3650 BTRFS_I(inode)->logged_trans = trans->transid;
3651 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
3652 out_unlock:
3653 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3654
3655 btrfs_free_path(path);
3656 btrfs_free_path(dst_path);
3657 return err;
3658 }
3659
3660 /*
3661 * follow the dentry parent pointers up the chain and see if any
3662 * of the directories in it require a full commit before they can
3663 * be logged. Returns zero if nothing special needs to be done or 1 if
3664 * a full commit is required.
3665 */
3666 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
3667 struct inode *inode,
3668 struct dentry *parent,
3669 struct super_block *sb,
3670 u64 last_committed)
3671 {
3672 int ret = 0;
3673 struct btrfs_root *root;
3674 struct dentry *old_parent = NULL;
3675
3676 /*
3677 * for regular files, if its inode is already on disk, we don't
3678 * have to worry about the parents at all. This is because
3679 * we can use the last_unlink_trans field to record renames
3680 * and other fun in this file.
3681 */
3682 if (S_ISREG(inode->i_mode) &&
3683 BTRFS_I(inode)->generation <= last_committed &&
3684 BTRFS_I(inode)->last_unlink_trans <= last_committed)
3685 goto out;
3686
3687 if (!S_ISDIR(inode->i_mode)) {
3688 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3689 goto out;
3690 inode = parent->d_inode;
3691 }
3692
3693 while (1) {
3694 BTRFS_I(inode)->logged_trans = trans->transid;
3695 smp_mb();
3696
3697 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3698 root = BTRFS_I(inode)->root;
3699
3700 /*
3701 * make sure any commits to the log are forced
3702 * to be full commits
3703 */
3704 root->fs_info->last_trans_log_full_commit =
3705 trans->transid;
3706 ret = 1;
3707 break;
3708 }
3709
3710 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3711 break;
3712
3713 if (IS_ROOT(parent))
3714 break;
3715
3716 parent = dget_parent(parent);
3717 dput(old_parent);
3718 old_parent = parent;
3719 inode = parent->d_inode;
3720
3721 }
3722 dput(old_parent);
3723 out:
3724 return ret;
3725 }
3726
3727 /*
3728 * helper function around btrfs_log_inode to make sure newly created
3729 * parent directories also end up in the log. A minimal inode and backref
3730 * only logging is done of any parent directories that are older than
3731 * the last committed transaction
3732 */
3733 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3734 struct btrfs_root *root, struct inode *inode,
3735 struct dentry *parent, int exists_only)
3736 {
3737 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3738 struct super_block *sb;
3739 struct dentry *old_parent = NULL;
3740 int ret = 0;
3741 u64 last_committed = root->fs_info->last_trans_committed;
3742
3743 sb = inode->i_sb;
3744
3745 if (btrfs_test_opt(root, NOTREELOG)) {
3746 ret = 1;
3747 goto end_no_trans;
3748 }
3749
3750 if (root->fs_info->last_trans_log_full_commit >
3751 root->fs_info->last_trans_committed) {
3752 ret = 1;
3753 goto end_no_trans;
3754 }
3755
3756 if (root != BTRFS_I(inode)->root ||
3757 btrfs_root_refs(&root->root_item) == 0) {
3758 ret = 1;
3759 goto end_no_trans;
3760 }
3761
3762 ret = check_parent_dirs_for_sync(trans, inode, parent,
3763 sb, last_committed);
3764 if (ret)
3765 goto end_no_trans;
3766
3767 if (btrfs_inode_in_log(inode, trans->transid)) {
3768 ret = BTRFS_NO_LOG_SYNC;
3769 goto end_no_trans;
3770 }
3771
3772 ret = start_log_trans(trans, root);
3773 if (ret)
3774 goto end_trans;
3775
3776 ret = btrfs_log_inode(trans, root, inode, inode_only);
3777 if (ret)
3778 goto end_trans;
3779
3780 /*
3781 * for regular files, if its inode is already on disk, we don't
3782 * have to worry about the parents at all. This is because
3783 * we can use the last_unlink_trans field to record renames
3784 * and other fun in this file.
3785 */
3786 if (S_ISREG(inode->i_mode) &&
3787 BTRFS_I(inode)->generation <= last_committed &&
3788 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3789 ret = 0;
3790 goto end_trans;
3791 }
3792
3793 inode_only = LOG_INODE_EXISTS;
3794 while (1) {
3795 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3796 break;
3797
3798 inode = parent->d_inode;
3799 if (root != BTRFS_I(inode)->root)
3800 break;
3801
3802 if (BTRFS_I(inode)->generation >
3803 root->fs_info->last_trans_committed) {
3804 ret = btrfs_log_inode(trans, root, inode, inode_only);
3805 if (ret)
3806 goto end_trans;
3807 }
3808 if (IS_ROOT(parent))
3809 break;
3810
3811 parent = dget_parent(parent);
3812 dput(old_parent);
3813 old_parent = parent;
3814 }
3815 ret = 0;
3816 end_trans:
3817 dput(old_parent);
3818 if (ret < 0) {
3819 WARN_ON(ret != -ENOSPC);
3820 root->fs_info->last_trans_log_full_commit = trans->transid;
3821 ret = 1;
3822 }
3823 btrfs_end_log_trans(root);
3824 end_no_trans:
3825 return ret;
3826 }
3827
3828 /*
3829 * it is not safe to log dentry if the chunk root has added new
3830 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3831 * If this returns 1, you must commit the transaction to safely get your
3832 * data on disk.
3833 */
3834 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3835 struct btrfs_root *root, struct dentry *dentry)
3836 {
3837 struct dentry *parent = dget_parent(dentry);
3838 int ret;
3839
3840 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3841 dput(parent);
3842
3843 return ret;
3844 }
3845
3846 /*
3847 * should be called during mount to recover any replay any log trees
3848 * from the FS
3849 */
3850 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3851 {
3852 int ret;
3853 struct btrfs_path *path;
3854 struct btrfs_trans_handle *trans;
3855 struct btrfs_key key;
3856 struct btrfs_key found_key;
3857 struct btrfs_key tmp_key;
3858 struct btrfs_root *log;
3859 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3860 struct walk_control wc = {
3861 .process_func = process_one_buffer,
3862 .stage = 0,
3863 };
3864
3865 path = btrfs_alloc_path();
3866 if (!path)
3867 return -ENOMEM;
3868
3869 fs_info->log_root_recovering = 1;
3870
3871 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3872 if (IS_ERR(trans)) {
3873 ret = PTR_ERR(trans);
3874 goto error;
3875 }
3876
3877 wc.trans = trans;
3878 wc.pin = 1;
3879
3880 ret = walk_log_tree(trans, log_root_tree, &wc);
3881 if (ret) {
3882 btrfs_error(fs_info, ret, "Failed to pin buffers while "
3883 "recovering log root tree.");
3884 goto error;
3885 }
3886
3887 again:
3888 key.objectid = BTRFS_TREE_LOG_OBJECTID;
3889 key.offset = (u64)-1;
3890 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3891
3892 while (1) {
3893 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3894
3895 if (ret < 0) {
3896 btrfs_error(fs_info, ret,
3897 "Couldn't find tree log root.");
3898 goto error;
3899 }
3900 if (ret > 0) {
3901 if (path->slots[0] == 0)
3902 break;
3903 path->slots[0]--;
3904 }
3905 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3906 path->slots[0]);
3907 btrfs_release_path(path);
3908 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3909 break;
3910
3911 log = btrfs_read_fs_root_no_radix(log_root_tree,
3912 &found_key);
3913 if (IS_ERR(log)) {
3914 ret = PTR_ERR(log);
3915 btrfs_error(fs_info, ret,
3916 "Couldn't read tree log root.");
3917 goto error;
3918 }
3919
3920 tmp_key.objectid = found_key.offset;
3921 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3922 tmp_key.offset = (u64)-1;
3923
3924 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3925 if (IS_ERR(wc.replay_dest)) {
3926 ret = PTR_ERR(wc.replay_dest);
3927 btrfs_error(fs_info, ret, "Couldn't read target root "
3928 "for tree log recovery.");
3929 goto error;
3930 }
3931
3932 wc.replay_dest->log_root = log;
3933 btrfs_record_root_in_trans(trans, wc.replay_dest);
3934 ret = walk_log_tree(trans, log, &wc);
3935 BUG_ON(ret);
3936
3937 if (wc.stage == LOG_WALK_REPLAY_ALL) {
3938 ret = fixup_inode_link_counts(trans, wc.replay_dest,
3939 path);
3940 BUG_ON(ret);
3941 }
3942
3943 key.offset = found_key.offset - 1;
3944 wc.replay_dest->log_root = NULL;
3945 free_extent_buffer(log->node);
3946 free_extent_buffer(log->commit_root);
3947 kfree(log);
3948
3949 if (found_key.offset == 0)
3950 break;
3951 }
3952 btrfs_release_path(path);
3953
3954 /* step one is to pin it all, step two is to replay just inodes */
3955 if (wc.pin) {
3956 wc.pin = 0;
3957 wc.process_func = replay_one_buffer;
3958 wc.stage = LOG_WALK_REPLAY_INODES;
3959 goto again;
3960 }
3961 /* step three is to replay everything */
3962 if (wc.stage < LOG_WALK_REPLAY_ALL) {
3963 wc.stage++;
3964 goto again;
3965 }
3966
3967 btrfs_free_path(path);
3968
3969 free_extent_buffer(log_root_tree->node);
3970 log_root_tree->log_root = NULL;
3971 fs_info->log_root_recovering = 0;
3972
3973 /* step 4: commit the transaction, which also unpins the blocks */
3974 btrfs_commit_transaction(trans, fs_info->tree_root);
3975
3976 kfree(log_root_tree);
3977 return 0;
3978
3979 error:
3980 btrfs_free_path(path);
3981 return ret;
3982 }
3983
3984 /*
3985 * there are some corner cases where we want to force a full
3986 * commit instead of allowing a directory to be logged.
3987 *
3988 * They revolve around files there were unlinked from the directory, and
3989 * this function updates the parent directory so that a full commit is
3990 * properly done if it is fsync'd later after the unlinks are done.
3991 */
3992 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3993 struct inode *dir, struct inode *inode,
3994 int for_rename)
3995 {
3996 /*
3997 * when we're logging a file, if it hasn't been renamed
3998 * or unlinked, and its inode is fully committed on disk,
3999 * we don't have to worry about walking up the directory chain
4000 * to log its parents.
4001 *
4002 * So, we use the last_unlink_trans field to put this transid
4003 * into the file. When the file is logged we check it and
4004 * don't log the parents if the file is fully on disk.
4005 */
4006 if (S_ISREG(inode->i_mode))
4007 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4008
4009 /*
4010 * if this directory was already logged any new
4011 * names for this file/dir will get recorded
4012 */
4013 smp_mb();
4014 if (BTRFS_I(dir)->logged_trans == trans->transid)
4015 return;
4016
4017 /*
4018 * if the inode we're about to unlink was logged,
4019 * the log will be properly updated for any new names
4020 */
4021 if (BTRFS_I(inode)->logged_trans == trans->transid)
4022 return;
4023
4024 /*
4025 * when renaming files across directories, if the directory
4026 * there we're unlinking from gets fsync'd later on, there's
4027 * no way to find the destination directory later and fsync it
4028 * properly. So, we have to be conservative and force commits
4029 * so the new name gets discovered.
4030 */
4031 if (for_rename)
4032 goto record;
4033
4034 /* we can safely do the unlink without any special recording */
4035 return;
4036
4037 record:
4038 BTRFS_I(dir)->last_unlink_trans = trans->transid;
4039 }
4040
4041 /*
4042 * Call this after adding a new name for a file and it will properly
4043 * update the log to reflect the new name.
4044 *
4045 * It will return zero if all goes well, and it will return 1 if a
4046 * full transaction commit is required.
4047 */
4048 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4049 struct inode *inode, struct inode *old_dir,
4050 struct dentry *parent)
4051 {
4052 struct btrfs_root * root = BTRFS_I(inode)->root;
4053
4054 /*
4055 * this will force the logging code to walk the dentry chain
4056 * up for the file
4057 */
4058 if (S_ISREG(inode->i_mode))
4059 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4060
4061 /*
4062 * if this inode hasn't been logged and directory we're renaming it
4063 * from hasn't been logged, we don't need to log it
4064 */
4065 if (BTRFS_I(inode)->logged_trans <=
4066 root->fs_info->last_trans_committed &&
4067 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4068 root->fs_info->last_trans_committed))
4069 return 0;
4070
4071 return btrfs_log_inode_parent(trans, root, inode, parent, 1);
4072 }
4073