Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ryusuke...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "locking.h"
28 #include "tree-log.h"
29
30 #define BTRFS_ROOT_TRANS_TAG 0
31
32 static noinline void put_transaction(struct btrfs_transaction *transaction)
33 {
34 WARN_ON(transaction->use_count == 0);
35 transaction->use_count--;
36 if (transaction->use_count == 0) {
37 list_del_init(&transaction->list);
38 memset(transaction, 0, sizeof(*transaction));
39 kmem_cache_free(btrfs_transaction_cachep, transaction);
40 }
41 }
42
43 static noinline void switch_commit_root(struct btrfs_root *root)
44 {
45 free_extent_buffer(root->commit_root);
46 root->commit_root = btrfs_root_node(root);
47 }
48
49 /*
50 * either allocate a new transaction or hop into the existing one
51 */
52 static noinline int join_transaction(struct btrfs_root *root)
53 {
54 struct btrfs_transaction *cur_trans;
55 cur_trans = root->fs_info->running_transaction;
56 if (!cur_trans) {
57 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
58 GFP_NOFS);
59 BUG_ON(!cur_trans);
60 root->fs_info->generation++;
61 cur_trans->num_writers = 1;
62 cur_trans->num_joined = 0;
63 cur_trans->transid = root->fs_info->generation;
64 init_waitqueue_head(&cur_trans->writer_wait);
65 init_waitqueue_head(&cur_trans->commit_wait);
66 cur_trans->in_commit = 0;
67 cur_trans->blocked = 0;
68 cur_trans->use_count = 1;
69 cur_trans->commit_done = 0;
70 cur_trans->start_time = get_seconds();
71
72 cur_trans->delayed_refs.root = RB_ROOT;
73 cur_trans->delayed_refs.num_entries = 0;
74 cur_trans->delayed_refs.num_heads_ready = 0;
75 cur_trans->delayed_refs.num_heads = 0;
76 cur_trans->delayed_refs.flushing = 0;
77 cur_trans->delayed_refs.run_delayed_start = 0;
78 spin_lock_init(&cur_trans->delayed_refs.lock);
79
80 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
81 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
82 extent_io_tree_init(&cur_trans->dirty_pages,
83 root->fs_info->btree_inode->i_mapping,
84 GFP_NOFS);
85 spin_lock(&root->fs_info->new_trans_lock);
86 root->fs_info->running_transaction = cur_trans;
87 spin_unlock(&root->fs_info->new_trans_lock);
88 } else {
89 cur_trans->num_writers++;
90 cur_trans->num_joined++;
91 }
92
93 return 0;
94 }
95
96 /*
97 * this does all the record keeping required to make sure that a reference
98 * counted root is properly recorded in a given transaction. This is required
99 * to make sure the old root from before we joined the transaction is deleted
100 * when the transaction commits
101 */
102 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
103 struct btrfs_root *root)
104 {
105 if (root->ref_cows && root->last_trans < trans->transid) {
106 WARN_ON(root == root->fs_info->extent_root);
107 WARN_ON(root->commit_root != root->node);
108
109 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
110 (unsigned long)root->root_key.objectid,
111 BTRFS_ROOT_TRANS_TAG);
112 root->last_trans = trans->transid;
113 btrfs_init_reloc_root(trans, root);
114 }
115 return 0;
116 }
117
118 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
119 struct btrfs_root *root)
120 {
121 if (!root->ref_cows)
122 return 0;
123
124 mutex_lock(&root->fs_info->trans_mutex);
125 if (root->last_trans == trans->transid) {
126 mutex_unlock(&root->fs_info->trans_mutex);
127 return 0;
128 }
129
130 record_root_in_trans(trans, root);
131 mutex_unlock(&root->fs_info->trans_mutex);
132 return 0;
133 }
134
135 /* wait for commit against the current transaction to become unblocked
136 * when this is done, it is safe to start a new transaction, but the current
137 * transaction might not be fully on disk.
138 */
139 static void wait_current_trans(struct btrfs_root *root)
140 {
141 struct btrfs_transaction *cur_trans;
142
143 cur_trans = root->fs_info->running_transaction;
144 if (cur_trans && cur_trans->blocked) {
145 DEFINE_WAIT(wait);
146 cur_trans->use_count++;
147 while (1) {
148 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
149 TASK_UNINTERRUPTIBLE);
150 if (cur_trans->blocked) {
151 mutex_unlock(&root->fs_info->trans_mutex);
152 schedule();
153 mutex_lock(&root->fs_info->trans_mutex);
154 finish_wait(&root->fs_info->transaction_wait,
155 &wait);
156 } else {
157 finish_wait(&root->fs_info->transaction_wait,
158 &wait);
159 break;
160 }
161 }
162 put_transaction(cur_trans);
163 }
164 }
165
166 enum btrfs_trans_type {
167 TRANS_START,
168 TRANS_JOIN,
169 TRANS_USERSPACE,
170 };
171
172 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
173 int num_blocks, int type)
174 {
175 struct btrfs_trans_handle *h =
176 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
177 int ret;
178
179 mutex_lock(&root->fs_info->trans_mutex);
180 if (!root->fs_info->log_root_recovering &&
181 ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
182 type == TRANS_USERSPACE))
183 wait_current_trans(root);
184 ret = join_transaction(root);
185 BUG_ON(ret);
186
187 h->transid = root->fs_info->running_transaction->transid;
188 h->transaction = root->fs_info->running_transaction;
189 h->blocks_reserved = num_blocks;
190 h->blocks_used = 0;
191 h->block_group = 0;
192 h->alloc_exclude_nr = 0;
193 h->alloc_exclude_start = 0;
194 h->delayed_ref_updates = 0;
195
196 if (!current->journal_info && type != TRANS_USERSPACE)
197 current->journal_info = h;
198
199 root->fs_info->running_transaction->use_count++;
200 record_root_in_trans(h, root);
201 mutex_unlock(&root->fs_info->trans_mutex);
202 return h;
203 }
204
205 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
206 int num_blocks)
207 {
208 return start_transaction(root, num_blocks, TRANS_START);
209 }
210 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
211 int num_blocks)
212 {
213 return start_transaction(root, num_blocks, TRANS_JOIN);
214 }
215
216 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
217 int num_blocks)
218 {
219 return start_transaction(r, num_blocks, TRANS_USERSPACE);
220 }
221
222 /* wait for a transaction commit to be fully complete */
223 static noinline int wait_for_commit(struct btrfs_root *root,
224 struct btrfs_transaction *commit)
225 {
226 DEFINE_WAIT(wait);
227 mutex_lock(&root->fs_info->trans_mutex);
228 while (!commit->commit_done) {
229 prepare_to_wait(&commit->commit_wait, &wait,
230 TASK_UNINTERRUPTIBLE);
231 if (commit->commit_done)
232 break;
233 mutex_unlock(&root->fs_info->trans_mutex);
234 schedule();
235 mutex_lock(&root->fs_info->trans_mutex);
236 }
237 mutex_unlock(&root->fs_info->trans_mutex);
238 finish_wait(&commit->commit_wait, &wait);
239 return 0;
240 }
241
242 #if 0
243 /*
244 * rate limit against the drop_snapshot code. This helps to slow down new
245 * operations if the drop_snapshot code isn't able to keep up.
246 */
247 static void throttle_on_drops(struct btrfs_root *root)
248 {
249 struct btrfs_fs_info *info = root->fs_info;
250 int harder_count = 0;
251
252 harder:
253 if (atomic_read(&info->throttles)) {
254 DEFINE_WAIT(wait);
255 int thr;
256 thr = atomic_read(&info->throttle_gen);
257
258 do {
259 prepare_to_wait(&info->transaction_throttle,
260 &wait, TASK_UNINTERRUPTIBLE);
261 if (!atomic_read(&info->throttles)) {
262 finish_wait(&info->transaction_throttle, &wait);
263 break;
264 }
265 schedule();
266 finish_wait(&info->transaction_throttle, &wait);
267 } while (thr == atomic_read(&info->throttle_gen));
268 harder_count++;
269
270 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
271 harder_count < 2)
272 goto harder;
273
274 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
275 harder_count < 10)
276 goto harder;
277
278 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
279 harder_count < 20)
280 goto harder;
281 }
282 }
283 #endif
284
285 void btrfs_throttle(struct btrfs_root *root)
286 {
287 mutex_lock(&root->fs_info->trans_mutex);
288 if (!root->fs_info->open_ioctl_trans)
289 wait_current_trans(root);
290 mutex_unlock(&root->fs_info->trans_mutex);
291 }
292
293 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
294 struct btrfs_root *root, int throttle)
295 {
296 struct btrfs_transaction *cur_trans;
297 struct btrfs_fs_info *info = root->fs_info;
298 int count = 0;
299
300 while (count < 4) {
301 unsigned long cur = trans->delayed_ref_updates;
302 trans->delayed_ref_updates = 0;
303 if (cur &&
304 trans->transaction->delayed_refs.num_heads_ready > 64) {
305 trans->delayed_ref_updates = 0;
306
307 /*
308 * do a full flush if the transaction is trying
309 * to close
310 */
311 if (trans->transaction->delayed_refs.flushing)
312 cur = 0;
313 btrfs_run_delayed_refs(trans, root, cur);
314 } else {
315 break;
316 }
317 count++;
318 }
319
320 mutex_lock(&info->trans_mutex);
321 cur_trans = info->running_transaction;
322 WARN_ON(cur_trans != trans->transaction);
323 WARN_ON(cur_trans->num_writers < 1);
324 cur_trans->num_writers--;
325
326 if (waitqueue_active(&cur_trans->writer_wait))
327 wake_up(&cur_trans->writer_wait);
328 put_transaction(cur_trans);
329 mutex_unlock(&info->trans_mutex);
330
331 if (current->journal_info == trans)
332 current->journal_info = NULL;
333 memset(trans, 0, sizeof(*trans));
334 kmem_cache_free(btrfs_trans_handle_cachep, trans);
335
336 if (throttle)
337 btrfs_run_delayed_iputs(root);
338
339 return 0;
340 }
341
342 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
343 struct btrfs_root *root)
344 {
345 return __btrfs_end_transaction(trans, root, 0);
346 }
347
348 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
349 struct btrfs_root *root)
350 {
351 return __btrfs_end_transaction(trans, root, 1);
352 }
353
354 /*
355 * when btree blocks are allocated, they have some corresponding bits set for
356 * them in one of two extent_io trees. This is used to make sure all of
357 * those extents are sent to disk but does not wait on them
358 */
359 int btrfs_write_marked_extents(struct btrfs_root *root,
360 struct extent_io_tree *dirty_pages, int mark)
361 {
362 int ret;
363 int err = 0;
364 int werr = 0;
365 struct page *page;
366 struct inode *btree_inode = root->fs_info->btree_inode;
367 u64 start = 0;
368 u64 end;
369 unsigned long index;
370
371 while (1) {
372 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
373 mark);
374 if (ret)
375 break;
376 while (start <= end) {
377 cond_resched();
378
379 index = start >> PAGE_CACHE_SHIFT;
380 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
381 page = find_get_page(btree_inode->i_mapping, index);
382 if (!page)
383 continue;
384
385 btree_lock_page_hook(page);
386 if (!page->mapping) {
387 unlock_page(page);
388 page_cache_release(page);
389 continue;
390 }
391
392 if (PageWriteback(page)) {
393 if (PageDirty(page))
394 wait_on_page_writeback(page);
395 else {
396 unlock_page(page);
397 page_cache_release(page);
398 continue;
399 }
400 }
401 err = write_one_page(page, 0);
402 if (err)
403 werr = err;
404 page_cache_release(page);
405 }
406 }
407 if (err)
408 werr = err;
409 return werr;
410 }
411
412 /*
413 * when btree blocks are allocated, they have some corresponding bits set for
414 * them in one of two extent_io trees. This is used to make sure all of
415 * those extents are on disk for transaction or log commit. We wait
416 * on all the pages and clear them from the dirty pages state tree
417 */
418 int btrfs_wait_marked_extents(struct btrfs_root *root,
419 struct extent_io_tree *dirty_pages, int mark)
420 {
421 int ret;
422 int err = 0;
423 int werr = 0;
424 struct page *page;
425 struct inode *btree_inode = root->fs_info->btree_inode;
426 u64 start = 0;
427 u64 end;
428 unsigned long index;
429
430 while (1) {
431 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
432 mark);
433 if (ret)
434 break;
435
436 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
437 while (start <= end) {
438 index = start >> PAGE_CACHE_SHIFT;
439 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
440 page = find_get_page(btree_inode->i_mapping, index);
441 if (!page)
442 continue;
443 if (PageDirty(page)) {
444 btree_lock_page_hook(page);
445 wait_on_page_writeback(page);
446 err = write_one_page(page, 0);
447 if (err)
448 werr = err;
449 }
450 wait_on_page_writeback(page);
451 page_cache_release(page);
452 cond_resched();
453 }
454 }
455 if (err)
456 werr = err;
457 return werr;
458 }
459
460 /*
461 * when btree blocks are allocated, they have some corresponding bits set for
462 * them in one of two extent_io trees. This is used to make sure all of
463 * those extents are on disk for transaction or log commit
464 */
465 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
466 struct extent_io_tree *dirty_pages, int mark)
467 {
468 int ret;
469 int ret2;
470
471 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
472 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
473 return ret || ret2;
474 }
475
476 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
477 struct btrfs_root *root)
478 {
479 if (!trans || !trans->transaction) {
480 struct inode *btree_inode;
481 btree_inode = root->fs_info->btree_inode;
482 return filemap_write_and_wait(btree_inode->i_mapping);
483 }
484 return btrfs_write_and_wait_marked_extents(root,
485 &trans->transaction->dirty_pages,
486 EXTENT_DIRTY);
487 }
488
489 /*
490 * this is used to update the root pointer in the tree of tree roots.
491 *
492 * But, in the case of the extent allocation tree, updating the root
493 * pointer may allocate blocks which may change the root of the extent
494 * allocation tree.
495 *
496 * So, this loops and repeats and makes sure the cowonly root didn't
497 * change while the root pointer was being updated in the metadata.
498 */
499 static int update_cowonly_root(struct btrfs_trans_handle *trans,
500 struct btrfs_root *root)
501 {
502 int ret;
503 u64 old_root_bytenr;
504 u64 old_root_used;
505 struct btrfs_root *tree_root = root->fs_info->tree_root;
506
507 old_root_used = btrfs_root_used(&root->root_item);
508 btrfs_write_dirty_block_groups(trans, root);
509
510 while (1) {
511 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
512 if (old_root_bytenr == root->node->start &&
513 old_root_used == btrfs_root_used(&root->root_item))
514 break;
515
516 btrfs_set_root_node(&root->root_item, root->node);
517 ret = btrfs_update_root(trans, tree_root,
518 &root->root_key,
519 &root->root_item);
520 BUG_ON(ret);
521
522 old_root_used = btrfs_root_used(&root->root_item);
523 ret = btrfs_write_dirty_block_groups(trans, root);
524 BUG_ON(ret);
525 }
526
527 if (root != root->fs_info->extent_root)
528 switch_commit_root(root);
529
530 return 0;
531 }
532
533 /*
534 * update all the cowonly tree roots on disk
535 */
536 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
537 struct btrfs_root *root)
538 {
539 struct btrfs_fs_info *fs_info = root->fs_info;
540 struct list_head *next;
541 struct extent_buffer *eb;
542 int ret;
543
544 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
545 BUG_ON(ret);
546
547 eb = btrfs_lock_root_node(fs_info->tree_root);
548 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
549 btrfs_tree_unlock(eb);
550 free_extent_buffer(eb);
551
552 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
553 BUG_ON(ret);
554
555 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
556 next = fs_info->dirty_cowonly_roots.next;
557 list_del_init(next);
558 root = list_entry(next, struct btrfs_root, dirty_list);
559
560 update_cowonly_root(trans, root);
561 }
562
563 down_write(&fs_info->extent_commit_sem);
564 switch_commit_root(fs_info->extent_root);
565 up_write(&fs_info->extent_commit_sem);
566
567 return 0;
568 }
569
570 /*
571 * dead roots are old snapshots that need to be deleted. This allocates
572 * a dirty root struct and adds it into the list of dead roots that need to
573 * be deleted
574 */
575 int btrfs_add_dead_root(struct btrfs_root *root)
576 {
577 mutex_lock(&root->fs_info->trans_mutex);
578 list_add(&root->root_list, &root->fs_info->dead_roots);
579 mutex_unlock(&root->fs_info->trans_mutex);
580 return 0;
581 }
582
583 /*
584 * update all the cowonly tree roots on disk
585 */
586 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
587 struct btrfs_root *root)
588 {
589 struct btrfs_root *gang[8];
590 struct btrfs_fs_info *fs_info = root->fs_info;
591 int i;
592 int ret;
593 int err = 0;
594
595 while (1) {
596 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
597 (void **)gang, 0,
598 ARRAY_SIZE(gang),
599 BTRFS_ROOT_TRANS_TAG);
600 if (ret == 0)
601 break;
602 for (i = 0; i < ret; i++) {
603 root = gang[i];
604 radix_tree_tag_clear(&fs_info->fs_roots_radix,
605 (unsigned long)root->root_key.objectid,
606 BTRFS_ROOT_TRANS_TAG);
607
608 btrfs_free_log(trans, root);
609 btrfs_update_reloc_root(trans, root);
610
611 if (root->commit_root != root->node) {
612 switch_commit_root(root);
613 btrfs_set_root_node(&root->root_item,
614 root->node);
615 }
616
617 err = btrfs_update_root(trans, fs_info->tree_root,
618 &root->root_key,
619 &root->root_item);
620 if (err)
621 break;
622 }
623 }
624 return err;
625 }
626
627 /*
628 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
629 * otherwise every leaf in the btree is read and defragged.
630 */
631 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
632 {
633 struct btrfs_fs_info *info = root->fs_info;
634 int ret;
635 struct btrfs_trans_handle *trans;
636 unsigned long nr;
637
638 smp_mb();
639 if (root->defrag_running)
640 return 0;
641 trans = btrfs_start_transaction(root, 1);
642 while (1) {
643 root->defrag_running = 1;
644 ret = btrfs_defrag_leaves(trans, root, cacheonly);
645 nr = trans->blocks_used;
646 btrfs_end_transaction(trans, root);
647 btrfs_btree_balance_dirty(info->tree_root, nr);
648 cond_resched();
649
650 trans = btrfs_start_transaction(root, 1);
651 if (root->fs_info->closing || ret != -EAGAIN)
652 break;
653 }
654 root->defrag_running = 0;
655 smp_mb();
656 btrfs_end_transaction(trans, root);
657 return 0;
658 }
659
660 #if 0
661 /*
662 * when dropping snapshots, we generate a ton of delayed refs, and it makes
663 * sense not to join the transaction while it is trying to flush the current
664 * queue of delayed refs out.
665 *
666 * This is used by the drop snapshot code only
667 */
668 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
669 {
670 DEFINE_WAIT(wait);
671
672 mutex_lock(&info->trans_mutex);
673 while (info->running_transaction &&
674 info->running_transaction->delayed_refs.flushing) {
675 prepare_to_wait(&info->transaction_wait, &wait,
676 TASK_UNINTERRUPTIBLE);
677 mutex_unlock(&info->trans_mutex);
678
679 schedule();
680
681 mutex_lock(&info->trans_mutex);
682 finish_wait(&info->transaction_wait, &wait);
683 }
684 mutex_unlock(&info->trans_mutex);
685 return 0;
686 }
687
688 /*
689 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
690 * all of them
691 */
692 int btrfs_drop_dead_root(struct btrfs_root *root)
693 {
694 struct btrfs_trans_handle *trans;
695 struct btrfs_root *tree_root = root->fs_info->tree_root;
696 unsigned long nr;
697 int ret;
698
699 while (1) {
700 /*
701 * we don't want to jump in and create a bunch of
702 * delayed refs if the transaction is starting to close
703 */
704 wait_transaction_pre_flush(tree_root->fs_info);
705 trans = btrfs_start_transaction(tree_root, 1);
706
707 /*
708 * we've joined a transaction, make sure it isn't
709 * closing right now
710 */
711 if (trans->transaction->delayed_refs.flushing) {
712 btrfs_end_transaction(trans, tree_root);
713 continue;
714 }
715
716 ret = btrfs_drop_snapshot(trans, root);
717 if (ret != -EAGAIN)
718 break;
719
720 ret = btrfs_update_root(trans, tree_root,
721 &root->root_key,
722 &root->root_item);
723 if (ret)
724 break;
725
726 nr = trans->blocks_used;
727 ret = btrfs_end_transaction(trans, tree_root);
728 BUG_ON(ret);
729
730 btrfs_btree_balance_dirty(tree_root, nr);
731 cond_resched();
732 }
733 BUG_ON(ret);
734
735 ret = btrfs_del_root(trans, tree_root, &root->root_key);
736 BUG_ON(ret);
737
738 nr = trans->blocks_used;
739 ret = btrfs_end_transaction(trans, tree_root);
740 BUG_ON(ret);
741
742 free_extent_buffer(root->node);
743 free_extent_buffer(root->commit_root);
744 kfree(root);
745
746 btrfs_btree_balance_dirty(tree_root, nr);
747 return ret;
748 }
749 #endif
750
751 /*
752 * new snapshots need to be created at a very specific time in the
753 * transaction commit. This does the actual creation
754 */
755 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
756 struct btrfs_fs_info *fs_info,
757 struct btrfs_pending_snapshot *pending)
758 {
759 struct btrfs_key key;
760 struct btrfs_root_item *new_root_item;
761 struct btrfs_root *tree_root = fs_info->tree_root;
762 struct btrfs_root *root = pending->root;
763 struct extent_buffer *tmp;
764 struct extent_buffer *old;
765 int ret;
766 u64 objectid;
767
768 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
769 if (!new_root_item) {
770 ret = -ENOMEM;
771 goto fail;
772 }
773 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
774 if (ret)
775 goto fail;
776
777 record_root_in_trans(trans, root);
778 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
779 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
780
781 key.objectid = objectid;
782 /* record when the snapshot was created in key.offset */
783 key.offset = trans->transid;
784 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
785
786 old = btrfs_lock_root_node(root);
787 btrfs_cow_block(trans, root, old, NULL, 0, &old);
788 btrfs_set_lock_blocking(old);
789
790 btrfs_copy_root(trans, root, old, &tmp, objectid);
791 btrfs_tree_unlock(old);
792 free_extent_buffer(old);
793
794 btrfs_set_root_node(new_root_item, tmp);
795 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
796 new_root_item);
797 btrfs_tree_unlock(tmp);
798 free_extent_buffer(tmp);
799 if (ret)
800 goto fail;
801
802 key.offset = (u64)-1;
803 memcpy(&pending->root_key, &key, sizeof(key));
804 fail:
805 kfree(new_root_item);
806 return ret;
807 }
808
809 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
810 struct btrfs_pending_snapshot *pending)
811 {
812 int ret;
813 int namelen;
814 u64 index = 0;
815 struct btrfs_trans_handle *trans;
816 struct inode *parent_inode;
817 struct btrfs_root *parent_root;
818
819 parent_inode = pending->dentry->d_parent->d_inode;
820 parent_root = BTRFS_I(parent_inode)->root;
821 trans = btrfs_join_transaction(parent_root, 1);
822
823 /*
824 * insert the directory item
825 */
826 namelen = strlen(pending->name);
827 ret = btrfs_set_inode_index(parent_inode, &index);
828 ret = btrfs_insert_dir_item(trans, parent_root,
829 pending->name, namelen,
830 parent_inode->i_ino,
831 &pending->root_key, BTRFS_FT_DIR, index);
832
833 if (ret)
834 goto fail;
835
836 btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2);
837 ret = btrfs_update_inode(trans, parent_root, parent_inode);
838 BUG_ON(ret);
839
840 ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
841 pending->root_key.objectid,
842 parent_root->root_key.objectid,
843 parent_inode->i_ino, index, pending->name,
844 namelen);
845
846 BUG_ON(ret);
847
848 fail:
849 btrfs_end_transaction(trans, fs_info->fs_root);
850 return ret;
851 }
852
853 /*
854 * create all the snapshots we've scheduled for creation
855 */
856 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
857 struct btrfs_fs_info *fs_info)
858 {
859 struct btrfs_pending_snapshot *pending;
860 struct list_head *head = &trans->transaction->pending_snapshots;
861 int ret;
862
863 list_for_each_entry(pending, head, list) {
864 ret = create_pending_snapshot(trans, fs_info, pending);
865 BUG_ON(ret);
866 }
867 return 0;
868 }
869
870 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
871 struct btrfs_fs_info *fs_info)
872 {
873 struct btrfs_pending_snapshot *pending;
874 struct list_head *head = &trans->transaction->pending_snapshots;
875 int ret;
876
877 while (!list_empty(head)) {
878 pending = list_entry(head->next,
879 struct btrfs_pending_snapshot, list);
880 ret = finish_pending_snapshot(fs_info, pending);
881 BUG_ON(ret);
882 list_del(&pending->list);
883 kfree(pending->name);
884 kfree(pending);
885 }
886 return 0;
887 }
888
889 static void update_super_roots(struct btrfs_root *root)
890 {
891 struct btrfs_root_item *root_item;
892 struct btrfs_super_block *super;
893
894 super = &root->fs_info->super_copy;
895
896 root_item = &root->fs_info->chunk_root->root_item;
897 super->chunk_root = root_item->bytenr;
898 super->chunk_root_generation = root_item->generation;
899 super->chunk_root_level = root_item->level;
900
901 root_item = &root->fs_info->tree_root->root_item;
902 super->root = root_item->bytenr;
903 super->generation = root_item->generation;
904 super->root_level = root_item->level;
905 }
906
907 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
908 {
909 int ret = 0;
910 spin_lock(&info->new_trans_lock);
911 if (info->running_transaction)
912 ret = info->running_transaction->in_commit;
913 spin_unlock(&info->new_trans_lock);
914 return ret;
915 }
916
917 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
918 struct btrfs_root *root)
919 {
920 unsigned long joined = 0;
921 unsigned long timeout = 1;
922 struct btrfs_transaction *cur_trans;
923 struct btrfs_transaction *prev_trans = NULL;
924 DEFINE_WAIT(wait);
925 int ret;
926 int should_grow = 0;
927 unsigned long now = get_seconds();
928 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
929
930 btrfs_run_ordered_operations(root, 0);
931
932 /* make a pass through all the delayed refs we have so far
933 * any runnings procs may add more while we are here
934 */
935 ret = btrfs_run_delayed_refs(trans, root, 0);
936 BUG_ON(ret);
937
938 cur_trans = trans->transaction;
939 /*
940 * set the flushing flag so procs in this transaction have to
941 * start sending their work down.
942 */
943 cur_trans->delayed_refs.flushing = 1;
944
945 ret = btrfs_run_delayed_refs(trans, root, 0);
946 BUG_ON(ret);
947
948 mutex_lock(&root->fs_info->trans_mutex);
949 if (cur_trans->in_commit) {
950 cur_trans->use_count++;
951 mutex_unlock(&root->fs_info->trans_mutex);
952 btrfs_end_transaction(trans, root);
953
954 ret = wait_for_commit(root, cur_trans);
955 BUG_ON(ret);
956
957 mutex_lock(&root->fs_info->trans_mutex);
958 put_transaction(cur_trans);
959 mutex_unlock(&root->fs_info->trans_mutex);
960
961 return 0;
962 }
963
964 trans->transaction->in_commit = 1;
965 trans->transaction->blocked = 1;
966 if (cur_trans->list.prev != &root->fs_info->trans_list) {
967 prev_trans = list_entry(cur_trans->list.prev,
968 struct btrfs_transaction, list);
969 if (!prev_trans->commit_done) {
970 prev_trans->use_count++;
971 mutex_unlock(&root->fs_info->trans_mutex);
972
973 wait_for_commit(root, prev_trans);
974
975 mutex_lock(&root->fs_info->trans_mutex);
976 put_transaction(prev_trans);
977 }
978 }
979
980 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
981 should_grow = 1;
982
983 do {
984 int snap_pending = 0;
985 joined = cur_trans->num_joined;
986 if (!list_empty(&trans->transaction->pending_snapshots))
987 snap_pending = 1;
988
989 WARN_ON(cur_trans != trans->transaction);
990 prepare_to_wait(&cur_trans->writer_wait, &wait,
991 TASK_UNINTERRUPTIBLE);
992
993 if (cur_trans->num_writers > 1)
994 timeout = MAX_SCHEDULE_TIMEOUT;
995 else if (should_grow)
996 timeout = 1;
997
998 mutex_unlock(&root->fs_info->trans_mutex);
999
1000 if (flush_on_commit) {
1001 btrfs_start_delalloc_inodes(root, 1);
1002 ret = btrfs_wait_ordered_extents(root, 0, 1);
1003 BUG_ON(ret);
1004 } else if (snap_pending) {
1005 ret = btrfs_wait_ordered_extents(root, 0, 1);
1006 BUG_ON(ret);
1007 }
1008
1009 /*
1010 * rename don't use btrfs_join_transaction, so, once we
1011 * set the transaction to blocked above, we aren't going
1012 * to get any new ordered operations. We can safely run
1013 * it here and no for sure that nothing new will be added
1014 * to the list
1015 */
1016 btrfs_run_ordered_operations(root, 1);
1017
1018 smp_mb();
1019 if (cur_trans->num_writers > 1 || should_grow)
1020 schedule_timeout(timeout);
1021
1022 mutex_lock(&root->fs_info->trans_mutex);
1023 finish_wait(&cur_trans->writer_wait, &wait);
1024 } while (cur_trans->num_writers > 1 ||
1025 (should_grow && cur_trans->num_joined != joined));
1026
1027 ret = create_pending_snapshots(trans, root->fs_info);
1028 BUG_ON(ret);
1029
1030 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1031 BUG_ON(ret);
1032
1033 WARN_ON(cur_trans != trans->transaction);
1034
1035 /* btrfs_commit_tree_roots is responsible for getting the
1036 * various roots consistent with each other. Every pointer
1037 * in the tree of tree roots has to point to the most up to date
1038 * root for every subvolume and other tree. So, we have to keep
1039 * the tree logging code from jumping in and changing any
1040 * of the trees.
1041 *
1042 * At this point in the commit, there can't be any tree-log
1043 * writers, but a little lower down we drop the trans mutex
1044 * and let new people in. By holding the tree_log_mutex
1045 * from now until after the super is written, we avoid races
1046 * with the tree-log code.
1047 */
1048 mutex_lock(&root->fs_info->tree_log_mutex);
1049
1050 ret = commit_fs_roots(trans, root);
1051 BUG_ON(ret);
1052
1053 /* commit_fs_roots gets rid of all the tree log roots, it is now
1054 * safe to free the root of tree log roots
1055 */
1056 btrfs_free_log_root_tree(trans, root->fs_info);
1057
1058 ret = commit_cowonly_roots(trans, root);
1059 BUG_ON(ret);
1060
1061 btrfs_prepare_extent_commit(trans, root);
1062
1063 cur_trans = root->fs_info->running_transaction;
1064 spin_lock(&root->fs_info->new_trans_lock);
1065 root->fs_info->running_transaction = NULL;
1066 spin_unlock(&root->fs_info->new_trans_lock);
1067
1068 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1069 root->fs_info->tree_root->node);
1070 switch_commit_root(root->fs_info->tree_root);
1071
1072 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1073 root->fs_info->chunk_root->node);
1074 switch_commit_root(root->fs_info->chunk_root);
1075
1076 update_super_roots(root);
1077
1078 if (!root->fs_info->log_root_recovering) {
1079 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1080 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1081 }
1082
1083 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1084 sizeof(root->fs_info->super_copy));
1085
1086 trans->transaction->blocked = 0;
1087
1088 wake_up(&root->fs_info->transaction_wait);
1089
1090 mutex_unlock(&root->fs_info->trans_mutex);
1091 ret = btrfs_write_and_wait_transaction(trans, root);
1092 BUG_ON(ret);
1093 write_ctree_super(trans, root, 0);
1094
1095 /*
1096 * the super is written, we can safely allow the tree-loggers
1097 * to go about their business
1098 */
1099 mutex_unlock(&root->fs_info->tree_log_mutex);
1100
1101 btrfs_finish_extent_commit(trans, root);
1102
1103 /* do the directory inserts of any pending snapshot creations */
1104 finish_pending_snapshots(trans, root->fs_info);
1105
1106 mutex_lock(&root->fs_info->trans_mutex);
1107
1108 cur_trans->commit_done = 1;
1109
1110 root->fs_info->last_trans_committed = cur_trans->transid;
1111
1112 wake_up(&cur_trans->commit_wait);
1113
1114 put_transaction(cur_trans);
1115 put_transaction(cur_trans);
1116
1117 mutex_unlock(&root->fs_info->trans_mutex);
1118
1119 if (current->journal_info == trans)
1120 current->journal_info = NULL;
1121
1122 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1123
1124 if (current != root->fs_info->transaction_kthread)
1125 btrfs_run_delayed_iputs(root);
1126
1127 return ret;
1128 }
1129
1130 /*
1131 * interface function to delete all the snapshots we have scheduled for deletion
1132 */
1133 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1134 {
1135 LIST_HEAD(list);
1136 struct btrfs_fs_info *fs_info = root->fs_info;
1137
1138 mutex_lock(&fs_info->trans_mutex);
1139 list_splice_init(&fs_info->dead_roots, &list);
1140 mutex_unlock(&fs_info->trans_mutex);
1141
1142 while (!list_empty(&list)) {
1143 root = list_entry(list.next, struct btrfs_root, root_list);
1144 list_del(&root->root_list);
1145
1146 if (btrfs_header_backref_rev(root->node) <
1147 BTRFS_MIXED_BACKREF_REV)
1148 btrfs_drop_snapshot(root, 0);
1149 else
1150 btrfs_drop_snapshot(root, 1);
1151 }
1152 return 0;
1153 }