Btrfs: remove unused btrfs_bit_radix slab
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "ref-cache.h"
52 #include "compression.h"
53 #include "locking.h"
54
55 struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
58 };
59
60 static struct inode_operations btrfs_dir_inode_operations;
61 static struct inode_operations btrfs_symlink_inode_operations;
62 static struct inode_operations btrfs_dir_ro_inode_operations;
63 static struct inode_operations btrfs_special_inode_operations;
64 static struct inode_operations btrfs_file_inode_operations;
65 static struct address_space_operations btrfs_aops;
66 static struct address_space_operations btrfs_symlink_aops;
67 static struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74
75 #define S_SHIFT 12
76 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
77 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
78 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
79 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
80 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
81 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
82 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
83 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
84 };
85
86 static void btrfs_truncate(struct inode *inode);
87 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
88 static noinline int cow_file_range(struct inode *inode,
89 struct page *locked_page,
90 u64 start, u64 end, int *page_started,
91 unsigned long *nr_written, int unlock);
92
93 static int btrfs_init_inode_security(struct inode *inode, struct inode *dir)
94 {
95 int err;
96
97 err = btrfs_init_acl(inode, dir);
98 if (!err)
99 err = btrfs_xattr_security_init(inode, dir);
100 return err;
101 }
102
103 /*
104 * this does all the hard work for inserting an inline extent into
105 * the btree. The caller should have done a btrfs_drop_extents so that
106 * no overlapping inline items exist in the btree
107 */
108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root, struct inode *inode,
110 u64 start, size_t size, size_t compressed_size,
111 struct page **compressed_pages)
112 {
113 struct btrfs_key key;
114 struct btrfs_path *path;
115 struct extent_buffer *leaf;
116 struct page *page = NULL;
117 char *kaddr;
118 unsigned long ptr;
119 struct btrfs_file_extent_item *ei;
120 int err = 0;
121 int ret;
122 size_t cur_size = size;
123 size_t datasize;
124 unsigned long offset;
125 int use_compress = 0;
126
127 if (compressed_size && compressed_pages) {
128 use_compress = 1;
129 cur_size = compressed_size;
130 }
131
132 path = btrfs_alloc_path();
133 if (!path)
134 return -ENOMEM;
135
136 path->leave_spinning = 1;
137 btrfs_set_trans_block_group(trans, inode);
138
139 key.objectid = inode->i_ino;
140 key.offset = start;
141 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
142 datasize = btrfs_file_extent_calc_inline_size(cur_size);
143
144 inode_add_bytes(inode, size);
145 ret = btrfs_insert_empty_item(trans, root, path, &key,
146 datasize);
147 BUG_ON(ret);
148 if (ret) {
149 err = ret;
150 goto fail;
151 }
152 leaf = path->nodes[0];
153 ei = btrfs_item_ptr(leaf, path->slots[0],
154 struct btrfs_file_extent_item);
155 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157 btrfs_set_file_extent_encryption(leaf, ei, 0);
158 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160 ptr = btrfs_file_extent_inline_start(ei);
161
162 if (use_compress) {
163 struct page *cpage;
164 int i = 0;
165 while (compressed_size > 0) {
166 cpage = compressed_pages[i];
167 cur_size = min_t(unsigned long, compressed_size,
168 PAGE_CACHE_SIZE);
169
170 kaddr = kmap_atomic(cpage, KM_USER0);
171 write_extent_buffer(leaf, kaddr, ptr, cur_size);
172 kunmap_atomic(kaddr, KM_USER0);
173
174 i++;
175 ptr += cur_size;
176 compressed_size -= cur_size;
177 }
178 btrfs_set_file_extent_compression(leaf, ei,
179 BTRFS_COMPRESS_ZLIB);
180 } else {
181 page = find_get_page(inode->i_mapping,
182 start >> PAGE_CACHE_SHIFT);
183 btrfs_set_file_extent_compression(leaf, ei, 0);
184 kaddr = kmap_atomic(page, KM_USER0);
185 offset = start & (PAGE_CACHE_SIZE - 1);
186 write_extent_buffer(leaf, kaddr + offset, ptr, size);
187 kunmap_atomic(kaddr, KM_USER0);
188 page_cache_release(page);
189 }
190 btrfs_mark_buffer_dirty(leaf);
191 btrfs_free_path(path);
192
193 BTRFS_I(inode)->disk_i_size = inode->i_size;
194 btrfs_update_inode(trans, root, inode);
195 return 0;
196 fail:
197 btrfs_free_path(path);
198 return err;
199 }
200
201
202 /*
203 * conditionally insert an inline extent into the file. This
204 * does the checks required to make sure the data is small enough
205 * to fit as an inline extent.
206 */
207 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
208 struct btrfs_root *root,
209 struct inode *inode, u64 start, u64 end,
210 size_t compressed_size,
211 struct page **compressed_pages)
212 {
213 u64 isize = i_size_read(inode);
214 u64 actual_end = min(end + 1, isize);
215 u64 inline_len = actual_end - start;
216 u64 aligned_end = (end + root->sectorsize - 1) &
217 ~((u64)root->sectorsize - 1);
218 u64 hint_byte;
219 u64 data_len = inline_len;
220 int ret;
221
222 if (compressed_size)
223 data_len = compressed_size;
224
225 if (start > 0 ||
226 actual_end >= PAGE_CACHE_SIZE ||
227 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
228 (!compressed_size &&
229 (actual_end & (root->sectorsize - 1)) == 0) ||
230 end + 1 < isize ||
231 data_len > root->fs_info->max_inline) {
232 return 1;
233 }
234
235 ret = btrfs_drop_extents(trans, root, inode, start,
236 aligned_end, aligned_end, start, &hint_byte);
237 BUG_ON(ret);
238
239 if (isize > actual_end)
240 inline_len = min_t(u64, isize, actual_end);
241 ret = insert_inline_extent(trans, root, inode, start,
242 inline_len, compressed_size,
243 compressed_pages);
244 BUG_ON(ret);
245 btrfs_drop_extent_cache(inode, start, aligned_end, 0);
246 return 0;
247 }
248
249 struct async_extent {
250 u64 start;
251 u64 ram_size;
252 u64 compressed_size;
253 struct page **pages;
254 unsigned long nr_pages;
255 struct list_head list;
256 };
257
258 struct async_cow {
259 struct inode *inode;
260 struct btrfs_root *root;
261 struct page *locked_page;
262 u64 start;
263 u64 end;
264 struct list_head extents;
265 struct btrfs_work work;
266 };
267
268 static noinline int add_async_extent(struct async_cow *cow,
269 u64 start, u64 ram_size,
270 u64 compressed_size,
271 struct page **pages,
272 unsigned long nr_pages)
273 {
274 struct async_extent *async_extent;
275
276 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
277 async_extent->start = start;
278 async_extent->ram_size = ram_size;
279 async_extent->compressed_size = compressed_size;
280 async_extent->pages = pages;
281 async_extent->nr_pages = nr_pages;
282 list_add_tail(&async_extent->list, &cow->extents);
283 return 0;
284 }
285
286 /*
287 * we create compressed extents in two phases. The first
288 * phase compresses a range of pages that have already been
289 * locked (both pages and state bits are locked).
290 *
291 * This is done inside an ordered work queue, and the compression
292 * is spread across many cpus. The actual IO submission is step
293 * two, and the ordered work queue takes care of making sure that
294 * happens in the same order things were put onto the queue by
295 * writepages and friends.
296 *
297 * If this code finds it can't get good compression, it puts an
298 * entry onto the work queue to write the uncompressed bytes. This
299 * makes sure that both compressed inodes and uncompressed inodes
300 * are written in the same order that pdflush sent them down.
301 */
302 static noinline int compress_file_range(struct inode *inode,
303 struct page *locked_page,
304 u64 start, u64 end,
305 struct async_cow *async_cow,
306 int *num_added)
307 {
308 struct btrfs_root *root = BTRFS_I(inode)->root;
309 struct btrfs_trans_handle *trans;
310 u64 num_bytes;
311 u64 orig_start;
312 u64 disk_num_bytes;
313 u64 blocksize = root->sectorsize;
314 u64 actual_end;
315 u64 isize = i_size_read(inode);
316 int ret = 0;
317 struct page **pages = NULL;
318 unsigned long nr_pages;
319 unsigned long nr_pages_ret = 0;
320 unsigned long total_compressed = 0;
321 unsigned long total_in = 0;
322 unsigned long max_compressed = 128 * 1024;
323 unsigned long max_uncompressed = 128 * 1024;
324 int i;
325 int will_compress;
326
327 orig_start = start;
328
329 actual_end = min_t(u64, isize, end + 1);
330 again:
331 will_compress = 0;
332 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
333 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
334
335 /*
336 * we don't want to send crud past the end of i_size through
337 * compression, that's just a waste of CPU time. So, if the
338 * end of the file is before the start of our current
339 * requested range of bytes, we bail out to the uncompressed
340 * cleanup code that can deal with all of this.
341 *
342 * It isn't really the fastest way to fix things, but this is a
343 * very uncommon corner.
344 */
345 if (actual_end <= start)
346 goto cleanup_and_bail_uncompressed;
347
348 total_compressed = actual_end - start;
349
350 /* we want to make sure that amount of ram required to uncompress
351 * an extent is reasonable, so we limit the total size in ram
352 * of a compressed extent to 128k. This is a crucial number
353 * because it also controls how easily we can spread reads across
354 * cpus for decompression.
355 *
356 * We also want to make sure the amount of IO required to do
357 * a random read is reasonably small, so we limit the size of
358 * a compressed extent to 128k.
359 */
360 total_compressed = min(total_compressed, max_uncompressed);
361 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
362 num_bytes = max(blocksize, num_bytes);
363 disk_num_bytes = num_bytes;
364 total_in = 0;
365 ret = 0;
366
367 /*
368 * we do compression for mount -o compress and when the
369 * inode has not been flagged as nocompress. This flag can
370 * change at any time if we discover bad compression ratios.
371 */
372 if (!btrfs_test_flag(inode, NOCOMPRESS) &&
373 btrfs_test_opt(root, COMPRESS)) {
374 WARN_ON(pages);
375 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
376
377 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
378 total_compressed, pages,
379 nr_pages, &nr_pages_ret,
380 &total_in,
381 &total_compressed,
382 max_compressed);
383
384 if (!ret) {
385 unsigned long offset = total_compressed &
386 (PAGE_CACHE_SIZE - 1);
387 struct page *page = pages[nr_pages_ret - 1];
388 char *kaddr;
389
390 /* zero the tail end of the last page, we might be
391 * sending it down to disk
392 */
393 if (offset) {
394 kaddr = kmap_atomic(page, KM_USER0);
395 memset(kaddr + offset, 0,
396 PAGE_CACHE_SIZE - offset);
397 kunmap_atomic(kaddr, KM_USER0);
398 }
399 will_compress = 1;
400 }
401 }
402 if (start == 0) {
403 trans = btrfs_join_transaction(root, 1);
404 BUG_ON(!trans);
405 btrfs_set_trans_block_group(trans, inode);
406
407 /* lets try to make an inline extent */
408 if (ret || total_in < (actual_end - start)) {
409 /* we didn't compress the entire range, try
410 * to make an uncompressed inline extent.
411 */
412 ret = cow_file_range_inline(trans, root, inode,
413 start, end, 0, NULL);
414 } else {
415 /* try making a compressed inline extent */
416 ret = cow_file_range_inline(trans, root, inode,
417 start, end,
418 total_compressed, pages);
419 }
420 btrfs_end_transaction(trans, root);
421 if (ret == 0) {
422 /*
423 * inline extent creation worked, we don't need
424 * to create any more async work items. Unlock
425 * and free up our temp pages.
426 */
427 extent_clear_unlock_delalloc(inode,
428 &BTRFS_I(inode)->io_tree,
429 start, end, NULL, 1, 0,
430 0, 1, 1, 1);
431 ret = 0;
432 goto free_pages_out;
433 }
434 }
435
436 if (will_compress) {
437 /*
438 * we aren't doing an inline extent round the compressed size
439 * up to a block size boundary so the allocator does sane
440 * things
441 */
442 total_compressed = (total_compressed + blocksize - 1) &
443 ~(blocksize - 1);
444
445 /*
446 * one last check to make sure the compression is really a
447 * win, compare the page count read with the blocks on disk
448 */
449 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
450 ~(PAGE_CACHE_SIZE - 1);
451 if (total_compressed >= total_in) {
452 will_compress = 0;
453 } else {
454 disk_num_bytes = total_compressed;
455 num_bytes = total_in;
456 }
457 }
458 if (!will_compress && pages) {
459 /*
460 * the compression code ran but failed to make things smaller,
461 * free any pages it allocated and our page pointer array
462 */
463 for (i = 0; i < nr_pages_ret; i++) {
464 WARN_ON(pages[i]->mapping);
465 page_cache_release(pages[i]);
466 }
467 kfree(pages);
468 pages = NULL;
469 total_compressed = 0;
470 nr_pages_ret = 0;
471
472 /* flag the file so we don't compress in the future */
473 btrfs_set_flag(inode, NOCOMPRESS);
474 }
475 if (will_compress) {
476 *num_added += 1;
477
478 /* the async work queues will take care of doing actual
479 * allocation on disk for these compressed pages,
480 * and will submit them to the elevator.
481 */
482 add_async_extent(async_cow, start, num_bytes,
483 total_compressed, pages, nr_pages_ret);
484
485 if (start + num_bytes < end && start + num_bytes < actual_end) {
486 start += num_bytes;
487 pages = NULL;
488 cond_resched();
489 goto again;
490 }
491 } else {
492 cleanup_and_bail_uncompressed:
493 /*
494 * No compression, but we still need to write the pages in
495 * the file we've been given so far. redirty the locked
496 * page if it corresponds to our extent and set things up
497 * for the async work queue to run cow_file_range to do
498 * the normal delalloc dance
499 */
500 if (page_offset(locked_page) >= start &&
501 page_offset(locked_page) <= end) {
502 __set_page_dirty_nobuffers(locked_page);
503 /* unlocked later on in the async handlers */
504 }
505 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
506 *num_added += 1;
507 }
508
509 out:
510 return 0;
511
512 free_pages_out:
513 for (i = 0; i < nr_pages_ret; i++) {
514 WARN_ON(pages[i]->mapping);
515 page_cache_release(pages[i]);
516 }
517 kfree(pages);
518
519 goto out;
520 }
521
522 /*
523 * phase two of compressed writeback. This is the ordered portion
524 * of the code, which only gets called in the order the work was
525 * queued. We walk all the async extents created by compress_file_range
526 * and send them down to the disk.
527 */
528 static noinline int submit_compressed_extents(struct inode *inode,
529 struct async_cow *async_cow)
530 {
531 struct async_extent *async_extent;
532 u64 alloc_hint = 0;
533 struct btrfs_trans_handle *trans;
534 struct btrfs_key ins;
535 struct extent_map *em;
536 struct btrfs_root *root = BTRFS_I(inode)->root;
537 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
538 struct extent_io_tree *io_tree;
539 int ret;
540
541 if (list_empty(&async_cow->extents))
542 return 0;
543
544 trans = btrfs_join_transaction(root, 1);
545
546 while (!list_empty(&async_cow->extents)) {
547 async_extent = list_entry(async_cow->extents.next,
548 struct async_extent, list);
549 list_del(&async_extent->list);
550
551 io_tree = &BTRFS_I(inode)->io_tree;
552
553 /* did the compression code fall back to uncompressed IO? */
554 if (!async_extent->pages) {
555 int page_started = 0;
556 unsigned long nr_written = 0;
557
558 lock_extent(io_tree, async_extent->start,
559 async_extent->start +
560 async_extent->ram_size - 1, GFP_NOFS);
561
562 /* allocate blocks */
563 cow_file_range(inode, async_cow->locked_page,
564 async_extent->start,
565 async_extent->start +
566 async_extent->ram_size - 1,
567 &page_started, &nr_written, 0);
568
569 /*
570 * if page_started, cow_file_range inserted an
571 * inline extent and took care of all the unlocking
572 * and IO for us. Otherwise, we need to submit
573 * all those pages down to the drive.
574 */
575 if (!page_started)
576 extent_write_locked_range(io_tree,
577 inode, async_extent->start,
578 async_extent->start +
579 async_extent->ram_size - 1,
580 btrfs_get_extent,
581 WB_SYNC_ALL);
582 kfree(async_extent);
583 cond_resched();
584 continue;
585 }
586
587 lock_extent(io_tree, async_extent->start,
588 async_extent->start + async_extent->ram_size - 1,
589 GFP_NOFS);
590 /*
591 * here we're doing allocation and writeback of the
592 * compressed pages
593 */
594 btrfs_drop_extent_cache(inode, async_extent->start,
595 async_extent->start +
596 async_extent->ram_size - 1, 0);
597
598 ret = btrfs_reserve_extent(trans, root,
599 async_extent->compressed_size,
600 async_extent->compressed_size,
601 0, alloc_hint,
602 (u64)-1, &ins, 1);
603 BUG_ON(ret);
604 em = alloc_extent_map(GFP_NOFS);
605 em->start = async_extent->start;
606 em->len = async_extent->ram_size;
607 em->orig_start = em->start;
608
609 em->block_start = ins.objectid;
610 em->block_len = ins.offset;
611 em->bdev = root->fs_info->fs_devices->latest_bdev;
612 set_bit(EXTENT_FLAG_PINNED, &em->flags);
613 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
614
615 while (1) {
616 spin_lock(&em_tree->lock);
617 ret = add_extent_mapping(em_tree, em);
618 spin_unlock(&em_tree->lock);
619 if (ret != -EEXIST) {
620 free_extent_map(em);
621 break;
622 }
623 btrfs_drop_extent_cache(inode, async_extent->start,
624 async_extent->start +
625 async_extent->ram_size - 1, 0);
626 }
627
628 ret = btrfs_add_ordered_extent(inode, async_extent->start,
629 ins.objectid,
630 async_extent->ram_size,
631 ins.offset,
632 BTRFS_ORDERED_COMPRESSED);
633 BUG_ON(ret);
634
635 btrfs_end_transaction(trans, root);
636
637 /*
638 * clear dirty, set writeback and unlock the pages.
639 */
640 extent_clear_unlock_delalloc(inode,
641 &BTRFS_I(inode)->io_tree,
642 async_extent->start,
643 async_extent->start +
644 async_extent->ram_size - 1,
645 NULL, 1, 1, 0, 1, 1, 0);
646
647 ret = btrfs_submit_compressed_write(inode,
648 async_extent->start,
649 async_extent->ram_size,
650 ins.objectid,
651 ins.offset, async_extent->pages,
652 async_extent->nr_pages);
653
654 BUG_ON(ret);
655 trans = btrfs_join_transaction(root, 1);
656 alloc_hint = ins.objectid + ins.offset;
657 kfree(async_extent);
658 cond_resched();
659 }
660
661 btrfs_end_transaction(trans, root);
662 return 0;
663 }
664
665 /*
666 * when extent_io.c finds a delayed allocation range in the file,
667 * the call backs end up in this code. The basic idea is to
668 * allocate extents on disk for the range, and create ordered data structs
669 * in ram to track those extents.
670 *
671 * locked_page is the page that writepage had locked already. We use
672 * it to make sure we don't do extra locks or unlocks.
673 *
674 * *page_started is set to one if we unlock locked_page and do everything
675 * required to start IO on it. It may be clean and already done with
676 * IO when we return.
677 */
678 static noinline int cow_file_range(struct inode *inode,
679 struct page *locked_page,
680 u64 start, u64 end, int *page_started,
681 unsigned long *nr_written,
682 int unlock)
683 {
684 struct btrfs_root *root = BTRFS_I(inode)->root;
685 struct btrfs_trans_handle *trans;
686 u64 alloc_hint = 0;
687 u64 num_bytes;
688 unsigned long ram_size;
689 u64 disk_num_bytes;
690 u64 cur_alloc_size;
691 u64 blocksize = root->sectorsize;
692 u64 actual_end;
693 u64 isize = i_size_read(inode);
694 struct btrfs_key ins;
695 struct extent_map *em;
696 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
697 int ret = 0;
698
699 trans = btrfs_join_transaction(root, 1);
700 BUG_ON(!trans);
701 btrfs_set_trans_block_group(trans, inode);
702
703 actual_end = min_t(u64, isize, end + 1);
704
705 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
706 num_bytes = max(blocksize, num_bytes);
707 disk_num_bytes = num_bytes;
708 ret = 0;
709
710 if (start == 0) {
711 /* lets try to make an inline extent */
712 ret = cow_file_range_inline(trans, root, inode,
713 start, end, 0, NULL);
714 if (ret == 0) {
715 extent_clear_unlock_delalloc(inode,
716 &BTRFS_I(inode)->io_tree,
717 start, end, NULL, 1, 1,
718 1, 1, 1, 1);
719 *nr_written = *nr_written +
720 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
721 *page_started = 1;
722 ret = 0;
723 goto out;
724 }
725 }
726
727 BUG_ON(disk_num_bytes >
728 btrfs_super_total_bytes(&root->fs_info->super_copy));
729
730 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
731
732 while (disk_num_bytes > 0) {
733 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
734 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
735 root->sectorsize, 0, alloc_hint,
736 (u64)-1, &ins, 1);
737 BUG_ON(ret);
738
739 em = alloc_extent_map(GFP_NOFS);
740 em->start = start;
741 em->orig_start = em->start;
742
743 ram_size = ins.offset;
744 em->len = ins.offset;
745
746 em->block_start = ins.objectid;
747 em->block_len = ins.offset;
748 em->bdev = root->fs_info->fs_devices->latest_bdev;
749 set_bit(EXTENT_FLAG_PINNED, &em->flags);
750
751 while (1) {
752 spin_lock(&em_tree->lock);
753 ret = add_extent_mapping(em_tree, em);
754 spin_unlock(&em_tree->lock);
755 if (ret != -EEXIST) {
756 free_extent_map(em);
757 break;
758 }
759 btrfs_drop_extent_cache(inode, start,
760 start + ram_size - 1, 0);
761 }
762
763 cur_alloc_size = ins.offset;
764 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
765 ram_size, cur_alloc_size, 0);
766 BUG_ON(ret);
767
768 if (root->root_key.objectid ==
769 BTRFS_DATA_RELOC_TREE_OBJECTID) {
770 ret = btrfs_reloc_clone_csums(inode, start,
771 cur_alloc_size);
772 BUG_ON(ret);
773 }
774
775 if (disk_num_bytes < cur_alloc_size)
776 break;
777
778 /* we're not doing compressed IO, don't unlock the first
779 * page (which the caller expects to stay locked), don't
780 * clear any dirty bits and don't set any writeback bits
781 */
782 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
783 start, start + ram_size - 1,
784 locked_page, unlock, 1,
785 1, 0, 0, 0);
786 disk_num_bytes -= cur_alloc_size;
787 num_bytes -= cur_alloc_size;
788 alloc_hint = ins.objectid + ins.offset;
789 start += cur_alloc_size;
790 }
791 out:
792 ret = 0;
793 btrfs_end_transaction(trans, root);
794
795 return ret;
796 }
797
798 /*
799 * work queue call back to started compression on a file and pages
800 */
801 static noinline void async_cow_start(struct btrfs_work *work)
802 {
803 struct async_cow *async_cow;
804 int num_added = 0;
805 async_cow = container_of(work, struct async_cow, work);
806
807 compress_file_range(async_cow->inode, async_cow->locked_page,
808 async_cow->start, async_cow->end, async_cow,
809 &num_added);
810 if (num_added == 0)
811 async_cow->inode = NULL;
812 }
813
814 /*
815 * work queue call back to submit previously compressed pages
816 */
817 static noinline void async_cow_submit(struct btrfs_work *work)
818 {
819 struct async_cow *async_cow;
820 struct btrfs_root *root;
821 unsigned long nr_pages;
822
823 async_cow = container_of(work, struct async_cow, work);
824
825 root = async_cow->root;
826 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
827 PAGE_CACHE_SHIFT;
828
829 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
830
831 if (atomic_read(&root->fs_info->async_delalloc_pages) <
832 5 * 1042 * 1024 &&
833 waitqueue_active(&root->fs_info->async_submit_wait))
834 wake_up(&root->fs_info->async_submit_wait);
835
836 if (async_cow->inode)
837 submit_compressed_extents(async_cow->inode, async_cow);
838 }
839
840 static noinline void async_cow_free(struct btrfs_work *work)
841 {
842 struct async_cow *async_cow;
843 async_cow = container_of(work, struct async_cow, work);
844 kfree(async_cow);
845 }
846
847 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
848 u64 start, u64 end, int *page_started,
849 unsigned long *nr_written)
850 {
851 struct async_cow *async_cow;
852 struct btrfs_root *root = BTRFS_I(inode)->root;
853 unsigned long nr_pages;
854 u64 cur_end;
855 int limit = 10 * 1024 * 1042;
856
857 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
858 EXTENT_DELALLOC, 1, 0, GFP_NOFS);
859 while (start < end) {
860 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
861 async_cow->inode = inode;
862 async_cow->root = root;
863 async_cow->locked_page = locked_page;
864 async_cow->start = start;
865
866 if (btrfs_test_flag(inode, NOCOMPRESS))
867 cur_end = end;
868 else
869 cur_end = min(end, start + 512 * 1024 - 1);
870
871 async_cow->end = cur_end;
872 INIT_LIST_HEAD(&async_cow->extents);
873
874 async_cow->work.func = async_cow_start;
875 async_cow->work.ordered_func = async_cow_submit;
876 async_cow->work.ordered_free = async_cow_free;
877 async_cow->work.flags = 0;
878
879 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
880 PAGE_CACHE_SHIFT;
881 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
882
883 btrfs_queue_worker(&root->fs_info->delalloc_workers,
884 &async_cow->work);
885
886 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
887 wait_event(root->fs_info->async_submit_wait,
888 (atomic_read(&root->fs_info->async_delalloc_pages) <
889 limit));
890 }
891
892 while (atomic_read(&root->fs_info->async_submit_draining) &&
893 atomic_read(&root->fs_info->async_delalloc_pages)) {
894 wait_event(root->fs_info->async_submit_wait,
895 (atomic_read(&root->fs_info->async_delalloc_pages) ==
896 0));
897 }
898
899 *nr_written += nr_pages;
900 start = cur_end + 1;
901 }
902 *page_started = 1;
903 return 0;
904 }
905
906 static noinline int csum_exist_in_range(struct btrfs_root *root,
907 u64 bytenr, u64 num_bytes)
908 {
909 int ret;
910 struct btrfs_ordered_sum *sums;
911 LIST_HEAD(list);
912
913 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
914 bytenr + num_bytes - 1, &list);
915 if (ret == 0 && list_empty(&list))
916 return 0;
917
918 while (!list_empty(&list)) {
919 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
920 list_del(&sums->list);
921 kfree(sums);
922 }
923 return 1;
924 }
925
926 /*
927 * when nowcow writeback call back. This checks for snapshots or COW copies
928 * of the extents that exist in the file, and COWs the file as required.
929 *
930 * If no cow copies or snapshots exist, we write directly to the existing
931 * blocks on disk
932 */
933 static noinline int run_delalloc_nocow(struct inode *inode,
934 struct page *locked_page,
935 u64 start, u64 end, int *page_started, int force,
936 unsigned long *nr_written)
937 {
938 struct btrfs_root *root = BTRFS_I(inode)->root;
939 struct btrfs_trans_handle *trans;
940 struct extent_buffer *leaf;
941 struct btrfs_path *path;
942 struct btrfs_file_extent_item *fi;
943 struct btrfs_key found_key;
944 u64 cow_start;
945 u64 cur_offset;
946 u64 extent_end;
947 u64 disk_bytenr;
948 u64 num_bytes;
949 int extent_type;
950 int ret;
951 int type;
952 int nocow;
953 int check_prev = 1;
954
955 path = btrfs_alloc_path();
956 BUG_ON(!path);
957 trans = btrfs_join_transaction(root, 1);
958 BUG_ON(!trans);
959
960 cow_start = (u64)-1;
961 cur_offset = start;
962 while (1) {
963 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
964 cur_offset, 0);
965 BUG_ON(ret < 0);
966 if (ret > 0 && path->slots[0] > 0 && check_prev) {
967 leaf = path->nodes[0];
968 btrfs_item_key_to_cpu(leaf, &found_key,
969 path->slots[0] - 1);
970 if (found_key.objectid == inode->i_ino &&
971 found_key.type == BTRFS_EXTENT_DATA_KEY)
972 path->slots[0]--;
973 }
974 check_prev = 0;
975 next_slot:
976 leaf = path->nodes[0];
977 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
978 ret = btrfs_next_leaf(root, path);
979 if (ret < 0)
980 BUG_ON(1);
981 if (ret > 0)
982 break;
983 leaf = path->nodes[0];
984 }
985
986 nocow = 0;
987 disk_bytenr = 0;
988 num_bytes = 0;
989 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
990
991 if (found_key.objectid > inode->i_ino ||
992 found_key.type > BTRFS_EXTENT_DATA_KEY ||
993 found_key.offset > end)
994 break;
995
996 if (found_key.offset > cur_offset) {
997 extent_end = found_key.offset;
998 goto out_check;
999 }
1000
1001 fi = btrfs_item_ptr(leaf, path->slots[0],
1002 struct btrfs_file_extent_item);
1003 extent_type = btrfs_file_extent_type(leaf, fi);
1004
1005 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1006 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1007 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1008 extent_end = found_key.offset +
1009 btrfs_file_extent_num_bytes(leaf, fi);
1010 if (extent_end <= start) {
1011 path->slots[0]++;
1012 goto next_slot;
1013 }
1014 if (disk_bytenr == 0)
1015 goto out_check;
1016 if (btrfs_file_extent_compression(leaf, fi) ||
1017 btrfs_file_extent_encryption(leaf, fi) ||
1018 btrfs_file_extent_other_encoding(leaf, fi))
1019 goto out_check;
1020 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1021 goto out_check;
1022 if (btrfs_extent_readonly(root, disk_bytenr))
1023 goto out_check;
1024 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1025 disk_bytenr))
1026 goto out_check;
1027 disk_bytenr += btrfs_file_extent_offset(leaf, fi);
1028 disk_bytenr += cur_offset - found_key.offset;
1029 num_bytes = min(end + 1, extent_end) - cur_offset;
1030 /*
1031 * force cow if csum exists in the range.
1032 * this ensure that csum for a given extent are
1033 * either valid or do not exist.
1034 */
1035 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1036 goto out_check;
1037 nocow = 1;
1038 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1039 extent_end = found_key.offset +
1040 btrfs_file_extent_inline_len(leaf, fi);
1041 extent_end = ALIGN(extent_end, root->sectorsize);
1042 } else {
1043 BUG_ON(1);
1044 }
1045 out_check:
1046 if (extent_end <= start) {
1047 path->slots[0]++;
1048 goto next_slot;
1049 }
1050 if (!nocow) {
1051 if (cow_start == (u64)-1)
1052 cow_start = cur_offset;
1053 cur_offset = extent_end;
1054 if (cur_offset > end)
1055 break;
1056 path->slots[0]++;
1057 goto next_slot;
1058 }
1059
1060 btrfs_release_path(root, path);
1061 if (cow_start != (u64)-1) {
1062 ret = cow_file_range(inode, locked_page, cow_start,
1063 found_key.offset - 1, page_started,
1064 nr_written, 1);
1065 BUG_ON(ret);
1066 cow_start = (u64)-1;
1067 }
1068
1069 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1070 struct extent_map *em;
1071 struct extent_map_tree *em_tree;
1072 em_tree = &BTRFS_I(inode)->extent_tree;
1073 em = alloc_extent_map(GFP_NOFS);
1074 em->start = cur_offset;
1075 em->orig_start = em->start;
1076 em->len = num_bytes;
1077 em->block_len = num_bytes;
1078 em->block_start = disk_bytenr;
1079 em->bdev = root->fs_info->fs_devices->latest_bdev;
1080 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1081 while (1) {
1082 spin_lock(&em_tree->lock);
1083 ret = add_extent_mapping(em_tree, em);
1084 spin_unlock(&em_tree->lock);
1085 if (ret != -EEXIST) {
1086 free_extent_map(em);
1087 break;
1088 }
1089 btrfs_drop_extent_cache(inode, em->start,
1090 em->start + em->len - 1, 0);
1091 }
1092 type = BTRFS_ORDERED_PREALLOC;
1093 } else {
1094 type = BTRFS_ORDERED_NOCOW;
1095 }
1096
1097 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1098 num_bytes, num_bytes, type);
1099 BUG_ON(ret);
1100
1101 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1102 cur_offset, cur_offset + num_bytes - 1,
1103 locked_page, 1, 1, 1, 0, 0, 0);
1104 cur_offset = extent_end;
1105 if (cur_offset > end)
1106 break;
1107 }
1108 btrfs_release_path(root, path);
1109
1110 if (cur_offset <= end && cow_start == (u64)-1)
1111 cow_start = cur_offset;
1112 if (cow_start != (u64)-1) {
1113 ret = cow_file_range(inode, locked_page, cow_start, end,
1114 page_started, nr_written, 1);
1115 BUG_ON(ret);
1116 }
1117
1118 ret = btrfs_end_transaction(trans, root);
1119 BUG_ON(ret);
1120 btrfs_free_path(path);
1121 return 0;
1122 }
1123
1124 /*
1125 * extent_io.c call back to do delayed allocation processing
1126 */
1127 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1128 u64 start, u64 end, int *page_started,
1129 unsigned long *nr_written)
1130 {
1131 int ret;
1132 struct btrfs_root *root = BTRFS_I(inode)->root;
1133
1134 if (btrfs_test_flag(inode, NODATACOW))
1135 ret = run_delalloc_nocow(inode, locked_page, start, end,
1136 page_started, 1, nr_written);
1137 else if (btrfs_test_flag(inode, PREALLOC))
1138 ret = run_delalloc_nocow(inode, locked_page, start, end,
1139 page_started, 0, nr_written);
1140 else if (!btrfs_test_opt(root, COMPRESS))
1141 ret = cow_file_range(inode, locked_page, start, end,
1142 page_started, nr_written, 1);
1143 else
1144 ret = cow_file_range_async(inode, locked_page, start, end,
1145 page_started, nr_written);
1146 return ret;
1147 }
1148
1149 /*
1150 * extent_io.c set_bit_hook, used to track delayed allocation
1151 * bytes in this file, and to maintain the list of inodes that
1152 * have pending delalloc work to be done.
1153 */
1154 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1155 unsigned long old, unsigned long bits)
1156 {
1157 /*
1158 * set_bit and clear bit hooks normally require _irqsave/restore
1159 * but in this case, we are only testeing for the DELALLOC
1160 * bit, which is only set or cleared with irqs on
1161 */
1162 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1163 struct btrfs_root *root = BTRFS_I(inode)->root;
1164 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1165 spin_lock(&root->fs_info->delalloc_lock);
1166 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1167 root->fs_info->delalloc_bytes += end - start + 1;
1168 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1169 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1170 &root->fs_info->delalloc_inodes);
1171 }
1172 spin_unlock(&root->fs_info->delalloc_lock);
1173 }
1174 return 0;
1175 }
1176
1177 /*
1178 * extent_io.c clear_bit_hook, see set_bit_hook for why
1179 */
1180 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1181 unsigned long old, unsigned long bits)
1182 {
1183 /*
1184 * set_bit and clear bit hooks normally require _irqsave/restore
1185 * but in this case, we are only testeing for the DELALLOC
1186 * bit, which is only set or cleared with irqs on
1187 */
1188 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1189 struct btrfs_root *root = BTRFS_I(inode)->root;
1190
1191 spin_lock(&root->fs_info->delalloc_lock);
1192 if (end - start + 1 > root->fs_info->delalloc_bytes) {
1193 printk(KERN_INFO "btrfs warning: delalloc account "
1194 "%llu %llu\n",
1195 (unsigned long long)end - start + 1,
1196 (unsigned long long)
1197 root->fs_info->delalloc_bytes);
1198 btrfs_delalloc_free_space(root, inode, (u64)-1);
1199 root->fs_info->delalloc_bytes = 0;
1200 BTRFS_I(inode)->delalloc_bytes = 0;
1201 } else {
1202 btrfs_delalloc_free_space(root, inode,
1203 end - start + 1);
1204 root->fs_info->delalloc_bytes -= end - start + 1;
1205 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1206 }
1207 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1208 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1209 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1210 }
1211 spin_unlock(&root->fs_info->delalloc_lock);
1212 }
1213 return 0;
1214 }
1215
1216 /*
1217 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1218 * we don't create bios that span stripes or chunks
1219 */
1220 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1221 size_t size, struct bio *bio,
1222 unsigned long bio_flags)
1223 {
1224 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1225 struct btrfs_mapping_tree *map_tree;
1226 u64 logical = (u64)bio->bi_sector << 9;
1227 u64 length = 0;
1228 u64 map_length;
1229 int ret;
1230
1231 if (bio_flags & EXTENT_BIO_COMPRESSED)
1232 return 0;
1233
1234 length = bio->bi_size;
1235 map_tree = &root->fs_info->mapping_tree;
1236 map_length = length;
1237 ret = btrfs_map_block(map_tree, READ, logical,
1238 &map_length, NULL, 0);
1239
1240 if (map_length < length + size)
1241 return 1;
1242 return 0;
1243 }
1244
1245 /*
1246 * in order to insert checksums into the metadata in large chunks,
1247 * we wait until bio submission time. All the pages in the bio are
1248 * checksummed and sums are attached onto the ordered extent record.
1249 *
1250 * At IO completion time the cums attached on the ordered extent record
1251 * are inserted into the btree
1252 */
1253 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1254 struct bio *bio, int mirror_num,
1255 unsigned long bio_flags)
1256 {
1257 struct btrfs_root *root = BTRFS_I(inode)->root;
1258 int ret = 0;
1259
1260 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1261 BUG_ON(ret);
1262 return 0;
1263 }
1264
1265 /*
1266 * in order to insert checksums into the metadata in large chunks,
1267 * we wait until bio submission time. All the pages in the bio are
1268 * checksummed and sums are attached onto the ordered extent record.
1269 *
1270 * At IO completion time the cums attached on the ordered extent record
1271 * are inserted into the btree
1272 */
1273 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1274 int mirror_num, unsigned long bio_flags)
1275 {
1276 struct btrfs_root *root = BTRFS_I(inode)->root;
1277 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1278 }
1279
1280 /*
1281 * extent_io.c submission hook. This does the right thing for csum calculation
1282 * on write, or reading the csums from the tree before a read
1283 */
1284 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1285 int mirror_num, unsigned long bio_flags)
1286 {
1287 struct btrfs_root *root = BTRFS_I(inode)->root;
1288 int ret = 0;
1289 int skip_sum;
1290
1291 skip_sum = btrfs_test_flag(inode, NODATASUM);
1292
1293 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1294 BUG_ON(ret);
1295
1296 if (!(rw & (1 << BIO_RW))) {
1297 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1298 return btrfs_submit_compressed_read(inode, bio,
1299 mirror_num, bio_flags);
1300 } else if (!skip_sum)
1301 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1302 goto mapit;
1303 } else if (!skip_sum) {
1304 /* csum items have already been cloned */
1305 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1306 goto mapit;
1307 /* we're doing a write, do the async checksumming */
1308 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1309 inode, rw, bio, mirror_num,
1310 bio_flags, __btrfs_submit_bio_start,
1311 __btrfs_submit_bio_done);
1312 }
1313
1314 mapit:
1315 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1316 }
1317
1318 /*
1319 * given a list of ordered sums record them in the inode. This happens
1320 * at IO completion time based on sums calculated at bio submission time.
1321 */
1322 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1323 struct inode *inode, u64 file_offset,
1324 struct list_head *list)
1325 {
1326 struct btrfs_ordered_sum *sum;
1327
1328 btrfs_set_trans_block_group(trans, inode);
1329
1330 list_for_each_entry(sum, list, list) {
1331 btrfs_csum_file_blocks(trans,
1332 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1333 }
1334 return 0;
1335 }
1336
1337 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1338 {
1339 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1340 WARN_ON(1);
1341 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1342 GFP_NOFS);
1343 }
1344
1345 /* see btrfs_writepage_start_hook for details on why this is required */
1346 struct btrfs_writepage_fixup {
1347 struct page *page;
1348 struct btrfs_work work;
1349 };
1350
1351 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1352 {
1353 struct btrfs_writepage_fixup *fixup;
1354 struct btrfs_ordered_extent *ordered;
1355 struct page *page;
1356 struct inode *inode;
1357 u64 page_start;
1358 u64 page_end;
1359
1360 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1361 page = fixup->page;
1362 again:
1363 lock_page(page);
1364 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1365 ClearPageChecked(page);
1366 goto out_page;
1367 }
1368
1369 inode = page->mapping->host;
1370 page_start = page_offset(page);
1371 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1372
1373 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1374
1375 /* already ordered? We're done */
1376 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1377 EXTENT_ORDERED, 0)) {
1378 goto out;
1379 }
1380
1381 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1382 if (ordered) {
1383 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1384 page_end, GFP_NOFS);
1385 unlock_page(page);
1386 btrfs_start_ordered_extent(inode, ordered, 1);
1387 goto again;
1388 }
1389
1390 btrfs_set_extent_delalloc(inode, page_start, page_end);
1391 ClearPageChecked(page);
1392 out:
1393 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1394 out_page:
1395 unlock_page(page);
1396 page_cache_release(page);
1397 }
1398
1399 /*
1400 * There are a few paths in the higher layers of the kernel that directly
1401 * set the page dirty bit without asking the filesystem if it is a
1402 * good idea. This causes problems because we want to make sure COW
1403 * properly happens and the data=ordered rules are followed.
1404 *
1405 * In our case any range that doesn't have the ORDERED bit set
1406 * hasn't been properly setup for IO. We kick off an async process
1407 * to fix it up. The async helper will wait for ordered extents, set
1408 * the delalloc bit and make it safe to write the page.
1409 */
1410 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1411 {
1412 struct inode *inode = page->mapping->host;
1413 struct btrfs_writepage_fixup *fixup;
1414 struct btrfs_root *root = BTRFS_I(inode)->root;
1415 int ret;
1416
1417 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1418 EXTENT_ORDERED, 0);
1419 if (ret)
1420 return 0;
1421
1422 if (PageChecked(page))
1423 return -EAGAIN;
1424
1425 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1426 if (!fixup)
1427 return -EAGAIN;
1428
1429 SetPageChecked(page);
1430 page_cache_get(page);
1431 fixup->work.func = btrfs_writepage_fixup_worker;
1432 fixup->page = page;
1433 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1434 return -EAGAIN;
1435 }
1436
1437 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1438 struct inode *inode, u64 file_pos,
1439 u64 disk_bytenr, u64 disk_num_bytes,
1440 u64 num_bytes, u64 ram_bytes,
1441 u64 locked_end,
1442 u8 compression, u8 encryption,
1443 u16 other_encoding, int extent_type)
1444 {
1445 struct btrfs_root *root = BTRFS_I(inode)->root;
1446 struct btrfs_file_extent_item *fi;
1447 struct btrfs_path *path;
1448 struct extent_buffer *leaf;
1449 struct btrfs_key ins;
1450 u64 hint;
1451 int ret;
1452
1453 path = btrfs_alloc_path();
1454 BUG_ON(!path);
1455
1456 path->leave_spinning = 1;
1457 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1458 file_pos + num_bytes, locked_end,
1459 file_pos, &hint);
1460 BUG_ON(ret);
1461
1462 ins.objectid = inode->i_ino;
1463 ins.offset = file_pos;
1464 ins.type = BTRFS_EXTENT_DATA_KEY;
1465 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1466 BUG_ON(ret);
1467 leaf = path->nodes[0];
1468 fi = btrfs_item_ptr(leaf, path->slots[0],
1469 struct btrfs_file_extent_item);
1470 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1471 btrfs_set_file_extent_type(leaf, fi, extent_type);
1472 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1473 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1474 btrfs_set_file_extent_offset(leaf, fi, 0);
1475 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1476 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1477 btrfs_set_file_extent_compression(leaf, fi, compression);
1478 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1479 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1480
1481 btrfs_unlock_up_safe(path, 1);
1482 btrfs_set_lock_blocking(leaf);
1483
1484 btrfs_mark_buffer_dirty(leaf);
1485
1486 inode_add_bytes(inode, num_bytes);
1487 btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1488
1489 ins.objectid = disk_bytenr;
1490 ins.offset = disk_num_bytes;
1491 ins.type = BTRFS_EXTENT_ITEM_KEY;
1492 ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1493 root->root_key.objectid,
1494 trans->transid, inode->i_ino, &ins);
1495 BUG_ON(ret);
1496 btrfs_free_path(path);
1497
1498 return 0;
1499 }
1500
1501 /*
1502 * helper function for btrfs_finish_ordered_io, this
1503 * just reads in some of the csum leaves to prime them into ram
1504 * before we start the transaction. It limits the amount of btree
1505 * reads required while inside the transaction.
1506 */
1507 static noinline void reada_csum(struct btrfs_root *root,
1508 struct btrfs_path *path,
1509 struct btrfs_ordered_extent *ordered_extent)
1510 {
1511 struct btrfs_ordered_sum *sum;
1512 u64 bytenr;
1513
1514 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1515 list);
1516 bytenr = sum->sums[0].bytenr;
1517
1518 /*
1519 * we don't care about the results, the point of this search is
1520 * just to get the btree leaves into ram
1521 */
1522 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1523 }
1524
1525 /* as ordered data IO finishes, this gets called so we can finish
1526 * an ordered extent if the range of bytes in the file it covers are
1527 * fully written.
1528 */
1529 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1530 {
1531 struct btrfs_root *root = BTRFS_I(inode)->root;
1532 struct btrfs_trans_handle *trans;
1533 struct btrfs_ordered_extent *ordered_extent = NULL;
1534 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1535 struct btrfs_path *path;
1536 int compressed = 0;
1537 int ret;
1538
1539 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1540 if (!ret)
1541 return 0;
1542
1543 /*
1544 * before we join the transaction, try to do some of our IO.
1545 * This will limit the amount of IO that we have to do with
1546 * the transaction running. We're unlikely to need to do any
1547 * IO if the file extents are new, the disk_i_size checks
1548 * covers the most common case.
1549 */
1550 if (start < BTRFS_I(inode)->disk_i_size) {
1551 path = btrfs_alloc_path();
1552 if (path) {
1553 ret = btrfs_lookup_file_extent(NULL, root, path,
1554 inode->i_ino,
1555 start, 0);
1556 ordered_extent = btrfs_lookup_ordered_extent(inode,
1557 start);
1558 if (!list_empty(&ordered_extent->list)) {
1559 btrfs_release_path(root, path);
1560 reada_csum(root, path, ordered_extent);
1561 }
1562 btrfs_free_path(path);
1563 }
1564 }
1565
1566 trans = btrfs_join_transaction(root, 1);
1567
1568 if (!ordered_extent)
1569 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1570 BUG_ON(!ordered_extent);
1571 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1572 goto nocow;
1573
1574 lock_extent(io_tree, ordered_extent->file_offset,
1575 ordered_extent->file_offset + ordered_extent->len - 1,
1576 GFP_NOFS);
1577
1578 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1579 compressed = 1;
1580 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1581 BUG_ON(compressed);
1582 ret = btrfs_mark_extent_written(trans, root, inode,
1583 ordered_extent->file_offset,
1584 ordered_extent->file_offset +
1585 ordered_extent->len);
1586 BUG_ON(ret);
1587 } else {
1588 ret = insert_reserved_file_extent(trans, inode,
1589 ordered_extent->file_offset,
1590 ordered_extent->start,
1591 ordered_extent->disk_len,
1592 ordered_extent->len,
1593 ordered_extent->len,
1594 ordered_extent->file_offset +
1595 ordered_extent->len,
1596 compressed, 0, 0,
1597 BTRFS_FILE_EXTENT_REG);
1598 BUG_ON(ret);
1599 }
1600 unlock_extent(io_tree, ordered_extent->file_offset,
1601 ordered_extent->file_offset + ordered_extent->len - 1,
1602 GFP_NOFS);
1603 nocow:
1604 add_pending_csums(trans, inode, ordered_extent->file_offset,
1605 &ordered_extent->list);
1606
1607 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1608 btrfs_ordered_update_i_size(inode, ordered_extent);
1609 btrfs_update_inode(trans, root, inode);
1610 btrfs_remove_ordered_extent(inode, ordered_extent);
1611 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1612
1613 /* once for us */
1614 btrfs_put_ordered_extent(ordered_extent);
1615 /* once for the tree */
1616 btrfs_put_ordered_extent(ordered_extent);
1617
1618 btrfs_end_transaction(trans, root);
1619 return 0;
1620 }
1621
1622 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1623 struct extent_state *state, int uptodate)
1624 {
1625 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1626 }
1627
1628 /*
1629 * When IO fails, either with EIO or csum verification fails, we
1630 * try other mirrors that might have a good copy of the data. This
1631 * io_failure_record is used to record state as we go through all the
1632 * mirrors. If another mirror has good data, the page is set up to date
1633 * and things continue. If a good mirror can't be found, the original
1634 * bio end_io callback is called to indicate things have failed.
1635 */
1636 struct io_failure_record {
1637 struct page *page;
1638 u64 start;
1639 u64 len;
1640 u64 logical;
1641 unsigned long bio_flags;
1642 int last_mirror;
1643 };
1644
1645 static int btrfs_io_failed_hook(struct bio *failed_bio,
1646 struct page *page, u64 start, u64 end,
1647 struct extent_state *state)
1648 {
1649 struct io_failure_record *failrec = NULL;
1650 u64 private;
1651 struct extent_map *em;
1652 struct inode *inode = page->mapping->host;
1653 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1654 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1655 struct bio *bio;
1656 int num_copies;
1657 int ret;
1658 int rw;
1659 u64 logical;
1660
1661 ret = get_state_private(failure_tree, start, &private);
1662 if (ret) {
1663 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1664 if (!failrec)
1665 return -ENOMEM;
1666 failrec->start = start;
1667 failrec->len = end - start + 1;
1668 failrec->last_mirror = 0;
1669 failrec->bio_flags = 0;
1670
1671 spin_lock(&em_tree->lock);
1672 em = lookup_extent_mapping(em_tree, start, failrec->len);
1673 if (em->start > start || em->start + em->len < start) {
1674 free_extent_map(em);
1675 em = NULL;
1676 }
1677 spin_unlock(&em_tree->lock);
1678
1679 if (!em || IS_ERR(em)) {
1680 kfree(failrec);
1681 return -EIO;
1682 }
1683 logical = start - em->start;
1684 logical = em->block_start + logical;
1685 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1686 logical = em->block_start;
1687 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1688 }
1689 failrec->logical = logical;
1690 free_extent_map(em);
1691 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1692 EXTENT_DIRTY, GFP_NOFS);
1693 set_state_private(failure_tree, start,
1694 (u64)(unsigned long)failrec);
1695 } else {
1696 failrec = (struct io_failure_record *)(unsigned long)private;
1697 }
1698 num_copies = btrfs_num_copies(
1699 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1700 failrec->logical, failrec->len);
1701 failrec->last_mirror++;
1702 if (!state) {
1703 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1704 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1705 failrec->start,
1706 EXTENT_LOCKED);
1707 if (state && state->start != failrec->start)
1708 state = NULL;
1709 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1710 }
1711 if (!state || failrec->last_mirror > num_copies) {
1712 set_state_private(failure_tree, failrec->start, 0);
1713 clear_extent_bits(failure_tree, failrec->start,
1714 failrec->start + failrec->len - 1,
1715 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1716 kfree(failrec);
1717 return -EIO;
1718 }
1719 bio = bio_alloc(GFP_NOFS, 1);
1720 bio->bi_private = state;
1721 bio->bi_end_io = failed_bio->bi_end_io;
1722 bio->bi_sector = failrec->logical >> 9;
1723 bio->bi_bdev = failed_bio->bi_bdev;
1724 bio->bi_size = 0;
1725
1726 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1727 if (failed_bio->bi_rw & (1 << BIO_RW))
1728 rw = WRITE;
1729 else
1730 rw = READ;
1731
1732 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1733 failrec->last_mirror,
1734 failrec->bio_flags);
1735 return 0;
1736 }
1737
1738 /*
1739 * each time an IO finishes, we do a fast check in the IO failure tree
1740 * to see if we need to process or clean up an io_failure_record
1741 */
1742 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1743 {
1744 u64 private;
1745 u64 private_failure;
1746 struct io_failure_record *failure;
1747 int ret;
1748
1749 private = 0;
1750 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1751 (u64)-1, 1, EXTENT_DIRTY)) {
1752 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1753 start, &private_failure);
1754 if (ret == 0) {
1755 failure = (struct io_failure_record *)(unsigned long)
1756 private_failure;
1757 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1758 failure->start, 0);
1759 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1760 failure->start,
1761 failure->start + failure->len - 1,
1762 EXTENT_DIRTY | EXTENT_LOCKED,
1763 GFP_NOFS);
1764 kfree(failure);
1765 }
1766 }
1767 return 0;
1768 }
1769
1770 /*
1771 * when reads are done, we need to check csums to verify the data is correct
1772 * if there's a match, we allow the bio to finish. If not, we go through
1773 * the io_failure_record routines to find good copies
1774 */
1775 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1776 struct extent_state *state)
1777 {
1778 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1779 struct inode *inode = page->mapping->host;
1780 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1781 char *kaddr;
1782 u64 private = ~(u32)0;
1783 int ret;
1784 struct btrfs_root *root = BTRFS_I(inode)->root;
1785 u32 csum = ~(u32)0;
1786
1787 if (PageChecked(page)) {
1788 ClearPageChecked(page);
1789 goto good;
1790 }
1791 if (btrfs_test_flag(inode, NODATASUM))
1792 return 0;
1793
1794 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1795 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
1796 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1797 GFP_NOFS);
1798 return 0;
1799 }
1800
1801 if (state && state->start == start) {
1802 private = state->private;
1803 ret = 0;
1804 } else {
1805 ret = get_state_private(io_tree, start, &private);
1806 }
1807 kaddr = kmap_atomic(page, KM_USER0);
1808 if (ret)
1809 goto zeroit;
1810
1811 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1812 btrfs_csum_final(csum, (char *)&csum);
1813 if (csum != private)
1814 goto zeroit;
1815
1816 kunmap_atomic(kaddr, KM_USER0);
1817 good:
1818 /* if the io failure tree for this inode is non-empty,
1819 * check to see if we've recovered from a failed IO
1820 */
1821 btrfs_clean_io_failures(inode, start);
1822 return 0;
1823
1824 zeroit:
1825 if (printk_ratelimit()) {
1826 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1827 "private %llu\n", page->mapping->host->i_ino,
1828 (unsigned long long)start, csum,
1829 (unsigned long long)private);
1830 }
1831 memset(kaddr + offset, 1, end - start + 1);
1832 flush_dcache_page(page);
1833 kunmap_atomic(kaddr, KM_USER0);
1834 if (private == 0)
1835 return 0;
1836 return -EIO;
1837 }
1838
1839 /*
1840 * This creates an orphan entry for the given inode in case something goes
1841 * wrong in the middle of an unlink/truncate.
1842 */
1843 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1844 {
1845 struct btrfs_root *root = BTRFS_I(inode)->root;
1846 int ret = 0;
1847
1848 spin_lock(&root->list_lock);
1849
1850 /* already on the orphan list, we're good */
1851 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1852 spin_unlock(&root->list_lock);
1853 return 0;
1854 }
1855
1856 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1857
1858 spin_unlock(&root->list_lock);
1859
1860 /*
1861 * insert an orphan item to track this unlinked/truncated file
1862 */
1863 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1864
1865 return ret;
1866 }
1867
1868 /*
1869 * We have done the truncate/delete so we can go ahead and remove the orphan
1870 * item for this particular inode.
1871 */
1872 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1873 {
1874 struct btrfs_root *root = BTRFS_I(inode)->root;
1875 int ret = 0;
1876
1877 spin_lock(&root->list_lock);
1878
1879 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1880 spin_unlock(&root->list_lock);
1881 return 0;
1882 }
1883
1884 list_del_init(&BTRFS_I(inode)->i_orphan);
1885 if (!trans) {
1886 spin_unlock(&root->list_lock);
1887 return 0;
1888 }
1889
1890 spin_unlock(&root->list_lock);
1891
1892 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1893
1894 return ret;
1895 }
1896
1897 /*
1898 * this cleans up any orphans that may be left on the list from the last use
1899 * of this root.
1900 */
1901 void btrfs_orphan_cleanup(struct btrfs_root *root)
1902 {
1903 struct btrfs_path *path;
1904 struct extent_buffer *leaf;
1905 struct btrfs_item *item;
1906 struct btrfs_key key, found_key;
1907 struct btrfs_trans_handle *trans;
1908 struct inode *inode;
1909 int ret = 0, nr_unlink = 0, nr_truncate = 0;
1910
1911 path = btrfs_alloc_path();
1912 if (!path)
1913 return;
1914 path->reada = -1;
1915
1916 key.objectid = BTRFS_ORPHAN_OBJECTID;
1917 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1918 key.offset = (u64)-1;
1919
1920
1921 while (1) {
1922 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1923 if (ret < 0) {
1924 printk(KERN_ERR "Error searching slot for orphan: %d"
1925 "\n", ret);
1926 break;
1927 }
1928
1929 /*
1930 * if ret == 0 means we found what we were searching for, which
1931 * is weird, but possible, so only screw with path if we didnt
1932 * find the key and see if we have stuff that matches
1933 */
1934 if (ret > 0) {
1935 if (path->slots[0] == 0)
1936 break;
1937 path->slots[0]--;
1938 }
1939
1940 /* pull out the item */
1941 leaf = path->nodes[0];
1942 item = btrfs_item_nr(leaf, path->slots[0]);
1943 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1944
1945 /* make sure the item matches what we want */
1946 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1947 break;
1948 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1949 break;
1950
1951 /* release the path since we're done with it */
1952 btrfs_release_path(root, path);
1953
1954 /*
1955 * this is where we are basically btrfs_lookup, without the
1956 * crossing root thing. we store the inode number in the
1957 * offset of the orphan item.
1958 */
1959 inode = btrfs_iget_locked(root->fs_info->sb,
1960 found_key.offset, root);
1961 if (!inode)
1962 break;
1963
1964 if (inode->i_state & I_NEW) {
1965 BTRFS_I(inode)->root = root;
1966
1967 /* have to set the location manually */
1968 BTRFS_I(inode)->location.objectid = inode->i_ino;
1969 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1970 BTRFS_I(inode)->location.offset = 0;
1971
1972 btrfs_read_locked_inode(inode);
1973 unlock_new_inode(inode);
1974 }
1975
1976 /*
1977 * add this inode to the orphan list so btrfs_orphan_del does
1978 * the proper thing when we hit it
1979 */
1980 spin_lock(&root->list_lock);
1981 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1982 spin_unlock(&root->list_lock);
1983
1984 /*
1985 * if this is a bad inode, means we actually succeeded in
1986 * removing the inode, but not the orphan record, which means
1987 * we need to manually delete the orphan since iput will just
1988 * do a destroy_inode
1989 */
1990 if (is_bad_inode(inode)) {
1991 trans = btrfs_start_transaction(root, 1);
1992 btrfs_orphan_del(trans, inode);
1993 btrfs_end_transaction(trans, root);
1994 iput(inode);
1995 continue;
1996 }
1997
1998 /* if we have links, this was a truncate, lets do that */
1999 if (inode->i_nlink) {
2000 nr_truncate++;
2001 btrfs_truncate(inode);
2002 } else {
2003 nr_unlink++;
2004 }
2005
2006 /* this will do delete_inode and everything for us */
2007 iput(inode);
2008 }
2009
2010 if (nr_unlink)
2011 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2012 if (nr_truncate)
2013 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2014
2015 btrfs_free_path(path);
2016 }
2017
2018 /*
2019 * read an inode from the btree into the in-memory inode
2020 */
2021 void btrfs_read_locked_inode(struct inode *inode)
2022 {
2023 struct btrfs_path *path;
2024 struct extent_buffer *leaf;
2025 struct btrfs_inode_item *inode_item;
2026 struct btrfs_timespec *tspec;
2027 struct btrfs_root *root = BTRFS_I(inode)->root;
2028 struct btrfs_key location;
2029 u64 alloc_group_block;
2030 u32 rdev;
2031 int ret;
2032
2033 path = btrfs_alloc_path();
2034 BUG_ON(!path);
2035 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2036
2037 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2038 if (ret)
2039 goto make_bad;
2040
2041 leaf = path->nodes[0];
2042 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2043 struct btrfs_inode_item);
2044
2045 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2046 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2047 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2048 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2049 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2050
2051 tspec = btrfs_inode_atime(inode_item);
2052 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2053 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2054
2055 tspec = btrfs_inode_mtime(inode_item);
2056 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2057 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2058
2059 tspec = btrfs_inode_ctime(inode_item);
2060 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2061 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2062
2063 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2064 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2065 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2066 inode->i_generation = BTRFS_I(inode)->generation;
2067 inode->i_rdev = 0;
2068 rdev = btrfs_inode_rdev(leaf, inode_item);
2069
2070 BTRFS_I(inode)->index_cnt = (u64)-1;
2071 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2072
2073 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2074
2075 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2076 alloc_group_block, 0);
2077 btrfs_free_path(path);
2078 inode_item = NULL;
2079
2080 switch (inode->i_mode & S_IFMT) {
2081 case S_IFREG:
2082 inode->i_mapping->a_ops = &btrfs_aops;
2083 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2084 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2085 inode->i_fop = &btrfs_file_operations;
2086 inode->i_op = &btrfs_file_inode_operations;
2087 break;
2088 case S_IFDIR:
2089 inode->i_fop = &btrfs_dir_file_operations;
2090 if (root == root->fs_info->tree_root)
2091 inode->i_op = &btrfs_dir_ro_inode_operations;
2092 else
2093 inode->i_op = &btrfs_dir_inode_operations;
2094 break;
2095 case S_IFLNK:
2096 inode->i_op = &btrfs_symlink_inode_operations;
2097 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2098 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2099 break;
2100 default:
2101 inode->i_op = &btrfs_special_inode_operations;
2102 init_special_inode(inode, inode->i_mode, rdev);
2103 break;
2104 }
2105 return;
2106
2107 make_bad:
2108 btrfs_free_path(path);
2109 make_bad_inode(inode);
2110 }
2111
2112 /*
2113 * given a leaf and an inode, copy the inode fields into the leaf
2114 */
2115 static void fill_inode_item(struct btrfs_trans_handle *trans,
2116 struct extent_buffer *leaf,
2117 struct btrfs_inode_item *item,
2118 struct inode *inode)
2119 {
2120 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2121 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2122 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2123 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2124 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2125
2126 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2127 inode->i_atime.tv_sec);
2128 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2129 inode->i_atime.tv_nsec);
2130
2131 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2132 inode->i_mtime.tv_sec);
2133 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2134 inode->i_mtime.tv_nsec);
2135
2136 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2137 inode->i_ctime.tv_sec);
2138 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2139 inode->i_ctime.tv_nsec);
2140
2141 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2142 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2143 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2144 btrfs_set_inode_transid(leaf, item, trans->transid);
2145 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2146 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2147 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2148 }
2149
2150 /*
2151 * copy everything in the in-memory inode into the btree.
2152 */
2153 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2154 struct btrfs_root *root, struct inode *inode)
2155 {
2156 struct btrfs_inode_item *inode_item;
2157 struct btrfs_path *path;
2158 struct extent_buffer *leaf;
2159 int ret;
2160
2161 path = btrfs_alloc_path();
2162 BUG_ON(!path);
2163 path->leave_spinning = 1;
2164 ret = btrfs_lookup_inode(trans, root, path,
2165 &BTRFS_I(inode)->location, 1);
2166 if (ret) {
2167 if (ret > 0)
2168 ret = -ENOENT;
2169 goto failed;
2170 }
2171
2172 btrfs_unlock_up_safe(path, 1);
2173 leaf = path->nodes[0];
2174 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2175 struct btrfs_inode_item);
2176
2177 fill_inode_item(trans, leaf, inode_item, inode);
2178 btrfs_mark_buffer_dirty(leaf);
2179 btrfs_set_inode_last_trans(trans, inode);
2180 ret = 0;
2181 failed:
2182 btrfs_free_path(path);
2183 return ret;
2184 }
2185
2186
2187 /*
2188 * unlink helper that gets used here in inode.c and in the tree logging
2189 * recovery code. It remove a link in a directory with a given name, and
2190 * also drops the back refs in the inode to the directory
2191 */
2192 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2193 struct btrfs_root *root,
2194 struct inode *dir, struct inode *inode,
2195 const char *name, int name_len)
2196 {
2197 struct btrfs_path *path;
2198 int ret = 0;
2199 struct extent_buffer *leaf;
2200 struct btrfs_dir_item *di;
2201 struct btrfs_key key;
2202 u64 index;
2203
2204 path = btrfs_alloc_path();
2205 if (!path) {
2206 ret = -ENOMEM;
2207 goto err;
2208 }
2209
2210 path->leave_spinning = 1;
2211 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2212 name, name_len, -1);
2213 if (IS_ERR(di)) {
2214 ret = PTR_ERR(di);
2215 goto err;
2216 }
2217 if (!di) {
2218 ret = -ENOENT;
2219 goto err;
2220 }
2221 leaf = path->nodes[0];
2222 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2223 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2224 if (ret)
2225 goto err;
2226 btrfs_release_path(root, path);
2227
2228 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2229 inode->i_ino,
2230 dir->i_ino, &index);
2231 if (ret) {
2232 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2233 "inode %lu parent %lu\n", name_len, name,
2234 inode->i_ino, dir->i_ino);
2235 goto err;
2236 }
2237
2238 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2239 index, name, name_len, -1);
2240 if (IS_ERR(di)) {
2241 ret = PTR_ERR(di);
2242 goto err;
2243 }
2244 if (!di) {
2245 ret = -ENOENT;
2246 goto err;
2247 }
2248 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2249 btrfs_release_path(root, path);
2250
2251 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2252 inode, dir->i_ino);
2253 BUG_ON(ret != 0 && ret != -ENOENT);
2254
2255 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2256 dir, index);
2257 BUG_ON(ret);
2258 err:
2259 btrfs_free_path(path);
2260 if (ret)
2261 goto out;
2262
2263 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2264 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2265 btrfs_update_inode(trans, root, dir);
2266 btrfs_drop_nlink(inode);
2267 ret = btrfs_update_inode(trans, root, inode);
2268 dir->i_sb->s_dirt = 1;
2269 out:
2270 return ret;
2271 }
2272
2273 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2274 {
2275 struct btrfs_root *root;
2276 struct btrfs_trans_handle *trans;
2277 struct inode *inode = dentry->d_inode;
2278 int ret;
2279 unsigned long nr = 0;
2280
2281 root = BTRFS_I(dir)->root;
2282
2283 trans = btrfs_start_transaction(root, 1);
2284
2285 btrfs_set_trans_block_group(trans, dir);
2286
2287 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2288
2289 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2290 dentry->d_name.name, dentry->d_name.len);
2291
2292 if (inode->i_nlink == 0)
2293 ret = btrfs_orphan_add(trans, inode);
2294
2295 nr = trans->blocks_used;
2296
2297 btrfs_end_transaction_throttle(trans, root);
2298 btrfs_btree_balance_dirty(root, nr);
2299 return ret;
2300 }
2301
2302 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2303 {
2304 struct inode *inode = dentry->d_inode;
2305 int err = 0;
2306 int ret;
2307 struct btrfs_root *root = BTRFS_I(dir)->root;
2308 struct btrfs_trans_handle *trans;
2309 unsigned long nr = 0;
2310
2311 /*
2312 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2313 * the root of a subvolume or snapshot
2314 */
2315 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2316 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2317 return -ENOTEMPTY;
2318 }
2319
2320 trans = btrfs_start_transaction(root, 1);
2321 btrfs_set_trans_block_group(trans, dir);
2322
2323 err = btrfs_orphan_add(trans, inode);
2324 if (err)
2325 goto fail_trans;
2326
2327 /* now the directory is empty */
2328 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2329 dentry->d_name.name, dentry->d_name.len);
2330 if (!err)
2331 btrfs_i_size_write(inode, 0);
2332
2333 fail_trans:
2334 nr = trans->blocks_used;
2335 ret = btrfs_end_transaction_throttle(trans, root);
2336 btrfs_btree_balance_dirty(root, nr);
2337
2338 if (ret && !err)
2339 err = ret;
2340 return err;
2341 }
2342
2343 #if 0
2344 /*
2345 * when truncating bytes in a file, it is possible to avoid reading
2346 * the leaves that contain only checksum items. This can be the
2347 * majority of the IO required to delete a large file, but it must
2348 * be done carefully.
2349 *
2350 * The keys in the level just above the leaves are checked to make sure
2351 * the lowest key in a given leaf is a csum key, and starts at an offset
2352 * after the new size.
2353 *
2354 * Then the key for the next leaf is checked to make sure it also has
2355 * a checksum item for the same file. If it does, we know our target leaf
2356 * contains only checksum items, and it can be safely freed without reading
2357 * it.
2358 *
2359 * This is just an optimization targeted at large files. It may do
2360 * nothing. It will return 0 unless things went badly.
2361 */
2362 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2363 struct btrfs_root *root,
2364 struct btrfs_path *path,
2365 struct inode *inode, u64 new_size)
2366 {
2367 struct btrfs_key key;
2368 int ret;
2369 int nritems;
2370 struct btrfs_key found_key;
2371 struct btrfs_key other_key;
2372 struct btrfs_leaf_ref *ref;
2373 u64 leaf_gen;
2374 u64 leaf_start;
2375
2376 path->lowest_level = 1;
2377 key.objectid = inode->i_ino;
2378 key.type = BTRFS_CSUM_ITEM_KEY;
2379 key.offset = new_size;
2380 again:
2381 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2382 if (ret < 0)
2383 goto out;
2384
2385 if (path->nodes[1] == NULL) {
2386 ret = 0;
2387 goto out;
2388 }
2389 ret = 0;
2390 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2391 nritems = btrfs_header_nritems(path->nodes[1]);
2392
2393 if (!nritems)
2394 goto out;
2395
2396 if (path->slots[1] >= nritems)
2397 goto next_node;
2398
2399 /* did we find a key greater than anything we want to delete? */
2400 if (found_key.objectid > inode->i_ino ||
2401 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2402 goto out;
2403
2404 /* we check the next key in the node to make sure the leave contains
2405 * only checksum items. This comparison doesn't work if our
2406 * leaf is the last one in the node
2407 */
2408 if (path->slots[1] + 1 >= nritems) {
2409 next_node:
2410 /* search forward from the last key in the node, this
2411 * will bring us into the next node in the tree
2412 */
2413 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2414
2415 /* unlikely, but we inc below, so check to be safe */
2416 if (found_key.offset == (u64)-1)
2417 goto out;
2418
2419 /* search_forward needs a path with locks held, do the
2420 * search again for the original key. It is possible
2421 * this will race with a balance and return a path that
2422 * we could modify, but this drop is just an optimization
2423 * and is allowed to miss some leaves.
2424 */
2425 btrfs_release_path(root, path);
2426 found_key.offset++;
2427
2428 /* setup a max key for search_forward */
2429 other_key.offset = (u64)-1;
2430 other_key.type = key.type;
2431 other_key.objectid = key.objectid;
2432
2433 path->keep_locks = 1;
2434 ret = btrfs_search_forward(root, &found_key, &other_key,
2435 path, 0, 0);
2436 path->keep_locks = 0;
2437 if (ret || found_key.objectid != key.objectid ||
2438 found_key.type != key.type) {
2439 ret = 0;
2440 goto out;
2441 }
2442
2443 key.offset = found_key.offset;
2444 btrfs_release_path(root, path);
2445 cond_resched();
2446 goto again;
2447 }
2448
2449 /* we know there's one more slot after us in the tree,
2450 * read that key so we can verify it is also a checksum item
2451 */
2452 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2453
2454 if (found_key.objectid < inode->i_ino)
2455 goto next_key;
2456
2457 if (found_key.type != key.type || found_key.offset < new_size)
2458 goto next_key;
2459
2460 /*
2461 * if the key for the next leaf isn't a csum key from this objectid,
2462 * we can't be sure there aren't good items inside this leaf.
2463 * Bail out
2464 */
2465 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2466 goto out;
2467
2468 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2469 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2470 /*
2471 * it is safe to delete this leaf, it contains only
2472 * csum items from this inode at an offset >= new_size
2473 */
2474 ret = btrfs_del_leaf(trans, root, path, leaf_start);
2475 BUG_ON(ret);
2476
2477 if (root->ref_cows && leaf_gen < trans->transid) {
2478 ref = btrfs_alloc_leaf_ref(root, 0);
2479 if (ref) {
2480 ref->root_gen = root->root_key.offset;
2481 ref->bytenr = leaf_start;
2482 ref->owner = 0;
2483 ref->generation = leaf_gen;
2484 ref->nritems = 0;
2485
2486 btrfs_sort_leaf_ref(ref);
2487
2488 ret = btrfs_add_leaf_ref(root, ref, 0);
2489 WARN_ON(ret);
2490 btrfs_free_leaf_ref(root, ref);
2491 } else {
2492 WARN_ON(1);
2493 }
2494 }
2495 next_key:
2496 btrfs_release_path(root, path);
2497
2498 if (other_key.objectid == inode->i_ino &&
2499 other_key.type == key.type && other_key.offset > key.offset) {
2500 key.offset = other_key.offset;
2501 cond_resched();
2502 goto again;
2503 }
2504 ret = 0;
2505 out:
2506 /* fixup any changes we've made to the path */
2507 path->lowest_level = 0;
2508 path->keep_locks = 0;
2509 btrfs_release_path(root, path);
2510 return ret;
2511 }
2512
2513 #endif
2514
2515 /*
2516 * this can truncate away extent items, csum items and directory items.
2517 * It starts at a high offset and removes keys until it can't find
2518 * any higher than new_size
2519 *
2520 * csum items that cross the new i_size are truncated to the new size
2521 * as well.
2522 *
2523 * min_type is the minimum key type to truncate down to. If set to 0, this
2524 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2525 */
2526 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2527 struct btrfs_root *root,
2528 struct inode *inode,
2529 u64 new_size, u32 min_type)
2530 {
2531 int ret;
2532 struct btrfs_path *path;
2533 struct btrfs_key key;
2534 struct btrfs_key found_key;
2535 u32 found_type = (u8)-1;
2536 struct extent_buffer *leaf;
2537 struct btrfs_file_extent_item *fi;
2538 u64 extent_start = 0;
2539 u64 extent_num_bytes = 0;
2540 u64 item_end = 0;
2541 u64 root_gen = 0;
2542 u64 root_owner = 0;
2543 int found_extent;
2544 int del_item;
2545 int pending_del_nr = 0;
2546 int pending_del_slot = 0;
2547 int extent_type = -1;
2548 int encoding;
2549 u64 mask = root->sectorsize - 1;
2550
2551 if (root->ref_cows)
2552 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2553 path = btrfs_alloc_path();
2554 path->reada = -1;
2555 BUG_ON(!path);
2556
2557 /* FIXME, add redo link to tree so we don't leak on crash */
2558 key.objectid = inode->i_ino;
2559 key.offset = (u64)-1;
2560 key.type = (u8)-1;
2561
2562 search_again:
2563 path->leave_spinning = 1;
2564 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2565 if (ret < 0)
2566 goto error;
2567
2568 if (ret > 0) {
2569 /* there are no items in the tree for us to truncate, we're
2570 * done
2571 */
2572 if (path->slots[0] == 0) {
2573 ret = 0;
2574 goto error;
2575 }
2576 path->slots[0]--;
2577 }
2578
2579 while (1) {
2580 fi = NULL;
2581 leaf = path->nodes[0];
2582 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2583 found_type = btrfs_key_type(&found_key);
2584 encoding = 0;
2585
2586 if (found_key.objectid != inode->i_ino)
2587 break;
2588
2589 if (found_type < min_type)
2590 break;
2591
2592 item_end = found_key.offset;
2593 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2594 fi = btrfs_item_ptr(leaf, path->slots[0],
2595 struct btrfs_file_extent_item);
2596 extent_type = btrfs_file_extent_type(leaf, fi);
2597 encoding = btrfs_file_extent_compression(leaf, fi);
2598 encoding |= btrfs_file_extent_encryption(leaf, fi);
2599 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2600
2601 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2602 item_end +=
2603 btrfs_file_extent_num_bytes(leaf, fi);
2604 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2605 item_end += btrfs_file_extent_inline_len(leaf,
2606 fi);
2607 }
2608 item_end--;
2609 }
2610 if (item_end < new_size) {
2611 if (found_type == BTRFS_DIR_ITEM_KEY)
2612 found_type = BTRFS_INODE_ITEM_KEY;
2613 else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2614 found_type = BTRFS_EXTENT_DATA_KEY;
2615 else if (found_type == BTRFS_EXTENT_DATA_KEY)
2616 found_type = BTRFS_XATTR_ITEM_KEY;
2617 else if (found_type == BTRFS_XATTR_ITEM_KEY)
2618 found_type = BTRFS_INODE_REF_KEY;
2619 else if (found_type)
2620 found_type--;
2621 else
2622 break;
2623 btrfs_set_key_type(&key, found_type);
2624 goto next;
2625 }
2626 if (found_key.offset >= new_size)
2627 del_item = 1;
2628 else
2629 del_item = 0;
2630 found_extent = 0;
2631
2632 /* FIXME, shrink the extent if the ref count is only 1 */
2633 if (found_type != BTRFS_EXTENT_DATA_KEY)
2634 goto delete;
2635
2636 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2637 u64 num_dec;
2638 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2639 if (!del_item && !encoding) {
2640 u64 orig_num_bytes =
2641 btrfs_file_extent_num_bytes(leaf, fi);
2642 extent_num_bytes = new_size -
2643 found_key.offset + root->sectorsize - 1;
2644 extent_num_bytes = extent_num_bytes &
2645 ~((u64)root->sectorsize - 1);
2646 btrfs_set_file_extent_num_bytes(leaf, fi,
2647 extent_num_bytes);
2648 num_dec = (orig_num_bytes -
2649 extent_num_bytes);
2650 if (root->ref_cows && extent_start != 0)
2651 inode_sub_bytes(inode, num_dec);
2652 btrfs_mark_buffer_dirty(leaf);
2653 } else {
2654 extent_num_bytes =
2655 btrfs_file_extent_disk_num_bytes(leaf,
2656 fi);
2657 /* FIXME blocksize != 4096 */
2658 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2659 if (extent_start != 0) {
2660 found_extent = 1;
2661 if (root->ref_cows)
2662 inode_sub_bytes(inode, num_dec);
2663 }
2664 root_gen = btrfs_header_generation(leaf);
2665 root_owner = btrfs_header_owner(leaf);
2666 }
2667 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2668 /*
2669 * we can't truncate inline items that have had
2670 * special encodings
2671 */
2672 if (!del_item &&
2673 btrfs_file_extent_compression(leaf, fi) == 0 &&
2674 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2675 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2676 u32 size = new_size - found_key.offset;
2677
2678 if (root->ref_cows) {
2679 inode_sub_bytes(inode, item_end + 1 -
2680 new_size);
2681 }
2682 size =
2683 btrfs_file_extent_calc_inline_size(size);
2684 ret = btrfs_truncate_item(trans, root, path,
2685 size, 1);
2686 BUG_ON(ret);
2687 } else if (root->ref_cows) {
2688 inode_sub_bytes(inode, item_end + 1 -
2689 found_key.offset);
2690 }
2691 }
2692 delete:
2693 if (del_item) {
2694 if (!pending_del_nr) {
2695 /* no pending yet, add ourselves */
2696 pending_del_slot = path->slots[0];
2697 pending_del_nr = 1;
2698 } else if (pending_del_nr &&
2699 path->slots[0] + 1 == pending_del_slot) {
2700 /* hop on the pending chunk */
2701 pending_del_nr++;
2702 pending_del_slot = path->slots[0];
2703 } else {
2704 BUG();
2705 }
2706 } else {
2707 break;
2708 }
2709 if (found_extent) {
2710 btrfs_set_path_blocking(path);
2711 ret = btrfs_free_extent(trans, root, extent_start,
2712 extent_num_bytes,
2713 leaf->start, root_owner,
2714 root_gen, inode->i_ino, 0);
2715 BUG_ON(ret);
2716 }
2717 next:
2718 if (path->slots[0] == 0) {
2719 if (pending_del_nr)
2720 goto del_pending;
2721 btrfs_release_path(root, path);
2722 if (found_type == BTRFS_INODE_ITEM_KEY)
2723 break;
2724 goto search_again;
2725 }
2726
2727 path->slots[0]--;
2728 if (pending_del_nr &&
2729 path->slots[0] + 1 != pending_del_slot) {
2730 struct btrfs_key debug;
2731 del_pending:
2732 btrfs_item_key_to_cpu(path->nodes[0], &debug,
2733 pending_del_slot);
2734 ret = btrfs_del_items(trans, root, path,
2735 pending_del_slot,
2736 pending_del_nr);
2737 BUG_ON(ret);
2738 pending_del_nr = 0;
2739 btrfs_release_path(root, path);
2740 if (found_type == BTRFS_INODE_ITEM_KEY)
2741 break;
2742 goto search_again;
2743 }
2744 }
2745 ret = 0;
2746 error:
2747 if (pending_del_nr) {
2748 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2749 pending_del_nr);
2750 }
2751 btrfs_free_path(path);
2752 inode->i_sb->s_dirt = 1;
2753 return ret;
2754 }
2755
2756 /*
2757 * taken from block_truncate_page, but does cow as it zeros out
2758 * any bytes left in the last page in the file.
2759 */
2760 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2761 {
2762 struct inode *inode = mapping->host;
2763 struct btrfs_root *root = BTRFS_I(inode)->root;
2764 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2765 struct btrfs_ordered_extent *ordered;
2766 char *kaddr;
2767 u32 blocksize = root->sectorsize;
2768 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2769 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2770 struct page *page;
2771 int ret = 0;
2772 u64 page_start;
2773 u64 page_end;
2774
2775 if ((offset & (blocksize - 1)) == 0)
2776 goto out;
2777
2778 ret = -ENOMEM;
2779 again:
2780 page = grab_cache_page(mapping, index);
2781 if (!page)
2782 goto out;
2783
2784 page_start = page_offset(page);
2785 page_end = page_start + PAGE_CACHE_SIZE - 1;
2786
2787 if (!PageUptodate(page)) {
2788 ret = btrfs_readpage(NULL, page);
2789 lock_page(page);
2790 if (page->mapping != mapping) {
2791 unlock_page(page);
2792 page_cache_release(page);
2793 goto again;
2794 }
2795 if (!PageUptodate(page)) {
2796 ret = -EIO;
2797 goto out_unlock;
2798 }
2799 }
2800 wait_on_page_writeback(page);
2801
2802 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2803 set_page_extent_mapped(page);
2804
2805 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2806 if (ordered) {
2807 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2808 unlock_page(page);
2809 page_cache_release(page);
2810 btrfs_start_ordered_extent(inode, ordered, 1);
2811 btrfs_put_ordered_extent(ordered);
2812 goto again;
2813 }
2814
2815 btrfs_set_extent_delalloc(inode, page_start, page_end);
2816 ret = 0;
2817 if (offset != PAGE_CACHE_SIZE) {
2818 kaddr = kmap(page);
2819 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2820 flush_dcache_page(page);
2821 kunmap(page);
2822 }
2823 ClearPageChecked(page);
2824 set_page_dirty(page);
2825 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2826
2827 out_unlock:
2828 unlock_page(page);
2829 page_cache_release(page);
2830 out:
2831 return ret;
2832 }
2833
2834 int btrfs_cont_expand(struct inode *inode, loff_t size)
2835 {
2836 struct btrfs_trans_handle *trans;
2837 struct btrfs_root *root = BTRFS_I(inode)->root;
2838 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2839 struct extent_map *em;
2840 u64 mask = root->sectorsize - 1;
2841 u64 hole_start = (inode->i_size + mask) & ~mask;
2842 u64 block_end = (size + mask) & ~mask;
2843 u64 last_byte;
2844 u64 cur_offset;
2845 u64 hole_size;
2846 int err;
2847
2848 if (size <= hole_start)
2849 return 0;
2850
2851 err = btrfs_check_metadata_free_space(root);
2852 if (err)
2853 return err;
2854
2855 btrfs_truncate_page(inode->i_mapping, inode->i_size);
2856
2857 while (1) {
2858 struct btrfs_ordered_extent *ordered;
2859 btrfs_wait_ordered_range(inode, hole_start,
2860 block_end - hole_start);
2861 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2862 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2863 if (!ordered)
2864 break;
2865 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2866 btrfs_put_ordered_extent(ordered);
2867 }
2868
2869 trans = btrfs_start_transaction(root, 1);
2870 btrfs_set_trans_block_group(trans, inode);
2871
2872 cur_offset = hole_start;
2873 while (1) {
2874 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2875 block_end - cur_offset, 0);
2876 BUG_ON(IS_ERR(em) || !em);
2877 last_byte = min(extent_map_end(em), block_end);
2878 last_byte = (last_byte + mask) & ~mask;
2879 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2880 u64 hint_byte = 0;
2881 hole_size = last_byte - cur_offset;
2882 err = btrfs_drop_extents(trans, root, inode,
2883 cur_offset,
2884 cur_offset + hole_size,
2885 block_end,
2886 cur_offset, &hint_byte);
2887 if (err)
2888 break;
2889 err = btrfs_insert_file_extent(trans, root,
2890 inode->i_ino, cur_offset, 0,
2891 0, hole_size, 0, hole_size,
2892 0, 0, 0);
2893 btrfs_drop_extent_cache(inode, hole_start,
2894 last_byte - 1, 0);
2895 }
2896 free_extent_map(em);
2897 cur_offset = last_byte;
2898 if (err || cur_offset >= block_end)
2899 break;
2900 }
2901
2902 btrfs_end_transaction(trans, root);
2903 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2904 return err;
2905 }
2906
2907 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2908 {
2909 struct inode *inode = dentry->d_inode;
2910 int err;
2911
2912 err = inode_change_ok(inode, attr);
2913 if (err)
2914 return err;
2915
2916 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
2917 if (attr->ia_size > inode->i_size) {
2918 err = btrfs_cont_expand(inode, attr->ia_size);
2919 if (err)
2920 return err;
2921 } else if (inode->i_size > 0 &&
2922 attr->ia_size == 0) {
2923
2924 /* we're truncating a file that used to have good
2925 * data down to zero. Make sure it gets into
2926 * the ordered flush list so that any new writes
2927 * get down to disk quickly.
2928 */
2929 BTRFS_I(inode)->ordered_data_close = 1;
2930 }
2931 }
2932
2933 err = inode_setattr(inode, attr);
2934
2935 if (!err && ((attr->ia_valid & ATTR_MODE)))
2936 err = btrfs_acl_chmod(inode);
2937 return err;
2938 }
2939
2940 void btrfs_delete_inode(struct inode *inode)
2941 {
2942 struct btrfs_trans_handle *trans;
2943 struct btrfs_root *root = BTRFS_I(inode)->root;
2944 unsigned long nr;
2945 int ret;
2946
2947 truncate_inode_pages(&inode->i_data, 0);
2948 if (is_bad_inode(inode)) {
2949 btrfs_orphan_del(NULL, inode);
2950 goto no_delete;
2951 }
2952 btrfs_wait_ordered_range(inode, 0, (u64)-1);
2953
2954 btrfs_i_size_write(inode, 0);
2955 trans = btrfs_join_transaction(root, 1);
2956
2957 btrfs_set_trans_block_group(trans, inode);
2958 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
2959 if (ret) {
2960 btrfs_orphan_del(NULL, inode);
2961 goto no_delete_lock;
2962 }
2963
2964 btrfs_orphan_del(trans, inode);
2965
2966 nr = trans->blocks_used;
2967 clear_inode(inode);
2968
2969 btrfs_end_transaction(trans, root);
2970 btrfs_btree_balance_dirty(root, nr);
2971 return;
2972
2973 no_delete_lock:
2974 nr = trans->blocks_used;
2975 btrfs_end_transaction(trans, root);
2976 btrfs_btree_balance_dirty(root, nr);
2977 no_delete:
2978 clear_inode(inode);
2979 }
2980
2981 /*
2982 * this returns the key found in the dir entry in the location pointer.
2983 * If no dir entries were found, location->objectid is 0.
2984 */
2985 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2986 struct btrfs_key *location)
2987 {
2988 const char *name = dentry->d_name.name;
2989 int namelen = dentry->d_name.len;
2990 struct btrfs_dir_item *di;
2991 struct btrfs_path *path;
2992 struct btrfs_root *root = BTRFS_I(dir)->root;
2993 int ret = 0;
2994
2995 path = btrfs_alloc_path();
2996 BUG_ON(!path);
2997
2998 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
2999 namelen, 0);
3000 if (IS_ERR(di))
3001 ret = PTR_ERR(di);
3002
3003 if (!di || IS_ERR(di))
3004 goto out_err;
3005
3006 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3007 out:
3008 btrfs_free_path(path);
3009 return ret;
3010 out_err:
3011 location->objectid = 0;
3012 goto out;
3013 }
3014
3015 /*
3016 * when we hit a tree root in a directory, the btrfs part of the inode
3017 * needs to be changed to reflect the root directory of the tree root. This
3018 * is kind of like crossing a mount point.
3019 */
3020 static int fixup_tree_root_location(struct btrfs_root *root,
3021 struct btrfs_key *location,
3022 struct btrfs_root **sub_root,
3023 struct dentry *dentry)
3024 {
3025 struct btrfs_root_item *ri;
3026
3027 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
3028 return 0;
3029 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
3030 return 0;
3031
3032 *sub_root = btrfs_read_fs_root(root->fs_info, location,
3033 dentry->d_name.name,
3034 dentry->d_name.len);
3035 if (IS_ERR(*sub_root))
3036 return PTR_ERR(*sub_root);
3037
3038 ri = &(*sub_root)->root_item;
3039 location->objectid = btrfs_root_dirid(ri);
3040 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3041 location->offset = 0;
3042
3043 return 0;
3044 }
3045
3046 static noinline void init_btrfs_i(struct inode *inode)
3047 {
3048 struct btrfs_inode *bi = BTRFS_I(inode);
3049
3050 bi->i_acl = NULL;
3051 bi->i_default_acl = NULL;
3052
3053 bi->generation = 0;
3054 bi->sequence = 0;
3055 bi->last_trans = 0;
3056 bi->logged_trans = 0;
3057 bi->delalloc_bytes = 0;
3058 bi->reserved_bytes = 0;
3059 bi->disk_i_size = 0;
3060 bi->flags = 0;
3061 bi->index_cnt = (u64)-1;
3062 bi->last_unlink_trans = 0;
3063 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3064 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3065 inode->i_mapping, GFP_NOFS);
3066 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3067 inode->i_mapping, GFP_NOFS);
3068 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3069 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3070 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3071 mutex_init(&BTRFS_I(inode)->extent_mutex);
3072 mutex_init(&BTRFS_I(inode)->log_mutex);
3073 }
3074
3075 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3076 {
3077 struct btrfs_iget_args *args = p;
3078 inode->i_ino = args->ino;
3079 init_btrfs_i(inode);
3080 BTRFS_I(inode)->root = args->root;
3081 btrfs_set_inode_space_info(args->root, inode);
3082 return 0;
3083 }
3084
3085 static int btrfs_find_actor(struct inode *inode, void *opaque)
3086 {
3087 struct btrfs_iget_args *args = opaque;
3088 return args->ino == inode->i_ino &&
3089 args->root == BTRFS_I(inode)->root;
3090 }
3091
3092 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
3093 struct btrfs_root *root, int wait)
3094 {
3095 struct inode *inode;
3096 struct btrfs_iget_args args;
3097 args.ino = objectid;
3098 args.root = root;
3099
3100 if (wait) {
3101 inode = ilookup5(s, objectid, btrfs_find_actor,
3102 (void *)&args);
3103 } else {
3104 inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
3105 (void *)&args);
3106 }
3107 return inode;
3108 }
3109
3110 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
3111 struct btrfs_root *root)
3112 {
3113 struct inode *inode;
3114 struct btrfs_iget_args args;
3115 args.ino = objectid;
3116 args.root = root;
3117
3118 inode = iget5_locked(s, objectid, btrfs_find_actor,
3119 btrfs_init_locked_inode,
3120 (void *)&args);
3121 return inode;
3122 }
3123
3124 /* Get an inode object given its location and corresponding root.
3125 * Returns in *is_new if the inode was read from disk
3126 */
3127 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3128 struct btrfs_root *root, int *is_new)
3129 {
3130 struct inode *inode;
3131
3132 inode = btrfs_iget_locked(s, location->objectid, root);
3133 if (!inode)
3134 return ERR_PTR(-EACCES);
3135
3136 if (inode->i_state & I_NEW) {
3137 BTRFS_I(inode)->root = root;
3138 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3139 btrfs_read_locked_inode(inode);
3140 unlock_new_inode(inode);
3141 if (is_new)
3142 *is_new = 1;
3143 } else {
3144 if (is_new)
3145 *is_new = 0;
3146 }
3147
3148 return inode;
3149 }
3150
3151 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3152 {
3153 struct inode *inode;
3154 struct btrfs_inode *bi = BTRFS_I(dir);
3155 struct btrfs_root *root = bi->root;
3156 struct btrfs_root *sub_root = root;
3157 struct btrfs_key location;
3158 int ret, new;
3159
3160 if (dentry->d_name.len > BTRFS_NAME_LEN)
3161 return ERR_PTR(-ENAMETOOLONG);
3162
3163 ret = btrfs_inode_by_name(dir, dentry, &location);
3164
3165 if (ret < 0)
3166 return ERR_PTR(ret);
3167
3168 inode = NULL;
3169 if (location.objectid) {
3170 ret = fixup_tree_root_location(root, &location, &sub_root,
3171 dentry);
3172 if (ret < 0)
3173 return ERR_PTR(ret);
3174 if (ret > 0)
3175 return ERR_PTR(-ENOENT);
3176 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
3177 if (IS_ERR(inode))
3178 return ERR_CAST(inode);
3179 }
3180 return inode;
3181 }
3182
3183 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3184 struct nameidata *nd)
3185 {
3186 struct inode *inode;
3187
3188 if (dentry->d_name.len > BTRFS_NAME_LEN)
3189 return ERR_PTR(-ENAMETOOLONG);
3190
3191 inode = btrfs_lookup_dentry(dir, dentry);
3192 if (IS_ERR(inode))
3193 return ERR_CAST(inode);
3194
3195 return d_splice_alias(inode, dentry);
3196 }
3197
3198 static unsigned char btrfs_filetype_table[] = {
3199 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3200 };
3201
3202 static int btrfs_real_readdir(struct file *filp, void *dirent,
3203 filldir_t filldir)
3204 {
3205 struct inode *inode = filp->f_dentry->d_inode;
3206 struct btrfs_root *root = BTRFS_I(inode)->root;
3207 struct btrfs_item *item;
3208 struct btrfs_dir_item *di;
3209 struct btrfs_key key;
3210 struct btrfs_key found_key;
3211 struct btrfs_path *path;
3212 int ret;
3213 u32 nritems;
3214 struct extent_buffer *leaf;
3215 int slot;
3216 int advance;
3217 unsigned char d_type;
3218 int over = 0;
3219 u32 di_cur;
3220 u32 di_total;
3221 u32 di_len;
3222 int key_type = BTRFS_DIR_INDEX_KEY;
3223 char tmp_name[32];
3224 char *name_ptr;
3225 int name_len;
3226
3227 /* FIXME, use a real flag for deciding about the key type */
3228 if (root->fs_info->tree_root == root)
3229 key_type = BTRFS_DIR_ITEM_KEY;
3230
3231 /* special case for "." */
3232 if (filp->f_pos == 0) {
3233 over = filldir(dirent, ".", 1,
3234 1, inode->i_ino,
3235 DT_DIR);
3236 if (over)
3237 return 0;
3238 filp->f_pos = 1;
3239 }
3240 /* special case for .., just use the back ref */
3241 if (filp->f_pos == 1) {
3242 u64 pino = parent_ino(filp->f_path.dentry);
3243 over = filldir(dirent, "..", 2,
3244 2, pino, DT_DIR);
3245 if (over)
3246 return 0;
3247 filp->f_pos = 2;
3248 }
3249 path = btrfs_alloc_path();
3250 path->reada = 2;
3251
3252 btrfs_set_key_type(&key, key_type);
3253 key.offset = filp->f_pos;
3254 key.objectid = inode->i_ino;
3255
3256 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3257 if (ret < 0)
3258 goto err;
3259 advance = 0;
3260
3261 while (1) {
3262 leaf = path->nodes[0];
3263 nritems = btrfs_header_nritems(leaf);
3264 slot = path->slots[0];
3265 if (advance || slot >= nritems) {
3266 if (slot >= nritems - 1) {
3267 ret = btrfs_next_leaf(root, path);
3268 if (ret)
3269 break;
3270 leaf = path->nodes[0];
3271 nritems = btrfs_header_nritems(leaf);
3272 slot = path->slots[0];
3273 } else {
3274 slot++;
3275 path->slots[0]++;
3276 }
3277 }
3278
3279 advance = 1;
3280 item = btrfs_item_nr(leaf, slot);
3281 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3282
3283 if (found_key.objectid != key.objectid)
3284 break;
3285 if (btrfs_key_type(&found_key) != key_type)
3286 break;
3287 if (found_key.offset < filp->f_pos)
3288 continue;
3289
3290 filp->f_pos = found_key.offset;
3291
3292 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3293 di_cur = 0;
3294 di_total = btrfs_item_size(leaf, item);
3295
3296 while (di_cur < di_total) {
3297 struct btrfs_key location;
3298
3299 name_len = btrfs_dir_name_len(leaf, di);
3300 if (name_len <= sizeof(tmp_name)) {
3301 name_ptr = tmp_name;
3302 } else {
3303 name_ptr = kmalloc(name_len, GFP_NOFS);
3304 if (!name_ptr) {
3305 ret = -ENOMEM;
3306 goto err;
3307 }
3308 }
3309 read_extent_buffer(leaf, name_ptr,
3310 (unsigned long)(di + 1), name_len);
3311
3312 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3313 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3314
3315 /* is this a reference to our own snapshot? If so
3316 * skip it
3317 */
3318 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3319 location.objectid == root->root_key.objectid) {
3320 over = 0;
3321 goto skip;
3322 }
3323 over = filldir(dirent, name_ptr, name_len,
3324 found_key.offset, location.objectid,
3325 d_type);
3326
3327 skip:
3328 if (name_ptr != tmp_name)
3329 kfree(name_ptr);
3330
3331 if (over)
3332 goto nopos;
3333 di_len = btrfs_dir_name_len(leaf, di) +
3334 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3335 di_cur += di_len;
3336 di = (struct btrfs_dir_item *)((char *)di + di_len);
3337 }
3338 }
3339
3340 /* Reached end of directory/root. Bump pos past the last item. */
3341 if (key_type == BTRFS_DIR_INDEX_KEY)
3342 filp->f_pos = INT_LIMIT(off_t);
3343 else
3344 filp->f_pos++;
3345 nopos:
3346 ret = 0;
3347 err:
3348 btrfs_free_path(path);
3349 return ret;
3350 }
3351
3352 int btrfs_write_inode(struct inode *inode, int wait)
3353 {
3354 struct btrfs_root *root = BTRFS_I(inode)->root;
3355 struct btrfs_trans_handle *trans;
3356 int ret = 0;
3357
3358 if (root->fs_info->btree_inode == inode)
3359 return 0;
3360
3361 if (wait) {
3362 trans = btrfs_join_transaction(root, 1);
3363 btrfs_set_trans_block_group(trans, inode);
3364 ret = btrfs_commit_transaction(trans, root);
3365 }
3366 return ret;
3367 }
3368
3369 /*
3370 * This is somewhat expensive, updating the tree every time the
3371 * inode changes. But, it is most likely to find the inode in cache.
3372 * FIXME, needs more benchmarking...there are no reasons other than performance
3373 * to keep or drop this code.
3374 */
3375 void btrfs_dirty_inode(struct inode *inode)
3376 {
3377 struct btrfs_root *root = BTRFS_I(inode)->root;
3378 struct btrfs_trans_handle *trans;
3379
3380 trans = btrfs_join_transaction(root, 1);
3381 btrfs_set_trans_block_group(trans, inode);
3382 btrfs_update_inode(trans, root, inode);
3383 btrfs_end_transaction(trans, root);
3384 }
3385
3386 /*
3387 * find the highest existing sequence number in a directory
3388 * and then set the in-memory index_cnt variable to reflect
3389 * free sequence numbers
3390 */
3391 static int btrfs_set_inode_index_count(struct inode *inode)
3392 {
3393 struct btrfs_root *root = BTRFS_I(inode)->root;
3394 struct btrfs_key key, found_key;
3395 struct btrfs_path *path;
3396 struct extent_buffer *leaf;
3397 int ret;
3398
3399 key.objectid = inode->i_ino;
3400 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3401 key.offset = (u64)-1;
3402
3403 path = btrfs_alloc_path();
3404 if (!path)
3405 return -ENOMEM;
3406
3407 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3408 if (ret < 0)
3409 goto out;
3410 /* FIXME: we should be able to handle this */
3411 if (ret == 0)
3412 goto out;
3413 ret = 0;
3414
3415 /*
3416 * MAGIC NUMBER EXPLANATION:
3417 * since we search a directory based on f_pos we have to start at 2
3418 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3419 * else has to start at 2
3420 */
3421 if (path->slots[0] == 0) {
3422 BTRFS_I(inode)->index_cnt = 2;
3423 goto out;
3424 }
3425
3426 path->slots[0]--;
3427
3428 leaf = path->nodes[0];
3429 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3430
3431 if (found_key.objectid != inode->i_ino ||
3432 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3433 BTRFS_I(inode)->index_cnt = 2;
3434 goto out;
3435 }
3436
3437 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3438 out:
3439 btrfs_free_path(path);
3440 return ret;
3441 }
3442
3443 /*
3444 * helper to find a free sequence number in a given directory. This current
3445 * code is very simple, later versions will do smarter things in the btree
3446 */
3447 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3448 {
3449 int ret = 0;
3450
3451 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3452 ret = btrfs_set_inode_index_count(dir);
3453 if (ret)
3454 return ret;
3455 }
3456
3457 *index = BTRFS_I(dir)->index_cnt;
3458 BTRFS_I(dir)->index_cnt++;
3459
3460 return ret;
3461 }
3462
3463 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3464 struct btrfs_root *root,
3465 struct inode *dir,
3466 const char *name, int name_len,
3467 u64 ref_objectid, u64 objectid,
3468 u64 alloc_hint, int mode, u64 *index)
3469 {
3470 struct inode *inode;
3471 struct btrfs_inode_item *inode_item;
3472 struct btrfs_key *location;
3473 struct btrfs_path *path;
3474 struct btrfs_inode_ref *ref;
3475 struct btrfs_key key[2];
3476 u32 sizes[2];
3477 unsigned long ptr;
3478 int ret;
3479 int owner;
3480
3481 path = btrfs_alloc_path();
3482 BUG_ON(!path);
3483
3484 inode = new_inode(root->fs_info->sb);
3485 if (!inode)
3486 return ERR_PTR(-ENOMEM);
3487
3488 if (dir) {
3489 ret = btrfs_set_inode_index(dir, index);
3490 if (ret) {
3491 iput(inode);
3492 return ERR_PTR(ret);
3493 }
3494 }
3495 /*
3496 * index_cnt is ignored for everything but a dir,
3497 * btrfs_get_inode_index_count has an explanation for the magic
3498 * number
3499 */
3500 init_btrfs_i(inode);
3501 BTRFS_I(inode)->index_cnt = 2;
3502 BTRFS_I(inode)->root = root;
3503 BTRFS_I(inode)->generation = trans->transid;
3504 btrfs_set_inode_space_info(root, inode);
3505
3506 if (mode & S_IFDIR)
3507 owner = 0;
3508 else
3509 owner = 1;
3510 BTRFS_I(inode)->block_group =
3511 btrfs_find_block_group(root, 0, alloc_hint, owner);
3512 if ((mode & S_IFREG)) {
3513 if (btrfs_test_opt(root, NODATASUM))
3514 btrfs_set_flag(inode, NODATASUM);
3515 if (btrfs_test_opt(root, NODATACOW))
3516 btrfs_set_flag(inode, NODATACOW);
3517 }
3518
3519 key[0].objectid = objectid;
3520 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3521 key[0].offset = 0;
3522
3523 key[1].objectid = objectid;
3524 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3525 key[1].offset = ref_objectid;
3526
3527 sizes[0] = sizeof(struct btrfs_inode_item);
3528 sizes[1] = name_len + sizeof(*ref);
3529
3530 path->leave_spinning = 1;
3531 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3532 if (ret != 0)
3533 goto fail;
3534
3535 if (objectid > root->highest_inode)
3536 root->highest_inode = objectid;
3537
3538 inode->i_uid = current_fsuid();
3539
3540 if (dir && (dir->i_mode & S_ISGID)) {
3541 inode->i_gid = dir->i_gid;
3542 if (S_ISDIR(mode))
3543 mode |= S_ISGID;
3544 } else
3545 inode->i_gid = current_fsgid();
3546
3547 inode->i_mode = mode;
3548 inode->i_ino = objectid;
3549 inode_set_bytes(inode, 0);
3550 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3551 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3552 struct btrfs_inode_item);
3553 fill_inode_item(trans, path->nodes[0], inode_item, inode);
3554
3555 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3556 struct btrfs_inode_ref);
3557 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3558 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3559 ptr = (unsigned long)(ref + 1);
3560 write_extent_buffer(path->nodes[0], name, ptr, name_len);
3561
3562 btrfs_mark_buffer_dirty(path->nodes[0]);
3563 btrfs_free_path(path);
3564
3565 location = &BTRFS_I(inode)->location;
3566 location->objectid = objectid;
3567 location->offset = 0;
3568 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3569
3570 insert_inode_hash(inode);
3571 return inode;
3572 fail:
3573 if (dir)
3574 BTRFS_I(dir)->index_cnt--;
3575 btrfs_free_path(path);
3576 iput(inode);
3577 return ERR_PTR(ret);
3578 }
3579
3580 static inline u8 btrfs_inode_type(struct inode *inode)
3581 {
3582 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3583 }
3584
3585 /*
3586 * utility function to add 'inode' into 'parent_inode' with
3587 * a give name and a given sequence number.
3588 * if 'add_backref' is true, also insert a backref from the
3589 * inode to the parent directory.
3590 */
3591 int btrfs_add_link(struct btrfs_trans_handle *trans,
3592 struct inode *parent_inode, struct inode *inode,
3593 const char *name, int name_len, int add_backref, u64 index)
3594 {
3595 int ret;
3596 struct btrfs_key key;
3597 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3598
3599 key.objectid = inode->i_ino;
3600 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3601 key.offset = 0;
3602
3603 ret = btrfs_insert_dir_item(trans, root, name, name_len,
3604 parent_inode->i_ino,
3605 &key, btrfs_inode_type(inode),
3606 index);
3607 if (ret == 0) {
3608 if (add_backref) {
3609 ret = btrfs_insert_inode_ref(trans, root,
3610 name, name_len,
3611 inode->i_ino,
3612 parent_inode->i_ino,
3613 index);
3614 }
3615 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3616 name_len * 2);
3617 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3618 ret = btrfs_update_inode(trans, root, parent_inode);
3619 }
3620 return ret;
3621 }
3622
3623 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3624 struct dentry *dentry, struct inode *inode,
3625 int backref, u64 index)
3626 {
3627 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3628 inode, dentry->d_name.name,
3629 dentry->d_name.len, backref, index);
3630 if (!err) {
3631 d_instantiate(dentry, inode);
3632 return 0;
3633 }
3634 if (err > 0)
3635 err = -EEXIST;
3636 return err;
3637 }
3638
3639 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3640 int mode, dev_t rdev)
3641 {
3642 struct btrfs_trans_handle *trans;
3643 struct btrfs_root *root = BTRFS_I(dir)->root;
3644 struct inode *inode = NULL;
3645 int err;
3646 int drop_inode = 0;
3647 u64 objectid;
3648 unsigned long nr = 0;
3649 u64 index = 0;
3650
3651 if (!new_valid_dev(rdev))
3652 return -EINVAL;
3653
3654 err = btrfs_check_metadata_free_space(root);
3655 if (err)
3656 goto fail;
3657
3658 trans = btrfs_start_transaction(root, 1);
3659 btrfs_set_trans_block_group(trans, dir);
3660
3661 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3662 if (err) {
3663 err = -ENOSPC;
3664 goto out_unlock;
3665 }
3666
3667 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3668 dentry->d_name.len,
3669 dentry->d_parent->d_inode->i_ino, objectid,
3670 BTRFS_I(dir)->block_group, mode, &index);
3671 err = PTR_ERR(inode);
3672 if (IS_ERR(inode))
3673 goto out_unlock;
3674
3675 err = btrfs_init_inode_security(inode, dir);
3676 if (err) {
3677 drop_inode = 1;
3678 goto out_unlock;
3679 }
3680
3681 btrfs_set_trans_block_group(trans, inode);
3682 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3683 if (err)
3684 drop_inode = 1;
3685 else {
3686 inode->i_op = &btrfs_special_inode_operations;
3687 init_special_inode(inode, inode->i_mode, rdev);
3688 btrfs_update_inode(trans, root, inode);
3689 }
3690 dir->i_sb->s_dirt = 1;
3691 btrfs_update_inode_block_group(trans, inode);
3692 btrfs_update_inode_block_group(trans, dir);
3693 out_unlock:
3694 nr = trans->blocks_used;
3695 btrfs_end_transaction_throttle(trans, root);
3696 fail:
3697 if (drop_inode) {
3698 inode_dec_link_count(inode);
3699 iput(inode);
3700 }
3701 btrfs_btree_balance_dirty(root, nr);
3702 return err;
3703 }
3704
3705 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3706 int mode, struct nameidata *nd)
3707 {
3708 struct btrfs_trans_handle *trans;
3709 struct btrfs_root *root = BTRFS_I(dir)->root;
3710 struct inode *inode = NULL;
3711 int err;
3712 int drop_inode = 0;
3713 unsigned long nr = 0;
3714 u64 objectid;
3715 u64 index = 0;
3716
3717 err = btrfs_check_metadata_free_space(root);
3718 if (err)
3719 goto fail;
3720 trans = btrfs_start_transaction(root, 1);
3721 btrfs_set_trans_block_group(trans, dir);
3722
3723 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3724 if (err) {
3725 err = -ENOSPC;
3726 goto out_unlock;
3727 }
3728
3729 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3730 dentry->d_name.len,
3731 dentry->d_parent->d_inode->i_ino,
3732 objectid, BTRFS_I(dir)->block_group, mode,
3733 &index);
3734 err = PTR_ERR(inode);
3735 if (IS_ERR(inode))
3736 goto out_unlock;
3737
3738 err = btrfs_init_inode_security(inode, dir);
3739 if (err) {
3740 drop_inode = 1;
3741 goto out_unlock;
3742 }
3743
3744 btrfs_set_trans_block_group(trans, inode);
3745 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3746 if (err)
3747 drop_inode = 1;
3748 else {
3749 inode->i_mapping->a_ops = &btrfs_aops;
3750 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3751 inode->i_fop = &btrfs_file_operations;
3752 inode->i_op = &btrfs_file_inode_operations;
3753 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3754 }
3755 dir->i_sb->s_dirt = 1;
3756 btrfs_update_inode_block_group(trans, inode);
3757 btrfs_update_inode_block_group(trans, dir);
3758 out_unlock:
3759 nr = trans->blocks_used;
3760 btrfs_end_transaction_throttle(trans, root);
3761 fail:
3762 if (drop_inode) {
3763 inode_dec_link_count(inode);
3764 iput(inode);
3765 }
3766 btrfs_btree_balance_dirty(root, nr);
3767 return err;
3768 }
3769
3770 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3771 struct dentry *dentry)
3772 {
3773 struct btrfs_trans_handle *trans;
3774 struct btrfs_root *root = BTRFS_I(dir)->root;
3775 struct inode *inode = old_dentry->d_inode;
3776 u64 index;
3777 unsigned long nr = 0;
3778 int err;
3779 int drop_inode = 0;
3780
3781 if (inode->i_nlink == 0)
3782 return -ENOENT;
3783
3784 btrfs_inc_nlink(inode);
3785 err = btrfs_check_metadata_free_space(root);
3786 if (err)
3787 goto fail;
3788 err = btrfs_set_inode_index(dir, &index);
3789 if (err)
3790 goto fail;
3791
3792 trans = btrfs_start_transaction(root, 1);
3793
3794 btrfs_set_trans_block_group(trans, dir);
3795 atomic_inc(&inode->i_count);
3796
3797 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3798
3799 if (err)
3800 drop_inode = 1;
3801
3802 dir->i_sb->s_dirt = 1;
3803 btrfs_update_inode_block_group(trans, dir);
3804 err = btrfs_update_inode(trans, root, inode);
3805
3806 if (err)
3807 drop_inode = 1;
3808
3809 nr = trans->blocks_used;
3810
3811 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
3812 btrfs_end_transaction_throttle(trans, root);
3813 fail:
3814 if (drop_inode) {
3815 inode_dec_link_count(inode);
3816 iput(inode);
3817 }
3818 btrfs_btree_balance_dirty(root, nr);
3819 return err;
3820 }
3821
3822 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3823 {
3824 struct inode *inode = NULL;
3825 struct btrfs_trans_handle *trans;
3826 struct btrfs_root *root = BTRFS_I(dir)->root;
3827 int err = 0;
3828 int drop_on_err = 0;
3829 u64 objectid = 0;
3830 u64 index = 0;
3831 unsigned long nr = 1;
3832
3833 err = btrfs_check_metadata_free_space(root);
3834 if (err)
3835 goto out_unlock;
3836
3837 trans = btrfs_start_transaction(root, 1);
3838 btrfs_set_trans_block_group(trans, dir);
3839
3840 if (IS_ERR(trans)) {
3841 err = PTR_ERR(trans);
3842 goto out_unlock;
3843 }
3844
3845 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3846 if (err) {
3847 err = -ENOSPC;
3848 goto out_unlock;
3849 }
3850
3851 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3852 dentry->d_name.len,
3853 dentry->d_parent->d_inode->i_ino, objectid,
3854 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3855 &index);
3856 if (IS_ERR(inode)) {
3857 err = PTR_ERR(inode);
3858 goto out_fail;
3859 }
3860
3861 drop_on_err = 1;
3862
3863 err = btrfs_init_inode_security(inode, dir);
3864 if (err)
3865 goto out_fail;
3866
3867 inode->i_op = &btrfs_dir_inode_operations;
3868 inode->i_fop = &btrfs_dir_file_operations;
3869 btrfs_set_trans_block_group(trans, inode);
3870
3871 btrfs_i_size_write(inode, 0);
3872 err = btrfs_update_inode(trans, root, inode);
3873 if (err)
3874 goto out_fail;
3875
3876 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3877 inode, dentry->d_name.name,
3878 dentry->d_name.len, 0, index);
3879 if (err)
3880 goto out_fail;
3881
3882 d_instantiate(dentry, inode);
3883 drop_on_err = 0;
3884 dir->i_sb->s_dirt = 1;
3885 btrfs_update_inode_block_group(trans, inode);
3886 btrfs_update_inode_block_group(trans, dir);
3887
3888 out_fail:
3889 nr = trans->blocks_used;
3890 btrfs_end_transaction_throttle(trans, root);
3891
3892 out_unlock:
3893 if (drop_on_err)
3894 iput(inode);
3895 btrfs_btree_balance_dirty(root, nr);
3896 return err;
3897 }
3898
3899 /* helper for btfs_get_extent. Given an existing extent in the tree,
3900 * and an extent that you want to insert, deal with overlap and insert
3901 * the new extent into the tree.
3902 */
3903 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3904 struct extent_map *existing,
3905 struct extent_map *em,
3906 u64 map_start, u64 map_len)
3907 {
3908 u64 start_diff;
3909
3910 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3911 start_diff = map_start - em->start;
3912 em->start = map_start;
3913 em->len = map_len;
3914 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3915 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3916 em->block_start += start_diff;
3917 em->block_len -= start_diff;
3918 }
3919 return add_extent_mapping(em_tree, em);
3920 }
3921
3922 static noinline int uncompress_inline(struct btrfs_path *path,
3923 struct inode *inode, struct page *page,
3924 size_t pg_offset, u64 extent_offset,
3925 struct btrfs_file_extent_item *item)
3926 {
3927 int ret;
3928 struct extent_buffer *leaf = path->nodes[0];
3929 char *tmp;
3930 size_t max_size;
3931 unsigned long inline_size;
3932 unsigned long ptr;
3933
3934 WARN_ON(pg_offset != 0);
3935 max_size = btrfs_file_extent_ram_bytes(leaf, item);
3936 inline_size = btrfs_file_extent_inline_item_len(leaf,
3937 btrfs_item_nr(leaf, path->slots[0]));
3938 tmp = kmalloc(inline_size, GFP_NOFS);
3939 ptr = btrfs_file_extent_inline_start(item);
3940
3941 read_extent_buffer(leaf, tmp, ptr, inline_size);
3942
3943 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
3944 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3945 inline_size, max_size);
3946 if (ret) {
3947 char *kaddr = kmap_atomic(page, KM_USER0);
3948 unsigned long copy_size = min_t(u64,
3949 PAGE_CACHE_SIZE - pg_offset,
3950 max_size - extent_offset);
3951 memset(kaddr + pg_offset, 0, copy_size);
3952 kunmap_atomic(kaddr, KM_USER0);
3953 }
3954 kfree(tmp);
3955 return 0;
3956 }
3957
3958 /*
3959 * a bit scary, this does extent mapping from logical file offset to the disk.
3960 * the ugly parts come from merging extents from the disk with the in-ram
3961 * representation. This gets more complex because of the data=ordered code,
3962 * where the in-ram extents might be locked pending data=ordered completion.
3963 *
3964 * This also copies inline extents directly into the page.
3965 */
3966
3967 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3968 size_t pg_offset, u64 start, u64 len,
3969 int create)
3970 {
3971 int ret;
3972 int err = 0;
3973 u64 bytenr;
3974 u64 extent_start = 0;
3975 u64 extent_end = 0;
3976 u64 objectid = inode->i_ino;
3977 u32 found_type;
3978 struct btrfs_path *path = NULL;
3979 struct btrfs_root *root = BTRFS_I(inode)->root;
3980 struct btrfs_file_extent_item *item;
3981 struct extent_buffer *leaf;
3982 struct btrfs_key found_key;
3983 struct extent_map *em = NULL;
3984 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3985 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3986 struct btrfs_trans_handle *trans = NULL;
3987 int compressed;
3988
3989 again:
3990 spin_lock(&em_tree->lock);
3991 em = lookup_extent_mapping(em_tree, start, len);
3992 if (em)
3993 em->bdev = root->fs_info->fs_devices->latest_bdev;
3994 spin_unlock(&em_tree->lock);
3995
3996 if (em) {
3997 if (em->start > start || em->start + em->len <= start)
3998 free_extent_map(em);
3999 else if (em->block_start == EXTENT_MAP_INLINE && page)
4000 free_extent_map(em);
4001 else
4002 goto out;
4003 }
4004 em = alloc_extent_map(GFP_NOFS);
4005 if (!em) {
4006 err = -ENOMEM;
4007 goto out;
4008 }
4009 em->bdev = root->fs_info->fs_devices->latest_bdev;
4010 em->start = EXTENT_MAP_HOLE;
4011 em->orig_start = EXTENT_MAP_HOLE;
4012 em->len = (u64)-1;
4013 em->block_len = (u64)-1;
4014
4015 if (!path) {
4016 path = btrfs_alloc_path();
4017 BUG_ON(!path);
4018 }
4019
4020 ret = btrfs_lookup_file_extent(trans, root, path,
4021 objectid, start, trans != NULL);
4022 if (ret < 0) {
4023 err = ret;
4024 goto out;
4025 }
4026
4027 if (ret != 0) {
4028 if (path->slots[0] == 0)
4029 goto not_found;
4030 path->slots[0]--;
4031 }
4032
4033 leaf = path->nodes[0];
4034 item = btrfs_item_ptr(leaf, path->slots[0],
4035 struct btrfs_file_extent_item);
4036 /* are we inside the extent that was found? */
4037 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4038 found_type = btrfs_key_type(&found_key);
4039 if (found_key.objectid != objectid ||
4040 found_type != BTRFS_EXTENT_DATA_KEY) {
4041 goto not_found;
4042 }
4043
4044 found_type = btrfs_file_extent_type(leaf, item);
4045 extent_start = found_key.offset;
4046 compressed = btrfs_file_extent_compression(leaf, item);
4047 if (found_type == BTRFS_FILE_EXTENT_REG ||
4048 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4049 extent_end = extent_start +
4050 btrfs_file_extent_num_bytes(leaf, item);
4051 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4052 size_t size;
4053 size = btrfs_file_extent_inline_len(leaf, item);
4054 extent_end = (extent_start + size + root->sectorsize - 1) &
4055 ~((u64)root->sectorsize - 1);
4056 }
4057
4058 if (start >= extent_end) {
4059 path->slots[0]++;
4060 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4061 ret = btrfs_next_leaf(root, path);
4062 if (ret < 0) {
4063 err = ret;
4064 goto out;
4065 }
4066 if (ret > 0)
4067 goto not_found;
4068 leaf = path->nodes[0];
4069 }
4070 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4071 if (found_key.objectid != objectid ||
4072 found_key.type != BTRFS_EXTENT_DATA_KEY)
4073 goto not_found;
4074 if (start + len <= found_key.offset)
4075 goto not_found;
4076 em->start = start;
4077 em->len = found_key.offset - start;
4078 goto not_found_em;
4079 }
4080
4081 if (found_type == BTRFS_FILE_EXTENT_REG ||
4082 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4083 em->start = extent_start;
4084 em->len = extent_end - extent_start;
4085 em->orig_start = extent_start -
4086 btrfs_file_extent_offset(leaf, item);
4087 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4088 if (bytenr == 0) {
4089 em->block_start = EXTENT_MAP_HOLE;
4090 goto insert;
4091 }
4092 if (compressed) {
4093 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4094 em->block_start = bytenr;
4095 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4096 item);
4097 } else {
4098 bytenr += btrfs_file_extent_offset(leaf, item);
4099 em->block_start = bytenr;
4100 em->block_len = em->len;
4101 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4102 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4103 }
4104 goto insert;
4105 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4106 unsigned long ptr;
4107 char *map;
4108 size_t size;
4109 size_t extent_offset;
4110 size_t copy_size;
4111
4112 em->block_start = EXTENT_MAP_INLINE;
4113 if (!page || create) {
4114 em->start = extent_start;
4115 em->len = extent_end - extent_start;
4116 goto out;
4117 }
4118
4119 size = btrfs_file_extent_inline_len(leaf, item);
4120 extent_offset = page_offset(page) + pg_offset - extent_start;
4121 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4122 size - extent_offset);
4123 em->start = extent_start + extent_offset;
4124 em->len = (copy_size + root->sectorsize - 1) &
4125 ~((u64)root->sectorsize - 1);
4126 em->orig_start = EXTENT_MAP_INLINE;
4127 if (compressed)
4128 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4129 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4130 if (create == 0 && !PageUptodate(page)) {
4131 if (btrfs_file_extent_compression(leaf, item) ==
4132 BTRFS_COMPRESS_ZLIB) {
4133 ret = uncompress_inline(path, inode, page,
4134 pg_offset,
4135 extent_offset, item);
4136 BUG_ON(ret);
4137 } else {
4138 map = kmap(page);
4139 read_extent_buffer(leaf, map + pg_offset, ptr,
4140 copy_size);
4141 kunmap(page);
4142 }
4143 flush_dcache_page(page);
4144 } else if (create && PageUptodate(page)) {
4145 if (!trans) {
4146 kunmap(page);
4147 free_extent_map(em);
4148 em = NULL;
4149 btrfs_release_path(root, path);
4150 trans = btrfs_join_transaction(root, 1);
4151 goto again;
4152 }
4153 map = kmap(page);
4154 write_extent_buffer(leaf, map + pg_offset, ptr,
4155 copy_size);
4156 kunmap(page);
4157 btrfs_mark_buffer_dirty(leaf);
4158 }
4159 set_extent_uptodate(io_tree, em->start,
4160 extent_map_end(em) - 1, GFP_NOFS);
4161 goto insert;
4162 } else {
4163 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4164 WARN_ON(1);
4165 }
4166 not_found:
4167 em->start = start;
4168 em->len = len;
4169 not_found_em:
4170 em->block_start = EXTENT_MAP_HOLE;
4171 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4172 insert:
4173 btrfs_release_path(root, path);
4174 if (em->start > start || extent_map_end(em) <= start) {
4175 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4176 "[%llu %llu]\n", (unsigned long long)em->start,
4177 (unsigned long long)em->len,
4178 (unsigned long long)start,
4179 (unsigned long long)len);
4180 err = -EIO;
4181 goto out;
4182 }
4183
4184 err = 0;
4185 spin_lock(&em_tree->lock);
4186 ret = add_extent_mapping(em_tree, em);
4187 /* it is possible that someone inserted the extent into the tree
4188 * while we had the lock dropped. It is also possible that
4189 * an overlapping map exists in the tree
4190 */
4191 if (ret == -EEXIST) {
4192 struct extent_map *existing;
4193
4194 ret = 0;
4195
4196 existing = lookup_extent_mapping(em_tree, start, len);
4197 if (existing && (existing->start > start ||
4198 existing->start + existing->len <= start)) {
4199 free_extent_map(existing);
4200 existing = NULL;
4201 }
4202 if (!existing) {
4203 existing = lookup_extent_mapping(em_tree, em->start,
4204 em->len);
4205 if (existing) {
4206 err = merge_extent_mapping(em_tree, existing,
4207 em, start,
4208 root->sectorsize);
4209 free_extent_map(existing);
4210 if (err) {
4211 free_extent_map(em);
4212 em = NULL;
4213 }
4214 } else {
4215 err = -EIO;
4216 free_extent_map(em);
4217 em = NULL;
4218 }
4219 } else {
4220 free_extent_map(em);
4221 em = existing;
4222 err = 0;
4223 }
4224 }
4225 spin_unlock(&em_tree->lock);
4226 out:
4227 if (path)
4228 btrfs_free_path(path);
4229 if (trans) {
4230 ret = btrfs_end_transaction(trans, root);
4231 if (!err)
4232 err = ret;
4233 }
4234 if (err) {
4235 free_extent_map(em);
4236 WARN_ON(1);
4237 return ERR_PTR(err);
4238 }
4239 return em;
4240 }
4241
4242 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4243 const struct iovec *iov, loff_t offset,
4244 unsigned long nr_segs)
4245 {
4246 return -EINVAL;
4247 }
4248
4249 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4250 __u64 start, __u64 len)
4251 {
4252 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4253 }
4254
4255 int btrfs_readpage(struct file *file, struct page *page)
4256 {
4257 struct extent_io_tree *tree;
4258 tree = &BTRFS_I(page->mapping->host)->io_tree;
4259 return extent_read_full_page(tree, page, btrfs_get_extent);
4260 }
4261
4262 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4263 {
4264 struct extent_io_tree *tree;
4265
4266
4267 if (current->flags & PF_MEMALLOC) {
4268 redirty_page_for_writepage(wbc, page);
4269 unlock_page(page);
4270 return 0;
4271 }
4272 tree = &BTRFS_I(page->mapping->host)->io_tree;
4273 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4274 }
4275
4276 int btrfs_writepages(struct address_space *mapping,
4277 struct writeback_control *wbc)
4278 {
4279 struct extent_io_tree *tree;
4280
4281 tree = &BTRFS_I(mapping->host)->io_tree;
4282 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4283 }
4284
4285 static int
4286 btrfs_readpages(struct file *file, struct address_space *mapping,
4287 struct list_head *pages, unsigned nr_pages)
4288 {
4289 struct extent_io_tree *tree;
4290 tree = &BTRFS_I(mapping->host)->io_tree;
4291 return extent_readpages(tree, mapping, pages, nr_pages,
4292 btrfs_get_extent);
4293 }
4294 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4295 {
4296 struct extent_io_tree *tree;
4297 struct extent_map_tree *map;
4298 int ret;
4299
4300 tree = &BTRFS_I(page->mapping->host)->io_tree;
4301 map = &BTRFS_I(page->mapping->host)->extent_tree;
4302 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4303 if (ret == 1) {
4304 ClearPagePrivate(page);
4305 set_page_private(page, 0);
4306 page_cache_release(page);
4307 }
4308 return ret;
4309 }
4310
4311 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4312 {
4313 if (PageWriteback(page) || PageDirty(page))
4314 return 0;
4315 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4316 }
4317
4318 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4319 {
4320 struct extent_io_tree *tree;
4321 struct btrfs_ordered_extent *ordered;
4322 u64 page_start = page_offset(page);
4323 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4324
4325 wait_on_page_writeback(page);
4326 tree = &BTRFS_I(page->mapping->host)->io_tree;
4327 if (offset) {
4328 btrfs_releasepage(page, GFP_NOFS);
4329 return;
4330 }
4331
4332 lock_extent(tree, page_start, page_end, GFP_NOFS);
4333 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4334 page_offset(page));
4335 if (ordered) {
4336 /*
4337 * IO on this page will never be started, so we need
4338 * to account for any ordered extents now
4339 */
4340 clear_extent_bit(tree, page_start, page_end,
4341 EXTENT_DIRTY | EXTENT_DELALLOC |
4342 EXTENT_LOCKED, 1, 0, GFP_NOFS);
4343 btrfs_finish_ordered_io(page->mapping->host,
4344 page_start, page_end);
4345 btrfs_put_ordered_extent(ordered);
4346 lock_extent(tree, page_start, page_end, GFP_NOFS);
4347 }
4348 clear_extent_bit(tree, page_start, page_end,
4349 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4350 EXTENT_ORDERED,
4351 1, 1, GFP_NOFS);
4352 __btrfs_releasepage(page, GFP_NOFS);
4353
4354 ClearPageChecked(page);
4355 if (PagePrivate(page)) {
4356 ClearPagePrivate(page);
4357 set_page_private(page, 0);
4358 page_cache_release(page);
4359 }
4360 }
4361
4362 /*
4363 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4364 * called from a page fault handler when a page is first dirtied. Hence we must
4365 * be careful to check for EOF conditions here. We set the page up correctly
4366 * for a written page which means we get ENOSPC checking when writing into
4367 * holes and correct delalloc and unwritten extent mapping on filesystems that
4368 * support these features.
4369 *
4370 * We are not allowed to take the i_mutex here so we have to play games to
4371 * protect against truncate races as the page could now be beyond EOF. Because
4372 * vmtruncate() writes the inode size before removing pages, once we have the
4373 * page lock we can determine safely if the page is beyond EOF. If it is not
4374 * beyond EOF, then the page is guaranteed safe against truncation until we
4375 * unlock the page.
4376 */
4377 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4378 {
4379 struct page *page = vmf->page;
4380 struct inode *inode = fdentry(vma->vm_file)->d_inode;
4381 struct btrfs_root *root = BTRFS_I(inode)->root;
4382 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4383 struct btrfs_ordered_extent *ordered;
4384 char *kaddr;
4385 unsigned long zero_start;
4386 loff_t size;
4387 int ret;
4388 u64 page_start;
4389 u64 page_end;
4390
4391 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
4392 if (ret) {
4393 if (ret == -ENOMEM)
4394 ret = VM_FAULT_OOM;
4395 else /* -ENOSPC, -EIO, etc */
4396 ret = VM_FAULT_SIGBUS;
4397 goto out;
4398 }
4399
4400 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
4401 again:
4402 lock_page(page);
4403 size = i_size_read(inode);
4404 page_start = page_offset(page);
4405 page_end = page_start + PAGE_CACHE_SIZE - 1;
4406
4407 if ((page->mapping != inode->i_mapping) ||
4408 (page_start >= size)) {
4409 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4410 /* page got truncated out from underneath us */
4411 goto out_unlock;
4412 }
4413 wait_on_page_writeback(page);
4414
4415 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4416 set_page_extent_mapped(page);
4417
4418 /*
4419 * we can't set the delalloc bits if there are pending ordered
4420 * extents. Drop our locks and wait for them to finish
4421 */
4422 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4423 if (ordered) {
4424 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4425 unlock_page(page);
4426 btrfs_start_ordered_extent(inode, ordered, 1);
4427 btrfs_put_ordered_extent(ordered);
4428 goto again;
4429 }
4430
4431 btrfs_set_extent_delalloc(inode, page_start, page_end);
4432 ret = 0;
4433
4434 /* page is wholly or partially inside EOF */
4435 if (page_start + PAGE_CACHE_SIZE > size)
4436 zero_start = size & ~PAGE_CACHE_MASK;
4437 else
4438 zero_start = PAGE_CACHE_SIZE;
4439
4440 if (zero_start != PAGE_CACHE_SIZE) {
4441 kaddr = kmap(page);
4442 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4443 flush_dcache_page(page);
4444 kunmap(page);
4445 }
4446 ClearPageChecked(page);
4447 set_page_dirty(page);
4448
4449 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
4450 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4451
4452 out_unlock:
4453 unlock_page(page);
4454 out:
4455 return ret;
4456 }
4457
4458 static void btrfs_truncate(struct inode *inode)
4459 {
4460 struct btrfs_root *root = BTRFS_I(inode)->root;
4461 int ret;
4462 struct btrfs_trans_handle *trans;
4463 unsigned long nr;
4464 u64 mask = root->sectorsize - 1;
4465
4466 if (!S_ISREG(inode->i_mode))
4467 return;
4468 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4469 return;
4470
4471 btrfs_truncate_page(inode->i_mapping, inode->i_size);
4472 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4473
4474 trans = btrfs_start_transaction(root, 1);
4475
4476 /*
4477 * setattr is responsible for setting the ordered_data_close flag,
4478 * but that is only tested during the last file release. That
4479 * could happen well after the next commit, leaving a great big
4480 * window where new writes may get lost if someone chooses to write
4481 * to this file after truncating to zero
4482 *
4483 * The inode doesn't have any dirty data here, and so if we commit
4484 * this is a noop. If someone immediately starts writing to the inode
4485 * it is very likely we'll catch some of their writes in this
4486 * transaction, and the commit will find this file on the ordered
4487 * data list with good things to send down.
4488 *
4489 * This is a best effort solution, there is still a window where
4490 * using truncate to replace the contents of the file will
4491 * end up with a zero length file after a crash.
4492 */
4493 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
4494 btrfs_add_ordered_operation(trans, root, inode);
4495
4496 btrfs_set_trans_block_group(trans, inode);
4497 btrfs_i_size_write(inode, inode->i_size);
4498
4499 ret = btrfs_orphan_add(trans, inode);
4500 if (ret)
4501 goto out;
4502 /* FIXME, add redo link to tree so we don't leak on crash */
4503 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4504 BTRFS_EXTENT_DATA_KEY);
4505 btrfs_update_inode(trans, root, inode);
4506
4507 ret = btrfs_orphan_del(trans, inode);
4508 BUG_ON(ret);
4509
4510 out:
4511 nr = trans->blocks_used;
4512 ret = btrfs_end_transaction_throttle(trans, root);
4513 BUG_ON(ret);
4514 btrfs_btree_balance_dirty(root, nr);
4515 }
4516
4517 /*
4518 * create a new subvolume directory/inode (helper for the ioctl).
4519 */
4520 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4521 struct btrfs_root *new_root, struct dentry *dentry,
4522 u64 new_dirid, u64 alloc_hint)
4523 {
4524 struct inode *inode;
4525 int error;
4526 u64 index = 0;
4527
4528 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4529 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4530 if (IS_ERR(inode))
4531 return PTR_ERR(inode);
4532 inode->i_op = &btrfs_dir_inode_operations;
4533 inode->i_fop = &btrfs_dir_file_operations;
4534
4535 inode->i_nlink = 1;
4536 btrfs_i_size_write(inode, 0);
4537
4538 error = btrfs_update_inode(trans, new_root, inode);
4539 if (error)
4540 return error;
4541
4542 d_instantiate(dentry, inode);
4543 return 0;
4544 }
4545
4546 /* helper function for file defrag and space balancing. This
4547 * forces readahead on a given range of bytes in an inode
4548 */
4549 unsigned long btrfs_force_ra(struct address_space *mapping,
4550 struct file_ra_state *ra, struct file *file,
4551 pgoff_t offset, pgoff_t last_index)
4552 {
4553 pgoff_t req_size = last_index - offset + 1;
4554
4555 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4556 return offset + req_size;
4557 }
4558
4559 struct inode *btrfs_alloc_inode(struct super_block *sb)
4560 {
4561 struct btrfs_inode *ei;
4562
4563 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4564 if (!ei)
4565 return NULL;
4566 ei->last_trans = 0;
4567 ei->logged_trans = 0;
4568 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4569 ei->i_acl = BTRFS_ACL_NOT_CACHED;
4570 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4571 INIT_LIST_HEAD(&ei->i_orphan);
4572 INIT_LIST_HEAD(&ei->ordered_operations);
4573 return &ei->vfs_inode;
4574 }
4575
4576 void btrfs_destroy_inode(struct inode *inode)
4577 {
4578 struct btrfs_ordered_extent *ordered;
4579 struct btrfs_root *root = BTRFS_I(inode)->root;
4580
4581 WARN_ON(!list_empty(&inode->i_dentry));
4582 WARN_ON(inode->i_data.nrpages);
4583
4584 if (BTRFS_I(inode)->i_acl &&
4585 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4586 posix_acl_release(BTRFS_I(inode)->i_acl);
4587 if (BTRFS_I(inode)->i_default_acl &&
4588 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4589 posix_acl_release(BTRFS_I(inode)->i_default_acl);
4590
4591 /*
4592 * Make sure we're properly removed from the ordered operation
4593 * lists.
4594 */
4595 smp_mb();
4596 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
4597 spin_lock(&root->fs_info->ordered_extent_lock);
4598 list_del_init(&BTRFS_I(inode)->ordered_operations);
4599 spin_unlock(&root->fs_info->ordered_extent_lock);
4600 }
4601
4602 spin_lock(&root->list_lock);
4603 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4604 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4605 " list\n", inode->i_ino);
4606 dump_stack();
4607 }
4608 spin_unlock(&root->list_lock);
4609
4610 while (1) {
4611 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4612 if (!ordered)
4613 break;
4614 else {
4615 printk(KERN_ERR "btrfs found ordered "
4616 "extent %llu %llu on inode cleanup\n",
4617 (unsigned long long)ordered->file_offset,
4618 (unsigned long long)ordered->len);
4619 btrfs_remove_ordered_extent(inode, ordered);
4620 btrfs_put_ordered_extent(ordered);
4621 btrfs_put_ordered_extent(ordered);
4622 }
4623 }
4624 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4625 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4626 }
4627
4628 static void init_once(void *foo)
4629 {
4630 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4631
4632 inode_init_once(&ei->vfs_inode);
4633 }
4634
4635 void btrfs_destroy_cachep(void)
4636 {
4637 if (btrfs_inode_cachep)
4638 kmem_cache_destroy(btrfs_inode_cachep);
4639 if (btrfs_trans_handle_cachep)
4640 kmem_cache_destroy(btrfs_trans_handle_cachep);
4641 if (btrfs_transaction_cachep)
4642 kmem_cache_destroy(btrfs_transaction_cachep);
4643 if (btrfs_path_cachep)
4644 kmem_cache_destroy(btrfs_path_cachep);
4645 }
4646
4647 int btrfs_init_cachep(void)
4648 {
4649 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
4650 sizeof(struct btrfs_inode), 0,
4651 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
4652 if (!btrfs_inode_cachep)
4653 goto fail;
4654
4655 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
4656 sizeof(struct btrfs_trans_handle), 0,
4657 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4658 if (!btrfs_trans_handle_cachep)
4659 goto fail;
4660
4661 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
4662 sizeof(struct btrfs_transaction), 0,
4663 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4664 if (!btrfs_transaction_cachep)
4665 goto fail;
4666
4667 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
4668 sizeof(struct btrfs_path), 0,
4669 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4670 if (!btrfs_path_cachep)
4671 goto fail;
4672
4673 return 0;
4674 fail:
4675 btrfs_destroy_cachep();
4676 return -ENOMEM;
4677 }
4678
4679 static int btrfs_getattr(struct vfsmount *mnt,
4680 struct dentry *dentry, struct kstat *stat)
4681 {
4682 struct inode *inode = dentry->d_inode;
4683 generic_fillattr(inode, stat);
4684 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4685 stat->blksize = PAGE_CACHE_SIZE;
4686 stat->blocks = (inode_get_bytes(inode) +
4687 BTRFS_I(inode)->delalloc_bytes) >> 9;
4688 return 0;
4689 }
4690
4691 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4692 struct inode *new_dir, struct dentry *new_dentry)
4693 {
4694 struct btrfs_trans_handle *trans;
4695 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4696 struct inode *new_inode = new_dentry->d_inode;
4697 struct inode *old_inode = old_dentry->d_inode;
4698 struct timespec ctime = CURRENT_TIME;
4699 u64 index = 0;
4700 int ret;
4701
4702 /* we're not allowed to rename between subvolumes */
4703 if (BTRFS_I(old_inode)->root->root_key.objectid !=
4704 BTRFS_I(new_dir)->root->root_key.objectid)
4705 return -EXDEV;
4706
4707 if (S_ISDIR(old_inode->i_mode) && new_inode &&
4708 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4709 return -ENOTEMPTY;
4710 }
4711
4712 /* to rename a snapshot or subvolume, we need to juggle the
4713 * backrefs. This isn't coded yet
4714 */
4715 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4716 return -EXDEV;
4717
4718 ret = btrfs_check_metadata_free_space(root);
4719 if (ret)
4720 goto out_unlock;
4721
4722 /*
4723 * we're using rename to replace one file with another.
4724 * and the replacement file is large. Start IO on it now so
4725 * we don't add too much work to the end of the transaction
4726 */
4727 if (new_inode && old_inode && S_ISREG(old_inode->i_mode) &&
4728 new_inode->i_size &&
4729 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
4730 filemap_flush(old_inode->i_mapping);
4731
4732 trans = btrfs_start_transaction(root, 1);
4733
4734 /*
4735 * make sure the inode gets flushed if it is replacing
4736 * something.
4737 */
4738 if (new_inode && new_inode->i_size &&
4739 old_inode && S_ISREG(old_inode->i_mode)) {
4740 btrfs_add_ordered_operation(trans, root, old_inode);
4741 }
4742
4743 /*
4744 * this is an ugly little race, but the rename is required to make
4745 * sure that if we crash, the inode is either at the old name
4746 * or the new one. pinning the log transaction lets us make sure
4747 * we don't allow a log commit to come in after we unlink the
4748 * name but before we add the new name back in.
4749 */
4750 btrfs_pin_log_trans(root);
4751
4752 btrfs_set_trans_block_group(trans, new_dir);
4753
4754 btrfs_inc_nlink(old_dentry->d_inode);
4755 old_dir->i_ctime = old_dir->i_mtime = ctime;
4756 new_dir->i_ctime = new_dir->i_mtime = ctime;
4757 old_inode->i_ctime = ctime;
4758
4759 if (old_dentry->d_parent != new_dentry->d_parent)
4760 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
4761
4762 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4763 old_dentry->d_name.name,
4764 old_dentry->d_name.len);
4765 if (ret)
4766 goto out_fail;
4767
4768 if (new_inode) {
4769 new_inode->i_ctime = CURRENT_TIME;
4770 ret = btrfs_unlink_inode(trans, root, new_dir,
4771 new_dentry->d_inode,
4772 new_dentry->d_name.name,
4773 new_dentry->d_name.len);
4774 if (ret)
4775 goto out_fail;
4776 if (new_inode->i_nlink == 0) {
4777 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4778 if (ret)
4779 goto out_fail;
4780 }
4781
4782 }
4783 ret = btrfs_set_inode_index(new_dir, &index);
4784 if (ret)
4785 goto out_fail;
4786
4787 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4788 old_inode, new_dentry->d_name.name,
4789 new_dentry->d_name.len, 1, index);
4790 if (ret)
4791 goto out_fail;
4792
4793 btrfs_log_new_name(trans, old_inode, old_dir,
4794 new_dentry->d_parent);
4795 out_fail:
4796
4797 /* this btrfs_end_log_trans just allows the current
4798 * log-sub transaction to complete
4799 */
4800 btrfs_end_log_trans(root);
4801 btrfs_end_transaction_throttle(trans, root);
4802 out_unlock:
4803 return ret;
4804 }
4805
4806 /*
4807 * some fairly slow code that needs optimization. This walks the list
4808 * of all the inodes with pending delalloc and forces them to disk.
4809 */
4810 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4811 {
4812 struct list_head *head = &root->fs_info->delalloc_inodes;
4813 struct btrfs_inode *binode;
4814 struct inode *inode;
4815
4816 if (root->fs_info->sb->s_flags & MS_RDONLY)
4817 return -EROFS;
4818
4819 spin_lock(&root->fs_info->delalloc_lock);
4820 while (!list_empty(head)) {
4821 binode = list_entry(head->next, struct btrfs_inode,
4822 delalloc_inodes);
4823 inode = igrab(&binode->vfs_inode);
4824 if (!inode)
4825 list_del_init(&binode->delalloc_inodes);
4826 spin_unlock(&root->fs_info->delalloc_lock);
4827 if (inode) {
4828 filemap_flush(inode->i_mapping);
4829 iput(inode);
4830 }
4831 cond_resched();
4832 spin_lock(&root->fs_info->delalloc_lock);
4833 }
4834 spin_unlock(&root->fs_info->delalloc_lock);
4835
4836 /* the filemap_flush will queue IO into the worker threads, but
4837 * we have to make sure the IO is actually started and that
4838 * ordered extents get created before we return
4839 */
4840 atomic_inc(&root->fs_info->async_submit_draining);
4841 while (atomic_read(&root->fs_info->nr_async_submits) ||
4842 atomic_read(&root->fs_info->async_delalloc_pages)) {
4843 wait_event(root->fs_info->async_submit_wait,
4844 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4845 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4846 }
4847 atomic_dec(&root->fs_info->async_submit_draining);
4848 return 0;
4849 }
4850
4851 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4852 const char *symname)
4853 {
4854 struct btrfs_trans_handle *trans;
4855 struct btrfs_root *root = BTRFS_I(dir)->root;
4856 struct btrfs_path *path;
4857 struct btrfs_key key;
4858 struct inode *inode = NULL;
4859 int err;
4860 int drop_inode = 0;
4861 u64 objectid;
4862 u64 index = 0 ;
4863 int name_len;
4864 int datasize;
4865 unsigned long ptr;
4866 struct btrfs_file_extent_item *ei;
4867 struct extent_buffer *leaf;
4868 unsigned long nr = 0;
4869
4870 name_len = strlen(symname) + 1;
4871 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4872 return -ENAMETOOLONG;
4873
4874 err = btrfs_check_metadata_free_space(root);
4875 if (err)
4876 goto out_fail;
4877
4878 trans = btrfs_start_transaction(root, 1);
4879 btrfs_set_trans_block_group(trans, dir);
4880
4881 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4882 if (err) {
4883 err = -ENOSPC;
4884 goto out_unlock;
4885 }
4886
4887 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4888 dentry->d_name.len,
4889 dentry->d_parent->d_inode->i_ino, objectid,
4890 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4891 &index);
4892 err = PTR_ERR(inode);
4893 if (IS_ERR(inode))
4894 goto out_unlock;
4895
4896 err = btrfs_init_inode_security(inode, dir);
4897 if (err) {
4898 drop_inode = 1;
4899 goto out_unlock;
4900 }
4901
4902 btrfs_set_trans_block_group(trans, inode);
4903 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4904 if (err)
4905 drop_inode = 1;
4906 else {
4907 inode->i_mapping->a_ops = &btrfs_aops;
4908 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4909 inode->i_fop = &btrfs_file_operations;
4910 inode->i_op = &btrfs_file_inode_operations;
4911 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4912 }
4913 dir->i_sb->s_dirt = 1;
4914 btrfs_update_inode_block_group(trans, inode);
4915 btrfs_update_inode_block_group(trans, dir);
4916 if (drop_inode)
4917 goto out_unlock;
4918
4919 path = btrfs_alloc_path();
4920 BUG_ON(!path);
4921 key.objectid = inode->i_ino;
4922 key.offset = 0;
4923 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4924 datasize = btrfs_file_extent_calc_inline_size(name_len);
4925 err = btrfs_insert_empty_item(trans, root, path, &key,
4926 datasize);
4927 if (err) {
4928 drop_inode = 1;
4929 goto out_unlock;
4930 }
4931 leaf = path->nodes[0];
4932 ei = btrfs_item_ptr(leaf, path->slots[0],
4933 struct btrfs_file_extent_item);
4934 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4935 btrfs_set_file_extent_type(leaf, ei,
4936 BTRFS_FILE_EXTENT_INLINE);
4937 btrfs_set_file_extent_encryption(leaf, ei, 0);
4938 btrfs_set_file_extent_compression(leaf, ei, 0);
4939 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4940 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4941
4942 ptr = btrfs_file_extent_inline_start(ei);
4943 write_extent_buffer(leaf, symname, ptr, name_len);
4944 btrfs_mark_buffer_dirty(leaf);
4945 btrfs_free_path(path);
4946
4947 inode->i_op = &btrfs_symlink_inode_operations;
4948 inode->i_mapping->a_ops = &btrfs_symlink_aops;
4949 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4950 inode_set_bytes(inode, name_len);
4951 btrfs_i_size_write(inode, name_len - 1);
4952 err = btrfs_update_inode(trans, root, inode);
4953 if (err)
4954 drop_inode = 1;
4955
4956 out_unlock:
4957 nr = trans->blocks_used;
4958 btrfs_end_transaction_throttle(trans, root);
4959 out_fail:
4960 if (drop_inode) {
4961 inode_dec_link_count(inode);
4962 iput(inode);
4963 }
4964 btrfs_btree_balance_dirty(root, nr);
4965 return err;
4966 }
4967
4968 static int prealloc_file_range(struct btrfs_trans_handle *trans,
4969 struct inode *inode, u64 start, u64 end,
4970 u64 locked_end, u64 alloc_hint, int mode)
4971 {
4972 struct btrfs_root *root = BTRFS_I(inode)->root;
4973 struct btrfs_key ins;
4974 u64 alloc_size;
4975 u64 cur_offset = start;
4976 u64 num_bytes = end - start;
4977 int ret = 0;
4978
4979 while (num_bytes > 0) {
4980 alloc_size = min(num_bytes, root->fs_info->max_extent);
4981 ret = btrfs_reserve_extent(trans, root, alloc_size,
4982 root->sectorsize, 0, alloc_hint,
4983 (u64)-1, &ins, 1);
4984 if (ret) {
4985 WARN_ON(1);
4986 goto out;
4987 }
4988 ret = insert_reserved_file_extent(trans, inode,
4989 cur_offset, ins.objectid,
4990 ins.offset, ins.offset,
4991 ins.offset, locked_end,
4992 0, 0, 0,
4993 BTRFS_FILE_EXTENT_PREALLOC);
4994 BUG_ON(ret);
4995 num_bytes -= ins.offset;
4996 cur_offset += ins.offset;
4997 alloc_hint = ins.objectid + ins.offset;
4998 }
4999 out:
5000 if (cur_offset > start) {
5001 inode->i_ctime = CURRENT_TIME;
5002 btrfs_set_flag(inode, PREALLOC);
5003 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5004 cur_offset > i_size_read(inode))
5005 btrfs_i_size_write(inode, cur_offset);
5006 ret = btrfs_update_inode(trans, root, inode);
5007 BUG_ON(ret);
5008 }
5009
5010 return ret;
5011 }
5012
5013 static long btrfs_fallocate(struct inode *inode, int mode,
5014 loff_t offset, loff_t len)
5015 {
5016 u64 cur_offset;
5017 u64 last_byte;
5018 u64 alloc_start;
5019 u64 alloc_end;
5020 u64 alloc_hint = 0;
5021 u64 locked_end;
5022 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5023 struct extent_map *em;
5024 struct btrfs_trans_handle *trans;
5025 int ret;
5026
5027 alloc_start = offset & ~mask;
5028 alloc_end = (offset + len + mask) & ~mask;
5029
5030 /*
5031 * wait for ordered IO before we have any locks. We'll loop again
5032 * below with the locks held.
5033 */
5034 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5035
5036 mutex_lock(&inode->i_mutex);
5037 if (alloc_start > inode->i_size) {
5038 ret = btrfs_cont_expand(inode, alloc_start);
5039 if (ret)
5040 goto out;
5041 }
5042
5043 locked_end = alloc_end - 1;
5044 while (1) {
5045 struct btrfs_ordered_extent *ordered;
5046
5047 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5048 if (!trans) {
5049 ret = -EIO;
5050 goto out;
5051 }
5052
5053 /* the extent lock is ordered inside the running
5054 * transaction
5055 */
5056 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5057 GFP_NOFS);
5058 ordered = btrfs_lookup_first_ordered_extent(inode,
5059 alloc_end - 1);
5060 if (ordered &&
5061 ordered->file_offset + ordered->len > alloc_start &&
5062 ordered->file_offset < alloc_end) {
5063 btrfs_put_ordered_extent(ordered);
5064 unlock_extent(&BTRFS_I(inode)->io_tree,
5065 alloc_start, locked_end, GFP_NOFS);
5066 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5067
5068 /*
5069 * we can't wait on the range with the transaction
5070 * running or with the extent lock held
5071 */
5072 btrfs_wait_ordered_range(inode, alloc_start,
5073 alloc_end - alloc_start);
5074 } else {
5075 if (ordered)
5076 btrfs_put_ordered_extent(ordered);
5077 break;
5078 }
5079 }
5080
5081 cur_offset = alloc_start;
5082 while (1) {
5083 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5084 alloc_end - cur_offset, 0);
5085 BUG_ON(IS_ERR(em) || !em);
5086 last_byte = min(extent_map_end(em), alloc_end);
5087 last_byte = (last_byte + mask) & ~mask;
5088 if (em->block_start == EXTENT_MAP_HOLE) {
5089 ret = prealloc_file_range(trans, inode, cur_offset,
5090 last_byte, locked_end + 1,
5091 alloc_hint, mode);
5092 if (ret < 0) {
5093 free_extent_map(em);
5094 break;
5095 }
5096 }
5097 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5098 alloc_hint = em->block_start;
5099 free_extent_map(em);
5100
5101 cur_offset = last_byte;
5102 if (cur_offset >= alloc_end) {
5103 ret = 0;
5104 break;
5105 }
5106 }
5107 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5108 GFP_NOFS);
5109
5110 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5111 out:
5112 mutex_unlock(&inode->i_mutex);
5113 return ret;
5114 }
5115
5116 static int btrfs_set_page_dirty(struct page *page)
5117 {
5118 return __set_page_dirty_nobuffers(page);
5119 }
5120
5121 static int btrfs_permission(struct inode *inode, int mask)
5122 {
5123 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
5124 return -EACCES;
5125 return generic_permission(inode, mask, btrfs_check_acl);
5126 }
5127
5128 static struct inode_operations btrfs_dir_inode_operations = {
5129 .getattr = btrfs_getattr,
5130 .lookup = btrfs_lookup,
5131 .create = btrfs_create,
5132 .unlink = btrfs_unlink,
5133 .link = btrfs_link,
5134 .mkdir = btrfs_mkdir,
5135 .rmdir = btrfs_rmdir,
5136 .rename = btrfs_rename,
5137 .symlink = btrfs_symlink,
5138 .setattr = btrfs_setattr,
5139 .mknod = btrfs_mknod,
5140 .setxattr = btrfs_setxattr,
5141 .getxattr = btrfs_getxattr,
5142 .listxattr = btrfs_listxattr,
5143 .removexattr = btrfs_removexattr,
5144 .permission = btrfs_permission,
5145 };
5146 static struct inode_operations btrfs_dir_ro_inode_operations = {
5147 .lookup = btrfs_lookup,
5148 .permission = btrfs_permission,
5149 };
5150 static struct file_operations btrfs_dir_file_operations = {
5151 .llseek = generic_file_llseek,
5152 .read = generic_read_dir,
5153 .readdir = btrfs_real_readdir,
5154 .unlocked_ioctl = btrfs_ioctl,
5155 #ifdef CONFIG_COMPAT
5156 .compat_ioctl = btrfs_ioctl,
5157 #endif
5158 .release = btrfs_release_file,
5159 .fsync = btrfs_sync_file,
5160 };
5161
5162 static struct extent_io_ops btrfs_extent_io_ops = {
5163 .fill_delalloc = run_delalloc_range,
5164 .submit_bio_hook = btrfs_submit_bio_hook,
5165 .merge_bio_hook = btrfs_merge_bio_hook,
5166 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
5167 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
5168 .writepage_start_hook = btrfs_writepage_start_hook,
5169 .readpage_io_failed_hook = btrfs_io_failed_hook,
5170 .set_bit_hook = btrfs_set_bit_hook,
5171 .clear_bit_hook = btrfs_clear_bit_hook,
5172 };
5173
5174 /*
5175 * btrfs doesn't support the bmap operation because swapfiles
5176 * use bmap to make a mapping of extents in the file. They assume
5177 * these extents won't change over the life of the file and they
5178 * use the bmap result to do IO directly to the drive.
5179 *
5180 * the btrfs bmap call would return logical addresses that aren't
5181 * suitable for IO and they also will change frequently as COW
5182 * operations happen. So, swapfile + btrfs == corruption.
5183 *
5184 * For now we're avoiding this by dropping bmap.
5185 */
5186 static struct address_space_operations btrfs_aops = {
5187 .readpage = btrfs_readpage,
5188 .writepage = btrfs_writepage,
5189 .writepages = btrfs_writepages,
5190 .readpages = btrfs_readpages,
5191 .sync_page = block_sync_page,
5192 .direct_IO = btrfs_direct_IO,
5193 .invalidatepage = btrfs_invalidatepage,
5194 .releasepage = btrfs_releasepage,
5195 .set_page_dirty = btrfs_set_page_dirty,
5196 };
5197
5198 static struct address_space_operations btrfs_symlink_aops = {
5199 .readpage = btrfs_readpage,
5200 .writepage = btrfs_writepage,
5201 .invalidatepage = btrfs_invalidatepage,
5202 .releasepage = btrfs_releasepage,
5203 };
5204
5205 static struct inode_operations btrfs_file_inode_operations = {
5206 .truncate = btrfs_truncate,
5207 .getattr = btrfs_getattr,
5208 .setattr = btrfs_setattr,
5209 .setxattr = btrfs_setxattr,
5210 .getxattr = btrfs_getxattr,
5211 .listxattr = btrfs_listxattr,
5212 .removexattr = btrfs_removexattr,
5213 .permission = btrfs_permission,
5214 .fallocate = btrfs_fallocate,
5215 .fiemap = btrfs_fiemap,
5216 };
5217 static struct inode_operations btrfs_special_inode_operations = {
5218 .getattr = btrfs_getattr,
5219 .setattr = btrfs_setattr,
5220 .permission = btrfs_permission,
5221 .setxattr = btrfs_setxattr,
5222 .getxattr = btrfs_getxattr,
5223 .listxattr = btrfs_listxattr,
5224 .removexattr = btrfs_removexattr,
5225 };
5226 static struct inode_operations btrfs_symlink_inode_operations = {
5227 .readlink = generic_readlink,
5228 .follow_link = page_follow_link_light,
5229 .put_link = page_put_link,
5230 .permission = btrfs_permission,
5231 .setxattr = btrfs_setxattr,
5232 .getxattr = btrfs_getxattr,
5233 .listxattr = btrfs_listxattr,
5234 .removexattr = btrfs_removexattr,
5235 };