block: Abstract out bvec iterator
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / btrfs / scrub.c
1 /*
2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32
33 /*
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
37 * any can be found.
38 *
39 * Future enhancements:
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
42 * - track and record media errors, throw out bad devices
43 * - add a mode to also read unallocated space
44 */
45
46 struct scrub_block;
47 struct scrub_ctx;
48
49 /*
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
54 */
55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
58
59 /*
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
63 */
64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
65
66 struct scrub_page {
67 struct scrub_block *sblock;
68 struct page *page;
69 struct btrfs_device *dev;
70 u64 flags; /* extent flags */
71 u64 generation;
72 u64 logical;
73 u64 physical;
74 u64 physical_for_dev_replace;
75 atomic_t ref_count;
76 struct {
77 unsigned int mirror_num:8;
78 unsigned int have_csum:1;
79 unsigned int io_error:1;
80 };
81 u8 csum[BTRFS_CSUM_SIZE];
82 };
83
84 struct scrub_bio {
85 int index;
86 struct scrub_ctx *sctx;
87 struct btrfs_device *dev;
88 struct bio *bio;
89 int err;
90 u64 logical;
91 u64 physical;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
94 #else
95 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
96 #endif
97 int page_count;
98 int next_free;
99 struct btrfs_work work;
100 };
101
102 struct scrub_block {
103 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104 int page_count;
105 atomic_t outstanding_pages;
106 atomic_t ref_count; /* free mem on transition to zero */
107 struct scrub_ctx *sctx;
108 struct {
109 unsigned int header_error:1;
110 unsigned int checksum_error:1;
111 unsigned int no_io_error_seen:1;
112 unsigned int generation_error:1; /* also sets header_error */
113 };
114 };
115
116 struct scrub_wr_ctx {
117 struct scrub_bio *wr_curr_bio;
118 struct btrfs_device *tgtdev;
119 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120 atomic_t flush_all_writes;
121 struct mutex wr_lock;
122 };
123
124 struct scrub_ctx {
125 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
126 struct btrfs_root *dev_root;
127 int first_free;
128 int curr;
129 atomic_t bios_in_flight;
130 atomic_t workers_pending;
131 spinlock_t list_lock;
132 wait_queue_head_t list_wait;
133 u16 csum_size;
134 struct list_head csum_list;
135 atomic_t cancel_req;
136 int readonly;
137 int pages_per_rd_bio;
138 u32 sectorsize;
139 u32 nodesize;
140 u32 leafsize;
141
142 int is_dev_replace;
143 struct scrub_wr_ctx wr_ctx;
144
145 /*
146 * statistics
147 */
148 struct btrfs_scrub_progress stat;
149 spinlock_t stat_lock;
150 };
151
152 struct scrub_fixup_nodatasum {
153 struct scrub_ctx *sctx;
154 struct btrfs_device *dev;
155 u64 logical;
156 struct btrfs_root *root;
157 struct btrfs_work work;
158 int mirror_num;
159 };
160
161 struct scrub_nocow_inode {
162 u64 inum;
163 u64 offset;
164 u64 root;
165 struct list_head list;
166 };
167
168 struct scrub_copy_nocow_ctx {
169 struct scrub_ctx *sctx;
170 u64 logical;
171 u64 len;
172 int mirror_num;
173 u64 physical_for_dev_replace;
174 struct list_head inodes;
175 struct btrfs_work work;
176 };
177
178 struct scrub_warning {
179 struct btrfs_path *path;
180 u64 extent_item_size;
181 char *scratch_buf;
182 char *msg_buf;
183 const char *errstr;
184 sector_t sector;
185 u64 logical;
186 struct btrfs_device *dev;
187 int msg_bufsize;
188 int scratch_bufsize;
189 };
190
191
192 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
193 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
194 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
195 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
196 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
197 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
198 struct btrfs_fs_info *fs_info,
199 struct scrub_block *original_sblock,
200 u64 length, u64 logical,
201 struct scrub_block *sblocks_for_recheck);
202 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
203 struct scrub_block *sblock, int is_metadata,
204 int have_csum, u8 *csum, u64 generation,
205 u16 csum_size);
206 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
207 struct scrub_block *sblock,
208 int is_metadata, int have_csum,
209 const u8 *csum, u64 generation,
210 u16 csum_size);
211 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
212 struct scrub_block *sblock_good,
213 int force_write);
214 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
215 struct scrub_block *sblock_good,
216 int page_num, int force_write);
217 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
218 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
219 int page_num);
220 static int scrub_checksum_data(struct scrub_block *sblock);
221 static int scrub_checksum_tree_block(struct scrub_block *sblock);
222 static int scrub_checksum_super(struct scrub_block *sblock);
223 static void scrub_block_get(struct scrub_block *sblock);
224 static void scrub_block_put(struct scrub_block *sblock);
225 static void scrub_page_get(struct scrub_page *spage);
226 static void scrub_page_put(struct scrub_page *spage);
227 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
228 struct scrub_page *spage);
229 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
230 u64 physical, struct btrfs_device *dev, u64 flags,
231 u64 gen, int mirror_num, u8 *csum, int force,
232 u64 physical_for_dev_replace);
233 static void scrub_bio_end_io(struct bio *bio, int err);
234 static void scrub_bio_end_io_worker(struct btrfs_work *work);
235 static void scrub_block_complete(struct scrub_block *sblock);
236 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
237 u64 extent_logical, u64 extent_len,
238 u64 *extent_physical,
239 struct btrfs_device **extent_dev,
240 int *extent_mirror_num);
241 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
242 struct scrub_wr_ctx *wr_ctx,
243 struct btrfs_fs_info *fs_info,
244 struct btrfs_device *dev,
245 int is_dev_replace);
246 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
247 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
248 struct scrub_page *spage);
249 static void scrub_wr_submit(struct scrub_ctx *sctx);
250 static void scrub_wr_bio_end_io(struct bio *bio, int err);
251 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
252 static int write_page_nocow(struct scrub_ctx *sctx,
253 u64 physical_for_dev_replace, struct page *page);
254 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
255 struct scrub_copy_nocow_ctx *ctx);
256 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
257 int mirror_num, u64 physical_for_dev_replace);
258 static void copy_nocow_pages_worker(struct btrfs_work *work);
259
260
261 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
262 {
263 atomic_inc(&sctx->bios_in_flight);
264 }
265
266 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
267 {
268 atomic_dec(&sctx->bios_in_flight);
269 wake_up(&sctx->list_wait);
270 }
271
272 /*
273 * used for workers that require transaction commits (i.e., for the
274 * NOCOW case)
275 */
276 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
277 {
278 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
279
280 /*
281 * increment scrubs_running to prevent cancel requests from
282 * completing as long as a worker is running. we must also
283 * increment scrubs_paused to prevent deadlocking on pause
284 * requests used for transactions commits (as the worker uses a
285 * transaction context). it is safe to regard the worker
286 * as paused for all matters practical. effectively, we only
287 * avoid cancellation requests from completing.
288 */
289 mutex_lock(&fs_info->scrub_lock);
290 atomic_inc(&fs_info->scrubs_running);
291 atomic_inc(&fs_info->scrubs_paused);
292 mutex_unlock(&fs_info->scrub_lock);
293 atomic_inc(&sctx->workers_pending);
294 }
295
296 /* used for workers that require transaction commits */
297 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
298 {
299 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
300
301 /*
302 * see scrub_pending_trans_workers_inc() why we're pretending
303 * to be paused in the scrub counters
304 */
305 mutex_lock(&fs_info->scrub_lock);
306 atomic_dec(&fs_info->scrubs_running);
307 atomic_dec(&fs_info->scrubs_paused);
308 mutex_unlock(&fs_info->scrub_lock);
309 atomic_dec(&sctx->workers_pending);
310 wake_up(&fs_info->scrub_pause_wait);
311 wake_up(&sctx->list_wait);
312 }
313
314 static void scrub_free_csums(struct scrub_ctx *sctx)
315 {
316 while (!list_empty(&sctx->csum_list)) {
317 struct btrfs_ordered_sum *sum;
318 sum = list_first_entry(&sctx->csum_list,
319 struct btrfs_ordered_sum, list);
320 list_del(&sum->list);
321 kfree(sum);
322 }
323 }
324
325 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
326 {
327 int i;
328
329 if (!sctx)
330 return;
331
332 scrub_free_wr_ctx(&sctx->wr_ctx);
333
334 /* this can happen when scrub is cancelled */
335 if (sctx->curr != -1) {
336 struct scrub_bio *sbio = sctx->bios[sctx->curr];
337
338 for (i = 0; i < sbio->page_count; i++) {
339 WARN_ON(!sbio->pagev[i]->page);
340 scrub_block_put(sbio->pagev[i]->sblock);
341 }
342 bio_put(sbio->bio);
343 }
344
345 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
346 struct scrub_bio *sbio = sctx->bios[i];
347
348 if (!sbio)
349 break;
350 kfree(sbio);
351 }
352
353 scrub_free_csums(sctx);
354 kfree(sctx);
355 }
356
357 static noinline_for_stack
358 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
359 {
360 struct scrub_ctx *sctx;
361 int i;
362 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
363 int pages_per_rd_bio;
364 int ret;
365
366 /*
367 * the setting of pages_per_rd_bio is correct for scrub but might
368 * be wrong for the dev_replace code where we might read from
369 * different devices in the initial huge bios. However, that
370 * code is able to correctly handle the case when adding a page
371 * to a bio fails.
372 */
373 if (dev->bdev)
374 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
375 bio_get_nr_vecs(dev->bdev));
376 else
377 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
378 sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
379 if (!sctx)
380 goto nomem;
381 sctx->is_dev_replace = is_dev_replace;
382 sctx->pages_per_rd_bio = pages_per_rd_bio;
383 sctx->curr = -1;
384 sctx->dev_root = dev->dev_root;
385 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
386 struct scrub_bio *sbio;
387
388 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
389 if (!sbio)
390 goto nomem;
391 sctx->bios[i] = sbio;
392
393 sbio->index = i;
394 sbio->sctx = sctx;
395 sbio->page_count = 0;
396 sbio->work.func = scrub_bio_end_io_worker;
397
398 if (i != SCRUB_BIOS_PER_SCTX - 1)
399 sctx->bios[i]->next_free = i + 1;
400 else
401 sctx->bios[i]->next_free = -1;
402 }
403 sctx->first_free = 0;
404 sctx->nodesize = dev->dev_root->nodesize;
405 sctx->leafsize = dev->dev_root->leafsize;
406 sctx->sectorsize = dev->dev_root->sectorsize;
407 atomic_set(&sctx->bios_in_flight, 0);
408 atomic_set(&sctx->workers_pending, 0);
409 atomic_set(&sctx->cancel_req, 0);
410 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
411 INIT_LIST_HEAD(&sctx->csum_list);
412
413 spin_lock_init(&sctx->list_lock);
414 spin_lock_init(&sctx->stat_lock);
415 init_waitqueue_head(&sctx->list_wait);
416
417 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
418 fs_info->dev_replace.tgtdev, is_dev_replace);
419 if (ret) {
420 scrub_free_ctx(sctx);
421 return ERR_PTR(ret);
422 }
423 return sctx;
424
425 nomem:
426 scrub_free_ctx(sctx);
427 return ERR_PTR(-ENOMEM);
428 }
429
430 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
431 void *warn_ctx)
432 {
433 u64 isize;
434 u32 nlink;
435 int ret;
436 int i;
437 struct extent_buffer *eb;
438 struct btrfs_inode_item *inode_item;
439 struct scrub_warning *swarn = warn_ctx;
440 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
441 struct inode_fs_paths *ipath = NULL;
442 struct btrfs_root *local_root;
443 struct btrfs_key root_key;
444
445 root_key.objectid = root;
446 root_key.type = BTRFS_ROOT_ITEM_KEY;
447 root_key.offset = (u64)-1;
448 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
449 if (IS_ERR(local_root)) {
450 ret = PTR_ERR(local_root);
451 goto err;
452 }
453
454 ret = inode_item_info(inum, 0, local_root, swarn->path);
455 if (ret) {
456 btrfs_release_path(swarn->path);
457 goto err;
458 }
459
460 eb = swarn->path->nodes[0];
461 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
462 struct btrfs_inode_item);
463 isize = btrfs_inode_size(eb, inode_item);
464 nlink = btrfs_inode_nlink(eb, inode_item);
465 btrfs_release_path(swarn->path);
466
467 ipath = init_ipath(4096, local_root, swarn->path);
468 if (IS_ERR(ipath)) {
469 ret = PTR_ERR(ipath);
470 ipath = NULL;
471 goto err;
472 }
473 ret = paths_from_inode(inum, ipath);
474
475 if (ret < 0)
476 goto err;
477
478 /*
479 * we deliberately ignore the bit ipath might have been too small to
480 * hold all of the paths here
481 */
482 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
483 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
484 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
485 "length %llu, links %u (path: %s)\n", swarn->errstr,
486 swarn->logical, rcu_str_deref(swarn->dev->name),
487 (unsigned long long)swarn->sector, root, inum, offset,
488 min(isize - offset, (u64)PAGE_SIZE), nlink,
489 (char *)(unsigned long)ipath->fspath->val[i]);
490
491 free_ipath(ipath);
492 return 0;
493
494 err:
495 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
496 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
497 "resolving failed with ret=%d\n", swarn->errstr,
498 swarn->logical, rcu_str_deref(swarn->dev->name),
499 (unsigned long long)swarn->sector, root, inum, offset, ret);
500
501 free_ipath(ipath);
502 return 0;
503 }
504
505 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
506 {
507 struct btrfs_device *dev;
508 struct btrfs_fs_info *fs_info;
509 struct btrfs_path *path;
510 struct btrfs_key found_key;
511 struct extent_buffer *eb;
512 struct btrfs_extent_item *ei;
513 struct scrub_warning swarn;
514 unsigned long ptr = 0;
515 u64 extent_item_pos;
516 u64 flags = 0;
517 u64 ref_root;
518 u32 item_size;
519 u8 ref_level;
520 const int bufsize = 4096;
521 int ret;
522
523 WARN_ON(sblock->page_count < 1);
524 dev = sblock->pagev[0]->dev;
525 fs_info = sblock->sctx->dev_root->fs_info;
526
527 path = btrfs_alloc_path();
528
529 swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
530 swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
531 swarn.sector = (sblock->pagev[0]->physical) >> 9;
532 swarn.logical = sblock->pagev[0]->logical;
533 swarn.errstr = errstr;
534 swarn.dev = NULL;
535 swarn.msg_bufsize = bufsize;
536 swarn.scratch_bufsize = bufsize;
537
538 if (!path || !swarn.scratch_buf || !swarn.msg_buf)
539 goto out;
540
541 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
542 &flags);
543 if (ret < 0)
544 goto out;
545
546 extent_item_pos = swarn.logical - found_key.objectid;
547 swarn.extent_item_size = found_key.offset;
548
549 eb = path->nodes[0];
550 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
551 item_size = btrfs_item_size_nr(eb, path->slots[0]);
552
553 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
554 do {
555 ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
556 &ref_root, &ref_level);
557 printk_in_rcu(KERN_WARNING
558 "btrfs: %s at logical %llu on dev %s, "
559 "sector %llu: metadata %s (level %d) in tree "
560 "%llu\n", errstr, swarn.logical,
561 rcu_str_deref(dev->name),
562 (unsigned long long)swarn.sector,
563 ref_level ? "node" : "leaf",
564 ret < 0 ? -1 : ref_level,
565 ret < 0 ? -1 : ref_root);
566 } while (ret != 1);
567 btrfs_release_path(path);
568 } else {
569 btrfs_release_path(path);
570 swarn.path = path;
571 swarn.dev = dev;
572 iterate_extent_inodes(fs_info, found_key.objectid,
573 extent_item_pos, 1,
574 scrub_print_warning_inode, &swarn);
575 }
576
577 out:
578 btrfs_free_path(path);
579 kfree(swarn.scratch_buf);
580 kfree(swarn.msg_buf);
581 }
582
583 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
584 {
585 struct page *page = NULL;
586 unsigned long index;
587 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
588 int ret;
589 int corrected = 0;
590 struct btrfs_key key;
591 struct inode *inode = NULL;
592 struct btrfs_fs_info *fs_info;
593 u64 end = offset + PAGE_SIZE - 1;
594 struct btrfs_root *local_root;
595 int srcu_index;
596
597 key.objectid = root;
598 key.type = BTRFS_ROOT_ITEM_KEY;
599 key.offset = (u64)-1;
600
601 fs_info = fixup->root->fs_info;
602 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
603
604 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
605 if (IS_ERR(local_root)) {
606 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
607 return PTR_ERR(local_root);
608 }
609
610 key.type = BTRFS_INODE_ITEM_KEY;
611 key.objectid = inum;
612 key.offset = 0;
613 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
614 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
615 if (IS_ERR(inode))
616 return PTR_ERR(inode);
617
618 index = offset >> PAGE_CACHE_SHIFT;
619
620 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
621 if (!page) {
622 ret = -ENOMEM;
623 goto out;
624 }
625
626 if (PageUptodate(page)) {
627 if (PageDirty(page)) {
628 /*
629 * we need to write the data to the defect sector. the
630 * data that was in that sector is not in memory,
631 * because the page was modified. we must not write the
632 * modified page to that sector.
633 *
634 * TODO: what could be done here: wait for the delalloc
635 * runner to write out that page (might involve
636 * COW) and see whether the sector is still
637 * referenced afterwards.
638 *
639 * For the meantime, we'll treat this error
640 * incorrectable, although there is a chance that a
641 * later scrub will find the bad sector again and that
642 * there's no dirty page in memory, then.
643 */
644 ret = -EIO;
645 goto out;
646 }
647 fs_info = BTRFS_I(inode)->root->fs_info;
648 ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
649 fixup->logical, page,
650 fixup->mirror_num);
651 unlock_page(page);
652 corrected = !ret;
653 } else {
654 /*
655 * we need to get good data first. the general readpage path
656 * will call repair_io_failure for us, we just have to make
657 * sure we read the bad mirror.
658 */
659 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
660 EXTENT_DAMAGED, GFP_NOFS);
661 if (ret) {
662 /* set_extent_bits should give proper error */
663 WARN_ON(ret > 0);
664 if (ret > 0)
665 ret = -EFAULT;
666 goto out;
667 }
668
669 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
670 btrfs_get_extent,
671 fixup->mirror_num);
672 wait_on_page_locked(page);
673
674 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
675 end, EXTENT_DAMAGED, 0, NULL);
676 if (!corrected)
677 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
678 EXTENT_DAMAGED, GFP_NOFS);
679 }
680
681 out:
682 if (page)
683 put_page(page);
684 if (inode)
685 iput(inode);
686
687 if (ret < 0)
688 return ret;
689
690 if (ret == 0 && corrected) {
691 /*
692 * we only need to call readpage for one of the inodes belonging
693 * to this extent. so make iterate_extent_inodes stop
694 */
695 return 1;
696 }
697
698 return -EIO;
699 }
700
701 static void scrub_fixup_nodatasum(struct btrfs_work *work)
702 {
703 int ret;
704 struct scrub_fixup_nodatasum *fixup;
705 struct scrub_ctx *sctx;
706 struct btrfs_trans_handle *trans = NULL;
707 struct btrfs_fs_info *fs_info;
708 struct btrfs_path *path;
709 int uncorrectable = 0;
710
711 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
712 sctx = fixup->sctx;
713 fs_info = fixup->root->fs_info;
714
715 path = btrfs_alloc_path();
716 if (!path) {
717 spin_lock(&sctx->stat_lock);
718 ++sctx->stat.malloc_errors;
719 spin_unlock(&sctx->stat_lock);
720 uncorrectable = 1;
721 goto out;
722 }
723
724 trans = btrfs_join_transaction(fixup->root);
725 if (IS_ERR(trans)) {
726 uncorrectable = 1;
727 goto out;
728 }
729
730 /*
731 * the idea is to trigger a regular read through the standard path. we
732 * read a page from the (failed) logical address by specifying the
733 * corresponding copynum of the failed sector. thus, that readpage is
734 * expected to fail.
735 * that is the point where on-the-fly error correction will kick in
736 * (once it's finished) and rewrite the failed sector if a good copy
737 * can be found.
738 */
739 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
740 path, scrub_fixup_readpage,
741 fixup);
742 if (ret < 0) {
743 uncorrectable = 1;
744 goto out;
745 }
746 WARN_ON(ret != 1);
747
748 spin_lock(&sctx->stat_lock);
749 ++sctx->stat.corrected_errors;
750 spin_unlock(&sctx->stat_lock);
751
752 out:
753 if (trans && !IS_ERR(trans))
754 btrfs_end_transaction(trans, fixup->root);
755 if (uncorrectable) {
756 spin_lock(&sctx->stat_lock);
757 ++sctx->stat.uncorrectable_errors;
758 spin_unlock(&sctx->stat_lock);
759 btrfs_dev_replace_stats_inc(
760 &sctx->dev_root->fs_info->dev_replace.
761 num_uncorrectable_read_errors);
762 printk_ratelimited_in_rcu(KERN_ERR
763 "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
764 fixup->logical, rcu_str_deref(fixup->dev->name));
765 }
766
767 btrfs_free_path(path);
768 kfree(fixup);
769
770 scrub_pending_trans_workers_dec(sctx);
771 }
772
773 /*
774 * scrub_handle_errored_block gets called when either verification of the
775 * pages failed or the bio failed to read, e.g. with EIO. In the latter
776 * case, this function handles all pages in the bio, even though only one
777 * may be bad.
778 * The goal of this function is to repair the errored block by using the
779 * contents of one of the mirrors.
780 */
781 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
782 {
783 struct scrub_ctx *sctx = sblock_to_check->sctx;
784 struct btrfs_device *dev;
785 struct btrfs_fs_info *fs_info;
786 u64 length;
787 u64 logical;
788 u64 generation;
789 unsigned int failed_mirror_index;
790 unsigned int is_metadata;
791 unsigned int have_csum;
792 u8 *csum;
793 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
794 struct scrub_block *sblock_bad;
795 int ret;
796 int mirror_index;
797 int page_num;
798 int success;
799 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
800 DEFAULT_RATELIMIT_BURST);
801
802 BUG_ON(sblock_to_check->page_count < 1);
803 fs_info = sctx->dev_root->fs_info;
804 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
805 /*
806 * if we find an error in a super block, we just report it.
807 * They will get written with the next transaction commit
808 * anyway
809 */
810 spin_lock(&sctx->stat_lock);
811 ++sctx->stat.super_errors;
812 spin_unlock(&sctx->stat_lock);
813 return 0;
814 }
815 length = sblock_to_check->page_count * PAGE_SIZE;
816 logical = sblock_to_check->pagev[0]->logical;
817 generation = sblock_to_check->pagev[0]->generation;
818 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
819 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
820 is_metadata = !(sblock_to_check->pagev[0]->flags &
821 BTRFS_EXTENT_FLAG_DATA);
822 have_csum = sblock_to_check->pagev[0]->have_csum;
823 csum = sblock_to_check->pagev[0]->csum;
824 dev = sblock_to_check->pagev[0]->dev;
825
826 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
827 sblocks_for_recheck = NULL;
828 goto nodatasum_case;
829 }
830
831 /*
832 * read all mirrors one after the other. This includes to
833 * re-read the extent or metadata block that failed (that was
834 * the cause that this fixup code is called) another time,
835 * page by page this time in order to know which pages
836 * caused I/O errors and which ones are good (for all mirrors).
837 * It is the goal to handle the situation when more than one
838 * mirror contains I/O errors, but the errors do not
839 * overlap, i.e. the data can be repaired by selecting the
840 * pages from those mirrors without I/O error on the
841 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
842 * would be that mirror #1 has an I/O error on the first page,
843 * the second page is good, and mirror #2 has an I/O error on
844 * the second page, but the first page is good.
845 * Then the first page of the first mirror can be repaired by
846 * taking the first page of the second mirror, and the
847 * second page of the second mirror can be repaired by
848 * copying the contents of the 2nd page of the 1st mirror.
849 * One more note: if the pages of one mirror contain I/O
850 * errors, the checksum cannot be verified. In order to get
851 * the best data for repairing, the first attempt is to find
852 * a mirror without I/O errors and with a validated checksum.
853 * Only if this is not possible, the pages are picked from
854 * mirrors with I/O errors without considering the checksum.
855 * If the latter is the case, at the end, the checksum of the
856 * repaired area is verified in order to correctly maintain
857 * the statistics.
858 */
859
860 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
861 sizeof(*sblocks_for_recheck),
862 GFP_NOFS);
863 if (!sblocks_for_recheck) {
864 spin_lock(&sctx->stat_lock);
865 sctx->stat.malloc_errors++;
866 sctx->stat.read_errors++;
867 sctx->stat.uncorrectable_errors++;
868 spin_unlock(&sctx->stat_lock);
869 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
870 goto out;
871 }
872
873 /* setup the context, map the logical blocks and alloc the pages */
874 ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
875 logical, sblocks_for_recheck);
876 if (ret) {
877 spin_lock(&sctx->stat_lock);
878 sctx->stat.read_errors++;
879 sctx->stat.uncorrectable_errors++;
880 spin_unlock(&sctx->stat_lock);
881 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
882 goto out;
883 }
884 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
885 sblock_bad = sblocks_for_recheck + failed_mirror_index;
886
887 /* build and submit the bios for the failed mirror, check checksums */
888 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
889 csum, generation, sctx->csum_size);
890
891 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
892 sblock_bad->no_io_error_seen) {
893 /*
894 * the error disappeared after reading page by page, or
895 * the area was part of a huge bio and other parts of the
896 * bio caused I/O errors, or the block layer merged several
897 * read requests into one and the error is caused by a
898 * different bio (usually one of the two latter cases is
899 * the cause)
900 */
901 spin_lock(&sctx->stat_lock);
902 sctx->stat.unverified_errors++;
903 spin_unlock(&sctx->stat_lock);
904
905 if (sctx->is_dev_replace)
906 scrub_write_block_to_dev_replace(sblock_bad);
907 goto out;
908 }
909
910 if (!sblock_bad->no_io_error_seen) {
911 spin_lock(&sctx->stat_lock);
912 sctx->stat.read_errors++;
913 spin_unlock(&sctx->stat_lock);
914 if (__ratelimit(&_rs))
915 scrub_print_warning("i/o error", sblock_to_check);
916 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
917 } else if (sblock_bad->checksum_error) {
918 spin_lock(&sctx->stat_lock);
919 sctx->stat.csum_errors++;
920 spin_unlock(&sctx->stat_lock);
921 if (__ratelimit(&_rs))
922 scrub_print_warning("checksum error", sblock_to_check);
923 btrfs_dev_stat_inc_and_print(dev,
924 BTRFS_DEV_STAT_CORRUPTION_ERRS);
925 } else if (sblock_bad->header_error) {
926 spin_lock(&sctx->stat_lock);
927 sctx->stat.verify_errors++;
928 spin_unlock(&sctx->stat_lock);
929 if (__ratelimit(&_rs))
930 scrub_print_warning("checksum/header error",
931 sblock_to_check);
932 if (sblock_bad->generation_error)
933 btrfs_dev_stat_inc_and_print(dev,
934 BTRFS_DEV_STAT_GENERATION_ERRS);
935 else
936 btrfs_dev_stat_inc_and_print(dev,
937 BTRFS_DEV_STAT_CORRUPTION_ERRS);
938 }
939
940 if (sctx->readonly) {
941 ASSERT(!sctx->is_dev_replace);
942 goto out;
943 }
944
945 if (!is_metadata && !have_csum) {
946 struct scrub_fixup_nodatasum *fixup_nodatasum;
947
948 nodatasum_case:
949 WARN_ON(sctx->is_dev_replace);
950
951 /*
952 * !is_metadata and !have_csum, this means that the data
953 * might not be COW'ed, that it might be modified
954 * concurrently. The general strategy to work on the
955 * commit root does not help in the case when COW is not
956 * used.
957 */
958 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
959 if (!fixup_nodatasum)
960 goto did_not_correct_error;
961 fixup_nodatasum->sctx = sctx;
962 fixup_nodatasum->dev = dev;
963 fixup_nodatasum->logical = logical;
964 fixup_nodatasum->root = fs_info->extent_root;
965 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
966 scrub_pending_trans_workers_inc(sctx);
967 fixup_nodatasum->work.func = scrub_fixup_nodatasum;
968 btrfs_queue_worker(&fs_info->scrub_workers,
969 &fixup_nodatasum->work);
970 goto out;
971 }
972
973 /*
974 * now build and submit the bios for the other mirrors, check
975 * checksums.
976 * First try to pick the mirror which is completely without I/O
977 * errors and also does not have a checksum error.
978 * If one is found, and if a checksum is present, the full block
979 * that is known to contain an error is rewritten. Afterwards
980 * the block is known to be corrected.
981 * If a mirror is found which is completely correct, and no
982 * checksum is present, only those pages are rewritten that had
983 * an I/O error in the block to be repaired, since it cannot be
984 * determined, which copy of the other pages is better (and it
985 * could happen otherwise that a correct page would be
986 * overwritten by a bad one).
987 */
988 for (mirror_index = 0;
989 mirror_index < BTRFS_MAX_MIRRORS &&
990 sblocks_for_recheck[mirror_index].page_count > 0;
991 mirror_index++) {
992 struct scrub_block *sblock_other;
993
994 if (mirror_index == failed_mirror_index)
995 continue;
996 sblock_other = sblocks_for_recheck + mirror_index;
997
998 /* build and submit the bios, check checksums */
999 scrub_recheck_block(fs_info, sblock_other, is_metadata,
1000 have_csum, csum, generation,
1001 sctx->csum_size);
1002
1003 if (!sblock_other->header_error &&
1004 !sblock_other->checksum_error &&
1005 sblock_other->no_io_error_seen) {
1006 if (sctx->is_dev_replace) {
1007 scrub_write_block_to_dev_replace(sblock_other);
1008 } else {
1009 int force_write = is_metadata || have_csum;
1010
1011 ret = scrub_repair_block_from_good_copy(
1012 sblock_bad, sblock_other,
1013 force_write);
1014 }
1015 if (0 == ret)
1016 goto corrected_error;
1017 }
1018 }
1019
1020 /*
1021 * for dev_replace, pick good pages and write to the target device.
1022 */
1023 if (sctx->is_dev_replace) {
1024 success = 1;
1025 for (page_num = 0; page_num < sblock_bad->page_count;
1026 page_num++) {
1027 int sub_success;
1028
1029 sub_success = 0;
1030 for (mirror_index = 0;
1031 mirror_index < BTRFS_MAX_MIRRORS &&
1032 sblocks_for_recheck[mirror_index].page_count > 0;
1033 mirror_index++) {
1034 struct scrub_block *sblock_other =
1035 sblocks_for_recheck + mirror_index;
1036 struct scrub_page *page_other =
1037 sblock_other->pagev[page_num];
1038
1039 if (!page_other->io_error) {
1040 ret = scrub_write_page_to_dev_replace(
1041 sblock_other, page_num);
1042 if (ret == 0) {
1043 /* succeeded for this page */
1044 sub_success = 1;
1045 break;
1046 } else {
1047 btrfs_dev_replace_stats_inc(
1048 &sctx->dev_root->
1049 fs_info->dev_replace.
1050 num_write_errors);
1051 }
1052 }
1053 }
1054
1055 if (!sub_success) {
1056 /*
1057 * did not find a mirror to fetch the page
1058 * from. scrub_write_page_to_dev_replace()
1059 * handles this case (page->io_error), by
1060 * filling the block with zeros before
1061 * submitting the write request
1062 */
1063 success = 0;
1064 ret = scrub_write_page_to_dev_replace(
1065 sblock_bad, page_num);
1066 if (ret)
1067 btrfs_dev_replace_stats_inc(
1068 &sctx->dev_root->fs_info->
1069 dev_replace.num_write_errors);
1070 }
1071 }
1072
1073 goto out;
1074 }
1075
1076 /*
1077 * for regular scrub, repair those pages that are errored.
1078 * In case of I/O errors in the area that is supposed to be
1079 * repaired, continue by picking good copies of those pages.
1080 * Select the good pages from mirrors to rewrite bad pages from
1081 * the area to fix. Afterwards verify the checksum of the block
1082 * that is supposed to be repaired. This verification step is
1083 * only done for the purpose of statistic counting and for the
1084 * final scrub report, whether errors remain.
1085 * A perfect algorithm could make use of the checksum and try
1086 * all possible combinations of pages from the different mirrors
1087 * until the checksum verification succeeds. For example, when
1088 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1089 * of mirror #2 is readable but the final checksum test fails,
1090 * then the 2nd page of mirror #3 could be tried, whether now
1091 * the final checksum succeedes. But this would be a rare
1092 * exception and is therefore not implemented. At least it is
1093 * avoided that the good copy is overwritten.
1094 * A more useful improvement would be to pick the sectors
1095 * without I/O error based on sector sizes (512 bytes on legacy
1096 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1097 * mirror could be repaired by taking 512 byte of a different
1098 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1099 * area are unreadable.
1100 */
1101
1102 /* can only fix I/O errors from here on */
1103 if (sblock_bad->no_io_error_seen)
1104 goto did_not_correct_error;
1105
1106 success = 1;
1107 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1108 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1109
1110 if (!page_bad->io_error)
1111 continue;
1112
1113 for (mirror_index = 0;
1114 mirror_index < BTRFS_MAX_MIRRORS &&
1115 sblocks_for_recheck[mirror_index].page_count > 0;
1116 mirror_index++) {
1117 struct scrub_block *sblock_other = sblocks_for_recheck +
1118 mirror_index;
1119 struct scrub_page *page_other = sblock_other->pagev[
1120 page_num];
1121
1122 if (!page_other->io_error) {
1123 ret = scrub_repair_page_from_good_copy(
1124 sblock_bad, sblock_other, page_num, 0);
1125 if (0 == ret) {
1126 page_bad->io_error = 0;
1127 break; /* succeeded for this page */
1128 }
1129 }
1130 }
1131
1132 if (page_bad->io_error) {
1133 /* did not find a mirror to copy the page from */
1134 success = 0;
1135 }
1136 }
1137
1138 if (success) {
1139 if (is_metadata || have_csum) {
1140 /*
1141 * need to verify the checksum now that all
1142 * sectors on disk are repaired (the write
1143 * request for data to be repaired is on its way).
1144 * Just be lazy and use scrub_recheck_block()
1145 * which re-reads the data before the checksum
1146 * is verified, but most likely the data comes out
1147 * of the page cache.
1148 */
1149 scrub_recheck_block(fs_info, sblock_bad,
1150 is_metadata, have_csum, csum,
1151 generation, sctx->csum_size);
1152 if (!sblock_bad->header_error &&
1153 !sblock_bad->checksum_error &&
1154 sblock_bad->no_io_error_seen)
1155 goto corrected_error;
1156 else
1157 goto did_not_correct_error;
1158 } else {
1159 corrected_error:
1160 spin_lock(&sctx->stat_lock);
1161 sctx->stat.corrected_errors++;
1162 spin_unlock(&sctx->stat_lock);
1163 printk_ratelimited_in_rcu(KERN_ERR
1164 "btrfs: fixed up error at logical %llu on dev %s\n",
1165 logical, rcu_str_deref(dev->name));
1166 }
1167 } else {
1168 did_not_correct_error:
1169 spin_lock(&sctx->stat_lock);
1170 sctx->stat.uncorrectable_errors++;
1171 spin_unlock(&sctx->stat_lock);
1172 printk_ratelimited_in_rcu(KERN_ERR
1173 "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
1174 logical, rcu_str_deref(dev->name));
1175 }
1176
1177 out:
1178 if (sblocks_for_recheck) {
1179 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1180 mirror_index++) {
1181 struct scrub_block *sblock = sblocks_for_recheck +
1182 mirror_index;
1183 int page_index;
1184
1185 for (page_index = 0; page_index < sblock->page_count;
1186 page_index++) {
1187 sblock->pagev[page_index]->sblock = NULL;
1188 scrub_page_put(sblock->pagev[page_index]);
1189 }
1190 }
1191 kfree(sblocks_for_recheck);
1192 }
1193
1194 return 0;
1195 }
1196
1197 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1198 struct btrfs_fs_info *fs_info,
1199 struct scrub_block *original_sblock,
1200 u64 length, u64 logical,
1201 struct scrub_block *sblocks_for_recheck)
1202 {
1203 int page_index;
1204 int mirror_index;
1205 int ret;
1206
1207 /*
1208 * note: the two members ref_count and outstanding_pages
1209 * are not used (and not set) in the blocks that are used for
1210 * the recheck procedure
1211 */
1212
1213 page_index = 0;
1214 while (length > 0) {
1215 u64 sublen = min_t(u64, length, PAGE_SIZE);
1216 u64 mapped_length = sublen;
1217 struct btrfs_bio *bbio = NULL;
1218
1219 /*
1220 * with a length of PAGE_SIZE, each returned stripe
1221 * represents one mirror
1222 */
1223 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1224 &mapped_length, &bbio, 0);
1225 if (ret || !bbio || mapped_length < sublen) {
1226 kfree(bbio);
1227 return -EIO;
1228 }
1229
1230 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1231 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1232 mirror_index++) {
1233 struct scrub_block *sblock;
1234 struct scrub_page *page;
1235
1236 if (mirror_index >= BTRFS_MAX_MIRRORS)
1237 continue;
1238
1239 sblock = sblocks_for_recheck + mirror_index;
1240 sblock->sctx = sctx;
1241 page = kzalloc(sizeof(*page), GFP_NOFS);
1242 if (!page) {
1243 leave_nomem:
1244 spin_lock(&sctx->stat_lock);
1245 sctx->stat.malloc_errors++;
1246 spin_unlock(&sctx->stat_lock);
1247 kfree(bbio);
1248 return -ENOMEM;
1249 }
1250 scrub_page_get(page);
1251 sblock->pagev[page_index] = page;
1252 page->logical = logical;
1253 page->physical = bbio->stripes[mirror_index].physical;
1254 BUG_ON(page_index >= original_sblock->page_count);
1255 page->physical_for_dev_replace =
1256 original_sblock->pagev[page_index]->
1257 physical_for_dev_replace;
1258 /* for missing devices, dev->bdev is NULL */
1259 page->dev = bbio->stripes[mirror_index].dev;
1260 page->mirror_num = mirror_index + 1;
1261 sblock->page_count++;
1262 page->page = alloc_page(GFP_NOFS);
1263 if (!page->page)
1264 goto leave_nomem;
1265 }
1266 kfree(bbio);
1267 length -= sublen;
1268 logical += sublen;
1269 page_index++;
1270 }
1271
1272 return 0;
1273 }
1274
1275 /*
1276 * this function will check the on disk data for checksum errors, header
1277 * errors and read I/O errors. If any I/O errors happen, the exact pages
1278 * which are errored are marked as being bad. The goal is to enable scrub
1279 * to take those pages that are not errored from all the mirrors so that
1280 * the pages that are errored in the just handled mirror can be repaired.
1281 */
1282 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1283 struct scrub_block *sblock, int is_metadata,
1284 int have_csum, u8 *csum, u64 generation,
1285 u16 csum_size)
1286 {
1287 int page_num;
1288
1289 sblock->no_io_error_seen = 1;
1290 sblock->header_error = 0;
1291 sblock->checksum_error = 0;
1292
1293 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1294 struct bio *bio;
1295 struct scrub_page *page = sblock->pagev[page_num];
1296
1297 if (page->dev->bdev == NULL) {
1298 page->io_error = 1;
1299 sblock->no_io_error_seen = 0;
1300 continue;
1301 }
1302
1303 WARN_ON(!page->page);
1304 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1305 if (!bio) {
1306 page->io_error = 1;
1307 sblock->no_io_error_seen = 0;
1308 continue;
1309 }
1310 bio->bi_bdev = page->dev->bdev;
1311 bio->bi_iter.bi_sector = page->physical >> 9;
1312
1313 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1314 if (btrfsic_submit_bio_wait(READ, bio))
1315 sblock->no_io_error_seen = 0;
1316
1317 bio_put(bio);
1318 }
1319
1320 if (sblock->no_io_error_seen)
1321 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1322 have_csum, csum, generation,
1323 csum_size);
1324
1325 return;
1326 }
1327
1328 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1329 struct scrub_block *sblock,
1330 int is_metadata, int have_csum,
1331 const u8 *csum, u64 generation,
1332 u16 csum_size)
1333 {
1334 int page_num;
1335 u8 calculated_csum[BTRFS_CSUM_SIZE];
1336 u32 crc = ~(u32)0;
1337 void *mapped_buffer;
1338
1339 WARN_ON(!sblock->pagev[0]->page);
1340 if (is_metadata) {
1341 struct btrfs_header *h;
1342
1343 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1344 h = (struct btrfs_header *)mapped_buffer;
1345
1346 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1347 memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1348 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1349 BTRFS_UUID_SIZE)) {
1350 sblock->header_error = 1;
1351 } else if (generation != btrfs_stack_header_generation(h)) {
1352 sblock->header_error = 1;
1353 sblock->generation_error = 1;
1354 }
1355 csum = h->csum;
1356 } else {
1357 if (!have_csum)
1358 return;
1359
1360 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1361 }
1362
1363 for (page_num = 0;;) {
1364 if (page_num == 0 && is_metadata)
1365 crc = btrfs_csum_data(
1366 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1367 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1368 else
1369 crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1370
1371 kunmap_atomic(mapped_buffer);
1372 page_num++;
1373 if (page_num >= sblock->page_count)
1374 break;
1375 WARN_ON(!sblock->pagev[page_num]->page);
1376
1377 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1378 }
1379
1380 btrfs_csum_final(crc, calculated_csum);
1381 if (memcmp(calculated_csum, csum, csum_size))
1382 sblock->checksum_error = 1;
1383 }
1384
1385 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1386 struct scrub_block *sblock_good,
1387 int force_write)
1388 {
1389 int page_num;
1390 int ret = 0;
1391
1392 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1393 int ret_sub;
1394
1395 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1396 sblock_good,
1397 page_num,
1398 force_write);
1399 if (ret_sub)
1400 ret = ret_sub;
1401 }
1402
1403 return ret;
1404 }
1405
1406 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1407 struct scrub_block *sblock_good,
1408 int page_num, int force_write)
1409 {
1410 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1411 struct scrub_page *page_good = sblock_good->pagev[page_num];
1412
1413 BUG_ON(page_bad->page == NULL);
1414 BUG_ON(page_good->page == NULL);
1415 if (force_write || sblock_bad->header_error ||
1416 sblock_bad->checksum_error || page_bad->io_error) {
1417 struct bio *bio;
1418 int ret;
1419
1420 if (!page_bad->dev->bdev) {
1421 printk_ratelimited(KERN_WARNING
1422 "btrfs: scrub_repair_page_from_good_copy(bdev == NULL) is unexpected!\n");
1423 return -EIO;
1424 }
1425
1426 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1427 if (!bio)
1428 return -EIO;
1429 bio->bi_bdev = page_bad->dev->bdev;
1430 bio->bi_iter.bi_sector = page_bad->physical >> 9;
1431
1432 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1433 if (PAGE_SIZE != ret) {
1434 bio_put(bio);
1435 return -EIO;
1436 }
1437
1438 if (btrfsic_submit_bio_wait(WRITE, bio)) {
1439 btrfs_dev_stat_inc_and_print(page_bad->dev,
1440 BTRFS_DEV_STAT_WRITE_ERRS);
1441 btrfs_dev_replace_stats_inc(
1442 &sblock_bad->sctx->dev_root->fs_info->
1443 dev_replace.num_write_errors);
1444 bio_put(bio);
1445 return -EIO;
1446 }
1447 bio_put(bio);
1448 }
1449
1450 return 0;
1451 }
1452
1453 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1454 {
1455 int page_num;
1456
1457 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1458 int ret;
1459
1460 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1461 if (ret)
1462 btrfs_dev_replace_stats_inc(
1463 &sblock->sctx->dev_root->fs_info->dev_replace.
1464 num_write_errors);
1465 }
1466 }
1467
1468 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1469 int page_num)
1470 {
1471 struct scrub_page *spage = sblock->pagev[page_num];
1472
1473 BUG_ON(spage->page == NULL);
1474 if (spage->io_error) {
1475 void *mapped_buffer = kmap_atomic(spage->page);
1476
1477 memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1478 flush_dcache_page(spage->page);
1479 kunmap_atomic(mapped_buffer);
1480 }
1481 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1482 }
1483
1484 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1485 struct scrub_page *spage)
1486 {
1487 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1488 struct scrub_bio *sbio;
1489 int ret;
1490
1491 mutex_lock(&wr_ctx->wr_lock);
1492 again:
1493 if (!wr_ctx->wr_curr_bio) {
1494 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1495 GFP_NOFS);
1496 if (!wr_ctx->wr_curr_bio) {
1497 mutex_unlock(&wr_ctx->wr_lock);
1498 return -ENOMEM;
1499 }
1500 wr_ctx->wr_curr_bio->sctx = sctx;
1501 wr_ctx->wr_curr_bio->page_count = 0;
1502 }
1503 sbio = wr_ctx->wr_curr_bio;
1504 if (sbio->page_count == 0) {
1505 struct bio *bio;
1506
1507 sbio->physical = spage->physical_for_dev_replace;
1508 sbio->logical = spage->logical;
1509 sbio->dev = wr_ctx->tgtdev;
1510 bio = sbio->bio;
1511 if (!bio) {
1512 bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1513 if (!bio) {
1514 mutex_unlock(&wr_ctx->wr_lock);
1515 return -ENOMEM;
1516 }
1517 sbio->bio = bio;
1518 }
1519
1520 bio->bi_private = sbio;
1521 bio->bi_end_io = scrub_wr_bio_end_io;
1522 bio->bi_bdev = sbio->dev->bdev;
1523 bio->bi_iter.bi_sector = sbio->physical >> 9;
1524 sbio->err = 0;
1525 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1526 spage->physical_for_dev_replace ||
1527 sbio->logical + sbio->page_count * PAGE_SIZE !=
1528 spage->logical) {
1529 scrub_wr_submit(sctx);
1530 goto again;
1531 }
1532
1533 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1534 if (ret != PAGE_SIZE) {
1535 if (sbio->page_count < 1) {
1536 bio_put(sbio->bio);
1537 sbio->bio = NULL;
1538 mutex_unlock(&wr_ctx->wr_lock);
1539 return -EIO;
1540 }
1541 scrub_wr_submit(sctx);
1542 goto again;
1543 }
1544
1545 sbio->pagev[sbio->page_count] = spage;
1546 scrub_page_get(spage);
1547 sbio->page_count++;
1548 if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1549 scrub_wr_submit(sctx);
1550 mutex_unlock(&wr_ctx->wr_lock);
1551
1552 return 0;
1553 }
1554
1555 static void scrub_wr_submit(struct scrub_ctx *sctx)
1556 {
1557 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1558 struct scrub_bio *sbio;
1559
1560 if (!wr_ctx->wr_curr_bio)
1561 return;
1562
1563 sbio = wr_ctx->wr_curr_bio;
1564 wr_ctx->wr_curr_bio = NULL;
1565 WARN_ON(!sbio->bio->bi_bdev);
1566 scrub_pending_bio_inc(sctx);
1567 /* process all writes in a single worker thread. Then the block layer
1568 * orders the requests before sending them to the driver which
1569 * doubled the write performance on spinning disks when measured
1570 * with Linux 3.5 */
1571 btrfsic_submit_bio(WRITE, sbio->bio);
1572 }
1573
1574 static void scrub_wr_bio_end_io(struct bio *bio, int err)
1575 {
1576 struct scrub_bio *sbio = bio->bi_private;
1577 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1578
1579 sbio->err = err;
1580 sbio->bio = bio;
1581
1582 sbio->work.func = scrub_wr_bio_end_io_worker;
1583 btrfs_queue_worker(&fs_info->scrub_wr_completion_workers, &sbio->work);
1584 }
1585
1586 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1587 {
1588 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1589 struct scrub_ctx *sctx = sbio->sctx;
1590 int i;
1591
1592 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1593 if (sbio->err) {
1594 struct btrfs_dev_replace *dev_replace =
1595 &sbio->sctx->dev_root->fs_info->dev_replace;
1596
1597 for (i = 0; i < sbio->page_count; i++) {
1598 struct scrub_page *spage = sbio->pagev[i];
1599
1600 spage->io_error = 1;
1601 btrfs_dev_replace_stats_inc(&dev_replace->
1602 num_write_errors);
1603 }
1604 }
1605
1606 for (i = 0; i < sbio->page_count; i++)
1607 scrub_page_put(sbio->pagev[i]);
1608
1609 bio_put(sbio->bio);
1610 kfree(sbio);
1611 scrub_pending_bio_dec(sctx);
1612 }
1613
1614 static int scrub_checksum(struct scrub_block *sblock)
1615 {
1616 u64 flags;
1617 int ret;
1618
1619 WARN_ON(sblock->page_count < 1);
1620 flags = sblock->pagev[0]->flags;
1621 ret = 0;
1622 if (flags & BTRFS_EXTENT_FLAG_DATA)
1623 ret = scrub_checksum_data(sblock);
1624 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1625 ret = scrub_checksum_tree_block(sblock);
1626 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1627 (void)scrub_checksum_super(sblock);
1628 else
1629 WARN_ON(1);
1630 if (ret)
1631 scrub_handle_errored_block(sblock);
1632
1633 return ret;
1634 }
1635
1636 static int scrub_checksum_data(struct scrub_block *sblock)
1637 {
1638 struct scrub_ctx *sctx = sblock->sctx;
1639 u8 csum[BTRFS_CSUM_SIZE];
1640 u8 *on_disk_csum;
1641 struct page *page;
1642 void *buffer;
1643 u32 crc = ~(u32)0;
1644 int fail = 0;
1645 u64 len;
1646 int index;
1647
1648 BUG_ON(sblock->page_count < 1);
1649 if (!sblock->pagev[0]->have_csum)
1650 return 0;
1651
1652 on_disk_csum = sblock->pagev[0]->csum;
1653 page = sblock->pagev[0]->page;
1654 buffer = kmap_atomic(page);
1655
1656 len = sctx->sectorsize;
1657 index = 0;
1658 for (;;) {
1659 u64 l = min_t(u64, len, PAGE_SIZE);
1660
1661 crc = btrfs_csum_data(buffer, crc, l);
1662 kunmap_atomic(buffer);
1663 len -= l;
1664 if (len == 0)
1665 break;
1666 index++;
1667 BUG_ON(index >= sblock->page_count);
1668 BUG_ON(!sblock->pagev[index]->page);
1669 page = sblock->pagev[index]->page;
1670 buffer = kmap_atomic(page);
1671 }
1672
1673 btrfs_csum_final(crc, csum);
1674 if (memcmp(csum, on_disk_csum, sctx->csum_size))
1675 fail = 1;
1676
1677 return fail;
1678 }
1679
1680 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1681 {
1682 struct scrub_ctx *sctx = sblock->sctx;
1683 struct btrfs_header *h;
1684 struct btrfs_root *root = sctx->dev_root;
1685 struct btrfs_fs_info *fs_info = root->fs_info;
1686 u8 calculated_csum[BTRFS_CSUM_SIZE];
1687 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1688 struct page *page;
1689 void *mapped_buffer;
1690 u64 mapped_size;
1691 void *p;
1692 u32 crc = ~(u32)0;
1693 int fail = 0;
1694 int crc_fail = 0;
1695 u64 len;
1696 int index;
1697
1698 BUG_ON(sblock->page_count < 1);
1699 page = sblock->pagev[0]->page;
1700 mapped_buffer = kmap_atomic(page);
1701 h = (struct btrfs_header *)mapped_buffer;
1702 memcpy(on_disk_csum, h->csum, sctx->csum_size);
1703
1704 /*
1705 * we don't use the getter functions here, as we
1706 * a) don't have an extent buffer and
1707 * b) the page is already kmapped
1708 */
1709
1710 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1711 ++fail;
1712
1713 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1714 ++fail;
1715
1716 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1717 ++fail;
1718
1719 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1720 BTRFS_UUID_SIZE))
1721 ++fail;
1722
1723 WARN_ON(sctx->nodesize != sctx->leafsize);
1724 len = sctx->nodesize - BTRFS_CSUM_SIZE;
1725 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1726 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1727 index = 0;
1728 for (;;) {
1729 u64 l = min_t(u64, len, mapped_size);
1730
1731 crc = btrfs_csum_data(p, crc, l);
1732 kunmap_atomic(mapped_buffer);
1733 len -= l;
1734 if (len == 0)
1735 break;
1736 index++;
1737 BUG_ON(index >= sblock->page_count);
1738 BUG_ON(!sblock->pagev[index]->page);
1739 page = sblock->pagev[index]->page;
1740 mapped_buffer = kmap_atomic(page);
1741 mapped_size = PAGE_SIZE;
1742 p = mapped_buffer;
1743 }
1744
1745 btrfs_csum_final(crc, calculated_csum);
1746 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1747 ++crc_fail;
1748
1749 return fail || crc_fail;
1750 }
1751
1752 static int scrub_checksum_super(struct scrub_block *sblock)
1753 {
1754 struct btrfs_super_block *s;
1755 struct scrub_ctx *sctx = sblock->sctx;
1756 struct btrfs_root *root = sctx->dev_root;
1757 struct btrfs_fs_info *fs_info = root->fs_info;
1758 u8 calculated_csum[BTRFS_CSUM_SIZE];
1759 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1760 struct page *page;
1761 void *mapped_buffer;
1762 u64 mapped_size;
1763 void *p;
1764 u32 crc = ~(u32)0;
1765 int fail_gen = 0;
1766 int fail_cor = 0;
1767 u64 len;
1768 int index;
1769
1770 BUG_ON(sblock->page_count < 1);
1771 page = sblock->pagev[0]->page;
1772 mapped_buffer = kmap_atomic(page);
1773 s = (struct btrfs_super_block *)mapped_buffer;
1774 memcpy(on_disk_csum, s->csum, sctx->csum_size);
1775
1776 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1777 ++fail_cor;
1778
1779 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1780 ++fail_gen;
1781
1782 if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1783 ++fail_cor;
1784
1785 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1786 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1787 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1788 index = 0;
1789 for (;;) {
1790 u64 l = min_t(u64, len, mapped_size);
1791
1792 crc = btrfs_csum_data(p, crc, l);
1793 kunmap_atomic(mapped_buffer);
1794 len -= l;
1795 if (len == 0)
1796 break;
1797 index++;
1798 BUG_ON(index >= sblock->page_count);
1799 BUG_ON(!sblock->pagev[index]->page);
1800 page = sblock->pagev[index]->page;
1801 mapped_buffer = kmap_atomic(page);
1802 mapped_size = PAGE_SIZE;
1803 p = mapped_buffer;
1804 }
1805
1806 btrfs_csum_final(crc, calculated_csum);
1807 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1808 ++fail_cor;
1809
1810 if (fail_cor + fail_gen) {
1811 /*
1812 * if we find an error in a super block, we just report it.
1813 * They will get written with the next transaction commit
1814 * anyway
1815 */
1816 spin_lock(&sctx->stat_lock);
1817 ++sctx->stat.super_errors;
1818 spin_unlock(&sctx->stat_lock);
1819 if (fail_cor)
1820 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1821 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1822 else
1823 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1824 BTRFS_DEV_STAT_GENERATION_ERRS);
1825 }
1826
1827 return fail_cor + fail_gen;
1828 }
1829
1830 static void scrub_block_get(struct scrub_block *sblock)
1831 {
1832 atomic_inc(&sblock->ref_count);
1833 }
1834
1835 static void scrub_block_put(struct scrub_block *sblock)
1836 {
1837 if (atomic_dec_and_test(&sblock->ref_count)) {
1838 int i;
1839
1840 for (i = 0; i < sblock->page_count; i++)
1841 scrub_page_put(sblock->pagev[i]);
1842 kfree(sblock);
1843 }
1844 }
1845
1846 static void scrub_page_get(struct scrub_page *spage)
1847 {
1848 atomic_inc(&spage->ref_count);
1849 }
1850
1851 static void scrub_page_put(struct scrub_page *spage)
1852 {
1853 if (atomic_dec_and_test(&spage->ref_count)) {
1854 if (spage->page)
1855 __free_page(spage->page);
1856 kfree(spage);
1857 }
1858 }
1859
1860 static void scrub_submit(struct scrub_ctx *sctx)
1861 {
1862 struct scrub_bio *sbio;
1863
1864 if (sctx->curr == -1)
1865 return;
1866
1867 sbio = sctx->bios[sctx->curr];
1868 sctx->curr = -1;
1869 scrub_pending_bio_inc(sctx);
1870
1871 if (!sbio->bio->bi_bdev) {
1872 /*
1873 * this case should not happen. If btrfs_map_block() is
1874 * wrong, it could happen for dev-replace operations on
1875 * missing devices when no mirrors are available, but in
1876 * this case it should already fail the mount.
1877 * This case is handled correctly (but _very_ slowly).
1878 */
1879 printk_ratelimited(KERN_WARNING
1880 "btrfs: scrub_submit(bio bdev == NULL) is unexpected!\n");
1881 bio_endio(sbio->bio, -EIO);
1882 } else {
1883 btrfsic_submit_bio(READ, sbio->bio);
1884 }
1885 }
1886
1887 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1888 struct scrub_page *spage)
1889 {
1890 struct scrub_block *sblock = spage->sblock;
1891 struct scrub_bio *sbio;
1892 int ret;
1893
1894 again:
1895 /*
1896 * grab a fresh bio or wait for one to become available
1897 */
1898 while (sctx->curr == -1) {
1899 spin_lock(&sctx->list_lock);
1900 sctx->curr = sctx->first_free;
1901 if (sctx->curr != -1) {
1902 sctx->first_free = sctx->bios[sctx->curr]->next_free;
1903 sctx->bios[sctx->curr]->next_free = -1;
1904 sctx->bios[sctx->curr]->page_count = 0;
1905 spin_unlock(&sctx->list_lock);
1906 } else {
1907 spin_unlock(&sctx->list_lock);
1908 wait_event(sctx->list_wait, sctx->first_free != -1);
1909 }
1910 }
1911 sbio = sctx->bios[sctx->curr];
1912 if (sbio->page_count == 0) {
1913 struct bio *bio;
1914
1915 sbio->physical = spage->physical;
1916 sbio->logical = spage->logical;
1917 sbio->dev = spage->dev;
1918 bio = sbio->bio;
1919 if (!bio) {
1920 bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1921 if (!bio)
1922 return -ENOMEM;
1923 sbio->bio = bio;
1924 }
1925
1926 bio->bi_private = sbio;
1927 bio->bi_end_io = scrub_bio_end_io;
1928 bio->bi_bdev = sbio->dev->bdev;
1929 bio->bi_iter.bi_sector = sbio->physical >> 9;
1930 sbio->err = 0;
1931 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1932 spage->physical ||
1933 sbio->logical + sbio->page_count * PAGE_SIZE !=
1934 spage->logical ||
1935 sbio->dev != spage->dev) {
1936 scrub_submit(sctx);
1937 goto again;
1938 }
1939
1940 sbio->pagev[sbio->page_count] = spage;
1941 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1942 if (ret != PAGE_SIZE) {
1943 if (sbio->page_count < 1) {
1944 bio_put(sbio->bio);
1945 sbio->bio = NULL;
1946 return -EIO;
1947 }
1948 scrub_submit(sctx);
1949 goto again;
1950 }
1951
1952 scrub_block_get(sblock); /* one for the page added to the bio */
1953 atomic_inc(&sblock->outstanding_pages);
1954 sbio->page_count++;
1955 if (sbio->page_count == sctx->pages_per_rd_bio)
1956 scrub_submit(sctx);
1957
1958 return 0;
1959 }
1960
1961 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1962 u64 physical, struct btrfs_device *dev, u64 flags,
1963 u64 gen, int mirror_num, u8 *csum, int force,
1964 u64 physical_for_dev_replace)
1965 {
1966 struct scrub_block *sblock;
1967 int index;
1968
1969 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1970 if (!sblock) {
1971 spin_lock(&sctx->stat_lock);
1972 sctx->stat.malloc_errors++;
1973 spin_unlock(&sctx->stat_lock);
1974 return -ENOMEM;
1975 }
1976
1977 /* one ref inside this function, plus one for each page added to
1978 * a bio later on */
1979 atomic_set(&sblock->ref_count, 1);
1980 sblock->sctx = sctx;
1981 sblock->no_io_error_seen = 1;
1982
1983 for (index = 0; len > 0; index++) {
1984 struct scrub_page *spage;
1985 u64 l = min_t(u64, len, PAGE_SIZE);
1986
1987 spage = kzalloc(sizeof(*spage), GFP_NOFS);
1988 if (!spage) {
1989 leave_nomem:
1990 spin_lock(&sctx->stat_lock);
1991 sctx->stat.malloc_errors++;
1992 spin_unlock(&sctx->stat_lock);
1993 scrub_block_put(sblock);
1994 return -ENOMEM;
1995 }
1996 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
1997 scrub_page_get(spage);
1998 sblock->pagev[index] = spage;
1999 spage->sblock = sblock;
2000 spage->dev = dev;
2001 spage->flags = flags;
2002 spage->generation = gen;
2003 spage->logical = logical;
2004 spage->physical = physical;
2005 spage->physical_for_dev_replace = physical_for_dev_replace;
2006 spage->mirror_num = mirror_num;
2007 if (csum) {
2008 spage->have_csum = 1;
2009 memcpy(spage->csum, csum, sctx->csum_size);
2010 } else {
2011 spage->have_csum = 0;
2012 }
2013 sblock->page_count++;
2014 spage->page = alloc_page(GFP_NOFS);
2015 if (!spage->page)
2016 goto leave_nomem;
2017 len -= l;
2018 logical += l;
2019 physical += l;
2020 physical_for_dev_replace += l;
2021 }
2022
2023 WARN_ON(sblock->page_count == 0);
2024 for (index = 0; index < sblock->page_count; index++) {
2025 struct scrub_page *spage = sblock->pagev[index];
2026 int ret;
2027
2028 ret = scrub_add_page_to_rd_bio(sctx, spage);
2029 if (ret) {
2030 scrub_block_put(sblock);
2031 return ret;
2032 }
2033 }
2034
2035 if (force)
2036 scrub_submit(sctx);
2037
2038 /* last one frees, either here or in bio completion for last page */
2039 scrub_block_put(sblock);
2040 return 0;
2041 }
2042
2043 static void scrub_bio_end_io(struct bio *bio, int err)
2044 {
2045 struct scrub_bio *sbio = bio->bi_private;
2046 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2047
2048 sbio->err = err;
2049 sbio->bio = bio;
2050
2051 btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
2052 }
2053
2054 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2055 {
2056 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2057 struct scrub_ctx *sctx = sbio->sctx;
2058 int i;
2059
2060 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2061 if (sbio->err) {
2062 for (i = 0; i < sbio->page_count; i++) {
2063 struct scrub_page *spage = sbio->pagev[i];
2064
2065 spage->io_error = 1;
2066 spage->sblock->no_io_error_seen = 0;
2067 }
2068 }
2069
2070 /* now complete the scrub_block items that have all pages completed */
2071 for (i = 0; i < sbio->page_count; i++) {
2072 struct scrub_page *spage = sbio->pagev[i];
2073 struct scrub_block *sblock = spage->sblock;
2074
2075 if (atomic_dec_and_test(&sblock->outstanding_pages))
2076 scrub_block_complete(sblock);
2077 scrub_block_put(sblock);
2078 }
2079
2080 bio_put(sbio->bio);
2081 sbio->bio = NULL;
2082 spin_lock(&sctx->list_lock);
2083 sbio->next_free = sctx->first_free;
2084 sctx->first_free = sbio->index;
2085 spin_unlock(&sctx->list_lock);
2086
2087 if (sctx->is_dev_replace &&
2088 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2089 mutex_lock(&sctx->wr_ctx.wr_lock);
2090 scrub_wr_submit(sctx);
2091 mutex_unlock(&sctx->wr_ctx.wr_lock);
2092 }
2093
2094 scrub_pending_bio_dec(sctx);
2095 }
2096
2097 static void scrub_block_complete(struct scrub_block *sblock)
2098 {
2099 if (!sblock->no_io_error_seen) {
2100 scrub_handle_errored_block(sblock);
2101 } else {
2102 /*
2103 * if has checksum error, write via repair mechanism in
2104 * dev replace case, otherwise write here in dev replace
2105 * case.
2106 */
2107 if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2108 scrub_write_block_to_dev_replace(sblock);
2109 }
2110 }
2111
2112 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2113 u8 *csum)
2114 {
2115 struct btrfs_ordered_sum *sum = NULL;
2116 unsigned long index;
2117 unsigned long num_sectors;
2118
2119 while (!list_empty(&sctx->csum_list)) {
2120 sum = list_first_entry(&sctx->csum_list,
2121 struct btrfs_ordered_sum, list);
2122 if (sum->bytenr > logical)
2123 return 0;
2124 if (sum->bytenr + sum->len > logical)
2125 break;
2126
2127 ++sctx->stat.csum_discards;
2128 list_del(&sum->list);
2129 kfree(sum);
2130 sum = NULL;
2131 }
2132 if (!sum)
2133 return 0;
2134
2135 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2136 num_sectors = sum->len / sctx->sectorsize;
2137 memcpy(csum, sum->sums + index, sctx->csum_size);
2138 if (index == num_sectors - 1) {
2139 list_del(&sum->list);
2140 kfree(sum);
2141 }
2142 return 1;
2143 }
2144
2145 /* scrub extent tries to collect up to 64 kB for each bio */
2146 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2147 u64 physical, struct btrfs_device *dev, u64 flags,
2148 u64 gen, int mirror_num, u64 physical_for_dev_replace)
2149 {
2150 int ret;
2151 u8 csum[BTRFS_CSUM_SIZE];
2152 u32 blocksize;
2153
2154 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2155 blocksize = sctx->sectorsize;
2156 spin_lock(&sctx->stat_lock);
2157 sctx->stat.data_extents_scrubbed++;
2158 sctx->stat.data_bytes_scrubbed += len;
2159 spin_unlock(&sctx->stat_lock);
2160 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2161 WARN_ON(sctx->nodesize != sctx->leafsize);
2162 blocksize = sctx->nodesize;
2163 spin_lock(&sctx->stat_lock);
2164 sctx->stat.tree_extents_scrubbed++;
2165 sctx->stat.tree_bytes_scrubbed += len;
2166 spin_unlock(&sctx->stat_lock);
2167 } else {
2168 blocksize = sctx->sectorsize;
2169 WARN_ON(1);
2170 }
2171
2172 while (len) {
2173 u64 l = min_t(u64, len, blocksize);
2174 int have_csum = 0;
2175
2176 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2177 /* push csums to sbio */
2178 have_csum = scrub_find_csum(sctx, logical, l, csum);
2179 if (have_csum == 0)
2180 ++sctx->stat.no_csum;
2181 if (sctx->is_dev_replace && !have_csum) {
2182 ret = copy_nocow_pages(sctx, logical, l,
2183 mirror_num,
2184 physical_for_dev_replace);
2185 goto behind_scrub_pages;
2186 }
2187 }
2188 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2189 mirror_num, have_csum ? csum : NULL, 0,
2190 physical_for_dev_replace);
2191 behind_scrub_pages:
2192 if (ret)
2193 return ret;
2194 len -= l;
2195 logical += l;
2196 physical += l;
2197 physical_for_dev_replace += l;
2198 }
2199 return 0;
2200 }
2201
2202 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2203 struct map_lookup *map,
2204 struct btrfs_device *scrub_dev,
2205 int num, u64 base, u64 length,
2206 int is_dev_replace)
2207 {
2208 struct btrfs_path *path;
2209 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2210 struct btrfs_root *root = fs_info->extent_root;
2211 struct btrfs_root *csum_root = fs_info->csum_root;
2212 struct btrfs_extent_item *extent;
2213 struct blk_plug plug;
2214 u64 flags;
2215 int ret;
2216 int slot;
2217 u64 nstripes;
2218 struct extent_buffer *l;
2219 struct btrfs_key key;
2220 u64 physical;
2221 u64 logical;
2222 u64 logic_end;
2223 u64 generation;
2224 int mirror_num;
2225 struct reada_control *reada1;
2226 struct reada_control *reada2;
2227 struct btrfs_key key_start;
2228 struct btrfs_key key_end;
2229 u64 increment = map->stripe_len;
2230 u64 offset;
2231 u64 extent_logical;
2232 u64 extent_physical;
2233 u64 extent_len;
2234 struct btrfs_device *extent_dev;
2235 int extent_mirror_num;
2236 int stop_loop;
2237
2238 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2239 BTRFS_BLOCK_GROUP_RAID6)) {
2240 if (num >= nr_data_stripes(map)) {
2241 return 0;
2242 }
2243 }
2244
2245 nstripes = length;
2246 offset = 0;
2247 do_div(nstripes, map->stripe_len);
2248 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2249 offset = map->stripe_len * num;
2250 increment = map->stripe_len * map->num_stripes;
2251 mirror_num = 1;
2252 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2253 int factor = map->num_stripes / map->sub_stripes;
2254 offset = map->stripe_len * (num / map->sub_stripes);
2255 increment = map->stripe_len * factor;
2256 mirror_num = num % map->sub_stripes + 1;
2257 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2258 increment = map->stripe_len;
2259 mirror_num = num % map->num_stripes + 1;
2260 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2261 increment = map->stripe_len;
2262 mirror_num = num % map->num_stripes + 1;
2263 } else {
2264 increment = map->stripe_len;
2265 mirror_num = 1;
2266 }
2267
2268 path = btrfs_alloc_path();
2269 if (!path)
2270 return -ENOMEM;
2271
2272 /*
2273 * work on commit root. The related disk blocks are static as
2274 * long as COW is applied. This means, it is save to rewrite
2275 * them to repair disk errors without any race conditions
2276 */
2277 path->search_commit_root = 1;
2278 path->skip_locking = 1;
2279
2280 /*
2281 * trigger the readahead for extent tree csum tree and wait for
2282 * completion. During readahead, the scrub is officially paused
2283 * to not hold off transaction commits
2284 */
2285 logical = base + offset;
2286
2287 wait_event(sctx->list_wait,
2288 atomic_read(&sctx->bios_in_flight) == 0);
2289 atomic_inc(&fs_info->scrubs_paused);
2290 wake_up(&fs_info->scrub_pause_wait);
2291
2292 /* FIXME it might be better to start readahead at commit root */
2293 key_start.objectid = logical;
2294 key_start.type = BTRFS_EXTENT_ITEM_KEY;
2295 key_start.offset = (u64)0;
2296 key_end.objectid = base + offset + nstripes * increment;
2297 key_end.type = BTRFS_METADATA_ITEM_KEY;
2298 key_end.offset = (u64)-1;
2299 reada1 = btrfs_reada_add(root, &key_start, &key_end);
2300
2301 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2302 key_start.type = BTRFS_EXTENT_CSUM_KEY;
2303 key_start.offset = logical;
2304 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2305 key_end.type = BTRFS_EXTENT_CSUM_KEY;
2306 key_end.offset = base + offset + nstripes * increment;
2307 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2308
2309 if (!IS_ERR(reada1))
2310 btrfs_reada_wait(reada1);
2311 if (!IS_ERR(reada2))
2312 btrfs_reada_wait(reada2);
2313
2314 mutex_lock(&fs_info->scrub_lock);
2315 while (atomic_read(&fs_info->scrub_pause_req)) {
2316 mutex_unlock(&fs_info->scrub_lock);
2317 wait_event(fs_info->scrub_pause_wait,
2318 atomic_read(&fs_info->scrub_pause_req) == 0);
2319 mutex_lock(&fs_info->scrub_lock);
2320 }
2321 atomic_dec(&fs_info->scrubs_paused);
2322 mutex_unlock(&fs_info->scrub_lock);
2323 wake_up(&fs_info->scrub_pause_wait);
2324
2325 /*
2326 * collect all data csums for the stripe to avoid seeking during
2327 * the scrub. This might currently (crc32) end up to be about 1MB
2328 */
2329 blk_start_plug(&plug);
2330
2331 /*
2332 * now find all extents for each stripe and scrub them
2333 */
2334 logical = base + offset;
2335 physical = map->stripes[num].physical;
2336 logic_end = logical + increment * nstripes;
2337 ret = 0;
2338 while (logical < logic_end) {
2339 /*
2340 * canceled?
2341 */
2342 if (atomic_read(&fs_info->scrub_cancel_req) ||
2343 atomic_read(&sctx->cancel_req)) {
2344 ret = -ECANCELED;
2345 goto out;
2346 }
2347 /*
2348 * check to see if we have to pause
2349 */
2350 if (atomic_read(&fs_info->scrub_pause_req)) {
2351 /* push queued extents */
2352 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2353 scrub_submit(sctx);
2354 mutex_lock(&sctx->wr_ctx.wr_lock);
2355 scrub_wr_submit(sctx);
2356 mutex_unlock(&sctx->wr_ctx.wr_lock);
2357 wait_event(sctx->list_wait,
2358 atomic_read(&sctx->bios_in_flight) == 0);
2359 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2360 atomic_inc(&fs_info->scrubs_paused);
2361 wake_up(&fs_info->scrub_pause_wait);
2362 mutex_lock(&fs_info->scrub_lock);
2363 while (atomic_read(&fs_info->scrub_pause_req)) {
2364 mutex_unlock(&fs_info->scrub_lock);
2365 wait_event(fs_info->scrub_pause_wait,
2366 atomic_read(&fs_info->scrub_pause_req) == 0);
2367 mutex_lock(&fs_info->scrub_lock);
2368 }
2369 atomic_dec(&fs_info->scrubs_paused);
2370 mutex_unlock(&fs_info->scrub_lock);
2371 wake_up(&fs_info->scrub_pause_wait);
2372 }
2373
2374 key.objectid = logical;
2375 key.type = BTRFS_EXTENT_ITEM_KEY;
2376 key.offset = (u64)-1;
2377
2378 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2379 if (ret < 0)
2380 goto out;
2381
2382 if (ret > 0) {
2383 ret = btrfs_previous_item(root, path, 0,
2384 BTRFS_EXTENT_ITEM_KEY);
2385 if (ret < 0)
2386 goto out;
2387 if (ret > 0) {
2388 /* there's no smaller item, so stick with the
2389 * larger one */
2390 btrfs_release_path(path);
2391 ret = btrfs_search_slot(NULL, root, &key,
2392 path, 0, 0);
2393 if (ret < 0)
2394 goto out;
2395 }
2396 }
2397
2398 stop_loop = 0;
2399 while (1) {
2400 u64 bytes;
2401
2402 l = path->nodes[0];
2403 slot = path->slots[0];
2404 if (slot >= btrfs_header_nritems(l)) {
2405 ret = btrfs_next_leaf(root, path);
2406 if (ret == 0)
2407 continue;
2408 if (ret < 0)
2409 goto out;
2410
2411 stop_loop = 1;
2412 break;
2413 }
2414 btrfs_item_key_to_cpu(l, &key, slot);
2415
2416 if (key.type == BTRFS_METADATA_ITEM_KEY)
2417 bytes = root->leafsize;
2418 else
2419 bytes = key.offset;
2420
2421 if (key.objectid + bytes <= logical)
2422 goto next;
2423
2424 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2425 key.type != BTRFS_METADATA_ITEM_KEY)
2426 goto next;
2427
2428 if (key.objectid >= logical + map->stripe_len) {
2429 /* out of this device extent */
2430 if (key.objectid >= logic_end)
2431 stop_loop = 1;
2432 break;
2433 }
2434
2435 extent = btrfs_item_ptr(l, slot,
2436 struct btrfs_extent_item);
2437 flags = btrfs_extent_flags(l, extent);
2438 generation = btrfs_extent_generation(l, extent);
2439
2440 if (key.objectid < logical &&
2441 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2442 printk(KERN_ERR
2443 "btrfs scrub: tree block %llu spanning "
2444 "stripes, ignored. logical=%llu\n",
2445 key.objectid, logical);
2446 goto next;
2447 }
2448
2449 again:
2450 extent_logical = key.objectid;
2451 extent_len = bytes;
2452
2453 /*
2454 * trim extent to this stripe
2455 */
2456 if (extent_logical < logical) {
2457 extent_len -= logical - extent_logical;
2458 extent_logical = logical;
2459 }
2460 if (extent_logical + extent_len >
2461 logical + map->stripe_len) {
2462 extent_len = logical + map->stripe_len -
2463 extent_logical;
2464 }
2465
2466 extent_physical = extent_logical - logical + physical;
2467 extent_dev = scrub_dev;
2468 extent_mirror_num = mirror_num;
2469 if (is_dev_replace)
2470 scrub_remap_extent(fs_info, extent_logical,
2471 extent_len, &extent_physical,
2472 &extent_dev,
2473 &extent_mirror_num);
2474
2475 ret = btrfs_lookup_csums_range(csum_root, logical,
2476 logical + map->stripe_len - 1,
2477 &sctx->csum_list, 1);
2478 if (ret)
2479 goto out;
2480
2481 ret = scrub_extent(sctx, extent_logical, extent_len,
2482 extent_physical, extent_dev, flags,
2483 generation, extent_mirror_num,
2484 extent_logical - logical + physical);
2485 if (ret)
2486 goto out;
2487
2488 scrub_free_csums(sctx);
2489 if (extent_logical + extent_len <
2490 key.objectid + bytes) {
2491 logical += increment;
2492 physical += map->stripe_len;
2493
2494 if (logical < key.objectid + bytes) {
2495 cond_resched();
2496 goto again;
2497 }
2498
2499 if (logical >= logic_end) {
2500 stop_loop = 1;
2501 break;
2502 }
2503 }
2504 next:
2505 path->slots[0]++;
2506 }
2507 btrfs_release_path(path);
2508 logical += increment;
2509 physical += map->stripe_len;
2510 spin_lock(&sctx->stat_lock);
2511 if (stop_loop)
2512 sctx->stat.last_physical = map->stripes[num].physical +
2513 length;
2514 else
2515 sctx->stat.last_physical = physical;
2516 spin_unlock(&sctx->stat_lock);
2517 if (stop_loop)
2518 break;
2519 }
2520 out:
2521 /* push queued extents */
2522 scrub_submit(sctx);
2523 mutex_lock(&sctx->wr_ctx.wr_lock);
2524 scrub_wr_submit(sctx);
2525 mutex_unlock(&sctx->wr_ctx.wr_lock);
2526
2527 blk_finish_plug(&plug);
2528 btrfs_free_path(path);
2529 return ret < 0 ? ret : 0;
2530 }
2531
2532 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2533 struct btrfs_device *scrub_dev,
2534 u64 chunk_tree, u64 chunk_objectid,
2535 u64 chunk_offset, u64 length,
2536 u64 dev_offset, int is_dev_replace)
2537 {
2538 struct btrfs_mapping_tree *map_tree =
2539 &sctx->dev_root->fs_info->mapping_tree;
2540 struct map_lookup *map;
2541 struct extent_map *em;
2542 int i;
2543 int ret = 0;
2544
2545 read_lock(&map_tree->map_tree.lock);
2546 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2547 read_unlock(&map_tree->map_tree.lock);
2548
2549 if (!em)
2550 return -EINVAL;
2551
2552 map = (struct map_lookup *)em->bdev;
2553 if (em->start != chunk_offset)
2554 goto out;
2555
2556 if (em->len < length)
2557 goto out;
2558
2559 for (i = 0; i < map->num_stripes; ++i) {
2560 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2561 map->stripes[i].physical == dev_offset) {
2562 ret = scrub_stripe(sctx, map, scrub_dev, i,
2563 chunk_offset, length,
2564 is_dev_replace);
2565 if (ret)
2566 goto out;
2567 }
2568 }
2569 out:
2570 free_extent_map(em);
2571
2572 return ret;
2573 }
2574
2575 static noinline_for_stack
2576 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2577 struct btrfs_device *scrub_dev, u64 start, u64 end,
2578 int is_dev_replace)
2579 {
2580 struct btrfs_dev_extent *dev_extent = NULL;
2581 struct btrfs_path *path;
2582 struct btrfs_root *root = sctx->dev_root;
2583 struct btrfs_fs_info *fs_info = root->fs_info;
2584 u64 length;
2585 u64 chunk_tree;
2586 u64 chunk_objectid;
2587 u64 chunk_offset;
2588 int ret;
2589 int slot;
2590 struct extent_buffer *l;
2591 struct btrfs_key key;
2592 struct btrfs_key found_key;
2593 struct btrfs_block_group_cache *cache;
2594 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2595
2596 path = btrfs_alloc_path();
2597 if (!path)
2598 return -ENOMEM;
2599
2600 path->reada = 2;
2601 path->search_commit_root = 1;
2602 path->skip_locking = 1;
2603
2604 key.objectid = scrub_dev->devid;
2605 key.offset = 0ull;
2606 key.type = BTRFS_DEV_EXTENT_KEY;
2607
2608 while (1) {
2609 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2610 if (ret < 0)
2611 break;
2612 if (ret > 0) {
2613 if (path->slots[0] >=
2614 btrfs_header_nritems(path->nodes[0])) {
2615 ret = btrfs_next_leaf(root, path);
2616 if (ret)
2617 break;
2618 }
2619 }
2620
2621 l = path->nodes[0];
2622 slot = path->slots[0];
2623
2624 btrfs_item_key_to_cpu(l, &found_key, slot);
2625
2626 if (found_key.objectid != scrub_dev->devid)
2627 break;
2628
2629 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2630 break;
2631
2632 if (found_key.offset >= end)
2633 break;
2634
2635 if (found_key.offset < key.offset)
2636 break;
2637
2638 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2639 length = btrfs_dev_extent_length(l, dev_extent);
2640
2641 if (found_key.offset + length <= start) {
2642 key.offset = found_key.offset + length;
2643 btrfs_release_path(path);
2644 continue;
2645 }
2646
2647 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2648 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2649 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2650
2651 /*
2652 * get a reference on the corresponding block group to prevent
2653 * the chunk from going away while we scrub it
2654 */
2655 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2656 if (!cache) {
2657 ret = -ENOENT;
2658 break;
2659 }
2660 dev_replace->cursor_right = found_key.offset + length;
2661 dev_replace->cursor_left = found_key.offset;
2662 dev_replace->item_needs_writeback = 1;
2663 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2664 chunk_offset, length, found_key.offset,
2665 is_dev_replace);
2666
2667 /*
2668 * flush, submit all pending read and write bios, afterwards
2669 * wait for them.
2670 * Note that in the dev replace case, a read request causes
2671 * write requests that are submitted in the read completion
2672 * worker. Therefore in the current situation, it is required
2673 * that all write requests are flushed, so that all read and
2674 * write requests are really completed when bios_in_flight
2675 * changes to 0.
2676 */
2677 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2678 scrub_submit(sctx);
2679 mutex_lock(&sctx->wr_ctx.wr_lock);
2680 scrub_wr_submit(sctx);
2681 mutex_unlock(&sctx->wr_ctx.wr_lock);
2682
2683 wait_event(sctx->list_wait,
2684 atomic_read(&sctx->bios_in_flight) == 0);
2685 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2686 atomic_inc(&fs_info->scrubs_paused);
2687 wake_up(&fs_info->scrub_pause_wait);
2688 wait_event(sctx->list_wait,
2689 atomic_read(&sctx->workers_pending) == 0);
2690
2691 mutex_lock(&fs_info->scrub_lock);
2692 while (atomic_read(&fs_info->scrub_pause_req)) {
2693 mutex_unlock(&fs_info->scrub_lock);
2694 wait_event(fs_info->scrub_pause_wait,
2695 atomic_read(&fs_info->scrub_pause_req) == 0);
2696 mutex_lock(&fs_info->scrub_lock);
2697 }
2698 atomic_dec(&fs_info->scrubs_paused);
2699 mutex_unlock(&fs_info->scrub_lock);
2700 wake_up(&fs_info->scrub_pause_wait);
2701
2702 btrfs_put_block_group(cache);
2703 if (ret)
2704 break;
2705 if (is_dev_replace &&
2706 atomic64_read(&dev_replace->num_write_errors) > 0) {
2707 ret = -EIO;
2708 break;
2709 }
2710 if (sctx->stat.malloc_errors > 0) {
2711 ret = -ENOMEM;
2712 break;
2713 }
2714
2715 dev_replace->cursor_left = dev_replace->cursor_right;
2716 dev_replace->item_needs_writeback = 1;
2717
2718 key.offset = found_key.offset + length;
2719 btrfs_release_path(path);
2720 }
2721
2722 btrfs_free_path(path);
2723
2724 /*
2725 * ret can still be 1 from search_slot or next_leaf,
2726 * that's not an error
2727 */
2728 return ret < 0 ? ret : 0;
2729 }
2730
2731 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2732 struct btrfs_device *scrub_dev)
2733 {
2734 int i;
2735 u64 bytenr;
2736 u64 gen;
2737 int ret;
2738 struct btrfs_root *root = sctx->dev_root;
2739
2740 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2741 return -EIO;
2742
2743 gen = root->fs_info->last_trans_committed;
2744
2745 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2746 bytenr = btrfs_sb_offset(i);
2747 if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
2748 break;
2749
2750 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2751 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2752 NULL, 1, bytenr);
2753 if (ret)
2754 return ret;
2755 }
2756 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2757
2758 return 0;
2759 }
2760
2761 /*
2762 * get a reference count on fs_info->scrub_workers. start worker if necessary
2763 */
2764 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2765 int is_dev_replace)
2766 {
2767 int ret = 0;
2768
2769 if (fs_info->scrub_workers_refcnt == 0) {
2770 if (is_dev_replace)
2771 btrfs_init_workers(&fs_info->scrub_workers, "scrub", 1,
2772 &fs_info->generic_worker);
2773 else
2774 btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2775 fs_info->thread_pool_size,
2776 &fs_info->generic_worker);
2777 fs_info->scrub_workers.idle_thresh = 4;
2778 ret = btrfs_start_workers(&fs_info->scrub_workers);
2779 if (ret)
2780 goto out;
2781 btrfs_init_workers(&fs_info->scrub_wr_completion_workers,
2782 "scrubwrc",
2783 fs_info->thread_pool_size,
2784 &fs_info->generic_worker);
2785 fs_info->scrub_wr_completion_workers.idle_thresh = 2;
2786 ret = btrfs_start_workers(
2787 &fs_info->scrub_wr_completion_workers);
2788 if (ret)
2789 goto out;
2790 btrfs_init_workers(&fs_info->scrub_nocow_workers, "scrubnc", 1,
2791 &fs_info->generic_worker);
2792 ret = btrfs_start_workers(&fs_info->scrub_nocow_workers);
2793 if (ret)
2794 goto out;
2795 }
2796 ++fs_info->scrub_workers_refcnt;
2797 out:
2798 return ret;
2799 }
2800
2801 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2802 {
2803 if (--fs_info->scrub_workers_refcnt == 0) {
2804 btrfs_stop_workers(&fs_info->scrub_workers);
2805 btrfs_stop_workers(&fs_info->scrub_wr_completion_workers);
2806 btrfs_stop_workers(&fs_info->scrub_nocow_workers);
2807 }
2808 WARN_ON(fs_info->scrub_workers_refcnt < 0);
2809 }
2810
2811 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2812 u64 end, struct btrfs_scrub_progress *progress,
2813 int readonly, int is_dev_replace)
2814 {
2815 struct scrub_ctx *sctx;
2816 int ret;
2817 struct btrfs_device *dev;
2818
2819 if (btrfs_fs_closing(fs_info))
2820 return -EINVAL;
2821
2822 /*
2823 * check some assumptions
2824 */
2825 if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2826 printk(KERN_ERR
2827 "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2828 fs_info->chunk_root->nodesize,
2829 fs_info->chunk_root->leafsize);
2830 return -EINVAL;
2831 }
2832
2833 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2834 /*
2835 * in this case scrub is unable to calculate the checksum
2836 * the way scrub is implemented. Do not handle this
2837 * situation at all because it won't ever happen.
2838 */
2839 printk(KERN_ERR
2840 "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2841 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2842 return -EINVAL;
2843 }
2844
2845 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2846 /* not supported for data w/o checksums */
2847 printk(KERN_ERR
2848 "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails\n",
2849 fs_info->chunk_root->sectorsize, PAGE_SIZE);
2850 return -EINVAL;
2851 }
2852
2853 if (fs_info->chunk_root->nodesize >
2854 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2855 fs_info->chunk_root->sectorsize >
2856 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2857 /*
2858 * would exhaust the array bounds of pagev member in
2859 * struct scrub_block
2860 */
2861 pr_err("btrfs_scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails\n",
2862 fs_info->chunk_root->nodesize,
2863 SCRUB_MAX_PAGES_PER_BLOCK,
2864 fs_info->chunk_root->sectorsize,
2865 SCRUB_MAX_PAGES_PER_BLOCK);
2866 return -EINVAL;
2867 }
2868
2869
2870 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2871 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2872 if (!dev || (dev->missing && !is_dev_replace)) {
2873 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2874 return -ENODEV;
2875 }
2876
2877 mutex_lock(&fs_info->scrub_lock);
2878 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2879 mutex_unlock(&fs_info->scrub_lock);
2880 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2881 return -EIO;
2882 }
2883
2884 btrfs_dev_replace_lock(&fs_info->dev_replace);
2885 if (dev->scrub_device ||
2886 (!is_dev_replace &&
2887 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2888 btrfs_dev_replace_unlock(&fs_info->dev_replace);
2889 mutex_unlock(&fs_info->scrub_lock);
2890 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2891 return -EINPROGRESS;
2892 }
2893 btrfs_dev_replace_unlock(&fs_info->dev_replace);
2894
2895 ret = scrub_workers_get(fs_info, is_dev_replace);
2896 if (ret) {
2897 mutex_unlock(&fs_info->scrub_lock);
2898 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2899 return ret;
2900 }
2901
2902 sctx = scrub_setup_ctx(dev, is_dev_replace);
2903 if (IS_ERR(sctx)) {
2904 mutex_unlock(&fs_info->scrub_lock);
2905 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2906 scrub_workers_put(fs_info);
2907 return PTR_ERR(sctx);
2908 }
2909 sctx->readonly = readonly;
2910 dev->scrub_device = sctx;
2911
2912 atomic_inc(&fs_info->scrubs_running);
2913 mutex_unlock(&fs_info->scrub_lock);
2914
2915 if (!is_dev_replace) {
2916 /*
2917 * by holding device list mutex, we can
2918 * kick off writing super in log tree sync.
2919 */
2920 ret = scrub_supers(sctx, dev);
2921 }
2922 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2923
2924 if (!ret)
2925 ret = scrub_enumerate_chunks(sctx, dev, start, end,
2926 is_dev_replace);
2927
2928 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2929 atomic_dec(&fs_info->scrubs_running);
2930 wake_up(&fs_info->scrub_pause_wait);
2931
2932 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
2933
2934 if (progress)
2935 memcpy(progress, &sctx->stat, sizeof(*progress));
2936
2937 mutex_lock(&fs_info->scrub_lock);
2938 dev->scrub_device = NULL;
2939 scrub_workers_put(fs_info);
2940 mutex_unlock(&fs_info->scrub_lock);
2941
2942 scrub_free_ctx(sctx);
2943
2944 return ret;
2945 }
2946
2947 void btrfs_scrub_pause(struct btrfs_root *root)
2948 {
2949 struct btrfs_fs_info *fs_info = root->fs_info;
2950
2951 mutex_lock(&fs_info->scrub_lock);
2952 atomic_inc(&fs_info->scrub_pause_req);
2953 while (atomic_read(&fs_info->scrubs_paused) !=
2954 atomic_read(&fs_info->scrubs_running)) {
2955 mutex_unlock(&fs_info->scrub_lock);
2956 wait_event(fs_info->scrub_pause_wait,
2957 atomic_read(&fs_info->scrubs_paused) ==
2958 atomic_read(&fs_info->scrubs_running));
2959 mutex_lock(&fs_info->scrub_lock);
2960 }
2961 mutex_unlock(&fs_info->scrub_lock);
2962 }
2963
2964 void btrfs_scrub_continue(struct btrfs_root *root)
2965 {
2966 struct btrfs_fs_info *fs_info = root->fs_info;
2967
2968 atomic_dec(&fs_info->scrub_pause_req);
2969 wake_up(&fs_info->scrub_pause_wait);
2970 }
2971
2972 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2973 {
2974 mutex_lock(&fs_info->scrub_lock);
2975 if (!atomic_read(&fs_info->scrubs_running)) {
2976 mutex_unlock(&fs_info->scrub_lock);
2977 return -ENOTCONN;
2978 }
2979
2980 atomic_inc(&fs_info->scrub_cancel_req);
2981 while (atomic_read(&fs_info->scrubs_running)) {
2982 mutex_unlock(&fs_info->scrub_lock);
2983 wait_event(fs_info->scrub_pause_wait,
2984 atomic_read(&fs_info->scrubs_running) == 0);
2985 mutex_lock(&fs_info->scrub_lock);
2986 }
2987 atomic_dec(&fs_info->scrub_cancel_req);
2988 mutex_unlock(&fs_info->scrub_lock);
2989
2990 return 0;
2991 }
2992
2993 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
2994 struct btrfs_device *dev)
2995 {
2996 struct scrub_ctx *sctx;
2997
2998 mutex_lock(&fs_info->scrub_lock);
2999 sctx = dev->scrub_device;
3000 if (!sctx) {
3001 mutex_unlock(&fs_info->scrub_lock);
3002 return -ENOTCONN;
3003 }
3004 atomic_inc(&sctx->cancel_req);
3005 while (dev->scrub_device) {
3006 mutex_unlock(&fs_info->scrub_lock);
3007 wait_event(fs_info->scrub_pause_wait,
3008 dev->scrub_device == NULL);
3009 mutex_lock(&fs_info->scrub_lock);
3010 }
3011 mutex_unlock(&fs_info->scrub_lock);
3012
3013 return 0;
3014 }
3015
3016 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3017 struct btrfs_scrub_progress *progress)
3018 {
3019 struct btrfs_device *dev;
3020 struct scrub_ctx *sctx = NULL;
3021
3022 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3023 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3024 if (dev)
3025 sctx = dev->scrub_device;
3026 if (sctx)
3027 memcpy(progress, &sctx->stat, sizeof(*progress));
3028 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3029
3030 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3031 }
3032
3033 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3034 u64 extent_logical, u64 extent_len,
3035 u64 *extent_physical,
3036 struct btrfs_device **extent_dev,
3037 int *extent_mirror_num)
3038 {
3039 u64 mapped_length;
3040 struct btrfs_bio *bbio = NULL;
3041 int ret;
3042
3043 mapped_length = extent_len;
3044 ret = btrfs_map_block(fs_info, READ, extent_logical,
3045 &mapped_length, &bbio, 0);
3046 if (ret || !bbio || mapped_length < extent_len ||
3047 !bbio->stripes[0].dev->bdev) {
3048 kfree(bbio);
3049 return;
3050 }
3051
3052 *extent_physical = bbio->stripes[0].physical;
3053 *extent_mirror_num = bbio->mirror_num;
3054 *extent_dev = bbio->stripes[0].dev;
3055 kfree(bbio);
3056 }
3057
3058 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3059 struct scrub_wr_ctx *wr_ctx,
3060 struct btrfs_fs_info *fs_info,
3061 struct btrfs_device *dev,
3062 int is_dev_replace)
3063 {
3064 WARN_ON(wr_ctx->wr_curr_bio != NULL);
3065
3066 mutex_init(&wr_ctx->wr_lock);
3067 wr_ctx->wr_curr_bio = NULL;
3068 if (!is_dev_replace)
3069 return 0;
3070
3071 WARN_ON(!dev->bdev);
3072 wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3073 bio_get_nr_vecs(dev->bdev));
3074 wr_ctx->tgtdev = dev;
3075 atomic_set(&wr_ctx->flush_all_writes, 0);
3076 return 0;
3077 }
3078
3079 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3080 {
3081 mutex_lock(&wr_ctx->wr_lock);
3082 kfree(wr_ctx->wr_curr_bio);
3083 wr_ctx->wr_curr_bio = NULL;
3084 mutex_unlock(&wr_ctx->wr_lock);
3085 }
3086
3087 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3088 int mirror_num, u64 physical_for_dev_replace)
3089 {
3090 struct scrub_copy_nocow_ctx *nocow_ctx;
3091 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3092
3093 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3094 if (!nocow_ctx) {
3095 spin_lock(&sctx->stat_lock);
3096 sctx->stat.malloc_errors++;
3097 spin_unlock(&sctx->stat_lock);
3098 return -ENOMEM;
3099 }
3100
3101 scrub_pending_trans_workers_inc(sctx);
3102
3103 nocow_ctx->sctx = sctx;
3104 nocow_ctx->logical = logical;
3105 nocow_ctx->len = len;
3106 nocow_ctx->mirror_num = mirror_num;
3107 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3108 nocow_ctx->work.func = copy_nocow_pages_worker;
3109 INIT_LIST_HEAD(&nocow_ctx->inodes);
3110 btrfs_queue_worker(&fs_info->scrub_nocow_workers,
3111 &nocow_ctx->work);
3112
3113 return 0;
3114 }
3115
3116 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3117 {
3118 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3119 struct scrub_nocow_inode *nocow_inode;
3120
3121 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3122 if (!nocow_inode)
3123 return -ENOMEM;
3124 nocow_inode->inum = inum;
3125 nocow_inode->offset = offset;
3126 nocow_inode->root = root;
3127 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3128 return 0;
3129 }
3130
3131 #define COPY_COMPLETE 1
3132
3133 static void copy_nocow_pages_worker(struct btrfs_work *work)
3134 {
3135 struct scrub_copy_nocow_ctx *nocow_ctx =
3136 container_of(work, struct scrub_copy_nocow_ctx, work);
3137 struct scrub_ctx *sctx = nocow_ctx->sctx;
3138 u64 logical = nocow_ctx->logical;
3139 u64 len = nocow_ctx->len;
3140 int mirror_num = nocow_ctx->mirror_num;
3141 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3142 int ret;
3143 struct btrfs_trans_handle *trans = NULL;
3144 struct btrfs_fs_info *fs_info;
3145 struct btrfs_path *path;
3146 struct btrfs_root *root;
3147 int not_written = 0;
3148
3149 fs_info = sctx->dev_root->fs_info;
3150 root = fs_info->extent_root;
3151
3152 path = btrfs_alloc_path();
3153 if (!path) {
3154 spin_lock(&sctx->stat_lock);
3155 sctx->stat.malloc_errors++;
3156 spin_unlock(&sctx->stat_lock);
3157 not_written = 1;
3158 goto out;
3159 }
3160
3161 trans = btrfs_join_transaction(root);
3162 if (IS_ERR(trans)) {
3163 not_written = 1;
3164 goto out;
3165 }
3166
3167 ret = iterate_inodes_from_logical(logical, fs_info, path,
3168 record_inode_for_nocow, nocow_ctx);
3169 if (ret != 0 && ret != -ENOENT) {
3170 pr_warn("iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d\n",
3171 logical, physical_for_dev_replace, len, mirror_num,
3172 ret);
3173 not_written = 1;
3174 goto out;
3175 }
3176
3177 btrfs_end_transaction(trans, root);
3178 trans = NULL;
3179 while (!list_empty(&nocow_ctx->inodes)) {
3180 struct scrub_nocow_inode *entry;
3181 entry = list_first_entry(&nocow_ctx->inodes,
3182 struct scrub_nocow_inode,
3183 list);
3184 list_del_init(&entry->list);
3185 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3186 entry->root, nocow_ctx);
3187 kfree(entry);
3188 if (ret == COPY_COMPLETE) {
3189 ret = 0;
3190 break;
3191 } else if (ret) {
3192 break;
3193 }
3194 }
3195 out:
3196 while (!list_empty(&nocow_ctx->inodes)) {
3197 struct scrub_nocow_inode *entry;
3198 entry = list_first_entry(&nocow_ctx->inodes,
3199 struct scrub_nocow_inode,
3200 list);
3201 list_del_init(&entry->list);
3202 kfree(entry);
3203 }
3204 if (trans && !IS_ERR(trans))
3205 btrfs_end_transaction(trans, root);
3206 if (not_written)
3207 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3208 num_uncorrectable_read_errors);
3209
3210 btrfs_free_path(path);
3211 kfree(nocow_ctx);
3212
3213 scrub_pending_trans_workers_dec(sctx);
3214 }
3215
3216 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
3217 struct scrub_copy_nocow_ctx *nocow_ctx)
3218 {
3219 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3220 struct btrfs_key key;
3221 struct inode *inode;
3222 struct page *page;
3223 struct btrfs_root *local_root;
3224 struct btrfs_ordered_extent *ordered;
3225 struct extent_map *em;
3226 struct extent_state *cached_state = NULL;
3227 struct extent_io_tree *io_tree;
3228 u64 physical_for_dev_replace;
3229 u64 len = nocow_ctx->len;
3230 u64 lockstart = offset, lockend = offset + len - 1;
3231 unsigned long index;
3232 int srcu_index;
3233 int ret = 0;
3234 int err = 0;
3235
3236 key.objectid = root;
3237 key.type = BTRFS_ROOT_ITEM_KEY;
3238 key.offset = (u64)-1;
3239
3240 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3241
3242 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3243 if (IS_ERR(local_root)) {
3244 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3245 return PTR_ERR(local_root);
3246 }
3247
3248 key.type = BTRFS_INODE_ITEM_KEY;
3249 key.objectid = inum;
3250 key.offset = 0;
3251 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3252 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3253 if (IS_ERR(inode))
3254 return PTR_ERR(inode);
3255
3256 /* Avoid truncate/dio/punch hole.. */
3257 mutex_lock(&inode->i_mutex);
3258 inode_dio_wait(inode);
3259
3260 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3261 io_tree = &BTRFS_I(inode)->io_tree;
3262
3263 lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
3264 ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
3265 if (ordered) {
3266 btrfs_put_ordered_extent(ordered);
3267 goto out_unlock;
3268 }
3269
3270 em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
3271 if (IS_ERR(em)) {
3272 ret = PTR_ERR(em);
3273 goto out_unlock;
3274 }
3275
3276 /*
3277 * This extent does not actually cover the logical extent anymore,
3278 * move on to the next inode.
3279 */
3280 if (em->block_start > nocow_ctx->logical ||
3281 em->block_start + em->block_len < nocow_ctx->logical + len) {
3282 free_extent_map(em);
3283 goto out_unlock;
3284 }
3285 free_extent_map(em);
3286
3287 while (len >= PAGE_CACHE_SIZE) {
3288 index = offset >> PAGE_CACHE_SHIFT;
3289 again:
3290 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3291 if (!page) {
3292 pr_err("find_or_create_page() failed\n");
3293 ret = -ENOMEM;
3294 goto out;
3295 }
3296
3297 if (PageUptodate(page)) {
3298 if (PageDirty(page))
3299 goto next_page;
3300 } else {
3301 ClearPageError(page);
3302 err = extent_read_full_page_nolock(io_tree, page,
3303 btrfs_get_extent,
3304 nocow_ctx->mirror_num);
3305 if (err) {
3306 ret = err;
3307 goto next_page;
3308 }
3309
3310 lock_page(page);
3311 /*
3312 * If the page has been remove from the page cache,
3313 * the data on it is meaningless, because it may be
3314 * old one, the new data may be written into the new
3315 * page in the page cache.
3316 */
3317 if (page->mapping != inode->i_mapping) {
3318 unlock_page(page);
3319 page_cache_release(page);
3320 goto again;
3321 }
3322 if (!PageUptodate(page)) {
3323 ret = -EIO;
3324 goto next_page;
3325 }
3326 }
3327 err = write_page_nocow(nocow_ctx->sctx,
3328 physical_for_dev_replace, page);
3329 if (err)
3330 ret = err;
3331 next_page:
3332 unlock_page(page);
3333 page_cache_release(page);
3334
3335 if (ret)
3336 break;
3337
3338 offset += PAGE_CACHE_SIZE;
3339 physical_for_dev_replace += PAGE_CACHE_SIZE;
3340 len -= PAGE_CACHE_SIZE;
3341 }
3342 ret = COPY_COMPLETE;
3343 out_unlock:
3344 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
3345 GFP_NOFS);
3346 out:
3347 mutex_unlock(&inode->i_mutex);
3348 iput(inode);
3349 return ret;
3350 }
3351
3352 static int write_page_nocow(struct scrub_ctx *sctx,
3353 u64 physical_for_dev_replace, struct page *page)
3354 {
3355 struct bio *bio;
3356 struct btrfs_device *dev;
3357 int ret;
3358
3359 dev = sctx->wr_ctx.tgtdev;
3360 if (!dev)
3361 return -EIO;
3362 if (!dev->bdev) {
3363 printk_ratelimited(KERN_WARNING
3364 "btrfs: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3365 return -EIO;
3366 }
3367 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3368 if (!bio) {
3369 spin_lock(&sctx->stat_lock);
3370 sctx->stat.malloc_errors++;
3371 spin_unlock(&sctx->stat_lock);
3372 return -ENOMEM;
3373 }
3374 bio->bi_iter.bi_size = 0;
3375 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
3376 bio->bi_bdev = dev->bdev;
3377 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3378 if (ret != PAGE_CACHE_SIZE) {
3379 leave_with_eio:
3380 bio_put(bio);
3381 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3382 return -EIO;
3383 }
3384
3385 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
3386 goto leave_with_eio;
3387
3388 bio_put(bio);
3389 return 0;
3390 }