jbd2: fix race when writing superblock
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / fs / btrfs / send.c
1 /*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 #include "compression.h"
38
39 /*
40 * A fs_path is a helper to dynamically build path names with unknown size.
41 * It reallocates the internal buffer on demand.
42 * It allows fast adding of path elements on the right side (normal path) and
43 * fast adding to the left side (reversed path). A reversed path can also be
44 * unreversed if needed.
45 */
46 struct fs_path {
47 union {
48 struct {
49 char *start;
50 char *end;
51
52 char *buf;
53 unsigned short buf_len:15;
54 unsigned short reversed:1;
55 char inline_buf[];
56 };
57 /*
58 * Average path length does not exceed 200 bytes, we'll have
59 * better packing in the slab and higher chance to satisfy
60 * a allocation later during send.
61 */
62 char pad[256];
63 };
64 };
65 #define FS_PATH_INLINE_SIZE \
66 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
67
68
69 /* reused for each extent */
70 struct clone_root {
71 struct btrfs_root *root;
72 u64 ino;
73 u64 offset;
74
75 u64 found_refs;
76 };
77
78 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
79 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
80
81 struct send_ctx {
82 struct file *send_filp;
83 loff_t send_off;
84 char *send_buf;
85 u32 send_size;
86 u32 send_max_size;
87 u64 total_send_size;
88 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
89 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
90
91 struct btrfs_root *send_root;
92 struct btrfs_root *parent_root;
93 struct clone_root *clone_roots;
94 int clone_roots_cnt;
95
96 /* current state of the compare_tree call */
97 struct btrfs_path *left_path;
98 struct btrfs_path *right_path;
99 struct btrfs_key *cmp_key;
100
101 /*
102 * infos of the currently processed inode. In case of deleted inodes,
103 * these are the values from the deleted inode.
104 */
105 u64 cur_ino;
106 u64 cur_inode_gen;
107 int cur_inode_new;
108 int cur_inode_new_gen;
109 int cur_inode_deleted;
110 u64 cur_inode_size;
111 u64 cur_inode_mode;
112 u64 cur_inode_rdev;
113 u64 cur_inode_last_extent;
114
115 u64 send_progress;
116
117 struct list_head new_refs;
118 struct list_head deleted_refs;
119
120 struct radix_tree_root name_cache;
121 struct list_head name_cache_list;
122 int name_cache_size;
123
124 struct file_ra_state ra;
125
126 char *read_buf;
127
128 /*
129 * We process inodes by their increasing order, so if before an
130 * incremental send we reverse the parent/child relationship of
131 * directories such that a directory with a lower inode number was
132 * the parent of a directory with a higher inode number, and the one
133 * becoming the new parent got renamed too, we can't rename/move the
134 * directory with lower inode number when we finish processing it - we
135 * must process the directory with higher inode number first, then
136 * rename/move it and then rename/move the directory with lower inode
137 * number. Example follows.
138 *
139 * Tree state when the first send was performed:
140 *
141 * .
142 * |-- a (ino 257)
143 * |-- b (ino 258)
144 * |
145 * |
146 * |-- c (ino 259)
147 * | |-- d (ino 260)
148 * |
149 * |-- c2 (ino 261)
150 *
151 * Tree state when the second (incremental) send is performed:
152 *
153 * .
154 * |-- a (ino 257)
155 * |-- b (ino 258)
156 * |-- c2 (ino 261)
157 * |-- d2 (ino 260)
158 * |-- cc (ino 259)
159 *
160 * The sequence of steps that lead to the second state was:
161 *
162 * mv /a/b/c/d /a/b/c2/d2
163 * mv /a/b/c /a/b/c2/d2/cc
164 *
165 * "c" has lower inode number, but we can't move it (2nd mv operation)
166 * before we move "d", which has higher inode number.
167 *
168 * So we just memorize which move/rename operations must be performed
169 * later when their respective parent is processed and moved/renamed.
170 */
171
172 /* Indexed by parent directory inode number. */
173 struct rb_root pending_dir_moves;
174
175 /*
176 * Reverse index, indexed by the inode number of a directory that
177 * is waiting for the move/rename of its immediate parent before its
178 * own move/rename can be performed.
179 */
180 struct rb_root waiting_dir_moves;
181
182 /*
183 * A directory that is going to be rm'ed might have a child directory
184 * which is in the pending directory moves index above. In this case,
185 * the directory can only be removed after the move/rename of its child
186 * is performed. Example:
187 *
188 * Parent snapshot:
189 *
190 * . (ino 256)
191 * |-- a/ (ino 257)
192 * |-- b/ (ino 258)
193 * |-- c/ (ino 259)
194 * | |-- x/ (ino 260)
195 * |
196 * |-- y/ (ino 261)
197 *
198 * Send snapshot:
199 *
200 * . (ino 256)
201 * |-- a/ (ino 257)
202 * |-- b/ (ino 258)
203 * |-- YY/ (ino 261)
204 * |-- x/ (ino 260)
205 *
206 * Sequence of steps that lead to the send snapshot:
207 * rm -f /a/b/c/foo.txt
208 * mv /a/b/y /a/b/YY
209 * mv /a/b/c/x /a/b/YY
210 * rmdir /a/b/c
211 *
212 * When the child is processed, its move/rename is delayed until its
213 * parent is processed (as explained above), but all other operations
214 * like update utimes, chown, chgrp, etc, are performed and the paths
215 * that it uses for those operations must use the orphanized name of
216 * its parent (the directory we're going to rm later), so we need to
217 * memorize that name.
218 *
219 * Indexed by the inode number of the directory to be deleted.
220 */
221 struct rb_root orphan_dirs;
222 };
223
224 struct pending_dir_move {
225 struct rb_node node;
226 struct list_head list;
227 u64 parent_ino;
228 u64 ino;
229 u64 gen;
230 struct list_head update_refs;
231 };
232
233 struct waiting_dir_move {
234 struct rb_node node;
235 u64 ino;
236 /*
237 * There might be some directory that could not be removed because it
238 * was waiting for this directory inode to be moved first. Therefore
239 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
240 */
241 u64 rmdir_ino;
242 bool orphanized;
243 };
244
245 struct orphan_dir_info {
246 struct rb_node node;
247 u64 ino;
248 u64 gen;
249 };
250
251 struct name_cache_entry {
252 struct list_head list;
253 /*
254 * radix_tree has only 32bit entries but we need to handle 64bit inums.
255 * We use the lower 32bit of the 64bit inum to store it in the tree. If
256 * more then one inum would fall into the same entry, we use radix_list
257 * to store the additional entries. radix_list is also used to store
258 * entries where two entries have the same inum but different
259 * generations.
260 */
261 struct list_head radix_list;
262 u64 ino;
263 u64 gen;
264 u64 parent_ino;
265 u64 parent_gen;
266 int ret;
267 int need_later_update;
268 int name_len;
269 char name[];
270 };
271
272 static void inconsistent_snapshot_error(struct send_ctx *sctx,
273 enum btrfs_compare_tree_result result,
274 const char *what)
275 {
276 const char *result_string;
277
278 switch (result) {
279 case BTRFS_COMPARE_TREE_NEW:
280 result_string = "new";
281 break;
282 case BTRFS_COMPARE_TREE_DELETED:
283 result_string = "deleted";
284 break;
285 case BTRFS_COMPARE_TREE_CHANGED:
286 result_string = "updated";
287 break;
288 case BTRFS_COMPARE_TREE_SAME:
289 ASSERT(0);
290 result_string = "unchanged";
291 break;
292 default:
293 ASSERT(0);
294 result_string = "unexpected";
295 }
296
297 btrfs_err(sctx->send_root->fs_info,
298 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
299 result_string, what, sctx->cmp_key->objectid,
300 sctx->send_root->root_key.objectid,
301 (sctx->parent_root ?
302 sctx->parent_root->root_key.objectid : 0));
303 }
304
305 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
306
307 static struct waiting_dir_move *
308 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
309
310 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
311
312 static int need_send_hole(struct send_ctx *sctx)
313 {
314 return (sctx->parent_root && !sctx->cur_inode_new &&
315 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
316 S_ISREG(sctx->cur_inode_mode));
317 }
318
319 static void fs_path_reset(struct fs_path *p)
320 {
321 if (p->reversed) {
322 p->start = p->buf + p->buf_len - 1;
323 p->end = p->start;
324 *p->start = 0;
325 } else {
326 p->start = p->buf;
327 p->end = p->start;
328 *p->start = 0;
329 }
330 }
331
332 static struct fs_path *fs_path_alloc(void)
333 {
334 struct fs_path *p;
335
336 p = kmalloc(sizeof(*p), GFP_KERNEL);
337 if (!p)
338 return NULL;
339 p->reversed = 0;
340 p->buf = p->inline_buf;
341 p->buf_len = FS_PATH_INLINE_SIZE;
342 fs_path_reset(p);
343 return p;
344 }
345
346 static struct fs_path *fs_path_alloc_reversed(void)
347 {
348 struct fs_path *p;
349
350 p = fs_path_alloc();
351 if (!p)
352 return NULL;
353 p->reversed = 1;
354 fs_path_reset(p);
355 return p;
356 }
357
358 static void fs_path_free(struct fs_path *p)
359 {
360 if (!p)
361 return;
362 if (p->buf != p->inline_buf)
363 kfree(p->buf);
364 kfree(p);
365 }
366
367 static int fs_path_len(struct fs_path *p)
368 {
369 return p->end - p->start;
370 }
371
372 static int fs_path_ensure_buf(struct fs_path *p, int len)
373 {
374 char *tmp_buf;
375 int path_len;
376 int old_buf_len;
377
378 len++;
379
380 if (p->buf_len >= len)
381 return 0;
382
383 if (len > PATH_MAX) {
384 WARN_ON(1);
385 return -ENOMEM;
386 }
387
388 path_len = p->end - p->start;
389 old_buf_len = p->buf_len;
390
391 /*
392 * First time the inline_buf does not suffice
393 */
394 if (p->buf == p->inline_buf) {
395 tmp_buf = kmalloc(len, GFP_KERNEL);
396 if (tmp_buf)
397 memcpy(tmp_buf, p->buf, old_buf_len);
398 } else {
399 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
400 }
401 if (!tmp_buf)
402 return -ENOMEM;
403 p->buf = tmp_buf;
404 /*
405 * The real size of the buffer is bigger, this will let the fast path
406 * happen most of the time
407 */
408 p->buf_len = ksize(p->buf);
409
410 if (p->reversed) {
411 tmp_buf = p->buf + old_buf_len - path_len - 1;
412 p->end = p->buf + p->buf_len - 1;
413 p->start = p->end - path_len;
414 memmove(p->start, tmp_buf, path_len + 1);
415 } else {
416 p->start = p->buf;
417 p->end = p->start + path_len;
418 }
419 return 0;
420 }
421
422 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
423 char **prepared)
424 {
425 int ret;
426 int new_len;
427
428 new_len = p->end - p->start + name_len;
429 if (p->start != p->end)
430 new_len++;
431 ret = fs_path_ensure_buf(p, new_len);
432 if (ret < 0)
433 goto out;
434
435 if (p->reversed) {
436 if (p->start != p->end)
437 *--p->start = '/';
438 p->start -= name_len;
439 *prepared = p->start;
440 } else {
441 if (p->start != p->end)
442 *p->end++ = '/';
443 *prepared = p->end;
444 p->end += name_len;
445 *p->end = 0;
446 }
447
448 out:
449 return ret;
450 }
451
452 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
453 {
454 int ret;
455 char *prepared;
456
457 ret = fs_path_prepare_for_add(p, name_len, &prepared);
458 if (ret < 0)
459 goto out;
460 memcpy(prepared, name, name_len);
461
462 out:
463 return ret;
464 }
465
466 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
467 {
468 int ret;
469 char *prepared;
470
471 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
472 if (ret < 0)
473 goto out;
474 memcpy(prepared, p2->start, p2->end - p2->start);
475
476 out:
477 return ret;
478 }
479
480 static int fs_path_add_from_extent_buffer(struct fs_path *p,
481 struct extent_buffer *eb,
482 unsigned long off, int len)
483 {
484 int ret;
485 char *prepared;
486
487 ret = fs_path_prepare_for_add(p, len, &prepared);
488 if (ret < 0)
489 goto out;
490
491 read_extent_buffer(eb, prepared, off, len);
492
493 out:
494 return ret;
495 }
496
497 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
498 {
499 int ret;
500
501 p->reversed = from->reversed;
502 fs_path_reset(p);
503
504 ret = fs_path_add_path(p, from);
505
506 return ret;
507 }
508
509
510 static void fs_path_unreverse(struct fs_path *p)
511 {
512 char *tmp;
513 int len;
514
515 if (!p->reversed)
516 return;
517
518 tmp = p->start;
519 len = p->end - p->start;
520 p->start = p->buf;
521 p->end = p->start + len;
522 memmove(p->start, tmp, len + 1);
523 p->reversed = 0;
524 }
525
526 static struct btrfs_path *alloc_path_for_send(void)
527 {
528 struct btrfs_path *path;
529
530 path = btrfs_alloc_path();
531 if (!path)
532 return NULL;
533 path->search_commit_root = 1;
534 path->skip_locking = 1;
535 path->need_commit_sem = 1;
536 return path;
537 }
538
539 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
540 {
541 int ret;
542 u32 pos = 0;
543
544 while (pos < len) {
545 ret = kernel_write(filp, buf + pos, len - pos, off);
546 /* TODO handle that correctly */
547 /*if (ret == -ERESTARTSYS) {
548 continue;
549 }*/
550 if (ret < 0)
551 return ret;
552 if (ret == 0) {
553 return -EIO;
554 }
555 pos += ret;
556 }
557
558 return 0;
559 }
560
561 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
562 {
563 struct btrfs_tlv_header *hdr;
564 int total_len = sizeof(*hdr) + len;
565 int left = sctx->send_max_size - sctx->send_size;
566
567 if (unlikely(left < total_len))
568 return -EOVERFLOW;
569
570 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
571 hdr->tlv_type = cpu_to_le16(attr);
572 hdr->tlv_len = cpu_to_le16(len);
573 memcpy(hdr + 1, data, len);
574 sctx->send_size += total_len;
575
576 return 0;
577 }
578
579 #define TLV_PUT_DEFINE_INT(bits) \
580 static int tlv_put_u##bits(struct send_ctx *sctx, \
581 u##bits attr, u##bits value) \
582 { \
583 __le##bits __tmp = cpu_to_le##bits(value); \
584 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
585 }
586
587 TLV_PUT_DEFINE_INT(64)
588
589 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
590 const char *str, int len)
591 {
592 if (len == -1)
593 len = strlen(str);
594 return tlv_put(sctx, attr, str, len);
595 }
596
597 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
598 const u8 *uuid)
599 {
600 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
601 }
602
603 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
604 struct extent_buffer *eb,
605 struct btrfs_timespec *ts)
606 {
607 struct btrfs_timespec bts;
608 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
609 return tlv_put(sctx, attr, &bts, sizeof(bts));
610 }
611
612
613 #define TLV_PUT(sctx, attrtype, attrlen, data) \
614 do { \
615 ret = tlv_put(sctx, attrtype, attrlen, data); \
616 if (ret < 0) \
617 goto tlv_put_failure; \
618 } while (0)
619
620 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
621 do { \
622 ret = tlv_put_u##bits(sctx, attrtype, value); \
623 if (ret < 0) \
624 goto tlv_put_failure; \
625 } while (0)
626
627 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
628 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
629 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
630 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
631 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
632 do { \
633 ret = tlv_put_string(sctx, attrtype, str, len); \
634 if (ret < 0) \
635 goto tlv_put_failure; \
636 } while (0)
637 #define TLV_PUT_PATH(sctx, attrtype, p) \
638 do { \
639 ret = tlv_put_string(sctx, attrtype, p->start, \
640 p->end - p->start); \
641 if (ret < 0) \
642 goto tlv_put_failure; \
643 } while(0)
644 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
645 do { \
646 ret = tlv_put_uuid(sctx, attrtype, uuid); \
647 if (ret < 0) \
648 goto tlv_put_failure; \
649 } while (0)
650 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
651 do { \
652 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
653 if (ret < 0) \
654 goto tlv_put_failure; \
655 } while (0)
656
657 static int send_header(struct send_ctx *sctx)
658 {
659 struct btrfs_stream_header hdr;
660
661 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
662 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
663
664 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
665 &sctx->send_off);
666 }
667
668 /*
669 * For each command/item we want to send to userspace, we call this function.
670 */
671 static int begin_cmd(struct send_ctx *sctx, int cmd)
672 {
673 struct btrfs_cmd_header *hdr;
674
675 if (WARN_ON(!sctx->send_buf))
676 return -EINVAL;
677
678 BUG_ON(sctx->send_size);
679
680 sctx->send_size += sizeof(*hdr);
681 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
682 hdr->cmd = cpu_to_le16(cmd);
683
684 return 0;
685 }
686
687 static int send_cmd(struct send_ctx *sctx)
688 {
689 int ret;
690 struct btrfs_cmd_header *hdr;
691 u32 crc;
692
693 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
694 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
695 hdr->crc = 0;
696
697 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
698 hdr->crc = cpu_to_le32(crc);
699
700 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
701 &sctx->send_off);
702
703 sctx->total_send_size += sctx->send_size;
704 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
705 sctx->send_size = 0;
706
707 return ret;
708 }
709
710 /*
711 * Sends a move instruction to user space
712 */
713 static int send_rename(struct send_ctx *sctx,
714 struct fs_path *from, struct fs_path *to)
715 {
716 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
717 int ret;
718
719 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
720
721 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
722 if (ret < 0)
723 goto out;
724
725 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
726 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
727
728 ret = send_cmd(sctx);
729
730 tlv_put_failure:
731 out:
732 return ret;
733 }
734
735 /*
736 * Sends a link instruction to user space
737 */
738 static int send_link(struct send_ctx *sctx,
739 struct fs_path *path, struct fs_path *lnk)
740 {
741 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
742 int ret;
743
744 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
745
746 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
747 if (ret < 0)
748 goto out;
749
750 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
751 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
752
753 ret = send_cmd(sctx);
754
755 tlv_put_failure:
756 out:
757 return ret;
758 }
759
760 /*
761 * Sends an unlink instruction to user space
762 */
763 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
764 {
765 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
766 int ret;
767
768 btrfs_debug(fs_info, "send_unlink %s", path->start);
769
770 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
771 if (ret < 0)
772 goto out;
773
774 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
775
776 ret = send_cmd(sctx);
777
778 tlv_put_failure:
779 out:
780 return ret;
781 }
782
783 /*
784 * Sends a rmdir instruction to user space
785 */
786 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
787 {
788 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
789 int ret;
790
791 btrfs_debug(fs_info, "send_rmdir %s", path->start);
792
793 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
794 if (ret < 0)
795 goto out;
796
797 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
798
799 ret = send_cmd(sctx);
800
801 tlv_put_failure:
802 out:
803 return ret;
804 }
805
806 /*
807 * Helper function to retrieve some fields from an inode item.
808 */
809 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
810 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
811 u64 *gid, u64 *rdev)
812 {
813 int ret;
814 struct btrfs_inode_item *ii;
815 struct btrfs_key key;
816
817 key.objectid = ino;
818 key.type = BTRFS_INODE_ITEM_KEY;
819 key.offset = 0;
820 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
821 if (ret) {
822 if (ret > 0)
823 ret = -ENOENT;
824 return ret;
825 }
826
827 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
828 struct btrfs_inode_item);
829 if (size)
830 *size = btrfs_inode_size(path->nodes[0], ii);
831 if (gen)
832 *gen = btrfs_inode_generation(path->nodes[0], ii);
833 if (mode)
834 *mode = btrfs_inode_mode(path->nodes[0], ii);
835 if (uid)
836 *uid = btrfs_inode_uid(path->nodes[0], ii);
837 if (gid)
838 *gid = btrfs_inode_gid(path->nodes[0], ii);
839 if (rdev)
840 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
841
842 return ret;
843 }
844
845 static int get_inode_info(struct btrfs_root *root,
846 u64 ino, u64 *size, u64 *gen,
847 u64 *mode, u64 *uid, u64 *gid,
848 u64 *rdev)
849 {
850 struct btrfs_path *path;
851 int ret;
852
853 path = alloc_path_for_send();
854 if (!path)
855 return -ENOMEM;
856 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
857 rdev);
858 btrfs_free_path(path);
859 return ret;
860 }
861
862 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
863 struct fs_path *p,
864 void *ctx);
865
866 /*
867 * Helper function to iterate the entries in ONE btrfs_inode_ref or
868 * btrfs_inode_extref.
869 * The iterate callback may return a non zero value to stop iteration. This can
870 * be a negative value for error codes or 1 to simply stop it.
871 *
872 * path must point to the INODE_REF or INODE_EXTREF when called.
873 */
874 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
875 struct btrfs_key *found_key, int resolve,
876 iterate_inode_ref_t iterate, void *ctx)
877 {
878 struct extent_buffer *eb = path->nodes[0];
879 struct btrfs_item *item;
880 struct btrfs_inode_ref *iref;
881 struct btrfs_inode_extref *extref;
882 struct btrfs_path *tmp_path;
883 struct fs_path *p;
884 u32 cur = 0;
885 u32 total;
886 int slot = path->slots[0];
887 u32 name_len;
888 char *start;
889 int ret = 0;
890 int num = 0;
891 int index;
892 u64 dir;
893 unsigned long name_off;
894 unsigned long elem_size;
895 unsigned long ptr;
896
897 p = fs_path_alloc_reversed();
898 if (!p)
899 return -ENOMEM;
900
901 tmp_path = alloc_path_for_send();
902 if (!tmp_path) {
903 fs_path_free(p);
904 return -ENOMEM;
905 }
906
907
908 if (found_key->type == BTRFS_INODE_REF_KEY) {
909 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
910 struct btrfs_inode_ref);
911 item = btrfs_item_nr(slot);
912 total = btrfs_item_size(eb, item);
913 elem_size = sizeof(*iref);
914 } else {
915 ptr = btrfs_item_ptr_offset(eb, slot);
916 total = btrfs_item_size_nr(eb, slot);
917 elem_size = sizeof(*extref);
918 }
919
920 while (cur < total) {
921 fs_path_reset(p);
922
923 if (found_key->type == BTRFS_INODE_REF_KEY) {
924 iref = (struct btrfs_inode_ref *)(ptr + cur);
925 name_len = btrfs_inode_ref_name_len(eb, iref);
926 name_off = (unsigned long)(iref + 1);
927 index = btrfs_inode_ref_index(eb, iref);
928 dir = found_key->offset;
929 } else {
930 extref = (struct btrfs_inode_extref *)(ptr + cur);
931 name_len = btrfs_inode_extref_name_len(eb, extref);
932 name_off = (unsigned long)&extref->name;
933 index = btrfs_inode_extref_index(eb, extref);
934 dir = btrfs_inode_extref_parent(eb, extref);
935 }
936
937 if (resolve) {
938 start = btrfs_ref_to_path(root, tmp_path, name_len,
939 name_off, eb, dir,
940 p->buf, p->buf_len);
941 if (IS_ERR(start)) {
942 ret = PTR_ERR(start);
943 goto out;
944 }
945 if (start < p->buf) {
946 /* overflow , try again with larger buffer */
947 ret = fs_path_ensure_buf(p,
948 p->buf_len + p->buf - start);
949 if (ret < 0)
950 goto out;
951 start = btrfs_ref_to_path(root, tmp_path,
952 name_len, name_off,
953 eb, dir,
954 p->buf, p->buf_len);
955 if (IS_ERR(start)) {
956 ret = PTR_ERR(start);
957 goto out;
958 }
959 BUG_ON(start < p->buf);
960 }
961 p->start = start;
962 } else {
963 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
964 name_len);
965 if (ret < 0)
966 goto out;
967 }
968
969 cur += elem_size + name_len;
970 ret = iterate(num, dir, index, p, ctx);
971 if (ret)
972 goto out;
973 num++;
974 }
975
976 out:
977 btrfs_free_path(tmp_path);
978 fs_path_free(p);
979 return ret;
980 }
981
982 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
983 const char *name, int name_len,
984 const char *data, int data_len,
985 u8 type, void *ctx);
986
987 /*
988 * Helper function to iterate the entries in ONE btrfs_dir_item.
989 * The iterate callback may return a non zero value to stop iteration. This can
990 * be a negative value for error codes or 1 to simply stop it.
991 *
992 * path must point to the dir item when called.
993 */
994 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
995 struct btrfs_key *found_key,
996 iterate_dir_item_t iterate, void *ctx)
997 {
998 int ret = 0;
999 struct extent_buffer *eb;
1000 struct btrfs_item *item;
1001 struct btrfs_dir_item *di;
1002 struct btrfs_key di_key;
1003 char *buf = NULL;
1004 int buf_len;
1005 u32 name_len;
1006 u32 data_len;
1007 u32 cur;
1008 u32 len;
1009 u32 total;
1010 int slot;
1011 int num;
1012 u8 type;
1013
1014 /*
1015 * Start with a small buffer (1 page). If later we end up needing more
1016 * space, which can happen for xattrs on a fs with a leaf size greater
1017 * then the page size, attempt to increase the buffer. Typically xattr
1018 * values are small.
1019 */
1020 buf_len = PATH_MAX;
1021 buf = kmalloc(buf_len, GFP_KERNEL);
1022 if (!buf) {
1023 ret = -ENOMEM;
1024 goto out;
1025 }
1026
1027 eb = path->nodes[0];
1028 slot = path->slots[0];
1029 item = btrfs_item_nr(slot);
1030 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1031 cur = 0;
1032 len = 0;
1033 total = btrfs_item_size(eb, item);
1034
1035 num = 0;
1036 while (cur < total) {
1037 name_len = btrfs_dir_name_len(eb, di);
1038 data_len = btrfs_dir_data_len(eb, di);
1039 type = btrfs_dir_type(eb, di);
1040 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1041
1042 if (type == BTRFS_FT_XATTR) {
1043 if (name_len > XATTR_NAME_MAX) {
1044 ret = -ENAMETOOLONG;
1045 goto out;
1046 }
1047 if (name_len + data_len >
1048 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1049 ret = -E2BIG;
1050 goto out;
1051 }
1052 } else {
1053 /*
1054 * Path too long
1055 */
1056 if (name_len + data_len > PATH_MAX) {
1057 ret = -ENAMETOOLONG;
1058 goto out;
1059 }
1060 }
1061
1062 ret = btrfs_is_name_len_valid(eb, path->slots[0],
1063 (unsigned long)(di + 1), name_len + data_len);
1064 if (!ret) {
1065 ret = -EIO;
1066 goto out;
1067 }
1068 if (name_len + data_len > buf_len) {
1069 buf_len = name_len + data_len;
1070 if (is_vmalloc_addr(buf)) {
1071 vfree(buf);
1072 buf = NULL;
1073 } else {
1074 char *tmp = krealloc(buf, buf_len,
1075 GFP_KERNEL | __GFP_NOWARN);
1076
1077 if (!tmp)
1078 kfree(buf);
1079 buf = tmp;
1080 }
1081 if (!buf) {
1082 buf = kvmalloc(buf_len, GFP_KERNEL);
1083 if (!buf) {
1084 ret = -ENOMEM;
1085 goto out;
1086 }
1087 }
1088 }
1089
1090 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1091 name_len + data_len);
1092
1093 len = sizeof(*di) + name_len + data_len;
1094 di = (struct btrfs_dir_item *)((char *)di + len);
1095 cur += len;
1096
1097 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1098 data_len, type, ctx);
1099 if (ret < 0)
1100 goto out;
1101 if (ret) {
1102 ret = 0;
1103 goto out;
1104 }
1105
1106 num++;
1107 }
1108
1109 out:
1110 kvfree(buf);
1111 return ret;
1112 }
1113
1114 static int __copy_first_ref(int num, u64 dir, int index,
1115 struct fs_path *p, void *ctx)
1116 {
1117 int ret;
1118 struct fs_path *pt = ctx;
1119
1120 ret = fs_path_copy(pt, p);
1121 if (ret < 0)
1122 return ret;
1123
1124 /* we want the first only */
1125 return 1;
1126 }
1127
1128 /*
1129 * Retrieve the first path of an inode. If an inode has more then one
1130 * ref/hardlink, this is ignored.
1131 */
1132 static int get_inode_path(struct btrfs_root *root,
1133 u64 ino, struct fs_path *path)
1134 {
1135 int ret;
1136 struct btrfs_key key, found_key;
1137 struct btrfs_path *p;
1138
1139 p = alloc_path_for_send();
1140 if (!p)
1141 return -ENOMEM;
1142
1143 fs_path_reset(path);
1144
1145 key.objectid = ino;
1146 key.type = BTRFS_INODE_REF_KEY;
1147 key.offset = 0;
1148
1149 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1150 if (ret < 0)
1151 goto out;
1152 if (ret) {
1153 ret = 1;
1154 goto out;
1155 }
1156 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1157 if (found_key.objectid != ino ||
1158 (found_key.type != BTRFS_INODE_REF_KEY &&
1159 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1160 ret = -ENOENT;
1161 goto out;
1162 }
1163
1164 ret = iterate_inode_ref(root, p, &found_key, 1,
1165 __copy_first_ref, path);
1166 if (ret < 0)
1167 goto out;
1168 ret = 0;
1169
1170 out:
1171 btrfs_free_path(p);
1172 return ret;
1173 }
1174
1175 struct backref_ctx {
1176 struct send_ctx *sctx;
1177
1178 struct btrfs_path *path;
1179 /* number of total found references */
1180 u64 found;
1181
1182 /*
1183 * used for clones found in send_root. clones found behind cur_objectid
1184 * and cur_offset are not considered as allowed clones.
1185 */
1186 u64 cur_objectid;
1187 u64 cur_offset;
1188
1189 /* may be truncated in case it's the last extent in a file */
1190 u64 extent_len;
1191
1192 /* data offset in the file extent item */
1193 u64 data_offset;
1194
1195 /* Just to check for bugs in backref resolving */
1196 int found_itself;
1197 };
1198
1199 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1200 {
1201 u64 root = (u64)(uintptr_t)key;
1202 struct clone_root *cr = (struct clone_root *)elt;
1203
1204 if (root < cr->root->objectid)
1205 return -1;
1206 if (root > cr->root->objectid)
1207 return 1;
1208 return 0;
1209 }
1210
1211 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1212 {
1213 struct clone_root *cr1 = (struct clone_root *)e1;
1214 struct clone_root *cr2 = (struct clone_root *)e2;
1215
1216 if (cr1->root->objectid < cr2->root->objectid)
1217 return -1;
1218 if (cr1->root->objectid > cr2->root->objectid)
1219 return 1;
1220 return 0;
1221 }
1222
1223 /*
1224 * Called for every backref that is found for the current extent.
1225 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1226 */
1227 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1228 {
1229 struct backref_ctx *bctx = ctx_;
1230 struct clone_root *found;
1231 int ret;
1232 u64 i_size;
1233
1234 /* First check if the root is in the list of accepted clone sources */
1235 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1236 bctx->sctx->clone_roots_cnt,
1237 sizeof(struct clone_root),
1238 __clone_root_cmp_bsearch);
1239 if (!found)
1240 return 0;
1241
1242 if (found->root == bctx->sctx->send_root &&
1243 ino == bctx->cur_objectid &&
1244 offset == bctx->cur_offset) {
1245 bctx->found_itself = 1;
1246 }
1247
1248 /*
1249 * There are inodes that have extents that lie behind its i_size. Don't
1250 * accept clones from these extents.
1251 */
1252 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1253 NULL, NULL, NULL);
1254 btrfs_release_path(bctx->path);
1255 if (ret < 0)
1256 return ret;
1257
1258 if (offset + bctx->data_offset + bctx->extent_len > i_size)
1259 return 0;
1260
1261 /*
1262 * Make sure we don't consider clones from send_root that are
1263 * behind the current inode/offset.
1264 */
1265 if (found->root == bctx->sctx->send_root) {
1266 /*
1267 * TODO for the moment we don't accept clones from the inode
1268 * that is currently send. We may change this when
1269 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1270 * file.
1271 */
1272 if (ino >= bctx->cur_objectid)
1273 return 0;
1274 #if 0
1275 if (ino > bctx->cur_objectid)
1276 return 0;
1277 if (offset + bctx->extent_len > bctx->cur_offset)
1278 return 0;
1279 #endif
1280 }
1281
1282 bctx->found++;
1283 found->found_refs++;
1284 if (ino < found->ino) {
1285 found->ino = ino;
1286 found->offset = offset;
1287 } else if (found->ino == ino) {
1288 /*
1289 * same extent found more then once in the same file.
1290 */
1291 if (found->offset > offset + bctx->extent_len)
1292 found->offset = offset;
1293 }
1294
1295 return 0;
1296 }
1297
1298 /*
1299 * Given an inode, offset and extent item, it finds a good clone for a clone
1300 * instruction. Returns -ENOENT when none could be found. The function makes
1301 * sure that the returned clone is usable at the point where sending is at the
1302 * moment. This means, that no clones are accepted which lie behind the current
1303 * inode+offset.
1304 *
1305 * path must point to the extent item when called.
1306 */
1307 static int find_extent_clone(struct send_ctx *sctx,
1308 struct btrfs_path *path,
1309 u64 ino, u64 data_offset,
1310 u64 ino_size,
1311 struct clone_root **found)
1312 {
1313 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1314 int ret;
1315 int extent_type;
1316 u64 logical;
1317 u64 disk_byte;
1318 u64 num_bytes;
1319 u64 extent_item_pos;
1320 u64 flags = 0;
1321 struct btrfs_file_extent_item *fi;
1322 struct extent_buffer *eb = path->nodes[0];
1323 struct backref_ctx *backref_ctx = NULL;
1324 struct clone_root *cur_clone_root;
1325 struct btrfs_key found_key;
1326 struct btrfs_path *tmp_path;
1327 int compressed;
1328 u32 i;
1329
1330 tmp_path = alloc_path_for_send();
1331 if (!tmp_path)
1332 return -ENOMEM;
1333
1334 /* We only use this path under the commit sem */
1335 tmp_path->need_commit_sem = 0;
1336
1337 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1338 if (!backref_ctx) {
1339 ret = -ENOMEM;
1340 goto out;
1341 }
1342
1343 backref_ctx->path = tmp_path;
1344
1345 if (data_offset >= ino_size) {
1346 /*
1347 * There may be extents that lie behind the file's size.
1348 * I at least had this in combination with snapshotting while
1349 * writing large files.
1350 */
1351 ret = 0;
1352 goto out;
1353 }
1354
1355 fi = btrfs_item_ptr(eb, path->slots[0],
1356 struct btrfs_file_extent_item);
1357 extent_type = btrfs_file_extent_type(eb, fi);
1358 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1359 ret = -ENOENT;
1360 goto out;
1361 }
1362 compressed = btrfs_file_extent_compression(eb, fi);
1363
1364 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1365 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1366 if (disk_byte == 0) {
1367 ret = -ENOENT;
1368 goto out;
1369 }
1370 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1371
1372 down_read(&fs_info->commit_root_sem);
1373 ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1374 &found_key, &flags);
1375 up_read(&fs_info->commit_root_sem);
1376 btrfs_release_path(tmp_path);
1377
1378 if (ret < 0)
1379 goto out;
1380 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1381 ret = -EIO;
1382 goto out;
1383 }
1384
1385 /*
1386 * Setup the clone roots.
1387 */
1388 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1389 cur_clone_root = sctx->clone_roots + i;
1390 cur_clone_root->ino = (u64)-1;
1391 cur_clone_root->offset = 0;
1392 cur_clone_root->found_refs = 0;
1393 }
1394
1395 backref_ctx->sctx = sctx;
1396 backref_ctx->found = 0;
1397 backref_ctx->cur_objectid = ino;
1398 backref_ctx->cur_offset = data_offset;
1399 backref_ctx->found_itself = 0;
1400 backref_ctx->extent_len = num_bytes;
1401 /*
1402 * For non-compressed extents iterate_extent_inodes() gives us extent
1403 * offsets that already take into account the data offset, but not for
1404 * compressed extents, since the offset is logical and not relative to
1405 * the physical extent locations. We must take this into account to
1406 * avoid sending clone offsets that go beyond the source file's size,
1407 * which would result in the clone ioctl failing with -EINVAL on the
1408 * receiving end.
1409 */
1410 if (compressed == BTRFS_COMPRESS_NONE)
1411 backref_ctx->data_offset = 0;
1412 else
1413 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1414
1415 /*
1416 * The last extent of a file may be too large due to page alignment.
1417 * We need to adjust extent_len in this case so that the checks in
1418 * __iterate_backrefs work.
1419 */
1420 if (data_offset + num_bytes >= ino_size)
1421 backref_ctx->extent_len = ino_size - data_offset;
1422
1423 /*
1424 * Now collect all backrefs.
1425 */
1426 if (compressed == BTRFS_COMPRESS_NONE)
1427 extent_item_pos = logical - found_key.objectid;
1428 else
1429 extent_item_pos = 0;
1430 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1431 extent_item_pos, 1, __iterate_backrefs,
1432 backref_ctx);
1433
1434 if (ret < 0)
1435 goto out;
1436
1437 if (!backref_ctx->found_itself) {
1438 /* found a bug in backref code? */
1439 ret = -EIO;
1440 btrfs_err(fs_info,
1441 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1442 ino, data_offset, disk_byte, found_key.objectid);
1443 goto out;
1444 }
1445
1446 btrfs_debug(fs_info,
1447 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1448 data_offset, ino, num_bytes, logical);
1449
1450 if (!backref_ctx->found)
1451 btrfs_debug(fs_info, "no clones found");
1452
1453 cur_clone_root = NULL;
1454 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1455 if (sctx->clone_roots[i].found_refs) {
1456 if (!cur_clone_root)
1457 cur_clone_root = sctx->clone_roots + i;
1458 else if (sctx->clone_roots[i].root == sctx->send_root)
1459 /* prefer clones from send_root over others */
1460 cur_clone_root = sctx->clone_roots + i;
1461 }
1462
1463 }
1464
1465 if (cur_clone_root) {
1466 *found = cur_clone_root;
1467 ret = 0;
1468 } else {
1469 ret = -ENOENT;
1470 }
1471
1472 out:
1473 btrfs_free_path(tmp_path);
1474 kfree(backref_ctx);
1475 return ret;
1476 }
1477
1478 static int read_symlink(struct btrfs_root *root,
1479 u64 ino,
1480 struct fs_path *dest)
1481 {
1482 int ret;
1483 struct btrfs_path *path;
1484 struct btrfs_key key;
1485 struct btrfs_file_extent_item *ei;
1486 u8 type;
1487 u8 compression;
1488 unsigned long off;
1489 int len;
1490
1491 path = alloc_path_for_send();
1492 if (!path)
1493 return -ENOMEM;
1494
1495 key.objectid = ino;
1496 key.type = BTRFS_EXTENT_DATA_KEY;
1497 key.offset = 0;
1498 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1499 if (ret < 0)
1500 goto out;
1501 if (ret) {
1502 /*
1503 * An empty symlink inode. Can happen in rare error paths when
1504 * creating a symlink (transaction committed before the inode
1505 * eviction handler removed the symlink inode items and a crash
1506 * happened in between or the subvol was snapshoted in between).
1507 * Print an informative message to dmesg/syslog so that the user
1508 * can delete the symlink.
1509 */
1510 btrfs_err(root->fs_info,
1511 "Found empty symlink inode %llu at root %llu",
1512 ino, root->root_key.objectid);
1513 ret = -EIO;
1514 goto out;
1515 }
1516
1517 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1518 struct btrfs_file_extent_item);
1519 type = btrfs_file_extent_type(path->nodes[0], ei);
1520 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1521 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1522 BUG_ON(compression);
1523
1524 off = btrfs_file_extent_inline_start(ei);
1525 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1526
1527 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1528
1529 out:
1530 btrfs_free_path(path);
1531 return ret;
1532 }
1533
1534 /*
1535 * Helper function to generate a file name that is unique in the root of
1536 * send_root and parent_root. This is used to generate names for orphan inodes.
1537 */
1538 static int gen_unique_name(struct send_ctx *sctx,
1539 u64 ino, u64 gen,
1540 struct fs_path *dest)
1541 {
1542 int ret = 0;
1543 struct btrfs_path *path;
1544 struct btrfs_dir_item *di;
1545 char tmp[64];
1546 int len;
1547 u64 idx = 0;
1548
1549 path = alloc_path_for_send();
1550 if (!path)
1551 return -ENOMEM;
1552
1553 while (1) {
1554 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1555 ino, gen, idx);
1556 ASSERT(len < sizeof(tmp));
1557
1558 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1559 path, BTRFS_FIRST_FREE_OBJECTID,
1560 tmp, strlen(tmp), 0);
1561 btrfs_release_path(path);
1562 if (IS_ERR(di)) {
1563 ret = PTR_ERR(di);
1564 goto out;
1565 }
1566 if (di) {
1567 /* not unique, try again */
1568 idx++;
1569 continue;
1570 }
1571
1572 if (!sctx->parent_root) {
1573 /* unique */
1574 ret = 0;
1575 break;
1576 }
1577
1578 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1579 path, BTRFS_FIRST_FREE_OBJECTID,
1580 tmp, strlen(tmp), 0);
1581 btrfs_release_path(path);
1582 if (IS_ERR(di)) {
1583 ret = PTR_ERR(di);
1584 goto out;
1585 }
1586 if (di) {
1587 /* not unique, try again */
1588 idx++;
1589 continue;
1590 }
1591 /* unique */
1592 break;
1593 }
1594
1595 ret = fs_path_add(dest, tmp, strlen(tmp));
1596
1597 out:
1598 btrfs_free_path(path);
1599 return ret;
1600 }
1601
1602 enum inode_state {
1603 inode_state_no_change,
1604 inode_state_will_create,
1605 inode_state_did_create,
1606 inode_state_will_delete,
1607 inode_state_did_delete,
1608 };
1609
1610 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1611 {
1612 int ret;
1613 int left_ret;
1614 int right_ret;
1615 u64 left_gen;
1616 u64 right_gen;
1617
1618 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1619 NULL, NULL);
1620 if (ret < 0 && ret != -ENOENT)
1621 goto out;
1622 left_ret = ret;
1623
1624 if (!sctx->parent_root) {
1625 right_ret = -ENOENT;
1626 } else {
1627 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1628 NULL, NULL, NULL, NULL);
1629 if (ret < 0 && ret != -ENOENT)
1630 goto out;
1631 right_ret = ret;
1632 }
1633
1634 if (!left_ret && !right_ret) {
1635 if (left_gen == gen && right_gen == gen) {
1636 ret = inode_state_no_change;
1637 } else if (left_gen == gen) {
1638 if (ino < sctx->send_progress)
1639 ret = inode_state_did_create;
1640 else
1641 ret = inode_state_will_create;
1642 } else if (right_gen == gen) {
1643 if (ino < sctx->send_progress)
1644 ret = inode_state_did_delete;
1645 else
1646 ret = inode_state_will_delete;
1647 } else {
1648 ret = -ENOENT;
1649 }
1650 } else if (!left_ret) {
1651 if (left_gen == gen) {
1652 if (ino < sctx->send_progress)
1653 ret = inode_state_did_create;
1654 else
1655 ret = inode_state_will_create;
1656 } else {
1657 ret = -ENOENT;
1658 }
1659 } else if (!right_ret) {
1660 if (right_gen == gen) {
1661 if (ino < sctx->send_progress)
1662 ret = inode_state_did_delete;
1663 else
1664 ret = inode_state_will_delete;
1665 } else {
1666 ret = -ENOENT;
1667 }
1668 } else {
1669 ret = -ENOENT;
1670 }
1671
1672 out:
1673 return ret;
1674 }
1675
1676 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1677 {
1678 int ret;
1679
1680 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1681 return 1;
1682
1683 ret = get_cur_inode_state(sctx, ino, gen);
1684 if (ret < 0)
1685 goto out;
1686
1687 if (ret == inode_state_no_change ||
1688 ret == inode_state_did_create ||
1689 ret == inode_state_will_delete)
1690 ret = 1;
1691 else
1692 ret = 0;
1693
1694 out:
1695 return ret;
1696 }
1697
1698 /*
1699 * Helper function to lookup a dir item in a dir.
1700 */
1701 static int lookup_dir_item_inode(struct btrfs_root *root,
1702 u64 dir, const char *name, int name_len,
1703 u64 *found_inode,
1704 u8 *found_type)
1705 {
1706 int ret = 0;
1707 struct btrfs_dir_item *di;
1708 struct btrfs_key key;
1709 struct btrfs_path *path;
1710
1711 path = alloc_path_for_send();
1712 if (!path)
1713 return -ENOMEM;
1714
1715 di = btrfs_lookup_dir_item(NULL, root, path,
1716 dir, name, name_len, 0);
1717 if (!di) {
1718 ret = -ENOENT;
1719 goto out;
1720 }
1721 if (IS_ERR(di)) {
1722 ret = PTR_ERR(di);
1723 goto out;
1724 }
1725 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1726 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1727 ret = -ENOENT;
1728 goto out;
1729 }
1730 *found_inode = key.objectid;
1731 *found_type = btrfs_dir_type(path->nodes[0], di);
1732
1733 out:
1734 btrfs_free_path(path);
1735 return ret;
1736 }
1737
1738 /*
1739 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1740 * generation of the parent dir and the name of the dir entry.
1741 */
1742 static int get_first_ref(struct btrfs_root *root, u64 ino,
1743 u64 *dir, u64 *dir_gen, struct fs_path *name)
1744 {
1745 int ret;
1746 struct btrfs_key key;
1747 struct btrfs_key found_key;
1748 struct btrfs_path *path;
1749 int len;
1750 u64 parent_dir;
1751
1752 path = alloc_path_for_send();
1753 if (!path)
1754 return -ENOMEM;
1755
1756 key.objectid = ino;
1757 key.type = BTRFS_INODE_REF_KEY;
1758 key.offset = 0;
1759
1760 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1761 if (ret < 0)
1762 goto out;
1763 if (!ret)
1764 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1765 path->slots[0]);
1766 if (ret || found_key.objectid != ino ||
1767 (found_key.type != BTRFS_INODE_REF_KEY &&
1768 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1769 ret = -ENOENT;
1770 goto out;
1771 }
1772
1773 if (found_key.type == BTRFS_INODE_REF_KEY) {
1774 struct btrfs_inode_ref *iref;
1775 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1776 struct btrfs_inode_ref);
1777 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1778 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1779 (unsigned long)(iref + 1),
1780 len);
1781 parent_dir = found_key.offset;
1782 } else {
1783 struct btrfs_inode_extref *extref;
1784 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1785 struct btrfs_inode_extref);
1786 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1787 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1788 (unsigned long)&extref->name, len);
1789 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1790 }
1791 if (ret < 0)
1792 goto out;
1793 btrfs_release_path(path);
1794
1795 if (dir_gen) {
1796 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1797 NULL, NULL, NULL);
1798 if (ret < 0)
1799 goto out;
1800 }
1801
1802 *dir = parent_dir;
1803
1804 out:
1805 btrfs_free_path(path);
1806 return ret;
1807 }
1808
1809 static int is_first_ref(struct btrfs_root *root,
1810 u64 ino, u64 dir,
1811 const char *name, int name_len)
1812 {
1813 int ret;
1814 struct fs_path *tmp_name;
1815 u64 tmp_dir;
1816
1817 tmp_name = fs_path_alloc();
1818 if (!tmp_name)
1819 return -ENOMEM;
1820
1821 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1822 if (ret < 0)
1823 goto out;
1824
1825 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1826 ret = 0;
1827 goto out;
1828 }
1829
1830 ret = !memcmp(tmp_name->start, name, name_len);
1831
1832 out:
1833 fs_path_free(tmp_name);
1834 return ret;
1835 }
1836
1837 /*
1838 * Used by process_recorded_refs to determine if a new ref would overwrite an
1839 * already existing ref. In case it detects an overwrite, it returns the
1840 * inode/gen in who_ino/who_gen.
1841 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1842 * to make sure later references to the overwritten inode are possible.
1843 * Orphanizing is however only required for the first ref of an inode.
1844 * process_recorded_refs does an additional is_first_ref check to see if
1845 * orphanizing is really required.
1846 */
1847 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1848 const char *name, int name_len,
1849 u64 *who_ino, u64 *who_gen, u64 *who_mode)
1850 {
1851 int ret = 0;
1852 u64 gen;
1853 u64 other_inode = 0;
1854 u8 other_type = 0;
1855
1856 if (!sctx->parent_root)
1857 goto out;
1858
1859 ret = is_inode_existent(sctx, dir, dir_gen);
1860 if (ret <= 0)
1861 goto out;
1862
1863 /*
1864 * If we have a parent root we need to verify that the parent dir was
1865 * not deleted and then re-created, if it was then we have no overwrite
1866 * and we can just unlink this entry.
1867 */
1868 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1869 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1870 NULL, NULL, NULL);
1871 if (ret < 0 && ret != -ENOENT)
1872 goto out;
1873 if (ret) {
1874 ret = 0;
1875 goto out;
1876 }
1877 if (gen != dir_gen)
1878 goto out;
1879 }
1880
1881 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1882 &other_inode, &other_type);
1883 if (ret < 0 && ret != -ENOENT)
1884 goto out;
1885 if (ret) {
1886 ret = 0;
1887 goto out;
1888 }
1889
1890 /*
1891 * Check if the overwritten ref was already processed. If yes, the ref
1892 * was already unlinked/moved, so we can safely assume that we will not
1893 * overwrite anything at this point in time.
1894 */
1895 if (other_inode > sctx->send_progress ||
1896 is_waiting_for_move(sctx, other_inode)) {
1897 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1898 who_gen, who_mode, NULL, NULL, NULL);
1899 if (ret < 0)
1900 goto out;
1901
1902 ret = 1;
1903 *who_ino = other_inode;
1904 } else {
1905 ret = 0;
1906 }
1907
1908 out:
1909 return ret;
1910 }
1911
1912 /*
1913 * Checks if the ref was overwritten by an already processed inode. This is
1914 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1915 * thus the orphan name needs be used.
1916 * process_recorded_refs also uses it to avoid unlinking of refs that were
1917 * overwritten.
1918 */
1919 static int did_overwrite_ref(struct send_ctx *sctx,
1920 u64 dir, u64 dir_gen,
1921 u64 ino, u64 ino_gen,
1922 const char *name, int name_len)
1923 {
1924 int ret = 0;
1925 u64 gen;
1926 u64 ow_inode;
1927 u8 other_type;
1928
1929 if (!sctx->parent_root)
1930 goto out;
1931
1932 ret = is_inode_existent(sctx, dir, dir_gen);
1933 if (ret <= 0)
1934 goto out;
1935
1936 if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1937 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1938 NULL, NULL, NULL);
1939 if (ret < 0 && ret != -ENOENT)
1940 goto out;
1941 if (ret) {
1942 ret = 0;
1943 goto out;
1944 }
1945 if (gen != dir_gen)
1946 goto out;
1947 }
1948
1949 /* check if the ref was overwritten by another ref */
1950 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1951 &ow_inode, &other_type);
1952 if (ret < 0 && ret != -ENOENT)
1953 goto out;
1954 if (ret) {
1955 /* was never and will never be overwritten */
1956 ret = 0;
1957 goto out;
1958 }
1959
1960 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1961 NULL, NULL);
1962 if (ret < 0)
1963 goto out;
1964
1965 if (ow_inode == ino && gen == ino_gen) {
1966 ret = 0;
1967 goto out;
1968 }
1969
1970 /*
1971 * We know that it is or will be overwritten. Check this now.
1972 * The current inode being processed might have been the one that caused
1973 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1974 * the current inode being processed.
1975 */
1976 if ((ow_inode < sctx->send_progress) ||
1977 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1978 gen == sctx->cur_inode_gen))
1979 ret = 1;
1980 else
1981 ret = 0;
1982
1983 out:
1984 return ret;
1985 }
1986
1987 /*
1988 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1989 * that got overwritten. This is used by process_recorded_refs to determine
1990 * if it has to use the path as returned by get_cur_path or the orphan name.
1991 */
1992 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1993 {
1994 int ret = 0;
1995 struct fs_path *name = NULL;
1996 u64 dir;
1997 u64 dir_gen;
1998
1999 if (!sctx->parent_root)
2000 goto out;
2001
2002 name = fs_path_alloc();
2003 if (!name)
2004 return -ENOMEM;
2005
2006 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2007 if (ret < 0)
2008 goto out;
2009
2010 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2011 name->start, fs_path_len(name));
2012
2013 out:
2014 fs_path_free(name);
2015 return ret;
2016 }
2017
2018 /*
2019 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2020 * so we need to do some special handling in case we have clashes. This function
2021 * takes care of this with the help of name_cache_entry::radix_list.
2022 * In case of error, nce is kfreed.
2023 */
2024 static int name_cache_insert(struct send_ctx *sctx,
2025 struct name_cache_entry *nce)
2026 {
2027 int ret = 0;
2028 struct list_head *nce_head;
2029
2030 nce_head = radix_tree_lookup(&sctx->name_cache,
2031 (unsigned long)nce->ino);
2032 if (!nce_head) {
2033 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2034 if (!nce_head) {
2035 kfree(nce);
2036 return -ENOMEM;
2037 }
2038 INIT_LIST_HEAD(nce_head);
2039
2040 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2041 if (ret < 0) {
2042 kfree(nce_head);
2043 kfree(nce);
2044 return ret;
2045 }
2046 }
2047 list_add_tail(&nce->radix_list, nce_head);
2048 list_add_tail(&nce->list, &sctx->name_cache_list);
2049 sctx->name_cache_size++;
2050
2051 return ret;
2052 }
2053
2054 static void name_cache_delete(struct send_ctx *sctx,
2055 struct name_cache_entry *nce)
2056 {
2057 struct list_head *nce_head;
2058
2059 nce_head = radix_tree_lookup(&sctx->name_cache,
2060 (unsigned long)nce->ino);
2061 if (!nce_head) {
2062 btrfs_err(sctx->send_root->fs_info,
2063 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2064 nce->ino, sctx->name_cache_size);
2065 }
2066
2067 list_del(&nce->radix_list);
2068 list_del(&nce->list);
2069 sctx->name_cache_size--;
2070
2071 /*
2072 * We may not get to the final release of nce_head if the lookup fails
2073 */
2074 if (nce_head && list_empty(nce_head)) {
2075 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2076 kfree(nce_head);
2077 }
2078 }
2079
2080 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2081 u64 ino, u64 gen)
2082 {
2083 struct list_head *nce_head;
2084 struct name_cache_entry *cur;
2085
2086 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2087 if (!nce_head)
2088 return NULL;
2089
2090 list_for_each_entry(cur, nce_head, radix_list) {
2091 if (cur->ino == ino && cur->gen == gen)
2092 return cur;
2093 }
2094 return NULL;
2095 }
2096
2097 /*
2098 * Removes the entry from the list and adds it back to the end. This marks the
2099 * entry as recently used so that name_cache_clean_unused does not remove it.
2100 */
2101 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2102 {
2103 list_del(&nce->list);
2104 list_add_tail(&nce->list, &sctx->name_cache_list);
2105 }
2106
2107 /*
2108 * Remove some entries from the beginning of name_cache_list.
2109 */
2110 static void name_cache_clean_unused(struct send_ctx *sctx)
2111 {
2112 struct name_cache_entry *nce;
2113
2114 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2115 return;
2116
2117 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2118 nce = list_entry(sctx->name_cache_list.next,
2119 struct name_cache_entry, list);
2120 name_cache_delete(sctx, nce);
2121 kfree(nce);
2122 }
2123 }
2124
2125 static void name_cache_free(struct send_ctx *sctx)
2126 {
2127 struct name_cache_entry *nce;
2128
2129 while (!list_empty(&sctx->name_cache_list)) {
2130 nce = list_entry(sctx->name_cache_list.next,
2131 struct name_cache_entry, list);
2132 name_cache_delete(sctx, nce);
2133 kfree(nce);
2134 }
2135 }
2136
2137 /*
2138 * Used by get_cur_path for each ref up to the root.
2139 * Returns 0 if it succeeded.
2140 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2141 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2142 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2143 * Returns <0 in case of error.
2144 */
2145 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2146 u64 ino, u64 gen,
2147 u64 *parent_ino,
2148 u64 *parent_gen,
2149 struct fs_path *dest)
2150 {
2151 int ret;
2152 int nce_ret;
2153 struct name_cache_entry *nce = NULL;
2154
2155 /*
2156 * First check if we already did a call to this function with the same
2157 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2158 * return the cached result.
2159 */
2160 nce = name_cache_search(sctx, ino, gen);
2161 if (nce) {
2162 if (ino < sctx->send_progress && nce->need_later_update) {
2163 name_cache_delete(sctx, nce);
2164 kfree(nce);
2165 nce = NULL;
2166 } else {
2167 name_cache_used(sctx, nce);
2168 *parent_ino = nce->parent_ino;
2169 *parent_gen = nce->parent_gen;
2170 ret = fs_path_add(dest, nce->name, nce->name_len);
2171 if (ret < 0)
2172 goto out;
2173 ret = nce->ret;
2174 goto out;
2175 }
2176 }
2177
2178 /*
2179 * If the inode is not existent yet, add the orphan name and return 1.
2180 * This should only happen for the parent dir that we determine in
2181 * __record_new_ref
2182 */
2183 ret = is_inode_existent(sctx, ino, gen);
2184 if (ret < 0)
2185 goto out;
2186
2187 if (!ret) {
2188 ret = gen_unique_name(sctx, ino, gen, dest);
2189 if (ret < 0)
2190 goto out;
2191 ret = 1;
2192 goto out_cache;
2193 }
2194
2195 /*
2196 * Depending on whether the inode was already processed or not, use
2197 * send_root or parent_root for ref lookup.
2198 */
2199 if (ino < sctx->send_progress)
2200 ret = get_first_ref(sctx->send_root, ino,
2201 parent_ino, parent_gen, dest);
2202 else
2203 ret = get_first_ref(sctx->parent_root, ino,
2204 parent_ino, parent_gen, dest);
2205 if (ret < 0)
2206 goto out;
2207
2208 /*
2209 * Check if the ref was overwritten by an inode's ref that was processed
2210 * earlier. If yes, treat as orphan and return 1.
2211 */
2212 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2213 dest->start, dest->end - dest->start);
2214 if (ret < 0)
2215 goto out;
2216 if (ret) {
2217 fs_path_reset(dest);
2218 ret = gen_unique_name(sctx, ino, gen, dest);
2219 if (ret < 0)
2220 goto out;
2221 ret = 1;
2222 }
2223
2224 out_cache:
2225 /*
2226 * Store the result of the lookup in the name cache.
2227 */
2228 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2229 if (!nce) {
2230 ret = -ENOMEM;
2231 goto out;
2232 }
2233
2234 nce->ino = ino;
2235 nce->gen = gen;
2236 nce->parent_ino = *parent_ino;
2237 nce->parent_gen = *parent_gen;
2238 nce->name_len = fs_path_len(dest);
2239 nce->ret = ret;
2240 strcpy(nce->name, dest->start);
2241
2242 if (ino < sctx->send_progress)
2243 nce->need_later_update = 0;
2244 else
2245 nce->need_later_update = 1;
2246
2247 nce_ret = name_cache_insert(sctx, nce);
2248 if (nce_ret < 0)
2249 ret = nce_ret;
2250 name_cache_clean_unused(sctx);
2251
2252 out:
2253 return ret;
2254 }
2255
2256 /*
2257 * Magic happens here. This function returns the first ref to an inode as it
2258 * would look like while receiving the stream at this point in time.
2259 * We walk the path up to the root. For every inode in between, we check if it
2260 * was already processed/sent. If yes, we continue with the parent as found
2261 * in send_root. If not, we continue with the parent as found in parent_root.
2262 * If we encounter an inode that was deleted at this point in time, we use the
2263 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2264 * that were not created yet and overwritten inodes/refs.
2265 *
2266 * When do we have have orphan inodes:
2267 * 1. When an inode is freshly created and thus no valid refs are available yet
2268 * 2. When a directory lost all it's refs (deleted) but still has dir items
2269 * inside which were not processed yet (pending for move/delete). If anyone
2270 * tried to get the path to the dir items, it would get a path inside that
2271 * orphan directory.
2272 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2273 * of an unprocessed inode. If in that case the first ref would be
2274 * overwritten, the overwritten inode gets "orphanized". Later when we
2275 * process this overwritten inode, it is restored at a new place by moving
2276 * the orphan inode.
2277 *
2278 * sctx->send_progress tells this function at which point in time receiving
2279 * would be.
2280 */
2281 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2282 struct fs_path *dest)
2283 {
2284 int ret = 0;
2285 struct fs_path *name = NULL;
2286 u64 parent_inode = 0;
2287 u64 parent_gen = 0;
2288 int stop = 0;
2289
2290 name = fs_path_alloc();
2291 if (!name) {
2292 ret = -ENOMEM;
2293 goto out;
2294 }
2295
2296 dest->reversed = 1;
2297 fs_path_reset(dest);
2298
2299 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2300 struct waiting_dir_move *wdm;
2301
2302 fs_path_reset(name);
2303
2304 if (is_waiting_for_rm(sctx, ino)) {
2305 ret = gen_unique_name(sctx, ino, gen, name);
2306 if (ret < 0)
2307 goto out;
2308 ret = fs_path_add_path(dest, name);
2309 break;
2310 }
2311
2312 wdm = get_waiting_dir_move(sctx, ino);
2313 if (wdm && wdm->orphanized) {
2314 ret = gen_unique_name(sctx, ino, gen, name);
2315 stop = 1;
2316 } else if (wdm) {
2317 ret = get_first_ref(sctx->parent_root, ino,
2318 &parent_inode, &parent_gen, name);
2319 } else {
2320 ret = __get_cur_name_and_parent(sctx, ino, gen,
2321 &parent_inode,
2322 &parent_gen, name);
2323 if (ret)
2324 stop = 1;
2325 }
2326
2327 if (ret < 0)
2328 goto out;
2329
2330 ret = fs_path_add_path(dest, name);
2331 if (ret < 0)
2332 goto out;
2333
2334 ino = parent_inode;
2335 gen = parent_gen;
2336 }
2337
2338 out:
2339 fs_path_free(name);
2340 if (!ret)
2341 fs_path_unreverse(dest);
2342 return ret;
2343 }
2344
2345 /*
2346 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2347 */
2348 static int send_subvol_begin(struct send_ctx *sctx)
2349 {
2350 int ret;
2351 struct btrfs_root *send_root = sctx->send_root;
2352 struct btrfs_root *parent_root = sctx->parent_root;
2353 struct btrfs_path *path;
2354 struct btrfs_key key;
2355 struct btrfs_root_ref *ref;
2356 struct extent_buffer *leaf;
2357 char *name = NULL;
2358 int namelen;
2359
2360 path = btrfs_alloc_path();
2361 if (!path)
2362 return -ENOMEM;
2363
2364 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2365 if (!name) {
2366 btrfs_free_path(path);
2367 return -ENOMEM;
2368 }
2369
2370 key.objectid = send_root->objectid;
2371 key.type = BTRFS_ROOT_BACKREF_KEY;
2372 key.offset = 0;
2373
2374 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2375 &key, path, 1, 0);
2376 if (ret < 0)
2377 goto out;
2378 if (ret) {
2379 ret = -ENOENT;
2380 goto out;
2381 }
2382
2383 leaf = path->nodes[0];
2384 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2385 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2386 key.objectid != send_root->objectid) {
2387 ret = -ENOENT;
2388 goto out;
2389 }
2390 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2391 namelen = btrfs_root_ref_name_len(leaf, ref);
2392 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2393 btrfs_release_path(path);
2394
2395 if (parent_root) {
2396 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2397 if (ret < 0)
2398 goto out;
2399 } else {
2400 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2401 if (ret < 0)
2402 goto out;
2403 }
2404
2405 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2406
2407 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2408 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2409 sctx->send_root->root_item.received_uuid);
2410 else
2411 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2412 sctx->send_root->root_item.uuid);
2413
2414 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2415 le64_to_cpu(sctx->send_root->root_item.ctransid));
2416 if (parent_root) {
2417 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2418 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2419 parent_root->root_item.received_uuid);
2420 else
2421 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2422 parent_root->root_item.uuid);
2423 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2424 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2425 }
2426
2427 ret = send_cmd(sctx);
2428
2429 tlv_put_failure:
2430 out:
2431 btrfs_free_path(path);
2432 kfree(name);
2433 return ret;
2434 }
2435
2436 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2437 {
2438 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2439 int ret = 0;
2440 struct fs_path *p;
2441
2442 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2443
2444 p = fs_path_alloc();
2445 if (!p)
2446 return -ENOMEM;
2447
2448 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2449 if (ret < 0)
2450 goto out;
2451
2452 ret = get_cur_path(sctx, ino, gen, p);
2453 if (ret < 0)
2454 goto out;
2455 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2456 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2457
2458 ret = send_cmd(sctx);
2459
2460 tlv_put_failure:
2461 out:
2462 fs_path_free(p);
2463 return ret;
2464 }
2465
2466 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2467 {
2468 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2469 int ret = 0;
2470 struct fs_path *p;
2471
2472 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2473
2474 p = fs_path_alloc();
2475 if (!p)
2476 return -ENOMEM;
2477
2478 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2479 if (ret < 0)
2480 goto out;
2481
2482 ret = get_cur_path(sctx, ino, gen, p);
2483 if (ret < 0)
2484 goto out;
2485 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2486 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2487
2488 ret = send_cmd(sctx);
2489
2490 tlv_put_failure:
2491 out:
2492 fs_path_free(p);
2493 return ret;
2494 }
2495
2496 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2497 {
2498 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2499 int ret = 0;
2500 struct fs_path *p;
2501
2502 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2503 ino, uid, gid);
2504
2505 p = fs_path_alloc();
2506 if (!p)
2507 return -ENOMEM;
2508
2509 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2510 if (ret < 0)
2511 goto out;
2512
2513 ret = get_cur_path(sctx, ino, gen, p);
2514 if (ret < 0)
2515 goto out;
2516 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2517 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2518 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2519
2520 ret = send_cmd(sctx);
2521
2522 tlv_put_failure:
2523 out:
2524 fs_path_free(p);
2525 return ret;
2526 }
2527
2528 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2529 {
2530 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2531 int ret = 0;
2532 struct fs_path *p = NULL;
2533 struct btrfs_inode_item *ii;
2534 struct btrfs_path *path = NULL;
2535 struct extent_buffer *eb;
2536 struct btrfs_key key;
2537 int slot;
2538
2539 btrfs_debug(fs_info, "send_utimes %llu", ino);
2540
2541 p = fs_path_alloc();
2542 if (!p)
2543 return -ENOMEM;
2544
2545 path = alloc_path_for_send();
2546 if (!path) {
2547 ret = -ENOMEM;
2548 goto out;
2549 }
2550
2551 key.objectid = ino;
2552 key.type = BTRFS_INODE_ITEM_KEY;
2553 key.offset = 0;
2554 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2555 if (ret > 0)
2556 ret = -ENOENT;
2557 if (ret < 0)
2558 goto out;
2559
2560 eb = path->nodes[0];
2561 slot = path->slots[0];
2562 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2563
2564 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2565 if (ret < 0)
2566 goto out;
2567
2568 ret = get_cur_path(sctx, ino, gen, p);
2569 if (ret < 0)
2570 goto out;
2571 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2572 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2573 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2574 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2575 /* TODO Add otime support when the otime patches get into upstream */
2576
2577 ret = send_cmd(sctx);
2578
2579 tlv_put_failure:
2580 out:
2581 fs_path_free(p);
2582 btrfs_free_path(path);
2583 return ret;
2584 }
2585
2586 /*
2587 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2588 * a valid path yet because we did not process the refs yet. So, the inode
2589 * is created as orphan.
2590 */
2591 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2592 {
2593 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2594 int ret = 0;
2595 struct fs_path *p;
2596 int cmd;
2597 u64 gen;
2598 u64 mode;
2599 u64 rdev;
2600
2601 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2602
2603 p = fs_path_alloc();
2604 if (!p)
2605 return -ENOMEM;
2606
2607 if (ino != sctx->cur_ino) {
2608 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2609 NULL, NULL, &rdev);
2610 if (ret < 0)
2611 goto out;
2612 } else {
2613 gen = sctx->cur_inode_gen;
2614 mode = sctx->cur_inode_mode;
2615 rdev = sctx->cur_inode_rdev;
2616 }
2617
2618 if (S_ISREG(mode)) {
2619 cmd = BTRFS_SEND_C_MKFILE;
2620 } else if (S_ISDIR(mode)) {
2621 cmd = BTRFS_SEND_C_MKDIR;
2622 } else if (S_ISLNK(mode)) {
2623 cmd = BTRFS_SEND_C_SYMLINK;
2624 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2625 cmd = BTRFS_SEND_C_MKNOD;
2626 } else if (S_ISFIFO(mode)) {
2627 cmd = BTRFS_SEND_C_MKFIFO;
2628 } else if (S_ISSOCK(mode)) {
2629 cmd = BTRFS_SEND_C_MKSOCK;
2630 } else {
2631 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2632 (int)(mode & S_IFMT));
2633 ret = -EOPNOTSUPP;
2634 goto out;
2635 }
2636
2637 ret = begin_cmd(sctx, cmd);
2638 if (ret < 0)
2639 goto out;
2640
2641 ret = gen_unique_name(sctx, ino, gen, p);
2642 if (ret < 0)
2643 goto out;
2644
2645 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2646 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2647
2648 if (S_ISLNK(mode)) {
2649 fs_path_reset(p);
2650 ret = read_symlink(sctx->send_root, ino, p);
2651 if (ret < 0)
2652 goto out;
2653 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2654 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2655 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2656 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2657 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2658 }
2659
2660 ret = send_cmd(sctx);
2661 if (ret < 0)
2662 goto out;
2663
2664
2665 tlv_put_failure:
2666 out:
2667 fs_path_free(p);
2668 return ret;
2669 }
2670
2671 /*
2672 * We need some special handling for inodes that get processed before the parent
2673 * directory got created. See process_recorded_refs for details.
2674 * This function does the check if we already created the dir out of order.
2675 */
2676 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2677 {
2678 int ret = 0;
2679 struct btrfs_path *path = NULL;
2680 struct btrfs_key key;
2681 struct btrfs_key found_key;
2682 struct btrfs_key di_key;
2683 struct extent_buffer *eb;
2684 struct btrfs_dir_item *di;
2685 int slot;
2686
2687 path = alloc_path_for_send();
2688 if (!path) {
2689 ret = -ENOMEM;
2690 goto out;
2691 }
2692
2693 key.objectid = dir;
2694 key.type = BTRFS_DIR_INDEX_KEY;
2695 key.offset = 0;
2696 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2697 if (ret < 0)
2698 goto out;
2699
2700 while (1) {
2701 eb = path->nodes[0];
2702 slot = path->slots[0];
2703 if (slot >= btrfs_header_nritems(eb)) {
2704 ret = btrfs_next_leaf(sctx->send_root, path);
2705 if (ret < 0) {
2706 goto out;
2707 } else if (ret > 0) {
2708 ret = 0;
2709 break;
2710 }
2711 continue;
2712 }
2713
2714 btrfs_item_key_to_cpu(eb, &found_key, slot);
2715 if (found_key.objectid != key.objectid ||
2716 found_key.type != key.type) {
2717 ret = 0;
2718 goto out;
2719 }
2720
2721 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2722 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2723
2724 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2725 di_key.objectid < sctx->send_progress) {
2726 ret = 1;
2727 goto out;
2728 }
2729
2730 path->slots[0]++;
2731 }
2732
2733 out:
2734 btrfs_free_path(path);
2735 return ret;
2736 }
2737
2738 /*
2739 * Only creates the inode if it is:
2740 * 1. Not a directory
2741 * 2. Or a directory which was not created already due to out of order
2742 * directories. See did_create_dir and process_recorded_refs for details.
2743 */
2744 static int send_create_inode_if_needed(struct send_ctx *sctx)
2745 {
2746 int ret;
2747
2748 if (S_ISDIR(sctx->cur_inode_mode)) {
2749 ret = did_create_dir(sctx, sctx->cur_ino);
2750 if (ret < 0)
2751 goto out;
2752 if (ret) {
2753 ret = 0;
2754 goto out;
2755 }
2756 }
2757
2758 ret = send_create_inode(sctx, sctx->cur_ino);
2759 if (ret < 0)
2760 goto out;
2761
2762 out:
2763 return ret;
2764 }
2765
2766 struct recorded_ref {
2767 struct list_head list;
2768 char *name;
2769 struct fs_path *full_path;
2770 u64 dir;
2771 u64 dir_gen;
2772 int name_len;
2773 };
2774
2775 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2776 {
2777 ref->full_path = path;
2778 ref->name = (char *)kbasename(ref->full_path->start);
2779 ref->name_len = ref->full_path->end - ref->name;
2780 }
2781
2782 /*
2783 * We need to process new refs before deleted refs, but compare_tree gives us
2784 * everything mixed. So we first record all refs and later process them.
2785 * This function is a helper to record one ref.
2786 */
2787 static int __record_ref(struct list_head *head, u64 dir,
2788 u64 dir_gen, struct fs_path *path)
2789 {
2790 struct recorded_ref *ref;
2791
2792 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2793 if (!ref)
2794 return -ENOMEM;
2795
2796 ref->dir = dir;
2797 ref->dir_gen = dir_gen;
2798 set_ref_path(ref, path);
2799 list_add_tail(&ref->list, head);
2800 return 0;
2801 }
2802
2803 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2804 {
2805 struct recorded_ref *new;
2806
2807 new = kmalloc(sizeof(*ref), GFP_KERNEL);
2808 if (!new)
2809 return -ENOMEM;
2810
2811 new->dir = ref->dir;
2812 new->dir_gen = ref->dir_gen;
2813 new->full_path = NULL;
2814 INIT_LIST_HEAD(&new->list);
2815 list_add_tail(&new->list, list);
2816 return 0;
2817 }
2818
2819 static void __free_recorded_refs(struct list_head *head)
2820 {
2821 struct recorded_ref *cur;
2822
2823 while (!list_empty(head)) {
2824 cur = list_entry(head->next, struct recorded_ref, list);
2825 fs_path_free(cur->full_path);
2826 list_del(&cur->list);
2827 kfree(cur);
2828 }
2829 }
2830
2831 static void free_recorded_refs(struct send_ctx *sctx)
2832 {
2833 __free_recorded_refs(&sctx->new_refs);
2834 __free_recorded_refs(&sctx->deleted_refs);
2835 }
2836
2837 /*
2838 * Renames/moves a file/dir to its orphan name. Used when the first
2839 * ref of an unprocessed inode gets overwritten and for all non empty
2840 * directories.
2841 */
2842 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2843 struct fs_path *path)
2844 {
2845 int ret;
2846 struct fs_path *orphan;
2847
2848 orphan = fs_path_alloc();
2849 if (!orphan)
2850 return -ENOMEM;
2851
2852 ret = gen_unique_name(sctx, ino, gen, orphan);
2853 if (ret < 0)
2854 goto out;
2855
2856 ret = send_rename(sctx, path, orphan);
2857
2858 out:
2859 fs_path_free(orphan);
2860 return ret;
2861 }
2862
2863 static struct orphan_dir_info *
2864 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2865 {
2866 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2867 struct rb_node *parent = NULL;
2868 struct orphan_dir_info *entry, *odi;
2869
2870 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2871 if (!odi)
2872 return ERR_PTR(-ENOMEM);
2873 odi->ino = dir_ino;
2874 odi->gen = 0;
2875
2876 while (*p) {
2877 parent = *p;
2878 entry = rb_entry(parent, struct orphan_dir_info, node);
2879 if (dir_ino < entry->ino) {
2880 p = &(*p)->rb_left;
2881 } else if (dir_ino > entry->ino) {
2882 p = &(*p)->rb_right;
2883 } else {
2884 kfree(odi);
2885 return entry;
2886 }
2887 }
2888
2889 rb_link_node(&odi->node, parent, p);
2890 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2891 return odi;
2892 }
2893
2894 static struct orphan_dir_info *
2895 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2896 {
2897 struct rb_node *n = sctx->orphan_dirs.rb_node;
2898 struct orphan_dir_info *entry;
2899
2900 while (n) {
2901 entry = rb_entry(n, struct orphan_dir_info, node);
2902 if (dir_ino < entry->ino)
2903 n = n->rb_left;
2904 else if (dir_ino > entry->ino)
2905 n = n->rb_right;
2906 else
2907 return entry;
2908 }
2909 return NULL;
2910 }
2911
2912 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2913 {
2914 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2915
2916 return odi != NULL;
2917 }
2918
2919 static void free_orphan_dir_info(struct send_ctx *sctx,
2920 struct orphan_dir_info *odi)
2921 {
2922 if (!odi)
2923 return;
2924 rb_erase(&odi->node, &sctx->orphan_dirs);
2925 kfree(odi);
2926 }
2927
2928 /*
2929 * Returns 1 if a directory can be removed at this point in time.
2930 * We check this by iterating all dir items and checking if the inode behind
2931 * the dir item was already processed.
2932 */
2933 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2934 u64 send_progress)
2935 {
2936 int ret = 0;
2937 struct btrfs_root *root = sctx->parent_root;
2938 struct btrfs_path *path;
2939 struct btrfs_key key;
2940 struct btrfs_key found_key;
2941 struct btrfs_key loc;
2942 struct btrfs_dir_item *di;
2943
2944 /*
2945 * Don't try to rmdir the top/root subvolume dir.
2946 */
2947 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2948 return 0;
2949
2950 path = alloc_path_for_send();
2951 if (!path)
2952 return -ENOMEM;
2953
2954 key.objectid = dir;
2955 key.type = BTRFS_DIR_INDEX_KEY;
2956 key.offset = 0;
2957 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2958 if (ret < 0)
2959 goto out;
2960
2961 while (1) {
2962 struct waiting_dir_move *dm;
2963
2964 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2965 ret = btrfs_next_leaf(root, path);
2966 if (ret < 0)
2967 goto out;
2968 else if (ret > 0)
2969 break;
2970 continue;
2971 }
2972 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2973 path->slots[0]);
2974 if (found_key.objectid != key.objectid ||
2975 found_key.type != key.type)
2976 break;
2977
2978 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2979 struct btrfs_dir_item);
2980 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2981
2982 dm = get_waiting_dir_move(sctx, loc.objectid);
2983 if (dm) {
2984 struct orphan_dir_info *odi;
2985
2986 odi = add_orphan_dir_info(sctx, dir);
2987 if (IS_ERR(odi)) {
2988 ret = PTR_ERR(odi);
2989 goto out;
2990 }
2991 odi->gen = dir_gen;
2992 dm->rmdir_ino = dir;
2993 ret = 0;
2994 goto out;
2995 }
2996
2997 if (loc.objectid > send_progress) {
2998 struct orphan_dir_info *odi;
2999
3000 odi = get_orphan_dir_info(sctx, dir);
3001 free_orphan_dir_info(sctx, odi);
3002 ret = 0;
3003 goto out;
3004 }
3005
3006 path->slots[0]++;
3007 }
3008
3009 ret = 1;
3010
3011 out:
3012 btrfs_free_path(path);
3013 return ret;
3014 }
3015
3016 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3017 {
3018 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3019
3020 return entry != NULL;
3021 }
3022
3023 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3024 {
3025 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3026 struct rb_node *parent = NULL;
3027 struct waiting_dir_move *entry, *dm;
3028
3029 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3030 if (!dm)
3031 return -ENOMEM;
3032 dm->ino = ino;
3033 dm->rmdir_ino = 0;
3034 dm->orphanized = orphanized;
3035
3036 while (*p) {
3037 parent = *p;
3038 entry = rb_entry(parent, struct waiting_dir_move, node);
3039 if (ino < entry->ino) {
3040 p = &(*p)->rb_left;
3041 } else if (ino > entry->ino) {
3042 p = &(*p)->rb_right;
3043 } else {
3044 kfree(dm);
3045 return -EEXIST;
3046 }
3047 }
3048
3049 rb_link_node(&dm->node, parent, p);
3050 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3051 return 0;
3052 }
3053
3054 static struct waiting_dir_move *
3055 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3056 {
3057 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3058 struct waiting_dir_move *entry;
3059
3060 while (n) {
3061 entry = rb_entry(n, struct waiting_dir_move, node);
3062 if (ino < entry->ino)
3063 n = n->rb_left;
3064 else if (ino > entry->ino)
3065 n = n->rb_right;
3066 else
3067 return entry;
3068 }
3069 return NULL;
3070 }
3071
3072 static void free_waiting_dir_move(struct send_ctx *sctx,
3073 struct waiting_dir_move *dm)
3074 {
3075 if (!dm)
3076 return;
3077 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3078 kfree(dm);
3079 }
3080
3081 static int add_pending_dir_move(struct send_ctx *sctx,
3082 u64 ino,
3083 u64 ino_gen,
3084 u64 parent_ino,
3085 struct list_head *new_refs,
3086 struct list_head *deleted_refs,
3087 const bool is_orphan)
3088 {
3089 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3090 struct rb_node *parent = NULL;
3091 struct pending_dir_move *entry = NULL, *pm;
3092 struct recorded_ref *cur;
3093 int exists = 0;
3094 int ret;
3095
3096 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3097 if (!pm)
3098 return -ENOMEM;
3099 pm->parent_ino = parent_ino;
3100 pm->ino = ino;
3101 pm->gen = ino_gen;
3102 INIT_LIST_HEAD(&pm->list);
3103 INIT_LIST_HEAD(&pm->update_refs);
3104 RB_CLEAR_NODE(&pm->node);
3105
3106 while (*p) {
3107 parent = *p;
3108 entry = rb_entry(parent, struct pending_dir_move, node);
3109 if (parent_ino < entry->parent_ino) {
3110 p = &(*p)->rb_left;
3111 } else if (parent_ino > entry->parent_ino) {
3112 p = &(*p)->rb_right;
3113 } else {
3114 exists = 1;
3115 break;
3116 }
3117 }
3118
3119 list_for_each_entry(cur, deleted_refs, list) {
3120 ret = dup_ref(cur, &pm->update_refs);
3121 if (ret < 0)
3122 goto out;
3123 }
3124 list_for_each_entry(cur, new_refs, list) {
3125 ret = dup_ref(cur, &pm->update_refs);
3126 if (ret < 0)
3127 goto out;
3128 }
3129
3130 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3131 if (ret)
3132 goto out;
3133
3134 if (exists) {
3135 list_add_tail(&pm->list, &entry->list);
3136 } else {
3137 rb_link_node(&pm->node, parent, p);
3138 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3139 }
3140 ret = 0;
3141 out:
3142 if (ret) {
3143 __free_recorded_refs(&pm->update_refs);
3144 kfree(pm);
3145 }
3146 return ret;
3147 }
3148
3149 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3150 u64 parent_ino)
3151 {
3152 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3153 struct pending_dir_move *entry;
3154
3155 while (n) {
3156 entry = rb_entry(n, struct pending_dir_move, node);
3157 if (parent_ino < entry->parent_ino)
3158 n = n->rb_left;
3159 else if (parent_ino > entry->parent_ino)
3160 n = n->rb_right;
3161 else
3162 return entry;
3163 }
3164 return NULL;
3165 }
3166
3167 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3168 u64 ino, u64 gen, u64 *ancestor_ino)
3169 {
3170 int ret = 0;
3171 u64 parent_inode = 0;
3172 u64 parent_gen = 0;
3173 u64 start_ino = ino;
3174
3175 *ancestor_ino = 0;
3176 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3177 fs_path_reset(name);
3178
3179 if (is_waiting_for_rm(sctx, ino))
3180 break;
3181 if (is_waiting_for_move(sctx, ino)) {
3182 if (*ancestor_ino == 0)
3183 *ancestor_ino = ino;
3184 ret = get_first_ref(sctx->parent_root, ino,
3185 &parent_inode, &parent_gen, name);
3186 } else {
3187 ret = __get_cur_name_and_parent(sctx, ino, gen,
3188 &parent_inode,
3189 &parent_gen, name);
3190 if (ret > 0) {
3191 ret = 0;
3192 break;
3193 }
3194 }
3195 if (ret < 0)
3196 break;
3197 if (parent_inode == start_ino) {
3198 ret = 1;
3199 if (*ancestor_ino == 0)
3200 *ancestor_ino = ino;
3201 break;
3202 }
3203 ino = parent_inode;
3204 gen = parent_gen;
3205 }
3206 return ret;
3207 }
3208
3209 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3210 {
3211 struct fs_path *from_path = NULL;
3212 struct fs_path *to_path = NULL;
3213 struct fs_path *name = NULL;
3214 u64 orig_progress = sctx->send_progress;
3215 struct recorded_ref *cur;
3216 u64 parent_ino, parent_gen;
3217 struct waiting_dir_move *dm = NULL;
3218 u64 rmdir_ino = 0;
3219 u64 ancestor;
3220 bool is_orphan;
3221 int ret;
3222
3223 name = fs_path_alloc();
3224 from_path = fs_path_alloc();
3225 if (!name || !from_path) {
3226 ret = -ENOMEM;
3227 goto out;
3228 }
3229
3230 dm = get_waiting_dir_move(sctx, pm->ino);
3231 ASSERT(dm);
3232 rmdir_ino = dm->rmdir_ino;
3233 is_orphan = dm->orphanized;
3234 free_waiting_dir_move(sctx, dm);
3235
3236 if (is_orphan) {
3237 ret = gen_unique_name(sctx, pm->ino,
3238 pm->gen, from_path);
3239 } else {
3240 ret = get_first_ref(sctx->parent_root, pm->ino,
3241 &parent_ino, &parent_gen, name);
3242 if (ret < 0)
3243 goto out;
3244 ret = get_cur_path(sctx, parent_ino, parent_gen,
3245 from_path);
3246 if (ret < 0)
3247 goto out;
3248 ret = fs_path_add_path(from_path, name);
3249 }
3250 if (ret < 0)
3251 goto out;
3252
3253 sctx->send_progress = sctx->cur_ino + 1;
3254 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3255 if (ret < 0)
3256 goto out;
3257 if (ret) {
3258 LIST_HEAD(deleted_refs);
3259 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3260 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3261 &pm->update_refs, &deleted_refs,
3262 is_orphan);
3263 if (ret < 0)
3264 goto out;
3265 if (rmdir_ino) {
3266 dm = get_waiting_dir_move(sctx, pm->ino);
3267 ASSERT(dm);
3268 dm->rmdir_ino = rmdir_ino;
3269 }
3270 goto out;
3271 }
3272 fs_path_reset(name);
3273 to_path = name;
3274 name = NULL;
3275 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3276 if (ret < 0)
3277 goto out;
3278
3279 ret = send_rename(sctx, from_path, to_path);
3280 if (ret < 0)
3281 goto out;
3282
3283 if (rmdir_ino) {
3284 struct orphan_dir_info *odi;
3285
3286 odi = get_orphan_dir_info(sctx, rmdir_ino);
3287 if (!odi) {
3288 /* already deleted */
3289 goto finish;
3290 }
3291 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
3292 if (ret < 0)
3293 goto out;
3294 if (!ret)
3295 goto finish;
3296
3297 name = fs_path_alloc();
3298 if (!name) {
3299 ret = -ENOMEM;
3300 goto out;
3301 }
3302 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3303 if (ret < 0)
3304 goto out;
3305 ret = send_rmdir(sctx, name);
3306 if (ret < 0)
3307 goto out;
3308 free_orphan_dir_info(sctx, odi);
3309 }
3310
3311 finish:
3312 ret = send_utimes(sctx, pm->ino, pm->gen);
3313 if (ret < 0)
3314 goto out;
3315
3316 /*
3317 * After rename/move, need to update the utimes of both new parent(s)
3318 * and old parent(s).
3319 */
3320 list_for_each_entry(cur, &pm->update_refs, list) {
3321 /*
3322 * The parent inode might have been deleted in the send snapshot
3323 */
3324 ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3325 NULL, NULL, NULL, NULL, NULL);
3326 if (ret == -ENOENT) {
3327 ret = 0;
3328 continue;
3329 }
3330 if (ret < 0)
3331 goto out;
3332
3333 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3334 if (ret < 0)
3335 goto out;
3336 }
3337
3338 out:
3339 fs_path_free(name);
3340 fs_path_free(from_path);
3341 fs_path_free(to_path);
3342 sctx->send_progress = orig_progress;
3343
3344 return ret;
3345 }
3346
3347 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3348 {
3349 if (!list_empty(&m->list))
3350 list_del(&m->list);
3351 if (!RB_EMPTY_NODE(&m->node))
3352 rb_erase(&m->node, &sctx->pending_dir_moves);
3353 __free_recorded_refs(&m->update_refs);
3354 kfree(m);
3355 }
3356
3357 static void tail_append_pending_moves(struct send_ctx *sctx,
3358 struct pending_dir_move *moves,
3359 struct list_head *stack)
3360 {
3361 if (list_empty(&moves->list)) {
3362 list_add_tail(&moves->list, stack);
3363 } else {
3364 LIST_HEAD(list);
3365 list_splice_init(&moves->list, &list);
3366 list_add_tail(&moves->list, stack);
3367 list_splice_tail(&list, stack);
3368 }
3369 if (!RB_EMPTY_NODE(&moves->node)) {
3370 rb_erase(&moves->node, &sctx->pending_dir_moves);
3371 RB_CLEAR_NODE(&moves->node);
3372 }
3373 }
3374
3375 static int apply_children_dir_moves(struct send_ctx *sctx)
3376 {
3377 struct pending_dir_move *pm;
3378 struct list_head stack;
3379 u64 parent_ino = sctx->cur_ino;
3380 int ret = 0;
3381
3382 pm = get_pending_dir_moves(sctx, parent_ino);
3383 if (!pm)
3384 return 0;
3385
3386 INIT_LIST_HEAD(&stack);
3387 tail_append_pending_moves(sctx, pm, &stack);
3388
3389 while (!list_empty(&stack)) {
3390 pm = list_first_entry(&stack, struct pending_dir_move, list);
3391 parent_ino = pm->ino;
3392 ret = apply_dir_move(sctx, pm);
3393 free_pending_move(sctx, pm);
3394 if (ret)
3395 goto out;
3396 pm = get_pending_dir_moves(sctx, parent_ino);
3397 if (pm)
3398 tail_append_pending_moves(sctx, pm, &stack);
3399 }
3400 return 0;
3401
3402 out:
3403 while (!list_empty(&stack)) {
3404 pm = list_first_entry(&stack, struct pending_dir_move, list);
3405 free_pending_move(sctx, pm);
3406 }
3407 return ret;
3408 }
3409
3410 /*
3411 * We might need to delay a directory rename even when no ancestor directory
3412 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3413 * renamed. This happens when we rename a directory to the old name (the name
3414 * in the parent root) of some other unrelated directory that got its rename
3415 * delayed due to some ancestor with higher number that got renamed.
3416 *
3417 * Example:
3418 *
3419 * Parent snapshot:
3420 * . (ino 256)
3421 * |---- a/ (ino 257)
3422 * | |---- file (ino 260)
3423 * |
3424 * |---- b/ (ino 258)
3425 * |---- c/ (ino 259)
3426 *
3427 * Send snapshot:
3428 * . (ino 256)
3429 * |---- a/ (ino 258)
3430 * |---- x/ (ino 259)
3431 * |---- y/ (ino 257)
3432 * |----- file (ino 260)
3433 *
3434 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3435 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3436 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3437 * must issue is:
3438 *
3439 * 1 - rename 259 from 'c' to 'x'
3440 * 2 - rename 257 from 'a' to 'x/y'
3441 * 3 - rename 258 from 'b' to 'a'
3442 *
3443 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3444 * be done right away and < 0 on error.
3445 */
3446 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3447 struct recorded_ref *parent_ref,
3448 const bool is_orphan)
3449 {
3450 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3451 struct btrfs_path *path;
3452 struct btrfs_key key;
3453 struct btrfs_key di_key;
3454 struct btrfs_dir_item *di;
3455 u64 left_gen;
3456 u64 right_gen;
3457 int ret = 0;
3458 struct waiting_dir_move *wdm;
3459
3460 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3461 return 0;
3462
3463 path = alloc_path_for_send();
3464 if (!path)
3465 return -ENOMEM;
3466
3467 key.objectid = parent_ref->dir;
3468 key.type = BTRFS_DIR_ITEM_KEY;
3469 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3470
3471 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3472 if (ret < 0) {
3473 goto out;
3474 } else if (ret > 0) {
3475 ret = 0;
3476 goto out;
3477 }
3478
3479 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3480 parent_ref->name_len);
3481 if (!di) {
3482 ret = 0;
3483 goto out;
3484 }
3485 /*
3486 * di_key.objectid has the number of the inode that has a dentry in the
3487 * parent directory with the same name that sctx->cur_ino is being
3488 * renamed to. We need to check if that inode is in the send root as
3489 * well and if it is currently marked as an inode with a pending rename,
3490 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3491 * that it happens after that other inode is renamed.
3492 */
3493 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3494 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3495 ret = 0;
3496 goto out;
3497 }
3498
3499 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3500 &left_gen, NULL, NULL, NULL, NULL);
3501 if (ret < 0)
3502 goto out;
3503 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3504 &right_gen, NULL, NULL, NULL, NULL);
3505 if (ret < 0) {
3506 if (ret == -ENOENT)
3507 ret = 0;
3508 goto out;
3509 }
3510
3511 /* Different inode, no need to delay the rename of sctx->cur_ino */
3512 if (right_gen != left_gen) {
3513 ret = 0;
3514 goto out;
3515 }
3516
3517 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3518 if (wdm && !wdm->orphanized) {
3519 ret = add_pending_dir_move(sctx,
3520 sctx->cur_ino,
3521 sctx->cur_inode_gen,
3522 di_key.objectid,
3523 &sctx->new_refs,
3524 &sctx->deleted_refs,
3525 is_orphan);
3526 if (!ret)
3527 ret = 1;
3528 }
3529 out:
3530 btrfs_free_path(path);
3531 return ret;
3532 }
3533
3534 /*
3535 * Check if inode ino2, or any of its ancestors, is inode ino1.
3536 * Return 1 if true, 0 if false and < 0 on error.
3537 */
3538 static int check_ino_in_path(struct btrfs_root *root,
3539 const u64 ino1,
3540 const u64 ino1_gen,
3541 const u64 ino2,
3542 const u64 ino2_gen,
3543 struct fs_path *fs_path)
3544 {
3545 u64 ino = ino2;
3546
3547 if (ino1 == ino2)
3548 return ino1_gen == ino2_gen;
3549
3550 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3551 u64 parent;
3552 u64 parent_gen;
3553 int ret;
3554
3555 fs_path_reset(fs_path);
3556 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3557 if (ret < 0)
3558 return ret;
3559 if (parent == ino1)
3560 return parent_gen == ino1_gen;
3561 ino = parent;
3562 }
3563 return 0;
3564 }
3565
3566 /*
3567 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3568 * possible path (in case ino2 is not a directory and has multiple hard links).
3569 * Return 1 if true, 0 if false and < 0 on error.
3570 */
3571 static int is_ancestor(struct btrfs_root *root,
3572 const u64 ino1,
3573 const u64 ino1_gen,
3574 const u64 ino2,
3575 struct fs_path *fs_path)
3576 {
3577 bool free_fs_path = false;
3578 int ret = 0;
3579 struct btrfs_path *path = NULL;
3580 struct btrfs_key key;
3581
3582 if (!fs_path) {
3583 fs_path = fs_path_alloc();
3584 if (!fs_path)
3585 return -ENOMEM;
3586 free_fs_path = true;
3587 }
3588
3589 path = alloc_path_for_send();
3590 if (!path) {
3591 ret = -ENOMEM;
3592 goto out;
3593 }
3594
3595 key.objectid = ino2;
3596 key.type = BTRFS_INODE_REF_KEY;
3597 key.offset = 0;
3598
3599 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3600 if (ret < 0)
3601 goto out;
3602
3603 while (true) {
3604 struct extent_buffer *leaf = path->nodes[0];
3605 int slot = path->slots[0];
3606 u32 cur_offset = 0;
3607 u32 item_size;
3608
3609 if (slot >= btrfs_header_nritems(leaf)) {
3610 ret = btrfs_next_leaf(root, path);
3611 if (ret < 0)
3612 goto out;
3613 if (ret > 0)
3614 break;
3615 continue;
3616 }
3617
3618 btrfs_item_key_to_cpu(leaf, &key, slot);
3619 if (key.objectid != ino2)
3620 break;
3621 if (key.type != BTRFS_INODE_REF_KEY &&
3622 key.type != BTRFS_INODE_EXTREF_KEY)
3623 break;
3624
3625 item_size = btrfs_item_size_nr(leaf, slot);
3626 while (cur_offset < item_size) {
3627 u64 parent;
3628 u64 parent_gen;
3629
3630 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3631 unsigned long ptr;
3632 struct btrfs_inode_extref *extref;
3633
3634 ptr = btrfs_item_ptr_offset(leaf, slot);
3635 extref = (struct btrfs_inode_extref *)
3636 (ptr + cur_offset);
3637 parent = btrfs_inode_extref_parent(leaf,
3638 extref);
3639 cur_offset += sizeof(*extref);
3640 cur_offset += btrfs_inode_extref_name_len(leaf,
3641 extref);
3642 } else {
3643 parent = key.offset;
3644 cur_offset = item_size;
3645 }
3646
3647 ret = get_inode_info(root, parent, NULL, &parent_gen,
3648 NULL, NULL, NULL, NULL);
3649 if (ret < 0)
3650 goto out;
3651 ret = check_ino_in_path(root, ino1, ino1_gen,
3652 parent, parent_gen, fs_path);
3653 if (ret)
3654 goto out;
3655 }
3656 path->slots[0]++;
3657 }
3658 ret = 0;
3659 out:
3660 btrfs_free_path(path);
3661 if (free_fs_path)
3662 fs_path_free(fs_path);
3663 return ret;
3664 }
3665
3666 static int wait_for_parent_move(struct send_ctx *sctx,
3667 struct recorded_ref *parent_ref,
3668 const bool is_orphan)
3669 {
3670 int ret = 0;
3671 u64 ino = parent_ref->dir;
3672 u64 ino_gen = parent_ref->dir_gen;
3673 u64 parent_ino_before, parent_ino_after;
3674 struct fs_path *path_before = NULL;
3675 struct fs_path *path_after = NULL;
3676 int len1, len2;
3677
3678 path_after = fs_path_alloc();
3679 path_before = fs_path_alloc();
3680 if (!path_after || !path_before) {
3681 ret = -ENOMEM;
3682 goto out;
3683 }
3684
3685 /*
3686 * Our current directory inode may not yet be renamed/moved because some
3687 * ancestor (immediate or not) has to be renamed/moved first. So find if
3688 * such ancestor exists and make sure our own rename/move happens after
3689 * that ancestor is processed to avoid path build infinite loops (done
3690 * at get_cur_path()).
3691 */
3692 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3693 u64 parent_ino_after_gen;
3694
3695 if (is_waiting_for_move(sctx, ino)) {
3696 /*
3697 * If the current inode is an ancestor of ino in the
3698 * parent root, we need to delay the rename of the
3699 * current inode, otherwise don't delayed the rename
3700 * because we can end up with a circular dependency
3701 * of renames, resulting in some directories never
3702 * getting the respective rename operations issued in
3703 * the send stream or getting into infinite path build
3704 * loops.
3705 */
3706 ret = is_ancestor(sctx->parent_root,
3707 sctx->cur_ino, sctx->cur_inode_gen,
3708 ino, path_before);
3709 if (ret)
3710 break;
3711 }
3712
3713 fs_path_reset(path_before);
3714 fs_path_reset(path_after);
3715
3716 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3717 &parent_ino_after_gen, path_after);
3718 if (ret < 0)
3719 goto out;
3720 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3721 NULL, path_before);
3722 if (ret < 0 && ret != -ENOENT) {
3723 goto out;
3724 } else if (ret == -ENOENT) {
3725 ret = 0;
3726 break;
3727 }
3728
3729 len1 = fs_path_len(path_before);
3730 len2 = fs_path_len(path_after);
3731 if (ino > sctx->cur_ino &&
3732 (parent_ino_before != parent_ino_after || len1 != len2 ||
3733 memcmp(path_before->start, path_after->start, len1))) {
3734 u64 parent_ino_gen;
3735
3736 ret = get_inode_info(sctx->parent_root, ino, NULL,
3737 &parent_ino_gen, NULL, NULL, NULL,
3738 NULL);
3739 if (ret < 0)
3740 goto out;
3741 if (ino_gen == parent_ino_gen) {
3742 ret = 1;
3743 break;
3744 }
3745 }
3746 ino = parent_ino_after;
3747 ino_gen = parent_ino_after_gen;
3748 }
3749
3750 out:
3751 fs_path_free(path_before);
3752 fs_path_free(path_after);
3753
3754 if (ret == 1) {
3755 ret = add_pending_dir_move(sctx,
3756 sctx->cur_ino,
3757 sctx->cur_inode_gen,
3758 ino,
3759 &sctx->new_refs,
3760 &sctx->deleted_refs,
3761 is_orphan);
3762 if (!ret)
3763 ret = 1;
3764 }
3765
3766 return ret;
3767 }
3768
3769 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3770 {
3771 int ret;
3772 struct fs_path *new_path;
3773
3774 /*
3775 * Our reference's name member points to its full_path member string, so
3776 * we use here a new path.
3777 */
3778 new_path = fs_path_alloc();
3779 if (!new_path)
3780 return -ENOMEM;
3781
3782 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3783 if (ret < 0) {
3784 fs_path_free(new_path);
3785 return ret;
3786 }
3787 ret = fs_path_add(new_path, ref->name, ref->name_len);
3788 if (ret < 0) {
3789 fs_path_free(new_path);
3790 return ret;
3791 }
3792
3793 fs_path_free(ref->full_path);
3794 set_ref_path(ref, new_path);
3795
3796 return 0;
3797 }
3798
3799 /*
3800 * This does all the move/link/unlink/rmdir magic.
3801 */
3802 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3803 {
3804 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3805 int ret = 0;
3806 struct recorded_ref *cur;
3807 struct recorded_ref *cur2;
3808 struct list_head check_dirs;
3809 struct fs_path *valid_path = NULL;
3810 u64 ow_inode = 0;
3811 u64 ow_gen;
3812 u64 ow_mode;
3813 int did_overwrite = 0;
3814 int is_orphan = 0;
3815 u64 last_dir_ino_rm = 0;
3816 bool can_rename = true;
3817 bool orphanized_dir = false;
3818 bool orphanized_ancestor = false;
3819
3820 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3821
3822 /*
3823 * This should never happen as the root dir always has the same ref
3824 * which is always '..'
3825 */
3826 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3827 INIT_LIST_HEAD(&check_dirs);
3828
3829 valid_path = fs_path_alloc();
3830 if (!valid_path) {
3831 ret = -ENOMEM;
3832 goto out;
3833 }
3834
3835 /*
3836 * First, check if the first ref of the current inode was overwritten
3837 * before. If yes, we know that the current inode was already orphanized
3838 * and thus use the orphan name. If not, we can use get_cur_path to
3839 * get the path of the first ref as it would like while receiving at
3840 * this point in time.
3841 * New inodes are always orphan at the beginning, so force to use the
3842 * orphan name in this case.
3843 * The first ref is stored in valid_path and will be updated if it
3844 * gets moved around.
3845 */
3846 if (!sctx->cur_inode_new) {
3847 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3848 sctx->cur_inode_gen);
3849 if (ret < 0)
3850 goto out;
3851 if (ret)
3852 did_overwrite = 1;
3853 }
3854 if (sctx->cur_inode_new || did_overwrite) {
3855 ret = gen_unique_name(sctx, sctx->cur_ino,
3856 sctx->cur_inode_gen, valid_path);
3857 if (ret < 0)
3858 goto out;
3859 is_orphan = 1;
3860 } else {
3861 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3862 valid_path);
3863 if (ret < 0)
3864 goto out;
3865 }
3866
3867 list_for_each_entry(cur, &sctx->new_refs, list) {
3868 /*
3869 * We may have refs where the parent directory does not exist
3870 * yet. This happens if the parent directories inum is higher
3871 * the the current inum. To handle this case, we create the
3872 * parent directory out of order. But we need to check if this
3873 * did already happen before due to other refs in the same dir.
3874 */
3875 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3876 if (ret < 0)
3877 goto out;
3878 if (ret == inode_state_will_create) {
3879 ret = 0;
3880 /*
3881 * First check if any of the current inodes refs did
3882 * already create the dir.
3883 */
3884 list_for_each_entry(cur2, &sctx->new_refs, list) {
3885 if (cur == cur2)
3886 break;
3887 if (cur2->dir == cur->dir) {
3888 ret = 1;
3889 break;
3890 }
3891 }
3892
3893 /*
3894 * If that did not happen, check if a previous inode
3895 * did already create the dir.
3896 */
3897 if (!ret)
3898 ret = did_create_dir(sctx, cur->dir);
3899 if (ret < 0)
3900 goto out;
3901 if (!ret) {
3902 ret = send_create_inode(sctx, cur->dir);
3903 if (ret < 0)
3904 goto out;
3905 }
3906 }
3907
3908 /*
3909 * Check if this new ref would overwrite the first ref of
3910 * another unprocessed inode. If yes, orphanize the
3911 * overwritten inode. If we find an overwritten ref that is
3912 * not the first ref, simply unlink it.
3913 */
3914 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3915 cur->name, cur->name_len,
3916 &ow_inode, &ow_gen, &ow_mode);
3917 if (ret < 0)
3918 goto out;
3919 if (ret) {
3920 ret = is_first_ref(sctx->parent_root,
3921 ow_inode, cur->dir, cur->name,
3922 cur->name_len);
3923 if (ret < 0)
3924 goto out;
3925 if (ret) {
3926 struct name_cache_entry *nce;
3927 struct waiting_dir_move *wdm;
3928
3929 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3930 cur->full_path);
3931 if (ret < 0)
3932 goto out;
3933 if (S_ISDIR(ow_mode))
3934 orphanized_dir = true;
3935
3936 /*
3937 * If ow_inode has its rename operation delayed
3938 * make sure that its orphanized name is used in
3939 * the source path when performing its rename
3940 * operation.
3941 */
3942 if (is_waiting_for_move(sctx, ow_inode)) {
3943 wdm = get_waiting_dir_move(sctx,
3944 ow_inode);
3945 ASSERT(wdm);
3946 wdm->orphanized = true;
3947 }
3948
3949 /*
3950 * Make sure we clear our orphanized inode's
3951 * name from the name cache. This is because the
3952 * inode ow_inode might be an ancestor of some
3953 * other inode that will be orphanized as well
3954 * later and has an inode number greater than
3955 * sctx->send_progress. We need to prevent
3956 * future name lookups from using the old name
3957 * and get instead the orphan name.
3958 */
3959 nce = name_cache_search(sctx, ow_inode, ow_gen);
3960 if (nce) {
3961 name_cache_delete(sctx, nce);
3962 kfree(nce);
3963 }
3964
3965 /*
3966 * ow_inode might currently be an ancestor of
3967 * cur_ino, therefore compute valid_path (the
3968 * current path of cur_ino) again because it
3969 * might contain the pre-orphanization name of
3970 * ow_inode, which is no longer valid.
3971 */
3972 ret = is_ancestor(sctx->parent_root,
3973 ow_inode, ow_gen,
3974 sctx->cur_ino, NULL);
3975 if (ret > 0) {
3976 orphanized_ancestor = true;
3977 fs_path_reset(valid_path);
3978 ret = get_cur_path(sctx, sctx->cur_ino,
3979 sctx->cur_inode_gen,
3980 valid_path);
3981 }
3982 if (ret < 0)
3983 goto out;
3984 } else {
3985 ret = send_unlink(sctx, cur->full_path);
3986 if (ret < 0)
3987 goto out;
3988 }
3989 }
3990
3991 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3992 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3993 if (ret < 0)
3994 goto out;
3995 if (ret == 1) {
3996 can_rename = false;
3997 *pending_move = 1;
3998 }
3999 }
4000
4001 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4002 can_rename) {
4003 ret = wait_for_parent_move(sctx, cur, is_orphan);
4004 if (ret < 0)
4005 goto out;
4006 if (ret == 1) {
4007 can_rename = false;
4008 *pending_move = 1;
4009 }
4010 }
4011
4012 /*
4013 * link/move the ref to the new place. If we have an orphan
4014 * inode, move it and update valid_path. If not, link or move
4015 * it depending on the inode mode.
4016 */
4017 if (is_orphan && can_rename) {
4018 ret = send_rename(sctx, valid_path, cur->full_path);
4019 if (ret < 0)
4020 goto out;
4021 is_orphan = 0;
4022 ret = fs_path_copy(valid_path, cur->full_path);
4023 if (ret < 0)
4024 goto out;
4025 } else if (can_rename) {
4026 if (S_ISDIR(sctx->cur_inode_mode)) {
4027 /*
4028 * Dirs can't be linked, so move it. For moved
4029 * dirs, we always have one new and one deleted
4030 * ref. The deleted ref is ignored later.
4031 */
4032 ret = send_rename(sctx, valid_path,
4033 cur->full_path);
4034 if (!ret)
4035 ret = fs_path_copy(valid_path,
4036 cur->full_path);
4037 if (ret < 0)
4038 goto out;
4039 } else {
4040 /*
4041 * We might have previously orphanized an inode
4042 * which is an ancestor of our current inode,
4043 * so our reference's full path, which was
4044 * computed before any such orphanizations, must
4045 * be updated.
4046 */
4047 if (orphanized_dir) {
4048 ret = update_ref_path(sctx, cur);
4049 if (ret < 0)
4050 goto out;
4051 }
4052 ret = send_link(sctx, cur->full_path,
4053 valid_path);
4054 if (ret < 0)
4055 goto out;
4056 }
4057 }
4058 ret = dup_ref(cur, &check_dirs);
4059 if (ret < 0)
4060 goto out;
4061 }
4062
4063 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4064 /*
4065 * Check if we can already rmdir the directory. If not,
4066 * orphanize it. For every dir item inside that gets deleted
4067 * later, we do this check again and rmdir it then if possible.
4068 * See the use of check_dirs for more details.
4069 */
4070 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4071 sctx->cur_ino);
4072 if (ret < 0)
4073 goto out;
4074 if (ret) {
4075 ret = send_rmdir(sctx, valid_path);
4076 if (ret < 0)
4077 goto out;
4078 } else if (!is_orphan) {
4079 ret = orphanize_inode(sctx, sctx->cur_ino,
4080 sctx->cur_inode_gen, valid_path);
4081 if (ret < 0)
4082 goto out;
4083 is_orphan = 1;
4084 }
4085
4086 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4087 ret = dup_ref(cur, &check_dirs);
4088 if (ret < 0)
4089 goto out;
4090 }
4091 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4092 !list_empty(&sctx->deleted_refs)) {
4093 /*
4094 * We have a moved dir. Add the old parent to check_dirs
4095 */
4096 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4097 list);
4098 ret = dup_ref(cur, &check_dirs);
4099 if (ret < 0)
4100 goto out;
4101 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4102 /*
4103 * We have a non dir inode. Go through all deleted refs and
4104 * unlink them if they were not already overwritten by other
4105 * inodes.
4106 */
4107 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4108 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4109 sctx->cur_ino, sctx->cur_inode_gen,
4110 cur->name, cur->name_len);
4111 if (ret < 0)
4112 goto out;
4113 if (!ret) {
4114 /*
4115 * If we orphanized any ancestor before, we need
4116 * to recompute the full path for deleted names,
4117 * since any such path was computed before we
4118 * processed any references and orphanized any
4119 * ancestor inode.
4120 */
4121 if (orphanized_ancestor) {
4122 ret = update_ref_path(sctx, cur);
4123 if (ret < 0)
4124 goto out;
4125 }
4126 ret = send_unlink(sctx, cur->full_path);
4127 if (ret < 0)
4128 goto out;
4129 }
4130 ret = dup_ref(cur, &check_dirs);
4131 if (ret < 0)
4132 goto out;
4133 }
4134 /*
4135 * If the inode is still orphan, unlink the orphan. This may
4136 * happen when a previous inode did overwrite the first ref
4137 * of this inode and no new refs were added for the current
4138 * inode. Unlinking does not mean that the inode is deleted in
4139 * all cases. There may still be links to this inode in other
4140 * places.
4141 */
4142 if (is_orphan) {
4143 ret = send_unlink(sctx, valid_path);
4144 if (ret < 0)
4145 goto out;
4146 }
4147 }
4148
4149 /*
4150 * We did collect all parent dirs where cur_inode was once located. We
4151 * now go through all these dirs and check if they are pending for
4152 * deletion and if it's finally possible to perform the rmdir now.
4153 * We also update the inode stats of the parent dirs here.
4154 */
4155 list_for_each_entry(cur, &check_dirs, list) {
4156 /*
4157 * In case we had refs into dirs that were not processed yet,
4158 * we don't need to do the utime and rmdir logic for these dirs.
4159 * The dir will be processed later.
4160 */
4161 if (cur->dir > sctx->cur_ino)
4162 continue;
4163
4164 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4165 if (ret < 0)
4166 goto out;
4167
4168 if (ret == inode_state_did_create ||
4169 ret == inode_state_no_change) {
4170 /* TODO delayed utimes */
4171 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4172 if (ret < 0)
4173 goto out;
4174 } else if (ret == inode_state_did_delete &&
4175 cur->dir != last_dir_ino_rm) {
4176 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4177 sctx->cur_ino);
4178 if (ret < 0)
4179 goto out;
4180 if (ret) {
4181 ret = get_cur_path(sctx, cur->dir,
4182 cur->dir_gen, valid_path);
4183 if (ret < 0)
4184 goto out;
4185 ret = send_rmdir(sctx, valid_path);
4186 if (ret < 0)
4187 goto out;
4188 last_dir_ino_rm = cur->dir;
4189 }
4190 }
4191 }
4192
4193 ret = 0;
4194
4195 out:
4196 __free_recorded_refs(&check_dirs);
4197 free_recorded_refs(sctx);
4198 fs_path_free(valid_path);
4199 return ret;
4200 }
4201
4202 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
4203 struct fs_path *name, void *ctx, struct list_head *refs)
4204 {
4205 int ret = 0;
4206 struct send_ctx *sctx = ctx;
4207 struct fs_path *p;
4208 u64 gen;
4209
4210 p = fs_path_alloc();
4211 if (!p)
4212 return -ENOMEM;
4213
4214 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4215 NULL, NULL);
4216 if (ret < 0)
4217 goto out;
4218
4219 ret = get_cur_path(sctx, dir, gen, p);
4220 if (ret < 0)
4221 goto out;
4222 ret = fs_path_add_path(p, name);
4223 if (ret < 0)
4224 goto out;
4225
4226 ret = __record_ref(refs, dir, gen, p);
4227
4228 out:
4229 if (ret)
4230 fs_path_free(p);
4231 return ret;
4232 }
4233
4234 static int __record_new_ref(int num, u64 dir, int index,
4235 struct fs_path *name,
4236 void *ctx)
4237 {
4238 struct send_ctx *sctx = ctx;
4239 return record_ref(sctx->send_root, num, dir, index, name,
4240 ctx, &sctx->new_refs);
4241 }
4242
4243
4244 static int __record_deleted_ref(int num, u64 dir, int index,
4245 struct fs_path *name,
4246 void *ctx)
4247 {
4248 struct send_ctx *sctx = ctx;
4249 return record_ref(sctx->parent_root, num, dir, index, name,
4250 ctx, &sctx->deleted_refs);
4251 }
4252
4253 static int record_new_ref(struct send_ctx *sctx)
4254 {
4255 int ret;
4256
4257 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4258 sctx->cmp_key, 0, __record_new_ref, sctx);
4259 if (ret < 0)
4260 goto out;
4261 ret = 0;
4262
4263 out:
4264 return ret;
4265 }
4266
4267 static int record_deleted_ref(struct send_ctx *sctx)
4268 {
4269 int ret;
4270
4271 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4272 sctx->cmp_key, 0, __record_deleted_ref, sctx);
4273 if (ret < 0)
4274 goto out;
4275 ret = 0;
4276
4277 out:
4278 return ret;
4279 }
4280
4281 struct find_ref_ctx {
4282 u64 dir;
4283 u64 dir_gen;
4284 struct btrfs_root *root;
4285 struct fs_path *name;
4286 int found_idx;
4287 };
4288
4289 static int __find_iref(int num, u64 dir, int index,
4290 struct fs_path *name,
4291 void *ctx_)
4292 {
4293 struct find_ref_ctx *ctx = ctx_;
4294 u64 dir_gen;
4295 int ret;
4296
4297 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4298 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4299 /*
4300 * To avoid doing extra lookups we'll only do this if everything
4301 * else matches.
4302 */
4303 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4304 NULL, NULL, NULL);
4305 if (ret)
4306 return ret;
4307 if (dir_gen != ctx->dir_gen)
4308 return 0;
4309 ctx->found_idx = num;
4310 return 1;
4311 }
4312 return 0;
4313 }
4314
4315 static int find_iref(struct btrfs_root *root,
4316 struct btrfs_path *path,
4317 struct btrfs_key *key,
4318 u64 dir, u64 dir_gen, struct fs_path *name)
4319 {
4320 int ret;
4321 struct find_ref_ctx ctx;
4322
4323 ctx.dir = dir;
4324 ctx.name = name;
4325 ctx.dir_gen = dir_gen;
4326 ctx.found_idx = -1;
4327 ctx.root = root;
4328
4329 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4330 if (ret < 0)
4331 return ret;
4332
4333 if (ctx.found_idx == -1)
4334 return -ENOENT;
4335
4336 return ctx.found_idx;
4337 }
4338
4339 static int __record_changed_new_ref(int num, u64 dir, int index,
4340 struct fs_path *name,
4341 void *ctx)
4342 {
4343 u64 dir_gen;
4344 int ret;
4345 struct send_ctx *sctx = ctx;
4346
4347 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4348 NULL, NULL, NULL);
4349 if (ret)
4350 return ret;
4351
4352 ret = find_iref(sctx->parent_root, sctx->right_path,
4353 sctx->cmp_key, dir, dir_gen, name);
4354 if (ret == -ENOENT)
4355 ret = __record_new_ref(num, dir, index, name, sctx);
4356 else if (ret > 0)
4357 ret = 0;
4358
4359 return ret;
4360 }
4361
4362 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4363 struct fs_path *name,
4364 void *ctx)
4365 {
4366 u64 dir_gen;
4367 int ret;
4368 struct send_ctx *sctx = ctx;
4369
4370 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4371 NULL, NULL, NULL);
4372 if (ret)
4373 return ret;
4374
4375 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4376 dir, dir_gen, name);
4377 if (ret == -ENOENT)
4378 ret = __record_deleted_ref(num, dir, index, name, sctx);
4379 else if (ret > 0)
4380 ret = 0;
4381
4382 return ret;
4383 }
4384
4385 static int record_changed_ref(struct send_ctx *sctx)
4386 {
4387 int ret = 0;
4388
4389 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4390 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4391 if (ret < 0)
4392 goto out;
4393 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4394 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4395 if (ret < 0)
4396 goto out;
4397 ret = 0;
4398
4399 out:
4400 return ret;
4401 }
4402
4403 /*
4404 * Record and process all refs at once. Needed when an inode changes the
4405 * generation number, which means that it was deleted and recreated.
4406 */
4407 static int process_all_refs(struct send_ctx *sctx,
4408 enum btrfs_compare_tree_result cmd)
4409 {
4410 int ret;
4411 struct btrfs_root *root;
4412 struct btrfs_path *path;
4413 struct btrfs_key key;
4414 struct btrfs_key found_key;
4415 struct extent_buffer *eb;
4416 int slot;
4417 iterate_inode_ref_t cb;
4418 int pending_move = 0;
4419
4420 path = alloc_path_for_send();
4421 if (!path)
4422 return -ENOMEM;
4423
4424 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4425 root = sctx->send_root;
4426 cb = __record_new_ref;
4427 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4428 root = sctx->parent_root;
4429 cb = __record_deleted_ref;
4430 } else {
4431 btrfs_err(sctx->send_root->fs_info,
4432 "Wrong command %d in process_all_refs", cmd);
4433 ret = -EINVAL;
4434 goto out;
4435 }
4436
4437 key.objectid = sctx->cmp_key->objectid;
4438 key.type = BTRFS_INODE_REF_KEY;
4439 key.offset = 0;
4440 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4441 if (ret < 0)
4442 goto out;
4443
4444 while (1) {
4445 eb = path->nodes[0];
4446 slot = path->slots[0];
4447 if (slot >= btrfs_header_nritems(eb)) {
4448 ret = btrfs_next_leaf(root, path);
4449 if (ret < 0)
4450 goto out;
4451 else if (ret > 0)
4452 break;
4453 continue;
4454 }
4455
4456 btrfs_item_key_to_cpu(eb, &found_key, slot);
4457
4458 if (found_key.objectid != key.objectid ||
4459 (found_key.type != BTRFS_INODE_REF_KEY &&
4460 found_key.type != BTRFS_INODE_EXTREF_KEY))
4461 break;
4462
4463 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4464 if (ret < 0)
4465 goto out;
4466
4467 path->slots[0]++;
4468 }
4469 btrfs_release_path(path);
4470
4471 /*
4472 * We don't actually care about pending_move as we are simply
4473 * re-creating this inode and will be rename'ing it into place once we
4474 * rename the parent directory.
4475 */
4476 ret = process_recorded_refs(sctx, &pending_move);
4477 out:
4478 btrfs_free_path(path);
4479 return ret;
4480 }
4481
4482 static int send_set_xattr(struct send_ctx *sctx,
4483 struct fs_path *path,
4484 const char *name, int name_len,
4485 const char *data, int data_len)
4486 {
4487 int ret = 0;
4488
4489 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4490 if (ret < 0)
4491 goto out;
4492
4493 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4494 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4495 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4496
4497 ret = send_cmd(sctx);
4498
4499 tlv_put_failure:
4500 out:
4501 return ret;
4502 }
4503
4504 static int send_remove_xattr(struct send_ctx *sctx,
4505 struct fs_path *path,
4506 const char *name, int name_len)
4507 {
4508 int ret = 0;
4509
4510 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4511 if (ret < 0)
4512 goto out;
4513
4514 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4515 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4516
4517 ret = send_cmd(sctx);
4518
4519 tlv_put_failure:
4520 out:
4521 return ret;
4522 }
4523
4524 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4525 const char *name, int name_len,
4526 const char *data, int data_len,
4527 u8 type, void *ctx)
4528 {
4529 int ret;
4530 struct send_ctx *sctx = ctx;
4531 struct fs_path *p;
4532 struct posix_acl_xattr_header dummy_acl;
4533
4534 p = fs_path_alloc();
4535 if (!p)
4536 return -ENOMEM;
4537
4538 /*
4539 * This hack is needed because empty acls are stored as zero byte
4540 * data in xattrs. Problem with that is, that receiving these zero byte
4541 * acls will fail later. To fix this, we send a dummy acl list that
4542 * only contains the version number and no entries.
4543 */
4544 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4545 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4546 if (data_len == 0) {
4547 dummy_acl.a_version =
4548 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4549 data = (char *)&dummy_acl;
4550 data_len = sizeof(dummy_acl);
4551 }
4552 }
4553
4554 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4555 if (ret < 0)
4556 goto out;
4557
4558 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4559
4560 out:
4561 fs_path_free(p);
4562 return ret;
4563 }
4564
4565 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4566 const char *name, int name_len,
4567 const char *data, int data_len,
4568 u8 type, void *ctx)
4569 {
4570 int ret;
4571 struct send_ctx *sctx = ctx;
4572 struct fs_path *p;
4573
4574 p = fs_path_alloc();
4575 if (!p)
4576 return -ENOMEM;
4577
4578 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4579 if (ret < 0)
4580 goto out;
4581
4582 ret = send_remove_xattr(sctx, p, name, name_len);
4583
4584 out:
4585 fs_path_free(p);
4586 return ret;
4587 }
4588
4589 static int process_new_xattr(struct send_ctx *sctx)
4590 {
4591 int ret = 0;
4592
4593 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4594 sctx->cmp_key, __process_new_xattr, sctx);
4595
4596 return ret;
4597 }
4598
4599 static int process_deleted_xattr(struct send_ctx *sctx)
4600 {
4601 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4602 sctx->cmp_key, __process_deleted_xattr, sctx);
4603 }
4604
4605 struct find_xattr_ctx {
4606 const char *name;
4607 int name_len;
4608 int found_idx;
4609 char *found_data;
4610 int found_data_len;
4611 };
4612
4613 static int __find_xattr(int num, struct btrfs_key *di_key,
4614 const char *name, int name_len,
4615 const char *data, int data_len,
4616 u8 type, void *vctx)
4617 {
4618 struct find_xattr_ctx *ctx = vctx;
4619
4620 if (name_len == ctx->name_len &&
4621 strncmp(name, ctx->name, name_len) == 0) {
4622 ctx->found_idx = num;
4623 ctx->found_data_len = data_len;
4624 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4625 if (!ctx->found_data)
4626 return -ENOMEM;
4627 return 1;
4628 }
4629 return 0;
4630 }
4631
4632 static int find_xattr(struct btrfs_root *root,
4633 struct btrfs_path *path,
4634 struct btrfs_key *key,
4635 const char *name, int name_len,
4636 char **data, int *data_len)
4637 {
4638 int ret;
4639 struct find_xattr_ctx ctx;
4640
4641 ctx.name = name;
4642 ctx.name_len = name_len;
4643 ctx.found_idx = -1;
4644 ctx.found_data = NULL;
4645 ctx.found_data_len = 0;
4646
4647 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4648 if (ret < 0)
4649 return ret;
4650
4651 if (ctx.found_idx == -1)
4652 return -ENOENT;
4653 if (data) {
4654 *data = ctx.found_data;
4655 *data_len = ctx.found_data_len;
4656 } else {
4657 kfree(ctx.found_data);
4658 }
4659 return ctx.found_idx;
4660 }
4661
4662
4663 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4664 const char *name, int name_len,
4665 const char *data, int data_len,
4666 u8 type, void *ctx)
4667 {
4668 int ret;
4669 struct send_ctx *sctx = ctx;
4670 char *found_data = NULL;
4671 int found_data_len = 0;
4672
4673 ret = find_xattr(sctx->parent_root, sctx->right_path,
4674 sctx->cmp_key, name, name_len, &found_data,
4675 &found_data_len);
4676 if (ret == -ENOENT) {
4677 ret = __process_new_xattr(num, di_key, name, name_len, data,
4678 data_len, type, ctx);
4679 } else if (ret >= 0) {
4680 if (data_len != found_data_len ||
4681 memcmp(data, found_data, data_len)) {
4682 ret = __process_new_xattr(num, di_key, name, name_len,
4683 data, data_len, type, ctx);
4684 } else {
4685 ret = 0;
4686 }
4687 }
4688
4689 kfree(found_data);
4690 return ret;
4691 }
4692
4693 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4694 const char *name, int name_len,
4695 const char *data, int data_len,
4696 u8 type, void *ctx)
4697 {
4698 int ret;
4699 struct send_ctx *sctx = ctx;
4700
4701 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4702 name, name_len, NULL, NULL);
4703 if (ret == -ENOENT)
4704 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4705 data_len, type, ctx);
4706 else if (ret >= 0)
4707 ret = 0;
4708
4709 return ret;
4710 }
4711
4712 static int process_changed_xattr(struct send_ctx *sctx)
4713 {
4714 int ret = 0;
4715
4716 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4717 sctx->cmp_key, __process_changed_new_xattr, sctx);
4718 if (ret < 0)
4719 goto out;
4720 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4721 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4722
4723 out:
4724 return ret;
4725 }
4726
4727 static int process_all_new_xattrs(struct send_ctx *sctx)
4728 {
4729 int ret;
4730 struct btrfs_root *root;
4731 struct btrfs_path *path;
4732 struct btrfs_key key;
4733 struct btrfs_key found_key;
4734 struct extent_buffer *eb;
4735 int slot;
4736
4737 path = alloc_path_for_send();
4738 if (!path)
4739 return -ENOMEM;
4740
4741 root = sctx->send_root;
4742
4743 key.objectid = sctx->cmp_key->objectid;
4744 key.type = BTRFS_XATTR_ITEM_KEY;
4745 key.offset = 0;
4746 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4747 if (ret < 0)
4748 goto out;
4749
4750 while (1) {
4751 eb = path->nodes[0];
4752 slot = path->slots[0];
4753 if (slot >= btrfs_header_nritems(eb)) {
4754 ret = btrfs_next_leaf(root, path);
4755 if (ret < 0) {
4756 goto out;
4757 } else if (ret > 0) {
4758 ret = 0;
4759 break;
4760 }
4761 continue;
4762 }
4763
4764 btrfs_item_key_to_cpu(eb, &found_key, slot);
4765 if (found_key.objectid != key.objectid ||
4766 found_key.type != key.type) {
4767 ret = 0;
4768 goto out;
4769 }
4770
4771 ret = iterate_dir_item(root, path, &found_key,
4772 __process_new_xattr, sctx);
4773 if (ret < 0)
4774 goto out;
4775
4776 path->slots[0]++;
4777 }
4778
4779 out:
4780 btrfs_free_path(path);
4781 return ret;
4782 }
4783
4784 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4785 {
4786 struct btrfs_root *root = sctx->send_root;
4787 struct btrfs_fs_info *fs_info = root->fs_info;
4788 struct inode *inode;
4789 struct page *page;
4790 char *addr;
4791 struct btrfs_key key;
4792 pgoff_t index = offset >> PAGE_SHIFT;
4793 pgoff_t last_index;
4794 unsigned pg_offset = offset & ~PAGE_MASK;
4795 ssize_t ret = 0;
4796
4797 key.objectid = sctx->cur_ino;
4798 key.type = BTRFS_INODE_ITEM_KEY;
4799 key.offset = 0;
4800
4801 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4802 if (IS_ERR(inode))
4803 return PTR_ERR(inode);
4804
4805 if (offset + len > i_size_read(inode)) {
4806 if (offset > i_size_read(inode))
4807 len = 0;
4808 else
4809 len = offset - i_size_read(inode);
4810 }
4811 if (len == 0)
4812 goto out;
4813
4814 last_index = (offset + len - 1) >> PAGE_SHIFT;
4815
4816 /* initial readahead */
4817 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4818 file_ra_state_init(&sctx->ra, inode->i_mapping);
4819 page_cache_sync_readahead(inode->i_mapping, &sctx->ra, NULL, index,
4820 last_index - index + 1);
4821
4822 while (index <= last_index) {
4823 unsigned cur_len = min_t(unsigned, len,
4824 PAGE_SIZE - pg_offset);
4825 page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL);
4826 if (!page) {
4827 ret = -ENOMEM;
4828 break;
4829 }
4830
4831 if (!PageUptodate(page)) {
4832 btrfs_readpage(NULL, page);
4833 lock_page(page);
4834 if (!PageUptodate(page)) {
4835 unlock_page(page);
4836 put_page(page);
4837 ret = -EIO;
4838 break;
4839 }
4840 }
4841
4842 addr = kmap(page);
4843 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4844 kunmap(page);
4845 unlock_page(page);
4846 put_page(page);
4847 index++;
4848 pg_offset = 0;
4849 len -= cur_len;
4850 ret += cur_len;
4851 }
4852 out:
4853 iput(inode);
4854 return ret;
4855 }
4856
4857 /*
4858 * Read some bytes from the current inode/file and send a write command to
4859 * user space.
4860 */
4861 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4862 {
4863 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4864 int ret = 0;
4865 struct fs_path *p;
4866 ssize_t num_read = 0;
4867
4868 p = fs_path_alloc();
4869 if (!p)
4870 return -ENOMEM;
4871
4872 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4873
4874 num_read = fill_read_buf(sctx, offset, len);
4875 if (num_read <= 0) {
4876 if (num_read < 0)
4877 ret = num_read;
4878 goto out;
4879 }
4880
4881 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4882 if (ret < 0)
4883 goto out;
4884
4885 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4886 if (ret < 0)
4887 goto out;
4888
4889 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4890 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4891 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4892
4893 ret = send_cmd(sctx);
4894
4895 tlv_put_failure:
4896 out:
4897 fs_path_free(p);
4898 if (ret < 0)
4899 return ret;
4900 return num_read;
4901 }
4902
4903 /*
4904 * Send a clone command to user space.
4905 */
4906 static int send_clone(struct send_ctx *sctx,
4907 u64 offset, u32 len,
4908 struct clone_root *clone_root)
4909 {
4910 int ret = 0;
4911 struct fs_path *p;
4912 u64 gen;
4913
4914 btrfs_debug(sctx->send_root->fs_info,
4915 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4916 offset, len, clone_root->root->objectid, clone_root->ino,
4917 clone_root->offset);
4918
4919 p = fs_path_alloc();
4920 if (!p)
4921 return -ENOMEM;
4922
4923 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4924 if (ret < 0)
4925 goto out;
4926
4927 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4928 if (ret < 0)
4929 goto out;
4930
4931 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4932 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4933 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4934
4935 if (clone_root->root == sctx->send_root) {
4936 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4937 &gen, NULL, NULL, NULL, NULL);
4938 if (ret < 0)
4939 goto out;
4940 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4941 } else {
4942 ret = get_inode_path(clone_root->root, clone_root->ino, p);
4943 }
4944 if (ret < 0)
4945 goto out;
4946
4947 /*
4948 * If the parent we're using has a received_uuid set then use that as
4949 * our clone source as that is what we will look for when doing a
4950 * receive.
4951 *
4952 * This covers the case that we create a snapshot off of a received
4953 * subvolume and then use that as the parent and try to receive on a
4954 * different host.
4955 */
4956 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4957 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4958 clone_root->root->root_item.received_uuid);
4959 else
4960 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4961 clone_root->root->root_item.uuid);
4962 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4963 le64_to_cpu(clone_root->root->root_item.ctransid));
4964 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4965 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4966 clone_root->offset);
4967
4968 ret = send_cmd(sctx);
4969
4970 tlv_put_failure:
4971 out:
4972 fs_path_free(p);
4973 return ret;
4974 }
4975
4976 /*
4977 * Send an update extent command to user space.
4978 */
4979 static int send_update_extent(struct send_ctx *sctx,
4980 u64 offset, u32 len)
4981 {
4982 int ret = 0;
4983 struct fs_path *p;
4984
4985 p = fs_path_alloc();
4986 if (!p)
4987 return -ENOMEM;
4988
4989 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4990 if (ret < 0)
4991 goto out;
4992
4993 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4994 if (ret < 0)
4995 goto out;
4996
4997 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4998 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4999 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5000
5001 ret = send_cmd(sctx);
5002
5003 tlv_put_failure:
5004 out:
5005 fs_path_free(p);
5006 return ret;
5007 }
5008
5009 static int send_hole(struct send_ctx *sctx, u64 end)
5010 {
5011 struct fs_path *p = NULL;
5012 u64 offset = sctx->cur_inode_last_extent;
5013 u64 len;
5014 int ret = 0;
5015
5016 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5017 return send_update_extent(sctx, offset, end - offset);
5018
5019 p = fs_path_alloc();
5020 if (!p)
5021 return -ENOMEM;
5022 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5023 if (ret < 0)
5024 goto tlv_put_failure;
5025 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
5026 while (offset < end) {
5027 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
5028
5029 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5030 if (ret < 0)
5031 break;
5032 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5033 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5034 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
5035 ret = send_cmd(sctx);
5036 if (ret < 0)
5037 break;
5038 offset += len;
5039 }
5040 tlv_put_failure:
5041 fs_path_free(p);
5042 return ret;
5043 }
5044
5045 static int send_extent_data(struct send_ctx *sctx,
5046 const u64 offset,
5047 const u64 len)
5048 {
5049 u64 sent = 0;
5050
5051 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5052 return send_update_extent(sctx, offset, len);
5053
5054 while (sent < len) {
5055 u64 size = len - sent;
5056 int ret;
5057
5058 if (size > BTRFS_SEND_READ_SIZE)
5059 size = BTRFS_SEND_READ_SIZE;
5060 ret = send_write(sctx, offset + sent, size);
5061 if (ret < 0)
5062 return ret;
5063 if (!ret)
5064 break;
5065 sent += ret;
5066 }
5067 return 0;
5068 }
5069
5070 static int clone_range(struct send_ctx *sctx,
5071 struct clone_root *clone_root,
5072 const u64 disk_byte,
5073 u64 data_offset,
5074 u64 offset,
5075 u64 len)
5076 {
5077 struct btrfs_path *path;
5078 struct btrfs_key key;
5079 int ret;
5080
5081 /*
5082 * Prevent cloning from a zero offset with a length matching the sector
5083 * size because in some scenarios this will make the receiver fail.
5084 *
5085 * For example, if in the source filesystem the extent at offset 0
5086 * has a length of sectorsize and it was written using direct IO, then
5087 * it can never be an inline extent (even if compression is enabled).
5088 * Then this extent can be cloned in the original filesystem to a non
5089 * zero file offset, but it may not be possible to clone in the
5090 * destination filesystem because it can be inlined due to compression
5091 * on the destination filesystem (as the receiver's write operations are
5092 * always done using buffered IO). The same happens when the original
5093 * filesystem does not have compression enabled but the destination
5094 * filesystem has.
5095 */
5096 if (clone_root->offset == 0 &&
5097 len == sctx->send_root->fs_info->sectorsize)
5098 return send_extent_data(sctx, offset, len);
5099
5100 path = alloc_path_for_send();
5101 if (!path)
5102 return -ENOMEM;
5103
5104 /*
5105 * We can't send a clone operation for the entire range if we find
5106 * extent items in the respective range in the source file that
5107 * refer to different extents or if we find holes.
5108 * So check for that and do a mix of clone and regular write/copy
5109 * operations if needed.
5110 *
5111 * Example:
5112 *
5113 * mkfs.btrfs -f /dev/sda
5114 * mount /dev/sda /mnt
5115 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5116 * cp --reflink=always /mnt/foo /mnt/bar
5117 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5118 * btrfs subvolume snapshot -r /mnt /mnt/snap
5119 *
5120 * If when we send the snapshot and we are processing file bar (which
5121 * has a higher inode number than foo) we blindly send a clone operation
5122 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5123 * a file bar that matches the content of file foo - iow, doesn't match
5124 * the content from bar in the original filesystem.
5125 */
5126 key.objectid = clone_root->ino;
5127 key.type = BTRFS_EXTENT_DATA_KEY;
5128 key.offset = clone_root->offset;
5129 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5130 if (ret < 0)
5131 goto out;
5132 if (ret > 0 && path->slots[0] > 0) {
5133 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5134 if (key.objectid == clone_root->ino &&
5135 key.type == BTRFS_EXTENT_DATA_KEY)
5136 path->slots[0]--;
5137 }
5138
5139 while (true) {
5140 struct extent_buffer *leaf = path->nodes[0];
5141 int slot = path->slots[0];
5142 struct btrfs_file_extent_item *ei;
5143 u8 type;
5144 u64 ext_len;
5145 u64 clone_len;
5146
5147 if (slot >= btrfs_header_nritems(leaf)) {
5148 ret = btrfs_next_leaf(clone_root->root, path);
5149 if (ret < 0)
5150 goto out;
5151 else if (ret > 0)
5152 break;
5153 continue;
5154 }
5155
5156 btrfs_item_key_to_cpu(leaf, &key, slot);
5157
5158 /*
5159 * We might have an implicit trailing hole (NO_HOLES feature
5160 * enabled). We deal with it after leaving this loop.
5161 */
5162 if (key.objectid != clone_root->ino ||
5163 key.type != BTRFS_EXTENT_DATA_KEY)
5164 break;
5165
5166 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5167 type = btrfs_file_extent_type(leaf, ei);
5168 if (type == BTRFS_FILE_EXTENT_INLINE) {
5169 ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
5170 ext_len = PAGE_ALIGN(ext_len);
5171 } else {
5172 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5173 }
5174
5175 if (key.offset + ext_len <= clone_root->offset)
5176 goto next;
5177
5178 if (key.offset > clone_root->offset) {
5179 /* Implicit hole, NO_HOLES feature enabled. */
5180 u64 hole_len = key.offset - clone_root->offset;
5181
5182 if (hole_len > len)
5183 hole_len = len;
5184 ret = send_extent_data(sctx, offset, hole_len);
5185 if (ret < 0)
5186 goto out;
5187
5188 len -= hole_len;
5189 if (len == 0)
5190 break;
5191 offset += hole_len;
5192 clone_root->offset += hole_len;
5193 data_offset += hole_len;
5194 }
5195
5196 if (key.offset >= clone_root->offset + len)
5197 break;
5198
5199 clone_len = min_t(u64, ext_len, len);
5200
5201 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5202 btrfs_file_extent_offset(leaf, ei) == data_offset)
5203 ret = send_clone(sctx, offset, clone_len, clone_root);
5204 else
5205 ret = send_extent_data(sctx, offset, clone_len);
5206
5207 if (ret < 0)
5208 goto out;
5209
5210 len -= clone_len;
5211 if (len == 0)
5212 break;
5213 offset += clone_len;
5214 clone_root->offset += clone_len;
5215 data_offset += clone_len;
5216 next:
5217 path->slots[0]++;
5218 }
5219
5220 if (len > 0)
5221 ret = send_extent_data(sctx, offset, len);
5222 else
5223 ret = 0;
5224 out:
5225 btrfs_free_path(path);
5226 return ret;
5227 }
5228
5229 static int send_write_or_clone(struct send_ctx *sctx,
5230 struct btrfs_path *path,
5231 struct btrfs_key *key,
5232 struct clone_root *clone_root)
5233 {
5234 int ret = 0;
5235 struct btrfs_file_extent_item *ei;
5236 u64 offset = key->offset;
5237 u64 len;
5238 u8 type;
5239 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5240
5241 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5242 struct btrfs_file_extent_item);
5243 type = btrfs_file_extent_type(path->nodes[0], ei);
5244 if (type == BTRFS_FILE_EXTENT_INLINE) {
5245 len = btrfs_file_extent_inline_len(path->nodes[0],
5246 path->slots[0], ei);
5247 /*
5248 * it is possible the inline item won't cover the whole page,
5249 * but there may be items after this page. Make
5250 * sure to send the whole thing
5251 */
5252 len = PAGE_ALIGN(len);
5253 } else {
5254 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5255 }
5256
5257 if (offset + len > sctx->cur_inode_size)
5258 len = sctx->cur_inode_size - offset;
5259 if (len == 0) {
5260 ret = 0;
5261 goto out;
5262 }
5263
5264 if (clone_root && IS_ALIGNED(offset + len, bs)) {
5265 u64 disk_byte;
5266 u64 data_offset;
5267
5268 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5269 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5270 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5271 offset, len);
5272 } else {
5273 ret = send_extent_data(sctx, offset, len);
5274 }
5275 out:
5276 return ret;
5277 }
5278
5279 static int is_extent_unchanged(struct send_ctx *sctx,
5280 struct btrfs_path *left_path,
5281 struct btrfs_key *ekey)
5282 {
5283 int ret = 0;
5284 struct btrfs_key key;
5285 struct btrfs_path *path = NULL;
5286 struct extent_buffer *eb;
5287 int slot;
5288 struct btrfs_key found_key;
5289 struct btrfs_file_extent_item *ei;
5290 u64 left_disknr;
5291 u64 right_disknr;
5292 u64 left_offset;
5293 u64 right_offset;
5294 u64 left_offset_fixed;
5295 u64 left_len;
5296 u64 right_len;
5297 u64 left_gen;
5298 u64 right_gen;
5299 u8 left_type;
5300 u8 right_type;
5301
5302 path = alloc_path_for_send();
5303 if (!path)
5304 return -ENOMEM;
5305
5306 eb = left_path->nodes[0];
5307 slot = left_path->slots[0];
5308 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5309 left_type = btrfs_file_extent_type(eb, ei);
5310
5311 if (left_type != BTRFS_FILE_EXTENT_REG) {
5312 ret = 0;
5313 goto out;
5314 }
5315 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5316 left_len = btrfs_file_extent_num_bytes(eb, ei);
5317 left_offset = btrfs_file_extent_offset(eb, ei);
5318 left_gen = btrfs_file_extent_generation(eb, ei);
5319
5320 /*
5321 * Following comments will refer to these graphics. L is the left
5322 * extents which we are checking at the moment. 1-8 are the right
5323 * extents that we iterate.
5324 *
5325 * |-----L-----|
5326 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5327 *
5328 * |-----L-----|
5329 * |--1--|-2b-|...(same as above)
5330 *
5331 * Alternative situation. Happens on files where extents got split.
5332 * |-----L-----|
5333 * |-----------7-----------|-6-|
5334 *
5335 * Alternative situation. Happens on files which got larger.
5336 * |-----L-----|
5337 * |-8-|
5338 * Nothing follows after 8.
5339 */
5340
5341 key.objectid = ekey->objectid;
5342 key.type = BTRFS_EXTENT_DATA_KEY;
5343 key.offset = ekey->offset;
5344 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5345 if (ret < 0)
5346 goto out;
5347 if (ret) {
5348 ret = 0;
5349 goto out;
5350 }
5351
5352 /*
5353 * Handle special case where the right side has no extents at all.
5354 */
5355 eb = path->nodes[0];
5356 slot = path->slots[0];
5357 btrfs_item_key_to_cpu(eb, &found_key, slot);
5358 if (found_key.objectid != key.objectid ||
5359 found_key.type != key.type) {
5360 /* If we're a hole then just pretend nothing changed */
5361 ret = (left_disknr) ? 0 : 1;
5362 goto out;
5363 }
5364
5365 /*
5366 * We're now on 2a, 2b or 7.
5367 */
5368 key = found_key;
5369 while (key.offset < ekey->offset + left_len) {
5370 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5371 right_type = btrfs_file_extent_type(eb, ei);
5372 if (right_type != BTRFS_FILE_EXTENT_REG &&
5373 right_type != BTRFS_FILE_EXTENT_INLINE) {
5374 ret = 0;
5375 goto out;
5376 }
5377
5378 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5379 right_len = btrfs_file_extent_inline_len(eb, slot, ei);
5380 right_len = PAGE_ALIGN(right_len);
5381 } else {
5382 right_len = btrfs_file_extent_num_bytes(eb, ei);
5383 }
5384
5385 /*
5386 * Are we at extent 8? If yes, we know the extent is changed.
5387 * This may only happen on the first iteration.
5388 */
5389 if (found_key.offset + right_len <= ekey->offset) {
5390 /* If we're a hole just pretend nothing changed */
5391 ret = (left_disknr) ? 0 : 1;
5392 goto out;
5393 }
5394
5395 /*
5396 * We just wanted to see if when we have an inline extent, what
5397 * follows it is a regular extent (wanted to check the above
5398 * condition for inline extents too). This should normally not
5399 * happen but it's possible for example when we have an inline
5400 * compressed extent representing data with a size matching
5401 * the page size (currently the same as sector size).
5402 */
5403 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5404 ret = 0;
5405 goto out;
5406 }
5407
5408 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5409 right_offset = btrfs_file_extent_offset(eb, ei);
5410 right_gen = btrfs_file_extent_generation(eb, ei);
5411
5412 left_offset_fixed = left_offset;
5413 if (key.offset < ekey->offset) {
5414 /* Fix the right offset for 2a and 7. */
5415 right_offset += ekey->offset - key.offset;
5416 } else {
5417 /* Fix the left offset for all behind 2a and 2b */
5418 left_offset_fixed += key.offset - ekey->offset;
5419 }
5420
5421 /*
5422 * Check if we have the same extent.
5423 */
5424 if (left_disknr != right_disknr ||
5425 left_offset_fixed != right_offset ||
5426 left_gen != right_gen) {
5427 ret = 0;
5428 goto out;
5429 }
5430
5431 /*
5432 * Go to the next extent.
5433 */
5434 ret = btrfs_next_item(sctx->parent_root, path);
5435 if (ret < 0)
5436 goto out;
5437 if (!ret) {
5438 eb = path->nodes[0];
5439 slot = path->slots[0];
5440 btrfs_item_key_to_cpu(eb, &found_key, slot);
5441 }
5442 if (ret || found_key.objectid != key.objectid ||
5443 found_key.type != key.type) {
5444 key.offset += right_len;
5445 break;
5446 }
5447 if (found_key.offset != key.offset + right_len) {
5448 ret = 0;
5449 goto out;
5450 }
5451 key = found_key;
5452 }
5453
5454 /*
5455 * We're now behind the left extent (treat as unchanged) or at the end
5456 * of the right side (treat as changed).
5457 */
5458 if (key.offset >= ekey->offset + left_len)
5459 ret = 1;
5460 else
5461 ret = 0;
5462
5463
5464 out:
5465 btrfs_free_path(path);
5466 return ret;
5467 }
5468
5469 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5470 {
5471 struct btrfs_path *path;
5472 struct btrfs_root *root = sctx->send_root;
5473 struct btrfs_file_extent_item *fi;
5474 struct btrfs_key key;
5475 u64 extent_end;
5476 u8 type;
5477 int ret;
5478
5479 path = alloc_path_for_send();
5480 if (!path)
5481 return -ENOMEM;
5482
5483 sctx->cur_inode_last_extent = 0;
5484
5485 key.objectid = sctx->cur_ino;
5486 key.type = BTRFS_EXTENT_DATA_KEY;
5487 key.offset = offset;
5488 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5489 if (ret < 0)
5490 goto out;
5491 ret = 0;
5492 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5493 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5494 goto out;
5495
5496 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5497 struct btrfs_file_extent_item);
5498 type = btrfs_file_extent_type(path->nodes[0], fi);
5499 if (type == BTRFS_FILE_EXTENT_INLINE) {
5500 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5501 path->slots[0], fi);
5502 extent_end = ALIGN(key.offset + size,
5503 sctx->send_root->fs_info->sectorsize);
5504 } else {
5505 extent_end = key.offset +
5506 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5507 }
5508 sctx->cur_inode_last_extent = extent_end;
5509 out:
5510 btrfs_free_path(path);
5511 return ret;
5512 }
5513
5514 static int range_is_hole_in_parent(struct send_ctx *sctx,
5515 const u64 start,
5516 const u64 end)
5517 {
5518 struct btrfs_path *path;
5519 struct btrfs_key key;
5520 struct btrfs_root *root = sctx->parent_root;
5521 u64 search_start = start;
5522 int ret;
5523
5524 path = alloc_path_for_send();
5525 if (!path)
5526 return -ENOMEM;
5527
5528 key.objectid = sctx->cur_ino;
5529 key.type = BTRFS_EXTENT_DATA_KEY;
5530 key.offset = search_start;
5531 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5532 if (ret < 0)
5533 goto out;
5534 if (ret > 0 && path->slots[0] > 0)
5535 path->slots[0]--;
5536
5537 while (search_start < end) {
5538 struct extent_buffer *leaf = path->nodes[0];
5539 int slot = path->slots[0];
5540 struct btrfs_file_extent_item *fi;
5541 u64 extent_end;
5542
5543 if (slot >= btrfs_header_nritems(leaf)) {
5544 ret = btrfs_next_leaf(root, path);
5545 if (ret < 0)
5546 goto out;
5547 else if (ret > 0)
5548 break;
5549 continue;
5550 }
5551
5552 btrfs_item_key_to_cpu(leaf, &key, slot);
5553 if (key.objectid < sctx->cur_ino ||
5554 key.type < BTRFS_EXTENT_DATA_KEY)
5555 goto next;
5556 if (key.objectid > sctx->cur_ino ||
5557 key.type > BTRFS_EXTENT_DATA_KEY ||
5558 key.offset >= end)
5559 break;
5560
5561 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5562 if (btrfs_file_extent_type(leaf, fi) ==
5563 BTRFS_FILE_EXTENT_INLINE) {
5564 u64 size = btrfs_file_extent_inline_len(leaf, slot, fi);
5565
5566 extent_end = ALIGN(key.offset + size,
5567 root->fs_info->sectorsize);
5568 } else {
5569 extent_end = key.offset +
5570 btrfs_file_extent_num_bytes(leaf, fi);
5571 }
5572 if (extent_end <= start)
5573 goto next;
5574 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5575 search_start = extent_end;
5576 goto next;
5577 }
5578 ret = 0;
5579 goto out;
5580 next:
5581 path->slots[0]++;
5582 }
5583 ret = 1;
5584 out:
5585 btrfs_free_path(path);
5586 return ret;
5587 }
5588
5589 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5590 struct btrfs_key *key)
5591 {
5592 struct btrfs_file_extent_item *fi;
5593 u64 extent_end;
5594 u8 type;
5595 int ret = 0;
5596
5597 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5598 return 0;
5599
5600 if (sctx->cur_inode_last_extent == (u64)-1) {
5601 ret = get_last_extent(sctx, key->offset - 1);
5602 if (ret)
5603 return ret;
5604 }
5605
5606 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5607 struct btrfs_file_extent_item);
5608 type = btrfs_file_extent_type(path->nodes[0], fi);
5609 if (type == BTRFS_FILE_EXTENT_INLINE) {
5610 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5611 path->slots[0], fi);
5612 extent_end = ALIGN(key->offset + size,
5613 sctx->send_root->fs_info->sectorsize);
5614 } else {
5615 extent_end = key->offset +
5616 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5617 }
5618
5619 if (path->slots[0] == 0 &&
5620 sctx->cur_inode_last_extent < key->offset) {
5621 /*
5622 * We might have skipped entire leafs that contained only
5623 * file extent items for our current inode. These leafs have
5624 * a generation number smaller (older) than the one in the
5625 * current leaf and the leaf our last extent came from, and
5626 * are located between these 2 leafs.
5627 */
5628 ret = get_last_extent(sctx, key->offset - 1);
5629 if (ret)
5630 return ret;
5631 }
5632
5633 if (sctx->cur_inode_last_extent < key->offset) {
5634 ret = range_is_hole_in_parent(sctx,
5635 sctx->cur_inode_last_extent,
5636 key->offset);
5637 if (ret < 0)
5638 return ret;
5639 else if (ret == 0)
5640 ret = send_hole(sctx, key->offset);
5641 else
5642 ret = 0;
5643 }
5644 sctx->cur_inode_last_extent = extent_end;
5645 return ret;
5646 }
5647
5648 static int process_extent(struct send_ctx *sctx,
5649 struct btrfs_path *path,
5650 struct btrfs_key *key)
5651 {
5652 struct clone_root *found_clone = NULL;
5653 int ret = 0;
5654
5655 if (S_ISLNK(sctx->cur_inode_mode))
5656 return 0;
5657
5658 if (sctx->parent_root && !sctx->cur_inode_new) {
5659 ret = is_extent_unchanged(sctx, path, key);
5660 if (ret < 0)
5661 goto out;
5662 if (ret) {
5663 ret = 0;
5664 goto out_hole;
5665 }
5666 } else {
5667 struct btrfs_file_extent_item *ei;
5668 u8 type;
5669
5670 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5671 struct btrfs_file_extent_item);
5672 type = btrfs_file_extent_type(path->nodes[0], ei);
5673 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5674 type == BTRFS_FILE_EXTENT_REG) {
5675 /*
5676 * The send spec does not have a prealloc command yet,
5677 * so just leave a hole for prealloc'ed extents until
5678 * we have enough commands queued up to justify rev'ing
5679 * the send spec.
5680 */
5681 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5682 ret = 0;
5683 goto out;
5684 }
5685
5686 /* Have a hole, just skip it. */
5687 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5688 ret = 0;
5689 goto out;
5690 }
5691 }
5692 }
5693
5694 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5695 sctx->cur_inode_size, &found_clone);
5696 if (ret != -ENOENT && ret < 0)
5697 goto out;
5698
5699 ret = send_write_or_clone(sctx, path, key, found_clone);
5700 if (ret)
5701 goto out;
5702 out_hole:
5703 ret = maybe_send_hole(sctx, path, key);
5704 out:
5705 return ret;
5706 }
5707
5708 static int process_all_extents(struct send_ctx *sctx)
5709 {
5710 int ret;
5711 struct btrfs_root *root;
5712 struct btrfs_path *path;
5713 struct btrfs_key key;
5714 struct btrfs_key found_key;
5715 struct extent_buffer *eb;
5716 int slot;
5717
5718 root = sctx->send_root;
5719 path = alloc_path_for_send();
5720 if (!path)
5721 return -ENOMEM;
5722
5723 key.objectid = sctx->cmp_key->objectid;
5724 key.type = BTRFS_EXTENT_DATA_KEY;
5725 key.offset = 0;
5726 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5727 if (ret < 0)
5728 goto out;
5729
5730 while (1) {
5731 eb = path->nodes[0];
5732 slot = path->slots[0];
5733
5734 if (slot >= btrfs_header_nritems(eb)) {
5735 ret = btrfs_next_leaf(root, path);
5736 if (ret < 0) {
5737 goto out;
5738 } else if (ret > 0) {
5739 ret = 0;
5740 break;
5741 }
5742 continue;
5743 }
5744
5745 btrfs_item_key_to_cpu(eb, &found_key, slot);
5746
5747 if (found_key.objectid != key.objectid ||
5748 found_key.type != key.type) {
5749 ret = 0;
5750 goto out;
5751 }
5752
5753 ret = process_extent(sctx, path, &found_key);
5754 if (ret < 0)
5755 goto out;
5756
5757 path->slots[0]++;
5758 }
5759
5760 out:
5761 btrfs_free_path(path);
5762 return ret;
5763 }
5764
5765 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5766 int *pending_move,
5767 int *refs_processed)
5768 {
5769 int ret = 0;
5770
5771 if (sctx->cur_ino == 0)
5772 goto out;
5773 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5774 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5775 goto out;
5776 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5777 goto out;
5778
5779 ret = process_recorded_refs(sctx, pending_move);
5780 if (ret < 0)
5781 goto out;
5782
5783 *refs_processed = 1;
5784 out:
5785 return ret;
5786 }
5787
5788 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5789 {
5790 int ret = 0;
5791 u64 left_mode;
5792 u64 left_uid;
5793 u64 left_gid;
5794 u64 right_mode;
5795 u64 right_uid;
5796 u64 right_gid;
5797 int need_chmod = 0;
5798 int need_chown = 0;
5799 int pending_move = 0;
5800 int refs_processed = 0;
5801
5802 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5803 &refs_processed);
5804 if (ret < 0)
5805 goto out;
5806
5807 /*
5808 * We have processed the refs and thus need to advance send_progress.
5809 * Now, calls to get_cur_xxx will take the updated refs of the current
5810 * inode into account.
5811 *
5812 * On the other hand, if our current inode is a directory and couldn't
5813 * be moved/renamed because its parent was renamed/moved too and it has
5814 * a higher inode number, we can only move/rename our current inode
5815 * after we moved/renamed its parent. Therefore in this case operate on
5816 * the old path (pre move/rename) of our current inode, and the
5817 * move/rename will be performed later.
5818 */
5819 if (refs_processed && !pending_move)
5820 sctx->send_progress = sctx->cur_ino + 1;
5821
5822 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5823 goto out;
5824 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5825 goto out;
5826
5827 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5828 &left_mode, &left_uid, &left_gid, NULL);
5829 if (ret < 0)
5830 goto out;
5831
5832 if (!sctx->parent_root || sctx->cur_inode_new) {
5833 need_chown = 1;
5834 if (!S_ISLNK(sctx->cur_inode_mode))
5835 need_chmod = 1;
5836 } else {
5837 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5838 NULL, NULL, &right_mode, &right_uid,
5839 &right_gid, NULL);
5840 if (ret < 0)
5841 goto out;
5842
5843 if (left_uid != right_uid || left_gid != right_gid)
5844 need_chown = 1;
5845 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5846 need_chmod = 1;
5847 }
5848
5849 if (S_ISREG(sctx->cur_inode_mode)) {
5850 if (need_send_hole(sctx)) {
5851 if (sctx->cur_inode_last_extent == (u64)-1 ||
5852 sctx->cur_inode_last_extent <
5853 sctx->cur_inode_size) {
5854 ret = get_last_extent(sctx, (u64)-1);
5855 if (ret)
5856 goto out;
5857 }
5858 if (sctx->cur_inode_last_extent <
5859 sctx->cur_inode_size) {
5860 ret = send_hole(sctx, sctx->cur_inode_size);
5861 if (ret)
5862 goto out;
5863 }
5864 }
5865 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5866 sctx->cur_inode_size);
5867 if (ret < 0)
5868 goto out;
5869 }
5870
5871 if (need_chown) {
5872 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5873 left_uid, left_gid);
5874 if (ret < 0)
5875 goto out;
5876 }
5877 if (need_chmod) {
5878 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5879 left_mode);
5880 if (ret < 0)
5881 goto out;
5882 }
5883
5884 /*
5885 * If other directory inodes depended on our current directory
5886 * inode's move/rename, now do their move/rename operations.
5887 */
5888 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5889 ret = apply_children_dir_moves(sctx);
5890 if (ret)
5891 goto out;
5892 /*
5893 * Need to send that every time, no matter if it actually
5894 * changed between the two trees as we have done changes to
5895 * the inode before. If our inode is a directory and it's
5896 * waiting to be moved/renamed, we will send its utimes when
5897 * it's moved/renamed, therefore we don't need to do it here.
5898 */
5899 sctx->send_progress = sctx->cur_ino + 1;
5900 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5901 if (ret < 0)
5902 goto out;
5903 }
5904
5905 out:
5906 return ret;
5907 }
5908
5909 static int changed_inode(struct send_ctx *sctx,
5910 enum btrfs_compare_tree_result result)
5911 {
5912 int ret = 0;
5913 struct btrfs_key *key = sctx->cmp_key;
5914 struct btrfs_inode_item *left_ii = NULL;
5915 struct btrfs_inode_item *right_ii = NULL;
5916 u64 left_gen = 0;
5917 u64 right_gen = 0;
5918
5919 sctx->cur_ino = key->objectid;
5920 sctx->cur_inode_new_gen = 0;
5921 sctx->cur_inode_last_extent = (u64)-1;
5922
5923 /*
5924 * Set send_progress to current inode. This will tell all get_cur_xxx
5925 * functions that the current inode's refs are not updated yet. Later,
5926 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5927 */
5928 sctx->send_progress = sctx->cur_ino;
5929
5930 if (result == BTRFS_COMPARE_TREE_NEW ||
5931 result == BTRFS_COMPARE_TREE_CHANGED) {
5932 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5933 sctx->left_path->slots[0],
5934 struct btrfs_inode_item);
5935 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5936 left_ii);
5937 } else {
5938 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5939 sctx->right_path->slots[0],
5940 struct btrfs_inode_item);
5941 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5942 right_ii);
5943 }
5944 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5945 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5946 sctx->right_path->slots[0],
5947 struct btrfs_inode_item);
5948
5949 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5950 right_ii);
5951
5952 /*
5953 * The cur_ino = root dir case is special here. We can't treat
5954 * the inode as deleted+reused because it would generate a
5955 * stream that tries to delete/mkdir the root dir.
5956 */
5957 if (left_gen != right_gen &&
5958 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5959 sctx->cur_inode_new_gen = 1;
5960 }
5961
5962 if (result == BTRFS_COMPARE_TREE_NEW) {
5963 sctx->cur_inode_gen = left_gen;
5964 sctx->cur_inode_new = 1;
5965 sctx->cur_inode_deleted = 0;
5966 sctx->cur_inode_size = btrfs_inode_size(
5967 sctx->left_path->nodes[0], left_ii);
5968 sctx->cur_inode_mode = btrfs_inode_mode(
5969 sctx->left_path->nodes[0], left_ii);
5970 sctx->cur_inode_rdev = btrfs_inode_rdev(
5971 sctx->left_path->nodes[0], left_ii);
5972 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5973 ret = send_create_inode_if_needed(sctx);
5974 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5975 sctx->cur_inode_gen = right_gen;
5976 sctx->cur_inode_new = 0;
5977 sctx->cur_inode_deleted = 1;
5978 sctx->cur_inode_size = btrfs_inode_size(
5979 sctx->right_path->nodes[0], right_ii);
5980 sctx->cur_inode_mode = btrfs_inode_mode(
5981 sctx->right_path->nodes[0], right_ii);
5982 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5983 /*
5984 * We need to do some special handling in case the inode was
5985 * reported as changed with a changed generation number. This
5986 * means that the original inode was deleted and new inode
5987 * reused the same inum. So we have to treat the old inode as
5988 * deleted and the new one as new.
5989 */
5990 if (sctx->cur_inode_new_gen) {
5991 /*
5992 * First, process the inode as if it was deleted.
5993 */
5994 sctx->cur_inode_gen = right_gen;
5995 sctx->cur_inode_new = 0;
5996 sctx->cur_inode_deleted = 1;
5997 sctx->cur_inode_size = btrfs_inode_size(
5998 sctx->right_path->nodes[0], right_ii);
5999 sctx->cur_inode_mode = btrfs_inode_mode(
6000 sctx->right_path->nodes[0], right_ii);
6001 ret = process_all_refs(sctx,
6002 BTRFS_COMPARE_TREE_DELETED);
6003 if (ret < 0)
6004 goto out;
6005
6006 /*
6007 * Now process the inode as if it was new.
6008 */
6009 sctx->cur_inode_gen = left_gen;
6010 sctx->cur_inode_new = 1;
6011 sctx->cur_inode_deleted = 0;
6012 sctx->cur_inode_size = btrfs_inode_size(
6013 sctx->left_path->nodes[0], left_ii);
6014 sctx->cur_inode_mode = btrfs_inode_mode(
6015 sctx->left_path->nodes[0], left_ii);
6016 sctx->cur_inode_rdev = btrfs_inode_rdev(
6017 sctx->left_path->nodes[0], left_ii);
6018 ret = send_create_inode_if_needed(sctx);
6019 if (ret < 0)
6020 goto out;
6021
6022 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6023 if (ret < 0)
6024 goto out;
6025 /*
6026 * Advance send_progress now as we did not get into
6027 * process_recorded_refs_if_needed in the new_gen case.
6028 */
6029 sctx->send_progress = sctx->cur_ino + 1;
6030
6031 /*
6032 * Now process all extents and xattrs of the inode as if
6033 * they were all new.
6034 */
6035 ret = process_all_extents(sctx);
6036 if (ret < 0)
6037 goto out;
6038 ret = process_all_new_xattrs(sctx);
6039 if (ret < 0)
6040 goto out;
6041 } else {
6042 sctx->cur_inode_gen = left_gen;
6043 sctx->cur_inode_new = 0;
6044 sctx->cur_inode_new_gen = 0;
6045 sctx->cur_inode_deleted = 0;
6046 sctx->cur_inode_size = btrfs_inode_size(
6047 sctx->left_path->nodes[0], left_ii);
6048 sctx->cur_inode_mode = btrfs_inode_mode(
6049 sctx->left_path->nodes[0], left_ii);
6050 }
6051 }
6052
6053 out:
6054 return ret;
6055 }
6056
6057 /*
6058 * We have to process new refs before deleted refs, but compare_trees gives us
6059 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6060 * first and later process them in process_recorded_refs.
6061 * For the cur_inode_new_gen case, we skip recording completely because
6062 * changed_inode did already initiate processing of refs. The reason for this is
6063 * that in this case, compare_tree actually compares the refs of 2 different
6064 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6065 * refs of the right tree as deleted and all refs of the left tree as new.
6066 */
6067 static int changed_ref(struct send_ctx *sctx,
6068 enum btrfs_compare_tree_result result)
6069 {
6070 int ret = 0;
6071
6072 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6073 inconsistent_snapshot_error(sctx, result, "reference");
6074 return -EIO;
6075 }
6076
6077 if (!sctx->cur_inode_new_gen &&
6078 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6079 if (result == BTRFS_COMPARE_TREE_NEW)
6080 ret = record_new_ref(sctx);
6081 else if (result == BTRFS_COMPARE_TREE_DELETED)
6082 ret = record_deleted_ref(sctx);
6083 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6084 ret = record_changed_ref(sctx);
6085 }
6086
6087 return ret;
6088 }
6089
6090 /*
6091 * Process new/deleted/changed xattrs. We skip processing in the
6092 * cur_inode_new_gen case because changed_inode did already initiate processing
6093 * of xattrs. The reason is the same as in changed_ref
6094 */
6095 static int changed_xattr(struct send_ctx *sctx,
6096 enum btrfs_compare_tree_result result)
6097 {
6098 int ret = 0;
6099
6100 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6101 inconsistent_snapshot_error(sctx, result, "xattr");
6102 return -EIO;
6103 }
6104
6105 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6106 if (result == BTRFS_COMPARE_TREE_NEW)
6107 ret = process_new_xattr(sctx);
6108 else if (result == BTRFS_COMPARE_TREE_DELETED)
6109 ret = process_deleted_xattr(sctx);
6110 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6111 ret = process_changed_xattr(sctx);
6112 }
6113
6114 return ret;
6115 }
6116
6117 /*
6118 * Process new/deleted/changed extents. We skip processing in the
6119 * cur_inode_new_gen case because changed_inode did already initiate processing
6120 * of extents. The reason is the same as in changed_ref
6121 */
6122 static int changed_extent(struct send_ctx *sctx,
6123 enum btrfs_compare_tree_result result)
6124 {
6125 int ret = 0;
6126
6127 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6128
6129 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6130 struct extent_buffer *leaf_l;
6131 struct extent_buffer *leaf_r;
6132 struct btrfs_file_extent_item *ei_l;
6133 struct btrfs_file_extent_item *ei_r;
6134
6135 leaf_l = sctx->left_path->nodes[0];
6136 leaf_r = sctx->right_path->nodes[0];
6137 ei_l = btrfs_item_ptr(leaf_l,
6138 sctx->left_path->slots[0],
6139 struct btrfs_file_extent_item);
6140 ei_r = btrfs_item_ptr(leaf_r,
6141 sctx->right_path->slots[0],
6142 struct btrfs_file_extent_item);
6143
6144 /*
6145 * We may have found an extent item that has changed
6146 * only its disk_bytenr field and the corresponding
6147 * inode item was not updated. This case happens due to
6148 * very specific timings during relocation when a leaf
6149 * that contains file extent items is COWed while
6150 * relocation is ongoing and its in the stage where it
6151 * updates data pointers. So when this happens we can
6152 * safely ignore it since we know it's the same extent,
6153 * but just at different logical and physical locations
6154 * (when an extent is fully replaced with a new one, we
6155 * know the generation number must have changed too,
6156 * since snapshot creation implies committing the current
6157 * transaction, and the inode item must have been updated
6158 * as well).
6159 * This replacement of the disk_bytenr happens at
6160 * relocation.c:replace_file_extents() through
6161 * relocation.c:btrfs_reloc_cow_block().
6162 */
6163 if (btrfs_file_extent_generation(leaf_l, ei_l) ==
6164 btrfs_file_extent_generation(leaf_r, ei_r) &&
6165 btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
6166 btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
6167 btrfs_file_extent_compression(leaf_l, ei_l) ==
6168 btrfs_file_extent_compression(leaf_r, ei_r) &&
6169 btrfs_file_extent_encryption(leaf_l, ei_l) ==
6170 btrfs_file_extent_encryption(leaf_r, ei_r) &&
6171 btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
6172 btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
6173 btrfs_file_extent_type(leaf_l, ei_l) ==
6174 btrfs_file_extent_type(leaf_r, ei_r) &&
6175 btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
6176 btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
6177 btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
6178 btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
6179 btrfs_file_extent_offset(leaf_l, ei_l) ==
6180 btrfs_file_extent_offset(leaf_r, ei_r) &&
6181 btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
6182 btrfs_file_extent_num_bytes(leaf_r, ei_r))
6183 return 0;
6184 }
6185
6186 inconsistent_snapshot_error(sctx, result, "extent");
6187 return -EIO;
6188 }
6189
6190 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6191 if (result != BTRFS_COMPARE_TREE_DELETED)
6192 ret = process_extent(sctx, sctx->left_path,
6193 sctx->cmp_key);
6194 }
6195
6196 return ret;
6197 }
6198
6199 static int dir_changed(struct send_ctx *sctx, u64 dir)
6200 {
6201 u64 orig_gen, new_gen;
6202 int ret;
6203
6204 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6205 NULL, NULL);
6206 if (ret)
6207 return ret;
6208
6209 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6210 NULL, NULL, NULL);
6211 if (ret)
6212 return ret;
6213
6214 return (orig_gen != new_gen) ? 1 : 0;
6215 }
6216
6217 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6218 struct btrfs_key *key)
6219 {
6220 struct btrfs_inode_extref *extref;
6221 struct extent_buffer *leaf;
6222 u64 dirid = 0, last_dirid = 0;
6223 unsigned long ptr;
6224 u32 item_size;
6225 u32 cur_offset = 0;
6226 int ref_name_len;
6227 int ret = 0;
6228
6229 /* Easy case, just check this one dirid */
6230 if (key->type == BTRFS_INODE_REF_KEY) {
6231 dirid = key->offset;
6232
6233 ret = dir_changed(sctx, dirid);
6234 goto out;
6235 }
6236
6237 leaf = path->nodes[0];
6238 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6239 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6240 while (cur_offset < item_size) {
6241 extref = (struct btrfs_inode_extref *)(ptr +
6242 cur_offset);
6243 dirid = btrfs_inode_extref_parent(leaf, extref);
6244 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6245 cur_offset += ref_name_len + sizeof(*extref);
6246 if (dirid == last_dirid)
6247 continue;
6248 ret = dir_changed(sctx, dirid);
6249 if (ret)
6250 break;
6251 last_dirid = dirid;
6252 }
6253 out:
6254 return ret;
6255 }
6256
6257 /*
6258 * Updates compare related fields in sctx and simply forwards to the actual
6259 * changed_xxx functions.
6260 */
6261 static int changed_cb(struct btrfs_root *left_root,
6262 struct btrfs_root *right_root,
6263 struct btrfs_path *left_path,
6264 struct btrfs_path *right_path,
6265 struct btrfs_key *key,
6266 enum btrfs_compare_tree_result result,
6267 void *ctx)
6268 {
6269 int ret = 0;
6270 struct send_ctx *sctx = ctx;
6271
6272 if (result == BTRFS_COMPARE_TREE_SAME) {
6273 if (key->type == BTRFS_INODE_REF_KEY ||
6274 key->type == BTRFS_INODE_EXTREF_KEY) {
6275 ret = compare_refs(sctx, left_path, key);
6276 if (!ret)
6277 return 0;
6278 if (ret < 0)
6279 return ret;
6280 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6281 return maybe_send_hole(sctx, left_path, key);
6282 } else {
6283 return 0;
6284 }
6285 result = BTRFS_COMPARE_TREE_CHANGED;
6286 ret = 0;
6287 }
6288
6289 sctx->left_path = left_path;
6290 sctx->right_path = right_path;
6291 sctx->cmp_key = key;
6292
6293 ret = finish_inode_if_needed(sctx, 0);
6294 if (ret < 0)
6295 goto out;
6296
6297 /* Ignore non-FS objects */
6298 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6299 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6300 goto out;
6301
6302 if (key->type == BTRFS_INODE_ITEM_KEY)
6303 ret = changed_inode(sctx, result);
6304 else if (key->type == BTRFS_INODE_REF_KEY ||
6305 key->type == BTRFS_INODE_EXTREF_KEY)
6306 ret = changed_ref(sctx, result);
6307 else if (key->type == BTRFS_XATTR_ITEM_KEY)
6308 ret = changed_xattr(sctx, result);
6309 else if (key->type == BTRFS_EXTENT_DATA_KEY)
6310 ret = changed_extent(sctx, result);
6311
6312 out:
6313 return ret;
6314 }
6315
6316 static int full_send_tree(struct send_ctx *sctx)
6317 {
6318 int ret;
6319 struct btrfs_root *send_root = sctx->send_root;
6320 struct btrfs_key key;
6321 struct btrfs_key found_key;
6322 struct btrfs_path *path;
6323 struct extent_buffer *eb;
6324 int slot;
6325
6326 path = alloc_path_for_send();
6327 if (!path)
6328 return -ENOMEM;
6329
6330 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6331 key.type = BTRFS_INODE_ITEM_KEY;
6332 key.offset = 0;
6333
6334 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6335 if (ret < 0)
6336 goto out;
6337 if (ret)
6338 goto out_finish;
6339
6340 while (1) {
6341 eb = path->nodes[0];
6342 slot = path->slots[0];
6343 btrfs_item_key_to_cpu(eb, &found_key, slot);
6344
6345 ret = changed_cb(send_root, NULL, path, NULL,
6346 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
6347 if (ret < 0)
6348 goto out;
6349
6350 key.objectid = found_key.objectid;
6351 key.type = found_key.type;
6352 key.offset = found_key.offset + 1;
6353
6354 ret = btrfs_next_item(send_root, path);
6355 if (ret < 0)
6356 goto out;
6357 if (ret) {
6358 ret = 0;
6359 break;
6360 }
6361 }
6362
6363 out_finish:
6364 ret = finish_inode_if_needed(sctx, 1);
6365
6366 out:
6367 btrfs_free_path(path);
6368 return ret;
6369 }
6370
6371 static int send_subvol(struct send_ctx *sctx)
6372 {
6373 int ret;
6374
6375 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6376 ret = send_header(sctx);
6377 if (ret < 0)
6378 goto out;
6379 }
6380
6381 ret = send_subvol_begin(sctx);
6382 if (ret < 0)
6383 goto out;
6384
6385 if (sctx->parent_root) {
6386 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6387 changed_cb, sctx);
6388 if (ret < 0)
6389 goto out;
6390 ret = finish_inode_if_needed(sctx, 1);
6391 if (ret < 0)
6392 goto out;
6393 } else {
6394 ret = full_send_tree(sctx);
6395 if (ret < 0)
6396 goto out;
6397 }
6398
6399 out:
6400 free_recorded_refs(sctx);
6401 return ret;
6402 }
6403
6404 /*
6405 * If orphan cleanup did remove any orphans from a root, it means the tree
6406 * was modified and therefore the commit root is not the same as the current
6407 * root anymore. This is a problem, because send uses the commit root and
6408 * therefore can see inode items that don't exist in the current root anymore,
6409 * and for example make calls to btrfs_iget, which will do tree lookups based
6410 * on the current root and not on the commit root. Those lookups will fail,
6411 * returning a -ESTALE error, and making send fail with that error. So make
6412 * sure a send does not see any orphans we have just removed, and that it will
6413 * see the same inodes regardless of whether a transaction commit happened
6414 * before it started (meaning that the commit root will be the same as the
6415 * current root) or not.
6416 */
6417 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6418 {
6419 int i;
6420 struct btrfs_trans_handle *trans = NULL;
6421
6422 again:
6423 if (sctx->parent_root &&
6424 sctx->parent_root->node != sctx->parent_root->commit_root)
6425 goto commit_trans;
6426
6427 for (i = 0; i < sctx->clone_roots_cnt; i++)
6428 if (sctx->clone_roots[i].root->node !=
6429 sctx->clone_roots[i].root->commit_root)
6430 goto commit_trans;
6431
6432 if (trans)
6433 return btrfs_end_transaction(trans);
6434
6435 return 0;
6436
6437 commit_trans:
6438 /* Use any root, all fs roots will get their commit roots updated. */
6439 if (!trans) {
6440 trans = btrfs_join_transaction(sctx->send_root);
6441 if (IS_ERR(trans))
6442 return PTR_ERR(trans);
6443 goto again;
6444 }
6445
6446 return btrfs_commit_transaction(trans);
6447 }
6448
6449 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6450 {
6451 spin_lock(&root->root_item_lock);
6452 root->send_in_progress--;
6453 /*
6454 * Not much left to do, we don't know why it's unbalanced and
6455 * can't blindly reset it to 0.
6456 */
6457 if (root->send_in_progress < 0)
6458 btrfs_err(root->fs_info,
6459 "send_in_progres unbalanced %d root %llu",
6460 root->send_in_progress, root->root_key.objectid);
6461 spin_unlock(&root->root_item_lock);
6462 }
6463
6464 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
6465 {
6466 int ret = 0;
6467 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6468 struct btrfs_fs_info *fs_info = send_root->fs_info;
6469 struct btrfs_root *clone_root;
6470 struct btrfs_ioctl_send_args *arg = NULL;
6471 struct btrfs_key key;
6472 struct send_ctx *sctx = NULL;
6473 u32 i;
6474 u64 *clone_sources_tmp = NULL;
6475 int clone_sources_to_rollback = 0;
6476 unsigned alloc_size;
6477 int sort_clone_roots = 0;
6478 int index;
6479
6480 if (!capable(CAP_SYS_ADMIN))
6481 return -EPERM;
6482
6483 /*
6484 * The subvolume must remain read-only during send, protect against
6485 * making it RW. This also protects against deletion.
6486 */
6487 spin_lock(&send_root->root_item_lock);
6488 send_root->send_in_progress++;
6489 spin_unlock(&send_root->root_item_lock);
6490
6491 /*
6492 * This is done when we lookup the root, it should already be complete
6493 * by the time we get here.
6494 */
6495 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6496
6497 /*
6498 * Userspace tools do the checks and warn the user if it's
6499 * not RO.
6500 */
6501 if (!btrfs_root_readonly(send_root)) {
6502 ret = -EPERM;
6503 goto out;
6504 }
6505
6506 arg = memdup_user(arg_, sizeof(*arg));
6507 if (IS_ERR(arg)) {
6508 ret = PTR_ERR(arg);
6509 arg = NULL;
6510 goto out;
6511 }
6512
6513 /*
6514 * Check that we don't overflow at later allocations, we request
6515 * clone_sources_count + 1 items, and compare to unsigned long inside
6516 * access_ok.
6517 */
6518 if (arg->clone_sources_count >
6519 ULONG_MAX / sizeof(struct clone_root) - 1) {
6520 ret = -EINVAL;
6521 goto out;
6522 }
6523
6524 if (!access_ok(VERIFY_READ, arg->clone_sources,
6525 sizeof(*arg->clone_sources) *
6526 arg->clone_sources_count)) {
6527 ret = -EFAULT;
6528 goto out;
6529 }
6530
6531 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6532 ret = -EINVAL;
6533 goto out;
6534 }
6535
6536 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6537 if (!sctx) {
6538 ret = -ENOMEM;
6539 goto out;
6540 }
6541
6542 INIT_LIST_HEAD(&sctx->new_refs);
6543 INIT_LIST_HEAD(&sctx->deleted_refs);
6544 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6545 INIT_LIST_HEAD(&sctx->name_cache_list);
6546
6547 sctx->flags = arg->flags;
6548
6549 sctx->send_filp = fget(arg->send_fd);
6550 if (!sctx->send_filp) {
6551 ret = -EBADF;
6552 goto out;
6553 }
6554
6555 sctx->send_root = send_root;
6556 /*
6557 * Unlikely but possible, if the subvolume is marked for deletion but
6558 * is slow to remove the directory entry, send can still be started
6559 */
6560 if (btrfs_root_dead(sctx->send_root)) {
6561 ret = -EPERM;
6562 goto out;
6563 }
6564
6565 sctx->clone_roots_cnt = arg->clone_sources_count;
6566
6567 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6568 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
6569 if (!sctx->send_buf) {
6570 ret = -ENOMEM;
6571 goto out;
6572 }
6573
6574 sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
6575 if (!sctx->read_buf) {
6576 ret = -ENOMEM;
6577 goto out;
6578 }
6579
6580 sctx->pending_dir_moves = RB_ROOT;
6581 sctx->waiting_dir_moves = RB_ROOT;
6582 sctx->orphan_dirs = RB_ROOT;
6583
6584 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6585
6586 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
6587 if (!sctx->clone_roots) {
6588 ret = -ENOMEM;
6589 goto out;
6590 }
6591
6592 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6593
6594 if (arg->clone_sources_count) {
6595 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
6596 if (!clone_sources_tmp) {
6597 ret = -ENOMEM;
6598 goto out;
6599 }
6600
6601 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6602 alloc_size);
6603 if (ret) {
6604 ret = -EFAULT;
6605 goto out;
6606 }
6607
6608 for (i = 0; i < arg->clone_sources_count; i++) {
6609 key.objectid = clone_sources_tmp[i];
6610 key.type = BTRFS_ROOT_ITEM_KEY;
6611 key.offset = (u64)-1;
6612
6613 index = srcu_read_lock(&fs_info->subvol_srcu);
6614
6615 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6616 if (IS_ERR(clone_root)) {
6617 srcu_read_unlock(&fs_info->subvol_srcu, index);
6618 ret = PTR_ERR(clone_root);
6619 goto out;
6620 }
6621 spin_lock(&clone_root->root_item_lock);
6622 if (!btrfs_root_readonly(clone_root) ||
6623 btrfs_root_dead(clone_root)) {
6624 spin_unlock(&clone_root->root_item_lock);
6625 srcu_read_unlock(&fs_info->subvol_srcu, index);
6626 ret = -EPERM;
6627 goto out;
6628 }
6629 clone_root->send_in_progress++;
6630 spin_unlock(&clone_root->root_item_lock);
6631 srcu_read_unlock(&fs_info->subvol_srcu, index);
6632
6633 sctx->clone_roots[i].root = clone_root;
6634 clone_sources_to_rollback = i + 1;
6635 }
6636 kvfree(clone_sources_tmp);
6637 clone_sources_tmp = NULL;
6638 }
6639
6640 if (arg->parent_root) {
6641 key.objectid = arg->parent_root;
6642 key.type = BTRFS_ROOT_ITEM_KEY;
6643 key.offset = (u64)-1;
6644
6645 index = srcu_read_lock(&fs_info->subvol_srcu);
6646
6647 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6648 if (IS_ERR(sctx->parent_root)) {
6649 srcu_read_unlock(&fs_info->subvol_srcu, index);
6650 ret = PTR_ERR(sctx->parent_root);
6651 goto out;
6652 }
6653
6654 spin_lock(&sctx->parent_root->root_item_lock);
6655 sctx->parent_root->send_in_progress++;
6656 if (!btrfs_root_readonly(sctx->parent_root) ||
6657 btrfs_root_dead(sctx->parent_root)) {
6658 spin_unlock(&sctx->parent_root->root_item_lock);
6659 srcu_read_unlock(&fs_info->subvol_srcu, index);
6660 ret = -EPERM;
6661 goto out;
6662 }
6663 spin_unlock(&sctx->parent_root->root_item_lock);
6664
6665 srcu_read_unlock(&fs_info->subvol_srcu, index);
6666 }
6667
6668 /*
6669 * Clones from send_root are allowed, but only if the clone source
6670 * is behind the current send position. This is checked while searching
6671 * for possible clone sources.
6672 */
6673 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6674
6675 /* We do a bsearch later */
6676 sort(sctx->clone_roots, sctx->clone_roots_cnt,
6677 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6678 NULL);
6679 sort_clone_roots = 1;
6680
6681 ret = ensure_commit_roots_uptodate(sctx);
6682 if (ret)
6683 goto out;
6684
6685 current->journal_info = BTRFS_SEND_TRANS_STUB;
6686 ret = send_subvol(sctx);
6687 current->journal_info = NULL;
6688 if (ret < 0)
6689 goto out;
6690
6691 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6692 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6693 if (ret < 0)
6694 goto out;
6695 ret = send_cmd(sctx);
6696 if (ret < 0)
6697 goto out;
6698 }
6699
6700 out:
6701 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6702 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6703 struct rb_node *n;
6704 struct pending_dir_move *pm;
6705
6706 n = rb_first(&sctx->pending_dir_moves);
6707 pm = rb_entry(n, struct pending_dir_move, node);
6708 while (!list_empty(&pm->list)) {
6709 struct pending_dir_move *pm2;
6710
6711 pm2 = list_first_entry(&pm->list,
6712 struct pending_dir_move, list);
6713 free_pending_move(sctx, pm2);
6714 }
6715 free_pending_move(sctx, pm);
6716 }
6717
6718 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6719 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6720 struct rb_node *n;
6721 struct waiting_dir_move *dm;
6722
6723 n = rb_first(&sctx->waiting_dir_moves);
6724 dm = rb_entry(n, struct waiting_dir_move, node);
6725 rb_erase(&dm->node, &sctx->waiting_dir_moves);
6726 kfree(dm);
6727 }
6728
6729 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6730 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6731 struct rb_node *n;
6732 struct orphan_dir_info *odi;
6733
6734 n = rb_first(&sctx->orphan_dirs);
6735 odi = rb_entry(n, struct orphan_dir_info, node);
6736 free_orphan_dir_info(sctx, odi);
6737 }
6738
6739 if (sort_clone_roots) {
6740 for (i = 0; i < sctx->clone_roots_cnt; i++)
6741 btrfs_root_dec_send_in_progress(
6742 sctx->clone_roots[i].root);
6743 } else {
6744 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6745 btrfs_root_dec_send_in_progress(
6746 sctx->clone_roots[i].root);
6747
6748 btrfs_root_dec_send_in_progress(send_root);
6749 }
6750 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6751 btrfs_root_dec_send_in_progress(sctx->parent_root);
6752
6753 kfree(arg);
6754 kvfree(clone_sources_tmp);
6755
6756 if (sctx) {
6757 if (sctx->send_filp)
6758 fput(sctx->send_filp);
6759
6760 kvfree(sctx->clone_roots);
6761 kvfree(sctx->send_buf);
6762 kvfree(sctx->read_buf);
6763
6764 name_cache_free(sctx);
6765
6766 kfree(sctx);
6767 }
6768
6769 return ret;
6770 }