Merge branch 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 printk(KERN_ERR "pending csums is %llu\n",
69 transaction->delayed_refs.pending_csums);
70 while (!list_empty(&transaction->pending_chunks)) {
71 struct extent_map *em;
72
73 em = list_first_entry(&transaction->pending_chunks,
74 struct extent_map, list);
75 list_del_init(&em->list);
76 free_extent_map(em);
77 }
78 kmem_cache_free(btrfs_transaction_cachep, transaction);
79 }
80 }
81
82 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 {
84 spin_lock(&tree->lock);
85 while (!RB_EMPTY_ROOT(&tree->state)) {
86 struct rb_node *node;
87 struct extent_state *state;
88
89 node = rb_first(&tree->state);
90 state = rb_entry(node, struct extent_state, rb_node);
91 rb_erase(&state->rb_node, &tree->state);
92 RB_CLEAR_NODE(&state->rb_node);
93 /*
94 * btree io trees aren't supposed to have tasks waiting for
95 * changes in the flags of extent states ever.
96 */
97 ASSERT(!waitqueue_active(&state->wq));
98 free_extent_state(state);
99
100 cond_resched_lock(&tree->lock);
101 }
102 spin_unlock(&tree->lock);
103 }
104
105 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
106 struct btrfs_fs_info *fs_info)
107 {
108 struct btrfs_root *root, *tmp;
109
110 down_write(&fs_info->commit_root_sem);
111 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
112 dirty_list) {
113 list_del_init(&root->dirty_list);
114 free_extent_buffer(root->commit_root);
115 root->commit_root = btrfs_root_node(root);
116 if (is_fstree(root->objectid))
117 btrfs_unpin_free_ino(root);
118 clear_btree_io_tree(&root->dirty_log_pages);
119 }
120
121 /* We can free old roots now. */
122 spin_lock(&trans->dropped_roots_lock);
123 while (!list_empty(&trans->dropped_roots)) {
124 root = list_first_entry(&trans->dropped_roots,
125 struct btrfs_root, root_list);
126 list_del_init(&root->root_list);
127 spin_unlock(&trans->dropped_roots_lock);
128 btrfs_drop_and_free_fs_root(fs_info, root);
129 spin_lock(&trans->dropped_roots_lock);
130 }
131 spin_unlock(&trans->dropped_roots_lock);
132 up_write(&fs_info->commit_root_sem);
133 }
134
135 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
136 unsigned int type)
137 {
138 if (type & TRANS_EXTWRITERS)
139 atomic_inc(&trans->num_extwriters);
140 }
141
142 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
143 unsigned int type)
144 {
145 if (type & TRANS_EXTWRITERS)
146 atomic_dec(&trans->num_extwriters);
147 }
148
149 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
150 unsigned int type)
151 {
152 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
153 }
154
155 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
156 {
157 return atomic_read(&trans->num_extwriters);
158 }
159
160 /*
161 * either allocate a new transaction or hop into the existing one
162 */
163 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
164 {
165 struct btrfs_transaction *cur_trans;
166 struct btrfs_fs_info *fs_info = root->fs_info;
167
168 spin_lock(&fs_info->trans_lock);
169 loop:
170 /* The file system has been taken offline. No new transactions. */
171 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
172 spin_unlock(&fs_info->trans_lock);
173 return -EROFS;
174 }
175
176 cur_trans = fs_info->running_transaction;
177 if (cur_trans) {
178 if (cur_trans->aborted) {
179 spin_unlock(&fs_info->trans_lock);
180 return cur_trans->aborted;
181 }
182 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
183 spin_unlock(&fs_info->trans_lock);
184 return -EBUSY;
185 }
186 atomic_inc(&cur_trans->use_count);
187 atomic_inc(&cur_trans->num_writers);
188 extwriter_counter_inc(cur_trans, type);
189 spin_unlock(&fs_info->trans_lock);
190 return 0;
191 }
192 spin_unlock(&fs_info->trans_lock);
193
194 /*
195 * If we are ATTACH, we just want to catch the current transaction,
196 * and commit it. If there is no transaction, just return ENOENT.
197 */
198 if (type == TRANS_ATTACH)
199 return -ENOENT;
200
201 /*
202 * JOIN_NOLOCK only happens during the transaction commit, so
203 * it is impossible that ->running_transaction is NULL
204 */
205 BUG_ON(type == TRANS_JOIN_NOLOCK);
206
207 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
208 if (!cur_trans)
209 return -ENOMEM;
210
211 spin_lock(&fs_info->trans_lock);
212 if (fs_info->running_transaction) {
213 /*
214 * someone started a transaction after we unlocked. Make sure
215 * to redo the checks above
216 */
217 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
218 goto loop;
219 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
220 spin_unlock(&fs_info->trans_lock);
221 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
222 return -EROFS;
223 }
224
225 atomic_set(&cur_trans->num_writers, 1);
226 extwriter_counter_init(cur_trans, type);
227 init_waitqueue_head(&cur_trans->writer_wait);
228 init_waitqueue_head(&cur_trans->commit_wait);
229 cur_trans->state = TRANS_STATE_RUNNING;
230 /*
231 * One for this trans handle, one so it will live on until we
232 * commit the transaction.
233 */
234 atomic_set(&cur_trans->use_count, 2);
235 cur_trans->have_free_bgs = 0;
236 cur_trans->start_time = get_seconds();
237 cur_trans->dirty_bg_run = 0;
238
239 cur_trans->delayed_refs.href_root = RB_ROOT;
240 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
241 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
242 cur_trans->delayed_refs.num_heads_ready = 0;
243 cur_trans->delayed_refs.pending_csums = 0;
244 cur_trans->delayed_refs.num_heads = 0;
245 cur_trans->delayed_refs.flushing = 0;
246 cur_trans->delayed_refs.run_delayed_start = 0;
247 cur_trans->delayed_refs.qgroup_to_skip = 0;
248
249 /*
250 * although the tree mod log is per file system and not per transaction,
251 * the log must never go across transaction boundaries.
252 */
253 smp_mb();
254 if (!list_empty(&fs_info->tree_mod_seq_list))
255 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
256 "creating a fresh transaction\n");
257 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
258 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
259 "creating a fresh transaction\n");
260 atomic64_set(&fs_info->tree_mod_seq, 0);
261
262 spin_lock_init(&cur_trans->delayed_refs.lock);
263
264 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
265 INIT_LIST_HEAD(&cur_trans->pending_chunks);
266 INIT_LIST_HEAD(&cur_trans->switch_commits);
267 INIT_LIST_HEAD(&cur_trans->pending_ordered);
268 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
269 INIT_LIST_HEAD(&cur_trans->io_bgs);
270 INIT_LIST_HEAD(&cur_trans->dropped_roots);
271 mutex_init(&cur_trans->cache_write_mutex);
272 cur_trans->num_dirty_bgs = 0;
273 spin_lock_init(&cur_trans->dirty_bgs_lock);
274 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
275 spin_lock_init(&cur_trans->deleted_bgs_lock);
276 spin_lock_init(&cur_trans->dropped_roots_lock);
277 list_add_tail(&cur_trans->list, &fs_info->trans_list);
278 extent_io_tree_init(&cur_trans->dirty_pages,
279 fs_info->btree_inode->i_mapping);
280 fs_info->generation++;
281 cur_trans->transid = fs_info->generation;
282 fs_info->running_transaction = cur_trans;
283 cur_trans->aborted = 0;
284 spin_unlock(&fs_info->trans_lock);
285
286 return 0;
287 }
288
289 /*
290 * this does all the record keeping required to make sure that a reference
291 * counted root is properly recorded in a given transaction. This is required
292 * to make sure the old root from before we joined the transaction is deleted
293 * when the transaction commits
294 */
295 static int record_root_in_trans(struct btrfs_trans_handle *trans,
296 struct btrfs_root *root)
297 {
298 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
299 root->last_trans < trans->transid) {
300 WARN_ON(root == root->fs_info->extent_root);
301 WARN_ON(root->commit_root != root->node);
302
303 /*
304 * see below for IN_TRANS_SETUP usage rules
305 * we have the reloc mutex held now, so there
306 * is only one writer in this function
307 */
308 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
309
310 /* make sure readers find IN_TRANS_SETUP before
311 * they find our root->last_trans update
312 */
313 smp_wmb();
314
315 spin_lock(&root->fs_info->fs_roots_radix_lock);
316 if (root->last_trans == trans->transid) {
317 spin_unlock(&root->fs_info->fs_roots_radix_lock);
318 return 0;
319 }
320 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
321 (unsigned long)root->root_key.objectid,
322 BTRFS_ROOT_TRANS_TAG);
323 spin_unlock(&root->fs_info->fs_roots_radix_lock);
324 root->last_trans = trans->transid;
325
326 /* this is pretty tricky. We don't want to
327 * take the relocation lock in btrfs_record_root_in_trans
328 * unless we're really doing the first setup for this root in
329 * this transaction.
330 *
331 * Normally we'd use root->last_trans as a flag to decide
332 * if we want to take the expensive mutex.
333 *
334 * But, we have to set root->last_trans before we
335 * init the relocation root, otherwise, we trip over warnings
336 * in ctree.c. The solution used here is to flag ourselves
337 * with root IN_TRANS_SETUP. When this is 1, we're still
338 * fixing up the reloc trees and everyone must wait.
339 *
340 * When this is zero, they can trust root->last_trans and fly
341 * through btrfs_record_root_in_trans without having to take the
342 * lock. smp_wmb() makes sure that all the writes above are
343 * done before we pop in the zero below
344 */
345 btrfs_init_reloc_root(trans, root);
346 smp_mb__before_atomic();
347 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
348 }
349 return 0;
350 }
351
352
353 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
354 struct btrfs_root *root)
355 {
356 struct btrfs_transaction *cur_trans = trans->transaction;
357
358 /* Add ourselves to the transaction dropped list */
359 spin_lock(&cur_trans->dropped_roots_lock);
360 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
361 spin_unlock(&cur_trans->dropped_roots_lock);
362
363 /* Make sure we don't try to update the root at commit time */
364 spin_lock(&root->fs_info->fs_roots_radix_lock);
365 radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
366 (unsigned long)root->root_key.objectid,
367 BTRFS_ROOT_TRANS_TAG);
368 spin_unlock(&root->fs_info->fs_roots_radix_lock);
369 }
370
371 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
372 struct btrfs_root *root)
373 {
374 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
375 return 0;
376
377 /*
378 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
379 * and barriers
380 */
381 smp_rmb();
382 if (root->last_trans == trans->transid &&
383 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
384 return 0;
385
386 mutex_lock(&root->fs_info->reloc_mutex);
387 record_root_in_trans(trans, root);
388 mutex_unlock(&root->fs_info->reloc_mutex);
389
390 return 0;
391 }
392
393 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
394 {
395 return (trans->state >= TRANS_STATE_BLOCKED &&
396 trans->state < TRANS_STATE_UNBLOCKED &&
397 !trans->aborted);
398 }
399
400 /* wait for commit against the current transaction to become unblocked
401 * when this is done, it is safe to start a new transaction, but the current
402 * transaction might not be fully on disk.
403 */
404 static void wait_current_trans(struct btrfs_root *root)
405 {
406 struct btrfs_transaction *cur_trans;
407
408 spin_lock(&root->fs_info->trans_lock);
409 cur_trans = root->fs_info->running_transaction;
410 if (cur_trans && is_transaction_blocked(cur_trans)) {
411 atomic_inc(&cur_trans->use_count);
412 spin_unlock(&root->fs_info->trans_lock);
413
414 wait_event(root->fs_info->transaction_wait,
415 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
416 cur_trans->aborted);
417 btrfs_put_transaction(cur_trans);
418 } else {
419 spin_unlock(&root->fs_info->trans_lock);
420 }
421 }
422
423 static int may_wait_transaction(struct btrfs_root *root, int type)
424 {
425 if (root->fs_info->log_root_recovering)
426 return 0;
427
428 if (type == TRANS_USERSPACE)
429 return 1;
430
431 if (type == TRANS_START &&
432 !atomic_read(&root->fs_info->open_ioctl_trans))
433 return 1;
434
435 return 0;
436 }
437
438 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
439 {
440 if (!root->fs_info->reloc_ctl ||
441 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
442 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
443 root->reloc_root)
444 return false;
445
446 return true;
447 }
448
449 static struct btrfs_trans_handle *
450 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
451 enum btrfs_reserve_flush_enum flush)
452 {
453 struct btrfs_trans_handle *h;
454 struct btrfs_transaction *cur_trans;
455 u64 num_bytes = 0;
456 u64 qgroup_reserved = 0;
457 bool reloc_reserved = false;
458 int ret;
459
460 /* Send isn't supposed to start transactions. */
461 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
462
463 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
464 return ERR_PTR(-EROFS);
465
466 if (current->journal_info) {
467 WARN_ON(type & TRANS_EXTWRITERS);
468 h = current->journal_info;
469 h->use_count++;
470 WARN_ON(h->use_count > 2);
471 h->orig_rsv = h->block_rsv;
472 h->block_rsv = NULL;
473 goto got_it;
474 }
475
476 /*
477 * Do the reservation before we join the transaction so we can do all
478 * the appropriate flushing if need be.
479 */
480 if (num_items > 0 && root != root->fs_info->chunk_root) {
481 if (root->fs_info->quota_enabled &&
482 is_fstree(root->root_key.objectid)) {
483 qgroup_reserved = num_items * root->nodesize;
484 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
485 if (ret)
486 return ERR_PTR(ret);
487 }
488
489 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
490 /*
491 * Do the reservation for the relocation root creation
492 */
493 if (need_reserve_reloc_root(root)) {
494 num_bytes += root->nodesize;
495 reloc_reserved = true;
496 }
497
498 ret = btrfs_block_rsv_add(root,
499 &root->fs_info->trans_block_rsv,
500 num_bytes, flush);
501 if (ret)
502 goto reserve_fail;
503 }
504 again:
505 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
506 if (!h) {
507 ret = -ENOMEM;
508 goto alloc_fail;
509 }
510
511 /*
512 * If we are JOIN_NOLOCK we're already committing a transaction and
513 * waiting on this guy, so we don't need to do the sb_start_intwrite
514 * because we're already holding a ref. We need this because we could
515 * have raced in and did an fsync() on a file which can kick a commit
516 * and then we deadlock with somebody doing a freeze.
517 *
518 * If we are ATTACH, it means we just want to catch the current
519 * transaction and commit it, so we needn't do sb_start_intwrite().
520 */
521 if (type & __TRANS_FREEZABLE)
522 sb_start_intwrite(root->fs_info->sb);
523
524 if (may_wait_transaction(root, type))
525 wait_current_trans(root);
526
527 do {
528 ret = join_transaction(root, type);
529 if (ret == -EBUSY) {
530 wait_current_trans(root);
531 if (unlikely(type == TRANS_ATTACH))
532 ret = -ENOENT;
533 }
534 } while (ret == -EBUSY);
535
536 if (ret < 0) {
537 /* We must get the transaction if we are JOIN_NOLOCK. */
538 BUG_ON(type == TRANS_JOIN_NOLOCK);
539 goto join_fail;
540 }
541
542 cur_trans = root->fs_info->running_transaction;
543
544 h->transid = cur_trans->transid;
545 h->transaction = cur_trans;
546 h->blocks_used = 0;
547 h->bytes_reserved = 0;
548 h->chunk_bytes_reserved = 0;
549 h->root = root;
550 h->delayed_ref_updates = 0;
551 h->use_count = 1;
552 h->adding_csums = 0;
553 h->block_rsv = NULL;
554 h->orig_rsv = NULL;
555 h->aborted = 0;
556 h->qgroup_reserved = 0;
557 h->delayed_ref_elem.seq = 0;
558 h->type = type;
559 h->allocating_chunk = false;
560 h->can_flush_pending_bgs = true;
561 h->reloc_reserved = false;
562 h->sync = false;
563 INIT_LIST_HEAD(&h->qgroup_ref_list);
564 INIT_LIST_HEAD(&h->new_bgs);
565 INIT_LIST_HEAD(&h->ordered);
566
567 smp_mb();
568 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
569 may_wait_transaction(root, type)) {
570 current->journal_info = h;
571 btrfs_commit_transaction(h, root);
572 goto again;
573 }
574
575 if (num_bytes) {
576 trace_btrfs_space_reservation(root->fs_info, "transaction",
577 h->transid, num_bytes, 1);
578 h->block_rsv = &root->fs_info->trans_block_rsv;
579 h->bytes_reserved = num_bytes;
580 h->reloc_reserved = reloc_reserved;
581 }
582 h->qgroup_reserved = qgroup_reserved;
583
584 got_it:
585 btrfs_record_root_in_trans(h, root);
586
587 if (!current->journal_info && type != TRANS_USERSPACE)
588 current->journal_info = h;
589 return h;
590
591 join_fail:
592 if (type & __TRANS_FREEZABLE)
593 sb_end_intwrite(root->fs_info->sb);
594 kmem_cache_free(btrfs_trans_handle_cachep, h);
595 alloc_fail:
596 if (num_bytes)
597 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
598 num_bytes);
599 reserve_fail:
600 if (qgroup_reserved)
601 btrfs_qgroup_free(root, qgroup_reserved);
602 return ERR_PTR(ret);
603 }
604
605 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
606 int num_items)
607 {
608 return start_transaction(root, num_items, TRANS_START,
609 BTRFS_RESERVE_FLUSH_ALL);
610 }
611
612 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
613 struct btrfs_root *root, int num_items)
614 {
615 return start_transaction(root, num_items, TRANS_START,
616 BTRFS_RESERVE_FLUSH_LIMIT);
617 }
618
619 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
620 {
621 return start_transaction(root, 0, TRANS_JOIN, 0);
622 }
623
624 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
625 {
626 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
627 }
628
629 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
630 {
631 return start_transaction(root, 0, TRANS_USERSPACE, 0);
632 }
633
634 /*
635 * btrfs_attach_transaction() - catch the running transaction
636 *
637 * It is used when we want to commit the current the transaction, but
638 * don't want to start a new one.
639 *
640 * Note: If this function return -ENOENT, it just means there is no
641 * running transaction. But it is possible that the inactive transaction
642 * is still in the memory, not fully on disk. If you hope there is no
643 * inactive transaction in the fs when -ENOENT is returned, you should
644 * invoke
645 * btrfs_attach_transaction_barrier()
646 */
647 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
648 {
649 return start_transaction(root, 0, TRANS_ATTACH, 0);
650 }
651
652 /*
653 * btrfs_attach_transaction_barrier() - catch the running transaction
654 *
655 * It is similar to the above function, the differentia is this one
656 * will wait for all the inactive transactions until they fully
657 * complete.
658 */
659 struct btrfs_trans_handle *
660 btrfs_attach_transaction_barrier(struct btrfs_root *root)
661 {
662 struct btrfs_trans_handle *trans;
663
664 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
665 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
666 btrfs_wait_for_commit(root, 0);
667
668 return trans;
669 }
670
671 /* wait for a transaction commit to be fully complete */
672 static noinline void wait_for_commit(struct btrfs_root *root,
673 struct btrfs_transaction *commit)
674 {
675 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
676 }
677
678 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
679 {
680 struct btrfs_transaction *cur_trans = NULL, *t;
681 int ret = 0;
682
683 if (transid) {
684 if (transid <= root->fs_info->last_trans_committed)
685 goto out;
686
687 /* find specified transaction */
688 spin_lock(&root->fs_info->trans_lock);
689 list_for_each_entry(t, &root->fs_info->trans_list, list) {
690 if (t->transid == transid) {
691 cur_trans = t;
692 atomic_inc(&cur_trans->use_count);
693 ret = 0;
694 break;
695 }
696 if (t->transid > transid) {
697 ret = 0;
698 break;
699 }
700 }
701 spin_unlock(&root->fs_info->trans_lock);
702
703 /*
704 * The specified transaction doesn't exist, or we
705 * raced with btrfs_commit_transaction
706 */
707 if (!cur_trans) {
708 if (transid > root->fs_info->last_trans_committed)
709 ret = -EINVAL;
710 goto out;
711 }
712 } else {
713 /* find newest transaction that is committing | committed */
714 spin_lock(&root->fs_info->trans_lock);
715 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
716 list) {
717 if (t->state >= TRANS_STATE_COMMIT_START) {
718 if (t->state == TRANS_STATE_COMPLETED)
719 break;
720 cur_trans = t;
721 atomic_inc(&cur_trans->use_count);
722 break;
723 }
724 }
725 spin_unlock(&root->fs_info->trans_lock);
726 if (!cur_trans)
727 goto out; /* nothing committing|committed */
728 }
729
730 wait_for_commit(root, cur_trans);
731 btrfs_put_transaction(cur_trans);
732 out:
733 return ret;
734 }
735
736 void btrfs_throttle(struct btrfs_root *root)
737 {
738 if (!atomic_read(&root->fs_info->open_ioctl_trans))
739 wait_current_trans(root);
740 }
741
742 static int should_end_transaction(struct btrfs_trans_handle *trans,
743 struct btrfs_root *root)
744 {
745 if (root->fs_info->global_block_rsv.space_info->full &&
746 btrfs_check_space_for_delayed_refs(trans, root))
747 return 1;
748
749 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
750 }
751
752 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
753 struct btrfs_root *root)
754 {
755 struct btrfs_transaction *cur_trans = trans->transaction;
756 int updates;
757 int err;
758
759 smp_mb();
760 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
761 cur_trans->delayed_refs.flushing)
762 return 1;
763
764 updates = trans->delayed_ref_updates;
765 trans->delayed_ref_updates = 0;
766 if (updates) {
767 err = btrfs_run_delayed_refs(trans, root, updates * 2);
768 if (err) /* Error code will also eval true */
769 return err;
770 }
771
772 return should_end_transaction(trans, root);
773 }
774
775 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
776 struct btrfs_root *root, int throttle)
777 {
778 struct btrfs_transaction *cur_trans = trans->transaction;
779 struct btrfs_fs_info *info = root->fs_info;
780 unsigned long cur = trans->delayed_ref_updates;
781 int lock = (trans->type != TRANS_JOIN_NOLOCK);
782 int err = 0;
783 int must_run_delayed_refs = 0;
784
785 if (trans->use_count > 1) {
786 trans->use_count--;
787 trans->block_rsv = trans->orig_rsv;
788 return 0;
789 }
790
791 btrfs_trans_release_metadata(trans, root);
792 trans->block_rsv = NULL;
793
794 if (!list_empty(&trans->new_bgs))
795 btrfs_create_pending_block_groups(trans, root);
796
797 if (!list_empty(&trans->ordered)) {
798 spin_lock(&info->trans_lock);
799 list_splice_init(&trans->ordered, &cur_trans->pending_ordered);
800 spin_unlock(&info->trans_lock);
801 }
802
803 trans->delayed_ref_updates = 0;
804 if (!trans->sync) {
805 must_run_delayed_refs =
806 btrfs_should_throttle_delayed_refs(trans, root);
807 cur = max_t(unsigned long, cur, 32);
808
809 /*
810 * don't make the caller wait if they are from a NOLOCK
811 * or ATTACH transaction, it will deadlock with commit
812 */
813 if (must_run_delayed_refs == 1 &&
814 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
815 must_run_delayed_refs = 2;
816 }
817
818 if (trans->qgroup_reserved) {
819 /*
820 * the same root has to be passed here between start_transaction
821 * and end_transaction. Subvolume quota depends on this.
822 */
823 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
824 trans->qgroup_reserved = 0;
825 }
826
827 btrfs_trans_release_metadata(trans, root);
828 trans->block_rsv = NULL;
829
830 if (!list_empty(&trans->new_bgs))
831 btrfs_create_pending_block_groups(trans, root);
832
833 btrfs_trans_release_chunk_metadata(trans);
834
835 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
836 should_end_transaction(trans, root) &&
837 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
838 spin_lock(&info->trans_lock);
839 if (cur_trans->state == TRANS_STATE_RUNNING)
840 cur_trans->state = TRANS_STATE_BLOCKED;
841 spin_unlock(&info->trans_lock);
842 }
843
844 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
845 if (throttle)
846 return btrfs_commit_transaction(trans, root);
847 else
848 wake_up_process(info->transaction_kthread);
849 }
850
851 if (trans->type & __TRANS_FREEZABLE)
852 sb_end_intwrite(root->fs_info->sb);
853
854 WARN_ON(cur_trans != info->running_transaction);
855 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
856 atomic_dec(&cur_trans->num_writers);
857 extwriter_counter_dec(cur_trans, trans->type);
858
859 smp_mb();
860 if (waitqueue_active(&cur_trans->writer_wait))
861 wake_up(&cur_trans->writer_wait);
862 btrfs_put_transaction(cur_trans);
863
864 if (current->journal_info == trans)
865 current->journal_info = NULL;
866
867 if (throttle)
868 btrfs_run_delayed_iputs(root);
869
870 if (trans->aborted ||
871 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
872 wake_up_process(info->transaction_kthread);
873 err = -EIO;
874 }
875 assert_qgroups_uptodate(trans);
876
877 kmem_cache_free(btrfs_trans_handle_cachep, trans);
878 if (must_run_delayed_refs) {
879 btrfs_async_run_delayed_refs(root, cur,
880 must_run_delayed_refs == 1);
881 }
882 return err;
883 }
884
885 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
886 struct btrfs_root *root)
887 {
888 return __btrfs_end_transaction(trans, root, 0);
889 }
890
891 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
892 struct btrfs_root *root)
893 {
894 return __btrfs_end_transaction(trans, root, 1);
895 }
896
897 /*
898 * when btree blocks are allocated, they have some corresponding bits set for
899 * them in one of two extent_io trees. This is used to make sure all of
900 * those extents are sent to disk but does not wait on them
901 */
902 int btrfs_write_marked_extents(struct btrfs_root *root,
903 struct extent_io_tree *dirty_pages, int mark)
904 {
905 int err = 0;
906 int werr = 0;
907 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
908 struct extent_state *cached_state = NULL;
909 u64 start = 0;
910 u64 end;
911
912 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
913 mark, &cached_state)) {
914 bool wait_writeback = false;
915
916 err = convert_extent_bit(dirty_pages, start, end,
917 EXTENT_NEED_WAIT,
918 mark, &cached_state, GFP_NOFS);
919 /*
920 * convert_extent_bit can return -ENOMEM, which is most of the
921 * time a temporary error. So when it happens, ignore the error
922 * and wait for writeback of this range to finish - because we
923 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
924 * to btrfs_wait_marked_extents() would not know that writeback
925 * for this range started and therefore wouldn't wait for it to
926 * finish - we don't want to commit a superblock that points to
927 * btree nodes/leafs for which writeback hasn't finished yet
928 * (and without errors).
929 * We cleanup any entries left in the io tree when committing
930 * the transaction (through clear_btree_io_tree()).
931 */
932 if (err == -ENOMEM) {
933 err = 0;
934 wait_writeback = true;
935 }
936 if (!err)
937 err = filemap_fdatawrite_range(mapping, start, end);
938 if (err)
939 werr = err;
940 else if (wait_writeback)
941 werr = filemap_fdatawait_range(mapping, start, end);
942 free_extent_state(cached_state);
943 cached_state = NULL;
944 cond_resched();
945 start = end + 1;
946 }
947 return werr;
948 }
949
950 /*
951 * when btree blocks are allocated, they have some corresponding bits set for
952 * them in one of two extent_io trees. This is used to make sure all of
953 * those extents are on disk for transaction or log commit. We wait
954 * on all the pages and clear them from the dirty pages state tree
955 */
956 int btrfs_wait_marked_extents(struct btrfs_root *root,
957 struct extent_io_tree *dirty_pages, int mark)
958 {
959 int err = 0;
960 int werr = 0;
961 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
962 struct extent_state *cached_state = NULL;
963 u64 start = 0;
964 u64 end;
965 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
966 bool errors = false;
967
968 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
969 EXTENT_NEED_WAIT, &cached_state)) {
970 /*
971 * Ignore -ENOMEM errors returned by clear_extent_bit().
972 * When committing the transaction, we'll remove any entries
973 * left in the io tree. For a log commit, we don't remove them
974 * after committing the log because the tree can be accessed
975 * concurrently - we do it only at transaction commit time when
976 * it's safe to do it (through clear_btree_io_tree()).
977 */
978 err = clear_extent_bit(dirty_pages, start, end,
979 EXTENT_NEED_WAIT,
980 0, 0, &cached_state, GFP_NOFS);
981 if (err == -ENOMEM)
982 err = 0;
983 if (!err)
984 err = filemap_fdatawait_range(mapping, start, end);
985 if (err)
986 werr = err;
987 free_extent_state(cached_state);
988 cached_state = NULL;
989 cond_resched();
990 start = end + 1;
991 }
992 if (err)
993 werr = err;
994
995 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
996 if ((mark & EXTENT_DIRTY) &&
997 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
998 &btree_ino->runtime_flags))
999 errors = true;
1000
1001 if ((mark & EXTENT_NEW) &&
1002 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
1003 &btree_ino->runtime_flags))
1004 errors = true;
1005 } else {
1006 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
1007 &btree_ino->runtime_flags))
1008 errors = true;
1009 }
1010
1011 if (errors && !werr)
1012 werr = -EIO;
1013
1014 return werr;
1015 }
1016
1017 /*
1018 * when btree blocks are allocated, they have some corresponding bits set for
1019 * them in one of two extent_io trees. This is used to make sure all of
1020 * those extents are on disk for transaction or log commit
1021 */
1022 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1023 struct extent_io_tree *dirty_pages, int mark)
1024 {
1025 int ret;
1026 int ret2;
1027 struct blk_plug plug;
1028
1029 blk_start_plug(&plug);
1030 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1031 blk_finish_plug(&plug);
1032 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1033
1034 if (ret)
1035 return ret;
1036 if (ret2)
1037 return ret2;
1038 return 0;
1039 }
1040
1041 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1042 struct btrfs_root *root)
1043 {
1044 int ret;
1045
1046 ret = btrfs_write_and_wait_marked_extents(root,
1047 &trans->transaction->dirty_pages,
1048 EXTENT_DIRTY);
1049 clear_btree_io_tree(&trans->transaction->dirty_pages);
1050
1051 return ret;
1052 }
1053
1054 /*
1055 * this is used to update the root pointer in the tree of tree roots.
1056 *
1057 * But, in the case of the extent allocation tree, updating the root
1058 * pointer may allocate blocks which may change the root of the extent
1059 * allocation tree.
1060 *
1061 * So, this loops and repeats and makes sure the cowonly root didn't
1062 * change while the root pointer was being updated in the metadata.
1063 */
1064 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1065 struct btrfs_root *root)
1066 {
1067 int ret;
1068 u64 old_root_bytenr;
1069 u64 old_root_used;
1070 struct btrfs_root *tree_root = root->fs_info->tree_root;
1071
1072 old_root_used = btrfs_root_used(&root->root_item);
1073
1074 while (1) {
1075 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1076 if (old_root_bytenr == root->node->start &&
1077 old_root_used == btrfs_root_used(&root->root_item))
1078 break;
1079
1080 btrfs_set_root_node(&root->root_item, root->node);
1081 ret = btrfs_update_root(trans, tree_root,
1082 &root->root_key,
1083 &root->root_item);
1084 if (ret)
1085 return ret;
1086
1087 old_root_used = btrfs_root_used(&root->root_item);
1088 }
1089
1090 return 0;
1091 }
1092
1093 /*
1094 * update all the cowonly tree roots on disk
1095 *
1096 * The error handling in this function may not be obvious. Any of the
1097 * failures will cause the file system to go offline. We still need
1098 * to clean up the delayed refs.
1099 */
1100 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1101 struct btrfs_root *root)
1102 {
1103 struct btrfs_fs_info *fs_info = root->fs_info;
1104 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1105 struct list_head *io_bgs = &trans->transaction->io_bgs;
1106 struct list_head *next;
1107 struct extent_buffer *eb;
1108 int ret;
1109
1110 eb = btrfs_lock_root_node(fs_info->tree_root);
1111 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1112 0, &eb);
1113 btrfs_tree_unlock(eb);
1114 free_extent_buffer(eb);
1115
1116 if (ret)
1117 return ret;
1118
1119 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1120 if (ret)
1121 return ret;
1122
1123 ret = btrfs_run_dev_stats(trans, root->fs_info);
1124 if (ret)
1125 return ret;
1126 ret = btrfs_run_dev_replace(trans, root->fs_info);
1127 if (ret)
1128 return ret;
1129 ret = btrfs_run_qgroups(trans, root->fs_info);
1130 if (ret)
1131 return ret;
1132
1133 ret = btrfs_setup_space_cache(trans, root);
1134 if (ret)
1135 return ret;
1136
1137 /* run_qgroups might have added some more refs */
1138 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1139 if (ret)
1140 return ret;
1141 again:
1142 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1143 next = fs_info->dirty_cowonly_roots.next;
1144 list_del_init(next);
1145 root = list_entry(next, struct btrfs_root, dirty_list);
1146 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1147
1148 if (root != fs_info->extent_root)
1149 list_add_tail(&root->dirty_list,
1150 &trans->transaction->switch_commits);
1151 ret = update_cowonly_root(trans, root);
1152 if (ret)
1153 return ret;
1154 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1155 if (ret)
1156 return ret;
1157 }
1158
1159 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1160 ret = btrfs_write_dirty_block_groups(trans, root);
1161 if (ret)
1162 return ret;
1163 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1164 if (ret)
1165 return ret;
1166 }
1167
1168 if (!list_empty(&fs_info->dirty_cowonly_roots))
1169 goto again;
1170
1171 list_add_tail(&fs_info->extent_root->dirty_list,
1172 &trans->transaction->switch_commits);
1173 btrfs_after_dev_replace_commit(fs_info);
1174
1175 return 0;
1176 }
1177
1178 /*
1179 * dead roots are old snapshots that need to be deleted. This allocates
1180 * a dirty root struct and adds it into the list of dead roots that need to
1181 * be deleted
1182 */
1183 void btrfs_add_dead_root(struct btrfs_root *root)
1184 {
1185 spin_lock(&root->fs_info->trans_lock);
1186 if (list_empty(&root->root_list))
1187 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1188 spin_unlock(&root->fs_info->trans_lock);
1189 }
1190
1191 /*
1192 * update all the cowonly tree roots on disk
1193 */
1194 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1195 struct btrfs_root *root)
1196 {
1197 struct btrfs_root *gang[8];
1198 struct btrfs_fs_info *fs_info = root->fs_info;
1199 int i;
1200 int ret;
1201 int err = 0;
1202
1203 spin_lock(&fs_info->fs_roots_radix_lock);
1204 while (1) {
1205 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1206 (void **)gang, 0,
1207 ARRAY_SIZE(gang),
1208 BTRFS_ROOT_TRANS_TAG);
1209 if (ret == 0)
1210 break;
1211 for (i = 0; i < ret; i++) {
1212 root = gang[i];
1213 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1214 (unsigned long)root->root_key.objectid,
1215 BTRFS_ROOT_TRANS_TAG);
1216 spin_unlock(&fs_info->fs_roots_radix_lock);
1217
1218 btrfs_free_log(trans, root);
1219 btrfs_update_reloc_root(trans, root);
1220 btrfs_orphan_commit_root(trans, root);
1221
1222 btrfs_save_ino_cache(root, trans);
1223
1224 /* see comments in should_cow_block() */
1225 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1226 smp_mb__after_atomic();
1227
1228 if (root->commit_root != root->node) {
1229 list_add_tail(&root->dirty_list,
1230 &trans->transaction->switch_commits);
1231 btrfs_set_root_node(&root->root_item,
1232 root->node);
1233 }
1234
1235 err = btrfs_update_root(trans, fs_info->tree_root,
1236 &root->root_key,
1237 &root->root_item);
1238 spin_lock(&fs_info->fs_roots_radix_lock);
1239 if (err)
1240 break;
1241 }
1242 }
1243 spin_unlock(&fs_info->fs_roots_radix_lock);
1244 return err;
1245 }
1246
1247 /*
1248 * defrag a given btree.
1249 * Every leaf in the btree is read and defragged.
1250 */
1251 int btrfs_defrag_root(struct btrfs_root *root)
1252 {
1253 struct btrfs_fs_info *info = root->fs_info;
1254 struct btrfs_trans_handle *trans;
1255 int ret;
1256
1257 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1258 return 0;
1259
1260 while (1) {
1261 trans = btrfs_start_transaction(root, 0);
1262 if (IS_ERR(trans))
1263 return PTR_ERR(trans);
1264
1265 ret = btrfs_defrag_leaves(trans, root);
1266
1267 btrfs_end_transaction(trans, root);
1268 btrfs_btree_balance_dirty(info->tree_root);
1269 cond_resched();
1270
1271 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1272 break;
1273
1274 if (btrfs_defrag_cancelled(root->fs_info)) {
1275 pr_debug("BTRFS: defrag_root cancelled\n");
1276 ret = -EAGAIN;
1277 break;
1278 }
1279 }
1280 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1281 return ret;
1282 }
1283
1284 /*
1285 * new snapshots need to be created at a very specific time in the
1286 * transaction commit. This does the actual creation.
1287 *
1288 * Note:
1289 * If the error which may affect the commitment of the current transaction
1290 * happens, we should return the error number. If the error which just affect
1291 * the creation of the pending snapshots, just return 0.
1292 */
1293 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1294 struct btrfs_fs_info *fs_info,
1295 struct btrfs_pending_snapshot *pending)
1296 {
1297 struct btrfs_key key;
1298 struct btrfs_root_item *new_root_item;
1299 struct btrfs_root *tree_root = fs_info->tree_root;
1300 struct btrfs_root *root = pending->root;
1301 struct btrfs_root *parent_root;
1302 struct btrfs_block_rsv *rsv;
1303 struct inode *parent_inode;
1304 struct btrfs_path *path;
1305 struct btrfs_dir_item *dir_item;
1306 struct dentry *dentry;
1307 struct extent_buffer *tmp;
1308 struct extent_buffer *old;
1309 struct timespec cur_time = CURRENT_TIME;
1310 int ret = 0;
1311 u64 to_reserve = 0;
1312 u64 index = 0;
1313 u64 objectid;
1314 u64 root_flags;
1315 uuid_le new_uuid;
1316
1317 path = btrfs_alloc_path();
1318 if (!path) {
1319 pending->error = -ENOMEM;
1320 return 0;
1321 }
1322
1323 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1324 if (!new_root_item) {
1325 pending->error = -ENOMEM;
1326 goto root_item_alloc_fail;
1327 }
1328
1329 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1330 if (pending->error)
1331 goto no_free_objectid;
1332
1333 /*
1334 * Make qgroup to skip current new snapshot's qgroupid, as it is
1335 * accounted by later btrfs_qgroup_inherit().
1336 */
1337 btrfs_set_skip_qgroup(trans, objectid);
1338
1339 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1340
1341 if (to_reserve > 0) {
1342 pending->error = btrfs_block_rsv_add(root,
1343 &pending->block_rsv,
1344 to_reserve,
1345 BTRFS_RESERVE_NO_FLUSH);
1346 if (pending->error)
1347 goto clear_skip_qgroup;
1348 }
1349
1350 key.objectid = objectid;
1351 key.offset = (u64)-1;
1352 key.type = BTRFS_ROOT_ITEM_KEY;
1353
1354 rsv = trans->block_rsv;
1355 trans->block_rsv = &pending->block_rsv;
1356 trans->bytes_reserved = trans->block_rsv->reserved;
1357
1358 dentry = pending->dentry;
1359 parent_inode = pending->dir;
1360 parent_root = BTRFS_I(parent_inode)->root;
1361 record_root_in_trans(trans, parent_root);
1362
1363 /*
1364 * insert the directory item
1365 */
1366 ret = btrfs_set_inode_index(parent_inode, &index);
1367 BUG_ON(ret); /* -ENOMEM */
1368
1369 /* check if there is a file/dir which has the same name. */
1370 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1371 btrfs_ino(parent_inode),
1372 dentry->d_name.name,
1373 dentry->d_name.len, 0);
1374 if (dir_item != NULL && !IS_ERR(dir_item)) {
1375 pending->error = -EEXIST;
1376 goto dir_item_existed;
1377 } else if (IS_ERR(dir_item)) {
1378 ret = PTR_ERR(dir_item);
1379 btrfs_abort_transaction(trans, root, ret);
1380 goto fail;
1381 }
1382 btrfs_release_path(path);
1383
1384 /*
1385 * pull in the delayed directory update
1386 * and the delayed inode item
1387 * otherwise we corrupt the FS during
1388 * snapshot
1389 */
1390 ret = btrfs_run_delayed_items(trans, root);
1391 if (ret) { /* Transaction aborted */
1392 btrfs_abort_transaction(trans, root, ret);
1393 goto fail;
1394 }
1395
1396 record_root_in_trans(trans, root);
1397 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1398 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1399 btrfs_check_and_init_root_item(new_root_item);
1400
1401 root_flags = btrfs_root_flags(new_root_item);
1402 if (pending->readonly)
1403 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1404 else
1405 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1406 btrfs_set_root_flags(new_root_item, root_flags);
1407
1408 btrfs_set_root_generation_v2(new_root_item,
1409 trans->transid);
1410 uuid_le_gen(&new_uuid);
1411 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1412 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1413 BTRFS_UUID_SIZE);
1414 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1415 memset(new_root_item->received_uuid, 0,
1416 sizeof(new_root_item->received_uuid));
1417 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1418 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1419 btrfs_set_root_stransid(new_root_item, 0);
1420 btrfs_set_root_rtransid(new_root_item, 0);
1421 }
1422 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1423 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1424 btrfs_set_root_otransid(new_root_item, trans->transid);
1425
1426 old = btrfs_lock_root_node(root);
1427 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1428 if (ret) {
1429 btrfs_tree_unlock(old);
1430 free_extent_buffer(old);
1431 btrfs_abort_transaction(trans, root, ret);
1432 goto fail;
1433 }
1434
1435 btrfs_set_lock_blocking(old);
1436
1437 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1438 /* clean up in any case */
1439 btrfs_tree_unlock(old);
1440 free_extent_buffer(old);
1441 if (ret) {
1442 btrfs_abort_transaction(trans, root, ret);
1443 goto fail;
1444 }
1445 /* see comments in should_cow_block() */
1446 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1447 smp_wmb();
1448
1449 btrfs_set_root_node(new_root_item, tmp);
1450 /* record when the snapshot was created in key.offset */
1451 key.offset = trans->transid;
1452 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1453 btrfs_tree_unlock(tmp);
1454 free_extent_buffer(tmp);
1455 if (ret) {
1456 btrfs_abort_transaction(trans, root, ret);
1457 goto fail;
1458 }
1459
1460 /*
1461 * insert root back/forward references
1462 */
1463 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1464 parent_root->root_key.objectid,
1465 btrfs_ino(parent_inode), index,
1466 dentry->d_name.name, dentry->d_name.len);
1467 if (ret) {
1468 btrfs_abort_transaction(trans, root, ret);
1469 goto fail;
1470 }
1471
1472 key.offset = (u64)-1;
1473 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1474 if (IS_ERR(pending->snap)) {
1475 ret = PTR_ERR(pending->snap);
1476 btrfs_abort_transaction(trans, root, ret);
1477 goto fail;
1478 }
1479
1480 ret = btrfs_reloc_post_snapshot(trans, pending);
1481 if (ret) {
1482 btrfs_abort_transaction(trans, root, ret);
1483 goto fail;
1484 }
1485
1486 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1487 if (ret) {
1488 btrfs_abort_transaction(trans, root, ret);
1489 goto fail;
1490 }
1491
1492 ret = btrfs_insert_dir_item(trans, parent_root,
1493 dentry->d_name.name, dentry->d_name.len,
1494 parent_inode, &key,
1495 BTRFS_FT_DIR, index);
1496 /* We have check then name at the beginning, so it is impossible. */
1497 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1498 if (ret) {
1499 btrfs_abort_transaction(trans, root, ret);
1500 goto fail;
1501 }
1502
1503 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1504 dentry->d_name.len * 2);
1505 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1506 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1507 if (ret) {
1508 btrfs_abort_transaction(trans, root, ret);
1509 goto fail;
1510 }
1511 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1512 BTRFS_UUID_KEY_SUBVOL, objectid);
1513 if (ret) {
1514 btrfs_abort_transaction(trans, root, ret);
1515 goto fail;
1516 }
1517 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1518 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1519 new_root_item->received_uuid,
1520 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1521 objectid);
1522 if (ret && ret != -EEXIST) {
1523 btrfs_abort_transaction(trans, root, ret);
1524 goto fail;
1525 }
1526 }
1527
1528 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1529 if (ret) {
1530 btrfs_abort_transaction(trans, root, ret);
1531 goto fail;
1532 }
1533
1534 /*
1535 * account qgroup counters before qgroup_inherit()
1536 */
1537 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1538 if (ret)
1539 goto fail;
1540 ret = btrfs_qgroup_account_extents(trans, fs_info);
1541 if (ret)
1542 goto fail;
1543 ret = btrfs_qgroup_inherit(trans, fs_info,
1544 root->root_key.objectid,
1545 objectid, pending->inherit);
1546 if (ret) {
1547 btrfs_abort_transaction(trans, root, ret);
1548 goto fail;
1549 }
1550
1551 fail:
1552 pending->error = ret;
1553 dir_item_existed:
1554 trans->block_rsv = rsv;
1555 trans->bytes_reserved = 0;
1556 clear_skip_qgroup:
1557 btrfs_clear_skip_qgroup(trans);
1558 no_free_objectid:
1559 kfree(new_root_item);
1560 root_item_alloc_fail:
1561 btrfs_free_path(path);
1562 return ret;
1563 }
1564
1565 /*
1566 * create all the snapshots we've scheduled for creation
1567 */
1568 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1569 struct btrfs_fs_info *fs_info)
1570 {
1571 struct btrfs_pending_snapshot *pending, *next;
1572 struct list_head *head = &trans->transaction->pending_snapshots;
1573 int ret = 0;
1574
1575 list_for_each_entry_safe(pending, next, head, list) {
1576 list_del(&pending->list);
1577 ret = create_pending_snapshot(trans, fs_info, pending);
1578 if (ret)
1579 break;
1580 }
1581 return ret;
1582 }
1583
1584 static void update_super_roots(struct btrfs_root *root)
1585 {
1586 struct btrfs_root_item *root_item;
1587 struct btrfs_super_block *super;
1588
1589 super = root->fs_info->super_copy;
1590
1591 root_item = &root->fs_info->chunk_root->root_item;
1592 super->chunk_root = root_item->bytenr;
1593 super->chunk_root_generation = root_item->generation;
1594 super->chunk_root_level = root_item->level;
1595
1596 root_item = &root->fs_info->tree_root->root_item;
1597 super->root = root_item->bytenr;
1598 super->generation = root_item->generation;
1599 super->root_level = root_item->level;
1600 if (btrfs_test_opt(root, SPACE_CACHE))
1601 super->cache_generation = root_item->generation;
1602 if (root->fs_info->update_uuid_tree_gen)
1603 super->uuid_tree_generation = root_item->generation;
1604 }
1605
1606 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1607 {
1608 struct btrfs_transaction *trans;
1609 int ret = 0;
1610
1611 spin_lock(&info->trans_lock);
1612 trans = info->running_transaction;
1613 if (trans)
1614 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1615 spin_unlock(&info->trans_lock);
1616 return ret;
1617 }
1618
1619 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1620 {
1621 struct btrfs_transaction *trans;
1622 int ret = 0;
1623
1624 spin_lock(&info->trans_lock);
1625 trans = info->running_transaction;
1626 if (trans)
1627 ret = is_transaction_blocked(trans);
1628 spin_unlock(&info->trans_lock);
1629 return ret;
1630 }
1631
1632 /*
1633 * wait for the current transaction commit to start and block subsequent
1634 * transaction joins
1635 */
1636 static void wait_current_trans_commit_start(struct btrfs_root *root,
1637 struct btrfs_transaction *trans)
1638 {
1639 wait_event(root->fs_info->transaction_blocked_wait,
1640 trans->state >= TRANS_STATE_COMMIT_START ||
1641 trans->aborted);
1642 }
1643
1644 /*
1645 * wait for the current transaction to start and then become unblocked.
1646 * caller holds ref.
1647 */
1648 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1649 struct btrfs_transaction *trans)
1650 {
1651 wait_event(root->fs_info->transaction_wait,
1652 trans->state >= TRANS_STATE_UNBLOCKED ||
1653 trans->aborted);
1654 }
1655
1656 /*
1657 * commit transactions asynchronously. once btrfs_commit_transaction_async
1658 * returns, any subsequent transaction will not be allowed to join.
1659 */
1660 struct btrfs_async_commit {
1661 struct btrfs_trans_handle *newtrans;
1662 struct btrfs_root *root;
1663 struct work_struct work;
1664 };
1665
1666 static void do_async_commit(struct work_struct *work)
1667 {
1668 struct btrfs_async_commit *ac =
1669 container_of(work, struct btrfs_async_commit, work);
1670
1671 /*
1672 * We've got freeze protection passed with the transaction.
1673 * Tell lockdep about it.
1674 */
1675 if (ac->newtrans->type & __TRANS_FREEZABLE)
1676 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1677
1678 current->journal_info = ac->newtrans;
1679
1680 btrfs_commit_transaction(ac->newtrans, ac->root);
1681 kfree(ac);
1682 }
1683
1684 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1685 struct btrfs_root *root,
1686 int wait_for_unblock)
1687 {
1688 struct btrfs_async_commit *ac;
1689 struct btrfs_transaction *cur_trans;
1690
1691 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1692 if (!ac)
1693 return -ENOMEM;
1694
1695 INIT_WORK(&ac->work, do_async_commit);
1696 ac->root = root;
1697 ac->newtrans = btrfs_join_transaction(root);
1698 if (IS_ERR(ac->newtrans)) {
1699 int err = PTR_ERR(ac->newtrans);
1700 kfree(ac);
1701 return err;
1702 }
1703
1704 /* take transaction reference */
1705 cur_trans = trans->transaction;
1706 atomic_inc(&cur_trans->use_count);
1707
1708 btrfs_end_transaction(trans, root);
1709
1710 /*
1711 * Tell lockdep we've released the freeze rwsem, since the
1712 * async commit thread will be the one to unlock it.
1713 */
1714 if (ac->newtrans->type & __TRANS_FREEZABLE)
1715 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1716
1717 schedule_work(&ac->work);
1718
1719 /* wait for transaction to start and unblock */
1720 if (wait_for_unblock)
1721 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1722 else
1723 wait_current_trans_commit_start(root, cur_trans);
1724
1725 if (current->journal_info == trans)
1726 current->journal_info = NULL;
1727
1728 btrfs_put_transaction(cur_trans);
1729 return 0;
1730 }
1731
1732
1733 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1734 struct btrfs_root *root, int err)
1735 {
1736 struct btrfs_transaction *cur_trans = trans->transaction;
1737 DEFINE_WAIT(wait);
1738
1739 WARN_ON(trans->use_count > 1);
1740
1741 btrfs_abort_transaction(trans, root, err);
1742
1743 spin_lock(&root->fs_info->trans_lock);
1744
1745 /*
1746 * If the transaction is removed from the list, it means this
1747 * transaction has been committed successfully, so it is impossible
1748 * to call the cleanup function.
1749 */
1750 BUG_ON(list_empty(&cur_trans->list));
1751
1752 list_del_init(&cur_trans->list);
1753 if (cur_trans == root->fs_info->running_transaction) {
1754 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1755 spin_unlock(&root->fs_info->trans_lock);
1756 wait_event(cur_trans->writer_wait,
1757 atomic_read(&cur_trans->num_writers) == 1);
1758
1759 spin_lock(&root->fs_info->trans_lock);
1760 }
1761 spin_unlock(&root->fs_info->trans_lock);
1762
1763 btrfs_cleanup_one_transaction(trans->transaction, root);
1764
1765 spin_lock(&root->fs_info->trans_lock);
1766 if (cur_trans == root->fs_info->running_transaction)
1767 root->fs_info->running_transaction = NULL;
1768 spin_unlock(&root->fs_info->trans_lock);
1769
1770 if (trans->type & __TRANS_FREEZABLE)
1771 sb_end_intwrite(root->fs_info->sb);
1772 btrfs_put_transaction(cur_trans);
1773 btrfs_put_transaction(cur_trans);
1774
1775 trace_btrfs_transaction_commit(root);
1776
1777 if (current->journal_info == trans)
1778 current->journal_info = NULL;
1779 btrfs_scrub_cancel(root->fs_info);
1780
1781 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1782 }
1783
1784 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1785 {
1786 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1787 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1788 return 0;
1789 }
1790
1791 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1792 {
1793 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1794 btrfs_wait_ordered_roots(fs_info, -1);
1795 }
1796
1797 static inline void
1798 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1799 struct btrfs_fs_info *fs_info)
1800 {
1801 struct btrfs_ordered_extent *ordered;
1802
1803 spin_lock(&fs_info->trans_lock);
1804 while (!list_empty(&cur_trans->pending_ordered)) {
1805 ordered = list_first_entry(&cur_trans->pending_ordered,
1806 struct btrfs_ordered_extent,
1807 trans_list);
1808 list_del_init(&ordered->trans_list);
1809 spin_unlock(&fs_info->trans_lock);
1810
1811 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1812 &ordered->flags));
1813 btrfs_put_ordered_extent(ordered);
1814 spin_lock(&fs_info->trans_lock);
1815 }
1816 spin_unlock(&fs_info->trans_lock);
1817 }
1818
1819 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1820 struct btrfs_root *root)
1821 {
1822 struct btrfs_transaction *cur_trans = trans->transaction;
1823 struct btrfs_transaction *prev_trans = NULL;
1824 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1825 int ret;
1826
1827 /* Stop the commit early if ->aborted is set */
1828 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1829 ret = cur_trans->aborted;
1830 btrfs_end_transaction(trans, root);
1831 return ret;
1832 }
1833
1834 /* make a pass through all the delayed refs we have so far
1835 * any runnings procs may add more while we are here
1836 */
1837 ret = btrfs_run_delayed_refs(trans, root, 0);
1838 if (ret) {
1839 btrfs_end_transaction(trans, root);
1840 return ret;
1841 }
1842
1843 btrfs_trans_release_metadata(trans, root);
1844 trans->block_rsv = NULL;
1845 if (trans->qgroup_reserved) {
1846 btrfs_qgroup_free(root, trans->qgroup_reserved);
1847 trans->qgroup_reserved = 0;
1848 }
1849
1850 cur_trans = trans->transaction;
1851
1852 /*
1853 * set the flushing flag so procs in this transaction have to
1854 * start sending their work down.
1855 */
1856 cur_trans->delayed_refs.flushing = 1;
1857 smp_wmb();
1858
1859 if (!list_empty(&trans->new_bgs))
1860 btrfs_create_pending_block_groups(trans, root);
1861
1862 ret = btrfs_run_delayed_refs(trans, root, 0);
1863 if (ret) {
1864 btrfs_end_transaction(trans, root);
1865 return ret;
1866 }
1867
1868 if (!cur_trans->dirty_bg_run) {
1869 int run_it = 0;
1870
1871 /* this mutex is also taken before trying to set
1872 * block groups readonly. We need to make sure
1873 * that nobody has set a block group readonly
1874 * after a extents from that block group have been
1875 * allocated for cache files. btrfs_set_block_group_ro
1876 * will wait for the transaction to commit if it
1877 * finds dirty_bg_run = 1
1878 *
1879 * The dirty_bg_run flag is also used to make sure only
1880 * one process starts all the block group IO. It wouldn't
1881 * hurt to have more than one go through, but there's no
1882 * real advantage to it either.
1883 */
1884 mutex_lock(&root->fs_info->ro_block_group_mutex);
1885 if (!cur_trans->dirty_bg_run) {
1886 run_it = 1;
1887 cur_trans->dirty_bg_run = 1;
1888 }
1889 mutex_unlock(&root->fs_info->ro_block_group_mutex);
1890
1891 if (run_it)
1892 ret = btrfs_start_dirty_block_groups(trans, root);
1893 }
1894 if (ret) {
1895 btrfs_end_transaction(trans, root);
1896 return ret;
1897 }
1898
1899 spin_lock(&root->fs_info->trans_lock);
1900 list_splice_init(&trans->ordered, &cur_trans->pending_ordered);
1901 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1902 spin_unlock(&root->fs_info->trans_lock);
1903 atomic_inc(&cur_trans->use_count);
1904 ret = btrfs_end_transaction(trans, root);
1905
1906 wait_for_commit(root, cur_trans);
1907
1908 if (unlikely(cur_trans->aborted))
1909 ret = cur_trans->aborted;
1910
1911 btrfs_put_transaction(cur_trans);
1912
1913 return ret;
1914 }
1915
1916 cur_trans->state = TRANS_STATE_COMMIT_START;
1917 wake_up(&root->fs_info->transaction_blocked_wait);
1918
1919 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1920 prev_trans = list_entry(cur_trans->list.prev,
1921 struct btrfs_transaction, list);
1922 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1923 atomic_inc(&prev_trans->use_count);
1924 spin_unlock(&root->fs_info->trans_lock);
1925
1926 wait_for_commit(root, prev_trans);
1927 ret = prev_trans->aborted;
1928
1929 btrfs_put_transaction(prev_trans);
1930 if (ret)
1931 goto cleanup_transaction;
1932 } else {
1933 spin_unlock(&root->fs_info->trans_lock);
1934 }
1935 } else {
1936 spin_unlock(&root->fs_info->trans_lock);
1937 }
1938
1939 extwriter_counter_dec(cur_trans, trans->type);
1940
1941 ret = btrfs_start_delalloc_flush(root->fs_info);
1942 if (ret)
1943 goto cleanup_transaction;
1944
1945 ret = btrfs_run_delayed_items(trans, root);
1946 if (ret)
1947 goto cleanup_transaction;
1948
1949 wait_event(cur_trans->writer_wait,
1950 extwriter_counter_read(cur_trans) == 0);
1951
1952 /* some pending stuffs might be added after the previous flush. */
1953 ret = btrfs_run_delayed_items(trans, root);
1954 if (ret)
1955 goto cleanup_transaction;
1956
1957 btrfs_wait_delalloc_flush(root->fs_info);
1958
1959 btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1960
1961 btrfs_scrub_pause(root);
1962 /*
1963 * Ok now we need to make sure to block out any other joins while we
1964 * commit the transaction. We could have started a join before setting
1965 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1966 */
1967 spin_lock(&root->fs_info->trans_lock);
1968 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1969 spin_unlock(&root->fs_info->trans_lock);
1970 wait_event(cur_trans->writer_wait,
1971 atomic_read(&cur_trans->num_writers) == 1);
1972
1973 /* ->aborted might be set after the previous check, so check it */
1974 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1975 ret = cur_trans->aborted;
1976 goto scrub_continue;
1977 }
1978 /*
1979 * the reloc mutex makes sure that we stop
1980 * the balancing code from coming in and moving
1981 * extents around in the middle of the commit
1982 */
1983 mutex_lock(&root->fs_info->reloc_mutex);
1984
1985 /*
1986 * We needn't worry about the delayed items because we will
1987 * deal with them in create_pending_snapshot(), which is the
1988 * core function of the snapshot creation.
1989 */
1990 ret = create_pending_snapshots(trans, root->fs_info);
1991 if (ret) {
1992 mutex_unlock(&root->fs_info->reloc_mutex);
1993 goto scrub_continue;
1994 }
1995
1996 /*
1997 * We insert the dir indexes of the snapshots and update the inode
1998 * of the snapshots' parents after the snapshot creation, so there
1999 * are some delayed items which are not dealt with. Now deal with
2000 * them.
2001 *
2002 * We needn't worry that this operation will corrupt the snapshots,
2003 * because all the tree which are snapshoted will be forced to COW
2004 * the nodes and leaves.
2005 */
2006 ret = btrfs_run_delayed_items(trans, root);
2007 if (ret) {
2008 mutex_unlock(&root->fs_info->reloc_mutex);
2009 goto scrub_continue;
2010 }
2011
2012 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2013 if (ret) {
2014 mutex_unlock(&root->fs_info->reloc_mutex);
2015 goto scrub_continue;
2016 }
2017
2018 /* Reocrd old roots for later qgroup accounting */
2019 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2020 if (ret) {
2021 mutex_unlock(&root->fs_info->reloc_mutex);
2022 goto scrub_continue;
2023 }
2024
2025 /*
2026 * make sure none of the code above managed to slip in a
2027 * delayed item
2028 */
2029 btrfs_assert_delayed_root_empty(root);
2030
2031 WARN_ON(cur_trans != trans->transaction);
2032
2033 /* btrfs_commit_tree_roots is responsible for getting the
2034 * various roots consistent with each other. Every pointer
2035 * in the tree of tree roots has to point to the most up to date
2036 * root for every subvolume and other tree. So, we have to keep
2037 * the tree logging code from jumping in and changing any
2038 * of the trees.
2039 *
2040 * At this point in the commit, there can't be any tree-log
2041 * writers, but a little lower down we drop the trans mutex
2042 * and let new people in. By holding the tree_log_mutex
2043 * from now until after the super is written, we avoid races
2044 * with the tree-log code.
2045 */
2046 mutex_lock(&root->fs_info->tree_log_mutex);
2047
2048 ret = commit_fs_roots(trans, root);
2049 if (ret) {
2050 mutex_unlock(&root->fs_info->tree_log_mutex);
2051 mutex_unlock(&root->fs_info->reloc_mutex);
2052 goto scrub_continue;
2053 }
2054
2055 /*
2056 * Since the transaction is done, we can apply the pending changes
2057 * before the next transaction.
2058 */
2059 btrfs_apply_pending_changes(root->fs_info);
2060
2061 /* commit_fs_roots gets rid of all the tree log roots, it is now
2062 * safe to free the root of tree log roots
2063 */
2064 btrfs_free_log_root_tree(trans, root->fs_info);
2065
2066 /*
2067 * Since fs roots are all committed, we can get a quite accurate
2068 * new_roots. So let's do quota accounting.
2069 */
2070 ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2071 if (ret < 0) {
2072 mutex_unlock(&root->fs_info->tree_log_mutex);
2073 mutex_unlock(&root->fs_info->reloc_mutex);
2074 goto scrub_continue;
2075 }
2076
2077 ret = commit_cowonly_roots(trans, root);
2078 if (ret) {
2079 mutex_unlock(&root->fs_info->tree_log_mutex);
2080 mutex_unlock(&root->fs_info->reloc_mutex);
2081 goto scrub_continue;
2082 }
2083
2084 /*
2085 * The tasks which save the space cache and inode cache may also
2086 * update ->aborted, check it.
2087 */
2088 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2089 ret = cur_trans->aborted;
2090 mutex_unlock(&root->fs_info->tree_log_mutex);
2091 mutex_unlock(&root->fs_info->reloc_mutex);
2092 goto scrub_continue;
2093 }
2094
2095 btrfs_prepare_extent_commit(trans, root);
2096
2097 cur_trans = root->fs_info->running_transaction;
2098
2099 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2100 root->fs_info->tree_root->node);
2101 list_add_tail(&root->fs_info->tree_root->dirty_list,
2102 &cur_trans->switch_commits);
2103
2104 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2105 root->fs_info->chunk_root->node);
2106 list_add_tail(&root->fs_info->chunk_root->dirty_list,
2107 &cur_trans->switch_commits);
2108
2109 switch_commit_roots(cur_trans, root->fs_info);
2110
2111 assert_qgroups_uptodate(trans);
2112 ASSERT(list_empty(&cur_trans->dirty_bgs));
2113 ASSERT(list_empty(&cur_trans->io_bgs));
2114 update_super_roots(root);
2115
2116 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2117 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2118 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2119 sizeof(*root->fs_info->super_copy));
2120
2121 btrfs_update_commit_device_size(root->fs_info);
2122 btrfs_update_commit_device_bytes_used(root, cur_trans);
2123
2124 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2125 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2126
2127 btrfs_trans_release_chunk_metadata(trans);
2128
2129 spin_lock(&root->fs_info->trans_lock);
2130 cur_trans->state = TRANS_STATE_UNBLOCKED;
2131 root->fs_info->running_transaction = NULL;
2132 spin_unlock(&root->fs_info->trans_lock);
2133 mutex_unlock(&root->fs_info->reloc_mutex);
2134
2135 wake_up(&root->fs_info->transaction_wait);
2136
2137 ret = btrfs_write_and_wait_transaction(trans, root);
2138 if (ret) {
2139 btrfs_error(root->fs_info, ret,
2140 "Error while writing out transaction");
2141 mutex_unlock(&root->fs_info->tree_log_mutex);
2142 goto scrub_continue;
2143 }
2144
2145 ret = write_ctree_super(trans, root, 0);
2146 if (ret) {
2147 mutex_unlock(&root->fs_info->tree_log_mutex);
2148 goto scrub_continue;
2149 }
2150
2151 /*
2152 * the super is written, we can safely allow the tree-loggers
2153 * to go about their business
2154 */
2155 mutex_unlock(&root->fs_info->tree_log_mutex);
2156
2157 btrfs_finish_extent_commit(trans, root);
2158
2159 if (cur_trans->have_free_bgs)
2160 btrfs_clear_space_info_full(root->fs_info);
2161
2162 root->fs_info->last_trans_committed = cur_trans->transid;
2163 /*
2164 * We needn't acquire the lock here because there is no other task
2165 * which can change it.
2166 */
2167 cur_trans->state = TRANS_STATE_COMPLETED;
2168 wake_up(&cur_trans->commit_wait);
2169
2170 spin_lock(&root->fs_info->trans_lock);
2171 list_del_init(&cur_trans->list);
2172 spin_unlock(&root->fs_info->trans_lock);
2173
2174 btrfs_put_transaction(cur_trans);
2175 btrfs_put_transaction(cur_trans);
2176
2177 if (trans->type & __TRANS_FREEZABLE)
2178 sb_end_intwrite(root->fs_info->sb);
2179
2180 trace_btrfs_transaction_commit(root);
2181
2182 btrfs_scrub_continue(root);
2183
2184 if (current->journal_info == trans)
2185 current->journal_info = NULL;
2186
2187 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2188
2189 if (current != root->fs_info->transaction_kthread &&
2190 current != root->fs_info->cleaner_kthread)
2191 btrfs_run_delayed_iputs(root);
2192
2193 return ret;
2194
2195 scrub_continue:
2196 btrfs_scrub_continue(root);
2197 cleanup_transaction:
2198 btrfs_trans_release_metadata(trans, root);
2199 btrfs_trans_release_chunk_metadata(trans);
2200 trans->block_rsv = NULL;
2201 if (trans->qgroup_reserved) {
2202 btrfs_qgroup_free(root, trans->qgroup_reserved);
2203 trans->qgroup_reserved = 0;
2204 }
2205 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2206 if (current->journal_info == trans)
2207 current->journal_info = NULL;
2208 cleanup_transaction(trans, root, ret);
2209
2210 return ret;
2211 }
2212
2213 /*
2214 * return < 0 if error
2215 * 0 if there are no more dead_roots at the time of call
2216 * 1 there are more to be processed, call me again
2217 *
2218 * The return value indicates there are certainly more snapshots to delete, but
2219 * if there comes a new one during processing, it may return 0. We don't mind,
2220 * because btrfs_commit_super will poke cleaner thread and it will process it a
2221 * few seconds later.
2222 */
2223 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2224 {
2225 int ret;
2226 struct btrfs_fs_info *fs_info = root->fs_info;
2227
2228 spin_lock(&fs_info->trans_lock);
2229 if (list_empty(&fs_info->dead_roots)) {
2230 spin_unlock(&fs_info->trans_lock);
2231 return 0;
2232 }
2233 root = list_first_entry(&fs_info->dead_roots,
2234 struct btrfs_root, root_list);
2235 list_del_init(&root->root_list);
2236 spin_unlock(&fs_info->trans_lock);
2237
2238 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2239
2240 btrfs_kill_all_delayed_nodes(root);
2241
2242 if (btrfs_header_backref_rev(root->node) <
2243 BTRFS_MIXED_BACKREF_REV)
2244 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2245 else
2246 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2247
2248 return (ret < 0) ? 0 : 1;
2249 }
2250
2251 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2252 {
2253 unsigned long prev;
2254 unsigned long bit;
2255
2256 prev = xchg(&fs_info->pending_changes, 0);
2257 if (!prev)
2258 return;
2259
2260 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2261 if (prev & bit)
2262 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2263 prev &= ~bit;
2264
2265 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2266 if (prev & bit)
2267 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2268 prev &= ~bit;
2269
2270 bit = 1 << BTRFS_PENDING_COMMIT;
2271 if (prev & bit)
2272 btrfs_debug(fs_info, "pending commit done");
2273 prev &= ~bit;
2274
2275 if (prev)
2276 btrfs_warn(fs_info,
2277 "unknown pending changes left 0x%lx, ignoring", prev);
2278 }