Merge branches 'device-properties' and 'acpi-misc'
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / fs / btrfs / ioctl.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
62 #include "tree-log.h"
63 #include "compression.h"
64
65 #ifdef CONFIG_64BIT
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67 * structures are incorrect, as the timespec structure from userspace
68 * is 4 bytes too small. We define these alternatives here to teach
69 * the kernel about the 32-bit struct packing.
70 */
71 struct btrfs_ioctl_timespec_32 {
72 __u64 sec;
73 __u32 nsec;
74 } __attribute__ ((__packed__));
75
76 struct btrfs_ioctl_received_subvol_args_32 {
77 char uuid[BTRFS_UUID_SIZE]; /* in */
78 __u64 stransid; /* in */
79 __u64 rtransid; /* out */
80 struct btrfs_ioctl_timespec_32 stime; /* in */
81 struct btrfs_ioctl_timespec_32 rtime; /* out */
82 __u64 flags; /* in */
83 __u64 reserved[16]; /* in */
84 } __attribute__ ((__packed__));
85
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 struct btrfs_ioctl_received_subvol_args_32)
88 #endif
89
90
91 static int btrfs_clone(struct inode *src, struct inode *inode,
92 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
93 int no_time_update);
94
95 /* Mask out flags that are inappropriate for the given type of inode. */
96 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
97 {
98 if (S_ISDIR(mode))
99 return flags;
100 else if (S_ISREG(mode))
101 return flags & ~FS_DIRSYNC_FL;
102 else
103 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
104 }
105
106 /*
107 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
108 */
109 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
110 {
111 unsigned int iflags = 0;
112
113 if (flags & BTRFS_INODE_SYNC)
114 iflags |= FS_SYNC_FL;
115 if (flags & BTRFS_INODE_IMMUTABLE)
116 iflags |= FS_IMMUTABLE_FL;
117 if (flags & BTRFS_INODE_APPEND)
118 iflags |= FS_APPEND_FL;
119 if (flags & BTRFS_INODE_NODUMP)
120 iflags |= FS_NODUMP_FL;
121 if (flags & BTRFS_INODE_NOATIME)
122 iflags |= FS_NOATIME_FL;
123 if (flags & BTRFS_INODE_DIRSYNC)
124 iflags |= FS_DIRSYNC_FL;
125 if (flags & BTRFS_INODE_NODATACOW)
126 iflags |= FS_NOCOW_FL;
127
128 if (flags & BTRFS_INODE_NOCOMPRESS)
129 iflags |= FS_NOCOMP_FL;
130 else if (flags & BTRFS_INODE_COMPRESS)
131 iflags |= FS_COMPR_FL;
132
133 return iflags;
134 }
135
136 /*
137 * Update inode->i_flags based on the btrfs internal flags.
138 */
139 void btrfs_update_iflags(struct inode *inode)
140 {
141 struct btrfs_inode *ip = BTRFS_I(inode);
142 unsigned int new_fl = 0;
143
144 if (ip->flags & BTRFS_INODE_SYNC)
145 new_fl |= S_SYNC;
146 if (ip->flags & BTRFS_INODE_IMMUTABLE)
147 new_fl |= S_IMMUTABLE;
148 if (ip->flags & BTRFS_INODE_APPEND)
149 new_fl |= S_APPEND;
150 if (ip->flags & BTRFS_INODE_NOATIME)
151 new_fl |= S_NOATIME;
152 if (ip->flags & BTRFS_INODE_DIRSYNC)
153 new_fl |= S_DIRSYNC;
154
155 set_mask_bits(&inode->i_flags,
156 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
157 new_fl);
158 }
159
160 /*
161 * Inherit flags from the parent inode.
162 *
163 * Currently only the compression flags and the cow flags are inherited.
164 */
165 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
166 {
167 unsigned int flags;
168
169 if (!dir)
170 return;
171
172 flags = BTRFS_I(dir)->flags;
173
174 if (flags & BTRFS_INODE_NOCOMPRESS) {
175 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
176 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
177 } else if (flags & BTRFS_INODE_COMPRESS) {
178 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
179 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
180 }
181
182 if (flags & BTRFS_INODE_NODATACOW) {
183 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
184 if (S_ISREG(inode->i_mode))
185 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
186 }
187
188 btrfs_update_iflags(inode);
189 }
190
191 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
192 {
193 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
194 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
195
196 if (copy_to_user(arg, &flags, sizeof(flags)))
197 return -EFAULT;
198 return 0;
199 }
200
201 static int check_flags(unsigned int flags)
202 {
203 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
204 FS_NOATIME_FL | FS_NODUMP_FL | \
205 FS_SYNC_FL | FS_DIRSYNC_FL | \
206 FS_NOCOMP_FL | FS_COMPR_FL |
207 FS_NOCOW_FL))
208 return -EOPNOTSUPP;
209
210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
211 return -EINVAL;
212
213 return 0;
214 }
215
216 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
217 {
218 struct inode *inode = file_inode(file);
219 struct btrfs_inode *ip = BTRFS_I(inode);
220 struct btrfs_root *root = ip->root;
221 struct btrfs_trans_handle *trans;
222 unsigned int flags, oldflags;
223 int ret;
224 u64 ip_oldflags;
225 unsigned int i_oldflags;
226 umode_t mode;
227
228 if (!inode_owner_or_capable(inode))
229 return -EPERM;
230
231 if (btrfs_root_readonly(root))
232 return -EROFS;
233
234 if (copy_from_user(&flags, arg, sizeof(flags)))
235 return -EFAULT;
236
237 ret = check_flags(flags);
238 if (ret)
239 return ret;
240
241 ret = mnt_want_write_file(file);
242 if (ret)
243 return ret;
244
245 inode_lock(inode);
246
247 ip_oldflags = ip->flags;
248 i_oldflags = inode->i_flags;
249 mode = inode->i_mode;
250
251 flags = btrfs_mask_flags(inode->i_mode, flags);
252 oldflags = btrfs_flags_to_ioctl(ip->flags);
253 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
254 if (!capable(CAP_LINUX_IMMUTABLE)) {
255 ret = -EPERM;
256 goto out_unlock;
257 }
258 }
259
260 if (flags & FS_SYNC_FL)
261 ip->flags |= BTRFS_INODE_SYNC;
262 else
263 ip->flags &= ~BTRFS_INODE_SYNC;
264 if (flags & FS_IMMUTABLE_FL)
265 ip->flags |= BTRFS_INODE_IMMUTABLE;
266 else
267 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
268 if (flags & FS_APPEND_FL)
269 ip->flags |= BTRFS_INODE_APPEND;
270 else
271 ip->flags &= ~BTRFS_INODE_APPEND;
272 if (flags & FS_NODUMP_FL)
273 ip->flags |= BTRFS_INODE_NODUMP;
274 else
275 ip->flags &= ~BTRFS_INODE_NODUMP;
276 if (flags & FS_NOATIME_FL)
277 ip->flags |= BTRFS_INODE_NOATIME;
278 else
279 ip->flags &= ~BTRFS_INODE_NOATIME;
280 if (flags & FS_DIRSYNC_FL)
281 ip->flags |= BTRFS_INODE_DIRSYNC;
282 else
283 ip->flags &= ~BTRFS_INODE_DIRSYNC;
284 if (flags & FS_NOCOW_FL) {
285 if (S_ISREG(mode)) {
286 /*
287 * It's safe to turn csums off here, no extents exist.
288 * Otherwise we want the flag to reflect the real COW
289 * status of the file and will not set it.
290 */
291 if (inode->i_size == 0)
292 ip->flags |= BTRFS_INODE_NODATACOW
293 | BTRFS_INODE_NODATASUM;
294 } else {
295 ip->flags |= BTRFS_INODE_NODATACOW;
296 }
297 } else {
298 /*
299 * Revert back under same assumptions as above
300 */
301 if (S_ISREG(mode)) {
302 if (inode->i_size == 0)
303 ip->flags &= ~(BTRFS_INODE_NODATACOW
304 | BTRFS_INODE_NODATASUM);
305 } else {
306 ip->flags &= ~BTRFS_INODE_NODATACOW;
307 }
308 }
309
310 /*
311 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
312 * flag may be changed automatically if compression code won't make
313 * things smaller.
314 */
315 if (flags & FS_NOCOMP_FL) {
316 ip->flags &= ~BTRFS_INODE_COMPRESS;
317 ip->flags |= BTRFS_INODE_NOCOMPRESS;
318
319 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
320 if (ret && ret != -ENODATA)
321 goto out_drop;
322 } else if (flags & FS_COMPR_FL) {
323 const char *comp;
324
325 ip->flags |= BTRFS_INODE_COMPRESS;
326 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
327
328 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
329 comp = "lzo";
330 else
331 comp = "zlib";
332 ret = btrfs_set_prop(inode, "btrfs.compression",
333 comp, strlen(comp), 0);
334 if (ret)
335 goto out_drop;
336
337 } else {
338 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
339 if (ret && ret != -ENODATA)
340 goto out_drop;
341 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
342 }
343
344 trans = btrfs_start_transaction(root, 1);
345 if (IS_ERR(trans)) {
346 ret = PTR_ERR(trans);
347 goto out_drop;
348 }
349
350 btrfs_update_iflags(inode);
351 inode_inc_iversion(inode);
352 inode->i_ctime = current_fs_time(inode->i_sb);
353 ret = btrfs_update_inode(trans, root, inode);
354
355 btrfs_end_transaction(trans, root);
356 out_drop:
357 if (ret) {
358 ip->flags = ip_oldflags;
359 inode->i_flags = i_oldflags;
360 }
361
362 out_unlock:
363 inode_unlock(inode);
364 mnt_drop_write_file(file);
365 return ret;
366 }
367
368 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
369 {
370 struct inode *inode = file_inode(file);
371
372 return put_user(inode->i_generation, arg);
373 }
374
375 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
376 {
377 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
378 struct btrfs_device *device;
379 struct request_queue *q;
380 struct fstrim_range range;
381 u64 minlen = ULLONG_MAX;
382 u64 num_devices = 0;
383 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
384 int ret;
385
386 if (!capable(CAP_SYS_ADMIN))
387 return -EPERM;
388
389 rcu_read_lock();
390 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
391 dev_list) {
392 if (!device->bdev)
393 continue;
394 q = bdev_get_queue(device->bdev);
395 if (blk_queue_discard(q)) {
396 num_devices++;
397 minlen = min((u64)q->limits.discard_granularity,
398 minlen);
399 }
400 }
401 rcu_read_unlock();
402
403 if (!num_devices)
404 return -EOPNOTSUPP;
405 if (copy_from_user(&range, arg, sizeof(range)))
406 return -EFAULT;
407 if (range.start > total_bytes ||
408 range.len < fs_info->sb->s_blocksize)
409 return -EINVAL;
410
411 range.len = min(range.len, total_bytes - range.start);
412 range.minlen = max(range.minlen, minlen);
413 ret = btrfs_trim_fs(fs_info->tree_root, &range);
414 if (ret < 0)
415 return ret;
416
417 if (copy_to_user(arg, &range, sizeof(range)))
418 return -EFAULT;
419
420 return 0;
421 }
422
423 int btrfs_is_empty_uuid(u8 *uuid)
424 {
425 int i;
426
427 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
428 if (uuid[i])
429 return 0;
430 }
431 return 1;
432 }
433
434 static noinline int create_subvol(struct inode *dir,
435 struct dentry *dentry,
436 char *name, int namelen,
437 u64 *async_transid,
438 struct btrfs_qgroup_inherit *inherit)
439 {
440 struct btrfs_trans_handle *trans;
441 struct btrfs_key key;
442 struct btrfs_root_item *root_item;
443 struct btrfs_inode_item *inode_item;
444 struct extent_buffer *leaf;
445 struct btrfs_root *root = BTRFS_I(dir)->root;
446 struct btrfs_root *new_root;
447 struct btrfs_block_rsv block_rsv;
448 struct timespec cur_time = current_fs_time(dir->i_sb);
449 struct inode *inode;
450 int ret;
451 int err;
452 u64 objectid;
453 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
454 u64 index = 0;
455 u64 qgroup_reserved;
456 uuid_le new_uuid;
457
458 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
459 if (!root_item)
460 return -ENOMEM;
461
462 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
463 if (ret)
464 goto fail_free;
465
466 /*
467 * Don't create subvolume whose level is not zero. Or qgroup will be
468 * screwed up since it assumes subvolume qgroup's level to be 0.
469 */
470 if (btrfs_qgroup_level(objectid)) {
471 ret = -ENOSPC;
472 goto fail_free;
473 }
474
475 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
476 /*
477 * The same as the snapshot creation, please see the comment
478 * of create_snapshot().
479 */
480 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
481 8, &qgroup_reserved, false);
482 if (ret)
483 goto fail_free;
484
485 trans = btrfs_start_transaction(root, 0);
486 if (IS_ERR(trans)) {
487 ret = PTR_ERR(trans);
488 btrfs_subvolume_release_metadata(root, &block_rsv,
489 qgroup_reserved);
490 goto fail_free;
491 }
492 trans->block_rsv = &block_rsv;
493 trans->bytes_reserved = block_rsv.size;
494
495 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
496 if (ret)
497 goto fail;
498
499 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
500 if (IS_ERR(leaf)) {
501 ret = PTR_ERR(leaf);
502 goto fail;
503 }
504
505 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
506 btrfs_set_header_bytenr(leaf, leaf->start);
507 btrfs_set_header_generation(leaf, trans->transid);
508 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
509 btrfs_set_header_owner(leaf, objectid);
510
511 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
512 BTRFS_FSID_SIZE);
513 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
514 btrfs_header_chunk_tree_uuid(leaf),
515 BTRFS_UUID_SIZE);
516 btrfs_mark_buffer_dirty(leaf);
517
518 inode_item = &root_item->inode;
519 btrfs_set_stack_inode_generation(inode_item, 1);
520 btrfs_set_stack_inode_size(inode_item, 3);
521 btrfs_set_stack_inode_nlink(inode_item, 1);
522 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
523 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
524
525 btrfs_set_root_flags(root_item, 0);
526 btrfs_set_root_limit(root_item, 0);
527 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
528
529 btrfs_set_root_bytenr(root_item, leaf->start);
530 btrfs_set_root_generation(root_item, trans->transid);
531 btrfs_set_root_level(root_item, 0);
532 btrfs_set_root_refs(root_item, 1);
533 btrfs_set_root_used(root_item, leaf->len);
534 btrfs_set_root_last_snapshot(root_item, 0);
535
536 btrfs_set_root_generation_v2(root_item,
537 btrfs_root_generation(root_item));
538 uuid_le_gen(&new_uuid);
539 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
540 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
541 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
542 root_item->ctime = root_item->otime;
543 btrfs_set_root_ctransid(root_item, trans->transid);
544 btrfs_set_root_otransid(root_item, trans->transid);
545
546 btrfs_tree_unlock(leaf);
547 free_extent_buffer(leaf);
548 leaf = NULL;
549
550 btrfs_set_root_dirid(root_item, new_dirid);
551
552 key.objectid = objectid;
553 key.offset = 0;
554 key.type = BTRFS_ROOT_ITEM_KEY;
555 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
556 root_item);
557 if (ret)
558 goto fail;
559
560 key.offset = (u64)-1;
561 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
562 if (IS_ERR(new_root)) {
563 ret = PTR_ERR(new_root);
564 btrfs_abort_transaction(trans, ret);
565 goto fail;
566 }
567
568 btrfs_record_root_in_trans(trans, new_root);
569
570 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
571 if (ret) {
572 /* We potentially lose an unused inode item here */
573 btrfs_abort_transaction(trans, ret);
574 goto fail;
575 }
576
577 mutex_lock(&new_root->objectid_mutex);
578 new_root->highest_objectid = new_dirid;
579 mutex_unlock(&new_root->objectid_mutex);
580
581 /*
582 * insert the directory item
583 */
584 ret = btrfs_set_inode_index(dir, &index);
585 if (ret) {
586 btrfs_abort_transaction(trans, ret);
587 goto fail;
588 }
589
590 ret = btrfs_insert_dir_item(trans, root,
591 name, namelen, dir, &key,
592 BTRFS_FT_DIR, index);
593 if (ret) {
594 btrfs_abort_transaction(trans, ret);
595 goto fail;
596 }
597
598 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
599 ret = btrfs_update_inode(trans, root, dir);
600 BUG_ON(ret);
601
602 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
603 objectid, root->root_key.objectid,
604 btrfs_ino(dir), index, name, namelen);
605 BUG_ON(ret);
606
607 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
608 root_item->uuid, BTRFS_UUID_KEY_SUBVOL,
609 objectid);
610 if (ret)
611 btrfs_abort_transaction(trans, ret);
612
613 fail:
614 kfree(root_item);
615 trans->block_rsv = NULL;
616 trans->bytes_reserved = 0;
617 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
618
619 if (async_transid) {
620 *async_transid = trans->transid;
621 err = btrfs_commit_transaction_async(trans, root, 1);
622 if (err)
623 err = btrfs_commit_transaction(trans, root);
624 } else {
625 err = btrfs_commit_transaction(trans, root);
626 }
627 if (err && !ret)
628 ret = err;
629
630 if (!ret) {
631 inode = btrfs_lookup_dentry(dir, dentry);
632 if (IS_ERR(inode))
633 return PTR_ERR(inode);
634 d_instantiate(dentry, inode);
635 }
636 return ret;
637
638 fail_free:
639 kfree(root_item);
640 return ret;
641 }
642
643 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
644 {
645 s64 writers;
646 DEFINE_WAIT(wait);
647
648 do {
649 prepare_to_wait(&root->subv_writers->wait, &wait,
650 TASK_UNINTERRUPTIBLE);
651
652 writers = percpu_counter_sum(&root->subv_writers->counter);
653 if (writers)
654 schedule();
655
656 finish_wait(&root->subv_writers->wait, &wait);
657 } while (writers);
658 }
659
660 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
661 struct dentry *dentry, char *name, int namelen,
662 u64 *async_transid, bool readonly,
663 struct btrfs_qgroup_inherit *inherit)
664 {
665 struct inode *inode;
666 struct btrfs_pending_snapshot *pending_snapshot;
667 struct btrfs_trans_handle *trans;
668 int ret;
669
670 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
671 return -EINVAL;
672
673 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
674 if (!pending_snapshot)
675 return -ENOMEM;
676
677 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
678 GFP_NOFS);
679 pending_snapshot->path = btrfs_alloc_path();
680 if (!pending_snapshot->root_item || !pending_snapshot->path) {
681 ret = -ENOMEM;
682 goto free_pending;
683 }
684
685 atomic_inc(&root->will_be_snapshoted);
686 smp_mb__after_atomic();
687 btrfs_wait_for_no_snapshoting_writes(root);
688
689 ret = btrfs_start_delalloc_inodes(root, 0);
690 if (ret)
691 goto dec_and_free;
692
693 btrfs_wait_ordered_extents(root, -1, 0, (u64)-1);
694
695 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
696 BTRFS_BLOCK_RSV_TEMP);
697 /*
698 * 1 - parent dir inode
699 * 2 - dir entries
700 * 1 - root item
701 * 2 - root ref/backref
702 * 1 - root of snapshot
703 * 1 - UUID item
704 */
705 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
706 &pending_snapshot->block_rsv, 8,
707 &pending_snapshot->qgroup_reserved,
708 false);
709 if (ret)
710 goto dec_and_free;
711
712 pending_snapshot->dentry = dentry;
713 pending_snapshot->root = root;
714 pending_snapshot->readonly = readonly;
715 pending_snapshot->dir = dir;
716 pending_snapshot->inherit = inherit;
717
718 trans = btrfs_start_transaction(root, 0);
719 if (IS_ERR(trans)) {
720 ret = PTR_ERR(trans);
721 goto fail;
722 }
723
724 spin_lock(&root->fs_info->trans_lock);
725 list_add(&pending_snapshot->list,
726 &trans->transaction->pending_snapshots);
727 spin_unlock(&root->fs_info->trans_lock);
728 if (async_transid) {
729 *async_transid = trans->transid;
730 ret = btrfs_commit_transaction_async(trans,
731 root->fs_info->extent_root, 1);
732 if (ret)
733 ret = btrfs_commit_transaction(trans, root);
734 } else {
735 ret = btrfs_commit_transaction(trans,
736 root->fs_info->extent_root);
737 }
738 if (ret)
739 goto fail;
740
741 ret = pending_snapshot->error;
742 if (ret)
743 goto fail;
744
745 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
746 if (ret)
747 goto fail;
748
749 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
750 if (IS_ERR(inode)) {
751 ret = PTR_ERR(inode);
752 goto fail;
753 }
754
755 d_instantiate(dentry, inode);
756 ret = 0;
757 fail:
758 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
759 &pending_snapshot->block_rsv,
760 pending_snapshot->qgroup_reserved);
761 dec_and_free:
762 if (atomic_dec_and_test(&root->will_be_snapshoted))
763 wake_up_atomic_t(&root->will_be_snapshoted);
764 free_pending:
765 kfree(pending_snapshot->root_item);
766 btrfs_free_path(pending_snapshot->path);
767 kfree(pending_snapshot);
768
769 return ret;
770 }
771
772 /* copy of may_delete in fs/namei.c()
773 * Check whether we can remove a link victim from directory dir, check
774 * whether the type of victim is right.
775 * 1. We can't do it if dir is read-only (done in permission())
776 * 2. We should have write and exec permissions on dir
777 * 3. We can't remove anything from append-only dir
778 * 4. We can't do anything with immutable dir (done in permission())
779 * 5. If the sticky bit on dir is set we should either
780 * a. be owner of dir, or
781 * b. be owner of victim, or
782 * c. have CAP_FOWNER capability
783 * 6. If the victim is append-only or immutable we can't do anything with
784 * links pointing to it.
785 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
786 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
787 * 9. We can't remove a root or mountpoint.
788 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
789 * nfs_async_unlink().
790 */
791
792 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
793 {
794 int error;
795
796 if (d_really_is_negative(victim))
797 return -ENOENT;
798
799 BUG_ON(d_inode(victim->d_parent) != dir);
800 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
801
802 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
803 if (error)
804 return error;
805 if (IS_APPEND(dir))
806 return -EPERM;
807 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
808 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
809 return -EPERM;
810 if (isdir) {
811 if (!d_is_dir(victim))
812 return -ENOTDIR;
813 if (IS_ROOT(victim))
814 return -EBUSY;
815 } else if (d_is_dir(victim))
816 return -EISDIR;
817 if (IS_DEADDIR(dir))
818 return -ENOENT;
819 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
820 return -EBUSY;
821 return 0;
822 }
823
824 /* copy of may_create in fs/namei.c() */
825 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
826 {
827 if (d_really_is_positive(child))
828 return -EEXIST;
829 if (IS_DEADDIR(dir))
830 return -ENOENT;
831 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
832 }
833
834 /*
835 * Create a new subvolume below @parent. This is largely modeled after
836 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
837 * inside this filesystem so it's quite a bit simpler.
838 */
839 static noinline int btrfs_mksubvol(struct path *parent,
840 char *name, int namelen,
841 struct btrfs_root *snap_src,
842 u64 *async_transid, bool readonly,
843 struct btrfs_qgroup_inherit *inherit)
844 {
845 struct inode *dir = d_inode(parent->dentry);
846 struct dentry *dentry;
847 int error;
848
849 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
850 if (error == -EINTR)
851 return error;
852
853 dentry = lookup_one_len(name, parent->dentry, namelen);
854 error = PTR_ERR(dentry);
855 if (IS_ERR(dentry))
856 goto out_unlock;
857
858 error = btrfs_may_create(dir, dentry);
859 if (error)
860 goto out_dput;
861
862 /*
863 * even if this name doesn't exist, we may get hash collisions.
864 * check for them now when we can safely fail
865 */
866 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
867 dir->i_ino, name,
868 namelen);
869 if (error)
870 goto out_dput;
871
872 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
873
874 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
875 goto out_up_read;
876
877 if (snap_src) {
878 error = create_snapshot(snap_src, dir, dentry, name, namelen,
879 async_transid, readonly, inherit);
880 } else {
881 error = create_subvol(dir, dentry, name, namelen,
882 async_transid, inherit);
883 }
884 if (!error)
885 fsnotify_mkdir(dir, dentry);
886 out_up_read:
887 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
888 out_dput:
889 dput(dentry);
890 out_unlock:
891 inode_unlock(dir);
892 return error;
893 }
894
895 /*
896 * When we're defragging a range, we don't want to kick it off again
897 * if it is really just waiting for delalloc to send it down.
898 * If we find a nice big extent or delalloc range for the bytes in the
899 * file you want to defrag, we return 0 to let you know to skip this
900 * part of the file
901 */
902 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
903 {
904 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
905 struct extent_map *em = NULL;
906 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
907 u64 end;
908
909 read_lock(&em_tree->lock);
910 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
911 read_unlock(&em_tree->lock);
912
913 if (em) {
914 end = extent_map_end(em);
915 free_extent_map(em);
916 if (end - offset > thresh)
917 return 0;
918 }
919 /* if we already have a nice delalloc here, just stop */
920 thresh /= 2;
921 end = count_range_bits(io_tree, &offset, offset + thresh,
922 thresh, EXTENT_DELALLOC, 1);
923 if (end >= thresh)
924 return 0;
925 return 1;
926 }
927
928 /*
929 * helper function to walk through a file and find extents
930 * newer than a specific transid, and smaller than thresh.
931 *
932 * This is used by the defragging code to find new and small
933 * extents
934 */
935 static int find_new_extents(struct btrfs_root *root,
936 struct inode *inode, u64 newer_than,
937 u64 *off, u32 thresh)
938 {
939 struct btrfs_path *path;
940 struct btrfs_key min_key;
941 struct extent_buffer *leaf;
942 struct btrfs_file_extent_item *extent;
943 int type;
944 int ret;
945 u64 ino = btrfs_ino(inode);
946
947 path = btrfs_alloc_path();
948 if (!path)
949 return -ENOMEM;
950
951 min_key.objectid = ino;
952 min_key.type = BTRFS_EXTENT_DATA_KEY;
953 min_key.offset = *off;
954
955 while (1) {
956 ret = btrfs_search_forward(root, &min_key, path, newer_than);
957 if (ret != 0)
958 goto none;
959 process_slot:
960 if (min_key.objectid != ino)
961 goto none;
962 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
963 goto none;
964
965 leaf = path->nodes[0];
966 extent = btrfs_item_ptr(leaf, path->slots[0],
967 struct btrfs_file_extent_item);
968
969 type = btrfs_file_extent_type(leaf, extent);
970 if (type == BTRFS_FILE_EXTENT_REG &&
971 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
972 check_defrag_in_cache(inode, min_key.offset, thresh)) {
973 *off = min_key.offset;
974 btrfs_free_path(path);
975 return 0;
976 }
977
978 path->slots[0]++;
979 if (path->slots[0] < btrfs_header_nritems(leaf)) {
980 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
981 goto process_slot;
982 }
983
984 if (min_key.offset == (u64)-1)
985 goto none;
986
987 min_key.offset++;
988 btrfs_release_path(path);
989 }
990 none:
991 btrfs_free_path(path);
992 return -ENOENT;
993 }
994
995 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
996 {
997 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
998 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
999 struct extent_map *em;
1000 u64 len = PAGE_SIZE;
1001
1002 /*
1003 * hopefully we have this extent in the tree already, try without
1004 * the full extent lock
1005 */
1006 read_lock(&em_tree->lock);
1007 em = lookup_extent_mapping(em_tree, start, len);
1008 read_unlock(&em_tree->lock);
1009
1010 if (!em) {
1011 struct extent_state *cached = NULL;
1012 u64 end = start + len - 1;
1013
1014 /* get the big lock and read metadata off disk */
1015 lock_extent_bits(io_tree, start, end, &cached);
1016 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1017 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1018
1019 if (IS_ERR(em))
1020 return NULL;
1021 }
1022
1023 return em;
1024 }
1025
1026 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1027 {
1028 struct extent_map *next;
1029 bool ret = true;
1030
1031 /* this is the last extent */
1032 if (em->start + em->len >= i_size_read(inode))
1033 return false;
1034
1035 next = defrag_lookup_extent(inode, em->start + em->len);
1036 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1037 ret = false;
1038 else if ((em->block_start + em->block_len == next->block_start) &&
1039 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1040 ret = false;
1041
1042 free_extent_map(next);
1043 return ret;
1044 }
1045
1046 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1047 u64 *last_len, u64 *skip, u64 *defrag_end,
1048 int compress)
1049 {
1050 struct extent_map *em;
1051 int ret = 1;
1052 bool next_mergeable = true;
1053 bool prev_mergeable = true;
1054
1055 /*
1056 * make sure that once we start defragging an extent, we keep on
1057 * defragging it
1058 */
1059 if (start < *defrag_end)
1060 return 1;
1061
1062 *skip = 0;
1063
1064 em = defrag_lookup_extent(inode, start);
1065 if (!em)
1066 return 0;
1067
1068 /* this will cover holes, and inline extents */
1069 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1070 ret = 0;
1071 goto out;
1072 }
1073
1074 if (!*defrag_end)
1075 prev_mergeable = false;
1076
1077 next_mergeable = defrag_check_next_extent(inode, em);
1078 /*
1079 * we hit a real extent, if it is big or the next extent is not a
1080 * real extent, don't bother defragging it
1081 */
1082 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1083 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1084 ret = 0;
1085 out:
1086 /*
1087 * last_len ends up being a counter of how many bytes we've defragged.
1088 * every time we choose not to defrag an extent, we reset *last_len
1089 * so that the next tiny extent will force a defrag.
1090 *
1091 * The end result of this is that tiny extents before a single big
1092 * extent will force at least part of that big extent to be defragged.
1093 */
1094 if (ret) {
1095 *defrag_end = extent_map_end(em);
1096 } else {
1097 *last_len = 0;
1098 *skip = extent_map_end(em);
1099 *defrag_end = 0;
1100 }
1101
1102 free_extent_map(em);
1103 return ret;
1104 }
1105
1106 /*
1107 * it doesn't do much good to defrag one or two pages
1108 * at a time. This pulls in a nice chunk of pages
1109 * to COW and defrag.
1110 *
1111 * It also makes sure the delalloc code has enough
1112 * dirty data to avoid making new small extents as part
1113 * of the defrag
1114 *
1115 * It's a good idea to start RA on this range
1116 * before calling this.
1117 */
1118 static int cluster_pages_for_defrag(struct inode *inode,
1119 struct page **pages,
1120 unsigned long start_index,
1121 unsigned long num_pages)
1122 {
1123 unsigned long file_end;
1124 u64 isize = i_size_read(inode);
1125 u64 page_start;
1126 u64 page_end;
1127 u64 page_cnt;
1128 int ret;
1129 int i;
1130 int i_done;
1131 struct btrfs_ordered_extent *ordered;
1132 struct extent_state *cached_state = NULL;
1133 struct extent_io_tree *tree;
1134 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1135
1136 file_end = (isize - 1) >> PAGE_SHIFT;
1137 if (!isize || start_index > file_end)
1138 return 0;
1139
1140 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1141
1142 ret = btrfs_delalloc_reserve_space(inode,
1143 start_index << PAGE_SHIFT,
1144 page_cnt << PAGE_SHIFT);
1145 if (ret)
1146 return ret;
1147 i_done = 0;
1148 tree = &BTRFS_I(inode)->io_tree;
1149
1150 /* step one, lock all the pages */
1151 for (i = 0; i < page_cnt; i++) {
1152 struct page *page;
1153 again:
1154 page = find_or_create_page(inode->i_mapping,
1155 start_index + i, mask);
1156 if (!page)
1157 break;
1158
1159 page_start = page_offset(page);
1160 page_end = page_start + PAGE_SIZE - 1;
1161 while (1) {
1162 lock_extent_bits(tree, page_start, page_end,
1163 &cached_state);
1164 ordered = btrfs_lookup_ordered_extent(inode,
1165 page_start);
1166 unlock_extent_cached(tree, page_start, page_end,
1167 &cached_state, GFP_NOFS);
1168 if (!ordered)
1169 break;
1170
1171 unlock_page(page);
1172 btrfs_start_ordered_extent(inode, ordered, 1);
1173 btrfs_put_ordered_extent(ordered);
1174 lock_page(page);
1175 /*
1176 * we unlocked the page above, so we need check if
1177 * it was released or not.
1178 */
1179 if (page->mapping != inode->i_mapping) {
1180 unlock_page(page);
1181 put_page(page);
1182 goto again;
1183 }
1184 }
1185
1186 if (!PageUptodate(page)) {
1187 btrfs_readpage(NULL, page);
1188 lock_page(page);
1189 if (!PageUptodate(page)) {
1190 unlock_page(page);
1191 put_page(page);
1192 ret = -EIO;
1193 break;
1194 }
1195 }
1196
1197 if (page->mapping != inode->i_mapping) {
1198 unlock_page(page);
1199 put_page(page);
1200 goto again;
1201 }
1202
1203 pages[i] = page;
1204 i_done++;
1205 }
1206 if (!i_done || ret)
1207 goto out;
1208
1209 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1210 goto out;
1211
1212 /*
1213 * so now we have a nice long stream of locked
1214 * and up to date pages, lets wait on them
1215 */
1216 for (i = 0; i < i_done; i++)
1217 wait_on_page_writeback(pages[i]);
1218
1219 page_start = page_offset(pages[0]);
1220 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1221
1222 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1223 page_start, page_end - 1, &cached_state);
1224 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1225 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1226 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1227 &cached_state, GFP_NOFS);
1228
1229 if (i_done != page_cnt) {
1230 spin_lock(&BTRFS_I(inode)->lock);
1231 BTRFS_I(inode)->outstanding_extents++;
1232 spin_unlock(&BTRFS_I(inode)->lock);
1233 btrfs_delalloc_release_space(inode,
1234 start_index << PAGE_SHIFT,
1235 (page_cnt - i_done) << PAGE_SHIFT);
1236 }
1237
1238
1239 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1240 &cached_state);
1241
1242 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1243 page_start, page_end - 1, &cached_state,
1244 GFP_NOFS);
1245
1246 for (i = 0; i < i_done; i++) {
1247 clear_page_dirty_for_io(pages[i]);
1248 ClearPageChecked(pages[i]);
1249 set_page_extent_mapped(pages[i]);
1250 set_page_dirty(pages[i]);
1251 unlock_page(pages[i]);
1252 put_page(pages[i]);
1253 }
1254 return i_done;
1255 out:
1256 for (i = 0; i < i_done; i++) {
1257 unlock_page(pages[i]);
1258 put_page(pages[i]);
1259 }
1260 btrfs_delalloc_release_space(inode,
1261 start_index << PAGE_SHIFT,
1262 page_cnt << PAGE_SHIFT);
1263 return ret;
1264
1265 }
1266
1267 int btrfs_defrag_file(struct inode *inode, struct file *file,
1268 struct btrfs_ioctl_defrag_range_args *range,
1269 u64 newer_than, unsigned long max_to_defrag)
1270 {
1271 struct btrfs_root *root = BTRFS_I(inode)->root;
1272 struct file_ra_state *ra = NULL;
1273 unsigned long last_index;
1274 u64 isize = i_size_read(inode);
1275 u64 last_len = 0;
1276 u64 skip = 0;
1277 u64 defrag_end = 0;
1278 u64 newer_off = range->start;
1279 unsigned long i;
1280 unsigned long ra_index = 0;
1281 int ret;
1282 int defrag_count = 0;
1283 int compress_type = BTRFS_COMPRESS_ZLIB;
1284 u32 extent_thresh = range->extent_thresh;
1285 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1286 unsigned long cluster = max_cluster;
1287 u64 new_align = ~((u64)SZ_128K - 1);
1288 struct page **pages = NULL;
1289
1290 if (isize == 0)
1291 return 0;
1292
1293 if (range->start >= isize)
1294 return -EINVAL;
1295
1296 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1297 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1298 return -EINVAL;
1299 if (range->compress_type)
1300 compress_type = range->compress_type;
1301 }
1302
1303 if (extent_thresh == 0)
1304 extent_thresh = SZ_256K;
1305
1306 /*
1307 * if we were not given a file, allocate a readahead
1308 * context
1309 */
1310 if (!file) {
1311 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1312 if (!ra)
1313 return -ENOMEM;
1314 file_ra_state_init(ra, inode->i_mapping);
1315 } else {
1316 ra = &file->f_ra;
1317 }
1318
1319 pages = kmalloc_array(max_cluster, sizeof(struct page *),
1320 GFP_NOFS);
1321 if (!pages) {
1322 ret = -ENOMEM;
1323 goto out_ra;
1324 }
1325
1326 /* find the last page to defrag */
1327 if (range->start + range->len > range->start) {
1328 last_index = min_t(u64, isize - 1,
1329 range->start + range->len - 1) >> PAGE_SHIFT;
1330 } else {
1331 last_index = (isize - 1) >> PAGE_SHIFT;
1332 }
1333
1334 if (newer_than) {
1335 ret = find_new_extents(root, inode, newer_than,
1336 &newer_off, SZ_64K);
1337 if (!ret) {
1338 range->start = newer_off;
1339 /*
1340 * we always align our defrag to help keep
1341 * the extents in the file evenly spaced
1342 */
1343 i = (newer_off & new_align) >> PAGE_SHIFT;
1344 } else
1345 goto out_ra;
1346 } else {
1347 i = range->start >> PAGE_SHIFT;
1348 }
1349 if (!max_to_defrag)
1350 max_to_defrag = last_index - i + 1;
1351
1352 /*
1353 * make writeback starts from i, so the defrag range can be
1354 * written sequentially.
1355 */
1356 if (i < inode->i_mapping->writeback_index)
1357 inode->i_mapping->writeback_index = i;
1358
1359 while (i <= last_index && defrag_count < max_to_defrag &&
1360 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1361 /*
1362 * make sure we stop running if someone unmounts
1363 * the FS
1364 */
1365 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1366 break;
1367
1368 if (btrfs_defrag_cancelled(root->fs_info)) {
1369 btrfs_debug(root->fs_info, "defrag_file cancelled");
1370 ret = -EAGAIN;
1371 break;
1372 }
1373
1374 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1375 extent_thresh, &last_len, &skip,
1376 &defrag_end, range->flags &
1377 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1378 unsigned long next;
1379 /*
1380 * the should_defrag function tells us how much to skip
1381 * bump our counter by the suggested amount
1382 */
1383 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1384 i = max(i + 1, next);
1385 continue;
1386 }
1387
1388 if (!newer_than) {
1389 cluster = (PAGE_ALIGN(defrag_end) >>
1390 PAGE_SHIFT) - i;
1391 cluster = min(cluster, max_cluster);
1392 } else {
1393 cluster = max_cluster;
1394 }
1395
1396 if (i + cluster > ra_index) {
1397 ra_index = max(i, ra_index);
1398 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1399 cluster);
1400 ra_index += cluster;
1401 }
1402
1403 inode_lock(inode);
1404 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1405 BTRFS_I(inode)->force_compress = compress_type;
1406 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1407 if (ret < 0) {
1408 inode_unlock(inode);
1409 goto out_ra;
1410 }
1411
1412 defrag_count += ret;
1413 balance_dirty_pages_ratelimited(inode->i_mapping);
1414 inode_unlock(inode);
1415
1416 if (newer_than) {
1417 if (newer_off == (u64)-1)
1418 break;
1419
1420 if (ret > 0)
1421 i += ret;
1422
1423 newer_off = max(newer_off + 1,
1424 (u64)i << PAGE_SHIFT);
1425
1426 ret = find_new_extents(root, inode, newer_than,
1427 &newer_off, SZ_64K);
1428 if (!ret) {
1429 range->start = newer_off;
1430 i = (newer_off & new_align) >> PAGE_SHIFT;
1431 } else {
1432 break;
1433 }
1434 } else {
1435 if (ret > 0) {
1436 i += ret;
1437 last_len += ret << PAGE_SHIFT;
1438 } else {
1439 i++;
1440 last_len = 0;
1441 }
1442 }
1443 }
1444
1445 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1446 filemap_flush(inode->i_mapping);
1447 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1448 &BTRFS_I(inode)->runtime_flags))
1449 filemap_flush(inode->i_mapping);
1450 }
1451
1452 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1453 /* the filemap_flush will queue IO into the worker threads, but
1454 * we have to make sure the IO is actually started and that
1455 * ordered extents get created before we return
1456 */
1457 atomic_inc(&root->fs_info->async_submit_draining);
1458 while (atomic_read(&root->fs_info->nr_async_submits) ||
1459 atomic_read(&root->fs_info->async_delalloc_pages)) {
1460 wait_event(root->fs_info->async_submit_wait,
1461 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1462 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1463 }
1464 atomic_dec(&root->fs_info->async_submit_draining);
1465 }
1466
1467 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1468 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1469 }
1470
1471 ret = defrag_count;
1472
1473 out_ra:
1474 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1475 inode_lock(inode);
1476 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1477 inode_unlock(inode);
1478 }
1479 if (!file)
1480 kfree(ra);
1481 kfree(pages);
1482 return ret;
1483 }
1484
1485 static noinline int btrfs_ioctl_resize(struct file *file,
1486 void __user *arg)
1487 {
1488 u64 new_size;
1489 u64 old_size;
1490 u64 devid = 1;
1491 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1492 struct btrfs_ioctl_vol_args *vol_args;
1493 struct btrfs_trans_handle *trans;
1494 struct btrfs_device *device = NULL;
1495 char *sizestr;
1496 char *retptr;
1497 char *devstr = NULL;
1498 int ret = 0;
1499 int mod = 0;
1500
1501 if (!capable(CAP_SYS_ADMIN))
1502 return -EPERM;
1503
1504 ret = mnt_want_write_file(file);
1505 if (ret)
1506 return ret;
1507
1508 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1509 1)) {
1510 mnt_drop_write_file(file);
1511 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1512 }
1513
1514 mutex_lock(&root->fs_info->volume_mutex);
1515 vol_args = memdup_user(arg, sizeof(*vol_args));
1516 if (IS_ERR(vol_args)) {
1517 ret = PTR_ERR(vol_args);
1518 goto out;
1519 }
1520
1521 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1522
1523 sizestr = vol_args->name;
1524 devstr = strchr(sizestr, ':');
1525 if (devstr) {
1526 sizestr = devstr + 1;
1527 *devstr = '\0';
1528 devstr = vol_args->name;
1529 ret = kstrtoull(devstr, 10, &devid);
1530 if (ret)
1531 goto out_free;
1532 if (!devid) {
1533 ret = -EINVAL;
1534 goto out_free;
1535 }
1536 btrfs_info(root->fs_info, "resizing devid %llu", devid);
1537 }
1538
1539 device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1540 if (!device) {
1541 btrfs_info(root->fs_info, "resizer unable to find device %llu",
1542 devid);
1543 ret = -ENODEV;
1544 goto out_free;
1545 }
1546
1547 if (!device->writeable) {
1548 btrfs_info(root->fs_info,
1549 "resizer unable to apply on readonly device %llu",
1550 devid);
1551 ret = -EPERM;
1552 goto out_free;
1553 }
1554
1555 if (!strcmp(sizestr, "max"))
1556 new_size = device->bdev->bd_inode->i_size;
1557 else {
1558 if (sizestr[0] == '-') {
1559 mod = -1;
1560 sizestr++;
1561 } else if (sizestr[0] == '+') {
1562 mod = 1;
1563 sizestr++;
1564 }
1565 new_size = memparse(sizestr, &retptr);
1566 if (*retptr != '\0' || new_size == 0) {
1567 ret = -EINVAL;
1568 goto out_free;
1569 }
1570 }
1571
1572 if (device->is_tgtdev_for_dev_replace) {
1573 ret = -EPERM;
1574 goto out_free;
1575 }
1576
1577 old_size = btrfs_device_get_total_bytes(device);
1578
1579 if (mod < 0) {
1580 if (new_size > old_size) {
1581 ret = -EINVAL;
1582 goto out_free;
1583 }
1584 new_size = old_size - new_size;
1585 } else if (mod > 0) {
1586 if (new_size > ULLONG_MAX - old_size) {
1587 ret = -ERANGE;
1588 goto out_free;
1589 }
1590 new_size = old_size + new_size;
1591 }
1592
1593 if (new_size < SZ_256M) {
1594 ret = -EINVAL;
1595 goto out_free;
1596 }
1597 if (new_size > device->bdev->bd_inode->i_size) {
1598 ret = -EFBIG;
1599 goto out_free;
1600 }
1601
1602 new_size = div_u64(new_size, root->sectorsize);
1603 new_size *= root->sectorsize;
1604
1605 btrfs_info_in_rcu(root->fs_info, "new size for %s is %llu",
1606 rcu_str_deref(device->name), new_size);
1607
1608 if (new_size > old_size) {
1609 trans = btrfs_start_transaction(root, 0);
1610 if (IS_ERR(trans)) {
1611 ret = PTR_ERR(trans);
1612 goto out_free;
1613 }
1614 ret = btrfs_grow_device(trans, device, new_size);
1615 btrfs_commit_transaction(trans, root);
1616 } else if (new_size < old_size) {
1617 ret = btrfs_shrink_device(device, new_size);
1618 } /* equal, nothing need to do */
1619
1620 out_free:
1621 kfree(vol_args);
1622 out:
1623 mutex_unlock(&root->fs_info->volume_mutex);
1624 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1625 mnt_drop_write_file(file);
1626 return ret;
1627 }
1628
1629 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1630 char *name, unsigned long fd, int subvol,
1631 u64 *transid, bool readonly,
1632 struct btrfs_qgroup_inherit *inherit)
1633 {
1634 int namelen;
1635 int ret = 0;
1636
1637 if (!S_ISDIR(file_inode(file)->i_mode))
1638 return -ENOTDIR;
1639
1640 ret = mnt_want_write_file(file);
1641 if (ret)
1642 goto out;
1643
1644 namelen = strlen(name);
1645 if (strchr(name, '/')) {
1646 ret = -EINVAL;
1647 goto out_drop_write;
1648 }
1649
1650 if (name[0] == '.' &&
1651 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1652 ret = -EEXIST;
1653 goto out_drop_write;
1654 }
1655
1656 if (subvol) {
1657 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1658 NULL, transid, readonly, inherit);
1659 } else {
1660 struct fd src = fdget(fd);
1661 struct inode *src_inode;
1662 if (!src.file) {
1663 ret = -EINVAL;
1664 goto out_drop_write;
1665 }
1666
1667 src_inode = file_inode(src.file);
1668 if (src_inode->i_sb != file_inode(file)->i_sb) {
1669 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1670 "Snapshot src from another FS");
1671 ret = -EXDEV;
1672 } else if (!inode_owner_or_capable(src_inode)) {
1673 /*
1674 * Subvolume creation is not restricted, but snapshots
1675 * are limited to own subvolumes only
1676 */
1677 ret = -EPERM;
1678 } else {
1679 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1680 BTRFS_I(src_inode)->root,
1681 transid, readonly, inherit);
1682 }
1683 fdput(src);
1684 }
1685 out_drop_write:
1686 mnt_drop_write_file(file);
1687 out:
1688 return ret;
1689 }
1690
1691 static noinline int btrfs_ioctl_snap_create(struct file *file,
1692 void __user *arg, int subvol)
1693 {
1694 struct btrfs_ioctl_vol_args *vol_args;
1695 int ret;
1696
1697 if (!S_ISDIR(file_inode(file)->i_mode))
1698 return -ENOTDIR;
1699
1700 vol_args = memdup_user(arg, sizeof(*vol_args));
1701 if (IS_ERR(vol_args))
1702 return PTR_ERR(vol_args);
1703 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1704
1705 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1706 vol_args->fd, subvol,
1707 NULL, false, NULL);
1708
1709 kfree(vol_args);
1710 return ret;
1711 }
1712
1713 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1714 void __user *arg, int subvol)
1715 {
1716 struct btrfs_ioctl_vol_args_v2 *vol_args;
1717 int ret;
1718 u64 transid = 0;
1719 u64 *ptr = NULL;
1720 bool readonly = false;
1721 struct btrfs_qgroup_inherit *inherit = NULL;
1722
1723 if (!S_ISDIR(file_inode(file)->i_mode))
1724 return -ENOTDIR;
1725
1726 vol_args = memdup_user(arg, sizeof(*vol_args));
1727 if (IS_ERR(vol_args))
1728 return PTR_ERR(vol_args);
1729 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1730
1731 if (vol_args->flags &
1732 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1733 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1734 ret = -EOPNOTSUPP;
1735 goto free_args;
1736 }
1737
1738 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1739 ptr = &transid;
1740 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1741 readonly = true;
1742 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1743 if (vol_args->size > PAGE_SIZE) {
1744 ret = -EINVAL;
1745 goto free_args;
1746 }
1747 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1748 if (IS_ERR(inherit)) {
1749 ret = PTR_ERR(inherit);
1750 goto free_args;
1751 }
1752 }
1753
1754 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1755 vol_args->fd, subvol, ptr,
1756 readonly, inherit);
1757 if (ret)
1758 goto free_inherit;
1759
1760 if (ptr && copy_to_user(arg +
1761 offsetof(struct btrfs_ioctl_vol_args_v2,
1762 transid),
1763 ptr, sizeof(*ptr)))
1764 ret = -EFAULT;
1765
1766 free_inherit:
1767 kfree(inherit);
1768 free_args:
1769 kfree(vol_args);
1770 return ret;
1771 }
1772
1773 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1774 void __user *arg)
1775 {
1776 struct inode *inode = file_inode(file);
1777 struct btrfs_root *root = BTRFS_I(inode)->root;
1778 int ret = 0;
1779 u64 flags = 0;
1780
1781 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1782 return -EINVAL;
1783
1784 down_read(&root->fs_info->subvol_sem);
1785 if (btrfs_root_readonly(root))
1786 flags |= BTRFS_SUBVOL_RDONLY;
1787 up_read(&root->fs_info->subvol_sem);
1788
1789 if (copy_to_user(arg, &flags, sizeof(flags)))
1790 ret = -EFAULT;
1791
1792 return ret;
1793 }
1794
1795 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1796 void __user *arg)
1797 {
1798 struct inode *inode = file_inode(file);
1799 struct btrfs_root *root = BTRFS_I(inode)->root;
1800 struct btrfs_trans_handle *trans;
1801 u64 root_flags;
1802 u64 flags;
1803 int ret = 0;
1804
1805 if (!inode_owner_or_capable(inode))
1806 return -EPERM;
1807
1808 ret = mnt_want_write_file(file);
1809 if (ret)
1810 goto out;
1811
1812 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1813 ret = -EINVAL;
1814 goto out_drop_write;
1815 }
1816
1817 if (copy_from_user(&flags, arg, sizeof(flags))) {
1818 ret = -EFAULT;
1819 goto out_drop_write;
1820 }
1821
1822 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1823 ret = -EINVAL;
1824 goto out_drop_write;
1825 }
1826
1827 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1828 ret = -EOPNOTSUPP;
1829 goto out_drop_write;
1830 }
1831
1832 down_write(&root->fs_info->subvol_sem);
1833
1834 /* nothing to do */
1835 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1836 goto out_drop_sem;
1837
1838 root_flags = btrfs_root_flags(&root->root_item);
1839 if (flags & BTRFS_SUBVOL_RDONLY) {
1840 btrfs_set_root_flags(&root->root_item,
1841 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1842 } else {
1843 /*
1844 * Block RO -> RW transition if this subvolume is involved in
1845 * send
1846 */
1847 spin_lock(&root->root_item_lock);
1848 if (root->send_in_progress == 0) {
1849 btrfs_set_root_flags(&root->root_item,
1850 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1851 spin_unlock(&root->root_item_lock);
1852 } else {
1853 spin_unlock(&root->root_item_lock);
1854 btrfs_warn(root->fs_info,
1855 "Attempt to set subvolume %llu read-write during send",
1856 root->root_key.objectid);
1857 ret = -EPERM;
1858 goto out_drop_sem;
1859 }
1860 }
1861
1862 trans = btrfs_start_transaction(root, 1);
1863 if (IS_ERR(trans)) {
1864 ret = PTR_ERR(trans);
1865 goto out_reset;
1866 }
1867
1868 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1869 &root->root_key, &root->root_item);
1870
1871 btrfs_commit_transaction(trans, root);
1872 out_reset:
1873 if (ret)
1874 btrfs_set_root_flags(&root->root_item, root_flags);
1875 out_drop_sem:
1876 up_write(&root->fs_info->subvol_sem);
1877 out_drop_write:
1878 mnt_drop_write_file(file);
1879 out:
1880 return ret;
1881 }
1882
1883 /*
1884 * helper to check if the subvolume references other subvolumes
1885 */
1886 static noinline int may_destroy_subvol(struct btrfs_root *root)
1887 {
1888 struct btrfs_path *path;
1889 struct btrfs_dir_item *di;
1890 struct btrfs_key key;
1891 u64 dir_id;
1892 int ret;
1893
1894 path = btrfs_alloc_path();
1895 if (!path)
1896 return -ENOMEM;
1897
1898 /* Make sure this root isn't set as the default subvol */
1899 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1900 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1901 dir_id, "default", 7, 0);
1902 if (di && !IS_ERR(di)) {
1903 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1904 if (key.objectid == root->root_key.objectid) {
1905 ret = -EPERM;
1906 btrfs_err(root->fs_info, "deleting default subvolume "
1907 "%llu is not allowed", key.objectid);
1908 goto out;
1909 }
1910 btrfs_release_path(path);
1911 }
1912
1913 key.objectid = root->root_key.objectid;
1914 key.type = BTRFS_ROOT_REF_KEY;
1915 key.offset = (u64)-1;
1916
1917 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1918 &key, path, 0, 0);
1919 if (ret < 0)
1920 goto out;
1921 BUG_ON(ret == 0);
1922
1923 ret = 0;
1924 if (path->slots[0] > 0) {
1925 path->slots[0]--;
1926 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1927 if (key.objectid == root->root_key.objectid &&
1928 key.type == BTRFS_ROOT_REF_KEY)
1929 ret = -ENOTEMPTY;
1930 }
1931 out:
1932 btrfs_free_path(path);
1933 return ret;
1934 }
1935
1936 static noinline int key_in_sk(struct btrfs_key *key,
1937 struct btrfs_ioctl_search_key *sk)
1938 {
1939 struct btrfs_key test;
1940 int ret;
1941
1942 test.objectid = sk->min_objectid;
1943 test.type = sk->min_type;
1944 test.offset = sk->min_offset;
1945
1946 ret = btrfs_comp_cpu_keys(key, &test);
1947 if (ret < 0)
1948 return 0;
1949
1950 test.objectid = sk->max_objectid;
1951 test.type = sk->max_type;
1952 test.offset = sk->max_offset;
1953
1954 ret = btrfs_comp_cpu_keys(key, &test);
1955 if (ret > 0)
1956 return 0;
1957 return 1;
1958 }
1959
1960 static noinline int copy_to_sk(struct btrfs_path *path,
1961 struct btrfs_key *key,
1962 struct btrfs_ioctl_search_key *sk,
1963 size_t *buf_size,
1964 char __user *ubuf,
1965 unsigned long *sk_offset,
1966 int *num_found)
1967 {
1968 u64 found_transid;
1969 struct extent_buffer *leaf;
1970 struct btrfs_ioctl_search_header sh;
1971 struct btrfs_key test;
1972 unsigned long item_off;
1973 unsigned long item_len;
1974 int nritems;
1975 int i;
1976 int slot;
1977 int ret = 0;
1978
1979 leaf = path->nodes[0];
1980 slot = path->slots[0];
1981 nritems = btrfs_header_nritems(leaf);
1982
1983 if (btrfs_header_generation(leaf) > sk->max_transid) {
1984 i = nritems;
1985 goto advance_key;
1986 }
1987 found_transid = btrfs_header_generation(leaf);
1988
1989 for (i = slot; i < nritems; i++) {
1990 item_off = btrfs_item_ptr_offset(leaf, i);
1991 item_len = btrfs_item_size_nr(leaf, i);
1992
1993 btrfs_item_key_to_cpu(leaf, key, i);
1994 if (!key_in_sk(key, sk))
1995 continue;
1996
1997 if (sizeof(sh) + item_len > *buf_size) {
1998 if (*num_found) {
1999 ret = 1;
2000 goto out;
2001 }
2002
2003 /*
2004 * return one empty item back for v1, which does not
2005 * handle -EOVERFLOW
2006 */
2007
2008 *buf_size = sizeof(sh) + item_len;
2009 item_len = 0;
2010 ret = -EOVERFLOW;
2011 }
2012
2013 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2014 ret = 1;
2015 goto out;
2016 }
2017
2018 sh.objectid = key->objectid;
2019 sh.offset = key->offset;
2020 sh.type = key->type;
2021 sh.len = item_len;
2022 sh.transid = found_transid;
2023
2024 /* copy search result header */
2025 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2026 ret = -EFAULT;
2027 goto out;
2028 }
2029
2030 *sk_offset += sizeof(sh);
2031
2032 if (item_len) {
2033 char __user *up = ubuf + *sk_offset;
2034 /* copy the item */
2035 if (read_extent_buffer_to_user(leaf, up,
2036 item_off, item_len)) {
2037 ret = -EFAULT;
2038 goto out;
2039 }
2040
2041 *sk_offset += item_len;
2042 }
2043 (*num_found)++;
2044
2045 if (ret) /* -EOVERFLOW from above */
2046 goto out;
2047
2048 if (*num_found >= sk->nr_items) {
2049 ret = 1;
2050 goto out;
2051 }
2052 }
2053 advance_key:
2054 ret = 0;
2055 test.objectid = sk->max_objectid;
2056 test.type = sk->max_type;
2057 test.offset = sk->max_offset;
2058 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2059 ret = 1;
2060 else if (key->offset < (u64)-1)
2061 key->offset++;
2062 else if (key->type < (u8)-1) {
2063 key->offset = 0;
2064 key->type++;
2065 } else if (key->objectid < (u64)-1) {
2066 key->offset = 0;
2067 key->type = 0;
2068 key->objectid++;
2069 } else
2070 ret = 1;
2071 out:
2072 /*
2073 * 0: all items from this leaf copied, continue with next
2074 * 1: * more items can be copied, but unused buffer is too small
2075 * * all items were found
2076 * Either way, it will stops the loop which iterates to the next
2077 * leaf
2078 * -EOVERFLOW: item was to large for buffer
2079 * -EFAULT: could not copy extent buffer back to userspace
2080 */
2081 return ret;
2082 }
2083
2084 static noinline int search_ioctl(struct inode *inode,
2085 struct btrfs_ioctl_search_key *sk,
2086 size_t *buf_size,
2087 char __user *ubuf)
2088 {
2089 struct btrfs_root *root;
2090 struct btrfs_key key;
2091 struct btrfs_path *path;
2092 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2093 int ret;
2094 int num_found = 0;
2095 unsigned long sk_offset = 0;
2096
2097 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2098 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2099 return -EOVERFLOW;
2100 }
2101
2102 path = btrfs_alloc_path();
2103 if (!path)
2104 return -ENOMEM;
2105
2106 if (sk->tree_id == 0) {
2107 /* search the root of the inode that was passed */
2108 root = BTRFS_I(inode)->root;
2109 } else {
2110 key.objectid = sk->tree_id;
2111 key.type = BTRFS_ROOT_ITEM_KEY;
2112 key.offset = (u64)-1;
2113 root = btrfs_read_fs_root_no_name(info, &key);
2114 if (IS_ERR(root)) {
2115 btrfs_free_path(path);
2116 return -ENOENT;
2117 }
2118 }
2119
2120 key.objectid = sk->min_objectid;
2121 key.type = sk->min_type;
2122 key.offset = sk->min_offset;
2123
2124 while (1) {
2125 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2126 if (ret != 0) {
2127 if (ret > 0)
2128 ret = 0;
2129 goto err;
2130 }
2131 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2132 &sk_offset, &num_found);
2133 btrfs_release_path(path);
2134 if (ret)
2135 break;
2136
2137 }
2138 if (ret > 0)
2139 ret = 0;
2140 err:
2141 sk->nr_items = num_found;
2142 btrfs_free_path(path);
2143 return ret;
2144 }
2145
2146 static noinline int btrfs_ioctl_tree_search(struct file *file,
2147 void __user *argp)
2148 {
2149 struct btrfs_ioctl_search_args __user *uargs;
2150 struct btrfs_ioctl_search_key sk;
2151 struct inode *inode;
2152 int ret;
2153 size_t buf_size;
2154
2155 if (!capable(CAP_SYS_ADMIN))
2156 return -EPERM;
2157
2158 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2159
2160 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2161 return -EFAULT;
2162
2163 buf_size = sizeof(uargs->buf);
2164
2165 inode = file_inode(file);
2166 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2167
2168 /*
2169 * In the origin implementation an overflow is handled by returning a
2170 * search header with a len of zero, so reset ret.
2171 */
2172 if (ret == -EOVERFLOW)
2173 ret = 0;
2174
2175 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2176 ret = -EFAULT;
2177 return ret;
2178 }
2179
2180 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2181 void __user *argp)
2182 {
2183 struct btrfs_ioctl_search_args_v2 __user *uarg;
2184 struct btrfs_ioctl_search_args_v2 args;
2185 struct inode *inode;
2186 int ret;
2187 size_t buf_size;
2188 const size_t buf_limit = SZ_16M;
2189
2190 if (!capable(CAP_SYS_ADMIN))
2191 return -EPERM;
2192
2193 /* copy search header and buffer size */
2194 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2195 if (copy_from_user(&args, uarg, sizeof(args)))
2196 return -EFAULT;
2197
2198 buf_size = args.buf_size;
2199
2200 if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2201 return -EOVERFLOW;
2202
2203 /* limit result size to 16MB */
2204 if (buf_size > buf_limit)
2205 buf_size = buf_limit;
2206
2207 inode = file_inode(file);
2208 ret = search_ioctl(inode, &args.key, &buf_size,
2209 (char *)(&uarg->buf[0]));
2210 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2211 ret = -EFAULT;
2212 else if (ret == -EOVERFLOW &&
2213 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2214 ret = -EFAULT;
2215
2216 return ret;
2217 }
2218
2219 /*
2220 * Search INODE_REFs to identify path name of 'dirid' directory
2221 * in a 'tree_id' tree. and sets path name to 'name'.
2222 */
2223 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2224 u64 tree_id, u64 dirid, char *name)
2225 {
2226 struct btrfs_root *root;
2227 struct btrfs_key key;
2228 char *ptr;
2229 int ret = -1;
2230 int slot;
2231 int len;
2232 int total_len = 0;
2233 struct btrfs_inode_ref *iref;
2234 struct extent_buffer *l;
2235 struct btrfs_path *path;
2236
2237 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2238 name[0]='\0';
2239 return 0;
2240 }
2241
2242 path = btrfs_alloc_path();
2243 if (!path)
2244 return -ENOMEM;
2245
2246 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2247
2248 key.objectid = tree_id;
2249 key.type = BTRFS_ROOT_ITEM_KEY;
2250 key.offset = (u64)-1;
2251 root = btrfs_read_fs_root_no_name(info, &key);
2252 if (IS_ERR(root)) {
2253 btrfs_err(info, "could not find root %llu", tree_id);
2254 ret = -ENOENT;
2255 goto out;
2256 }
2257
2258 key.objectid = dirid;
2259 key.type = BTRFS_INODE_REF_KEY;
2260 key.offset = (u64)-1;
2261
2262 while (1) {
2263 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2264 if (ret < 0)
2265 goto out;
2266 else if (ret > 0) {
2267 ret = btrfs_previous_item(root, path, dirid,
2268 BTRFS_INODE_REF_KEY);
2269 if (ret < 0)
2270 goto out;
2271 else if (ret > 0) {
2272 ret = -ENOENT;
2273 goto out;
2274 }
2275 }
2276
2277 l = path->nodes[0];
2278 slot = path->slots[0];
2279 btrfs_item_key_to_cpu(l, &key, slot);
2280
2281 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2282 len = btrfs_inode_ref_name_len(l, iref);
2283 ptr -= len + 1;
2284 total_len += len + 1;
2285 if (ptr < name) {
2286 ret = -ENAMETOOLONG;
2287 goto out;
2288 }
2289
2290 *(ptr + len) = '/';
2291 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2292
2293 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2294 break;
2295
2296 btrfs_release_path(path);
2297 key.objectid = key.offset;
2298 key.offset = (u64)-1;
2299 dirid = key.objectid;
2300 }
2301 memmove(name, ptr, total_len);
2302 name[total_len] = '\0';
2303 ret = 0;
2304 out:
2305 btrfs_free_path(path);
2306 return ret;
2307 }
2308
2309 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2310 void __user *argp)
2311 {
2312 struct btrfs_ioctl_ino_lookup_args *args;
2313 struct inode *inode;
2314 int ret = 0;
2315
2316 args = memdup_user(argp, sizeof(*args));
2317 if (IS_ERR(args))
2318 return PTR_ERR(args);
2319
2320 inode = file_inode(file);
2321
2322 /*
2323 * Unprivileged query to obtain the containing subvolume root id. The
2324 * path is reset so it's consistent with btrfs_search_path_in_tree.
2325 */
2326 if (args->treeid == 0)
2327 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2328
2329 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2330 args->name[0] = 0;
2331 goto out;
2332 }
2333
2334 if (!capable(CAP_SYS_ADMIN)) {
2335 ret = -EPERM;
2336 goto out;
2337 }
2338
2339 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2340 args->treeid, args->objectid,
2341 args->name);
2342
2343 out:
2344 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2345 ret = -EFAULT;
2346
2347 kfree(args);
2348 return ret;
2349 }
2350
2351 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2352 void __user *arg)
2353 {
2354 struct dentry *parent = file->f_path.dentry;
2355 struct dentry *dentry;
2356 struct inode *dir = d_inode(parent);
2357 struct inode *inode;
2358 struct btrfs_root *root = BTRFS_I(dir)->root;
2359 struct btrfs_root *dest = NULL;
2360 struct btrfs_ioctl_vol_args *vol_args;
2361 struct btrfs_trans_handle *trans;
2362 struct btrfs_block_rsv block_rsv;
2363 u64 root_flags;
2364 u64 qgroup_reserved;
2365 int namelen;
2366 int ret;
2367 int err = 0;
2368
2369 if (!S_ISDIR(dir->i_mode))
2370 return -ENOTDIR;
2371
2372 vol_args = memdup_user(arg, sizeof(*vol_args));
2373 if (IS_ERR(vol_args))
2374 return PTR_ERR(vol_args);
2375
2376 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2377 namelen = strlen(vol_args->name);
2378 if (strchr(vol_args->name, '/') ||
2379 strncmp(vol_args->name, "..", namelen) == 0) {
2380 err = -EINVAL;
2381 goto out;
2382 }
2383
2384 err = mnt_want_write_file(file);
2385 if (err)
2386 goto out;
2387
2388
2389 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2390 if (err == -EINTR)
2391 goto out_drop_write;
2392 dentry = lookup_one_len(vol_args->name, parent, namelen);
2393 if (IS_ERR(dentry)) {
2394 err = PTR_ERR(dentry);
2395 goto out_unlock_dir;
2396 }
2397
2398 if (d_really_is_negative(dentry)) {
2399 err = -ENOENT;
2400 goto out_dput;
2401 }
2402
2403 inode = d_inode(dentry);
2404 dest = BTRFS_I(inode)->root;
2405 if (!capable(CAP_SYS_ADMIN)) {
2406 /*
2407 * Regular user. Only allow this with a special mount
2408 * option, when the user has write+exec access to the
2409 * subvol root, and when rmdir(2) would have been
2410 * allowed.
2411 *
2412 * Note that this is _not_ check that the subvol is
2413 * empty or doesn't contain data that we wouldn't
2414 * otherwise be able to delete.
2415 *
2416 * Users who want to delete empty subvols should try
2417 * rmdir(2).
2418 */
2419 err = -EPERM;
2420 if (!btrfs_test_opt(root->fs_info, USER_SUBVOL_RM_ALLOWED))
2421 goto out_dput;
2422
2423 /*
2424 * Do not allow deletion if the parent dir is the same
2425 * as the dir to be deleted. That means the ioctl
2426 * must be called on the dentry referencing the root
2427 * of the subvol, not a random directory contained
2428 * within it.
2429 */
2430 err = -EINVAL;
2431 if (root == dest)
2432 goto out_dput;
2433
2434 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2435 if (err)
2436 goto out_dput;
2437 }
2438
2439 /* check if subvolume may be deleted by a user */
2440 err = btrfs_may_delete(dir, dentry, 1);
2441 if (err)
2442 goto out_dput;
2443
2444 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2445 err = -EINVAL;
2446 goto out_dput;
2447 }
2448
2449 inode_lock(inode);
2450
2451 /*
2452 * Don't allow to delete a subvolume with send in progress. This is
2453 * inside the i_mutex so the error handling that has to drop the bit
2454 * again is not run concurrently.
2455 */
2456 spin_lock(&dest->root_item_lock);
2457 root_flags = btrfs_root_flags(&dest->root_item);
2458 if (dest->send_in_progress == 0) {
2459 btrfs_set_root_flags(&dest->root_item,
2460 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2461 spin_unlock(&dest->root_item_lock);
2462 } else {
2463 spin_unlock(&dest->root_item_lock);
2464 btrfs_warn(root->fs_info,
2465 "Attempt to delete subvolume %llu during send",
2466 dest->root_key.objectid);
2467 err = -EPERM;
2468 goto out_unlock_inode;
2469 }
2470
2471 down_write(&root->fs_info->subvol_sem);
2472
2473 err = may_destroy_subvol(dest);
2474 if (err)
2475 goto out_up_write;
2476
2477 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2478 /*
2479 * One for dir inode, two for dir entries, two for root
2480 * ref/backref.
2481 */
2482 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2483 5, &qgroup_reserved, true);
2484 if (err)
2485 goto out_up_write;
2486
2487 trans = btrfs_start_transaction(root, 0);
2488 if (IS_ERR(trans)) {
2489 err = PTR_ERR(trans);
2490 goto out_release;
2491 }
2492 trans->block_rsv = &block_rsv;
2493 trans->bytes_reserved = block_rsv.size;
2494
2495 btrfs_record_snapshot_destroy(trans, dir);
2496
2497 ret = btrfs_unlink_subvol(trans, root, dir,
2498 dest->root_key.objectid,
2499 dentry->d_name.name,
2500 dentry->d_name.len);
2501 if (ret) {
2502 err = ret;
2503 btrfs_abort_transaction(trans, ret);
2504 goto out_end_trans;
2505 }
2506
2507 btrfs_record_root_in_trans(trans, dest);
2508
2509 memset(&dest->root_item.drop_progress, 0,
2510 sizeof(dest->root_item.drop_progress));
2511 dest->root_item.drop_level = 0;
2512 btrfs_set_root_refs(&dest->root_item, 0);
2513
2514 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2515 ret = btrfs_insert_orphan_item(trans,
2516 root->fs_info->tree_root,
2517 dest->root_key.objectid);
2518 if (ret) {
2519 btrfs_abort_transaction(trans, ret);
2520 err = ret;
2521 goto out_end_trans;
2522 }
2523 }
2524
2525 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2526 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2527 dest->root_key.objectid);
2528 if (ret && ret != -ENOENT) {
2529 btrfs_abort_transaction(trans, ret);
2530 err = ret;
2531 goto out_end_trans;
2532 }
2533 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2534 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2535 dest->root_item.received_uuid,
2536 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2537 dest->root_key.objectid);
2538 if (ret && ret != -ENOENT) {
2539 btrfs_abort_transaction(trans, ret);
2540 err = ret;
2541 goto out_end_trans;
2542 }
2543 }
2544
2545 out_end_trans:
2546 trans->block_rsv = NULL;
2547 trans->bytes_reserved = 0;
2548 ret = btrfs_end_transaction(trans, root);
2549 if (ret && !err)
2550 err = ret;
2551 inode->i_flags |= S_DEAD;
2552 out_release:
2553 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2554 out_up_write:
2555 up_write(&root->fs_info->subvol_sem);
2556 if (err) {
2557 spin_lock(&dest->root_item_lock);
2558 root_flags = btrfs_root_flags(&dest->root_item);
2559 btrfs_set_root_flags(&dest->root_item,
2560 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2561 spin_unlock(&dest->root_item_lock);
2562 }
2563 out_unlock_inode:
2564 inode_unlock(inode);
2565 if (!err) {
2566 d_invalidate(dentry);
2567 btrfs_invalidate_inodes(dest);
2568 d_delete(dentry);
2569 ASSERT(dest->send_in_progress == 0);
2570
2571 /* the last ref */
2572 if (dest->ino_cache_inode) {
2573 iput(dest->ino_cache_inode);
2574 dest->ino_cache_inode = NULL;
2575 }
2576 }
2577 out_dput:
2578 dput(dentry);
2579 out_unlock_dir:
2580 inode_unlock(dir);
2581 out_drop_write:
2582 mnt_drop_write_file(file);
2583 out:
2584 kfree(vol_args);
2585 return err;
2586 }
2587
2588 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2589 {
2590 struct inode *inode = file_inode(file);
2591 struct btrfs_root *root = BTRFS_I(inode)->root;
2592 struct btrfs_ioctl_defrag_range_args *range;
2593 int ret;
2594
2595 ret = mnt_want_write_file(file);
2596 if (ret)
2597 return ret;
2598
2599 if (btrfs_root_readonly(root)) {
2600 ret = -EROFS;
2601 goto out;
2602 }
2603
2604 switch (inode->i_mode & S_IFMT) {
2605 case S_IFDIR:
2606 if (!capable(CAP_SYS_ADMIN)) {
2607 ret = -EPERM;
2608 goto out;
2609 }
2610 ret = btrfs_defrag_root(root);
2611 if (ret)
2612 goto out;
2613 ret = btrfs_defrag_root(root->fs_info->extent_root);
2614 break;
2615 case S_IFREG:
2616 if (!(file->f_mode & FMODE_WRITE)) {
2617 ret = -EINVAL;
2618 goto out;
2619 }
2620
2621 range = kzalloc(sizeof(*range), GFP_KERNEL);
2622 if (!range) {
2623 ret = -ENOMEM;
2624 goto out;
2625 }
2626
2627 if (argp) {
2628 if (copy_from_user(range, argp,
2629 sizeof(*range))) {
2630 ret = -EFAULT;
2631 kfree(range);
2632 goto out;
2633 }
2634 /* compression requires us to start the IO */
2635 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2636 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2637 range->extent_thresh = (u32)-1;
2638 }
2639 } else {
2640 /* the rest are all set to zero by kzalloc */
2641 range->len = (u64)-1;
2642 }
2643 ret = btrfs_defrag_file(file_inode(file), file,
2644 range, 0, 0);
2645 if (ret > 0)
2646 ret = 0;
2647 kfree(range);
2648 break;
2649 default:
2650 ret = -EINVAL;
2651 }
2652 out:
2653 mnt_drop_write_file(file);
2654 return ret;
2655 }
2656
2657 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2658 {
2659 struct btrfs_ioctl_vol_args *vol_args;
2660 int ret;
2661
2662 if (!capable(CAP_SYS_ADMIN))
2663 return -EPERM;
2664
2665 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2666 1)) {
2667 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2668 }
2669
2670 mutex_lock(&root->fs_info->volume_mutex);
2671 vol_args = memdup_user(arg, sizeof(*vol_args));
2672 if (IS_ERR(vol_args)) {
2673 ret = PTR_ERR(vol_args);
2674 goto out;
2675 }
2676
2677 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2678 ret = btrfs_init_new_device(root, vol_args->name);
2679
2680 if (!ret)
2681 btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2682
2683 kfree(vol_args);
2684 out:
2685 mutex_unlock(&root->fs_info->volume_mutex);
2686 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2687 return ret;
2688 }
2689
2690 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2691 {
2692 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2693 struct btrfs_ioctl_vol_args_v2 *vol_args;
2694 int ret;
2695
2696 if (!capable(CAP_SYS_ADMIN))
2697 return -EPERM;
2698
2699 ret = mnt_want_write_file(file);
2700 if (ret)
2701 return ret;
2702
2703 vol_args = memdup_user(arg, sizeof(*vol_args));
2704 if (IS_ERR(vol_args)) {
2705 ret = PTR_ERR(vol_args);
2706 goto err_drop;
2707 }
2708
2709 /* Check for compatibility reject unknown flags */
2710 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2711 return -EOPNOTSUPP;
2712
2713 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2714 1)) {
2715 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2716 goto out;
2717 }
2718
2719 mutex_lock(&root->fs_info->volume_mutex);
2720 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2721 ret = btrfs_rm_device(root, NULL, vol_args->devid);
2722 } else {
2723 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2724 ret = btrfs_rm_device(root, vol_args->name, 0);
2725 }
2726 mutex_unlock(&root->fs_info->volume_mutex);
2727 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2728
2729 if (!ret) {
2730 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2731 btrfs_info(root->fs_info, "device deleted: id %llu",
2732 vol_args->devid);
2733 else
2734 btrfs_info(root->fs_info, "device deleted: %s",
2735 vol_args->name);
2736 }
2737 out:
2738 kfree(vol_args);
2739 err_drop:
2740 mnt_drop_write_file(file);
2741 return ret;
2742 }
2743
2744 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2745 {
2746 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2747 struct btrfs_ioctl_vol_args *vol_args;
2748 int ret;
2749
2750 if (!capable(CAP_SYS_ADMIN))
2751 return -EPERM;
2752
2753 ret = mnt_want_write_file(file);
2754 if (ret)
2755 return ret;
2756
2757 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2758 1)) {
2759 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2760 goto out_drop_write;
2761 }
2762
2763 vol_args = memdup_user(arg, sizeof(*vol_args));
2764 if (IS_ERR(vol_args)) {
2765 ret = PTR_ERR(vol_args);
2766 goto out;
2767 }
2768
2769 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2770 mutex_lock(&root->fs_info->volume_mutex);
2771 ret = btrfs_rm_device(root, vol_args->name, 0);
2772 mutex_unlock(&root->fs_info->volume_mutex);
2773
2774 if (!ret)
2775 btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
2776 kfree(vol_args);
2777 out:
2778 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2779 out_drop_write:
2780 mnt_drop_write_file(file);
2781
2782 return ret;
2783 }
2784
2785 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2786 {
2787 struct btrfs_ioctl_fs_info_args *fi_args;
2788 struct btrfs_device *device;
2789 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2790 int ret = 0;
2791
2792 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2793 if (!fi_args)
2794 return -ENOMEM;
2795
2796 mutex_lock(&fs_devices->device_list_mutex);
2797 fi_args->num_devices = fs_devices->num_devices;
2798 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2799
2800 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2801 if (device->devid > fi_args->max_id)
2802 fi_args->max_id = device->devid;
2803 }
2804 mutex_unlock(&fs_devices->device_list_mutex);
2805
2806 fi_args->nodesize = root->fs_info->super_copy->nodesize;
2807 fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2808 fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2809
2810 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2811 ret = -EFAULT;
2812
2813 kfree(fi_args);
2814 return ret;
2815 }
2816
2817 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2818 {
2819 struct btrfs_ioctl_dev_info_args *di_args;
2820 struct btrfs_device *dev;
2821 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2822 int ret = 0;
2823 char *s_uuid = NULL;
2824
2825 di_args = memdup_user(arg, sizeof(*di_args));
2826 if (IS_ERR(di_args))
2827 return PTR_ERR(di_args);
2828
2829 if (!btrfs_is_empty_uuid(di_args->uuid))
2830 s_uuid = di_args->uuid;
2831
2832 mutex_lock(&fs_devices->device_list_mutex);
2833 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2834
2835 if (!dev) {
2836 ret = -ENODEV;
2837 goto out;
2838 }
2839
2840 di_args->devid = dev->devid;
2841 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2842 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2843 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2844 if (dev->name) {
2845 struct rcu_string *name;
2846
2847 rcu_read_lock();
2848 name = rcu_dereference(dev->name);
2849 strncpy(di_args->path, name->str, sizeof(di_args->path));
2850 rcu_read_unlock();
2851 di_args->path[sizeof(di_args->path) - 1] = 0;
2852 } else {
2853 di_args->path[0] = '\0';
2854 }
2855
2856 out:
2857 mutex_unlock(&fs_devices->device_list_mutex);
2858 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2859 ret = -EFAULT;
2860
2861 kfree(di_args);
2862 return ret;
2863 }
2864
2865 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2866 {
2867 struct page *page;
2868
2869 page = grab_cache_page(inode->i_mapping, index);
2870 if (!page)
2871 return ERR_PTR(-ENOMEM);
2872
2873 if (!PageUptodate(page)) {
2874 int ret;
2875
2876 ret = btrfs_readpage(NULL, page);
2877 if (ret)
2878 return ERR_PTR(ret);
2879 lock_page(page);
2880 if (!PageUptodate(page)) {
2881 unlock_page(page);
2882 put_page(page);
2883 return ERR_PTR(-EIO);
2884 }
2885 if (page->mapping != inode->i_mapping) {
2886 unlock_page(page);
2887 put_page(page);
2888 return ERR_PTR(-EAGAIN);
2889 }
2890 }
2891
2892 return page;
2893 }
2894
2895 static int gather_extent_pages(struct inode *inode, struct page **pages,
2896 int num_pages, u64 off)
2897 {
2898 int i;
2899 pgoff_t index = off >> PAGE_SHIFT;
2900
2901 for (i = 0; i < num_pages; i++) {
2902 again:
2903 pages[i] = extent_same_get_page(inode, index + i);
2904 if (IS_ERR(pages[i])) {
2905 int err = PTR_ERR(pages[i]);
2906
2907 if (err == -EAGAIN)
2908 goto again;
2909 pages[i] = NULL;
2910 return err;
2911 }
2912 }
2913 return 0;
2914 }
2915
2916 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2917 bool retry_range_locking)
2918 {
2919 /*
2920 * Do any pending delalloc/csum calculations on inode, one way or
2921 * another, and lock file content.
2922 * The locking order is:
2923 *
2924 * 1) pages
2925 * 2) range in the inode's io tree
2926 */
2927 while (1) {
2928 struct btrfs_ordered_extent *ordered;
2929 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2930 ordered = btrfs_lookup_first_ordered_extent(inode,
2931 off + len - 1);
2932 if ((!ordered ||
2933 ordered->file_offset + ordered->len <= off ||
2934 ordered->file_offset >= off + len) &&
2935 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2936 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2937 if (ordered)
2938 btrfs_put_ordered_extent(ordered);
2939 break;
2940 }
2941 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2942 if (ordered)
2943 btrfs_put_ordered_extent(ordered);
2944 if (!retry_range_locking)
2945 return -EAGAIN;
2946 btrfs_wait_ordered_range(inode, off, len);
2947 }
2948 return 0;
2949 }
2950
2951 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2952 {
2953 inode_unlock(inode1);
2954 inode_unlock(inode2);
2955 }
2956
2957 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2958 {
2959 if (inode1 < inode2)
2960 swap(inode1, inode2);
2961
2962 inode_lock_nested(inode1, I_MUTEX_PARENT);
2963 inode_lock_nested(inode2, I_MUTEX_CHILD);
2964 }
2965
2966 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2967 struct inode *inode2, u64 loff2, u64 len)
2968 {
2969 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2970 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2971 }
2972
2973 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2974 struct inode *inode2, u64 loff2, u64 len,
2975 bool retry_range_locking)
2976 {
2977 int ret;
2978
2979 if (inode1 < inode2) {
2980 swap(inode1, inode2);
2981 swap(loff1, loff2);
2982 }
2983 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2984 if (ret)
2985 return ret;
2986 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2987 if (ret)
2988 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2989 loff1 + len - 1);
2990 return ret;
2991 }
2992
2993 struct cmp_pages {
2994 int num_pages;
2995 struct page **src_pages;
2996 struct page **dst_pages;
2997 };
2998
2999 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
3000 {
3001 int i;
3002 struct page *pg;
3003
3004 for (i = 0; i < cmp->num_pages; i++) {
3005 pg = cmp->src_pages[i];
3006 if (pg) {
3007 unlock_page(pg);
3008 put_page(pg);
3009 }
3010 pg = cmp->dst_pages[i];
3011 if (pg) {
3012 unlock_page(pg);
3013 put_page(pg);
3014 }
3015 }
3016 kfree(cmp->src_pages);
3017 kfree(cmp->dst_pages);
3018 }
3019
3020 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
3021 struct inode *dst, u64 dst_loff,
3022 u64 len, struct cmp_pages *cmp)
3023 {
3024 int ret;
3025 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
3026 struct page **src_pgarr, **dst_pgarr;
3027
3028 /*
3029 * We must gather up all the pages before we initiate our
3030 * extent locking. We use an array for the page pointers. Size
3031 * of the array is bounded by len, which is in turn bounded by
3032 * BTRFS_MAX_DEDUPE_LEN.
3033 */
3034 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3035 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3036 if (!src_pgarr || !dst_pgarr) {
3037 kfree(src_pgarr);
3038 kfree(dst_pgarr);
3039 return -ENOMEM;
3040 }
3041 cmp->num_pages = num_pages;
3042 cmp->src_pages = src_pgarr;
3043 cmp->dst_pages = dst_pgarr;
3044
3045 ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff);
3046 if (ret)
3047 goto out;
3048
3049 ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff);
3050
3051 out:
3052 if (ret)
3053 btrfs_cmp_data_free(cmp);
3054 return 0;
3055 }
3056
3057 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
3058 u64 dst_loff, u64 len, struct cmp_pages *cmp)
3059 {
3060 int ret = 0;
3061 int i;
3062 struct page *src_page, *dst_page;
3063 unsigned int cmp_len = PAGE_SIZE;
3064 void *addr, *dst_addr;
3065
3066 i = 0;
3067 while (len) {
3068 if (len < PAGE_SIZE)
3069 cmp_len = len;
3070
3071 BUG_ON(i >= cmp->num_pages);
3072
3073 src_page = cmp->src_pages[i];
3074 dst_page = cmp->dst_pages[i];
3075 ASSERT(PageLocked(src_page));
3076 ASSERT(PageLocked(dst_page));
3077
3078 addr = kmap_atomic(src_page);
3079 dst_addr = kmap_atomic(dst_page);
3080
3081 flush_dcache_page(src_page);
3082 flush_dcache_page(dst_page);
3083
3084 if (memcmp(addr, dst_addr, cmp_len))
3085 ret = -EBADE;
3086
3087 kunmap_atomic(addr);
3088 kunmap_atomic(dst_addr);
3089
3090 if (ret)
3091 break;
3092
3093 len -= cmp_len;
3094 i++;
3095 }
3096
3097 return ret;
3098 }
3099
3100 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3101 u64 olen)
3102 {
3103 u64 len = *plen;
3104 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3105
3106 if (off + olen > inode->i_size || off + olen < off)
3107 return -EINVAL;
3108
3109 /* if we extend to eof, continue to block boundary */
3110 if (off + len == inode->i_size)
3111 *plen = len = ALIGN(inode->i_size, bs) - off;
3112
3113 /* Check that we are block aligned - btrfs_clone() requires this */
3114 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3115 return -EINVAL;
3116
3117 return 0;
3118 }
3119
3120 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3121 struct inode *dst, u64 dst_loff)
3122 {
3123 int ret;
3124 u64 len = olen;
3125 struct cmp_pages cmp;
3126 int same_inode = 0;
3127 u64 same_lock_start = 0;
3128 u64 same_lock_len = 0;
3129
3130 if (src == dst)
3131 same_inode = 1;
3132
3133 if (len == 0)
3134 return 0;
3135
3136 if (same_inode) {
3137 inode_lock(src);
3138
3139 ret = extent_same_check_offsets(src, loff, &len, olen);
3140 if (ret)
3141 goto out_unlock;
3142 ret = extent_same_check_offsets(src, dst_loff, &len, olen);
3143 if (ret)
3144 goto out_unlock;
3145
3146 /*
3147 * Single inode case wants the same checks, except we
3148 * don't want our length pushed out past i_size as
3149 * comparing that data range makes no sense.
3150 *
3151 * extent_same_check_offsets() will do this for an
3152 * unaligned length at i_size, so catch it here and
3153 * reject the request.
3154 *
3155 * This effectively means we require aligned extents
3156 * for the single-inode case, whereas the other cases
3157 * allow an unaligned length so long as it ends at
3158 * i_size.
3159 */
3160 if (len != olen) {
3161 ret = -EINVAL;
3162 goto out_unlock;
3163 }
3164
3165 /* Check for overlapping ranges */
3166 if (dst_loff + len > loff && dst_loff < loff + len) {
3167 ret = -EINVAL;
3168 goto out_unlock;
3169 }
3170
3171 same_lock_start = min_t(u64, loff, dst_loff);
3172 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3173 } else {
3174 btrfs_double_inode_lock(src, dst);
3175
3176 ret = extent_same_check_offsets(src, loff, &len, olen);
3177 if (ret)
3178 goto out_unlock;
3179
3180 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3181 if (ret)
3182 goto out_unlock;
3183 }
3184
3185 /* don't make the dst file partly checksummed */
3186 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3187 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3188 ret = -EINVAL;
3189 goto out_unlock;
3190 }
3191
3192 again:
3193 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3194 if (ret)
3195 goto out_unlock;
3196
3197 if (same_inode)
3198 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3199 false);
3200 else
3201 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3202 false);
3203 /*
3204 * If one of the inodes has dirty pages in the respective range or
3205 * ordered extents, we need to flush dellaloc and wait for all ordered
3206 * extents in the range. We must unlock the pages and the ranges in the
3207 * io trees to avoid deadlocks when flushing delalloc (requires locking
3208 * pages) and when waiting for ordered extents to complete (they require
3209 * range locking).
3210 */
3211 if (ret == -EAGAIN) {
3212 /*
3213 * Ranges in the io trees already unlocked. Now unlock all
3214 * pages before waiting for all IO to complete.
3215 */
3216 btrfs_cmp_data_free(&cmp);
3217 if (same_inode) {
3218 btrfs_wait_ordered_range(src, same_lock_start,
3219 same_lock_len);
3220 } else {
3221 btrfs_wait_ordered_range(src, loff, len);
3222 btrfs_wait_ordered_range(dst, dst_loff, len);
3223 }
3224 goto again;
3225 }
3226 ASSERT(ret == 0);
3227 if (WARN_ON(ret)) {
3228 /* ranges in the io trees already unlocked */
3229 btrfs_cmp_data_free(&cmp);
3230 return ret;
3231 }
3232
3233 /* pass original length for comparison so we stay within i_size */
3234 ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp);
3235 if (ret == 0)
3236 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3237
3238 if (same_inode)
3239 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3240 same_lock_start + same_lock_len - 1);
3241 else
3242 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3243
3244 btrfs_cmp_data_free(&cmp);
3245 out_unlock:
3246 if (same_inode)
3247 inode_unlock(src);
3248 else
3249 btrfs_double_inode_unlock(src, dst);
3250
3251 return ret;
3252 }
3253
3254 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3255
3256 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3257 struct file *dst_file, u64 dst_loff)
3258 {
3259 struct inode *src = file_inode(src_file);
3260 struct inode *dst = file_inode(dst_file);
3261 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3262 ssize_t res;
3263
3264 if (olen > BTRFS_MAX_DEDUPE_LEN)
3265 olen = BTRFS_MAX_DEDUPE_LEN;
3266
3267 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3268 /*
3269 * Btrfs does not support blocksize < page_size. As a
3270 * result, btrfs_cmp_data() won't correctly handle
3271 * this situation without an update.
3272 */
3273 return -EINVAL;
3274 }
3275
3276 res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3277 if (res)
3278 return res;
3279 return olen;
3280 }
3281
3282 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3283 struct inode *inode,
3284 u64 endoff,
3285 const u64 destoff,
3286 const u64 olen,
3287 int no_time_update)
3288 {
3289 struct btrfs_root *root = BTRFS_I(inode)->root;
3290 int ret;
3291
3292 inode_inc_iversion(inode);
3293 if (!no_time_update)
3294 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
3295 /*
3296 * We round up to the block size at eof when determining which
3297 * extents to clone above, but shouldn't round up the file size.
3298 */
3299 if (endoff > destoff + olen)
3300 endoff = destoff + olen;
3301 if (endoff > inode->i_size)
3302 btrfs_i_size_write(inode, endoff);
3303
3304 ret = btrfs_update_inode(trans, root, inode);
3305 if (ret) {
3306 btrfs_abort_transaction(trans, ret);
3307 btrfs_end_transaction(trans, root);
3308 goto out;
3309 }
3310 ret = btrfs_end_transaction(trans, root);
3311 out:
3312 return ret;
3313 }
3314
3315 static void clone_update_extent_map(struct inode *inode,
3316 const struct btrfs_trans_handle *trans,
3317 const struct btrfs_path *path,
3318 const u64 hole_offset,
3319 const u64 hole_len)
3320 {
3321 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3322 struct extent_map *em;
3323 int ret;
3324
3325 em = alloc_extent_map();
3326 if (!em) {
3327 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3328 &BTRFS_I(inode)->runtime_flags);
3329 return;
3330 }
3331
3332 if (path) {
3333 struct btrfs_file_extent_item *fi;
3334
3335 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3336 struct btrfs_file_extent_item);
3337 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3338 em->generation = -1;
3339 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3340 BTRFS_FILE_EXTENT_INLINE)
3341 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3342 &BTRFS_I(inode)->runtime_flags);
3343 } else {
3344 em->start = hole_offset;
3345 em->len = hole_len;
3346 em->ram_bytes = em->len;
3347 em->orig_start = hole_offset;
3348 em->block_start = EXTENT_MAP_HOLE;
3349 em->block_len = 0;
3350 em->orig_block_len = 0;
3351 em->compress_type = BTRFS_COMPRESS_NONE;
3352 em->generation = trans->transid;
3353 }
3354
3355 while (1) {
3356 write_lock(&em_tree->lock);
3357 ret = add_extent_mapping(em_tree, em, 1);
3358 write_unlock(&em_tree->lock);
3359 if (ret != -EEXIST) {
3360 free_extent_map(em);
3361 break;
3362 }
3363 btrfs_drop_extent_cache(inode, em->start,
3364 em->start + em->len - 1, 0);
3365 }
3366
3367 if (ret)
3368 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3369 &BTRFS_I(inode)->runtime_flags);
3370 }
3371
3372 /*
3373 * Make sure we do not end up inserting an inline extent into a file that has
3374 * already other (non-inline) extents. If a file has an inline extent it can
3375 * not have any other extents and the (single) inline extent must start at the
3376 * file offset 0. Failing to respect these rules will lead to file corruption,
3377 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3378 *
3379 * We can have extents that have been already written to disk or we can have
3380 * dirty ranges still in delalloc, in which case the extent maps and items are
3381 * created only when we run delalloc, and the delalloc ranges might fall outside
3382 * the range we are currently locking in the inode's io tree. So we check the
3383 * inode's i_size because of that (i_size updates are done while holding the
3384 * i_mutex, which we are holding here).
3385 * We also check to see if the inode has a size not greater than "datal" but has
3386 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3387 * protected against such concurrent fallocate calls by the i_mutex).
3388 *
3389 * If the file has no extents but a size greater than datal, do not allow the
3390 * copy because we would need turn the inline extent into a non-inline one (even
3391 * with NO_HOLES enabled). If we find our destination inode only has one inline
3392 * extent, just overwrite it with the source inline extent if its size is less
3393 * than the source extent's size, or we could copy the source inline extent's
3394 * data into the destination inode's inline extent if the later is greater then
3395 * the former.
3396 */
3397 static int clone_copy_inline_extent(struct inode *src,
3398 struct inode *dst,
3399 struct btrfs_trans_handle *trans,
3400 struct btrfs_path *path,
3401 struct btrfs_key *new_key,
3402 const u64 drop_start,
3403 const u64 datal,
3404 const u64 skip,
3405 const u64 size,
3406 char *inline_data)
3407 {
3408 struct btrfs_root *root = BTRFS_I(dst)->root;
3409 const u64 aligned_end = ALIGN(new_key->offset + datal,
3410 root->sectorsize);
3411 int ret;
3412 struct btrfs_key key;
3413
3414 if (new_key->offset > 0)
3415 return -EOPNOTSUPP;
3416
3417 key.objectid = btrfs_ino(dst);
3418 key.type = BTRFS_EXTENT_DATA_KEY;
3419 key.offset = 0;
3420 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3421 if (ret < 0) {
3422 return ret;
3423 } else if (ret > 0) {
3424 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3425 ret = btrfs_next_leaf(root, path);
3426 if (ret < 0)
3427 return ret;
3428 else if (ret > 0)
3429 goto copy_inline_extent;
3430 }
3431 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3432 if (key.objectid == btrfs_ino(dst) &&
3433 key.type == BTRFS_EXTENT_DATA_KEY) {
3434 ASSERT(key.offset > 0);
3435 return -EOPNOTSUPP;
3436 }
3437 } else if (i_size_read(dst) <= datal) {
3438 struct btrfs_file_extent_item *ei;
3439 u64 ext_len;
3440
3441 /*
3442 * If the file size is <= datal, make sure there are no other
3443 * extents following (can happen do to an fallocate call with
3444 * the flag FALLOC_FL_KEEP_SIZE).
3445 */
3446 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3447 struct btrfs_file_extent_item);
3448 /*
3449 * If it's an inline extent, it can not have other extents
3450 * following it.
3451 */
3452 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3453 BTRFS_FILE_EXTENT_INLINE)
3454 goto copy_inline_extent;
3455
3456 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3457 if (ext_len > aligned_end)
3458 return -EOPNOTSUPP;
3459
3460 ret = btrfs_next_item(root, path);
3461 if (ret < 0) {
3462 return ret;
3463 } else if (ret == 0) {
3464 btrfs_item_key_to_cpu(path->nodes[0], &key,
3465 path->slots[0]);
3466 if (key.objectid == btrfs_ino(dst) &&
3467 key.type == BTRFS_EXTENT_DATA_KEY)
3468 return -EOPNOTSUPP;
3469 }
3470 }
3471
3472 copy_inline_extent:
3473 /*
3474 * We have no extent items, or we have an extent at offset 0 which may
3475 * or may not be inlined. All these cases are dealt the same way.
3476 */
3477 if (i_size_read(dst) > datal) {
3478 /*
3479 * If the destination inode has an inline extent...
3480 * This would require copying the data from the source inline
3481 * extent into the beginning of the destination's inline extent.
3482 * But this is really complex, both extents can be compressed
3483 * or just one of them, which would require decompressing and
3484 * re-compressing data (which could increase the new compressed
3485 * size, not allowing the compressed data to fit anymore in an
3486 * inline extent).
3487 * So just don't support this case for now (it should be rare,
3488 * we are not really saving space when cloning inline extents).
3489 */
3490 return -EOPNOTSUPP;
3491 }
3492
3493 btrfs_release_path(path);
3494 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3495 if (ret)
3496 return ret;
3497 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3498 if (ret)
3499 return ret;
3500
3501 if (skip) {
3502 const u32 start = btrfs_file_extent_calc_inline_size(0);
3503
3504 memmove(inline_data + start, inline_data + start + skip, datal);
3505 }
3506
3507 write_extent_buffer(path->nodes[0], inline_data,
3508 btrfs_item_ptr_offset(path->nodes[0],
3509 path->slots[0]),
3510 size);
3511 inode_add_bytes(dst, datal);
3512
3513 return 0;
3514 }
3515
3516 /**
3517 * btrfs_clone() - clone a range from inode file to another
3518 *
3519 * @src: Inode to clone from
3520 * @inode: Inode to clone to
3521 * @off: Offset within source to start clone from
3522 * @olen: Original length, passed by user, of range to clone
3523 * @olen_aligned: Block-aligned value of olen
3524 * @destoff: Offset within @inode to start clone
3525 * @no_time_update: Whether to update mtime/ctime on the target inode
3526 */
3527 static int btrfs_clone(struct inode *src, struct inode *inode,
3528 const u64 off, const u64 olen, const u64 olen_aligned,
3529 const u64 destoff, int no_time_update)
3530 {
3531 struct btrfs_root *root = BTRFS_I(inode)->root;
3532 struct btrfs_path *path = NULL;
3533 struct extent_buffer *leaf;
3534 struct btrfs_trans_handle *trans;
3535 char *buf = NULL;
3536 struct btrfs_key key;
3537 u32 nritems;
3538 int slot;
3539 int ret;
3540 const u64 len = olen_aligned;
3541 u64 last_dest_end = destoff;
3542
3543 ret = -ENOMEM;
3544 buf = kmalloc(root->nodesize, GFP_KERNEL | __GFP_NOWARN);
3545 if (!buf) {
3546 buf = vmalloc(root->nodesize);
3547 if (!buf)
3548 return ret;
3549 }
3550
3551 path = btrfs_alloc_path();
3552 if (!path) {
3553 kvfree(buf);
3554 return ret;
3555 }
3556
3557 path->reada = READA_FORWARD;
3558 /* clone data */
3559 key.objectid = btrfs_ino(src);
3560 key.type = BTRFS_EXTENT_DATA_KEY;
3561 key.offset = off;
3562
3563 while (1) {
3564 u64 next_key_min_offset = key.offset + 1;
3565
3566 /*
3567 * note the key will change type as we walk through the
3568 * tree.
3569 */
3570 path->leave_spinning = 1;
3571 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3572 0, 0);
3573 if (ret < 0)
3574 goto out;
3575 /*
3576 * First search, if no extent item that starts at offset off was
3577 * found but the previous item is an extent item, it's possible
3578 * it might overlap our target range, therefore process it.
3579 */
3580 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3581 btrfs_item_key_to_cpu(path->nodes[0], &key,
3582 path->slots[0] - 1);
3583 if (key.type == BTRFS_EXTENT_DATA_KEY)
3584 path->slots[0]--;
3585 }
3586
3587 nritems = btrfs_header_nritems(path->nodes[0]);
3588 process_slot:
3589 if (path->slots[0] >= nritems) {
3590 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3591 if (ret < 0)
3592 goto out;
3593 if (ret > 0)
3594 break;
3595 nritems = btrfs_header_nritems(path->nodes[0]);
3596 }
3597 leaf = path->nodes[0];
3598 slot = path->slots[0];
3599
3600 btrfs_item_key_to_cpu(leaf, &key, slot);
3601 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3602 key.objectid != btrfs_ino(src))
3603 break;
3604
3605 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3606 struct btrfs_file_extent_item *extent;
3607 int type;
3608 u32 size;
3609 struct btrfs_key new_key;
3610 u64 disko = 0, diskl = 0;
3611 u64 datao = 0, datal = 0;
3612 u8 comp;
3613 u64 drop_start;
3614
3615 extent = btrfs_item_ptr(leaf, slot,
3616 struct btrfs_file_extent_item);
3617 comp = btrfs_file_extent_compression(leaf, extent);
3618 type = btrfs_file_extent_type(leaf, extent);
3619 if (type == BTRFS_FILE_EXTENT_REG ||
3620 type == BTRFS_FILE_EXTENT_PREALLOC) {
3621 disko = btrfs_file_extent_disk_bytenr(leaf,
3622 extent);
3623 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3624 extent);
3625 datao = btrfs_file_extent_offset(leaf, extent);
3626 datal = btrfs_file_extent_num_bytes(leaf,
3627 extent);
3628 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3629 /* take upper bound, may be compressed */
3630 datal = btrfs_file_extent_ram_bytes(leaf,
3631 extent);
3632 }
3633
3634 /*
3635 * The first search might have left us at an extent
3636 * item that ends before our target range's start, can
3637 * happen if we have holes and NO_HOLES feature enabled.
3638 */
3639 if (key.offset + datal <= off) {
3640 path->slots[0]++;
3641 goto process_slot;
3642 } else if (key.offset >= off + len) {
3643 break;
3644 }
3645 next_key_min_offset = key.offset + datal;
3646 size = btrfs_item_size_nr(leaf, slot);
3647 read_extent_buffer(leaf, buf,
3648 btrfs_item_ptr_offset(leaf, slot),
3649 size);
3650
3651 btrfs_release_path(path);
3652 path->leave_spinning = 0;
3653
3654 memcpy(&new_key, &key, sizeof(new_key));
3655 new_key.objectid = btrfs_ino(inode);
3656 if (off <= key.offset)
3657 new_key.offset = key.offset + destoff - off;
3658 else
3659 new_key.offset = destoff;
3660
3661 /*
3662 * Deal with a hole that doesn't have an extent item
3663 * that represents it (NO_HOLES feature enabled).
3664 * This hole is either in the middle of the cloning
3665 * range or at the beginning (fully overlaps it or
3666 * partially overlaps it).
3667 */
3668 if (new_key.offset != last_dest_end)
3669 drop_start = last_dest_end;
3670 else
3671 drop_start = new_key.offset;
3672
3673 /*
3674 * 1 - adjusting old extent (we may have to split it)
3675 * 1 - add new extent
3676 * 1 - inode update
3677 */
3678 trans = btrfs_start_transaction(root, 3);
3679 if (IS_ERR(trans)) {
3680 ret = PTR_ERR(trans);
3681 goto out;
3682 }
3683
3684 if (type == BTRFS_FILE_EXTENT_REG ||
3685 type == BTRFS_FILE_EXTENT_PREALLOC) {
3686 /*
3687 * a | --- range to clone ---| b
3688 * | ------------- extent ------------- |
3689 */
3690
3691 /* subtract range b */
3692 if (key.offset + datal > off + len)
3693 datal = off + len - key.offset;
3694
3695 /* subtract range a */
3696 if (off > key.offset) {
3697 datao += off - key.offset;
3698 datal -= off - key.offset;
3699 }
3700
3701 ret = btrfs_drop_extents(trans, root, inode,
3702 drop_start,
3703 new_key.offset + datal,
3704 1);
3705 if (ret) {
3706 if (ret != -EOPNOTSUPP)
3707 btrfs_abort_transaction(trans,
3708 ret);
3709 btrfs_end_transaction(trans, root);
3710 goto out;
3711 }
3712
3713 ret = btrfs_insert_empty_item(trans, root, path,
3714 &new_key, size);
3715 if (ret) {
3716 btrfs_abort_transaction(trans, ret);
3717 btrfs_end_transaction(trans, root);
3718 goto out;
3719 }
3720
3721 leaf = path->nodes[0];
3722 slot = path->slots[0];
3723 write_extent_buffer(leaf, buf,
3724 btrfs_item_ptr_offset(leaf, slot),
3725 size);
3726
3727 extent = btrfs_item_ptr(leaf, slot,
3728 struct btrfs_file_extent_item);
3729
3730 /* disko == 0 means it's a hole */
3731 if (!disko)
3732 datao = 0;
3733
3734 btrfs_set_file_extent_offset(leaf, extent,
3735 datao);
3736 btrfs_set_file_extent_num_bytes(leaf, extent,
3737 datal);
3738
3739 if (disko) {
3740 inode_add_bytes(inode, datal);
3741 ret = btrfs_inc_extent_ref(trans, root,
3742 disko, diskl, 0,
3743 root->root_key.objectid,
3744 btrfs_ino(inode),
3745 new_key.offset - datao);
3746 if (ret) {
3747 btrfs_abort_transaction(trans,
3748 ret);
3749 btrfs_end_transaction(trans,
3750 root);
3751 goto out;
3752
3753 }
3754 }
3755 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3756 u64 skip = 0;
3757 u64 trim = 0;
3758
3759 if (off > key.offset) {
3760 skip = off - key.offset;
3761 new_key.offset += skip;
3762 }
3763
3764 if (key.offset + datal > off + len)
3765 trim = key.offset + datal - (off + len);
3766
3767 if (comp && (skip || trim)) {
3768 ret = -EINVAL;
3769 btrfs_end_transaction(trans, root);
3770 goto out;
3771 }
3772 size -= skip + trim;
3773 datal -= skip + trim;
3774
3775 ret = clone_copy_inline_extent(src, inode,
3776 trans, path,
3777 &new_key,
3778 drop_start,
3779 datal,
3780 skip, size, buf);
3781 if (ret) {
3782 if (ret != -EOPNOTSUPP)
3783 btrfs_abort_transaction(trans,
3784 ret);
3785 btrfs_end_transaction(trans, root);
3786 goto out;
3787 }
3788 leaf = path->nodes[0];
3789 slot = path->slots[0];
3790 }
3791
3792 /* If we have an implicit hole (NO_HOLES feature). */
3793 if (drop_start < new_key.offset)
3794 clone_update_extent_map(inode, trans,
3795 NULL, drop_start,
3796 new_key.offset - drop_start);
3797
3798 clone_update_extent_map(inode, trans, path, 0, 0);
3799
3800 btrfs_mark_buffer_dirty(leaf);
3801 btrfs_release_path(path);
3802
3803 last_dest_end = ALIGN(new_key.offset + datal,
3804 root->sectorsize);
3805 ret = clone_finish_inode_update(trans, inode,
3806 last_dest_end,
3807 destoff, olen,
3808 no_time_update);
3809 if (ret)
3810 goto out;
3811 if (new_key.offset + datal >= destoff + len)
3812 break;
3813 }
3814 btrfs_release_path(path);
3815 key.offset = next_key_min_offset;
3816 }
3817 ret = 0;
3818
3819 if (last_dest_end < destoff + len) {
3820 /*
3821 * We have an implicit hole (NO_HOLES feature is enabled) that
3822 * fully or partially overlaps our cloning range at its end.
3823 */
3824 btrfs_release_path(path);
3825
3826 /*
3827 * 1 - remove extent(s)
3828 * 1 - inode update
3829 */
3830 trans = btrfs_start_transaction(root, 2);
3831 if (IS_ERR(trans)) {
3832 ret = PTR_ERR(trans);
3833 goto out;
3834 }
3835 ret = btrfs_drop_extents(trans, root, inode,
3836 last_dest_end, destoff + len, 1);
3837 if (ret) {
3838 if (ret != -EOPNOTSUPP)
3839 btrfs_abort_transaction(trans, ret);
3840 btrfs_end_transaction(trans, root);
3841 goto out;
3842 }
3843 clone_update_extent_map(inode, trans, NULL, last_dest_end,
3844 destoff + len - last_dest_end);
3845 ret = clone_finish_inode_update(trans, inode, destoff + len,
3846 destoff, olen, no_time_update);
3847 }
3848
3849 out:
3850 btrfs_free_path(path);
3851 kvfree(buf);
3852 return ret;
3853 }
3854
3855 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3856 u64 off, u64 olen, u64 destoff)
3857 {
3858 struct inode *inode = file_inode(file);
3859 struct inode *src = file_inode(file_src);
3860 struct btrfs_root *root = BTRFS_I(inode)->root;
3861 int ret;
3862 u64 len = olen;
3863 u64 bs = root->fs_info->sb->s_blocksize;
3864 int same_inode = src == inode;
3865
3866 /*
3867 * TODO:
3868 * - split compressed inline extents. annoying: we need to
3869 * decompress into destination's address_space (the file offset
3870 * may change, so source mapping won't do), then recompress (or
3871 * otherwise reinsert) a subrange.
3872 *
3873 * - split destination inode's inline extents. The inline extents can
3874 * be either compressed or non-compressed.
3875 */
3876
3877 if (btrfs_root_readonly(root))
3878 return -EROFS;
3879
3880 if (file_src->f_path.mnt != file->f_path.mnt ||
3881 src->i_sb != inode->i_sb)
3882 return -EXDEV;
3883
3884 /* don't make the dst file partly checksummed */
3885 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3886 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3887 return -EINVAL;
3888
3889 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3890 return -EISDIR;
3891
3892 if (!same_inode) {
3893 btrfs_double_inode_lock(src, inode);
3894 } else {
3895 inode_lock(src);
3896 }
3897
3898 /* determine range to clone */
3899 ret = -EINVAL;
3900 if (off + len > src->i_size || off + len < off)
3901 goto out_unlock;
3902 if (len == 0)
3903 olen = len = src->i_size - off;
3904 /* if we extend to eof, continue to block boundary */
3905 if (off + len == src->i_size)
3906 len = ALIGN(src->i_size, bs) - off;
3907
3908 if (len == 0) {
3909 ret = 0;
3910 goto out_unlock;
3911 }
3912
3913 /* verify the end result is block aligned */
3914 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3915 !IS_ALIGNED(destoff, bs))
3916 goto out_unlock;
3917
3918 /* verify if ranges are overlapped within the same file */
3919 if (same_inode) {
3920 if (destoff + len > off && destoff < off + len)
3921 goto out_unlock;
3922 }
3923
3924 if (destoff > inode->i_size) {
3925 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3926 if (ret)
3927 goto out_unlock;
3928 }
3929
3930 /*
3931 * Lock the target range too. Right after we replace the file extent
3932 * items in the fs tree (which now point to the cloned data), we might
3933 * have a worker replace them with extent items relative to a write
3934 * operation that was issued before this clone operation (i.e. confront
3935 * with inode.c:btrfs_finish_ordered_io).
3936 */
3937 if (same_inode) {
3938 u64 lock_start = min_t(u64, off, destoff);
3939 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3940
3941 ret = lock_extent_range(src, lock_start, lock_len, true);
3942 } else {
3943 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3944 true);
3945 }
3946 ASSERT(ret == 0);
3947 if (WARN_ON(ret)) {
3948 /* ranges in the io trees already unlocked */
3949 goto out_unlock;
3950 }
3951
3952 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3953
3954 if (same_inode) {
3955 u64 lock_start = min_t(u64, off, destoff);
3956 u64 lock_end = max_t(u64, off, destoff) + len - 1;
3957
3958 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3959 } else {
3960 btrfs_double_extent_unlock(src, off, inode, destoff, len);
3961 }
3962 /*
3963 * Truncate page cache pages so that future reads will see the cloned
3964 * data immediately and not the previous data.
3965 */
3966 truncate_inode_pages_range(&inode->i_data,
3967 round_down(destoff, PAGE_SIZE),
3968 round_up(destoff + len, PAGE_SIZE) - 1);
3969 out_unlock:
3970 if (!same_inode)
3971 btrfs_double_inode_unlock(src, inode);
3972 else
3973 inode_unlock(src);
3974 return ret;
3975 }
3976
3977 ssize_t btrfs_copy_file_range(struct file *file_in, loff_t pos_in,
3978 struct file *file_out, loff_t pos_out,
3979 size_t len, unsigned int flags)
3980 {
3981 ssize_t ret;
3982
3983 ret = btrfs_clone_files(file_out, file_in, pos_in, len, pos_out);
3984 if (ret == 0)
3985 ret = len;
3986 return ret;
3987 }
3988
3989 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3990 struct file *dst_file, loff_t destoff, u64 len)
3991 {
3992 return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3993 }
3994
3995 /*
3996 * there are many ways the trans_start and trans_end ioctls can lead
3997 * to deadlocks. They should only be used by applications that
3998 * basically own the machine, and have a very in depth understanding
3999 * of all the possible deadlocks and enospc problems.
4000 */
4001 static long btrfs_ioctl_trans_start(struct file *file)
4002 {
4003 struct inode *inode = file_inode(file);
4004 struct btrfs_root *root = BTRFS_I(inode)->root;
4005 struct btrfs_trans_handle *trans;
4006 int ret;
4007
4008 ret = -EPERM;
4009 if (!capable(CAP_SYS_ADMIN))
4010 goto out;
4011
4012 ret = -EINPROGRESS;
4013 if (file->private_data)
4014 goto out;
4015
4016 ret = -EROFS;
4017 if (btrfs_root_readonly(root))
4018 goto out;
4019
4020 ret = mnt_want_write_file(file);
4021 if (ret)
4022 goto out;
4023
4024 atomic_inc(&root->fs_info->open_ioctl_trans);
4025
4026 ret = -ENOMEM;
4027 trans = btrfs_start_ioctl_transaction(root);
4028 if (IS_ERR(trans))
4029 goto out_drop;
4030
4031 file->private_data = trans;
4032 return 0;
4033
4034 out_drop:
4035 atomic_dec(&root->fs_info->open_ioctl_trans);
4036 mnt_drop_write_file(file);
4037 out:
4038 return ret;
4039 }
4040
4041 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4042 {
4043 struct inode *inode = file_inode(file);
4044 struct btrfs_root *root = BTRFS_I(inode)->root;
4045 struct btrfs_root *new_root;
4046 struct btrfs_dir_item *di;
4047 struct btrfs_trans_handle *trans;
4048 struct btrfs_path *path;
4049 struct btrfs_key location;
4050 struct btrfs_disk_key disk_key;
4051 u64 objectid = 0;
4052 u64 dir_id;
4053 int ret;
4054
4055 if (!capable(CAP_SYS_ADMIN))
4056 return -EPERM;
4057
4058 ret = mnt_want_write_file(file);
4059 if (ret)
4060 return ret;
4061
4062 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4063 ret = -EFAULT;
4064 goto out;
4065 }
4066
4067 if (!objectid)
4068 objectid = BTRFS_FS_TREE_OBJECTID;
4069
4070 location.objectid = objectid;
4071 location.type = BTRFS_ROOT_ITEM_KEY;
4072 location.offset = (u64)-1;
4073
4074 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
4075 if (IS_ERR(new_root)) {
4076 ret = PTR_ERR(new_root);
4077 goto out;
4078 }
4079
4080 path = btrfs_alloc_path();
4081 if (!path) {
4082 ret = -ENOMEM;
4083 goto out;
4084 }
4085 path->leave_spinning = 1;
4086
4087 trans = btrfs_start_transaction(root, 1);
4088 if (IS_ERR(trans)) {
4089 btrfs_free_path(path);
4090 ret = PTR_ERR(trans);
4091 goto out;
4092 }
4093
4094 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
4095 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
4096 dir_id, "default", 7, 1);
4097 if (IS_ERR_OR_NULL(di)) {
4098 btrfs_free_path(path);
4099 btrfs_end_transaction(trans, root);
4100 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
4101 "item, this isn't going to work");
4102 ret = -ENOENT;
4103 goto out;
4104 }
4105
4106 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4107 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4108 btrfs_mark_buffer_dirty(path->nodes[0]);
4109 btrfs_free_path(path);
4110
4111 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
4112 btrfs_end_transaction(trans, root);
4113 out:
4114 mnt_drop_write_file(file);
4115 return ret;
4116 }
4117
4118 void btrfs_get_block_group_info(struct list_head *groups_list,
4119 struct btrfs_ioctl_space_info *space)
4120 {
4121 struct btrfs_block_group_cache *block_group;
4122
4123 space->total_bytes = 0;
4124 space->used_bytes = 0;
4125 space->flags = 0;
4126 list_for_each_entry(block_group, groups_list, list) {
4127 space->flags = block_group->flags;
4128 space->total_bytes += block_group->key.offset;
4129 space->used_bytes +=
4130 btrfs_block_group_used(&block_group->item);
4131 }
4132 }
4133
4134 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
4135 {
4136 struct btrfs_ioctl_space_args space_args;
4137 struct btrfs_ioctl_space_info space;
4138 struct btrfs_ioctl_space_info *dest;
4139 struct btrfs_ioctl_space_info *dest_orig;
4140 struct btrfs_ioctl_space_info __user *user_dest;
4141 struct btrfs_space_info *info;
4142 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4143 BTRFS_BLOCK_GROUP_SYSTEM,
4144 BTRFS_BLOCK_GROUP_METADATA,
4145 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4146 int num_types = 4;
4147 int alloc_size;
4148 int ret = 0;
4149 u64 slot_count = 0;
4150 int i, c;
4151
4152 if (copy_from_user(&space_args,
4153 (struct btrfs_ioctl_space_args __user *)arg,
4154 sizeof(space_args)))
4155 return -EFAULT;
4156
4157 for (i = 0; i < num_types; i++) {
4158 struct btrfs_space_info *tmp;
4159
4160 info = NULL;
4161 rcu_read_lock();
4162 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4163 list) {
4164 if (tmp->flags == types[i]) {
4165 info = tmp;
4166 break;
4167 }
4168 }
4169 rcu_read_unlock();
4170
4171 if (!info)
4172 continue;
4173
4174 down_read(&info->groups_sem);
4175 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4176 if (!list_empty(&info->block_groups[c]))
4177 slot_count++;
4178 }
4179 up_read(&info->groups_sem);
4180 }
4181
4182 /*
4183 * Global block reserve, exported as a space_info
4184 */
4185 slot_count++;
4186
4187 /* space_slots == 0 means they are asking for a count */
4188 if (space_args.space_slots == 0) {
4189 space_args.total_spaces = slot_count;
4190 goto out;
4191 }
4192
4193 slot_count = min_t(u64, space_args.space_slots, slot_count);
4194
4195 alloc_size = sizeof(*dest) * slot_count;
4196
4197 /* we generally have at most 6 or so space infos, one for each raid
4198 * level. So, a whole page should be more than enough for everyone
4199 */
4200 if (alloc_size > PAGE_SIZE)
4201 return -ENOMEM;
4202
4203 space_args.total_spaces = 0;
4204 dest = kmalloc(alloc_size, GFP_KERNEL);
4205 if (!dest)
4206 return -ENOMEM;
4207 dest_orig = dest;
4208
4209 /* now we have a buffer to copy into */
4210 for (i = 0; i < num_types; i++) {
4211 struct btrfs_space_info *tmp;
4212
4213 if (!slot_count)
4214 break;
4215
4216 info = NULL;
4217 rcu_read_lock();
4218 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4219 list) {
4220 if (tmp->flags == types[i]) {
4221 info = tmp;
4222 break;
4223 }
4224 }
4225 rcu_read_unlock();
4226
4227 if (!info)
4228 continue;
4229 down_read(&info->groups_sem);
4230 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4231 if (!list_empty(&info->block_groups[c])) {
4232 btrfs_get_block_group_info(
4233 &info->block_groups[c], &space);
4234 memcpy(dest, &space, sizeof(space));
4235 dest++;
4236 space_args.total_spaces++;
4237 slot_count--;
4238 }
4239 if (!slot_count)
4240 break;
4241 }
4242 up_read(&info->groups_sem);
4243 }
4244
4245 /*
4246 * Add global block reserve
4247 */
4248 if (slot_count) {
4249 struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
4250
4251 spin_lock(&block_rsv->lock);
4252 space.total_bytes = block_rsv->size;
4253 space.used_bytes = block_rsv->size - block_rsv->reserved;
4254 spin_unlock(&block_rsv->lock);
4255 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4256 memcpy(dest, &space, sizeof(space));
4257 space_args.total_spaces++;
4258 }
4259
4260 user_dest = (struct btrfs_ioctl_space_info __user *)
4261 (arg + sizeof(struct btrfs_ioctl_space_args));
4262
4263 if (copy_to_user(user_dest, dest_orig, alloc_size))
4264 ret = -EFAULT;
4265
4266 kfree(dest_orig);
4267 out:
4268 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4269 ret = -EFAULT;
4270
4271 return ret;
4272 }
4273
4274 /*
4275 * there are many ways the trans_start and trans_end ioctls can lead
4276 * to deadlocks. They should only be used by applications that
4277 * basically own the machine, and have a very in depth understanding
4278 * of all the possible deadlocks and enospc problems.
4279 */
4280 long btrfs_ioctl_trans_end(struct file *file)
4281 {
4282 struct inode *inode = file_inode(file);
4283 struct btrfs_root *root = BTRFS_I(inode)->root;
4284 struct btrfs_trans_handle *trans;
4285
4286 trans = file->private_data;
4287 if (!trans)
4288 return -EINVAL;
4289 file->private_data = NULL;
4290
4291 btrfs_end_transaction(trans, root);
4292
4293 atomic_dec(&root->fs_info->open_ioctl_trans);
4294
4295 mnt_drop_write_file(file);
4296 return 0;
4297 }
4298
4299 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4300 void __user *argp)
4301 {
4302 struct btrfs_trans_handle *trans;
4303 u64 transid;
4304 int ret;
4305
4306 trans = btrfs_attach_transaction_barrier(root);
4307 if (IS_ERR(trans)) {
4308 if (PTR_ERR(trans) != -ENOENT)
4309 return PTR_ERR(trans);
4310
4311 /* No running transaction, don't bother */
4312 transid = root->fs_info->last_trans_committed;
4313 goto out;
4314 }
4315 transid = trans->transid;
4316 ret = btrfs_commit_transaction_async(trans, root, 0);
4317 if (ret) {
4318 btrfs_end_transaction(trans, root);
4319 return ret;
4320 }
4321 out:
4322 if (argp)
4323 if (copy_to_user(argp, &transid, sizeof(transid)))
4324 return -EFAULT;
4325 return 0;
4326 }
4327
4328 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4329 void __user *argp)
4330 {
4331 u64 transid;
4332
4333 if (argp) {
4334 if (copy_from_user(&transid, argp, sizeof(transid)))
4335 return -EFAULT;
4336 } else {
4337 transid = 0; /* current trans */
4338 }
4339 return btrfs_wait_for_commit(root, transid);
4340 }
4341
4342 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4343 {
4344 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4345 struct btrfs_ioctl_scrub_args *sa;
4346 int ret;
4347
4348 if (!capable(CAP_SYS_ADMIN))
4349 return -EPERM;
4350
4351 sa = memdup_user(arg, sizeof(*sa));
4352 if (IS_ERR(sa))
4353 return PTR_ERR(sa);
4354
4355 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4356 ret = mnt_want_write_file(file);
4357 if (ret)
4358 goto out;
4359 }
4360
4361 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4362 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4363 0);
4364
4365 if (copy_to_user(arg, sa, sizeof(*sa)))
4366 ret = -EFAULT;
4367
4368 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4369 mnt_drop_write_file(file);
4370 out:
4371 kfree(sa);
4372 return ret;
4373 }
4374
4375 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4376 {
4377 if (!capable(CAP_SYS_ADMIN))
4378 return -EPERM;
4379
4380 return btrfs_scrub_cancel(root->fs_info);
4381 }
4382
4383 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4384 void __user *arg)
4385 {
4386 struct btrfs_ioctl_scrub_args *sa;
4387 int ret;
4388
4389 if (!capable(CAP_SYS_ADMIN))
4390 return -EPERM;
4391
4392 sa = memdup_user(arg, sizeof(*sa));
4393 if (IS_ERR(sa))
4394 return PTR_ERR(sa);
4395
4396 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4397
4398 if (copy_to_user(arg, sa, sizeof(*sa)))
4399 ret = -EFAULT;
4400
4401 kfree(sa);
4402 return ret;
4403 }
4404
4405 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4406 void __user *arg)
4407 {
4408 struct btrfs_ioctl_get_dev_stats *sa;
4409 int ret;
4410
4411 sa = memdup_user(arg, sizeof(*sa));
4412 if (IS_ERR(sa))
4413 return PTR_ERR(sa);
4414
4415 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4416 kfree(sa);
4417 return -EPERM;
4418 }
4419
4420 ret = btrfs_get_dev_stats(root, sa);
4421
4422 if (copy_to_user(arg, sa, sizeof(*sa)))
4423 ret = -EFAULT;
4424
4425 kfree(sa);
4426 return ret;
4427 }
4428
4429 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
4430 {
4431 struct btrfs_ioctl_dev_replace_args *p;
4432 int ret;
4433
4434 if (!capable(CAP_SYS_ADMIN))
4435 return -EPERM;
4436
4437 p = memdup_user(arg, sizeof(*p));
4438 if (IS_ERR(p))
4439 return PTR_ERR(p);
4440
4441 switch (p->cmd) {
4442 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4443 if (root->fs_info->sb->s_flags & MS_RDONLY) {
4444 ret = -EROFS;
4445 goto out;
4446 }
4447 if (atomic_xchg(
4448 &root->fs_info->mutually_exclusive_operation_running,
4449 1)) {
4450 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4451 } else {
4452 ret = btrfs_dev_replace_by_ioctl(root, p);
4453 atomic_set(
4454 &root->fs_info->mutually_exclusive_operation_running,
4455 0);
4456 }
4457 break;
4458 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4459 btrfs_dev_replace_status(root->fs_info, p);
4460 ret = 0;
4461 break;
4462 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4463 ret = btrfs_dev_replace_cancel(root->fs_info, p);
4464 break;
4465 default:
4466 ret = -EINVAL;
4467 break;
4468 }
4469
4470 if (copy_to_user(arg, p, sizeof(*p)))
4471 ret = -EFAULT;
4472 out:
4473 kfree(p);
4474 return ret;
4475 }
4476
4477 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4478 {
4479 int ret = 0;
4480 int i;
4481 u64 rel_ptr;
4482 int size;
4483 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4484 struct inode_fs_paths *ipath = NULL;
4485 struct btrfs_path *path;
4486
4487 if (!capable(CAP_DAC_READ_SEARCH))
4488 return -EPERM;
4489
4490 path = btrfs_alloc_path();
4491 if (!path) {
4492 ret = -ENOMEM;
4493 goto out;
4494 }
4495
4496 ipa = memdup_user(arg, sizeof(*ipa));
4497 if (IS_ERR(ipa)) {
4498 ret = PTR_ERR(ipa);
4499 ipa = NULL;
4500 goto out;
4501 }
4502
4503 size = min_t(u32, ipa->size, 4096);
4504 ipath = init_ipath(size, root, path);
4505 if (IS_ERR(ipath)) {
4506 ret = PTR_ERR(ipath);
4507 ipath = NULL;
4508 goto out;
4509 }
4510
4511 ret = paths_from_inode(ipa->inum, ipath);
4512 if (ret < 0)
4513 goto out;
4514
4515 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4516 rel_ptr = ipath->fspath->val[i] -
4517 (u64)(unsigned long)ipath->fspath->val;
4518 ipath->fspath->val[i] = rel_ptr;
4519 }
4520
4521 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4522 (void *)(unsigned long)ipath->fspath, size);
4523 if (ret) {
4524 ret = -EFAULT;
4525 goto out;
4526 }
4527
4528 out:
4529 btrfs_free_path(path);
4530 free_ipath(ipath);
4531 kfree(ipa);
4532
4533 return ret;
4534 }
4535
4536 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4537 {
4538 struct btrfs_data_container *inodes = ctx;
4539 const size_t c = 3 * sizeof(u64);
4540
4541 if (inodes->bytes_left >= c) {
4542 inodes->bytes_left -= c;
4543 inodes->val[inodes->elem_cnt] = inum;
4544 inodes->val[inodes->elem_cnt + 1] = offset;
4545 inodes->val[inodes->elem_cnt + 2] = root;
4546 inodes->elem_cnt += 3;
4547 } else {
4548 inodes->bytes_missing += c - inodes->bytes_left;
4549 inodes->bytes_left = 0;
4550 inodes->elem_missed += 3;
4551 }
4552
4553 return 0;
4554 }
4555
4556 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4557 void __user *arg)
4558 {
4559 int ret = 0;
4560 int size;
4561 struct btrfs_ioctl_logical_ino_args *loi;
4562 struct btrfs_data_container *inodes = NULL;
4563 struct btrfs_path *path = NULL;
4564
4565 if (!capable(CAP_SYS_ADMIN))
4566 return -EPERM;
4567
4568 loi = memdup_user(arg, sizeof(*loi));
4569 if (IS_ERR(loi)) {
4570 ret = PTR_ERR(loi);
4571 loi = NULL;
4572 goto out;
4573 }
4574
4575 path = btrfs_alloc_path();
4576 if (!path) {
4577 ret = -ENOMEM;
4578 goto out;
4579 }
4580
4581 size = min_t(u32, loi->size, SZ_64K);
4582 inodes = init_data_container(size);
4583 if (IS_ERR(inodes)) {
4584 ret = PTR_ERR(inodes);
4585 inodes = NULL;
4586 goto out;
4587 }
4588
4589 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4590 build_ino_list, inodes);
4591 if (ret == -EINVAL)
4592 ret = -ENOENT;
4593 if (ret < 0)
4594 goto out;
4595
4596 ret = copy_to_user((void *)(unsigned long)loi->inodes,
4597 (void *)(unsigned long)inodes, size);
4598 if (ret)
4599 ret = -EFAULT;
4600
4601 out:
4602 btrfs_free_path(path);
4603 vfree(inodes);
4604 kfree(loi);
4605
4606 return ret;
4607 }
4608
4609 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4610 struct btrfs_ioctl_balance_args *bargs)
4611 {
4612 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4613
4614 bargs->flags = bctl->flags;
4615
4616 if (atomic_read(&fs_info->balance_running))
4617 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4618 if (atomic_read(&fs_info->balance_pause_req))
4619 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4620 if (atomic_read(&fs_info->balance_cancel_req))
4621 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4622
4623 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4624 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4625 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4626
4627 if (lock) {
4628 spin_lock(&fs_info->balance_lock);
4629 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4630 spin_unlock(&fs_info->balance_lock);
4631 } else {
4632 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4633 }
4634 }
4635
4636 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4637 {
4638 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4639 struct btrfs_fs_info *fs_info = root->fs_info;
4640 struct btrfs_ioctl_balance_args *bargs;
4641 struct btrfs_balance_control *bctl;
4642 bool need_unlock; /* for mut. excl. ops lock */
4643 int ret;
4644
4645 if (!capable(CAP_SYS_ADMIN))
4646 return -EPERM;
4647
4648 ret = mnt_want_write_file(file);
4649 if (ret)
4650 return ret;
4651
4652 again:
4653 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4654 mutex_lock(&fs_info->volume_mutex);
4655 mutex_lock(&fs_info->balance_mutex);
4656 need_unlock = true;
4657 goto locked;
4658 }
4659
4660 /*
4661 * mut. excl. ops lock is locked. Three possibilities:
4662 * (1) some other op is running
4663 * (2) balance is running
4664 * (3) balance is paused -- special case (think resume)
4665 */
4666 mutex_lock(&fs_info->balance_mutex);
4667 if (fs_info->balance_ctl) {
4668 /* this is either (2) or (3) */
4669 if (!atomic_read(&fs_info->balance_running)) {
4670 mutex_unlock(&fs_info->balance_mutex);
4671 if (!mutex_trylock(&fs_info->volume_mutex))
4672 goto again;
4673 mutex_lock(&fs_info->balance_mutex);
4674
4675 if (fs_info->balance_ctl &&
4676 !atomic_read(&fs_info->balance_running)) {
4677 /* this is (3) */
4678 need_unlock = false;
4679 goto locked;
4680 }
4681
4682 mutex_unlock(&fs_info->balance_mutex);
4683 mutex_unlock(&fs_info->volume_mutex);
4684 goto again;
4685 } else {
4686 /* this is (2) */
4687 mutex_unlock(&fs_info->balance_mutex);
4688 ret = -EINPROGRESS;
4689 goto out;
4690 }
4691 } else {
4692 /* this is (1) */
4693 mutex_unlock(&fs_info->balance_mutex);
4694 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4695 goto out;
4696 }
4697
4698 locked:
4699 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4700
4701 if (arg) {
4702 bargs = memdup_user(arg, sizeof(*bargs));
4703 if (IS_ERR(bargs)) {
4704 ret = PTR_ERR(bargs);
4705 goto out_unlock;
4706 }
4707
4708 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4709 if (!fs_info->balance_ctl) {
4710 ret = -ENOTCONN;
4711 goto out_bargs;
4712 }
4713
4714 bctl = fs_info->balance_ctl;
4715 spin_lock(&fs_info->balance_lock);
4716 bctl->flags |= BTRFS_BALANCE_RESUME;
4717 spin_unlock(&fs_info->balance_lock);
4718
4719 goto do_balance;
4720 }
4721 } else {
4722 bargs = NULL;
4723 }
4724
4725 if (fs_info->balance_ctl) {
4726 ret = -EINPROGRESS;
4727 goto out_bargs;
4728 }
4729
4730 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4731 if (!bctl) {
4732 ret = -ENOMEM;
4733 goto out_bargs;
4734 }
4735
4736 bctl->fs_info = fs_info;
4737 if (arg) {
4738 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4739 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4740 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4741
4742 bctl->flags = bargs->flags;
4743 } else {
4744 /* balance everything - no filters */
4745 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4746 }
4747
4748 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4749 ret = -EINVAL;
4750 goto out_bctl;
4751 }
4752
4753 do_balance:
4754 /*
4755 * Ownership of bctl and mutually_exclusive_operation_running
4756 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4757 * or, if restriper was paused all the way until unmount, in
4758 * free_fs_info. mutually_exclusive_operation_running is
4759 * cleared in __cancel_balance.
4760 */
4761 need_unlock = false;
4762
4763 ret = btrfs_balance(bctl, bargs);
4764 bctl = NULL;
4765
4766 if (arg) {
4767 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4768 ret = -EFAULT;
4769 }
4770
4771 out_bctl:
4772 kfree(bctl);
4773 out_bargs:
4774 kfree(bargs);
4775 out_unlock:
4776 mutex_unlock(&fs_info->balance_mutex);
4777 mutex_unlock(&fs_info->volume_mutex);
4778 if (need_unlock)
4779 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4780 out:
4781 mnt_drop_write_file(file);
4782 return ret;
4783 }
4784
4785 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4786 {
4787 if (!capable(CAP_SYS_ADMIN))
4788 return -EPERM;
4789
4790 switch (cmd) {
4791 case BTRFS_BALANCE_CTL_PAUSE:
4792 return btrfs_pause_balance(root->fs_info);
4793 case BTRFS_BALANCE_CTL_CANCEL:
4794 return btrfs_cancel_balance(root->fs_info);
4795 }
4796
4797 return -EINVAL;
4798 }
4799
4800 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4801 void __user *arg)
4802 {
4803 struct btrfs_fs_info *fs_info = root->fs_info;
4804 struct btrfs_ioctl_balance_args *bargs;
4805 int ret = 0;
4806
4807 if (!capable(CAP_SYS_ADMIN))
4808 return -EPERM;
4809
4810 mutex_lock(&fs_info->balance_mutex);
4811 if (!fs_info->balance_ctl) {
4812 ret = -ENOTCONN;
4813 goto out;
4814 }
4815
4816 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4817 if (!bargs) {
4818 ret = -ENOMEM;
4819 goto out;
4820 }
4821
4822 update_ioctl_balance_args(fs_info, 1, bargs);
4823
4824 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4825 ret = -EFAULT;
4826
4827 kfree(bargs);
4828 out:
4829 mutex_unlock(&fs_info->balance_mutex);
4830 return ret;
4831 }
4832
4833 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4834 {
4835 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4836 struct btrfs_ioctl_quota_ctl_args *sa;
4837 struct btrfs_trans_handle *trans = NULL;
4838 int ret;
4839 int err;
4840
4841 if (!capable(CAP_SYS_ADMIN))
4842 return -EPERM;
4843
4844 ret = mnt_want_write_file(file);
4845 if (ret)
4846 return ret;
4847
4848 sa = memdup_user(arg, sizeof(*sa));
4849 if (IS_ERR(sa)) {
4850 ret = PTR_ERR(sa);
4851 goto drop_write;
4852 }
4853
4854 down_write(&root->fs_info->subvol_sem);
4855 trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4856 if (IS_ERR(trans)) {
4857 ret = PTR_ERR(trans);
4858 goto out;
4859 }
4860
4861 switch (sa->cmd) {
4862 case BTRFS_QUOTA_CTL_ENABLE:
4863 ret = btrfs_quota_enable(trans, root->fs_info);
4864 break;
4865 case BTRFS_QUOTA_CTL_DISABLE:
4866 ret = btrfs_quota_disable(trans, root->fs_info);
4867 break;
4868 default:
4869 ret = -EINVAL;
4870 break;
4871 }
4872
4873 err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4874 if (err && !ret)
4875 ret = err;
4876 out:
4877 kfree(sa);
4878 up_write(&root->fs_info->subvol_sem);
4879 drop_write:
4880 mnt_drop_write_file(file);
4881 return ret;
4882 }
4883
4884 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4885 {
4886 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4887 struct btrfs_ioctl_qgroup_assign_args *sa;
4888 struct btrfs_trans_handle *trans;
4889 int ret;
4890 int err;
4891
4892 if (!capable(CAP_SYS_ADMIN))
4893 return -EPERM;
4894
4895 ret = mnt_want_write_file(file);
4896 if (ret)
4897 return ret;
4898
4899 sa = memdup_user(arg, sizeof(*sa));
4900 if (IS_ERR(sa)) {
4901 ret = PTR_ERR(sa);
4902 goto drop_write;
4903 }
4904
4905 trans = btrfs_join_transaction(root);
4906 if (IS_ERR(trans)) {
4907 ret = PTR_ERR(trans);
4908 goto out;
4909 }
4910
4911 /* FIXME: check if the IDs really exist */
4912 if (sa->assign) {
4913 ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4914 sa->src, sa->dst);
4915 } else {
4916 ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4917 sa->src, sa->dst);
4918 }
4919
4920 /* update qgroup status and info */
4921 err = btrfs_run_qgroups(trans, root->fs_info);
4922 if (err < 0)
4923 btrfs_handle_fs_error(root->fs_info, err,
4924 "failed to update qgroup status and info");
4925 err = btrfs_end_transaction(trans, root);
4926 if (err && !ret)
4927 ret = err;
4928
4929 out:
4930 kfree(sa);
4931 drop_write:
4932 mnt_drop_write_file(file);
4933 return ret;
4934 }
4935
4936 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4937 {
4938 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4939 struct btrfs_ioctl_qgroup_create_args *sa;
4940 struct btrfs_trans_handle *trans;
4941 int ret;
4942 int err;
4943
4944 if (!capable(CAP_SYS_ADMIN))
4945 return -EPERM;
4946
4947 ret = mnt_want_write_file(file);
4948 if (ret)
4949 return ret;
4950
4951 sa = memdup_user(arg, sizeof(*sa));
4952 if (IS_ERR(sa)) {
4953 ret = PTR_ERR(sa);
4954 goto drop_write;
4955 }
4956
4957 if (!sa->qgroupid) {
4958 ret = -EINVAL;
4959 goto out;
4960 }
4961
4962 trans = btrfs_join_transaction(root);
4963 if (IS_ERR(trans)) {
4964 ret = PTR_ERR(trans);
4965 goto out;
4966 }
4967
4968 /* FIXME: check if the IDs really exist */
4969 if (sa->create) {
4970 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid);
4971 } else {
4972 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4973 }
4974
4975 err = btrfs_end_transaction(trans, root);
4976 if (err && !ret)
4977 ret = err;
4978
4979 out:
4980 kfree(sa);
4981 drop_write:
4982 mnt_drop_write_file(file);
4983 return ret;
4984 }
4985
4986 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4987 {
4988 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4989 struct btrfs_ioctl_qgroup_limit_args *sa;
4990 struct btrfs_trans_handle *trans;
4991 int ret;
4992 int err;
4993 u64 qgroupid;
4994
4995 if (!capable(CAP_SYS_ADMIN))
4996 return -EPERM;
4997
4998 ret = mnt_want_write_file(file);
4999 if (ret)
5000 return ret;
5001
5002 sa = memdup_user(arg, sizeof(*sa));
5003 if (IS_ERR(sa)) {
5004 ret = PTR_ERR(sa);
5005 goto drop_write;
5006 }
5007
5008 trans = btrfs_join_transaction(root);
5009 if (IS_ERR(trans)) {
5010 ret = PTR_ERR(trans);
5011 goto out;
5012 }
5013
5014 qgroupid = sa->qgroupid;
5015 if (!qgroupid) {
5016 /* take the current subvol as qgroup */
5017 qgroupid = root->root_key.objectid;
5018 }
5019
5020 /* FIXME: check if the IDs really exist */
5021 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
5022
5023 err = btrfs_end_transaction(trans, root);
5024 if (err && !ret)
5025 ret = err;
5026
5027 out:
5028 kfree(sa);
5029 drop_write:
5030 mnt_drop_write_file(file);
5031 return ret;
5032 }
5033
5034 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5035 {
5036 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5037 struct btrfs_ioctl_quota_rescan_args *qsa;
5038 int ret;
5039
5040 if (!capable(CAP_SYS_ADMIN))
5041 return -EPERM;
5042
5043 ret = mnt_want_write_file(file);
5044 if (ret)
5045 return ret;
5046
5047 qsa = memdup_user(arg, sizeof(*qsa));
5048 if (IS_ERR(qsa)) {
5049 ret = PTR_ERR(qsa);
5050 goto drop_write;
5051 }
5052
5053 if (qsa->flags) {
5054 ret = -EINVAL;
5055 goto out;
5056 }
5057
5058 ret = btrfs_qgroup_rescan(root->fs_info);
5059
5060 out:
5061 kfree(qsa);
5062 drop_write:
5063 mnt_drop_write_file(file);
5064 return ret;
5065 }
5066
5067 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5068 {
5069 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5070 struct btrfs_ioctl_quota_rescan_args *qsa;
5071 int ret = 0;
5072
5073 if (!capable(CAP_SYS_ADMIN))
5074 return -EPERM;
5075
5076 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5077 if (!qsa)
5078 return -ENOMEM;
5079
5080 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5081 qsa->flags = 1;
5082 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
5083 }
5084
5085 if (copy_to_user(arg, qsa, sizeof(*qsa)))
5086 ret = -EFAULT;
5087
5088 kfree(qsa);
5089 return ret;
5090 }
5091
5092 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5093 {
5094 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5095
5096 if (!capable(CAP_SYS_ADMIN))
5097 return -EPERM;
5098
5099 return btrfs_qgroup_wait_for_completion(root->fs_info, true);
5100 }
5101
5102 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5103 struct btrfs_ioctl_received_subvol_args *sa)
5104 {
5105 struct inode *inode = file_inode(file);
5106 struct btrfs_root *root = BTRFS_I(inode)->root;
5107 struct btrfs_root_item *root_item = &root->root_item;
5108 struct btrfs_trans_handle *trans;
5109 struct timespec ct = current_fs_time(inode->i_sb);
5110 int ret = 0;
5111 int received_uuid_changed;
5112
5113 if (!inode_owner_or_capable(inode))
5114 return -EPERM;
5115
5116 ret = mnt_want_write_file(file);
5117 if (ret < 0)
5118 return ret;
5119
5120 down_write(&root->fs_info->subvol_sem);
5121
5122 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
5123 ret = -EINVAL;
5124 goto out;
5125 }
5126
5127 if (btrfs_root_readonly(root)) {
5128 ret = -EROFS;
5129 goto out;
5130 }
5131
5132 /*
5133 * 1 - root item
5134 * 2 - uuid items (received uuid + subvol uuid)
5135 */
5136 trans = btrfs_start_transaction(root, 3);
5137 if (IS_ERR(trans)) {
5138 ret = PTR_ERR(trans);
5139 trans = NULL;
5140 goto out;
5141 }
5142
5143 sa->rtransid = trans->transid;
5144 sa->rtime.sec = ct.tv_sec;
5145 sa->rtime.nsec = ct.tv_nsec;
5146
5147 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5148 BTRFS_UUID_SIZE);
5149 if (received_uuid_changed &&
5150 !btrfs_is_empty_uuid(root_item->received_uuid))
5151 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
5152 root_item->received_uuid,
5153 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5154 root->root_key.objectid);
5155 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5156 btrfs_set_root_stransid(root_item, sa->stransid);
5157 btrfs_set_root_rtransid(root_item, sa->rtransid);
5158 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5159 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5160 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5161 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5162
5163 ret = btrfs_update_root(trans, root->fs_info->tree_root,
5164 &root->root_key, &root->root_item);
5165 if (ret < 0) {
5166 btrfs_end_transaction(trans, root);
5167 goto out;
5168 }
5169 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5170 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
5171 sa->uuid,
5172 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5173 root->root_key.objectid);
5174 if (ret < 0 && ret != -EEXIST) {
5175 btrfs_abort_transaction(trans, ret);
5176 goto out;
5177 }
5178 }
5179 ret = btrfs_commit_transaction(trans, root);
5180 if (ret < 0) {
5181 btrfs_abort_transaction(trans, ret);
5182 goto out;
5183 }
5184
5185 out:
5186 up_write(&root->fs_info->subvol_sem);
5187 mnt_drop_write_file(file);
5188 return ret;
5189 }
5190
5191 #ifdef CONFIG_64BIT
5192 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5193 void __user *arg)
5194 {
5195 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5196 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5197 int ret = 0;
5198
5199 args32 = memdup_user(arg, sizeof(*args32));
5200 if (IS_ERR(args32)) {
5201 ret = PTR_ERR(args32);
5202 args32 = NULL;
5203 goto out;
5204 }
5205
5206 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5207 if (!args64) {
5208 ret = -ENOMEM;
5209 goto out;
5210 }
5211
5212 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5213 args64->stransid = args32->stransid;
5214 args64->rtransid = args32->rtransid;
5215 args64->stime.sec = args32->stime.sec;
5216 args64->stime.nsec = args32->stime.nsec;
5217 args64->rtime.sec = args32->rtime.sec;
5218 args64->rtime.nsec = args32->rtime.nsec;
5219 args64->flags = args32->flags;
5220
5221 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5222 if (ret)
5223 goto out;
5224
5225 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5226 args32->stransid = args64->stransid;
5227 args32->rtransid = args64->rtransid;
5228 args32->stime.sec = args64->stime.sec;
5229 args32->stime.nsec = args64->stime.nsec;
5230 args32->rtime.sec = args64->rtime.sec;
5231 args32->rtime.nsec = args64->rtime.nsec;
5232 args32->flags = args64->flags;
5233
5234 ret = copy_to_user(arg, args32, sizeof(*args32));
5235 if (ret)
5236 ret = -EFAULT;
5237
5238 out:
5239 kfree(args32);
5240 kfree(args64);
5241 return ret;
5242 }
5243 #endif
5244
5245 static long btrfs_ioctl_set_received_subvol(struct file *file,
5246 void __user *arg)
5247 {
5248 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5249 int ret = 0;
5250
5251 sa = memdup_user(arg, sizeof(*sa));
5252 if (IS_ERR(sa)) {
5253 ret = PTR_ERR(sa);
5254 sa = NULL;
5255 goto out;
5256 }
5257
5258 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5259
5260 if (ret)
5261 goto out;
5262
5263 ret = copy_to_user(arg, sa, sizeof(*sa));
5264 if (ret)
5265 ret = -EFAULT;
5266
5267 out:
5268 kfree(sa);
5269 return ret;
5270 }
5271
5272 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5273 {
5274 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5275 size_t len;
5276 int ret;
5277 char label[BTRFS_LABEL_SIZE];
5278
5279 spin_lock(&root->fs_info->super_lock);
5280 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5281 spin_unlock(&root->fs_info->super_lock);
5282
5283 len = strnlen(label, BTRFS_LABEL_SIZE);
5284
5285 if (len == BTRFS_LABEL_SIZE) {
5286 btrfs_warn(root->fs_info,
5287 "label is too long, return the first %zu bytes", --len);
5288 }
5289
5290 ret = copy_to_user(arg, label, len);
5291
5292 return ret ? -EFAULT : 0;
5293 }
5294
5295 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5296 {
5297 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5298 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5299 struct btrfs_trans_handle *trans;
5300 char label[BTRFS_LABEL_SIZE];
5301 int ret;
5302
5303 if (!capable(CAP_SYS_ADMIN))
5304 return -EPERM;
5305
5306 if (copy_from_user(label, arg, sizeof(label)))
5307 return -EFAULT;
5308
5309 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5310 btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5311 BTRFS_LABEL_SIZE - 1);
5312 return -EINVAL;
5313 }
5314
5315 ret = mnt_want_write_file(file);
5316 if (ret)
5317 return ret;
5318
5319 trans = btrfs_start_transaction(root, 0);
5320 if (IS_ERR(trans)) {
5321 ret = PTR_ERR(trans);
5322 goto out_unlock;
5323 }
5324
5325 spin_lock(&root->fs_info->super_lock);
5326 strcpy(super_block->label, label);
5327 spin_unlock(&root->fs_info->super_lock);
5328 ret = btrfs_commit_transaction(trans, root);
5329
5330 out_unlock:
5331 mnt_drop_write_file(file);
5332 return ret;
5333 }
5334
5335 #define INIT_FEATURE_FLAGS(suffix) \
5336 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5337 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5338 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5339
5340 int btrfs_ioctl_get_supported_features(void __user *arg)
5341 {
5342 static const struct btrfs_ioctl_feature_flags features[3] = {
5343 INIT_FEATURE_FLAGS(SUPP),
5344 INIT_FEATURE_FLAGS(SAFE_SET),
5345 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5346 };
5347
5348 if (copy_to_user(arg, &features, sizeof(features)))
5349 return -EFAULT;
5350
5351 return 0;
5352 }
5353
5354 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5355 {
5356 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5357 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5358 struct btrfs_ioctl_feature_flags features;
5359
5360 features.compat_flags = btrfs_super_compat_flags(super_block);
5361 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5362 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5363
5364 if (copy_to_user(arg, &features, sizeof(features)))
5365 return -EFAULT;
5366
5367 return 0;
5368 }
5369
5370 static int check_feature_bits(struct btrfs_root *root,
5371 enum btrfs_feature_set set,
5372 u64 change_mask, u64 flags, u64 supported_flags,
5373 u64 safe_set, u64 safe_clear)
5374 {
5375 const char *type = btrfs_feature_set_names[set];
5376 char *names;
5377 u64 disallowed, unsupported;
5378 u64 set_mask = flags & change_mask;
5379 u64 clear_mask = ~flags & change_mask;
5380
5381 unsupported = set_mask & ~supported_flags;
5382 if (unsupported) {
5383 names = btrfs_printable_features(set, unsupported);
5384 if (names) {
5385 btrfs_warn(root->fs_info,
5386 "this kernel does not support the %s feature bit%s",
5387 names, strchr(names, ',') ? "s" : "");
5388 kfree(names);
5389 } else
5390 btrfs_warn(root->fs_info,
5391 "this kernel does not support %s bits 0x%llx",
5392 type, unsupported);
5393 return -EOPNOTSUPP;
5394 }
5395
5396 disallowed = set_mask & ~safe_set;
5397 if (disallowed) {
5398 names = btrfs_printable_features(set, disallowed);
5399 if (names) {
5400 btrfs_warn(root->fs_info,
5401 "can't set the %s feature bit%s while mounted",
5402 names, strchr(names, ',') ? "s" : "");
5403 kfree(names);
5404 } else
5405 btrfs_warn(root->fs_info,
5406 "can't set %s bits 0x%llx while mounted",
5407 type, disallowed);
5408 return -EPERM;
5409 }
5410
5411 disallowed = clear_mask & ~safe_clear;
5412 if (disallowed) {
5413 names = btrfs_printable_features(set, disallowed);
5414 if (names) {
5415 btrfs_warn(root->fs_info,
5416 "can't clear the %s feature bit%s while mounted",
5417 names, strchr(names, ',') ? "s" : "");
5418 kfree(names);
5419 } else
5420 btrfs_warn(root->fs_info,
5421 "can't clear %s bits 0x%llx while mounted",
5422 type, disallowed);
5423 return -EPERM;
5424 }
5425
5426 return 0;
5427 }
5428
5429 #define check_feature(root, change_mask, flags, mask_base) \
5430 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \
5431 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5432 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5433 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5434
5435 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5436 {
5437 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5438 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5439 struct btrfs_ioctl_feature_flags flags[2];
5440 struct btrfs_trans_handle *trans;
5441 u64 newflags;
5442 int ret;
5443
5444 if (!capable(CAP_SYS_ADMIN))
5445 return -EPERM;
5446
5447 if (copy_from_user(flags, arg, sizeof(flags)))
5448 return -EFAULT;
5449
5450 /* Nothing to do */
5451 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5452 !flags[0].incompat_flags)
5453 return 0;
5454
5455 ret = check_feature(root, flags[0].compat_flags,
5456 flags[1].compat_flags, COMPAT);
5457 if (ret)
5458 return ret;
5459
5460 ret = check_feature(root, flags[0].compat_ro_flags,
5461 flags[1].compat_ro_flags, COMPAT_RO);
5462 if (ret)
5463 return ret;
5464
5465 ret = check_feature(root, flags[0].incompat_flags,
5466 flags[1].incompat_flags, INCOMPAT);
5467 if (ret)
5468 return ret;
5469
5470 ret = mnt_want_write_file(file);
5471 if (ret)
5472 return ret;
5473
5474 trans = btrfs_start_transaction(root, 0);
5475 if (IS_ERR(trans)) {
5476 ret = PTR_ERR(trans);
5477 goto out_drop_write;
5478 }
5479
5480 spin_lock(&root->fs_info->super_lock);
5481 newflags = btrfs_super_compat_flags(super_block);
5482 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5483 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5484 btrfs_set_super_compat_flags(super_block, newflags);
5485
5486 newflags = btrfs_super_compat_ro_flags(super_block);
5487 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5488 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5489 btrfs_set_super_compat_ro_flags(super_block, newflags);
5490
5491 newflags = btrfs_super_incompat_flags(super_block);
5492 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5493 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5494 btrfs_set_super_incompat_flags(super_block, newflags);
5495 spin_unlock(&root->fs_info->super_lock);
5496
5497 ret = btrfs_commit_transaction(trans, root);
5498 out_drop_write:
5499 mnt_drop_write_file(file);
5500
5501 return ret;
5502 }
5503
5504 long btrfs_ioctl(struct file *file, unsigned int
5505 cmd, unsigned long arg)
5506 {
5507 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5508 void __user *argp = (void __user *)arg;
5509
5510 switch (cmd) {
5511 case FS_IOC_GETFLAGS:
5512 return btrfs_ioctl_getflags(file, argp);
5513 case FS_IOC_SETFLAGS:
5514 return btrfs_ioctl_setflags(file, argp);
5515 case FS_IOC_GETVERSION:
5516 return btrfs_ioctl_getversion(file, argp);
5517 case FITRIM:
5518 return btrfs_ioctl_fitrim(file, argp);
5519 case BTRFS_IOC_SNAP_CREATE:
5520 return btrfs_ioctl_snap_create(file, argp, 0);
5521 case BTRFS_IOC_SNAP_CREATE_V2:
5522 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5523 case BTRFS_IOC_SUBVOL_CREATE:
5524 return btrfs_ioctl_snap_create(file, argp, 1);
5525 case BTRFS_IOC_SUBVOL_CREATE_V2:
5526 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5527 case BTRFS_IOC_SNAP_DESTROY:
5528 return btrfs_ioctl_snap_destroy(file, argp);
5529 case BTRFS_IOC_SUBVOL_GETFLAGS:
5530 return btrfs_ioctl_subvol_getflags(file, argp);
5531 case BTRFS_IOC_SUBVOL_SETFLAGS:
5532 return btrfs_ioctl_subvol_setflags(file, argp);
5533 case BTRFS_IOC_DEFAULT_SUBVOL:
5534 return btrfs_ioctl_default_subvol(file, argp);
5535 case BTRFS_IOC_DEFRAG:
5536 return btrfs_ioctl_defrag(file, NULL);
5537 case BTRFS_IOC_DEFRAG_RANGE:
5538 return btrfs_ioctl_defrag(file, argp);
5539 case BTRFS_IOC_RESIZE:
5540 return btrfs_ioctl_resize(file, argp);
5541 case BTRFS_IOC_ADD_DEV:
5542 return btrfs_ioctl_add_dev(root, argp);
5543 case BTRFS_IOC_RM_DEV:
5544 return btrfs_ioctl_rm_dev(file, argp);
5545 case BTRFS_IOC_RM_DEV_V2:
5546 return btrfs_ioctl_rm_dev_v2(file, argp);
5547 case BTRFS_IOC_FS_INFO:
5548 return btrfs_ioctl_fs_info(root, argp);
5549 case BTRFS_IOC_DEV_INFO:
5550 return btrfs_ioctl_dev_info(root, argp);
5551 case BTRFS_IOC_BALANCE:
5552 return btrfs_ioctl_balance(file, NULL);
5553 case BTRFS_IOC_TRANS_START:
5554 return btrfs_ioctl_trans_start(file);
5555 case BTRFS_IOC_TRANS_END:
5556 return btrfs_ioctl_trans_end(file);
5557 case BTRFS_IOC_TREE_SEARCH:
5558 return btrfs_ioctl_tree_search(file, argp);
5559 case BTRFS_IOC_TREE_SEARCH_V2:
5560 return btrfs_ioctl_tree_search_v2(file, argp);
5561 case BTRFS_IOC_INO_LOOKUP:
5562 return btrfs_ioctl_ino_lookup(file, argp);
5563 case BTRFS_IOC_INO_PATHS:
5564 return btrfs_ioctl_ino_to_path(root, argp);
5565 case BTRFS_IOC_LOGICAL_INO:
5566 return btrfs_ioctl_logical_to_ino(root, argp);
5567 case BTRFS_IOC_SPACE_INFO:
5568 return btrfs_ioctl_space_info(root, argp);
5569 case BTRFS_IOC_SYNC: {
5570 int ret;
5571
5572 ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5573 if (ret)
5574 return ret;
5575 ret = btrfs_sync_fs(file_inode(file)->i_sb, 1);
5576 /*
5577 * The transaction thread may want to do more work,
5578 * namely it pokes the cleaner kthread that will start
5579 * processing uncleaned subvols.
5580 */
5581 wake_up_process(root->fs_info->transaction_kthread);
5582 return ret;
5583 }
5584 case BTRFS_IOC_START_SYNC:
5585 return btrfs_ioctl_start_sync(root, argp);
5586 case BTRFS_IOC_WAIT_SYNC:
5587 return btrfs_ioctl_wait_sync(root, argp);
5588 case BTRFS_IOC_SCRUB:
5589 return btrfs_ioctl_scrub(file, argp);
5590 case BTRFS_IOC_SCRUB_CANCEL:
5591 return btrfs_ioctl_scrub_cancel(root, argp);
5592 case BTRFS_IOC_SCRUB_PROGRESS:
5593 return btrfs_ioctl_scrub_progress(root, argp);
5594 case BTRFS_IOC_BALANCE_V2:
5595 return btrfs_ioctl_balance(file, argp);
5596 case BTRFS_IOC_BALANCE_CTL:
5597 return btrfs_ioctl_balance_ctl(root, arg);
5598 case BTRFS_IOC_BALANCE_PROGRESS:
5599 return btrfs_ioctl_balance_progress(root, argp);
5600 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5601 return btrfs_ioctl_set_received_subvol(file, argp);
5602 #ifdef CONFIG_64BIT
5603 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5604 return btrfs_ioctl_set_received_subvol_32(file, argp);
5605 #endif
5606 case BTRFS_IOC_SEND:
5607 return btrfs_ioctl_send(file, argp);
5608 case BTRFS_IOC_GET_DEV_STATS:
5609 return btrfs_ioctl_get_dev_stats(root, argp);
5610 case BTRFS_IOC_QUOTA_CTL:
5611 return btrfs_ioctl_quota_ctl(file, argp);
5612 case BTRFS_IOC_QGROUP_ASSIGN:
5613 return btrfs_ioctl_qgroup_assign(file, argp);
5614 case BTRFS_IOC_QGROUP_CREATE:
5615 return btrfs_ioctl_qgroup_create(file, argp);
5616 case BTRFS_IOC_QGROUP_LIMIT:
5617 return btrfs_ioctl_qgroup_limit(file, argp);
5618 case BTRFS_IOC_QUOTA_RESCAN:
5619 return btrfs_ioctl_quota_rescan(file, argp);
5620 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5621 return btrfs_ioctl_quota_rescan_status(file, argp);
5622 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5623 return btrfs_ioctl_quota_rescan_wait(file, argp);
5624 case BTRFS_IOC_DEV_REPLACE:
5625 return btrfs_ioctl_dev_replace(root, argp);
5626 case BTRFS_IOC_GET_FSLABEL:
5627 return btrfs_ioctl_get_fslabel(file, argp);
5628 case BTRFS_IOC_SET_FSLABEL:
5629 return btrfs_ioctl_set_fslabel(file, argp);
5630 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5631 return btrfs_ioctl_get_supported_features(argp);
5632 case BTRFS_IOC_GET_FEATURES:
5633 return btrfs_ioctl_get_features(file, argp);
5634 case BTRFS_IOC_SET_FEATURES:
5635 return btrfs_ioctl_set_features(file, argp);
5636 }
5637
5638 return -ENOTTY;
5639 }
5640
5641 #ifdef CONFIG_COMPAT
5642 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5643 {
5644 switch (cmd) {
5645 case FS_IOC32_GETFLAGS:
5646 cmd = FS_IOC_GETFLAGS;
5647 break;
5648 case FS_IOC32_SETFLAGS:
5649 cmd = FS_IOC_SETFLAGS;
5650 break;
5651 case FS_IOC32_GETVERSION:
5652 cmd = FS_IOC_GETVERSION;
5653 break;
5654 default:
5655 return -ENOIOCTLCMD;
5656 }
5657
5658 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5659 }
5660 #endif