Btrfs: create snapshot references in same commit as snapshot
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "locking.h"
28 #include "tree-log.h"
29
30 #define BTRFS_ROOT_TRANS_TAG 0
31
32 static noinline void put_transaction(struct btrfs_transaction *transaction)
33 {
34 WARN_ON(transaction->use_count == 0);
35 transaction->use_count--;
36 if (transaction->use_count == 0) {
37 list_del_init(&transaction->list);
38 memset(transaction, 0, sizeof(*transaction));
39 kmem_cache_free(btrfs_transaction_cachep, transaction);
40 }
41 }
42
43 static noinline void switch_commit_root(struct btrfs_root *root)
44 {
45 free_extent_buffer(root->commit_root);
46 root->commit_root = btrfs_root_node(root);
47 }
48
49 /*
50 * either allocate a new transaction or hop into the existing one
51 */
52 static noinline int join_transaction(struct btrfs_root *root)
53 {
54 struct btrfs_transaction *cur_trans;
55 cur_trans = root->fs_info->running_transaction;
56 if (!cur_trans) {
57 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
58 GFP_NOFS);
59 BUG_ON(!cur_trans);
60 root->fs_info->generation++;
61 cur_trans->num_writers = 1;
62 cur_trans->num_joined = 0;
63 cur_trans->transid = root->fs_info->generation;
64 init_waitqueue_head(&cur_trans->writer_wait);
65 init_waitqueue_head(&cur_trans->commit_wait);
66 cur_trans->in_commit = 0;
67 cur_trans->blocked = 0;
68 cur_trans->use_count = 1;
69 cur_trans->commit_done = 0;
70 cur_trans->start_time = get_seconds();
71
72 cur_trans->delayed_refs.root = RB_ROOT;
73 cur_trans->delayed_refs.num_entries = 0;
74 cur_trans->delayed_refs.num_heads_ready = 0;
75 cur_trans->delayed_refs.num_heads = 0;
76 cur_trans->delayed_refs.flushing = 0;
77 cur_trans->delayed_refs.run_delayed_start = 0;
78 spin_lock_init(&cur_trans->delayed_refs.lock);
79
80 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
81 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
82 extent_io_tree_init(&cur_trans->dirty_pages,
83 root->fs_info->btree_inode->i_mapping,
84 GFP_NOFS);
85 spin_lock(&root->fs_info->new_trans_lock);
86 root->fs_info->running_transaction = cur_trans;
87 spin_unlock(&root->fs_info->new_trans_lock);
88 } else {
89 cur_trans->num_writers++;
90 cur_trans->num_joined++;
91 }
92
93 return 0;
94 }
95
96 /*
97 * this does all the record keeping required to make sure that a reference
98 * counted root is properly recorded in a given transaction. This is required
99 * to make sure the old root from before we joined the transaction is deleted
100 * when the transaction commits
101 */
102 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
103 struct btrfs_root *root)
104 {
105 if (root->ref_cows && root->last_trans < trans->transid) {
106 WARN_ON(root == root->fs_info->extent_root);
107 WARN_ON(root->commit_root != root->node);
108
109 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
110 (unsigned long)root->root_key.objectid,
111 BTRFS_ROOT_TRANS_TAG);
112 root->last_trans = trans->transid;
113 btrfs_init_reloc_root(trans, root);
114 }
115 return 0;
116 }
117
118 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
119 struct btrfs_root *root)
120 {
121 if (!root->ref_cows)
122 return 0;
123
124 mutex_lock(&root->fs_info->trans_mutex);
125 if (root->last_trans == trans->transid) {
126 mutex_unlock(&root->fs_info->trans_mutex);
127 return 0;
128 }
129
130 record_root_in_trans(trans, root);
131 mutex_unlock(&root->fs_info->trans_mutex);
132 return 0;
133 }
134
135 /* wait for commit against the current transaction to become unblocked
136 * when this is done, it is safe to start a new transaction, but the current
137 * transaction might not be fully on disk.
138 */
139 static void wait_current_trans(struct btrfs_root *root)
140 {
141 struct btrfs_transaction *cur_trans;
142
143 cur_trans = root->fs_info->running_transaction;
144 if (cur_trans && cur_trans->blocked) {
145 DEFINE_WAIT(wait);
146 cur_trans->use_count++;
147 while (1) {
148 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
149 TASK_UNINTERRUPTIBLE);
150 if (!cur_trans->blocked)
151 break;
152 mutex_unlock(&root->fs_info->trans_mutex);
153 schedule();
154 mutex_lock(&root->fs_info->trans_mutex);
155 }
156 finish_wait(&root->fs_info->transaction_wait, &wait);
157 put_transaction(cur_trans);
158 }
159 }
160
161 enum btrfs_trans_type {
162 TRANS_START,
163 TRANS_JOIN,
164 TRANS_USERSPACE,
165 };
166
167 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
168 int num_blocks, int type)
169 {
170 struct btrfs_trans_handle *h =
171 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
172 int ret;
173
174 mutex_lock(&root->fs_info->trans_mutex);
175 if (!root->fs_info->log_root_recovering &&
176 ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
177 type == TRANS_USERSPACE))
178 wait_current_trans(root);
179 ret = join_transaction(root);
180 BUG_ON(ret);
181
182 h->transid = root->fs_info->running_transaction->transid;
183 h->transaction = root->fs_info->running_transaction;
184 h->blocks_reserved = num_blocks;
185 h->blocks_used = 0;
186 h->block_group = 0;
187 h->alloc_exclude_nr = 0;
188 h->alloc_exclude_start = 0;
189 h->delayed_ref_updates = 0;
190
191 if (!current->journal_info && type != TRANS_USERSPACE)
192 current->journal_info = h;
193
194 root->fs_info->running_transaction->use_count++;
195 record_root_in_trans(h, root);
196 mutex_unlock(&root->fs_info->trans_mutex);
197 return h;
198 }
199
200 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
201 int num_blocks)
202 {
203 return start_transaction(root, num_blocks, TRANS_START);
204 }
205 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
206 int num_blocks)
207 {
208 return start_transaction(root, num_blocks, TRANS_JOIN);
209 }
210
211 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
212 int num_blocks)
213 {
214 return start_transaction(r, num_blocks, TRANS_USERSPACE);
215 }
216
217 /* wait for a transaction commit to be fully complete */
218 static noinline int wait_for_commit(struct btrfs_root *root,
219 struct btrfs_transaction *commit)
220 {
221 DEFINE_WAIT(wait);
222 mutex_lock(&root->fs_info->trans_mutex);
223 while (!commit->commit_done) {
224 prepare_to_wait(&commit->commit_wait, &wait,
225 TASK_UNINTERRUPTIBLE);
226 if (commit->commit_done)
227 break;
228 mutex_unlock(&root->fs_info->trans_mutex);
229 schedule();
230 mutex_lock(&root->fs_info->trans_mutex);
231 }
232 mutex_unlock(&root->fs_info->trans_mutex);
233 finish_wait(&commit->commit_wait, &wait);
234 return 0;
235 }
236
237 #if 0
238 /*
239 * rate limit against the drop_snapshot code. This helps to slow down new
240 * operations if the drop_snapshot code isn't able to keep up.
241 */
242 static void throttle_on_drops(struct btrfs_root *root)
243 {
244 struct btrfs_fs_info *info = root->fs_info;
245 int harder_count = 0;
246
247 harder:
248 if (atomic_read(&info->throttles)) {
249 DEFINE_WAIT(wait);
250 int thr;
251 thr = atomic_read(&info->throttle_gen);
252
253 do {
254 prepare_to_wait(&info->transaction_throttle,
255 &wait, TASK_UNINTERRUPTIBLE);
256 if (!atomic_read(&info->throttles)) {
257 finish_wait(&info->transaction_throttle, &wait);
258 break;
259 }
260 schedule();
261 finish_wait(&info->transaction_throttle, &wait);
262 } while (thr == atomic_read(&info->throttle_gen));
263 harder_count++;
264
265 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
266 harder_count < 2)
267 goto harder;
268
269 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
270 harder_count < 10)
271 goto harder;
272
273 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
274 harder_count < 20)
275 goto harder;
276 }
277 }
278 #endif
279
280 void btrfs_throttle(struct btrfs_root *root)
281 {
282 mutex_lock(&root->fs_info->trans_mutex);
283 if (!root->fs_info->open_ioctl_trans)
284 wait_current_trans(root);
285 mutex_unlock(&root->fs_info->trans_mutex);
286 }
287
288 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
289 struct btrfs_root *root, int throttle)
290 {
291 struct btrfs_transaction *cur_trans;
292 struct btrfs_fs_info *info = root->fs_info;
293 int count = 0;
294
295 while (count < 4) {
296 unsigned long cur = trans->delayed_ref_updates;
297 trans->delayed_ref_updates = 0;
298 if (cur &&
299 trans->transaction->delayed_refs.num_heads_ready > 64) {
300 trans->delayed_ref_updates = 0;
301
302 /*
303 * do a full flush if the transaction is trying
304 * to close
305 */
306 if (trans->transaction->delayed_refs.flushing)
307 cur = 0;
308 btrfs_run_delayed_refs(trans, root, cur);
309 } else {
310 break;
311 }
312 count++;
313 }
314
315 mutex_lock(&info->trans_mutex);
316 cur_trans = info->running_transaction;
317 WARN_ON(cur_trans != trans->transaction);
318 WARN_ON(cur_trans->num_writers < 1);
319 cur_trans->num_writers--;
320
321 if (waitqueue_active(&cur_trans->writer_wait))
322 wake_up(&cur_trans->writer_wait);
323 put_transaction(cur_trans);
324 mutex_unlock(&info->trans_mutex);
325
326 if (current->journal_info == trans)
327 current->journal_info = NULL;
328 memset(trans, 0, sizeof(*trans));
329 kmem_cache_free(btrfs_trans_handle_cachep, trans);
330
331 if (throttle)
332 btrfs_run_delayed_iputs(root);
333
334 return 0;
335 }
336
337 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
338 struct btrfs_root *root)
339 {
340 return __btrfs_end_transaction(trans, root, 0);
341 }
342
343 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
344 struct btrfs_root *root)
345 {
346 return __btrfs_end_transaction(trans, root, 1);
347 }
348
349 /*
350 * when btree blocks are allocated, they have some corresponding bits set for
351 * them in one of two extent_io trees. This is used to make sure all of
352 * those extents are sent to disk but does not wait on them
353 */
354 int btrfs_write_marked_extents(struct btrfs_root *root,
355 struct extent_io_tree *dirty_pages, int mark)
356 {
357 int ret;
358 int err = 0;
359 int werr = 0;
360 struct page *page;
361 struct inode *btree_inode = root->fs_info->btree_inode;
362 u64 start = 0;
363 u64 end;
364 unsigned long index;
365
366 while (1) {
367 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
368 mark);
369 if (ret)
370 break;
371 while (start <= end) {
372 cond_resched();
373
374 index = start >> PAGE_CACHE_SHIFT;
375 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
376 page = find_get_page(btree_inode->i_mapping, index);
377 if (!page)
378 continue;
379
380 btree_lock_page_hook(page);
381 if (!page->mapping) {
382 unlock_page(page);
383 page_cache_release(page);
384 continue;
385 }
386
387 if (PageWriteback(page)) {
388 if (PageDirty(page))
389 wait_on_page_writeback(page);
390 else {
391 unlock_page(page);
392 page_cache_release(page);
393 continue;
394 }
395 }
396 err = write_one_page(page, 0);
397 if (err)
398 werr = err;
399 page_cache_release(page);
400 }
401 }
402 if (err)
403 werr = err;
404 return werr;
405 }
406
407 /*
408 * when btree blocks are allocated, they have some corresponding bits set for
409 * them in one of two extent_io trees. This is used to make sure all of
410 * those extents are on disk for transaction or log commit. We wait
411 * on all the pages and clear them from the dirty pages state tree
412 */
413 int btrfs_wait_marked_extents(struct btrfs_root *root,
414 struct extent_io_tree *dirty_pages, int mark)
415 {
416 int ret;
417 int err = 0;
418 int werr = 0;
419 struct page *page;
420 struct inode *btree_inode = root->fs_info->btree_inode;
421 u64 start = 0;
422 u64 end;
423 unsigned long index;
424
425 while (1) {
426 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
427 mark);
428 if (ret)
429 break;
430
431 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
432 while (start <= end) {
433 index = start >> PAGE_CACHE_SHIFT;
434 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
435 page = find_get_page(btree_inode->i_mapping, index);
436 if (!page)
437 continue;
438 if (PageDirty(page)) {
439 btree_lock_page_hook(page);
440 wait_on_page_writeback(page);
441 err = write_one_page(page, 0);
442 if (err)
443 werr = err;
444 }
445 wait_on_page_writeback(page);
446 page_cache_release(page);
447 cond_resched();
448 }
449 }
450 if (err)
451 werr = err;
452 return werr;
453 }
454
455 /*
456 * when btree blocks are allocated, they have some corresponding bits set for
457 * them in one of two extent_io trees. This is used to make sure all of
458 * those extents are on disk for transaction or log commit
459 */
460 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
461 struct extent_io_tree *dirty_pages, int mark)
462 {
463 int ret;
464 int ret2;
465
466 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
467 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
468 return ret || ret2;
469 }
470
471 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
472 struct btrfs_root *root)
473 {
474 if (!trans || !trans->transaction) {
475 struct inode *btree_inode;
476 btree_inode = root->fs_info->btree_inode;
477 return filemap_write_and_wait(btree_inode->i_mapping);
478 }
479 return btrfs_write_and_wait_marked_extents(root,
480 &trans->transaction->dirty_pages,
481 EXTENT_DIRTY);
482 }
483
484 /*
485 * this is used to update the root pointer in the tree of tree roots.
486 *
487 * But, in the case of the extent allocation tree, updating the root
488 * pointer may allocate blocks which may change the root of the extent
489 * allocation tree.
490 *
491 * So, this loops and repeats and makes sure the cowonly root didn't
492 * change while the root pointer was being updated in the metadata.
493 */
494 static int update_cowonly_root(struct btrfs_trans_handle *trans,
495 struct btrfs_root *root)
496 {
497 int ret;
498 u64 old_root_bytenr;
499 u64 old_root_used;
500 struct btrfs_root *tree_root = root->fs_info->tree_root;
501
502 old_root_used = btrfs_root_used(&root->root_item);
503 btrfs_write_dirty_block_groups(trans, root);
504
505 while (1) {
506 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
507 if (old_root_bytenr == root->node->start &&
508 old_root_used == btrfs_root_used(&root->root_item))
509 break;
510
511 btrfs_set_root_node(&root->root_item, root->node);
512 ret = btrfs_update_root(trans, tree_root,
513 &root->root_key,
514 &root->root_item);
515 BUG_ON(ret);
516
517 old_root_used = btrfs_root_used(&root->root_item);
518 ret = btrfs_write_dirty_block_groups(trans, root);
519 BUG_ON(ret);
520 }
521
522 if (root != root->fs_info->extent_root)
523 switch_commit_root(root);
524
525 return 0;
526 }
527
528 /*
529 * update all the cowonly tree roots on disk
530 */
531 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
532 struct btrfs_root *root)
533 {
534 struct btrfs_fs_info *fs_info = root->fs_info;
535 struct list_head *next;
536 struct extent_buffer *eb;
537 int ret;
538
539 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
540 BUG_ON(ret);
541
542 eb = btrfs_lock_root_node(fs_info->tree_root);
543 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
544 btrfs_tree_unlock(eb);
545 free_extent_buffer(eb);
546
547 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
548 BUG_ON(ret);
549
550 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
551 next = fs_info->dirty_cowonly_roots.next;
552 list_del_init(next);
553 root = list_entry(next, struct btrfs_root, dirty_list);
554
555 update_cowonly_root(trans, root);
556 }
557
558 down_write(&fs_info->extent_commit_sem);
559 switch_commit_root(fs_info->extent_root);
560 up_write(&fs_info->extent_commit_sem);
561
562 return 0;
563 }
564
565 /*
566 * dead roots are old snapshots that need to be deleted. This allocates
567 * a dirty root struct and adds it into the list of dead roots that need to
568 * be deleted
569 */
570 int btrfs_add_dead_root(struct btrfs_root *root)
571 {
572 mutex_lock(&root->fs_info->trans_mutex);
573 list_add(&root->root_list, &root->fs_info->dead_roots);
574 mutex_unlock(&root->fs_info->trans_mutex);
575 return 0;
576 }
577
578 /*
579 * update all the cowonly tree roots on disk
580 */
581 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
582 struct btrfs_root *root)
583 {
584 struct btrfs_root *gang[8];
585 struct btrfs_fs_info *fs_info = root->fs_info;
586 int i;
587 int ret;
588 int err = 0;
589
590 while (1) {
591 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
592 (void **)gang, 0,
593 ARRAY_SIZE(gang),
594 BTRFS_ROOT_TRANS_TAG);
595 if (ret == 0)
596 break;
597 for (i = 0; i < ret; i++) {
598 root = gang[i];
599 radix_tree_tag_clear(&fs_info->fs_roots_radix,
600 (unsigned long)root->root_key.objectid,
601 BTRFS_ROOT_TRANS_TAG);
602
603 btrfs_free_log(trans, root);
604 btrfs_update_reloc_root(trans, root);
605
606 if (root->commit_root != root->node) {
607 switch_commit_root(root);
608 btrfs_set_root_node(&root->root_item,
609 root->node);
610 }
611
612 err = btrfs_update_root(trans, fs_info->tree_root,
613 &root->root_key,
614 &root->root_item);
615 if (err)
616 break;
617 }
618 }
619 return err;
620 }
621
622 /*
623 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
624 * otherwise every leaf in the btree is read and defragged.
625 */
626 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
627 {
628 struct btrfs_fs_info *info = root->fs_info;
629 int ret;
630 struct btrfs_trans_handle *trans;
631 unsigned long nr;
632
633 smp_mb();
634 if (root->defrag_running)
635 return 0;
636 trans = btrfs_start_transaction(root, 1);
637 while (1) {
638 root->defrag_running = 1;
639 ret = btrfs_defrag_leaves(trans, root, cacheonly);
640 nr = trans->blocks_used;
641 btrfs_end_transaction(trans, root);
642 btrfs_btree_balance_dirty(info->tree_root, nr);
643 cond_resched();
644
645 trans = btrfs_start_transaction(root, 1);
646 if (root->fs_info->closing || ret != -EAGAIN)
647 break;
648 }
649 root->defrag_running = 0;
650 smp_mb();
651 btrfs_end_transaction(trans, root);
652 return 0;
653 }
654
655 #if 0
656 /*
657 * when dropping snapshots, we generate a ton of delayed refs, and it makes
658 * sense not to join the transaction while it is trying to flush the current
659 * queue of delayed refs out.
660 *
661 * This is used by the drop snapshot code only
662 */
663 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
664 {
665 DEFINE_WAIT(wait);
666
667 mutex_lock(&info->trans_mutex);
668 while (info->running_transaction &&
669 info->running_transaction->delayed_refs.flushing) {
670 prepare_to_wait(&info->transaction_wait, &wait,
671 TASK_UNINTERRUPTIBLE);
672 mutex_unlock(&info->trans_mutex);
673
674 schedule();
675
676 mutex_lock(&info->trans_mutex);
677 finish_wait(&info->transaction_wait, &wait);
678 }
679 mutex_unlock(&info->trans_mutex);
680 return 0;
681 }
682
683 /*
684 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
685 * all of them
686 */
687 int btrfs_drop_dead_root(struct btrfs_root *root)
688 {
689 struct btrfs_trans_handle *trans;
690 struct btrfs_root *tree_root = root->fs_info->tree_root;
691 unsigned long nr;
692 int ret;
693
694 while (1) {
695 /*
696 * we don't want to jump in and create a bunch of
697 * delayed refs if the transaction is starting to close
698 */
699 wait_transaction_pre_flush(tree_root->fs_info);
700 trans = btrfs_start_transaction(tree_root, 1);
701
702 /*
703 * we've joined a transaction, make sure it isn't
704 * closing right now
705 */
706 if (trans->transaction->delayed_refs.flushing) {
707 btrfs_end_transaction(trans, tree_root);
708 continue;
709 }
710
711 ret = btrfs_drop_snapshot(trans, root);
712 if (ret != -EAGAIN)
713 break;
714
715 ret = btrfs_update_root(trans, tree_root,
716 &root->root_key,
717 &root->root_item);
718 if (ret)
719 break;
720
721 nr = trans->blocks_used;
722 ret = btrfs_end_transaction(trans, tree_root);
723 BUG_ON(ret);
724
725 btrfs_btree_balance_dirty(tree_root, nr);
726 cond_resched();
727 }
728 BUG_ON(ret);
729
730 ret = btrfs_del_root(trans, tree_root, &root->root_key);
731 BUG_ON(ret);
732
733 nr = trans->blocks_used;
734 ret = btrfs_end_transaction(trans, tree_root);
735 BUG_ON(ret);
736
737 free_extent_buffer(root->node);
738 free_extent_buffer(root->commit_root);
739 kfree(root);
740
741 btrfs_btree_balance_dirty(tree_root, nr);
742 return ret;
743 }
744 #endif
745
746 /*
747 * new snapshots need to be created at a very specific time in the
748 * transaction commit. This does the actual creation
749 */
750 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
751 struct btrfs_fs_info *fs_info,
752 struct btrfs_pending_snapshot *pending)
753 {
754 struct btrfs_key key;
755 struct btrfs_root_item *new_root_item;
756 struct btrfs_root *tree_root = fs_info->tree_root;
757 struct btrfs_root *root = pending->root;
758 struct btrfs_root *parent_root;
759 struct inode *parent_inode;
760 struct extent_buffer *tmp;
761 struct extent_buffer *old;
762 int ret;
763 u64 objectid;
764 int namelen;
765 u64 index = 0;
766
767 parent_inode = pending->dentry->d_parent->d_inode;
768 parent_root = BTRFS_I(parent_inode)->root;
769
770 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
771 if (!new_root_item) {
772 ret = -ENOMEM;
773 goto fail;
774 }
775 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
776 if (ret)
777 goto fail;
778
779 key.objectid = objectid;
780 /* record when the snapshot was created in key.offset */
781 key.offset = trans->transid;
782 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
783
784 memcpy(&pending->root_key, &key, sizeof(key));
785 pending->root_key.offset = (u64)-1;
786
787 record_root_in_trans(trans, parent_root);
788 /*
789 * insert the directory item
790 */
791 namelen = strlen(pending->name);
792 ret = btrfs_set_inode_index(parent_inode, &index);
793 BUG_ON(ret);
794 ret = btrfs_insert_dir_item(trans, parent_root,
795 pending->name, namelen,
796 parent_inode->i_ino,
797 &pending->root_key, BTRFS_FT_DIR, index);
798 BUG_ON(ret);
799
800 btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2);
801 ret = btrfs_update_inode(trans, parent_root, parent_inode);
802 BUG_ON(ret);
803
804 record_root_in_trans(trans, root);
805 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
806 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
807
808 old = btrfs_lock_root_node(root);
809 btrfs_cow_block(trans, root, old, NULL, 0, &old);
810 btrfs_set_lock_blocking(old);
811
812 btrfs_copy_root(trans, root, old, &tmp, objectid);
813 btrfs_tree_unlock(old);
814 free_extent_buffer(old);
815
816 btrfs_set_root_node(new_root_item, tmp);
817 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
818 new_root_item);
819 BUG_ON(ret);
820 btrfs_tree_unlock(tmp);
821 free_extent_buffer(tmp);
822
823 ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
824 pending->root_key.objectid,
825 parent_root->root_key.objectid,
826 parent_inode->i_ino, index, pending->name,
827 namelen);
828 BUG_ON(ret);
829
830 fail:
831 kfree(new_root_item);
832 return ret;
833 }
834
835 /*
836 * create all the snapshots we've scheduled for creation
837 */
838 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
839 struct btrfs_fs_info *fs_info)
840 {
841 struct btrfs_pending_snapshot *pending;
842 struct list_head *head = &trans->transaction->pending_snapshots;
843 int ret;
844
845 list_for_each_entry(pending, head, list) {
846 ret = create_pending_snapshot(trans, fs_info, pending);
847 BUG_ON(ret);
848 }
849 return 0;
850 }
851
852 static void update_super_roots(struct btrfs_root *root)
853 {
854 struct btrfs_root_item *root_item;
855 struct btrfs_super_block *super;
856
857 super = &root->fs_info->super_copy;
858
859 root_item = &root->fs_info->chunk_root->root_item;
860 super->chunk_root = root_item->bytenr;
861 super->chunk_root_generation = root_item->generation;
862 super->chunk_root_level = root_item->level;
863
864 root_item = &root->fs_info->tree_root->root_item;
865 super->root = root_item->bytenr;
866 super->generation = root_item->generation;
867 super->root_level = root_item->level;
868 }
869
870 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
871 {
872 int ret = 0;
873 spin_lock(&info->new_trans_lock);
874 if (info->running_transaction)
875 ret = info->running_transaction->in_commit;
876 spin_unlock(&info->new_trans_lock);
877 return ret;
878 }
879
880 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
881 struct btrfs_root *root)
882 {
883 unsigned long joined = 0;
884 unsigned long timeout = 1;
885 struct btrfs_transaction *cur_trans;
886 struct btrfs_transaction *prev_trans = NULL;
887 DEFINE_WAIT(wait);
888 int ret;
889 int should_grow = 0;
890 unsigned long now = get_seconds();
891 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
892
893 btrfs_run_ordered_operations(root, 0);
894
895 /* make a pass through all the delayed refs we have so far
896 * any runnings procs may add more while we are here
897 */
898 ret = btrfs_run_delayed_refs(trans, root, 0);
899 BUG_ON(ret);
900
901 cur_trans = trans->transaction;
902 /*
903 * set the flushing flag so procs in this transaction have to
904 * start sending their work down.
905 */
906 cur_trans->delayed_refs.flushing = 1;
907
908 ret = btrfs_run_delayed_refs(trans, root, 0);
909 BUG_ON(ret);
910
911 mutex_lock(&root->fs_info->trans_mutex);
912 if (cur_trans->in_commit) {
913 cur_trans->use_count++;
914 mutex_unlock(&root->fs_info->trans_mutex);
915 btrfs_end_transaction(trans, root);
916
917 ret = wait_for_commit(root, cur_trans);
918 BUG_ON(ret);
919
920 mutex_lock(&root->fs_info->trans_mutex);
921 put_transaction(cur_trans);
922 mutex_unlock(&root->fs_info->trans_mutex);
923
924 return 0;
925 }
926
927 trans->transaction->in_commit = 1;
928 trans->transaction->blocked = 1;
929 if (cur_trans->list.prev != &root->fs_info->trans_list) {
930 prev_trans = list_entry(cur_trans->list.prev,
931 struct btrfs_transaction, list);
932 if (!prev_trans->commit_done) {
933 prev_trans->use_count++;
934 mutex_unlock(&root->fs_info->trans_mutex);
935
936 wait_for_commit(root, prev_trans);
937
938 mutex_lock(&root->fs_info->trans_mutex);
939 put_transaction(prev_trans);
940 }
941 }
942
943 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
944 should_grow = 1;
945
946 do {
947 int snap_pending = 0;
948 joined = cur_trans->num_joined;
949 if (!list_empty(&trans->transaction->pending_snapshots))
950 snap_pending = 1;
951
952 WARN_ON(cur_trans != trans->transaction);
953 prepare_to_wait(&cur_trans->writer_wait, &wait,
954 TASK_UNINTERRUPTIBLE);
955
956 if (cur_trans->num_writers > 1)
957 timeout = MAX_SCHEDULE_TIMEOUT;
958 else if (should_grow)
959 timeout = 1;
960
961 mutex_unlock(&root->fs_info->trans_mutex);
962
963 if (flush_on_commit || snap_pending) {
964 btrfs_start_delalloc_inodes(root, 1);
965 ret = btrfs_wait_ordered_extents(root, 0, 1);
966 BUG_ON(ret);
967 }
968
969 /*
970 * rename don't use btrfs_join_transaction, so, once we
971 * set the transaction to blocked above, we aren't going
972 * to get any new ordered operations. We can safely run
973 * it here and no for sure that nothing new will be added
974 * to the list
975 */
976 btrfs_run_ordered_operations(root, 1);
977
978 smp_mb();
979 if (cur_trans->num_writers > 1 || should_grow)
980 schedule_timeout(timeout);
981
982 mutex_lock(&root->fs_info->trans_mutex);
983 finish_wait(&cur_trans->writer_wait, &wait);
984 } while (cur_trans->num_writers > 1 ||
985 (should_grow && cur_trans->num_joined != joined));
986
987 ret = create_pending_snapshots(trans, root->fs_info);
988 BUG_ON(ret);
989
990 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
991 BUG_ON(ret);
992
993 WARN_ON(cur_trans != trans->transaction);
994
995 /* btrfs_commit_tree_roots is responsible for getting the
996 * various roots consistent with each other. Every pointer
997 * in the tree of tree roots has to point to the most up to date
998 * root for every subvolume and other tree. So, we have to keep
999 * the tree logging code from jumping in and changing any
1000 * of the trees.
1001 *
1002 * At this point in the commit, there can't be any tree-log
1003 * writers, but a little lower down we drop the trans mutex
1004 * and let new people in. By holding the tree_log_mutex
1005 * from now until after the super is written, we avoid races
1006 * with the tree-log code.
1007 */
1008 mutex_lock(&root->fs_info->tree_log_mutex);
1009
1010 ret = commit_fs_roots(trans, root);
1011 BUG_ON(ret);
1012
1013 /* commit_fs_roots gets rid of all the tree log roots, it is now
1014 * safe to free the root of tree log roots
1015 */
1016 btrfs_free_log_root_tree(trans, root->fs_info);
1017
1018 ret = commit_cowonly_roots(trans, root);
1019 BUG_ON(ret);
1020
1021 btrfs_prepare_extent_commit(trans, root);
1022
1023 cur_trans = root->fs_info->running_transaction;
1024 spin_lock(&root->fs_info->new_trans_lock);
1025 root->fs_info->running_transaction = NULL;
1026 spin_unlock(&root->fs_info->new_trans_lock);
1027
1028 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1029 root->fs_info->tree_root->node);
1030 switch_commit_root(root->fs_info->tree_root);
1031
1032 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1033 root->fs_info->chunk_root->node);
1034 switch_commit_root(root->fs_info->chunk_root);
1035
1036 update_super_roots(root);
1037
1038 if (!root->fs_info->log_root_recovering) {
1039 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1040 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1041 }
1042
1043 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1044 sizeof(root->fs_info->super_copy));
1045
1046 trans->transaction->blocked = 0;
1047
1048 wake_up(&root->fs_info->transaction_wait);
1049
1050 mutex_unlock(&root->fs_info->trans_mutex);
1051 ret = btrfs_write_and_wait_transaction(trans, root);
1052 BUG_ON(ret);
1053 write_ctree_super(trans, root, 0);
1054
1055 /*
1056 * the super is written, we can safely allow the tree-loggers
1057 * to go about their business
1058 */
1059 mutex_unlock(&root->fs_info->tree_log_mutex);
1060
1061 btrfs_finish_extent_commit(trans, root);
1062
1063 mutex_lock(&root->fs_info->trans_mutex);
1064
1065 cur_trans->commit_done = 1;
1066
1067 root->fs_info->last_trans_committed = cur_trans->transid;
1068
1069 wake_up(&cur_trans->commit_wait);
1070
1071 put_transaction(cur_trans);
1072 put_transaction(cur_trans);
1073
1074 mutex_unlock(&root->fs_info->trans_mutex);
1075
1076 if (current->journal_info == trans)
1077 current->journal_info = NULL;
1078
1079 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1080
1081 if (current != root->fs_info->transaction_kthread)
1082 btrfs_run_delayed_iputs(root);
1083
1084 return ret;
1085 }
1086
1087 /*
1088 * interface function to delete all the snapshots we have scheduled for deletion
1089 */
1090 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1091 {
1092 LIST_HEAD(list);
1093 struct btrfs_fs_info *fs_info = root->fs_info;
1094
1095 mutex_lock(&fs_info->trans_mutex);
1096 list_splice_init(&fs_info->dead_roots, &list);
1097 mutex_unlock(&fs_info->trans_mutex);
1098
1099 while (!list_empty(&list)) {
1100 root = list_entry(list.next, struct btrfs_root, root_list);
1101 list_del(&root->root_list);
1102
1103 if (btrfs_header_backref_rev(root->node) <
1104 BTRFS_MIXED_BACKREF_REV)
1105 btrfs_drop_snapshot(root, 0);
1106 else
1107 btrfs_drop_snapshot(root, 1);
1108 }
1109 return 0;
1110 }