Merge tag 'mfd-3.8-1' of git://git.kernel.org/pub/scm/linux/kernel/git/sameo/mfd-2.6
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / fs / btrfs / scrub.c
1 /*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "check-integrity.h"
29 #include "rcu-string.h"
30
31 /*
32 * This is only the first step towards a full-features scrub. It reads all
33 * extent and super block and verifies the checksums. In case a bad checksum
34 * is found or the extent cannot be read, good data will be written back if
35 * any can be found.
36 *
37 * Future enhancements:
38 * - In case an unrepairable extent is encountered, track which files are
39 * affected and report them
40 * - track and record media errors, throw out bad devices
41 * - add a mode to also read unallocated space
42 */
43
44 struct scrub_block;
45 struct scrub_dev;
46
47 #define SCRUB_PAGES_PER_BIO 16 /* 64k per bio */
48 #define SCRUB_BIOS_PER_DEV 16 /* 1 MB per device in flight */
49 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
50
51 struct scrub_page {
52 struct scrub_block *sblock;
53 struct page *page;
54 struct btrfs_device *dev;
55 u64 flags; /* extent flags */
56 u64 generation;
57 u64 logical;
58 u64 physical;
59 struct {
60 unsigned int mirror_num:8;
61 unsigned int have_csum:1;
62 unsigned int io_error:1;
63 };
64 u8 csum[BTRFS_CSUM_SIZE];
65 };
66
67 struct scrub_bio {
68 int index;
69 struct scrub_dev *sdev;
70 struct bio *bio;
71 int err;
72 u64 logical;
73 u64 physical;
74 struct scrub_page *pagev[SCRUB_PAGES_PER_BIO];
75 int page_count;
76 int next_free;
77 struct btrfs_work work;
78 };
79
80 struct scrub_block {
81 struct scrub_page pagev[SCRUB_MAX_PAGES_PER_BLOCK];
82 int page_count;
83 atomic_t outstanding_pages;
84 atomic_t ref_count; /* free mem on transition to zero */
85 struct scrub_dev *sdev;
86 struct {
87 unsigned int header_error:1;
88 unsigned int checksum_error:1;
89 unsigned int no_io_error_seen:1;
90 unsigned int generation_error:1; /* also sets header_error */
91 };
92 };
93
94 struct scrub_dev {
95 struct scrub_bio *bios[SCRUB_BIOS_PER_DEV];
96 struct btrfs_device *dev;
97 int first_free;
98 int curr;
99 atomic_t in_flight;
100 atomic_t fixup_cnt;
101 spinlock_t list_lock;
102 wait_queue_head_t list_wait;
103 u16 csum_size;
104 struct list_head csum_list;
105 atomic_t cancel_req;
106 int readonly;
107 int pages_per_bio; /* <= SCRUB_PAGES_PER_BIO */
108 u32 sectorsize;
109 u32 nodesize;
110 u32 leafsize;
111 /*
112 * statistics
113 */
114 struct btrfs_scrub_progress stat;
115 spinlock_t stat_lock;
116 };
117
118 struct scrub_fixup_nodatasum {
119 struct scrub_dev *sdev;
120 u64 logical;
121 struct btrfs_root *root;
122 struct btrfs_work work;
123 int mirror_num;
124 };
125
126 struct scrub_warning {
127 struct btrfs_path *path;
128 u64 extent_item_size;
129 char *scratch_buf;
130 char *msg_buf;
131 const char *errstr;
132 sector_t sector;
133 u64 logical;
134 struct btrfs_device *dev;
135 int msg_bufsize;
136 int scratch_bufsize;
137 };
138
139
140 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
141 static int scrub_setup_recheck_block(struct scrub_dev *sdev,
142 struct btrfs_mapping_tree *map_tree,
143 u64 length, u64 logical,
144 struct scrub_block *sblock);
145 static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
146 struct scrub_block *sblock, int is_metadata,
147 int have_csum, u8 *csum, u64 generation,
148 u16 csum_size);
149 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
150 struct scrub_block *sblock,
151 int is_metadata, int have_csum,
152 const u8 *csum, u64 generation,
153 u16 csum_size);
154 static void scrub_complete_bio_end_io(struct bio *bio, int err);
155 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
156 struct scrub_block *sblock_good,
157 int force_write);
158 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
159 struct scrub_block *sblock_good,
160 int page_num, int force_write);
161 static int scrub_checksum_data(struct scrub_block *sblock);
162 static int scrub_checksum_tree_block(struct scrub_block *sblock);
163 static int scrub_checksum_super(struct scrub_block *sblock);
164 static void scrub_block_get(struct scrub_block *sblock);
165 static void scrub_block_put(struct scrub_block *sblock);
166 static int scrub_add_page_to_bio(struct scrub_dev *sdev,
167 struct scrub_page *spage);
168 static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
169 u64 physical, u64 flags, u64 gen, int mirror_num,
170 u8 *csum, int force);
171 static void scrub_bio_end_io(struct bio *bio, int err);
172 static void scrub_bio_end_io_worker(struct btrfs_work *work);
173 static void scrub_block_complete(struct scrub_block *sblock);
174
175
176 static void scrub_free_csums(struct scrub_dev *sdev)
177 {
178 while (!list_empty(&sdev->csum_list)) {
179 struct btrfs_ordered_sum *sum;
180 sum = list_first_entry(&sdev->csum_list,
181 struct btrfs_ordered_sum, list);
182 list_del(&sum->list);
183 kfree(sum);
184 }
185 }
186
187 static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
188 {
189 int i;
190
191 if (!sdev)
192 return;
193
194 /* this can happen when scrub is cancelled */
195 if (sdev->curr != -1) {
196 struct scrub_bio *sbio = sdev->bios[sdev->curr];
197
198 for (i = 0; i < sbio->page_count; i++) {
199 BUG_ON(!sbio->pagev[i]);
200 BUG_ON(!sbio->pagev[i]->page);
201 scrub_block_put(sbio->pagev[i]->sblock);
202 }
203 bio_put(sbio->bio);
204 }
205
206 for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
207 struct scrub_bio *sbio = sdev->bios[i];
208
209 if (!sbio)
210 break;
211 kfree(sbio);
212 }
213
214 scrub_free_csums(sdev);
215 kfree(sdev);
216 }
217
218 static noinline_for_stack
219 struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
220 {
221 struct scrub_dev *sdev;
222 int i;
223 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
224 int pages_per_bio;
225
226 pages_per_bio = min_t(int, SCRUB_PAGES_PER_BIO,
227 bio_get_nr_vecs(dev->bdev));
228 sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
229 if (!sdev)
230 goto nomem;
231 sdev->dev = dev;
232 sdev->pages_per_bio = pages_per_bio;
233 sdev->curr = -1;
234 for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
235 struct scrub_bio *sbio;
236
237 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
238 if (!sbio)
239 goto nomem;
240 sdev->bios[i] = sbio;
241
242 sbio->index = i;
243 sbio->sdev = sdev;
244 sbio->page_count = 0;
245 sbio->work.func = scrub_bio_end_io_worker;
246
247 if (i != SCRUB_BIOS_PER_DEV-1)
248 sdev->bios[i]->next_free = i + 1;
249 else
250 sdev->bios[i]->next_free = -1;
251 }
252 sdev->first_free = 0;
253 sdev->nodesize = dev->dev_root->nodesize;
254 sdev->leafsize = dev->dev_root->leafsize;
255 sdev->sectorsize = dev->dev_root->sectorsize;
256 atomic_set(&sdev->in_flight, 0);
257 atomic_set(&sdev->fixup_cnt, 0);
258 atomic_set(&sdev->cancel_req, 0);
259 sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
260 INIT_LIST_HEAD(&sdev->csum_list);
261
262 spin_lock_init(&sdev->list_lock);
263 spin_lock_init(&sdev->stat_lock);
264 init_waitqueue_head(&sdev->list_wait);
265 return sdev;
266
267 nomem:
268 scrub_free_dev(sdev);
269 return ERR_PTR(-ENOMEM);
270 }
271
272 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
273 {
274 u64 isize;
275 u32 nlink;
276 int ret;
277 int i;
278 struct extent_buffer *eb;
279 struct btrfs_inode_item *inode_item;
280 struct scrub_warning *swarn = ctx;
281 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
282 struct inode_fs_paths *ipath = NULL;
283 struct btrfs_root *local_root;
284 struct btrfs_key root_key;
285
286 root_key.objectid = root;
287 root_key.type = BTRFS_ROOT_ITEM_KEY;
288 root_key.offset = (u64)-1;
289 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
290 if (IS_ERR(local_root)) {
291 ret = PTR_ERR(local_root);
292 goto err;
293 }
294
295 ret = inode_item_info(inum, 0, local_root, swarn->path);
296 if (ret) {
297 btrfs_release_path(swarn->path);
298 goto err;
299 }
300
301 eb = swarn->path->nodes[0];
302 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
303 struct btrfs_inode_item);
304 isize = btrfs_inode_size(eb, inode_item);
305 nlink = btrfs_inode_nlink(eb, inode_item);
306 btrfs_release_path(swarn->path);
307
308 ipath = init_ipath(4096, local_root, swarn->path);
309 if (IS_ERR(ipath)) {
310 ret = PTR_ERR(ipath);
311 ipath = NULL;
312 goto err;
313 }
314 ret = paths_from_inode(inum, ipath);
315
316 if (ret < 0)
317 goto err;
318
319 /*
320 * we deliberately ignore the bit ipath might have been too small to
321 * hold all of the paths here
322 */
323 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
324 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
325 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
326 "length %llu, links %u (path: %s)\n", swarn->errstr,
327 swarn->logical, rcu_str_deref(swarn->dev->name),
328 (unsigned long long)swarn->sector, root, inum, offset,
329 min(isize - offset, (u64)PAGE_SIZE), nlink,
330 (char *)(unsigned long)ipath->fspath->val[i]);
331
332 free_ipath(ipath);
333 return 0;
334
335 err:
336 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
337 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
338 "resolving failed with ret=%d\n", swarn->errstr,
339 swarn->logical, rcu_str_deref(swarn->dev->name),
340 (unsigned long long)swarn->sector, root, inum, offset, ret);
341
342 free_ipath(ipath);
343 return 0;
344 }
345
346 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
347 {
348 struct btrfs_device *dev = sblock->sdev->dev;
349 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
350 struct btrfs_path *path;
351 struct btrfs_key found_key;
352 struct extent_buffer *eb;
353 struct btrfs_extent_item *ei;
354 struct scrub_warning swarn;
355 unsigned long ptr = 0;
356 u64 extent_item_pos;
357 u64 flags = 0;
358 u64 ref_root;
359 u32 item_size;
360 u8 ref_level;
361 const int bufsize = 4096;
362 int ret;
363
364 path = btrfs_alloc_path();
365
366 swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
367 swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
368 BUG_ON(sblock->page_count < 1);
369 swarn.sector = (sblock->pagev[0].physical) >> 9;
370 swarn.logical = sblock->pagev[0].logical;
371 swarn.errstr = errstr;
372 swarn.dev = dev;
373 swarn.msg_bufsize = bufsize;
374 swarn.scratch_bufsize = bufsize;
375
376 if (!path || !swarn.scratch_buf || !swarn.msg_buf)
377 goto out;
378
379 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
380 &flags);
381 if (ret < 0)
382 goto out;
383
384 extent_item_pos = swarn.logical - found_key.objectid;
385 swarn.extent_item_size = found_key.offset;
386
387 eb = path->nodes[0];
388 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
389 item_size = btrfs_item_size_nr(eb, path->slots[0]);
390 btrfs_release_path(path);
391
392 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
393 do {
394 ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
395 &ref_root, &ref_level);
396 printk_in_rcu(KERN_WARNING
397 "btrfs: %s at logical %llu on dev %s, "
398 "sector %llu: metadata %s (level %d) in tree "
399 "%llu\n", errstr, swarn.logical,
400 rcu_str_deref(dev->name),
401 (unsigned long long)swarn.sector,
402 ref_level ? "node" : "leaf",
403 ret < 0 ? -1 : ref_level,
404 ret < 0 ? -1 : ref_root);
405 } while (ret != 1);
406 } else {
407 swarn.path = path;
408 iterate_extent_inodes(fs_info, found_key.objectid,
409 extent_item_pos, 1,
410 scrub_print_warning_inode, &swarn);
411 }
412
413 out:
414 btrfs_free_path(path);
415 kfree(swarn.scratch_buf);
416 kfree(swarn.msg_buf);
417 }
418
419 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
420 {
421 struct page *page = NULL;
422 unsigned long index;
423 struct scrub_fixup_nodatasum *fixup = ctx;
424 int ret;
425 int corrected = 0;
426 struct btrfs_key key;
427 struct inode *inode = NULL;
428 u64 end = offset + PAGE_SIZE - 1;
429 struct btrfs_root *local_root;
430
431 key.objectid = root;
432 key.type = BTRFS_ROOT_ITEM_KEY;
433 key.offset = (u64)-1;
434 local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
435 if (IS_ERR(local_root))
436 return PTR_ERR(local_root);
437
438 key.type = BTRFS_INODE_ITEM_KEY;
439 key.objectid = inum;
440 key.offset = 0;
441 inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
442 if (IS_ERR(inode))
443 return PTR_ERR(inode);
444
445 index = offset >> PAGE_CACHE_SHIFT;
446
447 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
448 if (!page) {
449 ret = -ENOMEM;
450 goto out;
451 }
452
453 if (PageUptodate(page)) {
454 struct btrfs_mapping_tree *map_tree;
455 if (PageDirty(page)) {
456 /*
457 * we need to write the data to the defect sector. the
458 * data that was in that sector is not in memory,
459 * because the page was modified. we must not write the
460 * modified page to that sector.
461 *
462 * TODO: what could be done here: wait for the delalloc
463 * runner to write out that page (might involve
464 * COW) and see whether the sector is still
465 * referenced afterwards.
466 *
467 * For the meantime, we'll treat this error
468 * incorrectable, although there is a chance that a
469 * later scrub will find the bad sector again and that
470 * there's no dirty page in memory, then.
471 */
472 ret = -EIO;
473 goto out;
474 }
475 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
476 ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
477 fixup->logical, page,
478 fixup->mirror_num);
479 unlock_page(page);
480 corrected = !ret;
481 } else {
482 /*
483 * we need to get good data first. the general readpage path
484 * will call repair_io_failure for us, we just have to make
485 * sure we read the bad mirror.
486 */
487 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
488 EXTENT_DAMAGED, GFP_NOFS);
489 if (ret) {
490 /* set_extent_bits should give proper error */
491 WARN_ON(ret > 0);
492 if (ret > 0)
493 ret = -EFAULT;
494 goto out;
495 }
496
497 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
498 btrfs_get_extent,
499 fixup->mirror_num);
500 wait_on_page_locked(page);
501
502 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
503 end, EXTENT_DAMAGED, 0, NULL);
504 if (!corrected)
505 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
506 EXTENT_DAMAGED, GFP_NOFS);
507 }
508
509 out:
510 if (page)
511 put_page(page);
512 if (inode)
513 iput(inode);
514
515 if (ret < 0)
516 return ret;
517
518 if (ret == 0 && corrected) {
519 /*
520 * we only need to call readpage for one of the inodes belonging
521 * to this extent. so make iterate_extent_inodes stop
522 */
523 return 1;
524 }
525
526 return -EIO;
527 }
528
529 static void scrub_fixup_nodatasum(struct btrfs_work *work)
530 {
531 int ret;
532 struct scrub_fixup_nodatasum *fixup;
533 struct scrub_dev *sdev;
534 struct btrfs_trans_handle *trans = NULL;
535 struct btrfs_fs_info *fs_info;
536 struct btrfs_path *path;
537 int uncorrectable = 0;
538
539 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
540 sdev = fixup->sdev;
541 fs_info = fixup->root->fs_info;
542
543 path = btrfs_alloc_path();
544 if (!path) {
545 spin_lock(&sdev->stat_lock);
546 ++sdev->stat.malloc_errors;
547 spin_unlock(&sdev->stat_lock);
548 uncorrectable = 1;
549 goto out;
550 }
551
552 trans = btrfs_join_transaction(fixup->root);
553 if (IS_ERR(trans)) {
554 uncorrectable = 1;
555 goto out;
556 }
557
558 /*
559 * the idea is to trigger a regular read through the standard path. we
560 * read a page from the (failed) logical address by specifying the
561 * corresponding copynum of the failed sector. thus, that readpage is
562 * expected to fail.
563 * that is the point where on-the-fly error correction will kick in
564 * (once it's finished) and rewrite the failed sector if a good copy
565 * can be found.
566 */
567 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
568 path, scrub_fixup_readpage,
569 fixup);
570 if (ret < 0) {
571 uncorrectable = 1;
572 goto out;
573 }
574 WARN_ON(ret != 1);
575
576 spin_lock(&sdev->stat_lock);
577 ++sdev->stat.corrected_errors;
578 spin_unlock(&sdev->stat_lock);
579
580 out:
581 if (trans && !IS_ERR(trans))
582 btrfs_end_transaction(trans, fixup->root);
583 if (uncorrectable) {
584 spin_lock(&sdev->stat_lock);
585 ++sdev->stat.uncorrectable_errors;
586 spin_unlock(&sdev->stat_lock);
587
588 printk_ratelimited_in_rcu(KERN_ERR
589 "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
590 (unsigned long long)fixup->logical,
591 rcu_str_deref(sdev->dev->name));
592 }
593
594 btrfs_free_path(path);
595 kfree(fixup);
596
597 /* see caller why we're pretending to be paused in the scrub counters */
598 mutex_lock(&fs_info->scrub_lock);
599 atomic_dec(&fs_info->scrubs_running);
600 atomic_dec(&fs_info->scrubs_paused);
601 mutex_unlock(&fs_info->scrub_lock);
602 atomic_dec(&sdev->fixup_cnt);
603 wake_up(&fs_info->scrub_pause_wait);
604 wake_up(&sdev->list_wait);
605 }
606
607 /*
608 * scrub_handle_errored_block gets called when either verification of the
609 * pages failed or the bio failed to read, e.g. with EIO. In the latter
610 * case, this function handles all pages in the bio, even though only one
611 * may be bad.
612 * The goal of this function is to repair the errored block by using the
613 * contents of one of the mirrors.
614 */
615 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
616 {
617 struct scrub_dev *sdev = sblock_to_check->sdev;
618 struct btrfs_fs_info *fs_info;
619 u64 length;
620 u64 logical;
621 u64 generation;
622 unsigned int failed_mirror_index;
623 unsigned int is_metadata;
624 unsigned int have_csum;
625 u8 *csum;
626 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
627 struct scrub_block *sblock_bad;
628 int ret;
629 int mirror_index;
630 int page_num;
631 int success;
632 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
633 DEFAULT_RATELIMIT_BURST);
634
635 BUG_ON(sblock_to_check->page_count < 1);
636 fs_info = sdev->dev->dev_root->fs_info;
637 length = sblock_to_check->page_count * PAGE_SIZE;
638 logical = sblock_to_check->pagev[0].logical;
639 generation = sblock_to_check->pagev[0].generation;
640 BUG_ON(sblock_to_check->pagev[0].mirror_num < 1);
641 failed_mirror_index = sblock_to_check->pagev[0].mirror_num - 1;
642 is_metadata = !(sblock_to_check->pagev[0].flags &
643 BTRFS_EXTENT_FLAG_DATA);
644 have_csum = sblock_to_check->pagev[0].have_csum;
645 csum = sblock_to_check->pagev[0].csum;
646
647 /*
648 * read all mirrors one after the other. This includes to
649 * re-read the extent or metadata block that failed (that was
650 * the cause that this fixup code is called) another time,
651 * page by page this time in order to know which pages
652 * caused I/O errors and which ones are good (for all mirrors).
653 * It is the goal to handle the situation when more than one
654 * mirror contains I/O errors, but the errors do not
655 * overlap, i.e. the data can be repaired by selecting the
656 * pages from those mirrors without I/O error on the
657 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
658 * would be that mirror #1 has an I/O error on the first page,
659 * the second page is good, and mirror #2 has an I/O error on
660 * the second page, but the first page is good.
661 * Then the first page of the first mirror can be repaired by
662 * taking the first page of the second mirror, and the
663 * second page of the second mirror can be repaired by
664 * copying the contents of the 2nd page of the 1st mirror.
665 * One more note: if the pages of one mirror contain I/O
666 * errors, the checksum cannot be verified. In order to get
667 * the best data for repairing, the first attempt is to find
668 * a mirror without I/O errors and with a validated checksum.
669 * Only if this is not possible, the pages are picked from
670 * mirrors with I/O errors without considering the checksum.
671 * If the latter is the case, at the end, the checksum of the
672 * repaired area is verified in order to correctly maintain
673 * the statistics.
674 */
675
676 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
677 sizeof(*sblocks_for_recheck),
678 GFP_NOFS);
679 if (!sblocks_for_recheck) {
680 spin_lock(&sdev->stat_lock);
681 sdev->stat.malloc_errors++;
682 sdev->stat.read_errors++;
683 sdev->stat.uncorrectable_errors++;
684 spin_unlock(&sdev->stat_lock);
685 btrfs_dev_stat_inc_and_print(sdev->dev,
686 BTRFS_DEV_STAT_READ_ERRS);
687 goto out;
688 }
689
690 /* setup the context, map the logical blocks and alloc the pages */
691 ret = scrub_setup_recheck_block(sdev, &fs_info->mapping_tree, length,
692 logical, sblocks_for_recheck);
693 if (ret) {
694 spin_lock(&sdev->stat_lock);
695 sdev->stat.read_errors++;
696 sdev->stat.uncorrectable_errors++;
697 spin_unlock(&sdev->stat_lock);
698 btrfs_dev_stat_inc_and_print(sdev->dev,
699 BTRFS_DEV_STAT_READ_ERRS);
700 goto out;
701 }
702 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
703 sblock_bad = sblocks_for_recheck + failed_mirror_index;
704
705 /* build and submit the bios for the failed mirror, check checksums */
706 ret = scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
707 csum, generation, sdev->csum_size);
708 if (ret) {
709 spin_lock(&sdev->stat_lock);
710 sdev->stat.read_errors++;
711 sdev->stat.uncorrectable_errors++;
712 spin_unlock(&sdev->stat_lock);
713 btrfs_dev_stat_inc_and_print(sdev->dev,
714 BTRFS_DEV_STAT_READ_ERRS);
715 goto out;
716 }
717
718 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
719 sblock_bad->no_io_error_seen) {
720 /*
721 * the error disappeared after reading page by page, or
722 * the area was part of a huge bio and other parts of the
723 * bio caused I/O errors, or the block layer merged several
724 * read requests into one and the error is caused by a
725 * different bio (usually one of the two latter cases is
726 * the cause)
727 */
728 spin_lock(&sdev->stat_lock);
729 sdev->stat.unverified_errors++;
730 spin_unlock(&sdev->stat_lock);
731
732 goto out;
733 }
734
735 if (!sblock_bad->no_io_error_seen) {
736 spin_lock(&sdev->stat_lock);
737 sdev->stat.read_errors++;
738 spin_unlock(&sdev->stat_lock);
739 if (__ratelimit(&_rs))
740 scrub_print_warning("i/o error", sblock_to_check);
741 btrfs_dev_stat_inc_and_print(sdev->dev,
742 BTRFS_DEV_STAT_READ_ERRS);
743 } else if (sblock_bad->checksum_error) {
744 spin_lock(&sdev->stat_lock);
745 sdev->stat.csum_errors++;
746 spin_unlock(&sdev->stat_lock);
747 if (__ratelimit(&_rs))
748 scrub_print_warning("checksum error", sblock_to_check);
749 btrfs_dev_stat_inc_and_print(sdev->dev,
750 BTRFS_DEV_STAT_CORRUPTION_ERRS);
751 } else if (sblock_bad->header_error) {
752 spin_lock(&sdev->stat_lock);
753 sdev->stat.verify_errors++;
754 spin_unlock(&sdev->stat_lock);
755 if (__ratelimit(&_rs))
756 scrub_print_warning("checksum/header error",
757 sblock_to_check);
758 if (sblock_bad->generation_error)
759 btrfs_dev_stat_inc_and_print(sdev->dev,
760 BTRFS_DEV_STAT_GENERATION_ERRS);
761 else
762 btrfs_dev_stat_inc_and_print(sdev->dev,
763 BTRFS_DEV_STAT_CORRUPTION_ERRS);
764 }
765
766 if (sdev->readonly)
767 goto did_not_correct_error;
768
769 if (!is_metadata && !have_csum) {
770 struct scrub_fixup_nodatasum *fixup_nodatasum;
771
772 /*
773 * !is_metadata and !have_csum, this means that the data
774 * might not be COW'ed, that it might be modified
775 * concurrently. The general strategy to work on the
776 * commit root does not help in the case when COW is not
777 * used.
778 */
779 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
780 if (!fixup_nodatasum)
781 goto did_not_correct_error;
782 fixup_nodatasum->sdev = sdev;
783 fixup_nodatasum->logical = logical;
784 fixup_nodatasum->root = fs_info->extent_root;
785 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
786 /*
787 * increment scrubs_running to prevent cancel requests from
788 * completing as long as a fixup worker is running. we must also
789 * increment scrubs_paused to prevent deadlocking on pause
790 * requests used for transactions commits (as the worker uses a
791 * transaction context). it is safe to regard the fixup worker
792 * as paused for all matters practical. effectively, we only
793 * avoid cancellation requests from completing.
794 */
795 mutex_lock(&fs_info->scrub_lock);
796 atomic_inc(&fs_info->scrubs_running);
797 atomic_inc(&fs_info->scrubs_paused);
798 mutex_unlock(&fs_info->scrub_lock);
799 atomic_inc(&sdev->fixup_cnt);
800 fixup_nodatasum->work.func = scrub_fixup_nodatasum;
801 btrfs_queue_worker(&fs_info->scrub_workers,
802 &fixup_nodatasum->work);
803 goto out;
804 }
805
806 /*
807 * now build and submit the bios for the other mirrors, check
808 * checksums
809 */
810 for (mirror_index = 0;
811 mirror_index < BTRFS_MAX_MIRRORS &&
812 sblocks_for_recheck[mirror_index].page_count > 0;
813 mirror_index++) {
814 if (mirror_index == failed_mirror_index)
815 continue;
816
817 /* build and submit the bios, check checksums */
818 ret = scrub_recheck_block(fs_info,
819 sblocks_for_recheck + mirror_index,
820 is_metadata, have_csum, csum,
821 generation, sdev->csum_size);
822 if (ret)
823 goto did_not_correct_error;
824 }
825
826 /*
827 * first try to pick the mirror which is completely without I/O
828 * errors and also does not have a checksum error.
829 * If one is found, and if a checksum is present, the full block
830 * that is known to contain an error is rewritten. Afterwards
831 * the block is known to be corrected.
832 * If a mirror is found which is completely correct, and no
833 * checksum is present, only those pages are rewritten that had
834 * an I/O error in the block to be repaired, since it cannot be
835 * determined, which copy of the other pages is better (and it
836 * could happen otherwise that a correct page would be
837 * overwritten by a bad one).
838 */
839 for (mirror_index = 0;
840 mirror_index < BTRFS_MAX_MIRRORS &&
841 sblocks_for_recheck[mirror_index].page_count > 0;
842 mirror_index++) {
843 struct scrub_block *sblock_other = sblocks_for_recheck +
844 mirror_index;
845
846 if (!sblock_other->header_error &&
847 !sblock_other->checksum_error &&
848 sblock_other->no_io_error_seen) {
849 int force_write = is_metadata || have_csum;
850
851 ret = scrub_repair_block_from_good_copy(sblock_bad,
852 sblock_other,
853 force_write);
854 if (0 == ret)
855 goto corrected_error;
856 }
857 }
858
859 /*
860 * in case of I/O errors in the area that is supposed to be
861 * repaired, continue by picking good copies of those pages.
862 * Select the good pages from mirrors to rewrite bad pages from
863 * the area to fix. Afterwards verify the checksum of the block
864 * that is supposed to be repaired. This verification step is
865 * only done for the purpose of statistic counting and for the
866 * final scrub report, whether errors remain.
867 * A perfect algorithm could make use of the checksum and try
868 * all possible combinations of pages from the different mirrors
869 * until the checksum verification succeeds. For example, when
870 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
871 * of mirror #2 is readable but the final checksum test fails,
872 * then the 2nd page of mirror #3 could be tried, whether now
873 * the final checksum succeedes. But this would be a rare
874 * exception and is therefore not implemented. At least it is
875 * avoided that the good copy is overwritten.
876 * A more useful improvement would be to pick the sectors
877 * without I/O error based on sector sizes (512 bytes on legacy
878 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
879 * mirror could be repaired by taking 512 byte of a different
880 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
881 * area are unreadable.
882 */
883
884 /* can only fix I/O errors from here on */
885 if (sblock_bad->no_io_error_seen)
886 goto did_not_correct_error;
887
888 success = 1;
889 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
890 struct scrub_page *page_bad = sblock_bad->pagev + page_num;
891
892 if (!page_bad->io_error)
893 continue;
894
895 for (mirror_index = 0;
896 mirror_index < BTRFS_MAX_MIRRORS &&
897 sblocks_for_recheck[mirror_index].page_count > 0;
898 mirror_index++) {
899 struct scrub_block *sblock_other = sblocks_for_recheck +
900 mirror_index;
901 struct scrub_page *page_other = sblock_other->pagev +
902 page_num;
903
904 if (!page_other->io_error) {
905 ret = scrub_repair_page_from_good_copy(
906 sblock_bad, sblock_other, page_num, 0);
907 if (0 == ret) {
908 page_bad->io_error = 0;
909 break; /* succeeded for this page */
910 }
911 }
912 }
913
914 if (page_bad->io_error) {
915 /* did not find a mirror to copy the page from */
916 success = 0;
917 }
918 }
919
920 if (success) {
921 if (is_metadata || have_csum) {
922 /*
923 * need to verify the checksum now that all
924 * sectors on disk are repaired (the write
925 * request for data to be repaired is on its way).
926 * Just be lazy and use scrub_recheck_block()
927 * which re-reads the data before the checksum
928 * is verified, but most likely the data comes out
929 * of the page cache.
930 */
931 ret = scrub_recheck_block(fs_info, sblock_bad,
932 is_metadata, have_csum, csum,
933 generation, sdev->csum_size);
934 if (!ret && !sblock_bad->header_error &&
935 !sblock_bad->checksum_error &&
936 sblock_bad->no_io_error_seen)
937 goto corrected_error;
938 else
939 goto did_not_correct_error;
940 } else {
941 corrected_error:
942 spin_lock(&sdev->stat_lock);
943 sdev->stat.corrected_errors++;
944 spin_unlock(&sdev->stat_lock);
945 printk_ratelimited_in_rcu(KERN_ERR
946 "btrfs: fixed up error at logical %llu on dev %s\n",
947 (unsigned long long)logical,
948 rcu_str_deref(sdev->dev->name));
949 }
950 } else {
951 did_not_correct_error:
952 spin_lock(&sdev->stat_lock);
953 sdev->stat.uncorrectable_errors++;
954 spin_unlock(&sdev->stat_lock);
955 printk_ratelimited_in_rcu(KERN_ERR
956 "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
957 (unsigned long long)logical,
958 rcu_str_deref(sdev->dev->name));
959 }
960
961 out:
962 if (sblocks_for_recheck) {
963 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
964 mirror_index++) {
965 struct scrub_block *sblock = sblocks_for_recheck +
966 mirror_index;
967 int page_index;
968
969 for (page_index = 0; page_index < SCRUB_PAGES_PER_BIO;
970 page_index++)
971 if (sblock->pagev[page_index].page)
972 __free_page(
973 sblock->pagev[page_index].page);
974 }
975 kfree(sblocks_for_recheck);
976 }
977
978 return 0;
979 }
980
981 static int scrub_setup_recheck_block(struct scrub_dev *sdev,
982 struct btrfs_mapping_tree *map_tree,
983 u64 length, u64 logical,
984 struct scrub_block *sblocks_for_recheck)
985 {
986 int page_index;
987 int mirror_index;
988 int ret;
989
990 /*
991 * note: the three members sdev, ref_count and outstanding_pages
992 * are not used (and not set) in the blocks that are used for
993 * the recheck procedure
994 */
995
996 page_index = 0;
997 while (length > 0) {
998 u64 sublen = min_t(u64, length, PAGE_SIZE);
999 u64 mapped_length = sublen;
1000 struct btrfs_bio *bbio = NULL;
1001
1002 /*
1003 * with a length of PAGE_SIZE, each returned stripe
1004 * represents one mirror
1005 */
1006 ret = btrfs_map_block(map_tree, WRITE, logical, &mapped_length,
1007 &bbio, 0);
1008 if (ret || !bbio || mapped_length < sublen) {
1009 kfree(bbio);
1010 return -EIO;
1011 }
1012
1013 BUG_ON(page_index >= SCRUB_PAGES_PER_BIO);
1014 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1015 mirror_index++) {
1016 struct scrub_block *sblock;
1017 struct scrub_page *page;
1018
1019 if (mirror_index >= BTRFS_MAX_MIRRORS)
1020 continue;
1021
1022 sblock = sblocks_for_recheck + mirror_index;
1023 page = sblock->pagev + page_index;
1024 page->logical = logical;
1025 page->physical = bbio->stripes[mirror_index].physical;
1026 /* for missing devices, dev->bdev is NULL */
1027 page->dev = bbio->stripes[mirror_index].dev;
1028 page->mirror_num = mirror_index + 1;
1029 page->page = alloc_page(GFP_NOFS);
1030 if (!page->page) {
1031 spin_lock(&sdev->stat_lock);
1032 sdev->stat.malloc_errors++;
1033 spin_unlock(&sdev->stat_lock);
1034 kfree(bbio);
1035 return -ENOMEM;
1036 }
1037 sblock->page_count++;
1038 }
1039 kfree(bbio);
1040 length -= sublen;
1041 logical += sublen;
1042 page_index++;
1043 }
1044
1045 return 0;
1046 }
1047
1048 /*
1049 * this function will check the on disk data for checksum errors, header
1050 * errors and read I/O errors. If any I/O errors happen, the exact pages
1051 * which are errored are marked as being bad. The goal is to enable scrub
1052 * to take those pages that are not errored from all the mirrors so that
1053 * the pages that are errored in the just handled mirror can be repaired.
1054 */
1055 static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
1056 struct scrub_block *sblock, int is_metadata,
1057 int have_csum, u8 *csum, u64 generation,
1058 u16 csum_size)
1059 {
1060 int page_num;
1061
1062 sblock->no_io_error_seen = 1;
1063 sblock->header_error = 0;
1064 sblock->checksum_error = 0;
1065
1066 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1067 struct bio *bio;
1068 int ret;
1069 struct scrub_page *page = sblock->pagev + page_num;
1070 DECLARE_COMPLETION_ONSTACK(complete);
1071
1072 if (page->dev->bdev == NULL) {
1073 page->io_error = 1;
1074 sblock->no_io_error_seen = 0;
1075 continue;
1076 }
1077
1078 BUG_ON(!page->page);
1079 bio = bio_alloc(GFP_NOFS, 1);
1080 if (!bio)
1081 return -EIO;
1082 bio->bi_bdev = page->dev->bdev;
1083 bio->bi_sector = page->physical >> 9;
1084 bio->bi_end_io = scrub_complete_bio_end_io;
1085 bio->bi_private = &complete;
1086
1087 ret = bio_add_page(bio, page->page, PAGE_SIZE, 0);
1088 if (PAGE_SIZE != ret) {
1089 bio_put(bio);
1090 return -EIO;
1091 }
1092 btrfsic_submit_bio(READ, bio);
1093
1094 /* this will also unplug the queue */
1095 wait_for_completion(&complete);
1096
1097 page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1098 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1099 sblock->no_io_error_seen = 0;
1100 bio_put(bio);
1101 }
1102
1103 if (sblock->no_io_error_seen)
1104 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1105 have_csum, csum, generation,
1106 csum_size);
1107
1108 return 0;
1109 }
1110
1111 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1112 struct scrub_block *sblock,
1113 int is_metadata, int have_csum,
1114 const u8 *csum, u64 generation,
1115 u16 csum_size)
1116 {
1117 int page_num;
1118 u8 calculated_csum[BTRFS_CSUM_SIZE];
1119 u32 crc = ~(u32)0;
1120 struct btrfs_root *root = fs_info->extent_root;
1121 void *mapped_buffer;
1122
1123 BUG_ON(!sblock->pagev[0].page);
1124 if (is_metadata) {
1125 struct btrfs_header *h;
1126
1127 mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1128 h = (struct btrfs_header *)mapped_buffer;
1129
1130 if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr) ||
1131 memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1132 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1133 BTRFS_UUID_SIZE)) {
1134 sblock->header_error = 1;
1135 } else if (generation != le64_to_cpu(h->generation)) {
1136 sblock->header_error = 1;
1137 sblock->generation_error = 1;
1138 }
1139 csum = h->csum;
1140 } else {
1141 if (!have_csum)
1142 return;
1143
1144 mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1145 }
1146
1147 for (page_num = 0;;) {
1148 if (page_num == 0 && is_metadata)
1149 crc = btrfs_csum_data(root,
1150 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1151 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1152 else
1153 crc = btrfs_csum_data(root, mapped_buffer, crc,
1154 PAGE_SIZE);
1155
1156 kunmap_atomic(mapped_buffer);
1157 page_num++;
1158 if (page_num >= sblock->page_count)
1159 break;
1160 BUG_ON(!sblock->pagev[page_num].page);
1161
1162 mapped_buffer = kmap_atomic(sblock->pagev[page_num].page);
1163 }
1164
1165 btrfs_csum_final(crc, calculated_csum);
1166 if (memcmp(calculated_csum, csum, csum_size))
1167 sblock->checksum_error = 1;
1168 }
1169
1170 static void scrub_complete_bio_end_io(struct bio *bio, int err)
1171 {
1172 complete((struct completion *)bio->bi_private);
1173 }
1174
1175 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1176 struct scrub_block *sblock_good,
1177 int force_write)
1178 {
1179 int page_num;
1180 int ret = 0;
1181
1182 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1183 int ret_sub;
1184
1185 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1186 sblock_good,
1187 page_num,
1188 force_write);
1189 if (ret_sub)
1190 ret = ret_sub;
1191 }
1192
1193 return ret;
1194 }
1195
1196 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1197 struct scrub_block *sblock_good,
1198 int page_num, int force_write)
1199 {
1200 struct scrub_page *page_bad = sblock_bad->pagev + page_num;
1201 struct scrub_page *page_good = sblock_good->pagev + page_num;
1202
1203 BUG_ON(sblock_bad->pagev[page_num].page == NULL);
1204 BUG_ON(sblock_good->pagev[page_num].page == NULL);
1205 if (force_write || sblock_bad->header_error ||
1206 sblock_bad->checksum_error || page_bad->io_error) {
1207 struct bio *bio;
1208 int ret;
1209 DECLARE_COMPLETION_ONSTACK(complete);
1210
1211 bio = bio_alloc(GFP_NOFS, 1);
1212 if (!bio)
1213 return -EIO;
1214 bio->bi_bdev = page_bad->dev->bdev;
1215 bio->bi_sector = page_bad->physical >> 9;
1216 bio->bi_end_io = scrub_complete_bio_end_io;
1217 bio->bi_private = &complete;
1218
1219 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1220 if (PAGE_SIZE != ret) {
1221 bio_put(bio);
1222 return -EIO;
1223 }
1224 btrfsic_submit_bio(WRITE, bio);
1225
1226 /* this will also unplug the queue */
1227 wait_for_completion(&complete);
1228 if (!bio_flagged(bio, BIO_UPTODATE)) {
1229 btrfs_dev_stat_inc_and_print(page_bad->dev,
1230 BTRFS_DEV_STAT_WRITE_ERRS);
1231 bio_put(bio);
1232 return -EIO;
1233 }
1234 bio_put(bio);
1235 }
1236
1237 return 0;
1238 }
1239
1240 static void scrub_checksum(struct scrub_block *sblock)
1241 {
1242 u64 flags;
1243 int ret;
1244
1245 BUG_ON(sblock->page_count < 1);
1246 flags = sblock->pagev[0].flags;
1247 ret = 0;
1248 if (flags & BTRFS_EXTENT_FLAG_DATA)
1249 ret = scrub_checksum_data(sblock);
1250 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1251 ret = scrub_checksum_tree_block(sblock);
1252 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1253 (void)scrub_checksum_super(sblock);
1254 else
1255 WARN_ON(1);
1256 if (ret)
1257 scrub_handle_errored_block(sblock);
1258 }
1259
1260 static int scrub_checksum_data(struct scrub_block *sblock)
1261 {
1262 struct scrub_dev *sdev = sblock->sdev;
1263 u8 csum[BTRFS_CSUM_SIZE];
1264 u8 *on_disk_csum;
1265 struct page *page;
1266 void *buffer;
1267 u32 crc = ~(u32)0;
1268 int fail = 0;
1269 struct btrfs_root *root = sdev->dev->dev_root;
1270 u64 len;
1271 int index;
1272
1273 BUG_ON(sblock->page_count < 1);
1274 if (!sblock->pagev[0].have_csum)
1275 return 0;
1276
1277 on_disk_csum = sblock->pagev[0].csum;
1278 page = sblock->pagev[0].page;
1279 buffer = kmap_atomic(page);
1280
1281 len = sdev->sectorsize;
1282 index = 0;
1283 for (;;) {
1284 u64 l = min_t(u64, len, PAGE_SIZE);
1285
1286 crc = btrfs_csum_data(root, buffer, crc, l);
1287 kunmap_atomic(buffer);
1288 len -= l;
1289 if (len == 0)
1290 break;
1291 index++;
1292 BUG_ON(index >= sblock->page_count);
1293 BUG_ON(!sblock->pagev[index].page);
1294 page = sblock->pagev[index].page;
1295 buffer = kmap_atomic(page);
1296 }
1297
1298 btrfs_csum_final(crc, csum);
1299 if (memcmp(csum, on_disk_csum, sdev->csum_size))
1300 fail = 1;
1301
1302 return fail;
1303 }
1304
1305 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1306 {
1307 struct scrub_dev *sdev = sblock->sdev;
1308 struct btrfs_header *h;
1309 struct btrfs_root *root = sdev->dev->dev_root;
1310 struct btrfs_fs_info *fs_info = root->fs_info;
1311 u8 calculated_csum[BTRFS_CSUM_SIZE];
1312 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1313 struct page *page;
1314 void *mapped_buffer;
1315 u64 mapped_size;
1316 void *p;
1317 u32 crc = ~(u32)0;
1318 int fail = 0;
1319 int crc_fail = 0;
1320 u64 len;
1321 int index;
1322
1323 BUG_ON(sblock->page_count < 1);
1324 page = sblock->pagev[0].page;
1325 mapped_buffer = kmap_atomic(page);
1326 h = (struct btrfs_header *)mapped_buffer;
1327 memcpy(on_disk_csum, h->csum, sdev->csum_size);
1328
1329 /*
1330 * we don't use the getter functions here, as we
1331 * a) don't have an extent buffer and
1332 * b) the page is already kmapped
1333 */
1334
1335 if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr))
1336 ++fail;
1337
1338 if (sblock->pagev[0].generation != le64_to_cpu(h->generation))
1339 ++fail;
1340
1341 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1342 ++fail;
1343
1344 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1345 BTRFS_UUID_SIZE))
1346 ++fail;
1347
1348 BUG_ON(sdev->nodesize != sdev->leafsize);
1349 len = sdev->nodesize - BTRFS_CSUM_SIZE;
1350 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1351 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1352 index = 0;
1353 for (;;) {
1354 u64 l = min_t(u64, len, mapped_size);
1355
1356 crc = btrfs_csum_data(root, p, crc, l);
1357 kunmap_atomic(mapped_buffer);
1358 len -= l;
1359 if (len == 0)
1360 break;
1361 index++;
1362 BUG_ON(index >= sblock->page_count);
1363 BUG_ON(!sblock->pagev[index].page);
1364 page = sblock->pagev[index].page;
1365 mapped_buffer = kmap_atomic(page);
1366 mapped_size = PAGE_SIZE;
1367 p = mapped_buffer;
1368 }
1369
1370 btrfs_csum_final(crc, calculated_csum);
1371 if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1372 ++crc_fail;
1373
1374 return fail || crc_fail;
1375 }
1376
1377 static int scrub_checksum_super(struct scrub_block *sblock)
1378 {
1379 struct btrfs_super_block *s;
1380 struct scrub_dev *sdev = sblock->sdev;
1381 struct btrfs_root *root = sdev->dev->dev_root;
1382 struct btrfs_fs_info *fs_info = root->fs_info;
1383 u8 calculated_csum[BTRFS_CSUM_SIZE];
1384 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1385 struct page *page;
1386 void *mapped_buffer;
1387 u64 mapped_size;
1388 void *p;
1389 u32 crc = ~(u32)0;
1390 int fail_gen = 0;
1391 int fail_cor = 0;
1392 u64 len;
1393 int index;
1394
1395 BUG_ON(sblock->page_count < 1);
1396 page = sblock->pagev[0].page;
1397 mapped_buffer = kmap_atomic(page);
1398 s = (struct btrfs_super_block *)mapped_buffer;
1399 memcpy(on_disk_csum, s->csum, sdev->csum_size);
1400
1401 if (sblock->pagev[0].logical != le64_to_cpu(s->bytenr))
1402 ++fail_cor;
1403
1404 if (sblock->pagev[0].generation != le64_to_cpu(s->generation))
1405 ++fail_gen;
1406
1407 if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1408 ++fail_cor;
1409
1410 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1411 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1412 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1413 index = 0;
1414 for (;;) {
1415 u64 l = min_t(u64, len, mapped_size);
1416
1417 crc = btrfs_csum_data(root, p, crc, l);
1418 kunmap_atomic(mapped_buffer);
1419 len -= l;
1420 if (len == 0)
1421 break;
1422 index++;
1423 BUG_ON(index >= sblock->page_count);
1424 BUG_ON(!sblock->pagev[index].page);
1425 page = sblock->pagev[index].page;
1426 mapped_buffer = kmap_atomic(page);
1427 mapped_size = PAGE_SIZE;
1428 p = mapped_buffer;
1429 }
1430
1431 btrfs_csum_final(crc, calculated_csum);
1432 if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1433 ++fail_cor;
1434
1435 if (fail_cor + fail_gen) {
1436 /*
1437 * if we find an error in a super block, we just report it.
1438 * They will get written with the next transaction commit
1439 * anyway
1440 */
1441 spin_lock(&sdev->stat_lock);
1442 ++sdev->stat.super_errors;
1443 spin_unlock(&sdev->stat_lock);
1444 if (fail_cor)
1445 btrfs_dev_stat_inc_and_print(sdev->dev,
1446 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1447 else
1448 btrfs_dev_stat_inc_and_print(sdev->dev,
1449 BTRFS_DEV_STAT_GENERATION_ERRS);
1450 }
1451
1452 return fail_cor + fail_gen;
1453 }
1454
1455 static void scrub_block_get(struct scrub_block *sblock)
1456 {
1457 atomic_inc(&sblock->ref_count);
1458 }
1459
1460 static void scrub_block_put(struct scrub_block *sblock)
1461 {
1462 if (atomic_dec_and_test(&sblock->ref_count)) {
1463 int i;
1464
1465 for (i = 0; i < sblock->page_count; i++)
1466 if (sblock->pagev[i].page)
1467 __free_page(sblock->pagev[i].page);
1468 kfree(sblock);
1469 }
1470 }
1471
1472 static void scrub_submit(struct scrub_dev *sdev)
1473 {
1474 struct scrub_bio *sbio;
1475
1476 if (sdev->curr == -1)
1477 return;
1478
1479 sbio = sdev->bios[sdev->curr];
1480 sdev->curr = -1;
1481 atomic_inc(&sdev->in_flight);
1482
1483 btrfsic_submit_bio(READ, sbio->bio);
1484 }
1485
1486 static int scrub_add_page_to_bio(struct scrub_dev *sdev,
1487 struct scrub_page *spage)
1488 {
1489 struct scrub_block *sblock = spage->sblock;
1490 struct scrub_bio *sbio;
1491 int ret;
1492
1493 again:
1494 /*
1495 * grab a fresh bio or wait for one to become available
1496 */
1497 while (sdev->curr == -1) {
1498 spin_lock(&sdev->list_lock);
1499 sdev->curr = sdev->first_free;
1500 if (sdev->curr != -1) {
1501 sdev->first_free = sdev->bios[sdev->curr]->next_free;
1502 sdev->bios[sdev->curr]->next_free = -1;
1503 sdev->bios[sdev->curr]->page_count = 0;
1504 spin_unlock(&sdev->list_lock);
1505 } else {
1506 spin_unlock(&sdev->list_lock);
1507 wait_event(sdev->list_wait, sdev->first_free != -1);
1508 }
1509 }
1510 sbio = sdev->bios[sdev->curr];
1511 if (sbio->page_count == 0) {
1512 struct bio *bio;
1513
1514 sbio->physical = spage->physical;
1515 sbio->logical = spage->logical;
1516 bio = sbio->bio;
1517 if (!bio) {
1518 bio = bio_alloc(GFP_NOFS, sdev->pages_per_bio);
1519 if (!bio)
1520 return -ENOMEM;
1521 sbio->bio = bio;
1522 }
1523
1524 bio->bi_private = sbio;
1525 bio->bi_end_io = scrub_bio_end_io;
1526 bio->bi_bdev = sdev->dev->bdev;
1527 bio->bi_sector = spage->physical >> 9;
1528 sbio->err = 0;
1529 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1530 spage->physical ||
1531 sbio->logical + sbio->page_count * PAGE_SIZE !=
1532 spage->logical) {
1533 scrub_submit(sdev);
1534 goto again;
1535 }
1536
1537 sbio->pagev[sbio->page_count] = spage;
1538 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1539 if (ret != PAGE_SIZE) {
1540 if (sbio->page_count < 1) {
1541 bio_put(sbio->bio);
1542 sbio->bio = NULL;
1543 return -EIO;
1544 }
1545 scrub_submit(sdev);
1546 goto again;
1547 }
1548
1549 scrub_block_get(sblock); /* one for the added page */
1550 atomic_inc(&sblock->outstanding_pages);
1551 sbio->page_count++;
1552 if (sbio->page_count == sdev->pages_per_bio)
1553 scrub_submit(sdev);
1554
1555 return 0;
1556 }
1557
1558 static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
1559 u64 physical, u64 flags, u64 gen, int mirror_num,
1560 u8 *csum, int force)
1561 {
1562 struct scrub_block *sblock;
1563 int index;
1564
1565 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1566 if (!sblock) {
1567 spin_lock(&sdev->stat_lock);
1568 sdev->stat.malloc_errors++;
1569 spin_unlock(&sdev->stat_lock);
1570 return -ENOMEM;
1571 }
1572
1573 /* one ref inside this function, plus one for each page later on */
1574 atomic_set(&sblock->ref_count, 1);
1575 sblock->sdev = sdev;
1576 sblock->no_io_error_seen = 1;
1577
1578 for (index = 0; len > 0; index++) {
1579 struct scrub_page *spage = sblock->pagev + index;
1580 u64 l = min_t(u64, len, PAGE_SIZE);
1581
1582 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
1583 spage->page = alloc_page(GFP_NOFS);
1584 if (!spage->page) {
1585 spin_lock(&sdev->stat_lock);
1586 sdev->stat.malloc_errors++;
1587 spin_unlock(&sdev->stat_lock);
1588 while (index > 0) {
1589 index--;
1590 __free_page(sblock->pagev[index].page);
1591 }
1592 kfree(sblock);
1593 return -ENOMEM;
1594 }
1595 spage->sblock = sblock;
1596 spage->dev = sdev->dev;
1597 spage->flags = flags;
1598 spage->generation = gen;
1599 spage->logical = logical;
1600 spage->physical = physical;
1601 spage->mirror_num = mirror_num;
1602 if (csum) {
1603 spage->have_csum = 1;
1604 memcpy(spage->csum, csum, sdev->csum_size);
1605 } else {
1606 spage->have_csum = 0;
1607 }
1608 sblock->page_count++;
1609 len -= l;
1610 logical += l;
1611 physical += l;
1612 }
1613
1614 BUG_ON(sblock->page_count == 0);
1615 for (index = 0; index < sblock->page_count; index++) {
1616 struct scrub_page *spage = sblock->pagev + index;
1617 int ret;
1618
1619 ret = scrub_add_page_to_bio(sdev, spage);
1620 if (ret) {
1621 scrub_block_put(sblock);
1622 return ret;
1623 }
1624 }
1625
1626 if (force)
1627 scrub_submit(sdev);
1628
1629 /* last one frees, either here or in bio completion for last page */
1630 scrub_block_put(sblock);
1631 return 0;
1632 }
1633
1634 static void scrub_bio_end_io(struct bio *bio, int err)
1635 {
1636 struct scrub_bio *sbio = bio->bi_private;
1637 struct scrub_dev *sdev = sbio->sdev;
1638 struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1639
1640 sbio->err = err;
1641 sbio->bio = bio;
1642
1643 btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
1644 }
1645
1646 static void scrub_bio_end_io_worker(struct btrfs_work *work)
1647 {
1648 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1649 struct scrub_dev *sdev = sbio->sdev;
1650 int i;
1651
1652 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_BIO);
1653 if (sbio->err) {
1654 for (i = 0; i < sbio->page_count; i++) {
1655 struct scrub_page *spage = sbio->pagev[i];
1656
1657 spage->io_error = 1;
1658 spage->sblock->no_io_error_seen = 0;
1659 }
1660 }
1661
1662 /* now complete the scrub_block items that have all pages completed */
1663 for (i = 0; i < sbio->page_count; i++) {
1664 struct scrub_page *spage = sbio->pagev[i];
1665 struct scrub_block *sblock = spage->sblock;
1666
1667 if (atomic_dec_and_test(&sblock->outstanding_pages))
1668 scrub_block_complete(sblock);
1669 scrub_block_put(sblock);
1670 }
1671
1672 bio_put(sbio->bio);
1673 sbio->bio = NULL;
1674 spin_lock(&sdev->list_lock);
1675 sbio->next_free = sdev->first_free;
1676 sdev->first_free = sbio->index;
1677 spin_unlock(&sdev->list_lock);
1678 atomic_dec(&sdev->in_flight);
1679 wake_up(&sdev->list_wait);
1680 }
1681
1682 static void scrub_block_complete(struct scrub_block *sblock)
1683 {
1684 if (!sblock->no_io_error_seen)
1685 scrub_handle_errored_block(sblock);
1686 else
1687 scrub_checksum(sblock);
1688 }
1689
1690 static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
1691 u8 *csum)
1692 {
1693 struct btrfs_ordered_sum *sum = NULL;
1694 int ret = 0;
1695 unsigned long i;
1696 unsigned long num_sectors;
1697
1698 while (!list_empty(&sdev->csum_list)) {
1699 sum = list_first_entry(&sdev->csum_list,
1700 struct btrfs_ordered_sum, list);
1701 if (sum->bytenr > logical)
1702 return 0;
1703 if (sum->bytenr + sum->len > logical)
1704 break;
1705
1706 ++sdev->stat.csum_discards;
1707 list_del(&sum->list);
1708 kfree(sum);
1709 sum = NULL;
1710 }
1711 if (!sum)
1712 return 0;
1713
1714 num_sectors = sum->len / sdev->sectorsize;
1715 for (i = 0; i < num_sectors; ++i) {
1716 if (sum->sums[i].bytenr == logical) {
1717 memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
1718 ret = 1;
1719 break;
1720 }
1721 }
1722 if (ret && i == num_sectors - 1) {
1723 list_del(&sum->list);
1724 kfree(sum);
1725 }
1726 return ret;
1727 }
1728
1729 /* scrub extent tries to collect up to 64 kB for each bio */
1730 static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
1731 u64 physical, u64 flags, u64 gen, int mirror_num)
1732 {
1733 int ret;
1734 u8 csum[BTRFS_CSUM_SIZE];
1735 u32 blocksize;
1736
1737 if (flags & BTRFS_EXTENT_FLAG_DATA) {
1738 blocksize = sdev->sectorsize;
1739 spin_lock(&sdev->stat_lock);
1740 sdev->stat.data_extents_scrubbed++;
1741 sdev->stat.data_bytes_scrubbed += len;
1742 spin_unlock(&sdev->stat_lock);
1743 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1744 BUG_ON(sdev->nodesize != sdev->leafsize);
1745 blocksize = sdev->nodesize;
1746 spin_lock(&sdev->stat_lock);
1747 sdev->stat.tree_extents_scrubbed++;
1748 sdev->stat.tree_bytes_scrubbed += len;
1749 spin_unlock(&sdev->stat_lock);
1750 } else {
1751 blocksize = sdev->sectorsize;
1752 BUG_ON(1);
1753 }
1754
1755 while (len) {
1756 u64 l = min_t(u64, len, blocksize);
1757 int have_csum = 0;
1758
1759 if (flags & BTRFS_EXTENT_FLAG_DATA) {
1760 /* push csums to sbio */
1761 have_csum = scrub_find_csum(sdev, logical, l, csum);
1762 if (have_csum == 0)
1763 ++sdev->stat.no_csum;
1764 }
1765 ret = scrub_pages(sdev, logical, l, physical, flags, gen,
1766 mirror_num, have_csum ? csum : NULL, 0);
1767 if (ret)
1768 return ret;
1769 len -= l;
1770 logical += l;
1771 physical += l;
1772 }
1773 return 0;
1774 }
1775
1776 static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
1777 struct map_lookup *map, int num, u64 base, u64 length)
1778 {
1779 struct btrfs_path *path;
1780 struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1781 struct btrfs_root *root = fs_info->extent_root;
1782 struct btrfs_root *csum_root = fs_info->csum_root;
1783 struct btrfs_extent_item *extent;
1784 struct blk_plug plug;
1785 u64 flags;
1786 int ret;
1787 int slot;
1788 int i;
1789 u64 nstripes;
1790 struct extent_buffer *l;
1791 struct btrfs_key key;
1792 u64 physical;
1793 u64 logical;
1794 u64 generation;
1795 int mirror_num;
1796 struct reada_control *reada1;
1797 struct reada_control *reada2;
1798 struct btrfs_key key_start;
1799 struct btrfs_key key_end;
1800
1801 u64 increment = map->stripe_len;
1802 u64 offset;
1803
1804 nstripes = length;
1805 offset = 0;
1806 do_div(nstripes, map->stripe_len);
1807 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1808 offset = map->stripe_len * num;
1809 increment = map->stripe_len * map->num_stripes;
1810 mirror_num = 1;
1811 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1812 int factor = map->num_stripes / map->sub_stripes;
1813 offset = map->stripe_len * (num / map->sub_stripes);
1814 increment = map->stripe_len * factor;
1815 mirror_num = num % map->sub_stripes + 1;
1816 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1817 increment = map->stripe_len;
1818 mirror_num = num % map->num_stripes + 1;
1819 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1820 increment = map->stripe_len;
1821 mirror_num = num % map->num_stripes + 1;
1822 } else {
1823 increment = map->stripe_len;
1824 mirror_num = 1;
1825 }
1826
1827 path = btrfs_alloc_path();
1828 if (!path)
1829 return -ENOMEM;
1830
1831 /*
1832 * work on commit root. The related disk blocks are static as
1833 * long as COW is applied. This means, it is save to rewrite
1834 * them to repair disk errors without any race conditions
1835 */
1836 path->search_commit_root = 1;
1837 path->skip_locking = 1;
1838
1839 /*
1840 * trigger the readahead for extent tree csum tree and wait for
1841 * completion. During readahead, the scrub is officially paused
1842 * to not hold off transaction commits
1843 */
1844 logical = base + offset;
1845
1846 wait_event(sdev->list_wait,
1847 atomic_read(&sdev->in_flight) == 0);
1848 atomic_inc(&fs_info->scrubs_paused);
1849 wake_up(&fs_info->scrub_pause_wait);
1850
1851 /* FIXME it might be better to start readahead at commit root */
1852 key_start.objectid = logical;
1853 key_start.type = BTRFS_EXTENT_ITEM_KEY;
1854 key_start.offset = (u64)0;
1855 key_end.objectid = base + offset + nstripes * increment;
1856 key_end.type = BTRFS_EXTENT_ITEM_KEY;
1857 key_end.offset = (u64)0;
1858 reada1 = btrfs_reada_add(root, &key_start, &key_end);
1859
1860 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1861 key_start.type = BTRFS_EXTENT_CSUM_KEY;
1862 key_start.offset = logical;
1863 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1864 key_end.type = BTRFS_EXTENT_CSUM_KEY;
1865 key_end.offset = base + offset + nstripes * increment;
1866 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
1867
1868 if (!IS_ERR(reada1))
1869 btrfs_reada_wait(reada1);
1870 if (!IS_ERR(reada2))
1871 btrfs_reada_wait(reada2);
1872
1873 mutex_lock(&fs_info->scrub_lock);
1874 while (atomic_read(&fs_info->scrub_pause_req)) {
1875 mutex_unlock(&fs_info->scrub_lock);
1876 wait_event(fs_info->scrub_pause_wait,
1877 atomic_read(&fs_info->scrub_pause_req) == 0);
1878 mutex_lock(&fs_info->scrub_lock);
1879 }
1880 atomic_dec(&fs_info->scrubs_paused);
1881 mutex_unlock(&fs_info->scrub_lock);
1882 wake_up(&fs_info->scrub_pause_wait);
1883
1884 /*
1885 * collect all data csums for the stripe to avoid seeking during
1886 * the scrub. This might currently (crc32) end up to be about 1MB
1887 */
1888 blk_start_plug(&plug);
1889
1890 /*
1891 * now find all extents for each stripe and scrub them
1892 */
1893 logical = base + offset;
1894 physical = map->stripes[num].physical;
1895 ret = 0;
1896 for (i = 0; i < nstripes; ++i) {
1897 /*
1898 * canceled?
1899 */
1900 if (atomic_read(&fs_info->scrub_cancel_req) ||
1901 atomic_read(&sdev->cancel_req)) {
1902 ret = -ECANCELED;
1903 goto out;
1904 }
1905 /*
1906 * check to see if we have to pause
1907 */
1908 if (atomic_read(&fs_info->scrub_pause_req)) {
1909 /* push queued extents */
1910 scrub_submit(sdev);
1911 wait_event(sdev->list_wait,
1912 atomic_read(&sdev->in_flight) == 0);
1913 atomic_inc(&fs_info->scrubs_paused);
1914 wake_up(&fs_info->scrub_pause_wait);
1915 mutex_lock(&fs_info->scrub_lock);
1916 while (atomic_read(&fs_info->scrub_pause_req)) {
1917 mutex_unlock(&fs_info->scrub_lock);
1918 wait_event(fs_info->scrub_pause_wait,
1919 atomic_read(&fs_info->scrub_pause_req) == 0);
1920 mutex_lock(&fs_info->scrub_lock);
1921 }
1922 atomic_dec(&fs_info->scrubs_paused);
1923 mutex_unlock(&fs_info->scrub_lock);
1924 wake_up(&fs_info->scrub_pause_wait);
1925 }
1926
1927 ret = btrfs_lookup_csums_range(csum_root, logical,
1928 logical + map->stripe_len - 1,
1929 &sdev->csum_list, 1);
1930 if (ret)
1931 goto out;
1932
1933 key.objectid = logical;
1934 key.type = BTRFS_EXTENT_ITEM_KEY;
1935 key.offset = (u64)0;
1936
1937 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1938 if (ret < 0)
1939 goto out;
1940 if (ret > 0) {
1941 ret = btrfs_previous_item(root, path, 0,
1942 BTRFS_EXTENT_ITEM_KEY);
1943 if (ret < 0)
1944 goto out;
1945 if (ret > 0) {
1946 /* there's no smaller item, so stick with the
1947 * larger one */
1948 btrfs_release_path(path);
1949 ret = btrfs_search_slot(NULL, root, &key,
1950 path, 0, 0);
1951 if (ret < 0)
1952 goto out;
1953 }
1954 }
1955
1956 while (1) {
1957 l = path->nodes[0];
1958 slot = path->slots[0];
1959 if (slot >= btrfs_header_nritems(l)) {
1960 ret = btrfs_next_leaf(root, path);
1961 if (ret == 0)
1962 continue;
1963 if (ret < 0)
1964 goto out;
1965
1966 break;
1967 }
1968 btrfs_item_key_to_cpu(l, &key, slot);
1969
1970 if (key.objectid + key.offset <= logical)
1971 goto next;
1972
1973 if (key.objectid >= logical + map->stripe_len)
1974 break;
1975
1976 if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
1977 goto next;
1978
1979 extent = btrfs_item_ptr(l, slot,
1980 struct btrfs_extent_item);
1981 flags = btrfs_extent_flags(l, extent);
1982 generation = btrfs_extent_generation(l, extent);
1983
1984 if (key.objectid < logical &&
1985 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
1986 printk(KERN_ERR
1987 "btrfs scrub: tree block %llu spanning "
1988 "stripes, ignored. logical=%llu\n",
1989 (unsigned long long)key.objectid,
1990 (unsigned long long)logical);
1991 goto next;
1992 }
1993
1994 /*
1995 * trim extent to this stripe
1996 */
1997 if (key.objectid < logical) {
1998 key.offset -= logical - key.objectid;
1999 key.objectid = logical;
2000 }
2001 if (key.objectid + key.offset >
2002 logical + map->stripe_len) {
2003 key.offset = logical + map->stripe_len -
2004 key.objectid;
2005 }
2006
2007 ret = scrub_extent(sdev, key.objectid, key.offset,
2008 key.objectid - logical + physical,
2009 flags, generation, mirror_num);
2010 if (ret)
2011 goto out;
2012
2013 next:
2014 path->slots[0]++;
2015 }
2016 btrfs_release_path(path);
2017 logical += increment;
2018 physical += map->stripe_len;
2019 spin_lock(&sdev->stat_lock);
2020 sdev->stat.last_physical = physical;
2021 spin_unlock(&sdev->stat_lock);
2022 }
2023 /* push queued extents */
2024 scrub_submit(sdev);
2025
2026 out:
2027 blk_finish_plug(&plug);
2028 btrfs_free_path(path);
2029 return ret < 0 ? ret : 0;
2030 }
2031
2032 static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
2033 u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length,
2034 u64 dev_offset)
2035 {
2036 struct btrfs_mapping_tree *map_tree =
2037 &sdev->dev->dev_root->fs_info->mapping_tree;
2038 struct map_lookup *map;
2039 struct extent_map *em;
2040 int i;
2041 int ret = -EINVAL;
2042
2043 read_lock(&map_tree->map_tree.lock);
2044 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2045 read_unlock(&map_tree->map_tree.lock);
2046
2047 if (!em)
2048 return -EINVAL;
2049
2050 map = (struct map_lookup *)em->bdev;
2051 if (em->start != chunk_offset)
2052 goto out;
2053
2054 if (em->len < length)
2055 goto out;
2056
2057 for (i = 0; i < map->num_stripes; ++i) {
2058 if (map->stripes[i].dev == sdev->dev &&
2059 map->stripes[i].physical == dev_offset) {
2060 ret = scrub_stripe(sdev, map, i, chunk_offset, length);
2061 if (ret)
2062 goto out;
2063 }
2064 }
2065 out:
2066 free_extent_map(em);
2067
2068 return ret;
2069 }
2070
2071 static noinline_for_stack
2072 int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
2073 {
2074 struct btrfs_dev_extent *dev_extent = NULL;
2075 struct btrfs_path *path;
2076 struct btrfs_root *root = sdev->dev->dev_root;
2077 struct btrfs_fs_info *fs_info = root->fs_info;
2078 u64 length;
2079 u64 chunk_tree;
2080 u64 chunk_objectid;
2081 u64 chunk_offset;
2082 int ret;
2083 int slot;
2084 struct extent_buffer *l;
2085 struct btrfs_key key;
2086 struct btrfs_key found_key;
2087 struct btrfs_block_group_cache *cache;
2088
2089 path = btrfs_alloc_path();
2090 if (!path)
2091 return -ENOMEM;
2092
2093 path->reada = 2;
2094 path->search_commit_root = 1;
2095 path->skip_locking = 1;
2096
2097 key.objectid = sdev->dev->devid;
2098 key.offset = 0ull;
2099 key.type = BTRFS_DEV_EXTENT_KEY;
2100
2101
2102 while (1) {
2103 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2104 if (ret < 0)
2105 break;
2106 if (ret > 0) {
2107 if (path->slots[0] >=
2108 btrfs_header_nritems(path->nodes[0])) {
2109 ret = btrfs_next_leaf(root, path);
2110 if (ret)
2111 break;
2112 }
2113 }
2114
2115 l = path->nodes[0];
2116 slot = path->slots[0];
2117
2118 btrfs_item_key_to_cpu(l, &found_key, slot);
2119
2120 if (found_key.objectid != sdev->dev->devid)
2121 break;
2122
2123 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2124 break;
2125
2126 if (found_key.offset >= end)
2127 break;
2128
2129 if (found_key.offset < key.offset)
2130 break;
2131
2132 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2133 length = btrfs_dev_extent_length(l, dev_extent);
2134
2135 if (found_key.offset + length <= start) {
2136 key.offset = found_key.offset + length;
2137 btrfs_release_path(path);
2138 continue;
2139 }
2140
2141 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2142 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2143 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2144
2145 /*
2146 * get a reference on the corresponding block group to prevent
2147 * the chunk from going away while we scrub it
2148 */
2149 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2150 if (!cache) {
2151 ret = -ENOENT;
2152 break;
2153 }
2154 ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
2155 chunk_offset, length, found_key.offset);
2156 btrfs_put_block_group(cache);
2157 if (ret)
2158 break;
2159
2160 key.offset = found_key.offset + length;
2161 btrfs_release_path(path);
2162 }
2163
2164 btrfs_free_path(path);
2165
2166 /*
2167 * ret can still be 1 from search_slot or next_leaf,
2168 * that's not an error
2169 */
2170 return ret < 0 ? ret : 0;
2171 }
2172
2173 static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
2174 {
2175 int i;
2176 u64 bytenr;
2177 u64 gen;
2178 int ret;
2179 struct btrfs_device *device = sdev->dev;
2180 struct btrfs_root *root = device->dev_root;
2181
2182 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2183 return -EIO;
2184
2185 gen = root->fs_info->last_trans_committed;
2186
2187 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2188 bytenr = btrfs_sb_offset(i);
2189 if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
2190 break;
2191
2192 ret = scrub_pages(sdev, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2193 BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
2194 if (ret)
2195 return ret;
2196 }
2197 wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2198
2199 return 0;
2200 }
2201
2202 /*
2203 * get a reference count on fs_info->scrub_workers. start worker if necessary
2204 */
2205 static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
2206 {
2207 struct btrfs_fs_info *fs_info = root->fs_info;
2208 int ret = 0;
2209
2210 mutex_lock(&fs_info->scrub_lock);
2211 if (fs_info->scrub_workers_refcnt == 0) {
2212 btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2213 fs_info->thread_pool_size, &fs_info->generic_worker);
2214 fs_info->scrub_workers.idle_thresh = 4;
2215 ret = btrfs_start_workers(&fs_info->scrub_workers);
2216 if (ret)
2217 goto out;
2218 }
2219 ++fs_info->scrub_workers_refcnt;
2220 out:
2221 mutex_unlock(&fs_info->scrub_lock);
2222
2223 return ret;
2224 }
2225
2226 static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
2227 {
2228 struct btrfs_fs_info *fs_info = root->fs_info;
2229
2230 mutex_lock(&fs_info->scrub_lock);
2231 if (--fs_info->scrub_workers_refcnt == 0)
2232 btrfs_stop_workers(&fs_info->scrub_workers);
2233 WARN_ON(fs_info->scrub_workers_refcnt < 0);
2234 mutex_unlock(&fs_info->scrub_lock);
2235 }
2236
2237
2238 int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
2239 struct btrfs_scrub_progress *progress, int readonly)
2240 {
2241 struct scrub_dev *sdev;
2242 struct btrfs_fs_info *fs_info = root->fs_info;
2243 int ret;
2244 struct btrfs_device *dev;
2245
2246 if (btrfs_fs_closing(root->fs_info))
2247 return -EINVAL;
2248
2249 /*
2250 * check some assumptions
2251 */
2252 if (root->nodesize != root->leafsize) {
2253 printk(KERN_ERR
2254 "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2255 root->nodesize, root->leafsize);
2256 return -EINVAL;
2257 }
2258
2259 if (root->nodesize > BTRFS_STRIPE_LEN) {
2260 /*
2261 * in this case scrub is unable to calculate the checksum
2262 * the way scrub is implemented. Do not handle this
2263 * situation at all because it won't ever happen.
2264 */
2265 printk(KERN_ERR
2266 "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2267 root->nodesize, BTRFS_STRIPE_LEN);
2268 return -EINVAL;
2269 }
2270
2271 if (root->sectorsize != PAGE_SIZE) {
2272 /* not supported for data w/o checksums */
2273 printk(KERN_ERR
2274 "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2275 root->sectorsize, (unsigned long long)PAGE_SIZE);
2276 return -EINVAL;
2277 }
2278
2279 ret = scrub_workers_get(root);
2280 if (ret)
2281 return ret;
2282
2283 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2284 dev = btrfs_find_device(root, devid, NULL, NULL);
2285 if (!dev || dev->missing) {
2286 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2287 scrub_workers_put(root);
2288 return -ENODEV;
2289 }
2290 mutex_lock(&fs_info->scrub_lock);
2291
2292 if (!dev->in_fs_metadata) {
2293 mutex_unlock(&fs_info->scrub_lock);
2294 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2295 scrub_workers_put(root);
2296 return -ENODEV;
2297 }
2298
2299 if (dev->scrub_device) {
2300 mutex_unlock(&fs_info->scrub_lock);
2301 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2302 scrub_workers_put(root);
2303 return -EINPROGRESS;
2304 }
2305 sdev = scrub_setup_dev(dev);
2306 if (IS_ERR(sdev)) {
2307 mutex_unlock(&fs_info->scrub_lock);
2308 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2309 scrub_workers_put(root);
2310 return PTR_ERR(sdev);
2311 }
2312 sdev->readonly = readonly;
2313 dev->scrub_device = sdev;
2314
2315 atomic_inc(&fs_info->scrubs_running);
2316 mutex_unlock(&fs_info->scrub_lock);
2317 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2318
2319 down_read(&fs_info->scrub_super_lock);
2320 ret = scrub_supers(sdev);
2321 up_read(&fs_info->scrub_super_lock);
2322
2323 if (!ret)
2324 ret = scrub_enumerate_chunks(sdev, start, end);
2325
2326 wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2327 atomic_dec(&fs_info->scrubs_running);
2328 wake_up(&fs_info->scrub_pause_wait);
2329
2330 wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);
2331
2332 if (progress)
2333 memcpy(progress, &sdev->stat, sizeof(*progress));
2334
2335 mutex_lock(&fs_info->scrub_lock);
2336 dev->scrub_device = NULL;
2337 mutex_unlock(&fs_info->scrub_lock);
2338
2339 scrub_free_dev(sdev);
2340 scrub_workers_put(root);
2341
2342 return ret;
2343 }
2344
2345 void btrfs_scrub_pause(struct btrfs_root *root)
2346 {
2347 struct btrfs_fs_info *fs_info = root->fs_info;
2348
2349 mutex_lock(&fs_info->scrub_lock);
2350 atomic_inc(&fs_info->scrub_pause_req);
2351 while (atomic_read(&fs_info->scrubs_paused) !=
2352 atomic_read(&fs_info->scrubs_running)) {
2353 mutex_unlock(&fs_info->scrub_lock);
2354 wait_event(fs_info->scrub_pause_wait,
2355 atomic_read(&fs_info->scrubs_paused) ==
2356 atomic_read(&fs_info->scrubs_running));
2357 mutex_lock(&fs_info->scrub_lock);
2358 }
2359 mutex_unlock(&fs_info->scrub_lock);
2360 }
2361
2362 void btrfs_scrub_continue(struct btrfs_root *root)
2363 {
2364 struct btrfs_fs_info *fs_info = root->fs_info;
2365
2366 atomic_dec(&fs_info->scrub_pause_req);
2367 wake_up(&fs_info->scrub_pause_wait);
2368 }
2369
2370 void btrfs_scrub_pause_super(struct btrfs_root *root)
2371 {
2372 down_write(&root->fs_info->scrub_super_lock);
2373 }
2374
2375 void btrfs_scrub_continue_super(struct btrfs_root *root)
2376 {
2377 up_write(&root->fs_info->scrub_super_lock);
2378 }
2379
2380 int __btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2381 {
2382
2383 mutex_lock(&fs_info->scrub_lock);
2384 if (!atomic_read(&fs_info->scrubs_running)) {
2385 mutex_unlock(&fs_info->scrub_lock);
2386 return -ENOTCONN;
2387 }
2388
2389 atomic_inc(&fs_info->scrub_cancel_req);
2390 while (atomic_read(&fs_info->scrubs_running)) {
2391 mutex_unlock(&fs_info->scrub_lock);
2392 wait_event(fs_info->scrub_pause_wait,
2393 atomic_read(&fs_info->scrubs_running) == 0);
2394 mutex_lock(&fs_info->scrub_lock);
2395 }
2396 atomic_dec(&fs_info->scrub_cancel_req);
2397 mutex_unlock(&fs_info->scrub_lock);
2398
2399 return 0;
2400 }
2401
2402 int btrfs_scrub_cancel(struct btrfs_root *root)
2403 {
2404 return __btrfs_scrub_cancel(root->fs_info);
2405 }
2406
2407 int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
2408 {
2409 struct btrfs_fs_info *fs_info = root->fs_info;
2410 struct scrub_dev *sdev;
2411
2412 mutex_lock(&fs_info->scrub_lock);
2413 sdev = dev->scrub_device;
2414 if (!sdev) {
2415 mutex_unlock(&fs_info->scrub_lock);
2416 return -ENOTCONN;
2417 }
2418 atomic_inc(&sdev->cancel_req);
2419 while (dev->scrub_device) {
2420 mutex_unlock(&fs_info->scrub_lock);
2421 wait_event(fs_info->scrub_pause_wait,
2422 dev->scrub_device == NULL);
2423 mutex_lock(&fs_info->scrub_lock);
2424 }
2425 mutex_unlock(&fs_info->scrub_lock);
2426
2427 return 0;
2428 }
2429
2430 int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
2431 {
2432 struct btrfs_fs_info *fs_info = root->fs_info;
2433 struct btrfs_device *dev;
2434 int ret;
2435
2436 /*
2437 * we have to hold the device_list_mutex here so the device
2438 * does not go away in cancel_dev. FIXME: find a better solution
2439 */
2440 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2441 dev = btrfs_find_device(root, devid, NULL, NULL);
2442 if (!dev) {
2443 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2444 return -ENODEV;
2445 }
2446 ret = btrfs_scrub_cancel_dev(root, dev);
2447 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2448
2449 return ret;
2450 }
2451
2452 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
2453 struct btrfs_scrub_progress *progress)
2454 {
2455 struct btrfs_device *dev;
2456 struct scrub_dev *sdev = NULL;
2457
2458 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2459 dev = btrfs_find_device(root, devid, NULL, NULL);
2460 if (dev)
2461 sdev = dev->scrub_device;
2462 if (sdev)
2463 memcpy(progress, &sdev->stat, sizeof(*progress));
2464 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2465
2466 return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
2467 }