Merge branch 'allocator' of git://git.kernel.org/pub/scm/linux/kernel/git/arne/btrfs...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / super.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include "compat.h"
43 #include "delayed-inode.h"
44 #include "ctree.h"
45 #include "disk-io.h"
46 #include "transaction.h"
47 #include "btrfs_inode.h"
48 #include "ioctl.h"
49 #include "print-tree.h"
50 #include "xattr.h"
51 #include "volumes.h"
52 #include "version.h"
53 #include "export.h"
54 #include "compression.h"
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/btrfs.h>
58
59 static const struct super_operations btrfs_super_ops;
60
61 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
62 char nbuf[16])
63 {
64 char *errstr = NULL;
65
66 switch (errno) {
67 case -EIO:
68 errstr = "IO failure";
69 break;
70 case -ENOMEM:
71 errstr = "Out of memory";
72 break;
73 case -EROFS:
74 errstr = "Readonly filesystem";
75 break;
76 default:
77 if (nbuf) {
78 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
79 errstr = nbuf;
80 }
81 break;
82 }
83
84 return errstr;
85 }
86
87 static void __save_error_info(struct btrfs_fs_info *fs_info)
88 {
89 /*
90 * today we only save the error info into ram. Long term we'll
91 * also send it down to the disk
92 */
93 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
94 }
95
96 /* NOTE:
97 * We move write_super stuff at umount in order to avoid deadlock
98 * for umount hold all lock.
99 */
100 static void save_error_info(struct btrfs_fs_info *fs_info)
101 {
102 __save_error_info(fs_info);
103 }
104
105 /* btrfs handle error by forcing the filesystem readonly */
106 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
107 {
108 struct super_block *sb = fs_info->sb;
109
110 if (sb->s_flags & MS_RDONLY)
111 return;
112
113 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
114 sb->s_flags |= MS_RDONLY;
115 printk(KERN_INFO "btrfs is forced readonly\n");
116 }
117 }
118
119 /*
120 * __btrfs_std_error decodes expected errors from the caller and
121 * invokes the approciate error response.
122 */
123 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
124 unsigned int line, int errno)
125 {
126 struct super_block *sb = fs_info->sb;
127 char nbuf[16];
128 const char *errstr;
129
130 /*
131 * Special case: if the error is EROFS, and we're already
132 * under MS_RDONLY, then it is safe here.
133 */
134 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
135 return;
136
137 errstr = btrfs_decode_error(fs_info, errno, nbuf);
138 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
139 sb->s_id, function, line, errstr);
140 save_error_info(fs_info);
141
142 btrfs_handle_error(fs_info);
143 }
144
145 static void btrfs_put_super(struct super_block *sb)
146 {
147 struct btrfs_root *root = btrfs_sb(sb);
148 int ret;
149
150 ret = close_ctree(root);
151 sb->s_fs_info = NULL;
152
153 (void)ret; /* FIXME: need to fix VFS to return error? */
154 }
155
156 enum {
157 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
158 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
159 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
160 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
161 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
162 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
163 Opt_enospc_debug, Opt_subvolrootid, Opt_err,
164 };
165
166 static match_table_t tokens = {
167 {Opt_degraded, "degraded"},
168 {Opt_subvol, "subvol=%s"},
169 {Opt_subvolid, "subvolid=%d"},
170 {Opt_device, "device=%s"},
171 {Opt_nodatasum, "nodatasum"},
172 {Opt_nodatacow, "nodatacow"},
173 {Opt_nobarrier, "nobarrier"},
174 {Opt_max_inline, "max_inline=%s"},
175 {Opt_alloc_start, "alloc_start=%s"},
176 {Opt_thread_pool, "thread_pool=%d"},
177 {Opt_compress, "compress"},
178 {Opt_compress_type, "compress=%s"},
179 {Opt_compress_force, "compress-force"},
180 {Opt_compress_force_type, "compress-force=%s"},
181 {Opt_ssd, "ssd"},
182 {Opt_ssd_spread, "ssd_spread"},
183 {Opt_nossd, "nossd"},
184 {Opt_noacl, "noacl"},
185 {Opt_notreelog, "notreelog"},
186 {Opt_flushoncommit, "flushoncommit"},
187 {Opt_ratio, "metadata_ratio=%d"},
188 {Opt_discard, "discard"},
189 {Opt_space_cache, "space_cache"},
190 {Opt_clear_cache, "clear_cache"},
191 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
192 {Opt_enospc_debug, "enospc_debug"},
193 {Opt_subvolrootid, "subvolrootid=%d"},
194 {Opt_err, NULL},
195 };
196
197 /*
198 * Regular mount options parser. Everything that is needed only when
199 * reading in a new superblock is parsed here.
200 */
201 int btrfs_parse_options(struct btrfs_root *root, char *options)
202 {
203 struct btrfs_fs_info *info = root->fs_info;
204 substring_t args[MAX_OPT_ARGS];
205 char *p, *num, *orig;
206 int intarg;
207 int ret = 0;
208 char *compress_type;
209 bool compress_force = false;
210
211 if (!options)
212 return 0;
213
214 /*
215 * strsep changes the string, duplicate it because parse_options
216 * gets called twice
217 */
218 options = kstrdup(options, GFP_NOFS);
219 if (!options)
220 return -ENOMEM;
221
222 orig = options;
223
224 while ((p = strsep(&options, ",")) != NULL) {
225 int token;
226 if (!*p)
227 continue;
228
229 token = match_token(p, tokens, args);
230 switch (token) {
231 case Opt_degraded:
232 printk(KERN_INFO "btrfs: allowing degraded mounts\n");
233 btrfs_set_opt(info->mount_opt, DEGRADED);
234 break;
235 case Opt_subvol:
236 case Opt_subvolid:
237 case Opt_subvolrootid:
238 case Opt_device:
239 /*
240 * These are parsed by btrfs_parse_early_options
241 * and can be happily ignored here.
242 */
243 break;
244 case Opt_nodatasum:
245 printk(KERN_INFO "btrfs: setting nodatasum\n");
246 btrfs_set_opt(info->mount_opt, NODATASUM);
247 break;
248 case Opt_nodatacow:
249 printk(KERN_INFO "btrfs: setting nodatacow\n");
250 btrfs_set_opt(info->mount_opt, NODATACOW);
251 btrfs_set_opt(info->mount_opt, NODATASUM);
252 break;
253 case Opt_compress_force:
254 case Opt_compress_force_type:
255 compress_force = true;
256 case Opt_compress:
257 case Opt_compress_type:
258 if (token == Opt_compress ||
259 token == Opt_compress_force ||
260 strcmp(args[0].from, "zlib") == 0) {
261 compress_type = "zlib";
262 info->compress_type = BTRFS_COMPRESS_ZLIB;
263 } else if (strcmp(args[0].from, "lzo") == 0) {
264 compress_type = "lzo";
265 info->compress_type = BTRFS_COMPRESS_LZO;
266 } else {
267 ret = -EINVAL;
268 goto out;
269 }
270
271 btrfs_set_opt(info->mount_opt, COMPRESS);
272 if (compress_force) {
273 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
274 pr_info("btrfs: force %s compression\n",
275 compress_type);
276 } else
277 pr_info("btrfs: use %s compression\n",
278 compress_type);
279 break;
280 case Opt_ssd:
281 printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
282 btrfs_set_opt(info->mount_opt, SSD);
283 break;
284 case Opt_ssd_spread:
285 printk(KERN_INFO "btrfs: use spread ssd "
286 "allocation scheme\n");
287 btrfs_set_opt(info->mount_opt, SSD);
288 btrfs_set_opt(info->mount_opt, SSD_SPREAD);
289 break;
290 case Opt_nossd:
291 printk(KERN_INFO "btrfs: not using ssd allocation "
292 "scheme\n");
293 btrfs_set_opt(info->mount_opt, NOSSD);
294 btrfs_clear_opt(info->mount_opt, SSD);
295 btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
296 break;
297 case Opt_nobarrier:
298 printk(KERN_INFO "btrfs: turning off barriers\n");
299 btrfs_set_opt(info->mount_opt, NOBARRIER);
300 break;
301 case Opt_thread_pool:
302 intarg = 0;
303 match_int(&args[0], &intarg);
304 if (intarg) {
305 info->thread_pool_size = intarg;
306 printk(KERN_INFO "btrfs: thread pool %d\n",
307 info->thread_pool_size);
308 }
309 break;
310 case Opt_max_inline:
311 num = match_strdup(&args[0]);
312 if (num) {
313 info->max_inline = memparse(num, NULL);
314 kfree(num);
315
316 if (info->max_inline) {
317 info->max_inline = max_t(u64,
318 info->max_inline,
319 root->sectorsize);
320 }
321 printk(KERN_INFO "btrfs: max_inline at %llu\n",
322 (unsigned long long)info->max_inline);
323 }
324 break;
325 case Opt_alloc_start:
326 num = match_strdup(&args[0]);
327 if (num) {
328 info->alloc_start = memparse(num, NULL);
329 kfree(num);
330 printk(KERN_INFO
331 "btrfs: allocations start at %llu\n",
332 (unsigned long long)info->alloc_start);
333 }
334 break;
335 case Opt_noacl:
336 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
337 break;
338 case Opt_notreelog:
339 printk(KERN_INFO "btrfs: disabling tree log\n");
340 btrfs_set_opt(info->mount_opt, NOTREELOG);
341 break;
342 case Opt_flushoncommit:
343 printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
344 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
345 break;
346 case Opt_ratio:
347 intarg = 0;
348 match_int(&args[0], &intarg);
349 if (intarg) {
350 info->metadata_ratio = intarg;
351 printk(KERN_INFO "btrfs: metadata ratio %d\n",
352 info->metadata_ratio);
353 }
354 break;
355 case Opt_discard:
356 btrfs_set_opt(info->mount_opt, DISCARD);
357 break;
358 case Opt_space_cache:
359 printk(KERN_INFO "btrfs: enabling disk space caching\n");
360 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
361 break;
362 case Opt_clear_cache:
363 printk(KERN_INFO "btrfs: force clearing of disk cache\n");
364 btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
365 break;
366 case Opt_user_subvol_rm_allowed:
367 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
368 break;
369 case Opt_enospc_debug:
370 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
371 break;
372 case Opt_err:
373 printk(KERN_INFO "btrfs: unrecognized mount option "
374 "'%s'\n", p);
375 ret = -EINVAL;
376 goto out;
377 default:
378 break;
379 }
380 }
381 out:
382 kfree(orig);
383 return ret;
384 }
385
386 /*
387 * Parse mount options that are required early in the mount process.
388 *
389 * All other options will be parsed on much later in the mount process and
390 * only when we need to allocate a new super block.
391 */
392 static int btrfs_parse_early_options(const char *options, fmode_t flags,
393 void *holder, char **subvol_name, u64 *subvol_objectid,
394 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
395 {
396 substring_t args[MAX_OPT_ARGS];
397 char *opts, *orig, *p;
398 int error = 0;
399 int intarg;
400
401 if (!options)
402 goto out;
403
404 /*
405 * strsep changes the string, duplicate it because parse_options
406 * gets called twice
407 */
408 opts = kstrdup(options, GFP_KERNEL);
409 if (!opts)
410 return -ENOMEM;
411 orig = opts;
412
413 while ((p = strsep(&opts, ",")) != NULL) {
414 int token;
415 if (!*p)
416 continue;
417
418 token = match_token(p, tokens, args);
419 switch (token) {
420 case Opt_subvol:
421 *subvol_name = match_strdup(&args[0]);
422 break;
423 case Opt_subvolid:
424 intarg = 0;
425 error = match_int(&args[0], &intarg);
426 if (!error) {
427 /* we want the original fs_tree */
428 if (!intarg)
429 *subvol_objectid =
430 BTRFS_FS_TREE_OBJECTID;
431 else
432 *subvol_objectid = intarg;
433 }
434 break;
435 case Opt_subvolrootid:
436 intarg = 0;
437 error = match_int(&args[0], &intarg);
438 if (!error) {
439 /* we want the original fs_tree */
440 if (!intarg)
441 *subvol_rootid =
442 BTRFS_FS_TREE_OBJECTID;
443 else
444 *subvol_rootid = intarg;
445 }
446 break;
447 case Opt_device:
448 error = btrfs_scan_one_device(match_strdup(&args[0]),
449 flags, holder, fs_devices);
450 if (error)
451 goto out_free_opts;
452 break;
453 default:
454 break;
455 }
456 }
457
458 out_free_opts:
459 kfree(orig);
460 out:
461 /*
462 * If no subvolume name is specified we use the default one. Allocate
463 * a copy of the string "." here so that code later in the
464 * mount path doesn't care if it's the default volume or another one.
465 */
466 if (!*subvol_name) {
467 *subvol_name = kstrdup(".", GFP_KERNEL);
468 if (!*subvol_name)
469 return -ENOMEM;
470 }
471 return error;
472 }
473
474 static struct dentry *get_default_root(struct super_block *sb,
475 u64 subvol_objectid)
476 {
477 struct btrfs_root *root = sb->s_fs_info;
478 struct btrfs_root *new_root;
479 struct btrfs_dir_item *di;
480 struct btrfs_path *path;
481 struct btrfs_key location;
482 struct inode *inode;
483 struct dentry *dentry;
484 u64 dir_id;
485 int new = 0;
486
487 /*
488 * We have a specific subvol we want to mount, just setup location and
489 * go look up the root.
490 */
491 if (subvol_objectid) {
492 location.objectid = subvol_objectid;
493 location.type = BTRFS_ROOT_ITEM_KEY;
494 location.offset = (u64)-1;
495 goto find_root;
496 }
497
498 path = btrfs_alloc_path();
499 if (!path)
500 return ERR_PTR(-ENOMEM);
501 path->leave_spinning = 1;
502
503 /*
504 * Find the "default" dir item which points to the root item that we
505 * will mount by default if we haven't been given a specific subvolume
506 * to mount.
507 */
508 dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
509 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
510 if (IS_ERR(di))
511 return ERR_CAST(di);
512 if (!di) {
513 /*
514 * Ok the default dir item isn't there. This is weird since
515 * it's always been there, but don't freak out, just try and
516 * mount to root most subvolume.
517 */
518 btrfs_free_path(path);
519 dir_id = BTRFS_FIRST_FREE_OBJECTID;
520 new_root = root->fs_info->fs_root;
521 goto setup_root;
522 }
523
524 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
525 btrfs_free_path(path);
526
527 find_root:
528 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
529 if (IS_ERR(new_root))
530 return ERR_CAST(new_root);
531
532 if (btrfs_root_refs(&new_root->root_item) == 0)
533 return ERR_PTR(-ENOENT);
534
535 dir_id = btrfs_root_dirid(&new_root->root_item);
536 setup_root:
537 location.objectid = dir_id;
538 location.type = BTRFS_INODE_ITEM_KEY;
539 location.offset = 0;
540
541 inode = btrfs_iget(sb, &location, new_root, &new);
542 if (IS_ERR(inode))
543 return ERR_CAST(inode);
544
545 /*
546 * If we're just mounting the root most subvol put the inode and return
547 * a reference to the dentry. We will have already gotten a reference
548 * to the inode in btrfs_fill_super so we're good to go.
549 */
550 if (!new && sb->s_root->d_inode == inode) {
551 iput(inode);
552 return dget(sb->s_root);
553 }
554
555 if (new) {
556 const struct qstr name = { .name = "/", .len = 1 };
557
558 /*
559 * New inode, we need to make the dentry a sibling of s_root so
560 * everything gets cleaned up properly on unmount.
561 */
562 dentry = d_alloc(sb->s_root, &name);
563 if (!dentry) {
564 iput(inode);
565 return ERR_PTR(-ENOMEM);
566 }
567 d_splice_alias(inode, dentry);
568 } else {
569 /*
570 * We found the inode in cache, just find a dentry for it and
571 * put the reference to the inode we just got.
572 */
573 dentry = d_find_alias(inode);
574 iput(inode);
575 }
576
577 return dentry;
578 }
579
580 static int btrfs_fill_super(struct super_block *sb,
581 struct btrfs_fs_devices *fs_devices,
582 void *data, int silent)
583 {
584 struct inode *inode;
585 struct dentry *root_dentry;
586 struct btrfs_root *tree_root;
587 struct btrfs_key key;
588 int err;
589
590 sb->s_maxbytes = MAX_LFS_FILESIZE;
591 sb->s_magic = BTRFS_SUPER_MAGIC;
592 sb->s_op = &btrfs_super_ops;
593 sb->s_d_op = &btrfs_dentry_operations;
594 sb->s_export_op = &btrfs_export_ops;
595 sb->s_xattr = btrfs_xattr_handlers;
596 sb->s_time_gran = 1;
597 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
598 sb->s_flags |= MS_POSIXACL;
599 #endif
600
601 tree_root = open_ctree(sb, fs_devices, (char *)data);
602
603 if (IS_ERR(tree_root)) {
604 printk("btrfs: open_ctree failed\n");
605 return PTR_ERR(tree_root);
606 }
607 sb->s_fs_info = tree_root;
608
609 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
610 key.type = BTRFS_INODE_ITEM_KEY;
611 key.offset = 0;
612 inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
613 if (IS_ERR(inode)) {
614 err = PTR_ERR(inode);
615 goto fail_close;
616 }
617
618 root_dentry = d_alloc_root(inode);
619 if (!root_dentry) {
620 iput(inode);
621 err = -ENOMEM;
622 goto fail_close;
623 }
624
625 sb->s_root = root_dentry;
626
627 save_mount_options(sb, data);
628 return 0;
629
630 fail_close:
631 close_ctree(tree_root);
632 return err;
633 }
634
635 int btrfs_sync_fs(struct super_block *sb, int wait)
636 {
637 struct btrfs_trans_handle *trans;
638 struct btrfs_root *root = btrfs_sb(sb);
639 int ret;
640
641 trace_btrfs_sync_fs(wait);
642
643 if (!wait) {
644 filemap_flush(root->fs_info->btree_inode->i_mapping);
645 return 0;
646 }
647
648 btrfs_start_delalloc_inodes(root, 0);
649 btrfs_wait_ordered_extents(root, 0, 0);
650
651 trans = btrfs_start_transaction(root, 0);
652 if (IS_ERR(trans))
653 return PTR_ERR(trans);
654 ret = btrfs_commit_transaction(trans, root);
655 return ret;
656 }
657
658 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
659 {
660 struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
661 struct btrfs_fs_info *info = root->fs_info;
662 char *compress_type;
663
664 if (btrfs_test_opt(root, DEGRADED))
665 seq_puts(seq, ",degraded");
666 if (btrfs_test_opt(root, NODATASUM))
667 seq_puts(seq, ",nodatasum");
668 if (btrfs_test_opt(root, NODATACOW))
669 seq_puts(seq, ",nodatacow");
670 if (btrfs_test_opt(root, NOBARRIER))
671 seq_puts(seq, ",nobarrier");
672 if (info->max_inline != 8192 * 1024)
673 seq_printf(seq, ",max_inline=%llu",
674 (unsigned long long)info->max_inline);
675 if (info->alloc_start != 0)
676 seq_printf(seq, ",alloc_start=%llu",
677 (unsigned long long)info->alloc_start);
678 if (info->thread_pool_size != min_t(unsigned long,
679 num_online_cpus() + 2, 8))
680 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
681 if (btrfs_test_opt(root, COMPRESS)) {
682 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
683 compress_type = "zlib";
684 else
685 compress_type = "lzo";
686 if (btrfs_test_opt(root, FORCE_COMPRESS))
687 seq_printf(seq, ",compress-force=%s", compress_type);
688 else
689 seq_printf(seq, ",compress=%s", compress_type);
690 }
691 if (btrfs_test_opt(root, NOSSD))
692 seq_puts(seq, ",nossd");
693 if (btrfs_test_opt(root, SSD_SPREAD))
694 seq_puts(seq, ",ssd_spread");
695 else if (btrfs_test_opt(root, SSD))
696 seq_puts(seq, ",ssd");
697 if (btrfs_test_opt(root, NOTREELOG))
698 seq_puts(seq, ",notreelog");
699 if (btrfs_test_opt(root, FLUSHONCOMMIT))
700 seq_puts(seq, ",flushoncommit");
701 if (btrfs_test_opt(root, DISCARD))
702 seq_puts(seq, ",discard");
703 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
704 seq_puts(seq, ",noacl");
705 if (btrfs_test_opt(root, SPACE_CACHE))
706 seq_puts(seq, ",space_cache");
707 if (btrfs_test_opt(root, CLEAR_CACHE))
708 seq_puts(seq, ",clear_cache");
709 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
710 seq_puts(seq, ",user_subvol_rm_allowed");
711 return 0;
712 }
713
714 static int btrfs_test_super(struct super_block *s, void *data)
715 {
716 struct btrfs_root *test_root = data;
717 struct btrfs_root *root = btrfs_sb(s);
718
719 /*
720 * If this super block is going away, return false as it
721 * can't match as an existing super block.
722 */
723 if (!atomic_read(&s->s_active))
724 return 0;
725 return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
726 }
727
728 static int btrfs_set_super(struct super_block *s, void *data)
729 {
730 s->s_fs_info = data;
731
732 return set_anon_super(s, data);
733 }
734
735
736 /*
737 * Find a superblock for the given device / mount point.
738 *
739 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
740 * for multiple device setup. Make sure to keep it in sync.
741 */
742 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
743 const char *device_name, void *data)
744 {
745 struct block_device *bdev = NULL;
746 struct super_block *s;
747 struct dentry *root;
748 struct btrfs_fs_devices *fs_devices = NULL;
749 struct btrfs_root *tree_root = NULL;
750 struct btrfs_fs_info *fs_info = NULL;
751 fmode_t mode = FMODE_READ;
752 char *subvol_name = NULL;
753 u64 subvol_objectid = 0;
754 u64 subvol_rootid = 0;
755 int error = 0;
756
757 if (!(flags & MS_RDONLY))
758 mode |= FMODE_WRITE;
759
760 error = btrfs_parse_early_options(data, mode, fs_type,
761 &subvol_name, &subvol_objectid,
762 &subvol_rootid, &fs_devices);
763 if (error)
764 return ERR_PTR(error);
765
766 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
767 if (error)
768 goto error_free_subvol_name;
769
770 error = btrfs_open_devices(fs_devices, mode, fs_type);
771 if (error)
772 goto error_free_subvol_name;
773
774 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
775 error = -EACCES;
776 goto error_close_devices;
777 }
778
779 /*
780 * Setup a dummy root and fs_info for test/set super. This is because
781 * we don't actually fill this stuff out until open_ctree, but we need
782 * it for searching for existing supers, so this lets us do that and
783 * then open_ctree will properly initialize everything later.
784 */
785 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
786 tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
787 if (!fs_info || !tree_root) {
788 error = -ENOMEM;
789 goto error_close_devices;
790 }
791 fs_info->tree_root = tree_root;
792 fs_info->fs_devices = fs_devices;
793 tree_root->fs_info = fs_info;
794
795 bdev = fs_devices->latest_bdev;
796 s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root);
797 if (IS_ERR(s))
798 goto error_s;
799
800 if (s->s_root) {
801 if ((flags ^ s->s_flags) & MS_RDONLY) {
802 deactivate_locked_super(s);
803 error = -EBUSY;
804 goto error_close_devices;
805 }
806
807 btrfs_close_devices(fs_devices);
808 kfree(fs_info);
809 kfree(tree_root);
810 } else {
811 char b[BDEVNAME_SIZE];
812
813 s->s_flags = flags;
814 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
815 error = btrfs_fill_super(s, fs_devices, data,
816 flags & MS_SILENT ? 1 : 0);
817 if (error) {
818 deactivate_locked_super(s);
819 goto error_free_subvol_name;
820 }
821
822 btrfs_sb(s)->fs_info->bdev_holder = fs_type;
823 s->s_flags |= MS_ACTIVE;
824 }
825
826 /* if they gave us a subvolume name bind mount into that */
827 if (strcmp(subvol_name, ".")) {
828 struct dentry *new_root;
829
830 root = get_default_root(s, subvol_rootid);
831 if (IS_ERR(root)) {
832 error = PTR_ERR(root);
833 deactivate_locked_super(s);
834 goto error_free_subvol_name;
835 }
836
837 mutex_lock(&root->d_inode->i_mutex);
838 new_root = lookup_one_len(subvol_name, root,
839 strlen(subvol_name));
840 mutex_unlock(&root->d_inode->i_mutex);
841
842 if (IS_ERR(new_root)) {
843 dput(root);
844 deactivate_locked_super(s);
845 error = PTR_ERR(new_root);
846 goto error_free_subvol_name;
847 }
848 if (!new_root->d_inode) {
849 dput(root);
850 dput(new_root);
851 deactivate_locked_super(s);
852 error = -ENXIO;
853 goto error_free_subvol_name;
854 }
855 dput(root);
856 root = new_root;
857 } else {
858 root = get_default_root(s, subvol_objectid);
859 if (IS_ERR(root)) {
860 error = PTR_ERR(root);
861 deactivate_locked_super(s);
862 goto error_free_subvol_name;
863 }
864 }
865
866 kfree(subvol_name);
867 return root;
868
869 error_s:
870 error = PTR_ERR(s);
871 error_close_devices:
872 btrfs_close_devices(fs_devices);
873 kfree(fs_info);
874 kfree(tree_root);
875 error_free_subvol_name:
876 kfree(subvol_name);
877 return ERR_PTR(error);
878 }
879
880 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
881 {
882 struct btrfs_root *root = btrfs_sb(sb);
883 int ret;
884
885 ret = btrfs_parse_options(root, data);
886 if (ret)
887 return -EINVAL;
888
889 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
890 return 0;
891
892 if (*flags & MS_RDONLY) {
893 sb->s_flags |= MS_RDONLY;
894
895 ret = btrfs_commit_super(root);
896 WARN_ON(ret);
897 } else {
898 if (root->fs_info->fs_devices->rw_devices == 0)
899 return -EACCES;
900
901 if (btrfs_super_log_root(&root->fs_info->super_copy) != 0)
902 return -EINVAL;
903
904 ret = btrfs_cleanup_fs_roots(root->fs_info);
905 WARN_ON(ret);
906
907 /* recover relocation */
908 ret = btrfs_recover_relocation(root);
909 WARN_ON(ret);
910
911 sb->s_flags &= ~MS_RDONLY;
912 }
913
914 return 0;
915 }
916
917 /* Used to sort the devices by max_avail(descending sort) */
918 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
919 const void *dev_info2)
920 {
921 if (((struct btrfs_device_info *)dev_info1)->max_avail >
922 ((struct btrfs_device_info *)dev_info2)->max_avail)
923 return -1;
924 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
925 ((struct btrfs_device_info *)dev_info2)->max_avail)
926 return 1;
927 else
928 return 0;
929 }
930
931 /*
932 * sort the devices by max_avail, in which max free extent size of each device
933 * is stored.(Descending Sort)
934 */
935 static inline void btrfs_descending_sort_devices(
936 struct btrfs_device_info *devices,
937 size_t nr_devices)
938 {
939 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
940 btrfs_cmp_device_free_bytes, NULL);
941 }
942
943 /*
944 * The helper to calc the free space on the devices that can be used to store
945 * file data.
946 */
947 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
948 {
949 struct btrfs_fs_info *fs_info = root->fs_info;
950 struct btrfs_device_info *devices_info;
951 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
952 struct btrfs_device *device;
953 u64 skip_space;
954 u64 type;
955 u64 avail_space;
956 u64 used_space;
957 u64 min_stripe_size;
958 int min_stripes = 1;
959 int i = 0, nr_devices;
960 int ret;
961
962 nr_devices = fs_info->fs_devices->rw_devices;
963 BUG_ON(!nr_devices);
964
965 devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
966 GFP_NOFS);
967 if (!devices_info)
968 return -ENOMEM;
969
970 /* calc min stripe number for data space alloction */
971 type = btrfs_get_alloc_profile(root, 1);
972 if (type & BTRFS_BLOCK_GROUP_RAID0)
973 min_stripes = 2;
974 else if (type & BTRFS_BLOCK_GROUP_RAID1)
975 min_stripes = 2;
976 else if (type & BTRFS_BLOCK_GROUP_RAID10)
977 min_stripes = 4;
978
979 if (type & BTRFS_BLOCK_GROUP_DUP)
980 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
981 else
982 min_stripe_size = BTRFS_STRIPE_LEN;
983
984 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
985 if (!device->in_fs_metadata)
986 continue;
987
988 avail_space = device->total_bytes - device->bytes_used;
989
990 /* align with stripe_len */
991 do_div(avail_space, BTRFS_STRIPE_LEN);
992 avail_space *= BTRFS_STRIPE_LEN;
993
994 /*
995 * In order to avoid overwritting the superblock on the drive,
996 * btrfs starts at an offset of at least 1MB when doing chunk
997 * allocation.
998 */
999 skip_space = 1024 * 1024;
1000
1001 /* user can set the offset in fs_info->alloc_start. */
1002 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1003 device->total_bytes)
1004 skip_space = max(fs_info->alloc_start, skip_space);
1005
1006 /*
1007 * btrfs can not use the free space in [0, skip_space - 1],
1008 * we must subtract it from the total. In order to implement
1009 * it, we account the used space in this range first.
1010 */
1011 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1012 &used_space);
1013 if (ret) {
1014 kfree(devices_info);
1015 return ret;
1016 }
1017
1018 /* calc the free space in [0, skip_space - 1] */
1019 skip_space -= used_space;
1020
1021 /*
1022 * we can use the free space in [0, skip_space - 1], subtract
1023 * it from the total.
1024 */
1025 if (avail_space && avail_space >= skip_space)
1026 avail_space -= skip_space;
1027 else
1028 avail_space = 0;
1029
1030 if (avail_space < min_stripe_size)
1031 continue;
1032
1033 devices_info[i].dev = device;
1034 devices_info[i].max_avail = avail_space;
1035
1036 i++;
1037 }
1038
1039 nr_devices = i;
1040
1041 btrfs_descending_sort_devices(devices_info, nr_devices);
1042
1043 i = nr_devices - 1;
1044 avail_space = 0;
1045 while (nr_devices >= min_stripes) {
1046 if (devices_info[i].max_avail >= min_stripe_size) {
1047 int j;
1048 u64 alloc_size;
1049
1050 avail_space += devices_info[i].max_avail * min_stripes;
1051 alloc_size = devices_info[i].max_avail;
1052 for (j = i + 1 - min_stripes; j <= i; j++)
1053 devices_info[j].max_avail -= alloc_size;
1054 }
1055 i--;
1056 nr_devices--;
1057 }
1058
1059 kfree(devices_info);
1060 *free_bytes = avail_space;
1061 return 0;
1062 }
1063
1064 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1065 {
1066 struct btrfs_root *root = btrfs_sb(dentry->d_sb);
1067 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1068 struct list_head *head = &root->fs_info->space_info;
1069 struct btrfs_space_info *found;
1070 u64 total_used = 0;
1071 u64 total_free_data = 0;
1072 int bits = dentry->d_sb->s_blocksize_bits;
1073 __be32 *fsid = (__be32 *)root->fs_info->fsid;
1074 int ret;
1075
1076 /* holding chunk_muext to avoid allocating new chunks */
1077 mutex_lock(&root->fs_info->chunk_mutex);
1078 rcu_read_lock();
1079 list_for_each_entry_rcu(found, head, list) {
1080 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1081 total_free_data += found->disk_total - found->disk_used;
1082 total_free_data -=
1083 btrfs_account_ro_block_groups_free_space(found);
1084 }
1085
1086 total_used += found->disk_used;
1087 }
1088 rcu_read_unlock();
1089
1090 buf->f_namelen = BTRFS_NAME_LEN;
1091 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1092 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1093 buf->f_bsize = dentry->d_sb->s_blocksize;
1094 buf->f_type = BTRFS_SUPER_MAGIC;
1095 buf->f_bavail = total_free_data;
1096 ret = btrfs_calc_avail_data_space(root, &total_free_data);
1097 if (ret) {
1098 mutex_unlock(&root->fs_info->chunk_mutex);
1099 return ret;
1100 }
1101 buf->f_bavail += total_free_data;
1102 buf->f_bavail = buf->f_bavail >> bits;
1103 mutex_unlock(&root->fs_info->chunk_mutex);
1104
1105 /* We treat it as constant endianness (it doesn't matter _which_)
1106 because we want the fsid to come out the same whether mounted
1107 on a big-endian or little-endian host */
1108 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1109 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1110 /* Mask in the root object ID too, to disambiguate subvols */
1111 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1112 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1113
1114 return 0;
1115 }
1116
1117 static struct file_system_type btrfs_fs_type = {
1118 .owner = THIS_MODULE,
1119 .name = "btrfs",
1120 .mount = btrfs_mount,
1121 .kill_sb = kill_anon_super,
1122 .fs_flags = FS_REQUIRES_DEV,
1123 };
1124
1125 /*
1126 * used by btrfsctl to scan devices when no FS is mounted
1127 */
1128 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1129 unsigned long arg)
1130 {
1131 struct btrfs_ioctl_vol_args *vol;
1132 struct btrfs_fs_devices *fs_devices;
1133 int ret = -ENOTTY;
1134
1135 if (!capable(CAP_SYS_ADMIN))
1136 return -EPERM;
1137
1138 vol = memdup_user((void __user *)arg, sizeof(*vol));
1139 if (IS_ERR(vol))
1140 return PTR_ERR(vol);
1141
1142 switch (cmd) {
1143 case BTRFS_IOC_SCAN_DEV:
1144 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1145 &btrfs_fs_type, &fs_devices);
1146 break;
1147 }
1148
1149 kfree(vol);
1150 return ret;
1151 }
1152
1153 static int btrfs_freeze(struct super_block *sb)
1154 {
1155 struct btrfs_root *root = btrfs_sb(sb);
1156 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1157 mutex_lock(&root->fs_info->cleaner_mutex);
1158 return 0;
1159 }
1160
1161 static int btrfs_unfreeze(struct super_block *sb)
1162 {
1163 struct btrfs_root *root = btrfs_sb(sb);
1164 mutex_unlock(&root->fs_info->cleaner_mutex);
1165 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1166 return 0;
1167 }
1168
1169 static const struct super_operations btrfs_super_ops = {
1170 .drop_inode = btrfs_drop_inode,
1171 .evict_inode = btrfs_evict_inode,
1172 .put_super = btrfs_put_super,
1173 .sync_fs = btrfs_sync_fs,
1174 .show_options = btrfs_show_options,
1175 .write_inode = btrfs_write_inode,
1176 .dirty_inode = btrfs_dirty_inode,
1177 .alloc_inode = btrfs_alloc_inode,
1178 .destroy_inode = btrfs_destroy_inode,
1179 .statfs = btrfs_statfs,
1180 .remount_fs = btrfs_remount,
1181 .freeze_fs = btrfs_freeze,
1182 .unfreeze_fs = btrfs_unfreeze,
1183 };
1184
1185 static const struct file_operations btrfs_ctl_fops = {
1186 .unlocked_ioctl = btrfs_control_ioctl,
1187 .compat_ioctl = btrfs_control_ioctl,
1188 .owner = THIS_MODULE,
1189 .llseek = noop_llseek,
1190 };
1191
1192 static struct miscdevice btrfs_misc = {
1193 .minor = BTRFS_MINOR,
1194 .name = "btrfs-control",
1195 .fops = &btrfs_ctl_fops
1196 };
1197
1198 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1199 MODULE_ALIAS("devname:btrfs-control");
1200
1201 static int btrfs_interface_init(void)
1202 {
1203 return misc_register(&btrfs_misc);
1204 }
1205
1206 static void btrfs_interface_exit(void)
1207 {
1208 if (misc_deregister(&btrfs_misc) < 0)
1209 printk(KERN_INFO "misc_deregister failed for control device");
1210 }
1211
1212 static int __init init_btrfs_fs(void)
1213 {
1214 int err;
1215
1216 err = btrfs_init_sysfs();
1217 if (err)
1218 return err;
1219
1220 err = btrfs_init_compress();
1221 if (err)
1222 goto free_sysfs;
1223
1224 err = btrfs_init_cachep();
1225 if (err)
1226 goto free_compress;
1227
1228 err = extent_io_init();
1229 if (err)
1230 goto free_cachep;
1231
1232 err = extent_map_init();
1233 if (err)
1234 goto free_extent_io;
1235
1236 err = btrfs_delayed_inode_init();
1237 if (err)
1238 goto free_extent_map;
1239
1240 err = btrfs_interface_init();
1241 if (err)
1242 goto free_delayed_inode;
1243
1244 err = register_filesystem(&btrfs_fs_type);
1245 if (err)
1246 goto unregister_ioctl;
1247
1248 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1249 return 0;
1250
1251 unregister_ioctl:
1252 btrfs_interface_exit();
1253 free_delayed_inode:
1254 btrfs_delayed_inode_exit();
1255 free_extent_map:
1256 extent_map_exit();
1257 free_extent_io:
1258 extent_io_exit();
1259 free_cachep:
1260 btrfs_destroy_cachep();
1261 free_compress:
1262 btrfs_exit_compress();
1263 free_sysfs:
1264 btrfs_exit_sysfs();
1265 return err;
1266 }
1267
1268 static void __exit exit_btrfs_fs(void)
1269 {
1270 btrfs_destroy_cachep();
1271 btrfs_delayed_inode_exit();
1272 extent_map_exit();
1273 extent_io_exit();
1274 btrfs_interface_exit();
1275 unregister_filesystem(&btrfs_fs_type);
1276 btrfs_exit_sysfs();
1277 btrfs_cleanup_fs_uuids();
1278 btrfs_exit_compress();
1279 }
1280
1281 module_init(init_btrfs_fs)
1282 module_exit(exit_btrfs_fs)
1283
1284 MODULE_LICENSE("GPL");