Merge tag 'maintainers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / super.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/btrfs.h>
60
61 static const struct super_operations btrfs_super_ops;
62 static struct file_system_type btrfs_fs_type;
63
64 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
65 char nbuf[16])
66 {
67 char *errstr = NULL;
68
69 switch (errno) {
70 case -EIO:
71 errstr = "IO failure";
72 break;
73 case -ENOMEM:
74 errstr = "Out of memory";
75 break;
76 case -EROFS:
77 errstr = "Readonly filesystem";
78 break;
79 default:
80 if (nbuf) {
81 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
82 errstr = nbuf;
83 }
84 break;
85 }
86
87 return errstr;
88 }
89
90 static void __save_error_info(struct btrfs_fs_info *fs_info)
91 {
92 /*
93 * today we only save the error info into ram. Long term we'll
94 * also send it down to the disk
95 */
96 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
97 }
98
99 /* NOTE:
100 * We move write_super stuff at umount in order to avoid deadlock
101 * for umount hold all lock.
102 */
103 static void save_error_info(struct btrfs_fs_info *fs_info)
104 {
105 __save_error_info(fs_info);
106 }
107
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
110 {
111 struct super_block *sb = fs_info->sb;
112
113 if (sb->s_flags & MS_RDONLY)
114 return;
115
116 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
117 sb->s_flags |= MS_RDONLY;
118 printk(KERN_INFO "btrfs is forced readonly\n");
119 }
120 }
121
122 /*
123 * __btrfs_std_error decodes expected errors from the caller and
124 * invokes the approciate error response.
125 */
126 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
127 unsigned int line, int errno)
128 {
129 struct super_block *sb = fs_info->sb;
130 char nbuf[16];
131 const char *errstr;
132
133 /*
134 * Special case: if the error is EROFS, and we're already
135 * under MS_RDONLY, then it is safe here.
136 */
137 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
138 return;
139
140 errstr = btrfs_decode_error(fs_info, errno, nbuf);
141 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
142 sb->s_id, function, line, errstr);
143 save_error_info(fs_info);
144
145 btrfs_handle_error(fs_info);
146 }
147
148 static void btrfs_put_super(struct super_block *sb)
149 {
150 (void)close_ctree(btrfs_sb(sb)->tree_root);
151 /* FIXME: need to fix VFS to return error? */
152 /* AV: return it _where_? ->put_super() can be triggered by any number
153 * of async events, up to and including delivery of SIGKILL to the
154 * last process that kept it busy. Or segfault in the aforementioned
155 * process... Whom would you report that to?
156 */
157 }
158
159 enum {
160 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
161 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
162 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
163 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
164 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
165 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
166 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
167 Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
168 Opt_check_integrity, Opt_check_integrity_including_extent_data,
169 Opt_check_integrity_print_mask,
170 Opt_err,
171 };
172
173 static match_table_t tokens = {
174 {Opt_degraded, "degraded"},
175 {Opt_subvol, "subvol=%s"},
176 {Opt_subvolid, "subvolid=%d"},
177 {Opt_device, "device=%s"},
178 {Opt_nodatasum, "nodatasum"},
179 {Opt_nodatacow, "nodatacow"},
180 {Opt_nobarrier, "nobarrier"},
181 {Opt_max_inline, "max_inline=%s"},
182 {Opt_alloc_start, "alloc_start=%s"},
183 {Opt_thread_pool, "thread_pool=%d"},
184 {Opt_compress, "compress"},
185 {Opt_compress_type, "compress=%s"},
186 {Opt_compress_force, "compress-force"},
187 {Opt_compress_force_type, "compress-force=%s"},
188 {Opt_ssd, "ssd"},
189 {Opt_ssd_spread, "ssd_spread"},
190 {Opt_nossd, "nossd"},
191 {Opt_noacl, "noacl"},
192 {Opt_notreelog, "notreelog"},
193 {Opt_flushoncommit, "flushoncommit"},
194 {Opt_ratio, "metadata_ratio=%d"},
195 {Opt_discard, "discard"},
196 {Opt_space_cache, "space_cache"},
197 {Opt_clear_cache, "clear_cache"},
198 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
199 {Opt_enospc_debug, "enospc_debug"},
200 {Opt_subvolrootid, "subvolrootid=%d"},
201 {Opt_defrag, "autodefrag"},
202 {Opt_inode_cache, "inode_cache"},
203 {Opt_no_space_cache, "nospace_cache"},
204 {Opt_recovery, "recovery"},
205 {Opt_skip_balance, "skip_balance"},
206 {Opt_check_integrity, "check_int"},
207 {Opt_check_integrity_including_extent_data, "check_int_data"},
208 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
209 {Opt_err, NULL},
210 };
211
212 /*
213 * Regular mount options parser. Everything that is needed only when
214 * reading in a new superblock is parsed here.
215 */
216 int btrfs_parse_options(struct btrfs_root *root, char *options)
217 {
218 struct btrfs_fs_info *info = root->fs_info;
219 substring_t args[MAX_OPT_ARGS];
220 char *p, *num, *orig = NULL;
221 u64 cache_gen;
222 int intarg;
223 int ret = 0;
224 char *compress_type;
225 bool compress_force = false;
226
227 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
228 if (cache_gen)
229 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
230
231 if (!options)
232 goto out;
233
234 /*
235 * strsep changes the string, duplicate it because parse_options
236 * gets called twice
237 */
238 options = kstrdup(options, GFP_NOFS);
239 if (!options)
240 return -ENOMEM;
241
242 orig = options;
243
244 while ((p = strsep(&options, ",")) != NULL) {
245 int token;
246 if (!*p)
247 continue;
248
249 token = match_token(p, tokens, args);
250 switch (token) {
251 case Opt_degraded:
252 printk(KERN_INFO "btrfs: allowing degraded mounts\n");
253 btrfs_set_opt(info->mount_opt, DEGRADED);
254 break;
255 case Opt_subvol:
256 case Opt_subvolid:
257 case Opt_subvolrootid:
258 case Opt_device:
259 /*
260 * These are parsed by btrfs_parse_early_options
261 * and can be happily ignored here.
262 */
263 break;
264 case Opt_nodatasum:
265 printk(KERN_INFO "btrfs: setting nodatasum\n");
266 btrfs_set_opt(info->mount_opt, NODATASUM);
267 break;
268 case Opt_nodatacow:
269 printk(KERN_INFO "btrfs: setting nodatacow\n");
270 btrfs_set_opt(info->mount_opt, NODATACOW);
271 btrfs_set_opt(info->mount_opt, NODATASUM);
272 break;
273 case Opt_compress_force:
274 case Opt_compress_force_type:
275 compress_force = true;
276 case Opt_compress:
277 case Opt_compress_type:
278 if (token == Opt_compress ||
279 token == Opt_compress_force ||
280 strcmp(args[0].from, "zlib") == 0) {
281 compress_type = "zlib";
282 info->compress_type = BTRFS_COMPRESS_ZLIB;
283 } else if (strcmp(args[0].from, "lzo") == 0) {
284 compress_type = "lzo";
285 info->compress_type = BTRFS_COMPRESS_LZO;
286 } else {
287 ret = -EINVAL;
288 goto out;
289 }
290
291 btrfs_set_opt(info->mount_opt, COMPRESS);
292 if (compress_force) {
293 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
294 pr_info("btrfs: force %s compression\n",
295 compress_type);
296 } else
297 pr_info("btrfs: use %s compression\n",
298 compress_type);
299 break;
300 case Opt_ssd:
301 printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
302 btrfs_set_opt(info->mount_opt, SSD);
303 break;
304 case Opt_ssd_spread:
305 printk(KERN_INFO "btrfs: use spread ssd "
306 "allocation scheme\n");
307 btrfs_set_opt(info->mount_opt, SSD);
308 btrfs_set_opt(info->mount_opt, SSD_SPREAD);
309 break;
310 case Opt_nossd:
311 printk(KERN_INFO "btrfs: not using ssd allocation "
312 "scheme\n");
313 btrfs_set_opt(info->mount_opt, NOSSD);
314 btrfs_clear_opt(info->mount_opt, SSD);
315 btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
316 break;
317 case Opt_nobarrier:
318 printk(KERN_INFO "btrfs: turning off barriers\n");
319 btrfs_set_opt(info->mount_opt, NOBARRIER);
320 break;
321 case Opt_thread_pool:
322 intarg = 0;
323 match_int(&args[0], &intarg);
324 if (intarg) {
325 info->thread_pool_size = intarg;
326 printk(KERN_INFO "btrfs: thread pool %d\n",
327 info->thread_pool_size);
328 }
329 break;
330 case Opt_max_inline:
331 num = match_strdup(&args[0]);
332 if (num) {
333 info->max_inline = memparse(num, NULL);
334 kfree(num);
335
336 if (info->max_inline) {
337 info->max_inline = max_t(u64,
338 info->max_inline,
339 root->sectorsize);
340 }
341 printk(KERN_INFO "btrfs: max_inline at %llu\n",
342 (unsigned long long)info->max_inline);
343 }
344 break;
345 case Opt_alloc_start:
346 num = match_strdup(&args[0]);
347 if (num) {
348 info->alloc_start = memparse(num, NULL);
349 kfree(num);
350 printk(KERN_INFO
351 "btrfs: allocations start at %llu\n",
352 (unsigned long long)info->alloc_start);
353 }
354 break;
355 case Opt_noacl:
356 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
357 break;
358 case Opt_notreelog:
359 printk(KERN_INFO "btrfs: disabling tree log\n");
360 btrfs_set_opt(info->mount_opt, NOTREELOG);
361 break;
362 case Opt_flushoncommit:
363 printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
364 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
365 break;
366 case Opt_ratio:
367 intarg = 0;
368 match_int(&args[0], &intarg);
369 if (intarg) {
370 info->metadata_ratio = intarg;
371 printk(KERN_INFO "btrfs: metadata ratio %d\n",
372 info->metadata_ratio);
373 }
374 break;
375 case Opt_discard:
376 btrfs_set_opt(info->mount_opt, DISCARD);
377 break;
378 case Opt_space_cache:
379 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
380 break;
381 case Opt_no_space_cache:
382 printk(KERN_INFO "btrfs: disabling disk space caching\n");
383 btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
384 break;
385 case Opt_inode_cache:
386 printk(KERN_INFO "btrfs: enabling inode map caching\n");
387 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
388 break;
389 case Opt_clear_cache:
390 printk(KERN_INFO "btrfs: force clearing of disk cache\n");
391 btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
392 break;
393 case Opt_user_subvol_rm_allowed:
394 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
395 break;
396 case Opt_enospc_debug:
397 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
398 break;
399 case Opt_defrag:
400 printk(KERN_INFO "btrfs: enabling auto defrag");
401 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
402 break;
403 case Opt_recovery:
404 printk(KERN_INFO "btrfs: enabling auto recovery");
405 btrfs_set_opt(info->mount_opt, RECOVERY);
406 break;
407 case Opt_skip_balance:
408 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
409 break;
410 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
411 case Opt_check_integrity_including_extent_data:
412 printk(KERN_INFO "btrfs: enabling check integrity"
413 " including extent data\n");
414 btrfs_set_opt(info->mount_opt,
415 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
416 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
417 break;
418 case Opt_check_integrity:
419 printk(KERN_INFO "btrfs: enabling check integrity\n");
420 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
421 break;
422 case Opt_check_integrity_print_mask:
423 intarg = 0;
424 match_int(&args[0], &intarg);
425 if (intarg) {
426 info->check_integrity_print_mask = intarg;
427 printk(KERN_INFO "btrfs:"
428 " check_integrity_print_mask 0x%x\n",
429 info->check_integrity_print_mask);
430 }
431 break;
432 #else
433 case Opt_check_integrity_including_extent_data:
434 case Opt_check_integrity:
435 case Opt_check_integrity_print_mask:
436 printk(KERN_ERR "btrfs: support for check_integrity*"
437 " not compiled in!\n");
438 ret = -EINVAL;
439 goto out;
440 #endif
441 case Opt_err:
442 printk(KERN_INFO "btrfs: unrecognized mount option "
443 "'%s'\n", p);
444 ret = -EINVAL;
445 goto out;
446 default:
447 break;
448 }
449 }
450 out:
451 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
452 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
453 kfree(orig);
454 return ret;
455 }
456
457 /*
458 * Parse mount options that are required early in the mount process.
459 *
460 * All other options will be parsed on much later in the mount process and
461 * only when we need to allocate a new super block.
462 */
463 static int btrfs_parse_early_options(const char *options, fmode_t flags,
464 void *holder, char **subvol_name, u64 *subvol_objectid,
465 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
466 {
467 substring_t args[MAX_OPT_ARGS];
468 char *device_name, *opts, *orig, *p;
469 int error = 0;
470 int intarg;
471
472 if (!options)
473 return 0;
474
475 /*
476 * strsep changes the string, duplicate it because parse_options
477 * gets called twice
478 */
479 opts = kstrdup(options, GFP_KERNEL);
480 if (!opts)
481 return -ENOMEM;
482 orig = opts;
483
484 while ((p = strsep(&opts, ",")) != NULL) {
485 int token;
486 if (!*p)
487 continue;
488
489 token = match_token(p, tokens, args);
490 switch (token) {
491 case Opt_subvol:
492 kfree(*subvol_name);
493 *subvol_name = match_strdup(&args[0]);
494 break;
495 case Opt_subvolid:
496 intarg = 0;
497 error = match_int(&args[0], &intarg);
498 if (!error) {
499 /* we want the original fs_tree */
500 if (!intarg)
501 *subvol_objectid =
502 BTRFS_FS_TREE_OBJECTID;
503 else
504 *subvol_objectid = intarg;
505 }
506 break;
507 case Opt_subvolrootid:
508 intarg = 0;
509 error = match_int(&args[0], &intarg);
510 if (!error) {
511 /* we want the original fs_tree */
512 if (!intarg)
513 *subvol_rootid =
514 BTRFS_FS_TREE_OBJECTID;
515 else
516 *subvol_rootid = intarg;
517 }
518 break;
519 case Opt_device:
520 device_name = match_strdup(&args[0]);
521 if (!device_name) {
522 error = -ENOMEM;
523 goto out;
524 }
525 error = btrfs_scan_one_device(device_name,
526 flags, holder, fs_devices);
527 kfree(device_name);
528 if (error)
529 goto out;
530 break;
531 default:
532 break;
533 }
534 }
535
536 out:
537 kfree(orig);
538 return error;
539 }
540
541 static struct dentry *get_default_root(struct super_block *sb,
542 u64 subvol_objectid)
543 {
544 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
545 struct btrfs_root *root = fs_info->tree_root;
546 struct btrfs_root *new_root;
547 struct btrfs_dir_item *di;
548 struct btrfs_path *path;
549 struct btrfs_key location;
550 struct inode *inode;
551 u64 dir_id;
552 int new = 0;
553
554 /*
555 * We have a specific subvol we want to mount, just setup location and
556 * go look up the root.
557 */
558 if (subvol_objectid) {
559 location.objectid = subvol_objectid;
560 location.type = BTRFS_ROOT_ITEM_KEY;
561 location.offset = (u64)-1;
562 goto find_root;
563 }
564
565 path = btrfs_alloc_path();
566 if (!path)
567 return ERR_PTR(-ENOMEM);
568 path->leave_spinning = 1;
569
570 /*
571 * Find the "default" dir item which points to the root item that we
572 * will mount by default if we haven't been given a specific subvolume
573 * to mount.
574 */
575 dir_id = btrfs_super_root_dir(fs_info->super_copy);
576 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
577 if (IS_ERR(di)) {
578 btrfs_free_path(path);
579 return ERR_CAST(di);
580 }
581 if (!di) {
582 /*
583 * Ok the default dir item isn't there. This is weird since
584 * it's always been there, but don't freak out, just try and
585 * mount to root most subvolume.
586 */
587 btrfs_free_path(path);
588 dir_id = BTRFS_FIRST_FREE_OBJECTID;
589 new_root = fs_info->fs_root;
590 goto setup_root;
591 }
592
593 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
594 btrfs_free_path(path);
595
596 find_root:
597 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
598 if (IS_ERR(new_root))
599 return ERR_CAST(new_root);
600
601 if (btrfs_root_refs(&new_root->root_item) == 0)
602 return ERR_PTR(-ENOENT);
603
604 dir_id = btrfs_root_dirid(&new_root->root_item);
605 setup_root:
606 location.objectid = dir_id;
607 location.type = BTRFS_INODE_ITEM_KEY;
608 location.offset = 0;
609
610 inode = btrfs_iget(sb, &location, new_root, &new);
611 if (IS_ERR(inode))
612 return ERR_CAST(inode);
613
614 /*
615 * If we're just mounting the root most subvol put the inode and return
616 * a reference to the dentry. We will have already gotten a reference
617 * to the inode in btrfs_fill_super so we're good to go.
618 */
619 if (!new && sb->s_root->d_inode == inode) {
620 iput(inode);
621 return dget(sb->s_root);
622 }
623
624 return d_obtain_alias(inode);
625 }
626
627 static int btrfs_fill_super(struct super_block *sb,
628 struct btrfs_fs_devices *fs_devices,
629 void *data, int silent)
630 {
631 struct inode *inode;
632 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
633 struct btrfs_key key;
634 int err;
635
636 sb->s_maxbytes = MAX_LFS_FILESIZE;
637 sb->s_magic = BTRFS_SUPER_MAGIC;
638 sb->s_op = &btrfs_super_ops;
639 sb->s_d_op = &btrfs_dentry_operations;
640 sb->s_export_op = &btrfs_export_ops;
641 sb->s_xattr = btrfs_xattr_handlers;
642 sb->s_time_gran = 1;
643 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
644 sb->s_flags |= MS_POSIXACL;
645 #endif
646
647 err = open_ctree(sb, fs_devices, (char *)data);
648 if (err) {
649 printk("btrfs: open_ctree failed\n");
650 return err;
651 }
652
653 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
654 key.type = BTRFS_INODE_ITEM_KEY;
655 key.offset = 0;
656 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
657 if (IS_ERR(inode)) {
658 err = PTR_ERR(inode);
659 goto fail_close;
660 }
661
662 sb->s_root = d_make_root(inode);
663 if (!sb->s_root) {
664 err = -ENOMEM;
665 goto fail_close;
666 }
667
668 save_mount_options(sb, data);
669 cleancache_init_fs(sb);
670 sb->s_flags |= MS_ACTIVE;
671 return 0;
672
673 fail_close:
674 close_ctree(fs_info->tree_root);
675 return err;
676 }
677
678 int btrfs_sync_fs(struct super_block *sb, int wait)
679 {
680 struct btrfs_trans_handle *trans;
681 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
682 struct btrfs_root *root = fs_info->tree_root;
683 int ret;
684
685 trace_btrfs_sync_fs(wait);
686
687 if (!wait) {
688 filemap_flush(fs_info->btree_inode->i_mapping);
689 return 0;
690 }
691
692 btrfs_start_delalloc_inodes(root, 0);
693 btrfs_wait_ordered_extents(root, 0, 0);
694
695 trans = btrfs_start_transaction(root, 0);
696 if (IS_ERR(trans))
697 return PTR_ERR(trans);
698 ret = btrfs_commit_transaction(trans, root);
699 return ret;
700 }
701
702 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
703 {
704 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
705 struct btrfs_root *root = info->tree_root;
706 char *compress_type;
707
708 if (btrfs_test_opt(root, DEGRADED))
709 seq_puts(seq, ",degraded");
710 if (btrfs_test_opt(root, NODATASUM))
711 seq_puts(seq, ",nodatasum");
712 if (btrfs_test_opt(root, NODATACOW))
713 seq_puts(seq, ",nodatacow");
714 if (btrfs_test_opt(root, NOBARRIER))
715 seq_puts(seq, ",nobarrier");
716 if (info->max_inline != 8192 * 1024)
717 seq_printf(seq, ",max_inline=%llu",
718 (unsigned long long)info->max_inline);
719 if (info->alloc_start != 0)
720 seq_printf(seq, ",alloc_start=%llu",
721 (unsigned long long)info->alloc_start);
722 if (info->thread_pool_size != min_t(unsigned long,
723 num_online_cpus() + 2, 8))
724 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
725 if (btrfs_test_opt(root, COMPRESS)) {
726 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
727 compress_type = "zlib";
728 else
729 compress_type = "lzo";
730 if (btrfs_test_opt(root, FORCE_COMPRESS))
731 seq_printf(seq, ",compress-force=%s", compress_type);
732 else
733 seq_printf(seq, ",compress=%s", compress_type);
734 }
735 if (btrfs_test_opt(root, NOSSD))
736 seq_puts(seq, ",nossd");
737 if (btrfs_test_opt(root, SSD_SPREAD))
738 seq_puts(seq, ",ssd_spread");
739 else if (btrfs_test_opt(root, SSD))
740 seq_puts(seq, ",ssd");
741 if (btrfs_test_opt(root, NOTREELOG))
742 seq_puts(seq, ",notreelog");
743 if (btrfs_test_opt(root, FLUSHONCOMMIT))
744 seq_puts(seq, ",flushoncommit");
745 if (btrfs_test_opt(root, DISCARD))
746 seq_puts(seq, ",discard");
747 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
748 seq_puts(seq, ",noacl");
749 if (btrfs_test_opt(root, SPACE_CACHE))
750 seq_puts(seq, ",space_cache");
751 else
752 seq_puts(seq, ",nospace_cache");
753 if (btrfs_test_opt(root, CLEAR_CACHE))
754 seq_puts(seq, ",clear_cache");
755 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
756 seq_puts(seq, ",user_subvol_rm_allowed");
757 if (btrfs_test_opt(root, ENOSPC_DEBUG))
758 seq_puts(seq, ",enospc_debug");
759 if (btrfs_test_opt(root, AUTO_DEFRAG))
760 seq_puts(seq, ",autodefrag");
761 if (btrfs_test_opt(root, INODE_MAP_CACHE))
762 seq_puts(seq, ",inode_cache");
763 if (btrfs_test_opt(root, SKIP_BALANCE))
764 seq_puts(seq, ",skip_balance");
765 return 0;
766 }
767
768 static int btrfs_test_super(struct super_block *s, void *data)
769 {
770 struct btrfs_fs_info *p = data;
771 struct btrfs_fs_info *fs_info = btrfs_sb(s);
772
773 return fs_info->fs_devices == p->fs_devices;
774 }
775
776 static int btrfs_set_super(struct super_block *s, void *data)
777 {
778 int err = set_anon_super(s, data);
779 if (!err)
780 s->s_fs_info = data;
781 return err;
782 }
783
784 /*
785 * subvolumes are identified by ino 256
786 */
787 static inline int is_subvolume_inode(struct inode *inode)
788 {
789 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
790 return 1;
791 return 0;
792 }
793
794 /*
795 * This will strip out the subvol=%s argument for an argument string and add
796 * subvolid=0 to make sure we get the actual tree root for path walking to the
797 * subvol we want.
798 */
799 static char *setup_root_args(char *args)
800 {
801 unsigned copied = 0;
802 unsigned len = strlen(args) + 2;
803 char *pos;
804 char *ret;
805
806 /*
807 * We need the same args as before, but minus
808 *
809 * subvol=a
810 *
811 * and add
812 *
813 * subvolid=0
814 *
815 * which is a difference of 2 characters, so we allocate strlen(args) +
816 * 2 characters.
817 */
818 ret = kzalloc(len * sizeof(char), GFP_NOFS);
819 if (!ret)
820 return NULL;
821 pos = strstr(args, "subvol=");
822
823 /* This shouldn't happen, but just in case.. */
824 if (!pos) {
825 kfree(ret);
826 return NULL;
827 }
828
829 /*
830 * The subvol=<> arg is not at the front of the string, copy everybody
831 * up to that into ret.
832 */
833 if (pos != args) {
834 *pos = '\0';
835 strcpy(ret, args);
836 copied += strlen(args);
837 pos++;
838 }
839
840 strncpy(ret + copied, "subvolid=0", len - copied);
841
842 /* Length of subvolid=0 */
843 copied += 10;
844
845 /*
846 * If there is no , after the subvol= option then we know there's no
847 * other options and we can just return.
848 */
849 pos = strchr(pos, ',');
850 if (!pos)
851 return ret;
852
853 /* Copy the rest of the arguments into our buffer */
854 strncpy(ret + copied, pos, len - copied);
855 copied += strlen(pos);
856
857 return ret;
858 }
859
860 static struct dentry *mount_subvol(const char *subvol_name, int flags,
861 const char *device_name, char *data)
862 {
863 struct dentry *root;
864 struct vfsmount *mnt;
865 char *newargs;
866
867 newargs = setup_root_args(data);
868 if (!newargs)
869 return ERR_PTR(-ENOMEM);
870 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
871 newargs);
872 kfree(newargs);
873 if (IS_ERR(mnt))
874 return ERR_CAST(mnt);
875
876 root = mount_subtree(mnt, subvol_name);
877
878 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
879 struct super_block *s = root->d_sb;
880 dput(root);
881 root = ERR_PTR(-EINVAL);
882 deactivate_locked_super(s);
883 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
884 subvol_name);
885 }
886
887 return root;
888 }
889
890 /*
891 * Find a superblock for the given device / mount point.
892 *
893 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
894 * for multiple device setup. Make sure to keep it in sync.
895 */
896 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
897 const char *device_name, void *data)
898 {
899 struct block_device *bdev = NULL;
900 struct super_block *s;
901 struct dentry *root;
902 struct btrfs_fs_devices *fs_devices = NULL;
903 struct btrfs_fs_info *fs_info = NULL;
904 fmode_t mode = FMODE_READ;
905 char *subvol_name = NULL;
906 u64 subvol_objectid = 0;
907 u64 subvol_rootid = 0;
908 int error = 0;
909
910 if (!(flags & MS_RDONLY))
911 mode |= FMODE_WRITE;
912
913 error = btrfs_parse_early_options(data, mode, fs_type,
914 &subvol_name, &subvol_objectid,
915 &subvol_rootid, &fs_devices);
916 if (error) {
917 kfree(subvol_name);
918 return ERR_PTR(error);
919 }
920
921 if (subvol_name) {
922 root = mount_subvol(subvol_name, flags, device_name, data);
923 kfree(subvol_name);
924 return root;
925 }
926
927 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
928 if (error)
929 return ERR_PTR(error);
930
931 /*
932 * Setup a dummy root and fs_info for test/set super. This is because
933 * we don't actually fill this stuff out until open_ctree, but we need
934 * it for searching for existing supers, so this lets us do that and
935 * then open_ctree will properly initialize everything later.
936 */
937 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
938 if (!fs_info)
939 return ERR_PTR(-ENOMEM);
940
941 fs_info->fs_devices = fs_devices;
942
943 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
944 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
945 if (!fs_info->super_copy || !fs_info->super_for_commit) {
946 error = -ENOMEM;
947 goto error_fs_info;
948 }
949
950 error = btrfs_open_devices(fs_devices, mode, fs_type);
951 if (error)
952 goto error_fs_info;
953
954 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
955 error = -EACCES;
956 goto error_close_devices;
957 }
958
959 bdev = fs_devices->latest_bdev;
960 s = sget(fs_type, btrfs_test_super, btrfs_set_super, fs_info);
961 if (IS_ERR(s)) {
962 error = PTR_ERR(s);
963 goto error_close_devices;
964 }
965
966 if (s->s_root) {
967 btrfs_close_devices(fs_devices);
968 free_fs_info(fs_info);
969 if ((flags ^ s->s_flags) & MS_RDONLY)
970 error = -EBUSY;
971 } else {
972 char b[BDEVNAME_SIZE];
973
974 s->s_flags = flags | MS_NOSEC;
975 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
976 btrfs_sb(s)->bdev_holder = fs_type;
977 error = btrfs_fill_super(s, fs_devices, data,
978 flags & MS_SILENT ? 1 : 0);
979 }
980
981 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
982 if (IS_ERR(root))
983 deactivate_locked_super(s);
984
985 return root;
986
987 error_close_devices:
988 btrfs_close_devices(fs_devices);
989 error_fs_info:
990 free_fs_info(fs_info);
991 return ERR_PTR(error);
992 }
993
994 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
995 {
996 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
997 struct btrfs_root *root = fs_info->tree_root;
998 int ret;
999
1000 ret = btrfs_parse_options(root, data);
1001 if (ret)
1002 return -EINVAL;
1003
1004 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1005 return 0;
1006
1007 if (*flags & MS_RDONLY) {
1008 sb->s_flags |= MS_RDONLY;
1009
1010 ret = btrfs_commit_super(root);
1011 WARN_ON(ret);
1012 } else {
1013 if (fs_info->fs_devices->rw_devices == 0)
1014 return -EACCES;
1015
1016 if (btrfs_super_log_root(fs_info->super_copy) != 0)
1017 return -EINVAL;
1018
1019 ret = btrfs_cleanup_fs_roots(fs_info);
1020 WARN_ON(ret);
1021
1022 /* recover relocation */
1023 ret = btrfs_recover_relocation(root);
1024 WARN_ON(ret);
1025
1026 sb->s_flags &= ~MS_RDONLY;
1027 }
1028
1029 return 0;
1030 }
1031
1032 /* Used to sort the devices by max_avail(descending sort) */
1033 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1034 const void *dev_info2)
1035 {
1036 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1037 ((struct btrfs_device_info *)dev_info2)->max_avail)
1038 return -1;
1039 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1040 ((struct btrfs_device_info *)dev_info2)->max_avail)
1041 return 1;
1042 else
1043 return 0;
1044 }
1045
1046 /*
1047 * sort the devices by max_avail, in which max free extent size of each device
1048 * is stored.(Descending Sort)
1049 */
1050 static inline void btrfs_descending_sort_devices(
1051 struct btrfs_device_info *devices,
1052 size_t nr_devices)
1053 {
1054 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1055 btrfs_cmp_device_free_bytes, NULL);
1056 }
1057
1058 /*
1059 * The helper to calc the free space on the devices that can be used to store
1060 * file data.
1061 */
1062 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1063 {
1064 struct btrfs_fs_info *fs_info = root->fs_info;
1065 struct btrfs_device_info *devices_info;
1066 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1067 struct btrfs_device *device;
1068 u64 skip_space;
1069 u64 type;
1070 u64 avail_space;
1071 u64 used_space;
1072 u64 min_stripe_size;
1073 int min_stripes = 1, num_stripes = 1;
1074 int i = 0, nr_devices;
1075 int ret;
1076
1077 nr_devices = fs_info->fs_devices->open_devices;
1078 BUG_ON(!nr_devices);
1079
1080 devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1081 GFP_NOFS);
1082 if (!devices_info)
1083 return -ENOMEM;
1084
1085 /* calc min stripe number for data space alloction */
1086 type = btrfs_get_alloc_profile(root, 1);
1087 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1088 min_stripes = 2;
1089 num_stripes = nr_devices;
1090 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1091 min_stripes = 2;
1092 num_stripes = 2;
1093 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1094 min_stripes = 4;
1095 num_stripes = 4;
1096 }
1097
1098 if (type & BTRFS_BLOCK_GROUP_DUP)
1099 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1100 else
1101 min_stripe_size = BTRFS_STRIPE_LEN;
1102
1103 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1104 if (!device->in_fs_metadata || !device->bdev)
1105 continue;
1106
1107 avail_space = device->total_bytes - device->bytes_used;
1108
1109 /* align with stripe_len */
1110 do_div(avail_space, BTRFS_STRIPE_LEN);
1111 avail_space *= BTRFS_STRIPE_LEN;
1112
1113 /*
1114 * In order to avoid overwritting the superblock on the drive,
1115 * btrfs starts at an offset of at least 1MB when doing chunk
1116 * allocation.
1117 */
1118 skip_space = 1024 * 1024;
1119
1120 /* user can set the offset in fs_info->alloc_start. */
1121 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1122 device->total_bytes)
1123 skip_space = max(fs_info->alloc_start, skip_space);
1124
1125 /*
1126 * btrfs can not use the free space in [0, skip_space - 1],
1127 * we must subtract it from the total. In order to implement
1128 * it, we account the used space in this range first.
1129 */
1130 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1131 &used_space);
1132 if (ret) {
1133 kfree(devices_info);
1134 return ret;
1135 }
1136
1137 /* calc the free space in [0, skip_space - 1] */
1138 skip_space -= used_space;
1139
1140 /*
1141 * we can use the free space in [0, skip_space - 1], subtract
1142 * it from the total.
1143 */
1144 if (avail_space && avail_space >= skip_space)
1145 avail_space -= skip_space;
1146 else
1147 avail_space = 0;
1148
1149 if (avail_space < min_stripe_size)
1150 continue;
1151
1152 devices_info[i].dev = device;
1153 devices_info[i].max_avail = avail_space;
1154
1155 i++;
1156 }
1157
1158 nr_devices = i;
1159
1160 btrfs_descending_sort_devices(devices_info, nr_devices);
1161
1162 i = nr_devices - 1;
1163 avail_space = 0;
1164 while (nr_devices >= min_stripes) {
1165 if (num_stripes > nr_devices)
1166 num_stripes = nr_devices;
1167
1168 if (devices_info[i].max_avail >= min_stripe_size) {
1169 int j;
1170 u64 alloc_size;
1171
1172 avail_space += devices_info[i].max_avail * num_stripes;
1173 alloc_size = devices_info[i].max_avail;
1174 for (j = i + 1 - num_stripes; j <= i; j++)
1175 devices_info[j].max_avail -= alloc_size;
1176 }
1177 i--;
1178 nr_devices--;
1179 }
1180
1181 kfree(devices_info);
1182 *free_bytes = avail_space;
1183 return 0;
1184 }
1185
1186 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1187 {
1188 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1189 struct btrfs_super_block *disk_super = fs_info->super_copy;
1190 struct list_head *head = &fs_info->space_info;
1191 struct btrfs_space_info *found;
1192 u64 total_used = 0;
1193 u64 total_free_data = 0;
1194 int bits = dentry->d_sb->s_blocksize_bits;
1195 __be32 *fsid = (__be32 *)fs_info->fsid;
1196 int ret;
1197
1198 /* holding chunk_muext to avoid allocating new chunks */
1199 mutex_lock(&fs_info->chunk_mutex);
1200 rcu_read_lock();
1201 list_for_each_entry_rcu(found, head, list) {
1202 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1203 total_free_data += found->disk_total - found->disk_used;
1204 total_free_data -=
1205 btrfs_account_ro_block_groups_free_space(found);
1206 }
1207
1208 total_used += found->disk_used;
1209 }
1210 rcu_read_unlock();
1211
1212 buf->f_namelen = BTRFS_NAME_LEN;
1213 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1214 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1215 buf->f_bsize = dentry->d_sb->s_blocksize;
1216 buf->f_type = BTRFS_SUPER_MAGIC;
1217 buf->f_bavail = total_free_data;
1218 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1219 if (ret) {
1220 mutex_unlock(&fs_info->chunk_mutex);
1221 return ret;
1222 }
1223 buf->f_bavail += total_free_data;
1224 buf->f_bavail = buf->f_bavail >> bits;
1225 mutex_unlock(&fs_info->chunk_mutex);
1226
1227 /* We treat it as constant endianness (it doesn't matter _which_)
1228 because we want the fsid to come out the same whether mounted
1229 on a big-endian or little-endian host */
1230 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1231 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1232 /* Mask in the root object ID too, to disambiguate subvols */
1233 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1234 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1235
1236 return 0;
1237 }
1238
1239 static void btrfs_kill_super(struct super_block *sb)
1240 {
1241 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1242 kill_anon_super(sb);
1243 free_fs_info(fs_info);
1244 }
1245
1246 static struct file_system_type btrfs_fs_type = {
1247 .owner = THIS_MODULE,
1248 .name = "btrfs",
1249 .mount = btrfs_mount,
1250 .kill_sb = btrfs_kill_super,
1251 .fs_flags = FS_REQUIRES_DEV,
1252 };
1253
1254 /*
1255 * used by btrfsctl to scan devices when no FS is mounted
1256 */
1257 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1258 unsigned long arg)
1259 {
1260 struct btrfs_ioctl_vol_args *vol;
1261 struct btrfs_fs_devices *fs_devices;
1262 int ret = -ENOTTY;
1263
1264 if (!capable(CAP_SYS_ADMIN))
1265 return -EPERM;
1266
1267 vol = memdup_user((void __user *)arg, sizeof(*vol));
1268 if (IS_ERR(vol))
1269 return PTR_ERR(vol);
1270
1271 switch (cmd) {
1272 case BTRFS_IOC_SCAN_DEV:
1273 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1274 &btrfs_fs_type, &fs_devices);
1275 break;
1276 }
1277
1278 kfree(vol);
1279 return ret;
1280 }
1281
1282 static int btrfs_freeze(struct super_block *sb)
1283 {
1284 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1285 mutex_lock(&fs_info->transaction_kthread_mutex);
1286 mutex_lock(&fs_info->cleaner_mutex);
1287 return 0;
1288 }
1289
1290 static int btrfs_unfreeze(struct super_block *sb)
1291 {
1292 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1293 mutex_unlock(&fs_info->cleaner_mutex);
1294 mutex_unlock(&fs_info->transaction_kthread_mutex);
1295 return 0;
1296 }
1297
1298 static void btrfs_fs_dirty_inode(struct inode *inode, int flags)
1299 {
1300 int ret;
1301
1302 ret = btrfs_dirty_inode(inode);
1303 if (ret)
1304 printk_ratelimited(KERN_ERR "btrfs: fail to dirty inode %Lu "
1305 "error %d\n", btrfs_ino(inode), ret);
1306 }
1307
1308 static const struct super_operations btrfs_super_ops = {
1309 .drop_inode = btrfs_drop_inode,
1310 .evict_inode = btrfs_evict_inode,
1311 .put_super = btrfs_put_super,
1312 .sync_fs = btrfs_sync_fs,
1313 .show_options = btrfs_show_options,
1314 .write_inode = btrfs_write_inode,
1315 .dirty_inode = btrfs_fs_dirty_inode,
1316 .alloc_inode = btrfs_alloc_inode,
1317 .destroy_inode = btrfs_destroy_inode,
1318 .statfs = btrfs_statfs,
1319 .remount_fs = btrfs_remount,
1320 .freeze_fs = btrfs_freeze,
1321 .unfreeze_fs = btrfs_unfreeze,
1322 };
1323
1324 static const struct file_operations btrfs_ctl_fops = {
1325 .unlocked_ioctl = btrfs_control_ioctl,
1326 .compat_ioctl = btrfs_control_ioctl,
1327 .owner = THIS_MODULE,
1328 .llseek = noop_llseek,
1329 };
1330
1331 static struct miscdevice btrfs_misc = {
1332 .minor = BTRFS_MINOR,
1333 .name = "btrfs-control",
1334 .fops = &btrfs_ctl_fops
1335 };
1336
1337 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1338 MODULE_ALIAS("devname:btrfs-control");
1339
1340 static int btrfs_interface_init(void)
1341 {
1342 return misc_register(&btrfs_misc);
1343 }
1344
1345 static void btrfs_interface_exit(void)
1346 {
1347 if (misc_deregister(&btrfs_misc) < 0)
1348 printk(KERN_INFO "misc_deregister failed for control device");
1349 }
1350
1351 static int __init init_btrfs_fs(void)
1352 {
1353 int err;
1354
1355 err = btrfs_init_sysfs();
1356 if (err)
1357 return err;
1358
1359 err = btrfs_init_compress();
1360 if (err)
1361 goto free_sysfs;
1362
1363 err = btrfs_init_cachep();
1364 if (err)
1365 goto free_compress;
1366
1367 err = extent_io_init();
1368 if (err)
1369 goto free_cachep;
1370
1371 err = extent_map_init();
1372 if (err)
1373 goto free_extent_io;
1374
1375 err = btrfs_delayed_inode_init();
1376 if (err)
1377 goto free_extent_map;
1378
1379 err = btrfs_interface_init();
1380 if (err)
1381 goto free_delayed_inode;
1382
1383 err = register_filesystem(&btrfs_fs_type);
1384 if (err)
1385 goto unregister_ioctl;
1386
1387 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1388 return 0;
1389
1390 unregister_ioctl:
1391 btrfs_interface_exit();
1392 free_delayed_inode:
1393 btrfs_delayed_inode_exit();
1394 free_extent_map:
1395 extent_map_exit();
1396 free_extent_io:
1397 extent_io_exit();
1398 free_cachep:
1399 btrfs_destroy_cachep();
1400 free_compress:
1401 btrfs_exit_compress();
1402 free_sysfs:
1403 btrfs_exit_sysfs();
1404 return err;
1405 }
1406
1407 static void __exit exit_btrfs_fs(void)
1408 {
1409 btrfs_destroy_cachep();
1410 btrfs_delayed_inode_exit();
1411 extent_map_exit();
1412 extent_io_exit();
1413 btrfs_interface_exit();
1414 unregister_filesystem(&btrfs_fs_type);
1415 btrfs_exit_sysfs();
1416 btrfs_cleanup_fs_uuids();
1417 btrfs_exit_compress();
1418 }
1419
1420 module_init(init_btrfs_fs)
1421 module_exit(exit_btrfs_fs)
1422
1423 MODULE_LICENSE("GPL");