Btrfs: make sure to record the transid in new inodes
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include "compat.h"
42 #include "ctree.h"
43 #include "disk-io.h"
44 #include "transaction.h"
45 #include "btrfs_inode.h"
46 #include "ioctl.h"
47 #include "print-tree.h"
48 #include "volumes.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "compression.h"
53 #include "locking.h"
54 #include "free-space-cache.h"
55 #include "inode-map.h"
56
57 struct btrfs_iget_args {
58 u64 ino;
59 struct btrfs_root *root;
60 };
61
62 static const struct inode_operations btrfs_dir_inode_operations;
63 static const struct inode_operations btrfs_symlink_inode_operations;
64 static const struct inode_operations btrfs_dir_ro_inode_operations;
65 static const struct inode_operations btrfs_special_inode_operations;
66 static const struct inode_operations btrfs_file_inode_operations;
67 static const struct address_space_operations btrfs_aops;
68 static const struct address_space_operations btrfs_symlink_aops;
69 static const struct file_operations btrfs_dir_file_operations;
70 static struct extent_io_ops btrfs_extent_io_ops;
71
72 static struct kmem_cache *btrfs_inode_cachep;
73 struct kmem_cache *btrfs_trans_handle_cachep;
74 struct kmem_cache *btrfs_transaction_cachep;
75 struct kmem_cache *btrfs_path_cachep;
76 struct kmem_cache *btrfs_free_space_cachep;
77
78 #define S_SHIFT 12
79 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
80 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
81 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
82 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
83 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
84 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
85 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
86 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
87 };
88
89 static int btrfs_setsize(struct inode *inode, loff_t newsize);
90 static int btrfs_truncate(struct inode *inode);
91 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
92 static noinline int cow_file_range(struct inode *inode,
93 struct page *locked_page,
94 u64 start, u64 end, int *page_started,
95 unsigned long *nr_written, int unlock);
96
97 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
98 struct inode *inode, struct inode *dir,
99 const struct qstr *qstr)
100 {
101 int err;
102
103 err = btrfs_init_acl(trans, inode, dir);
104 if (!err)
105 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
106 return err;
107 }
108
109 /*
110 * this does all the hard work for inserting an inline extent into
111 * the btree. The caller should have done a btrfs_drop_extents so that
112 * no overlapping inline items exist in the btree
113 */
114 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
115 struct btrfs_root *root, struct inode *inode,
116 u64 start, size_t size, size_t compressed_size,
117 int compress_type,
118 struct page **compressed_pages)
119 {
120 struct btrfs_key key;
121 struct btrfs_path *path;
122 struct extent_buffer *leaf;
123 struct page *page = NULL;
124 char *kaddr;
125 unsigned long ptr;
126 struct btrfs_file_extent_item *ei;
127 int err = 0;
128 int ret;
129 size_t cur_size = size;
130 size_t datasize;
131 unsigned long offset;
132
133 if (compressed_size && compressed_pages)
134 cur_size = compressed_size;
135
136 path = btrfs_alloc_path();
137 if (!path)
138 return -ENOMEM;
139
140 path->leave_spinning = 1;
141
142 key.objectid = btrfs_ino(inode);
143 key.offset = start;
144 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
145 datasize = btrfs_file_extent_calc_inline_size(cur_size);
146
147 inode_add_bytes(inode, size);
148 ret = btrfs_insert_empty_item(trans, root, path, &key,
149 datasize);
150 BUG_ON(ret);
151 if (ret) {
152 err = ret;
153 goto fail;
154 }
155 leaf = path->nodes[0];
156 ei = btrfs_item_ptr(leaf, path->slots[0],
157 struct btrfs_file_extent_item);
158 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160 btrfs_set_file_extent_encryption(leaf, ei, 0);
161 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163 ptr = btrfs_file_extent_inline_start(ei);
164
165 if (compress_type != BTRFS_COMPRESS_NONE) {
166 struct page *cpage;
167 int i = 0;
168 while (compressed_size > 0) {
169 cpage = compressed_pages[i];
170 cur_size = min_t(unsigned long, compressed_size,
171 PAGE_CACHE_SIZE);
172
173 kaddr = kmap_atomic(cpage, KM_USER0);
174 write_extent_buffer(leaf, kaddr, ptr, cur_size);
175 kunmap_atomic(kaddr, KM_USER0);
176
177 i++;
178 ptr += cur_size;
179 compressed_size -= cur_size;
180 }
181 btrfs_set_file_extent_compression(leaf, ei,
182 compress_type);
183 } else {
184 page = find_get_page(inode->i_mapping,
185 start >> PAGE_CACHE_SHIFT);
186 btrfs_set_file_extent_compression(leaf, ei, 0);
187 kaddr = kmap_atomic(page, KM_USER0);
188 offset = start & (PAGE_CACHE_SIZE - 1);
189 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190 kunmap_atomic(kaddr, KM_USER0);
191 page_cache_release(page);
192 }
193 btrfs_mark_buffer_dirty(leaf);
194 btrfs_free_path(path);
195
196 /*
197 * we're an inline extent, so nobody can
198 * extend the file past i_size without locking
199 * a page we already have locked.
200 *
201 * We must do any isize and inode updates
202 * before we unlock the pages. Otherwise we
203 * could end up racing with unlink.
204 */
205 BTRFS_I(inode)->disk_i_size = inode->i_size;
206 btrfs_update_inode(trans, root, inode);
207
208 return 0;
209 fail:
210 btrfs_free_path(path);
211 return err;
212 }
213
214
215 /*
216 * conditionally insert an inline extent into the file. This
217 * does the checks required to make sure the data is small enough
218 * to fit as an inline extent.
219 */
220 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
221 struct btrfs_root *root,
222 struct inode *inode, u64 start, u64 end,
223 size_t compressed_size, int compress_type,
224 struct page **compressed_pages)
225 {
226 u64 isize = i_size_read(inode);
227 u64 actual_end = min(end + 1, isize);
228 u64 inline_len = actual_end - start;
229 u64 aligned_end = (end + root->sectorsize - 1) &
230 ~((u64)root->sectorsize - 1);
231 u64 hint_byte;
232 u64 data_len = inline_len;
233 int ret;
234
235 if (compressed_size)
236 data_len = compressed_size;
237
238 if (start > 0 ||
239 actual_end >= PAGE_CACHE_SIZE ||
240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 (!compressed_size &&
242 (actual_end & (root->sectorsize - 1)) == 0) ||
243 end + 1 < isize ||
244 data_len > root->fs_info->max_inline) {
245 return 1;
246 }
247
248 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
249 &hint_byte, 1);
250 BUG_ON(ret);
251
252 if (isize > actual_end)
253 inline_len = min_t(u64, isize, actual_end);
254 ret = insert_inline_extent(trans, root, inode, start,
255 inline_len, compressed_size,
256 compress_type, compressed_pages);
257 BUG_ON(ret);
258 btrfs_delalloc_release_metadata(inode, end + 1 - start);
259 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
260 return 0;
261 }
262
263 struct async_extent {
264 u64 start;
265 u64 ram_size;
266 u64 compressed_size;
267 struct page **pages;
268 unsigned long nr_pages;
269 int compress_type;
270 struct list_head list;
271 };
272
273 struct async_cow {
274 struct inode *inode;
275 struct btrfs_root *root;
276 struct page *locked_page;
277 u64 start;
278 u64 end;
279 struct list_head extents;
280 struct btrfs_work work;
281 };
282
283 static noinline int add_async_extent(struct async_cow *cow,
284 u64 start, u64 ram_size,
285 u64 compressed_size,
286 struct page **pages,
287 unsigned long nr_pages,
288 int compress_type)
289 {
290 struct async_extent *async_extent;
291
292 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
293 BUG_ON(!async_extent);
294 async_extent->start = start;
295 async_extent->ram_size = ram_size;
296 async_extent->compressed_size = compressed_size;
297 async_extent->pages = pages;
298 async_extent->nr_pages = nr_pages;
299 async_extent->compress_type = compress_type;
300 list_add_tail(&async_extent->list, &cow->extents);
301 return 0;
302 }
303
304 /*
305 * we create compressed extents in two phases. The first
306 * phase compresses a range of pages that have already been
307 * locked (both pages and state bits are locked).
308 *
309 * This is done inside an ordered work queue, and the compression
310 * is spread across many cpus. The actual IO submission is step
311 * two, and the ordered work queue takes care of making sure that
312 * happens in the same order things were put onto the queue by
313 * writepages and friends.
314 *
315 * If this code finds it can't get good compression, it puts an
316 * entry onto the work queue to write the uncompressed bytes. This
317 * makes sure that both compressed inodes and uncompressed inodes
318 * are written in the same order that pdflush sent them down.
319 */
320 static noinline int compress_file_range(struct inode *inode,
321 struct page *locked_page,
322 u64 start, u64 end,
323 struct async_cow *async_cow,
324 int *num_added)
325 {
326 struct btrfs_root *root = BTRFS_I(inode)->root;
327 struct btrfs_trans_handle *trans;
328 u64 num_bytes;
329 u64 blocksize = root->sectorsize;
330 u64 actual_end;
331 u64 isize = i_size_read(inode);
332 int ret = 0;
333 struct page **pages = NULL;
334 unsigned long nr_pages;
335 unsigned long nr_pages_ret = 0;
336 unsigned long total_compressed = 0;
337 unsigned long total_in = 0;
338 unsigned long max_compressed = 128 * 1024;
339 unsigned long max_uncompressed = 128 * 1024;
340 int i;
341 int will_compress;
342 int compress_type = root->fs_info->compress_type;
343
344 /* if this is a small write inside eof, kick off a defragbot */
345 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
346 btrfs_add_inode_defrag(NULL, inode);
347
348 actual_end = min_t(u64, isize, end + 1);
349 again:
350 will_compress = 0;
351 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
352 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
353
354 /*
355 * we don't want to send crud past the end of i_size through
356 * compression, that's just a waste of CPU time. So, if the
357 * end of the file is before the start of our current
358 * requested range of bytes, we bail out to the uncompressed
359 * cleanup code that can deal with all of this.
360 *
361 * It isn't really the fastest way to fix things, but this is a
362 * very uncommon corner.
363 */
364 if (actual_end <= start)
365 goto cleanup_and_bail_uncompressed;
366
367 total_compressed = actual_end - start;
368
369 /* we want to make sure that amount of ram required to uncompress
370 * an extent is reasonable, so we limit the total size in ram
371 * of a compressed extent to 128k. This is a crucial number
372 * because it also controls how easily we can spread reads across
373 * cpus for decompression.
374 *
375 * We also want to make sure the amount of IO required to do
376 * a random read is reasonably small, so we limit the size of
377 * a compressed extent to 128k.
378 */
379 total_compressed = min(total_compressed, max_uncompressed);
380 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
381 num_bytes = max(blocksize, num_bytes);
382 total_in = 0;
383 ret = 0;
384
385 /*
386 * we do compression for mount -o compress and when the
387 * inode has not been flagged as nocompress. This flag can
388 * change at any time if we discover bad compression ratios.
389 */
390 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
391 (btrfs_test_opt(root, COMPRESS) ||
392 (BTRFS_I(inode)->force_compress) ||
393 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
394 WARN_ON(pages);
395 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
396 BUG_ON(!pages);
397
398 if (BTRFS_I(inode)->force_compress)
399 compress_type = BTRFS_I(inode)->force_compress;
400
401 ret = btrfs_compress_pages(compress_type,
402 inode->i_mapping, start,
403 total_compressed, pages,
404 nr_pages, &nr_pages_ret,
405 &total_in,
406 &total_compressed,
407 max_compressed);
408
409 if (!ret) {
410 unsigned long offset = total_compressed &
411 (PAGE_CACHE_SIZE - 1);
412 struct page *page = pages[nr_pages_ret - 1];
413 char *kaddr;
414
415 /* zero the tail end of the last page, we might be
416 * sending it down to disk
417 */
418 if (offset) {
419 kaddr = kmap_atomic(page, KM_USER0);
420 memset(kaddr + offset, 0,
421 PAGE_CACHE_SIZE - offset);
422 kunmap_atomic(kaddr, KM_USER0);
423 }
424 will_compress = 1;
425 }
426 }
427 if (start == 0) {
428 trans = btrfs_join_transaction(root);
429 BUG_ON(IS_ERR(trans));
430 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
431
432 /* lets try to make an inline extent */
433 if (ret || total_in < (actual_end - start)) {
434 /* we didn't compress the entire range, try
435 * to make an uncompressed inline extent.
436 */
437 ret = cow_file_range_inline(trans, root, inode,
438 start, end, 0, 0, NULL);
439 } else {
440 /* try making a compressed inline extent */
441 ret = cow_file_range_inline(trans, root, inode,
442 start, end,
443 total_compressed,
444 compress_type, pages);
445 }
446 if (ret == 0) {
447 /*
448 * inline extent creation worked, we don't need
449 * to create any more async work items. Unlock
450 * and free up our temp pages.
451 */
452 extent_clear_unlock_delalloc(inode,
453 &BTRFS_I(inode)->io_tree,
454 start, end, NULL,
455 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
456 EXTENT_CLEAR_DELALLOC |
457 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
458
459 btrfs_end_transaction(trans, root);
460 goto free_pages_out;
461 }
462 btrfs_end_transaction(trans, root);
463 }
464
465 if (will_compress) {
466 /*
467 * we aren't doing an inline extent round the compressed size
468 * up to a block size boundary so the allocator does sane
469 * things
470 */
471 total_compressed = (total_compressed + blocksize - 1) &
472 ~(blocksize - 1);
473
474 /*
475 * one last check to make sure the compression is really a
476 * win, compare the page count read with the blocks on disk
477 */
478 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
479 ~(PAGE_CACHE_SIZE - 1);
480 if (total_compressed >= total_in) {
481 will_compress = 0;
482 } else {
483 num_bytes = total_in;
484 }
485 }
486 if (!will_compress && pages) {
487 /*
488 * the compression code ran but failed to make things smaller,
489 * free any pages it allocated and our page pointer array
490 */
491 for (i = 0; i < nr_pages_ret; i++) {
492 WARN_ON(pages[i]->mapping);
493 page_cache_release(pages[i]);
494 }
495 kfree(pages);
496 pages = NULL;
497 total_compressed = 0;
498 nr_pages_ret = 0;
499
500 /* flag the file so we don't compress in the future */
501 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
502 !(BTRFS_I(inode)->force_compress)) {
503 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
504 }
505 }
506 if (will_compress) {
507 *num_added += 1;
508
509 /* the async work queues will take care of doing actual
510 * allocation on disk for these compressed pages,
511 * and will submit them to the elevator.
512 */
513 add_async_extent(async_cow, start, num_bytes,
514 total_compressed, pages, nr_pages_ret,
515 compress_type);
516
517 if (start + num_bytes < end) {
518 start += num_bytes;
519 pages = NULL;
520 cond_resched();
521 goto again;
522 }
523 } else {
524 cleanup_and_bail_uncompressed:
525 /*
526 * No compression, but we still need to write the pages in
527 * the file we've been given so far. redirty the locked
528 * page if it corresponds to our extent and set things up
529 * for the async work queue to run cow_file_range to do
530 * the normal delalloc dance
531 */
532 if (page_offset(locked_page) >= start &&
533 page_offset(locked_page) <= end) {
534 __set_page_dirty_nobuffers(locked_page);
535 /* unlocked later on in the async handlers */
536 }
537 add_async_extent(async_cow, start, end - start + 1,
538 0, NULL, 0, BTRFS_COMPRESS_NONE);
539 *num_added += 1;
540 }
541
542 out:
543 return 0;
544
545 free_pages_out:
546 for (i = 0; i < nr_pages_ret; i++) {
547 WARN_ON(pages[i]->mapping);
548 page_cache_release(pages[i]);
549 }
550 kfree(pages);
551
552 goto out;
553 }
554
555 /*
556 * phase two of compressed writeback. This is the ordered portion
557 * of the code, which only gets called in the order the work was
558 * queued. We walk all the async extents created by compress_file_range
559 * and send them down to the disk.
560 */
561 static noinline int submit_compressed_extents(struct inode *inode,
562 struct async_cow *async_cow)
563 {
564 struct async_extent *async_extent;
565 u64 alloc_hint = 0;
566 struct btrfs_trans_handle *trans;
567 struct btrfs_key ins;
568 struct extent_map *em;
569 struct btrfs_root *root = BTRFS_I(inode)->root;
570 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
571 struct extent_io_tree *io_tree;
572 int ret = 0;
573
574 if (list_empty(&async_cow->extents))
575 return 0;
576
577
578 while (!list_empty(&async_cow->extents)) {
579 async_extent = list_entry(async_cow->extents.next,
580 struct async_extent, list);
581 list_del(&async_extent->list);
582
583 io_tree = &BTRFS_I(inode)->io_tree;
584
585 retry:
586 /* did the compression code fall back to uncompressed IO? */
587 if (!async_extent->pages) {
588 int page_started = 0;
589 unsigned long nr_written = 0;
590
591 lock_extent(io_tree, async_extent->start,
592 async_extent->start +
593 async_extent->ram_size - 1, GFP_NOFS);
594
595 /* allocate blocks */
596 ret = cow_file_range(inode, async_cow->locked_page,
597 async_extent->start,
598 async_extent->start +
599 async_extent->ram_size - 1,
600 &page_started, &nr_written, 0);
601
602 /*
603 * if page_started, cow_file_range inserted an
604 * inline extent and took care of all the unlocking
605 * and IO for us. Otherwise, we need to submit
606 * all those pages down to the drive.
607 */
608 if (!page_started && !ret)
609 extent_write_locked_range(io_tree,
610 inode, async_extent->start,
611 async_extent->start +
612 async_extent->ram_size - 1,
613 btrfs_get_extent,
614 WB_SYNC_ALL);
615 kfree(async_extent);
616 cond_resched();
617 continue;
618 }
619
620 lock_extent(io_tree, async_extent->start,
621 async_extent->start + async_extent->ram_size - 1,
622 GFP_NOFS);
623
624 trans = btrfs_join_transaction(root);
625 BUG_ON(IS_ERR(trans));
626 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
627 ret = btrfs_reserve_extent(trans, root,
628 async_extent->compressed_size,
629 async_extent->compressed_size,
630 0, alloc_hint,
631 (u64)-1, &ins, 1);
632 btrfs_end_transaction(trans, root);
633
634 if (ret) {
635 int i;
636 for (i = 0; i < async_extent->nr_pages; i++) {
637 WARN_ON(async_extent->pages[i]->mapping);
638 page_cache_release(async_extent->pages[i]);
639 }
640 kfree(async_extent->pages);
641 async_extent->nr_pages = 0;
642 async_extent->pages = NULL;
643 unlock_extent(io_tree, async_extent->start,
644 async_extent->start +
645 async_extent->ram_size - 1, GFP_NOFS);
646 goto retry;
647 }
648
649 /*
650 * here we're doing allocation and writeback of the
651 * compressed pages
652 */
653 btrfs_drop_extent_cache(inode, async_extent->start,
654 async_extent->start +
655 async_extent->ram_size - 1, 0);
656
657 em = alloc_extent_map();
658 BUG_ON(!em);
659 em->start = async_extent->start;
660 em->len = async_extent->ram_size;
661 em->orig_start = em->start;
662
663 em->block_start = ins.objectid;
664 em->block_len = ins.offset;
665 em->bdev = root->fs_info->fs_devices->latest_bdev;
666 em->compress_type = async_extent->compress_type;
667 set_bit(EXTENT_FLAG_PINNED, &em->flags);
668 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
669
670 while (1) {
671 write_lock(&em_tree->lock);
672 ret = add_extent_mapping(em_tree, em);
673 write_unlock(&em_tree->lock);
674 if (ret != -EEXIST) {
675 free_extent_map(em);
676 break;
677 }
678 btrfs_drop_extent_cache(inode, async_extent->start,
679 async_extent->start +
680 async_extent->ram_size - 1, 0);
681 }
682
683 ret = btrfs_add_ordered_extent_compress(inode,
684 async_extent->start,
685 ins.objectid,
686 async_extent->ram_size,
687 ins.offset,
688 BTRFS_ORDERED_COMPRESSED,
689 async_extent->compress_type);
690 BUG_ON(ret);
691
692 /*
693 * clear dirty, set writeback and unlock the pages.
694 */
695 extent_clear_unlock_delalloc(inode,
696 &BTRFS_I(inode)->io_tree,
697 async_extent->start,
698 async_extent->start +
699 async_extent->ram_size - 1,
700 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
701 EXTENT_CLEAR_UNLOCK |
702 EXTENT_CLEAR_DELALLOC |
703 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
704
705 ret = btrfs_submit_compressed_write(inode,
706 async_extent->start,
707 async_extent->ram_size,
708 ins.objectid,
709 ins.offset, async_extent->pages,
710 async_extent->nr_pages);
711
712 BUG_ON(ret);
713 alloc_hint = ins.objectid + ins.offset;
714 kfree(async_extent);
715 cond_resched();
716 }
717
718 return 0;
719 }
720
721 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
722 u64 num_bytes)
723 {
724 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
725 struct extent_map *em;
726 u64 alloc_hint = 0;
727
728 read_lock(&em_tree->lock);
729 em = search_extent_mapping(em_tree, start, num_bytes);
730 if (em) {
731 /*
732 * if block start isn't an actual block number then find the
733 * first block in this inode and use that as a hint. If that
734 * block is also bogus then just don't worry about it.
735 */
736 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
737 free_extent_map(em);
738 em = search_extent_mapping(em_tree, 0, 0);
739 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
740 alloc_hint = em->block_start;
741 if (em)
742 free_extent_map(em);
743 } else {
744 alloc_hint = em->block_start;
745 free_extent_map(em);
746 }
747 }
748 read_unlock(&em_tree->lock);
749
750 return alloc_hint;
751 }
752
753 static inline bool is_free_space_inode(struct btrfs_root *root,
754 struct inode *inode)
755 {
756 if (root == root->fs_info->tree_root ||
757 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID)
758 return true;
759 return false;
760 }
761
762 /*
763 * when extent_io.c finds a delayed allocation range in the file,
764 * the call backs end up in this code. The basic idea is to
765 * allocate extents on disk for the range, and create ordered data structs
766 * in ram to track those extents.
767 *
768 * locked_page is the page that writepage had locked already. We use
769 * it to make sure we don't do extra locks or unlocks.
770 *
771 * *page_started is set to one if we unlock locked_page and do everything
772 * required to start IO on it. It may be clean and already done with
773 * IO when we return.
774 */
775 static noinline int cow_file_range(struct inode *inode,
776 struct page *locked_page,
777 u64 start, u64 end, int *page_started,
778 unsigned long *nr_written,
779 int unlock)
780 {
781 struct btrfs_root *root = BTRFS_I(inode)->root;
782 struct btrfs_trans_handle *trans;
783 u64 alloc_hint = 0;
784 u64 num_bytes;
785 unsigned long ram_size;
786 u64 disk_num_bytes;
787 u64 cur_alloc_size;
788 u64 blocksize = root->sectorsize;
789 struct btrfs_key ins;
790 struct extent_map *em;
791 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
792 int ret = 0;
793
794 BUG_ON(is_free_space_inode(root, inode));
795 trans = btrfs_join_transaction(root);
796 BUG_ON(IS_ERR(trans));
797 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
798
799 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
800 num_bytes = max(blocksize, num_bytes);
801 disk_num_bytes = num_bytes;
802 ret = 0;
803
804 /* if this is a small write inside eof, kick off defrag */
805 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
806 btrfs_add_inode_defrag(trans, inode);
807
808 if (start == 0) {
809 /* lets try to make an inline extent */
810 ret = cow_file_range_inline(trans, root, inode,
811 start, end, 0, 0, NULL);
812 if (ret == 0) {
813 extent_clear_unlock_delalloc(inode,
814 &BTRFS_I(inode)->io_tree,
815 start, end, NULL,
816 EXTENT_CLEAR_UNLOCK_PAGE |
817 EXTENT_CLEAR_UNLOCK |
818 EXTENT_CLEAR_DELALLOC |
819 EXTENT_CLEAR_DIRTY |
820 EXTENT_SET_WRITEBACK |
821 EXTENT_END_WRITEBACK);
822
823 *nr_written = *nr_written +
824 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
825 *page_started = 1;
826 ret = 0;
827 goto out;
828 }
829 }
830
831 BUG_ON(disk_num_bytes >
832 btrfs_super_total_bytes(&root->fs_info->super_copy));
833
834 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
835 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
836
837 while (disk_num_bytes > 0) {
838 unsigned long op;
839
840 cur_alloc_size = disk_num_bytes;
841 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
842 root->sectorsize, 0, alloc_hint,
843 (u64)-1, &ins, 1);
844 BUG_ON(ret);
845
846 em = alloc_extent_map();
847 BUG_ON(!em);
848 em->start = start;
849 em->orig_start = em->start;
850 ram_size = ins.offset;
851 em->len = ins.offset;
852
853 em->block_start = ins.objectid;
854 em->block_len = ins.offset;
855 em->bdev = root->fs_info->fs_devices->latest_bdev;
856 set_bit(EXTENT_FLAG_PINNED, &em->flags);
857
858 while (1) {
859 write_lock(&em_tree->lock);
860 ret = add_extent_mapping(em_tree, em);
861 write_unlock(&em_tree->lock);
862 if (ret != -EEXIST) {
863 free_extent_map(em);
864 break;
865 }
866 btrfs_drop_extent_cache(inode, start,
867 start + ram_size - 1, 0);
868 }
869
870 cur_alloc_size = ins.offset;
871 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
872 ram_size, cur_alloc_size, 0);
873 BUG_ON(ret);
874
875 if (root->root_key.objectid ==
876 BTRFS_DATA_RELOC_TREE_OBJECTID) {
877 ret = btrfs_reloc_clone_csums(inode, start,
878 cur_alloc_size);
879 BUG_ON(ret);
880 }
881
882 if (disk_num_bytes < cur_alloc_size)
883 break;
884
885 /* we're not doing compressed IO, don't unlock the first
886 * page (which the caller expects to stay locked), don't
887 * clear any dirty bits and don't set any writeback bits
888 *
889 * Do set the Private2 bit so we know this page was properly
890 * setup for writepage
891 */
892 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
893 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
894 EXTENT_SET_PRIVATE2;
895
896 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
897 start, start + ram_size - 1,
898 locked_page, op);
899 disk_num_bytes -= cur_alloc_size;
900 num_bytes -= cur_alloc_size;
901 alloc_hint = ins.objectid + ins.offset;
902 start += cur_alloc_size;
903 }
904 out:
905 ret = 0;
906 btrfs_end_transaction(trans, root);
907
908 return ret;
909 }
910
911 /*
912 * work queue call back to started compression on a file and pages
913 */
914 static noinline void async_cow_start(struct btrfs_work *work)
915 {
916 struct async_cow *async_cow;
917 int num_added = 0;
918 async_cow = container_of(work, struct async_cow, work);
919
920 compress_file_range(async_cow->inode, async_cow->locked_page,
921 async_cow->start, async_cow->end, async_cow,
922 &num_added);
923 if (num_added == 0)
924 async_cow->inode = NULL;
925 }
926
927 /*
928 * work queue call back to submit previously compressed pages
929 */
930 static noinline void async_cow_submit(struct btrfs_work *work)
931 {
932 struct async_cow *async_cow;
933 struct btrfs_root *root;
934 unsigned long nr_pages;
935
936 async_cow = container_of(work, struct async_cow, work);
937
938 root = async_cow->root;
939 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
940 PAGE_CACHE_SHIFT;
941
942 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
943
944 if (atomic_read(&root->fs_info->async_delalloc_pages) <
945 5 * 1042 * 1024 &&
946 waitqueue_active(&root->fs_info->async_submit_wait))
947 wake_up(&root->fs_info->async_submit_wait);
948
949 if (async_cow->inode)
950 submit_compressed_extents(async_cow->inode, async_cow);
951 }
952
953 static noinline void async_cow_free(struct btrfs_work *work)
954 {
955 struct async_cow *async_cow;
956 async_cow = container_of(work, struct async_cow, work);
957 kfree(async_cow);
958 }
959
960 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
961 u64 start, u64 end, int *page_started,
962 unsigned long *nr_written)
963 {
964 struct async_cow *async_cow;
965 struct btrfs_root *root = BTRFS_I(inode)->root;
966 unsigned long nr_pages;
967 u64 cur_end;
968 int limit = 10 * 1024 * 1042;
969
970 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
971 1, 0, NULL, GFP_NOFS);
972 while (start < end) {
973 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
974 BUG_ON(!async_cow);
975 async_cow->inode = inode;
976 async_cow->root = root;
977 async_cow->locked_page = locked_page;
978 async_cow->start = start;
979
980 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
981 cur_end = end;
982 else
983 cur_end = min(end, start + 512 * 1024 - 1);
984
985 async_cow->end = cur_end;
986 INIT_LIST_HEAD(&async_cow->extents);
987
988 async_cow->work.func = async_cow_start;
989 async_cow->work.ordered_func = async_cow_submit;
990 async_cow->work.ordered_free = async_cow_free;
991 async_cow->work.flags = 0;
992
993 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
994 PAGE_CACHE_SHIFT;
995 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
996
997 btrfs_queue_worker(&root->fs_info->delalloc_workers,
998 &async_cow->work);
999
1000 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1001 wait_event(root->fs_info->async_submit_wait,
1002 (atomic_read(&root->fs_info->async_delalloc_pages) <
1003 limit));
1004 }
1005
1006 while (atomic_read(&root->fs_info->async_submit_draining) &&
1007 atomic_read(&root->fs_info->async_delalloc_pages)) {
1008 wait_event(root->fs_info->async_submit_wait,
1009 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1010 0));
1011 }
1012
1013 *nr_written += nr_pages;
1014 start = cur_end + 1;
1015 }
1016 *page_started = 1;
1017 return 0;
1018 }
1019
1020 static noinline int csum_exist_in_range(struct btrfs_root *root,
1021 u64 bytenr, u64 num_bytes)
1022 {
1023 int ret;
1024 struct btrfs_ordered_sum *sums;
1025 LIST_HEAD(list);
1026
1027 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1028 bytenr + num_bytes - 1, &list, 0);
1029 if (ret == 0 && list_empty(&list))
1030 return 0;
1031
1032 while (!list_empty(&list)) {
1033 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1034 list_del(&sums->list);
1035 kfree(sums);
1036 }
1037 return 1;
1038 }
1039
1040 /*
1041 * when nowcow writeback call back. This checks for snapshots or COW copies
1042 * of the extents that exist in the file, and COWs the file as required.
1043 *
1044 * If no cow copies or snapshots exist, we write directly to the existing
1045 * blocks on disk
1046 */
1047 static noinline int run_delalloc_nocow(struct inode *inode,
1048 struct page *locked_page,
1049 u64 start, u64 end, int *page_started, int force,
1050 unsigned long *nr_written)
1051 {
1052 struct btrfs_root *root = BTRFS_I(inode)->root;
1053 struct btrfs_trans_handle *trans;
1054 struct extent_buffer *leaf;
1055 struct btrfs_path *path;
1056 struct btrfs_file_extent_item *fi;
1057 struct btrfs_key found_key;
1058 u64 cow_start;
1059 u64 cur_offset;
1060 u64 extent_end;
1061 u64 extent_offset;
1062 u64 disk_bytenr;
1063 u64 num_bytes;
1064 int extent_type;
1065 int ret;
1066 int type;
1067 int nocow;
1068 int check_prev = 1;
1069 bool nolock;
1070 u64 ino = btrfs_ino(inode);
1071
1072 path = btrfs_alloc_path();
1073 BUG_ON(!path);
1074
1075 nolock = is_free_space_inode(root, inode);
1076
1077 if (nolock)
1078 trans = btrfs_join_transaction_nolock(root);
1079 else
1080 trans = btrfs_join_transaction(root);
1081
1082 BUG_ON(IS_ERR(trans));
1083 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1084
1085 cow_start = (u64)-1;
1086 cur_offset = start;
1087 while (1) {
1088 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1089 cur_offset, 0);
1090 BUG_ON(ret < 0);
1091 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1092 leaf = path->nodes[0];
1093 btrfs_item_key_to_cpu(leaf, &found_key,
1094 path->slots[0] - 1);
1095 if (found_key.objectid == ino &&
1096 found_key.type == BTRFS_EXTENT_DATA_KEY)
1097 path->slots[0]--;
1098 }
1099 check_prev = 0;
1100 next_slot:
1101 leaf = path->nodes[0];
1102 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1103 ret = btrfs_next_leaf(root, path);
1104 if (ret < 0)
1105 BUG_ON(1);
1106 if (ret > 0)
1107 break;
1108 leaf = path->nodes[0];
1109 }
1110
1111 nocow = 0;
1112 disk_bytenr = 0;
1113 num_bytes = 0;
1114 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1115
1116 if (found_key.objectid > ino ||
1117 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1118 found_key.offset > end)
1119 break;
1120
1121 if (found_key.offset > cur_offset) {
1122 extent_end = found_key.offset;
1123 extent_type = 0;
1124 goto out_check;
1125 }
1126
1127 fi = btrfs_item_ptr(leaf, path->slots[0],
1128 struct btrfs_file_extent_item);
1129 extent_type = btrfs_file_extent_type(leaf, fi);
1130
1131 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1132 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1133 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1134 extent_offset = btrfs_file_extent_offset(leaf, fi);
1135 extent_end = found_key.offset +
1136 btrfs_file_extent_num_bytes(leaf, fi);
1137 if (extent_end <= start) {
1138 path->slots[0]++;
1139 goto next_slot;
1140 }
1141 if (disk_bytenr == 0)
1142 goto out_check;
1143 if (btrfs_file_extent_compression(leaf, fi) ||
1144 btrfs_file_extent_encryption(leaf, fi) ||
1145 btrfs_file_extent_other_encoding(leaf, fi))
1146 goto out_check;
1147 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1148 goto out_check;
1149 if (btrfs_extent_readonly(root, disk_bytenr))
1150 goto out_check;
1151 if (btrfs_cross_ref_exist(trans, root, ino,
1152 found_key.offset -
1153 extent_offset, disk_bytenr))
1154 goto out_check;
1155 disk_bytenr += extent_offset;
1156 disk_bytenr += cur_offset - found_key.offset;
1157 num_bytes = min(end + 1, extent_end) - cur_offset;
1158 /*
1159 * force cow if csum exists in the range.
1160 * this ensure that csum for a given extent are
1161 * either valid or do not exist.
1162 */
1163 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1164 goto out_check;
1165 nocow = 1;
1166 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1167 extent_end = found_key.offset +
1168 btrfs_file_extent_inline_len(leaf, fi);
1169 extent_end = ALIGN(extent_end, root->sectorsize);
1170 } else {
1171 BUG_ON(1);
1172 }
1173 out_check:
1174 if (extent_end <= start) {
1175 path->slots[0]++;
1176 goto next_slot;
1177 }
1178 if (!nocow) {
1179 if (cow_start == (u64)-1)
1180 cow_start = cur_offset;
1181 cur_offset = extent_end;
1182 if (cur_offset > end)
1183 break;
1184 path->slots[0]++;
1185 goto next_slot;
1186 }
1187
1188 btrfs_release_path(path);
1189 if (cow_start != (u64)-1) {
1190 ret = cow_file_range(inode, locked_page, cow_start,
1191 found_key.offset - 1, page_started,
1192 nr_written, 1);
1193 BUG_ON(ret);
1194 cow_start = (u64)-1;
1195 }
1196
1197 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1198 struct extent_map *em;
1199 struct extent_map_tree *em_tree;
1200 em_tree = &BTRFS_I(inode)->extent_tree;
1201 em = alloc_extent_map();
1202 BUG_ON(!em);
1203 em->start = cur_offset;
1204 em->orig_start = em->start;
1205 em->len = num_bytes;
1206 em->block_len = num_bytes;
1207 em->block_start = disk_bytenr;
1208 em->bdev = root->fs_info->fs_devices->latest_bdev;
1209 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1210 while (1) {
1211 write_lock(&em_tree->lock);
1212 ret = add_extent_mapping(em_tree, em);
1213 write_unlock(&em_tree->lock);
1214 if (ret != -EEXIST) {
1215 free_extent_map(em);
1216 break;
1217 }
1218 btrfs_drop_extent_cache(inode, em->start,
1219 em->start + em->len - 1, 0);
1220 }
1221 type = BTRFS_ORDERED_PREALLOC;
1222 } else {
1223 type = BTRFS_ORDERED_NOCOW;
1224 }
1225
1226 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1227 num_bytes, num_bytes, type);
1228 BUG_ON(ret);
1229
1230 if (root->root_key.objectid ==
1231 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1232 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1233 num_bytes);
1234 BUG_ON(ret);
1235 }
1236
1237 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1238 cur_offset, cur_offset + num_bytes - 1,
1239 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1240 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1241 EXTENT_SET_PRIVATE2);
1242 cur_offset = extent_end;
1243 if (cur_offset > end)
1244 break;
1245 }
1246 btrfs_release_path(path);
1247
1248 if (cur_offset <= end && cow_start == (u64)-1)
1249 cow_start = cur_offset;
1250 if (cow_start != (u64)-1) {
1251 ret = cow_file_range(inode, locked_page, cow_start, end,
1252 page_started, nr_written, 1);
1253 BUG_ON(ret);
1254 }
1255
1256 if (nolock) {
1257 ret = btrfs_end_transaction_nolock(trans, root);
1258 BUG_ON(ret);
1259 } else {
1260 ret = btrfs_end_transaction(trans, root);
1261 BUG_ON(ret);
1262 }
1263 btrfs_free_path(path);
1264 return 0;
1265 }
1266
1267 /*
1268 * extent_io.c call back to do delayed allocation processing
1269 */
1270 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1271 u64 start, u64 end, int *page_started,
1272 unsigned long *nr_written)
1273 {
1274 int ret;
1275 struct btrfs_root *root = BTRFS_I(inode)->root;
1276
1277 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1278 ret = run_delalloc_nocow(inode, locked_page, start, end,
1279 page_started, 1, nr_written);
1280 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1281 ret = run_delalloc_nocow(inode, locked_page, start, end,
1282 page_started, 0, nr_written);
1283 else if (!btrfs_test_opt(root, COMPRESS) &&
1284 !(BTRFS_I(inode)->force_compress) &&
1285 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1286 ret = cow_file_range(inode, locked_page, start, end,
1287 page_started, nr_written, 1);
1288 else
1289 ret = cow_file_range_async(inode, locked_page, start, end,
1290 page_started, nr_written);
1291 return ret;
1292 }
1293
1294 static int btrfs_split_extent_hook(struct inode *inode,
1295 struct extent_state *orig, u64 split)
1296 {
1297 /* not delalloc, ignore it */
1298 if (!(orig->state & EXTENT_DELALLOC))
1299 return 0;
1300
1301 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1302 return 0;
1303 }
1304
1305 /*
1306 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1307 * extents so we can keep track of new extents that are just merged onto old
1308 * extents, such as when we are doing sequential writes, so we can properly
1309 * account for the metadata space we'll need.
1310 */
1311 static int btrfs_merge_extent_hook(struct inode *inode,
1312 struct extent_state *new,
1313 struct extent_state *other)
1314 {
1315 /* not delalloc, ignore it */
1316 if (!(other->state & EXTENT_DELALLOC))
1317 return 0;
1318
1319 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1320 return 0;
1321 }
1322
1323 /*
1324 * extent_io.c set_bit_hook, used to track delayed allocation
1325 * bytes in this file, and to maintain the list of inodes that
1326 * have pending delalloc work to be done.
1327 */
1328 static int btrfs_set_bit_hook(struct inode *inode,
1329 struct extent_state *state, int *bits)
1330 {
1331
1332 /*
1333 * set_bit and clear bit hooks normally require _irqsave/restore
1334 * but in this case, we are only testing for the DELALLOC
1335 * bit, which is only set or cleared with irqs on
1336 */
1337 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1338 struct btrfs_root *root = BTRFS_I(inode)->root;
1339 u64 len = state->end + 1 - state->start;
1340 bool do_list = !is_free_space_inode(root, inode);
1341
1342 if (*bits & EXTENT_FIRST_DELALLOC)
1343 *bits &= ~EXTENT_FIRST_DELALLOC;
1344 else
1345 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1346
1347 spin_lock(&root->fs_info->delalloc_lock);
1348 BTRFS_I(inode)->delalloc_bytes += len;
1349 root->fs_info->delalloc_bytes += len;
1350 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1351 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1352 &root->fs_info->delalloc_inodes);
1353 }
1354 spin_unlock(&root->fs_info->delalloc_lock);
1355 }
1356 return 0;
1357 }
1358
1359 /*
1360 * extent_io.c clear_bit_hook, see set_bit_hook for why
1361 */
1362 static int btrfs_clear_bit_hook(struct inode *inode,
1363 struct extent_state *state, int *bits)
1364 {
1365 /*
1366 * set_bit and clear bit hooks normally require _irqsave/restore
1367 * but in this case, we are only testing for the DELALLOC
1368 * bit, which is only set or cleared with irqs on
1369 */
1370 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1371 struct btrfs_root *root = BTRFS_I(inode)->root;
1372 u64 len = state->end + 1 - state->start;
1373 bool do_list = !is_free_space_inode(root, inode);
1374
1375 if (*bits & EXTENT_FIRST_DELALLOC)
1376 *bits &= ~EXTENT_FIRST_DELALLOC;
1377 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1378 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1379
1380 if (*bits & EXTENT_DO_ACCOUNTING)
1381 btrfs_delalloc_release_metadata(inode, len);
1382
1383 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1384 && do_list)
1385 btrfs_free_reserved_data_space(inode, len);
1386
1387 spin_lock(&root->fs_info->delalloc_lock);
1388 root->fs_info->delalloc_bytes -= len;
1389 BTRFS_I(inode)->delalloc_bytes -= len;
1390
1391 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1392 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1393 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1394 }
1395 spin_unlock(&root->fs_info->delalloc_lock);
1396 }
1397 return 0;
1398 }
1399
1400 /*
1401 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1402 * we don't create bios that span stripes or chunks
1403 */
1404 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1405 size_t size, struct bio *bio,
1406 unsigned long bio_flags)
1407 {
1408 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1409 struct btrfs_mapping_tree *map_tree;
1410 u64 logical = (u64)bio->bi_sector << 9;
1411 u64 length = 0;
1412 u64 map_length;
1413 int ret;
1414
1415 if (bio_flags & EXTENT_BIO_COMPRESSED)
1416 return 0;
1417
1418 length = bio->bi_size;
1419 map_tree = &root->fs_info->mapping_tree;
1420 map_length = length;
1421 ret = btrfs_map_block(map_tree, READ, logical,
1422 &map_length, NULL, 0);
1423
1424 if (map_length < length + size)
1425 return 1;
1426 return ret;
1427 }
1428
1429 /*
1430 * in order to insert checksums into the metadata in large chunks,
1431 * we wait until bio submission time. All the pages in the bio are
1432 * checksummed and sums are attached onto the ordered extent record.
1433 *
1434 * At IO completion time the cums attached on the ordered extent record
1435 * are inserted into the btree
1436 */
1437 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1438 struct bio *bio, int mirror_num,
1439 unsigned long bio_flags,
1440 u64 bio_offset)
1441 {
1442 struct btrfs_root *root = BTRFS_I(inode)->root;
1443 int ret = 0;
1444
1445 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1446 BUG_ON(ret);
1447 return 0;
1448 }
1449
1450 /*
1451 * in order to insert checksums into the metadata in large chunks,
1452 * we wait until bio submission time. All the pages in the bio are
1453 * checksummed and sums are attached onto the ordered extent record.
1454 *
1455 * At IO completion time the cums attached on the ordered extent record
1456 * are inserted into the btree
1457 */
1458 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1459 int mirror_num, unsigned long bio_flags,
1460 u64 bio_offset)
1461 {
1462 struct btrfs_root *root = BTRFS_I(inode)->root;
1463 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1464 }
1465
1466 /*
1467 * extent_io.c submission hook. This does the right thing for csum calculation
1468 * on write, or reading the csums from the tree before a read
1469 */
1470 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1471 int mirror_num, unsigned long bio_flags,
1472 u64 bio_offset)
1473 {
1474 struct btrfs_root *root = BTRFS_I(inode)->root;
1475 int ret = 0;
1476 int skip_sum;
1477
1478 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1479
1480 if (is_free_space_inode(root, inode))
1481 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1482 else
1483 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1484 BUG_ON(ret);
1485
1486 if (!(rw & REQ_WRITE)) {
1487 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1488 return btrfs_submit_compressed_read(inode, bio,
1489 mirror_num, bio_flags);
1490 } else if (!skip_sum) {
1491 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1492 if (ret)
1493 return ret;
1494 }
1495 goto mapit;
1496 } else if (!skip_sum) {
1497 /* csum items have already been cloned */
1498 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1499 goto mapit;
1500 /* we're doing a write, do the async checksumming */
1501 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1502 inode, rw, bio, mirror_num,
1503 bio_flags, bio_offset,
1504 __btrfs_submit_bio_start,
1505 __btrfs_submit_bio_done);
1506 }
1507
1508 mapit:
1509 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1510 }
1511
1512 /*
1513 * given a list of ordered sums record them in the inode. This happens
1514 * at IO completion time based on sums calculated at bio submission time.
1515 */
1516 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1517 struct inode *inode, u64 file_offset,
1518 struct list_head *list)
1519 {
1520 struct btrfs_ordered_sum *sum;
1521
1522 list_for_each_entry(sum, list, list) {
1523 btrfs_csum_file_blocks(trans,
1524 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1525 }
1526 return 0;
1527 }
1528
1529 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1530 struct extent_state **cached_state)
1531 {
1532 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1533 WARN_ON(1);
1534 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1535 cached_state, GFP_NOFS);
1536 }
1537
1538 /* see btrfs_writepage_start_hook for details on why this is required */
1539 struct btrfs_writepage_fixup {
1540 struct page *page;
1541 struct btrfs_work work;
1542 };
1543
1544 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1545 {
1546 struct btrfs_writepage_fixup *fixup;
1547 struct btrfs_ordered_extent *ordered;
1548 struct extent_state *cached_state = NULL;
1549 struct page *page;
1550 struct inode *inode;
1551 u64 page_start;
1552 u64 page_end;
1553
1554 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1555 page = fixup->page;
1556 again:
1557 lock_page(page);
1558 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1559 ClearPageChecked(page);
1560 goto out_page;
1561 }
1562
1563 inode = page->mapping->host;
1564 page_start = page_offset(page);
1565 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1566
1567 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1568 &cached_state, GFP_NOFS);
1569
1570 /* already ordered? We're done */
1571 if (PagePrivate2(page))
1572 goto out;
1573
1574 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1575 if (ordered) {
1576 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1577 page_end, &cached_state, GFP_NOFS);
1578 unlock_page(page);
1579 btrfs_start_ordered_extent(inode, ordered, 1);
1580 goto again;
1581 }
1582
1583 BUG();
1584 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1585 ClearPageChecked(page);
1586 out:
1587 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1588 &cached_state, GFP_NOFS);
1589 out_page:
1590 unlock_page(page);
1591 page_cache_release(page);
1592 kfree(fixup);
1593 }
1594
1595 /*
1596 * There are a few paths in the higher layers of the kernel that directly
1597 * set the page dirty bit without asking the filesystem if it is a
1598 * good idea. This causes problems because we want to make sure COW
1599 * properly happens and the data=ordered rules are followed.
1600 *
1601 * In our case any range that doesn't have the ORDERED bit set
1602 * hasn't been properly setup for IO. We kick off an async process
1603 * to fix it up. The async helper will wait for ordered extents, set
1604 * the delalloc bit and make it safe to write the page.
1605 */
1606 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1607 {
1608 struct inode *inode = page->mapping->host;
1609 struct btrfs_writepage_fixup *fixup;
1610 struct btrfs_root *root = BTRFS_I(inode)->root;
1611
1612 /* this page is properly in the ordered list */
1613 if (TestClearPagePrivate2(page))
1614 return 0;
1615
1616 if (PageChecked(page))
1617 return -EAGAIN;
1618
1619 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1620 if (!fixup)
1621 return -EAGAIN;
1622
1623 SetPageChecked(page);
1624 page_cache_get(page);
1625 fixup->work.func = btrfs_writepage_fixup_worker;
1626 fixup->page = page;
1627 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1628 return -EAGAIN;
1629 }
1630
1631 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1632 struct inode *inode, u64 file_pos,
1633 u64 disk_bytenr, u64 disk_num_bytes,
1634 u64 num_bytes, u64 ram_bytes,
1635 u8 compression, u8 encryption,
1636 u16 other_encoding, int extent_type)
1637 {
1638 struct btrfs_root *root = BTRFS_I(inode)->root;
1639 struct btrfs_file_extent_item *fi;
1640 struct btrfs_path *path;
1641 struct extent_buffer *leaf;
1642 struct btrfs_key ins;
1643 u64 hint;
1644 int ret;
1645
1646 path = btrfs_alloc_path();
1647 BUG_ON(!path);
1648
1649 path->leave_spinning = 1;
1650
1651 /*
1652 * we may be replacing one extent in the tree with another.
1653 * The new extent is pinned in the extent map, and we don't want
1654 * to drop it from the cache until it is completely in the btree.
1655 *
1656 * So, tell btrfs_drop_extents to leave this extent in the cache.
1657 * the caller is expected to unpin it and allow it to be merged
1658 * with the others.
1659 */
1660 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1661 &hint, 0);
1662 BUG_ON(ret);
1663
1664 ins.objectid = btrfs_ino(inode);
1665 ins.offset = file_pos;
1666 ins.type = BTRFS_EXTENT_DATA_KEY;
1667 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1668 BUG_ON(ret);
1669 leaf = path->nodes[0];
1670 fi = btrfs_item_ptr(leaf, path->slots[0],
1671 struct btrfs_file_extent_item);
1672 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1673 btrfs_set_file_extent_type(leaf, fi, extent_type);
1674 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1675 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1676 btrfs_set_file_extent_offset(leaf, fi, 0);
1677 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1678 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1679 btrfs_set_file_extent_compression(leaf, fi, compression);
1680 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1681 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1682
1683 btrfs_unlock_up_safe(path, 1);
1684 btrfs_set_lock_blocking(leaf);
1685
1686 btrfs_mark_buffer_dirty(leaf);
1687
1688 inode_add_bytes(inode, num_bytes);
1689
1690 ins.objectid = disk_bytenr;
1691 ins.offset = disk_num_bytes;
1692 ins.type = BTRFS_EXTENT_ITEM_KEY;
1693 ret = btrfs_alloc_reserved_file_extent(trans, root,
1694 root->root_key.objectid,
1695 btrfs_ino(inode), file_pos, &ins);
1696 BUG_ON(ret);
1697 btrfs_free_path(path);
1698
1699 return 0;
1700 }
1701
1702 /*
1703 * helper function for btrfs_finish_ordered_io, this
1704 * just reads in some of the csum leaves to prime them into ram
1705 * before we start the transaction. It limits the amount of btree
1706 * reads required while inside the transaction.
1707 */
1708 /* as ordered data IO finishes, this gets called so we can finish
1709 * an ordered extent if the range of bytes in the file it covers are
1710 * fully written.
1711 */
1712 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1713 {
1714 struct btrfs_root *root = BTRFS_I(inode)->root;
1715 struct btrfs_trans_handle *trans = NULL;
1716 struct btrfs_ordered_extent *ordered_extent = NULL;
1717 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1718 struct extent_state *cached_state = NULL;
1719 int compress_type = 0;
1720 int ret;
1721 bool nolock;
1722
1723 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1724 end - start + 1);
1725 if (!ret)
1726 return 0;
1727 BUG_ON(!ordered_extent);
1728
1729 nolock = is_free_space_inode(root, inode);
1730
1731 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1732 BUG_ON(!list_empty(&ordered_extent->list));
1733 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1734 if (!ret) {
1735 if (nolock)
1736 trans = btrfs_join_transaction_nolock(root);
1737 else
1738 trans = btrfs_join_transaction(root);
1739 BUG_ON(IS_ERR(trans));
1740 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1741 ret = btrfs_update_inode(trans, root, inode);
1742 BUG_ON(ret);
1743 }
1744 goto out;
1745 }
1746
1747 lock_extent_bits(io_tree, ordered_extent->file_offset,
1748 ordered_extent->file_offset + ordered_extent->len - 1,
1749 0, &cached_state, GFP_NOFS);
1750
1751 if (nolock)
1752 trans = btrfs_join_transaction_nolock(root);
1753 else
1754 trans = btrfs_join_transaction(root);
1755 BUG_ON(IS_ERR(trans));
1756 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1757
1758 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1759 compress_type = ordered_extent->compress_type;
1760 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1761 BUG_ON(compress_type);
1762 ret = btrfs_mark_extent_written(trans, inode,
1763 ordered_extent->file_offset,
1764 ordered_extent->file_offset +
1765 ordered_extent->len);
1766 BUG_ON(ret);
1767 } else {
1768 BUG_ON(root == root->fs_info->tree_root);
1769 ret = insert_reserved_file_extent(trans, inode,
1770 ordered_extent->file_offset,
1771 ordered_extent->start,
1772 ordered_extent->disk_len,
1773 ordered_extent->len,
1774 ordered_extent->len,
1775 compress_type, 0, 0,
1776 BTRFS_FILE_EXTENT_REG);
1777 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1778 ordered_extent->file_offset,
1779 ordered_extent->len);
1780 BUG_ON(ret);
1781 }
1782 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1783 ordered_extent->file_offset +
1784 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1785
1786 add_pending_csums(trans, inode, ordered_extent->file_offset,
1787 &ordered_extent->list);
1788
1789 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1790 if (!ret) {
1791 ret = btrfs_update_inode(trans, root, inode);
1792 BUG_ON(ret);
1793 }
1794 ret = 0;
1795 out:
1796 if (nolock) {
1797 if (trans)
1798 btrfs_end_transaction_nolock(trans, root);
1799 } else {
1800 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1801 if (trans)
1802 btrfs_end_transaction(trans, root);
1803 }
1804
1805 /* once for us */
1806 btrfs_put_ordered_extent(ordered_extent);
1807 /* once for the tree */
1808 btrfs_put_ordered_extent(ordered_extent);
1809
1810 return 0;
1811 }
1812
1813 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1814 struct extent_state *state, int uptodate)
1815 {
1816 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1817
1818 ClearPagePrivate2(page);
1819 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1820 }
1821
1822 /*
1823 * When IO fails, either with EIO or csum verification fails, we
1824 * try other mirrors that might have a good copy of the data. This
1825 * io_failure_record is used to record state as we go through all the
1826 * mirrors. If another mirror has good data, the page is set up to date
1827 * and things continue. If a good mirror can't be found, the original
1828 * bio end_io callback is called to indicate things have failed.
1829 */
1830 struct io_failure_record {
1831 struct page *page;
1832 u64 start;
1833 u64 len;
1834 u64 logical;
1835 unsigned long bio_flags;
1836 int last_mirror;
1837 };
1838
1839 static int btrfs_io_failed_hook(struct bio *failed_bio,
1840 struct page *page, u64 start, u64 end,
1841 struct extent_state *state)
1842 {
1843 struct io_failure_record *failrec = NULL;
1844 u64 private;
1845 struct extent_map *em;
1846 struct inode *inode = page->mapping->host;
1847 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1848 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1849 struct bio *bio;
1850 int num_copies;
1851 int ret;
1852 int rw;
1853 u64 logical;
1854
1855 ret = get_state_private(failure_tree, start, &private);
1856 if (ret) {
1857 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1858 if (!failrec)
1859 return -ENOMEM;
1860 failrec->start = start;
1861 failrec->len = end - start + 1;
1862 failrec->last_mirror = 0;
1863 failrec->bio_flags = 0;
1864
1865 read_lock(&em_tree->lock);
1866 em = lookup_extent_mapping(em_tree, start, failrec->len);
1867 if (em->start > start || em->start + em->len < start) {
1868 free_extent_map(em);
1869 em = NULL;
1870 }
1871 read_unlock(&em_tree->lock);
1872
1873 if (IS_ERR_OR_NULL(em)) {
1874 kfree(failrec);
1875 return -EIO;
1876 }
1877 logical = start - em->start;
1878 logical = em->block_start + logical;
1879 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1880 logical = em->block_start;
1881 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1882 extent_set_compress_type(&failrec->bio_flags,
1883 em->compress_type);
1884 }
1885 failrec->logical = logical;
1886 free_extent_map(em);
1887 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1888 EXTENT_DIRTY, GFP_NOFS);
1889 set_state_private(failure_tree, start,
1890 (u64)(unsigned long)failrec);
1891 } else {
1892 failrec = (struct io_failure_record *)(unsigned long)private;
1893 }
1894 num_copies = btrfs_num_copies(
1895 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1896 failrec->logical, failrec->len);
1897 failrec->last_mirror++;
1898 if (!state) {
1899 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1900 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1901 failrec->start,
1902 EXTENT_LOCKED);
1903 if (state && state->start != failrec->start)
1904 state = NULL;
1905 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1906 }
1907 if (!state || failrec->last_mirror > num_copies) {
1908 set_state_private(failure_tree, failrec->start, 0);
1909 clear_extent_bits(failure_tree, failrec->start,
1910 failrec->start + failrec->len - 1,
1911 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1912 kfree(failrec);
1913 return -EIO;
1914 }
1915 bio = bio_alloc(GFP_NOFS, 1);
1916 bio->bi_private = state;
1917 bio->bi_end_io = failed_bio->bi_end_io;
1918 bio->bi_sector = failrec->logical >> 9;
1919 bio->bi_bdev = failed_bio->bi_bdev;
1920 bio->bi_size = 0;
1921
1922 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1923 if (failed_bio->bi_rw & REQ_WRITE)
1924 rw = WRITE;
1925 else
1926 rw = READ;
1927
1928 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1929 failrec->last_mirror,
1930 failrec->bio_flags, 0);
1931 return ret;
1932 }
1933
1934 /*
1935 * each time an IO finishes, we do a fast check in the IO failure tree
1936 * to see if we need to process or clean up an io_failure_record
1937 */
1938 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1939 {
1940 u64 private;
1941 u64 private_failure;
1942 struct io_failure_record *failure;
1943 int ret;
1944
1945 private = 0;
1946 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1947 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1948 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1949 start, &private_failure);
1950 if (ret == 0) {
1951 failure = (struct io_failure_record *)(unsigned long)
1952 private_failure;
1953 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1954 failure->start, 0);
1955 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1956 failure->start,
1957 failure->start + failure->len - 1,
1958 EXTENT_DIRTY | EXTENT_LOCKED,
1959 GFP_NOFS);
1960 kfree(failure);
1961 }
1962 }
1963 return 0;
1964 }
1965
1966 /*
1967 * when reads are done, we need to check csums to verify the data is correct
1968 * if there's a match, we allow the bio to finish. If not, we go through
1969 * the io_failure_record routines to find good copies
1970 */
1971 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1972 struct extent_state *state)
1973 {
1974 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1975 struct inode *inode = page->mapping->host;
1976 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1977 char *kaddr;
1978 u64 private = ~(u32)0;
1979 int ret;
1980 struct btrfs_root *root = BTRFS_I(inode)->root;
1981 u32 csum = ~(u32)0;
1982
1983 if (PageChecked(page)) {
1984 ClearPageChecked(page);
1985 goto good;
1986 }
1987
1988 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1989 goto good;
1990
1991 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1992 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1993 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1994 GFP_NOFS);
1995 return 0;
1996 }
1997
1998 if (state && state->start == start) {
1999 private = state->private;
2000 ret = 0;
2001 } else {
2002 ret = get_state_private(io_tree, start, &private);
2003 }
2004 kaddr = kmap_atomic(page, KM_USER0);
2005 if (ret)
2006 goto zeroit;
2007
2008 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2009 btrfs_csum_final(csum, (char *)&csum);
2010 if (csum != private)
2011 goto zeroit;
2012
2013 kunmap_atomic(kaddr, KM_USER0);
2014 good:
2015 /* if the io failure tree for this inode is non-empty,
2016 * check to see if we've recovered from a failed IO
2017 */
2018 btrfs_clean_io_failures(inode, start);
2019 return 0;
2020
2021 zeroit:
2022 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2023 "private %llu\n",
2024 (unsigned long long)btrfs_ino(page->mapping->host),
2025 (unsigned long long)start, csum,
2026 (unsigned long long)private);
2027 memset(kaddr + offset, 1, end - start + 1);
2028 flush_dcache_page(page);
2029 kunmap_atomic(kaddr, KM_USER0);
2030 if (private == 0)
2031 return 0;
2032 return -EIO;
2033 }
2034
2035 struct delayed_iput {
2036 struct list_head list;
2037 struct inode *inode;
2038 };
2039
2040 void btrfs_add_delayed_iput(struct inode *inode)
2041 {
2042 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2043 struct delayed_iput *delayed;
2044
2045 if (atomic_add_unless(&inode->i_count, -1, 1))
2046 return;
2047
2048 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2049 delayed->inode = inode;
2050
2051 spin_lock(&fs_info->delayed_iput_lock);
2052 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2053 spin_unlock(&fs_info->delayed_iput_lock);
2054 }
2055
2056 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2057 {
2058 LIST_HEAD(list);
2059 struct btrfs_fs_info *fs_info = root->fs_info;
2060 struct delayed_iput *delayed;
2061 int empty;
2062
2063 spin_lock(&fs_info->delayed_iput_lock);
2064 empty = list_empty(&fs_info->delayed_iputs);
2065 spin_unlock(&fs_info->delayed_iput_lock);
2066 if (empty)
2067 return;
2068
2069 down_read(&root->fs_info->cleanup_work_sem);
2070 spin_lock(&fs_info->delayed_iput_lock);
2071 list_splice_init(&fs_info->delayed_iputs, &list);
2072 spin_unlock(&fs_info->delayed_iput_lock);
2073
2074 while (!list_empty(&list)) {
2075 delayed = list_entry(list.next, struct delayed_iput, list);
2076 list_del(&delayed->list);
2077 iput(delayed->inode);
2078 kfree(delayed);
2079 }
2080 up_read(&root->fs_info->cleanup_work_sem);
2081 }
2082
2083 /*
2084 * calculate extra metadata reservation when snapshotting a subvolume
2085 * contains orphan files.
2086 */
2087 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2088 struct btrfs_pending_snapshot *pending,
2089 u64 *bytes_to_reserve)
2090 {
2091 struct btrfs_root *root;
2092 struct btrfs_block_rsv *block_rsv;
2093 u64 num_bytes;
2094 int index;
2095
2096 root = pending->root;
2097 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2098 return;
2099
2100 block_rsv = root->orphan_block_rsv;
2101
2102 /* orphan block reservation for the snapshot */
2103 num_bytes = block_rsv->size;
2104
2105 /*
2106 * after the snapshot is created, COWing tree blocks may use more
2107 * space than it frees. So we should make sure there is enough
2108 * reserved space.
2109 */
2110 index = trans->transid & 0x1;
2111 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2112 num_bytes += block_rsv->size -
2113 (block_rsv->reserved + block_rsv->freed[index]);
2114 }
2115
2116 *bytes_to_reserve += num_bytes;
2117 }
2118
2119 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2120 struct btrfs_pending_snapshot *pending)
2121 {
2122 struct btrfs_root *root = pending->root;
2123 struct btrfs_root *snap = pending->snap;
2124 struct btrfs_block_rsv *block_rsv;
2125 u64 num_bytes;
2126 int index;
2127 int ret;
2128
2129 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2130 return;
2131
2132 /* refill source subvolume's orphan block reservation */
2133 block_rsv = root->orphan_block_rsv;
2134 index = trans->transid & 0x1;
2135 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2136 num_bytes = block_rsv->size -
2137 (block_rsv->reserved + block_rsv->freed[index]);
2138 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2139 root->orphan_block_rsv,
2140 num_bytes);
2141 BUG_ON(ret);
2142 }
2143
2144 /* setup orphan block reservation for the snapshot */
2145 block_rsv = btrfs_alloc_block_rsv(snap);
2146 BUG_ON(!block_rsv);
2147
2148 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2149 snap->orphan_block_rsv = block_rsv;
2150
2151 num_bytes = root->orphan_block_rsv->size;
2152 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2153 block_rsv, num_bytes);
2154 BUG_ON(ret);
2155
2156 #if 0
2157 /* insert orphan item for the snapshot */
2158 WARN_ON(!root->orphan_item_inserted);
2159 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2160 snap->root_key.objectid);
2161 BUG_ON(ret);
2162 snap->orphan_item_inserted = 1;
2163 #endif
2164 }
2165
2166 enum btrfs_orphan_cleanup_state {
2167 ORPHAN_CLEANUP_STARTED = 1,
2168 ORPHAN_CLEANUP_DONE = 2,
2169 };
2170
2171 /*
2172 * This is called in transaction commmit time. If there are no orphan
2173 * files in the subvolume, it removes orphan item and frees block_rsv
2174 * structure.
2175 */
2176 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2177 struct btrfs_root *root)
2178 {
2179 int ret;
2180
2181 if (!list_empty(&root->orphan_list) ||
2182 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2183 return;
2184
2185 if (root->orphan_item_inserted &&
2186 btrfs_root_refs(&root->root_item) > 0) {
2187 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2188 root->root_key.objectid);
2189 BUG_ON(ret);
2190 root->orphan_item_inserted = 0;
2191 }
2192
2193 if (root->orphan_block_rsv) {
2194 WARN_ON(root->orphan_block_rsv->size > 0);
2195 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2196 root->orphan_block_rsv = NULL;
2197 }
2198 }
2199
2200 /*
2201 * This creates an orphan entry for the given inode in case something goes
2202 * wrong in the middle of an unlink/truncate.
2203 *
2204 * NOTE: caller of this function should reserve 5 units of metadata for
2205 * this function.
2206 */
2207 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2208 {
2209 struct btrfs_root *root = BTRFS_I(inode)->root;
2210 struct btrfs_block_rsv *block_rsv = NULL;
2211 int reserve = 0;
2212 int insert = 0;
2213 int ret;
2214
2215 if (!root->orphan_block_rsv) {
2216 block_rsv = btrfs_alloc_block_rsv(root);
2217 BUG_ON(!block_rsv);
2218 }
2219
2220 spin_lock(&root->orphan_lock);
2221 if (!root->orphan_block_rsv) {
2222 root->orphan_block_rsv = block_rsv;
2223 } else if (block_rsv) {
2224 btrfs_free_block_rsv(root, block_rsv);
2225 block_rsv = NULL;
2226 }
2227
2228 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2229 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2230 #if 0
2231 /*
2232 * For proper ENOSPC handling, we should do orphan
2233 * cleanup when mounting. But this introduces backward
2234 * compatibility issue.
2235 */
2236 if (!xchg(&root->orphan_item_inserted, 1))
2237 insert = 2;
2238 else
2239 insert = 1;
2240 #endif
2241 insert = 1;
2242 }
2243
2244 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2245 BTRFS_I(inode)->orphan_meta_reserved = 1;
2246 reserve = 1;
2247 }
2248 spin_unlock(&root->orphan_lock);
2249
2250 if (block_rsv)
2251 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2252
2253 /* grab metadata reservation from transaction handle */
2254 if (reserve) {
2255 ret = btrfs_orphan_reserve_metadata(trans, inode);
2256 BUG_ON(ret);
2257 }
2258
2259 /* insert an orphan item to track this unlinked/truncated file */
2260 if (insert >= 1) {
2261 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2262 BUG_ON(ret);
2263 }
2264
2265 /* insert an orphan item to track subvolume contains orphan files */
2266 if (insert >= 2) {
2267 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2268 root->root_key.objectid);
2269 BUG_ON(ret);
2270 }
2271 return 0;
2272 }
2273
2274 /*
2275 * We have done the truncate/delete so we can go ahead and remove the orphan
2276 * item for this particular inode.
2277 */
2278 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2279 {
2280 struct btrfs_root *root = BTRFS_I(inode)->root;
2281 int delete_item = 0;
2282 int release_rsv = 0;
2283 int ret = 0;
2284
2285 spin_lock(&root->orphan_lock);
2286 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2287 list_del_init(&BTRFS_I(inode)->i_orphan);
2288 delete_item = 1;
2289 }
2290
2291 if (BTRFS_I(inode)->orphan_meta_reserved) {
2292 BTRFS_I(inode)->orphan_meta_reserved = 0;
2293 release_rsv = 1;
2294 }
2295 spin_unlock(&root->orphan_lock);
2296
2297 if (trans && delete_item) {
2298 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2299 BUG_ON(ret);
2300 }
2301
2302 if (release_rsv)
2303 btrfs_orphan_release_metadata(inode);
2304
2305 return 0;
2306 }
2307
2308 /*
2309 * this cleans up any orphans that may be left on the list from the last use
2310 * of this root.
2311 */
2312 int btrfs_orphan_cleanup(struct btrfs_root *root)
2313 {
2314 struct btrfs_path *path;
2315 struct extent_buffer *leaf;
2316 struct btrfs_key key, found_key;
2317 struct btrfs_trans_handle *trans;
2318 struct inode *inode;
2319 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2320
2321 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2322 return 0;
2323
2324 path = btrfs_alloc_path();
2325 if (!path) {
2326 ret = -ENOMEM;
2327 goto out;
2328 }
2329 path->reada = -1;
2330
2331 key.objectid = BTRFS_ORPHAN_OBJECTID;
2332 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2333 key.offset = (u64)-1;
2334
2335 while (1) {
2336 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2337 if (ret < 0)
2338 goto out;
2339
2340 /*
2341 * if ret == 0 means we found what we were searching for, which
2342 * is weird, but possible, so only screw with path if we didn't
2343 * find the key and see if we have stuff that matches
2344 */
2345 if (ret > 0) {
2346 ret = 0;
2347 if (path->slots[0] == 0)
2348 break;
2349 path->slots[0]--;
2350 }
2351
2352 /* pull out the item */
2353 leaf = path->nodes[0];
2354 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2355
2356 /* make sure the item matches what we want */
2357 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2358 break;
2359 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2360 break;
2361
2362 /* release the path since we're done with it */
2363 btrfs_release_path(path);
2364
2365 /*
2366 * this is where we are basically btrfs_lookup, without the
2367 * crossing root thing. we store the inode number in the
2368 * offset of the orphan item.
2369 */
2370 found_key.objectid = found_key.offset;
2371 found_key.type = BTRFS_INODE_ITEM_KEY;
2372 found_key.offset = 0;
2373 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2374 if (IS_ERR(inode)) {
2375 ret = PTR_ERR(inode);
2376 goto out;
2377 }
2378
2379 /*
2380 * add this inode to the orphan list so btrfs_orphan_del does
2381 * the proper thing when we hit it
2382 */
2383 spin_lock(&root->orphan_lock);
2384 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2385 spin_unlock(&root->orphan_lock);
2386
2387 /*
2388 * if this is a bad inode, means we actually succeeded in
2389 * removing the inode, but not the orphan record, which means
2390 * we need to manually delete the orphan since iput will just
2391 * do a destroy_inode
2392 */
2393 if (is_bad_inode(inode)) {
2394 trans = btrfs_start_transaction(root, 0);
2395 if (IS_ERR(trans)) {
2396 ret = PTR_ERR(trans);
2397 goto out;
2398 }
2399 btrfs_orphan_del(trans, inode);
2400 btrfs_end_transaction(trans, root);
2401 iput(inode);
2402 continue;
2403 }
2404
2405 /* if we have links, this was a truncate, lets do that */
2406 if (inode->i_nlink) {
2407 if (!S_ISREG(inode->i_mode)) {
2408 WARN_ON(1);
2409 iput(inode);
2410 continue;
2411 }
2412 nr_truncate++;
2413 ret = btrfs_truncate(inode);
2414 } else {
2415 nr_unlink++;
2416 }
2417
2418 /* this will do delete_inode and everything for us */
2419 iput(inode);
2420 if (ret)
2421 goto out;
2422 }
2423 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2424
2425 if (root->orphan_block_rsv)
2426 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2427 (u64)-1);
2428
2429 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2430 trans = btrfs_join_transaction(root);
2431 if (!IS_ERR(trans))
2432 btrfs_end_transaction(trans, root);
2433 }
2434
2435 if (nr_unlink)
2436 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2437 if (nr_truncate)
2438 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2439
2440 out:
2441 if (ret)
2442 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2443 btrfs_free_path(path);
2444 return ret;
2445 }
2446
2447 /*
2448 * very simple check to peek ahead in the leaf looking for xattrs. If we
2449 * don't find any xattrs, we know there can't be any acls.
2450 *
2451 * slot is the slot the inode is in, objectid is the objectid of the inode
2452 */
2453 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2454 int slot, u64 objectid)
2455 {
2456 u32 nritems = btrfs_header_nritems(leaf);
2457 struct btrfs_key found_key;
2458 int scanned = 0;
2459
2460 slot++;
2461 while (slot < nritems) {
2462 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2463
2464 /* we found a different objectid, there must not be acls */
2465 if (found_key.objectid != objectid)
2466 return 0;
2467
2468 /* we found an xattr, assume we've got an acl */
2469 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2470 return 1;
2471
2472 /*
2473 * we found a key greater than an xattr key, there can't
2474 * be any acls later on
2475 */
2476 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2477 return 0;
2478
2479 slot++;
2480 scanned++;
2481
2482 /*
2483 * it goes inode, inode backrefs, xattrs, extents,
2484 * so if there are a ton of hard links to an inode there can
2485 * be a lot of backrefs. Don't waste time searching too hard,
2486 * this is just an optimization
2487 */
2488 if (scanned >= 8)
2489 break;
2490 }
2491 /* we hit the end of the leaf before we found an xattr or
2492 * something larger than an xattr. We have to assume the inode
2493 * has acls
2494 */
2495 return 1;
2496 }
2497
2498 /*
2499 * read an inode from the btree into the in-memory inode
2500 */
2501 static void btrfs_read_locked_inode(struct inode *inode)
2502 {
2503 struct btrfs_path *path;
2504 struct extent_buffer *leaf;
2505 struct btrfs_inode_item *inode_item;
2506 struct btrfs_timespec *tspec;
2507 struct btrfs_root *root = BTRFS_I(inode)->root;
2508 struct btrfs_key location;
2509 int maybe_acls;
2510 u32 rdev;
2511 int ret;
2512
2513 path = btrfs_alloc_path();
2514 BUG_ON(!path);
2515 path->leave_spinning = 1;
2516 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2517
2518 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2519 if (ret)
2520 goto make_bad;
2521
2522 leaf = path->nodes[0];
2523 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2524 struct btrfs_inode_item);
2525 if (!leaf->map_token)
2526 map_private_extent_buffer(leaf, (unsigned long)inode_item,
2527 sizeof(struct btrfs_inode_item),
2528 &leaf->map_token, &leaf->kaddr,
2529 &leaf->map_start, &leaf->map_len,
2530 KM_USER1);
2531
2532 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2533 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2534 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2535 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2536 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2537
2538 tspec = btrfs_inode_atime(inode_item);
2539 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2540 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2541
2542 tspec = btrfs_inode_mtime(inode_item);
2543 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2544 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2545
2546 tspec = btrfs_inode_ctime(inode_item);
2547 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2548 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2549
2550 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2551 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2552 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2553 inode->i_generation = BTRFS_I(inode)->generation;
2554 inode->i_rdev = 0;
2555 rdev = btrfs_inode_rdev(leaf, inode_item);
2556
2557 BTRFS_I(inode)->index_cnt = (u64)-1;
2558 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2559
2560 /*
2561 * try to precache a NULL acl entry for files that don't have
2562 * any xattrs or acls
2563 */
2564 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2565 btrfs_ino(inode));
2566 if (!maybe_acls)
2567 cache_no_acl(inode);
2568
2569 if (leaf->map_token) {
2570 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2571 leaf->map_token = NULL;
2572 }
2573
2574 btrfs_free_path(path);
2575 inode_item = NULL;
2576
2577 switch (inode->i_mode & S_IFMT) {
2578 case S_IFREG:
2579 inode->i_mapping->a_ops = &btrfs_aops;
2580 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2581 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2582 inode->i_fop = &btrfs_file_operations;
2583 inode->i_op = &btrfs_file_inode_operations;
2584 break;
2585 case S_IFDIR:
2586 inode->i_fop = &btrfs_dir_file_operations;
2587 if (root == root->fs_info->tree_root)
2588 inode->i_op = &btrfs_dir_ro_inode_operations;
2589 else
2590 inode->i_op = &btrfs_dir_inode_operations;
2591 break;
2592 case S_IFLNK:
2593 inode->i_op = &btrfs_symlink_inode_operations;
2594 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2595 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2596 break;
2597 default:
2598 inode->i_op = &btrfs_special_inode_operations;
2599 init_special_inode(inode, inode->i_mode, rdev);
2600 break;
2601 }
2602
2603 btrfs_update_iflags(inode);
2604 return;
2605
2606 make_bad:
2607 btrfs_free_path(path);
2608 make_bad_inode(inode);
2609 }
2610
2611 /*
2612 * given a leaf and an inode, copy the inode fields into the leaf
2613 */
2614 static void fill_inode_item(struct btrfs_trans_handle *trans,
2615 struct extent_buffer *leaf,
2616 struct btrfs_inode_item *item,
2617 struct inode *inode)
2618 {
2619 if (!leaf->map_token)
2620 map_private_extent_buffer(leaf, (unsigned long)item,
2621 sizeof(struct btrfs_inode_item),
2622 &leaf->map_token, &leaf->kaddr,
2623 &leaf->map_start, &leaf->map_len,
2624 KM_USER1);
2625
2626 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2627 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2628 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2629 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2630 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2631
2632 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2633 inode->i_atime.tv_sec);
2634 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2635 inode->i_atime.tv_nsec);
2636
2637 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2638 inode->i_mtime.tv_sec);
2639 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2640 inode->i_mtime.tv_nsec);
2641
2642 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2643 inode->i_ctime.tv_sec);
2644 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2645 inode->i_ctime.tv_nsec);
2646
2647 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2648 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2649 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2650 btrfs_set_inode_transid(leaf, item, trans->transid);
2651 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2652 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2653 btrfs_set_inode_block_group(leaf, item, 0);
2654
2655 if (leaf->map_token) {
2656 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2657 leaf->map_token = NULL;
2658 }
2659 }
2660
2661 /*
2662 * copy everything in the in-memory inode into the btree.
2663 */
2664 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2665 struct btrfs_root *root, struct inode *inode)
2666 {
2667 struct btrfs_inode_item *inode_item;
2668 struct btrfs_path *path;
2669 struct extent_buffer *leaf;
2670 int ret;
2671
2672 /*
2673 * If root is tree root, it means this inode is used to
2674 * store free space information. And these inodes are updated
2675 * when committing the transaction, so they needn't delaye to
2676 * be updated, or deadlock will occured.
2677 */
2678 if (!is_free_space_inode(root, inode)) {
2679 ret = btrfs_delayed_update_inode(trans, root, inode);
2680 if (!ret)
2681 btrfs_set_inode_last_trans(trans, inode);
2682 return ret;
2683 }
2684
2685 path = btrfs_alloc_path();
2686 if (!path)
2687 return -ENOMEM;
2688
2689 path->leave_spinning = 1;
2690 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2691 1);
2692 if (ret) {
2693 if (ret > 0)
2694 ret = -ENOENT;
2695 goto failed;
2696 }
2697
2698 btrfs_unlock_up_safe(path, 1);
2699 leaf = path->nodes[0];
2700 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2701 struct btrfs_inode_item);
2702
2703 fill_inode_item(trans, leaf, inode_item, inode);
2704 btrfs_mark_buffer_dirty(leaf);
2705 btrfs_set_inode_last_trans(trans, inode);
2706 ret = 0;
2707 failed:
2708 btrfs_free_path(path);
2709 return ret;
2710 }
2711
2712 /*
2713 * unlink helper that gets used here in inode.c and in the tree logging
2714 * recovery code. It remove a link in a directory with a given name, and
2715 * also drops the back refs in the inode to the directory
2716 */
2717 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2718 struct btrfs_root *root,
2719 struct inode *dir, struct inode *inode,
2720 const char *name, int name_len)
2721 {
2722 struct btrfs_path *path;
2723 int ret = 0;
2724 struct extent_buffer *leaf;
2725 struct btrfs_dir_item *di;
2726 struct btrfs_key key;
2727 u64 index;
2728 u64 ino = btrfs_ino(inode);
2729 u64 dir_ino = btrfs_ino(dir);
2730
2731 path = btrfs_alloc_path();
2732 if (!path) {
2733 ret = -ENOMEM;
2734 goto out;
2735 }
2736
2737 path->leave_spinning = 1;
2738 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2739 name, name_len, -1);
2740 if (IS_ERR(di)) {
2741 ret = PTR_ERR(di);
2742 goto err;
2743 }
2744 if (!di) {
2745 ret = -ENOENT;
2746 goto err;
2747 }
2748 leaf = path->nodes[0];
2749 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2750 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2751 if (ret)
2752 goto err;
2753 btrfs_release_path(path);
2754
2755 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2756 dir_ino, &index);
2757 if (ret) {
2758 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2759 "inode %llu parent %llu\n", name_len, name,
2760 (unsigned long long)ino, (unsigned long long)dir_ino);
2761 goto err;
2762 }
2763
2764 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2765 if (ret)
2766 goto err;
2767
2768 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2769 inode, dir_ino);
2770 BUG_ON(ret != 0 && ret != -ENOENT);
2771
2772 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2773 dir, index);
2774 if (ret == -ENOENT)
2775 ret = 0;
2776 err:
2777 btrfs_free_path(path);
2778 if (ret)
2779 goto out;
2780
2781 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2782 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2783 btrfs_update_inode(trans, root, dir);
2784 out:
2785 return ret;
2786 }
2787
2788 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2789 struct btrfs_root *root,
2790 struct inode *dir, struct inode *inode,
2791 const char *name, int name_len)
2792 {
2793 int ret;
2794 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2795 if (!ret) {
2796 btrfs_drop_nlink(inode);
2797 ret = btrfs_update_inode(trans, root, inode);
2798 }
2799 return ret;
2800 }
2801
2802
2803 /* helper to check if there is any shared block in the path */
2804 static int check_path_shared(struct btrfs_root *root,
2805 struct btrfs_path *path)
2806 {
2807 struct extent_buffer *eb;
2808 int level;
2809 u64 refs = 1;
2810
2811 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2812 int ret;
2813
2814 if (!path->nodes[level])
2815 break;
2816 eb = path->nodes[level];
2817 if (!btrfs_block_can_be_shared(root, eb))
2818 continue;
2819 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2820 &refs, NULL);
2821 if (refs > 1)
2822 return 1;
2823 }
2824 return 0;
2825 }
2826
2827 /*
2828 * helper to start transaction for unlink and rmdir.
2829 *
2830 * unlink and rmdir are special in btrfs, they do not always free space.
2831 * so in enospc case, we should make sure they will free space before
2832 * allowing them to use the global metadata reservation.
2833 */
2834 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2835 struct dentry *dentry)
2836 {
2837 struct btrfs_trans_handle *trans;
2838 struct btrfs_root *root = BTRFS_I(dir)->root;
2839 struct btrfs_path *path;
2840 struct btrfs_inode_ref *ref;
2841 struct btrfs_dir_item *di;
2842 struct inode *inode = dentry->d_inode;
2843 u64 index;
2844 int check_link = 1;
2845 int err = -ENOSPC;
2846 int ret;
2847 u64 ino = btrfs_ino(inode);
2848 u64 dir_ino = btrfs_ino(dir);
2849
2850 trans = btrfs_start_transaction(root, 10);
2851 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2852 return trans;
2853
2854 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2855 return ERR_PTR(-ENOSPC);
2856
2857 /* check if there is someone else holds reference */
2858 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2859 return ERR_PTR(-ENOSPC);
2860
2861 if (atomic_read(&inode->i_count) > 2)
2862 return ERR_PTR(-ENOSPC);
2863
2864 if (xchg(&root->fs_info->enospc_unlink, 1))
2865 return ERR_PTR(-ENOSPC);
2866
2867 path = btrfs_alloc_path();
2868 if (!path) {
2869 root->fs_info->enospc_unlink = 0;
2870 return ERR_PTR(-ENOMEM);
2871 }
2872
2873 trans = btrfs_start_transaction(root, 0);
2874 if (IS_ERR(trans)) {
2875 btrfs_free_path(path);
2876 root->fs_info->enospc_unlink = 0;
2877 return trans;
2878 }
2879
2880 path->skip_locking = 1;
2881 path->search_commit_root = 1;
2882
2883 ret = btrfs_lookup_inode(trans, root, path,
2884 &BTRFS_I(dir)->location, 0);
2885 if (ret < 0) {
2886 err = ret;
2887 goto out;
2888 }
2889 if (ret == 0) {
2890 if (check_path_shared(root, path))
2891 goto out;
2892 } else {
2893 check_link = 0;
2894 }
2895 btrfs_release_path(path);
2896
2897 ret = btrfs_lookup_inode(trans, root, path,
2898 &BTRFS_I(inode)->location, 0);
2899 if (ret < 0) {
2900 err = ret;
2901 goto out;
2902 }
2903 if (ret == 0) {
2904 if (check_path_shared(root, path))
2905 goto out;
2906 } else {
2907 check_link = 0;
2908 }
2909 btrfs_release_path(path);
2910
2911 if (ret == 0 && S_ISREG(inode->i_mode)) {
2912 ret = btrfs_lookup_file_extent(trans, root, path,
2913 ino, (u64)-1, 0);
2914 if (ret < 0) {
2915 err = ret;
2916 goto out;
2917 }
2918 BUG_ON(ret == 0);
2919 if (check_path_shared(root, path))
2920 goto out;
2921 btrfs_release_path(path);
2922 }
2923
2924 if (!check_link) {
2925 err = 0;
2926 goto out;
2927 }
2928
2929 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2930 dentry->d_name.name, dentry->d_name.len, 0);
2931 if (IS_ERR(di)) {
2932 err = PTR_ERR(di);
2933 goto out;
2934 }
2935 if (di) {
2936 if (check_path_shared(root, path))
2937 goto out;
2938 } else {
2939 err = 0;
2940 goto out;
2941 }
2942 btrfs_release_path(path);
2943
2944 ref = btrfs_lookup_inode_ref(trans, root, path,
2945 dentry->d_name.name, dentry->d_name.len,
2946 ino, dir_ino, 0);
2947 if (IS_ERR(ref)) {
2948 err = PTR_ERR(ref);
2949 goto out;
2950 }
2951 BUG_ON(!ref);
2952 if (check_path_shared(root, path))
2953 goto out;
2954 index = btrfs_inode_ref_index(path->nodes[0], ref);
2955 btrfs_release_path(path);
2956
2957 /*
2958 * This is a commit root search, if we can lookup inode item and other
2959 * relative items in the commit root, it means the transaction of
2960 * dir/file creation has been committed, and the dir index item that we
2961 * delay to insert has also been inserted into the commit root. So
2962 * we needn't worry about the delayed insertion of the dir index item
2963 * here.
2964 */
2965 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
2966 dentry->d_name.name, dentry->d_name.len, 0);
2967 if (IS_ERR(di)) {
2968 err = PTR_ERR(di);
2969 goto out;
2970 }
2971 BUG_ON(ret == -ENOENT);
2972 if (check_path_shared(root, path))
2973 goto out;
2974
2975 err = 0;
2976 out:
2977 btrfs_free_path(path);
2978 if (err) {
2979 btrfs_end_transaction(trans, root);
2980 root->fs_info->enospc_unlink = 0;
2981 return ERR_PTR(err);
2982 }
2983
2984 trans->block_rsv = &root->fs_info->global_block_rsv;
2985 return trans;
2986 }
2987
2988 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2989 struct btrfs_root *root)
2990 {
2991 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2992 BUG_ON(!root->fs_info->enospc_unlink);
2993 root->fs_info->enospc_unlink = 0;
2994 }
2995 btrfs_end_transaction_throttle(trans, root);
2996 }
2997
2998 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2999 {
3000 struct btrfs_root *root = BTRFS_I(dir)->root;
3001 struct btrfs_trans_handle *trans;
3002 struct inode *inode = dentry->d_inode;
3003 int ret;
3004 unsigned long nr = 0;
3005
3006 trans = __unlink_start_trans(dir, dentry);
3007 if (IS_ERR(trans))
3008 return PTR_ERR(trans);
3009
3010 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3011
3012 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3013 dentry->d_name.name, dentry->d_name.len);
3014 BUG_ON(ret);
3015
3016 if (inode->i_nlink == 0) {
3017 ret = btrfs_orphan_add(trans, inode);
3018 BUG_ON(ret);
3019 }
3020
3021 nr = trans->blocks_used;
3022 __unlink_end_trans(trans, root);
3023 btrfs_btree_balance_dirty(root, nr);
3024 return ret;
3025 }
3026
3027 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3028 struct btrfs_root *root,
3029 struct inode *dir, u64 objectid,
3030 const char *name, int name_len)
3031 {
3032 struct btrfs_path *path;
3033 struct extent_buffer *leaf;
3034 struct btrfs_dir_item *di;
3035 struct btrfs_key key;
3036 u64 index;
3037 int ret;
3038 u64 dir_ino = btrfs_ino(dir);
3039
3040 path = btrfs_alloc_path();
3041 if (!path)
3042 return -ENOMEM;
3043
3044 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3045 name, name_len, -1);
3046 BUG_ON(IS_ERR_OR_NULL(di));
3047
3048 leaf = path->nodes[0];
3049 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3050 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3051 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3052 BUG_ON(ret);
3053 btrfs_release_path(path);
3054
3055 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3056 objectid, root->root_key.objectid,
3057 dir_ino, &index, name, name_len);
3058 if (ret < 0) {
3059 BUG_ON(ret != -ENOENT);
3060 di = btrfs_search_dir_index_item(root, path, dir_ino,
3061 name, name_len);
3062 BUG_ON(IS_ERR_OR_NULL(di));
3063
3064 leaf = path->nodes[0];
3065 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3066 btrfs_release_path(path);
3067 index = key.offset;
3068 }
3069 btrfs_release_path(path);
3070
3071 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3072 BUG_ON(ret);
3073
3074 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3075 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3076 ret = btrfs_update_inode(trans, root, dir);
3077 BUG_ON(ret);
3078
3079 btrfs_free_path(path);
3080 return 0;
3081 }
3082
3083 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3084 {
3085 struct inode *inode = dentry->d_inode;
3086 int err = 0;
3087 struct btrfs_root *root = BTRFS_I(dir)->root;
3088 struct btrfs_trans_handle *trans;
3089 unsigned long nr = 0;
3090
3091 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3092 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3093 return -ENOTEMPTY;
3094
3095 trans = __unlink_start_trans(dir, dentry);
3096 if (IS_ERR(trans))
3097 return PTR_ERR(trans);
3098
3099 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3100 err = btrfs_unlink_subvol(trans, root, dir,
3101 BTRFS_I(inode)->location.objectid,
3102 dentry->d_name.name,
3103 dentry->d_name.len);
3104 goto out;
3105 }
3106
3107 err = btrfs_orphan_add(trans, inode);
3108 if (err)
3109 goto out;
3110
3111 /* now the directory is empty */
3112 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3113 dentry->d_name.name, dentry->d_name.len);
3114 if (!err)
3115 btrfs_i_size_write(inode, 0);
3116 out:
3117 nr = trans->blocks_used;
3118 __unlink_end_trans(trans, root);
3119 btrfs_btree_balance_dirty(root, nr);
3120
3121 return err;
3122 }
3123
3124 /*
3125 * this can truncate away extent items, csum items and directory items.
3126 * It starts at a high offset and removes keys until it can't find
3127 * any higher than new_size
3128 *
3129 * csum items that cross the new i_size are truncated to the new size
3130 * as well.
3131 *
3132 * min_type is the minimum key type to truncate down to. If set to 0, this
3133 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3134 */
3135 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3136 struct btrfs_root *root,
3137 struct inode *inode,
3138 u64 new_size, u32 min_type)
3139 {
3140 struct btrfs_path *path;
3141 struct extent_buffer *leaf;
3142 struct btrfs_file_extent_item *fi;
3143 struct btrfs_key key;
3144 struct btrfs_key found_key;
3145 u64 extent_start = 0;
3146 u64 extent_num_bytes = 0;
3147 u64 extent_offset = 0;
3148 u64 item_end = 0;
3149 u64 mask = root->sectorsize - 1;
3150 u32 found_type = (u8)-1;
3151 int found_extent;
3152 int del_item;
3153 int pending_del_nr = 0;
3154 int pending_del_slot = 0;
3155 int extent_type = -1;
3156 int encoding;
3157 int ret;
3158 int err = 0;
3159 u64 ino = btrfs_ino(inode);
3160
3161 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3162
3163 if (root->ref_cows || root == root->fs_info->tree_root)
3164 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3165
3166 /*
3167 * This function is also used to drop the items in the log tree before
3168 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3169 * it is used to drop the loged items. So we shouldn't kill the delayed
3170 * items.
3171 */
3172 if (min_type == 0 && root == BTRFS_I(inode)->root)
3173 btrfs_kill_delayed_inode_items(inode);
3174
3175 path = btrfs_alloc_path();
3176 BUG_ON(!path);
3177 path->reada = -1;
3178
3179 key.objectid = ino;
3180 key.offset = (u64)-1;
3181 key.type = (u8)-1;
3182
3183 search_again:
3184 path->leave_spinning = 1;
3185 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3186 if (ret < 0) {
3187 err = ret;
3188 goto out;
3189 }
3190
3191 if (ret > 0) {
3192 /* there are no items in the tree for us to truncate, we're
3193 * done
3194 */
3195 if (path->slots[0] == 0)
3196 goto out;
3197 path->slots[0]--;
3198 }
3199
3200 while (1) {
3201 fi = NULL;
3202 leaf = path->nodes[0];
3203 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3204 found_type = btrfs_key_type(&found_key);
3205 encoding = 0;
3206
3207 if (found_key.objectid != ino)
3208 break;
3209
3210 if (found_type < min_type)
3211 break;
3212
3213 item_end = found_key.offset;
3214 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3215 fi = btrfs_item_ptr(leaf, path->slots[0],
3216 struct btrfs_file_extent_item);
3217 extent_type = btrfs_file_extent_type(leaf, fi);
3218 encoding = btrfs_file_extent_compression(leaf, fi);
3219 encoding |= btrfs_file_extent_encryption(leaf, fi);
3220 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3221
3222 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3223 item_end +=
3224 btrfs_file_extent_num_bytes(leaf, fi);
3225 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3226 item_end += btrfs_file_extent_inline_len(leaf,
3227 fi);
3228 }
3229 item_end--;
3230 }
3231 if (found_type > min_type) {
3232 del_item = 1;
3233 } else {
3234 if (item_end < new_size)
3235 break;
3236 if (found_key.offset >= new_size)
3237 del_item = 1;
3238 else
3239 del_item = 0;
3240 }
3241 found_extent = 0;
3242 /* FIXME, shrink the extent if the ref count is only 1 */
3243 if (found_type != BTRFS_EXTENT_DATA_KEY)
3244 goto delete;
3245
3246 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3247 u64 num_dec;
3248 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3249 if (!del_item && !encoding) {
3250 u64 orig_num_bytes =
3251 btrfs_file_extent_num_bytes(leaf, fi);
3252 extent_num_bytes = new_size -
3253 found_key.offset + root->sectorsize - 1;
3254 extent_num_bytes = extent_num_bytes &
3255 ~((u64)root->sectorsize - 1);
3256 btrfs_set_file_extent_num_bytes(leaf, fi,
3257 extent_num_bytes);
3258 num_dec = (orig_num_bytes -
3259 extent_num_bytes);
3260 if (root->ref_cows && extent_start != 0)
3261 inode_sub_bytes(inode, num_dec);
3262 btrfs_mark_buffer_dirty(leaf);
3263 } else {
3264 extent_num_bytes =
3265 btrfs_file_extent_disk_num_bytes(leaf,
3266 fi);
3267 extent_offset = found_key.offset -
3268 btrfs_file_extent_offset(leaf, fi);
3269
3270 /* FIXME blocksize != 4096 */
3271 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3272 if (extent_start != 0) {
3273 found_extent = 1;
3274 if (root->ref_cows)
3275 inode_sub_bytes(inode, num_dec);
3276 }
3277 }
3278 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3279 /*
3280 * we can't truncate inline items that have had
3281 * special encodings
3282 */
3283 if (!del_item &&
3284 btrfs_file_extent_compression(leaf, fi) == 0 &&
3285 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3286 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3287 u32 size = new_size - found_key.offset;
3288
3289 if (root->ref_cows) {
3290 inode_sub_bytes(inode, item_end + 1 -
3291 new_size);
3292 }
3293 size =
3294 btrfs_file_extent_calc_inline_size(size);
3295 ret = btrfs_truncate_item(trans, root, path,
3296 size, 1);
3297 } else if (root->ref_cows) {
3298 inode_sub_bytes(inode, item_end + 1 -
3299 found_key.offset);
3300 }
3301 }
3302 delete:
3303 if (del_item) {
3304 if (!pending_del_nr) {
3305 /* no pending yet, add ourselves */
3306 pending_del_slot = path->slots[0];
3307 pending_del_nr = 1;
3308 } else if (pending_del_nr &&
3309 path->slots[0] + 1 == pending_del_slot) {
3310 /* hop on the pending chunk */
3311 pending_del_nr++;
3312 pending_del_slot = path->slots[0];
3313 } else {
3314 BUG();
3315 }
3316 } else {
3317 break;
3318 }
3319 if (found_extent && (root->ref_cows ||
3320 root == root->fs_info->tree_root)) {
3321 btrfs_set_path_blocking(path);
3322 ret = btrfs_free_extent(trans, root, extent_start,
3323 extent_num_bytes, 0,
3324 btrfs_header_owner(leaf),
3325 ino, extent_offset);
3326 BUG_ON(ret);
3327 }
3328
3329 if (found_type == BTRFS_INODE_ITEM_KEY)
3330 break;
3331
3332 if (path->slots[0] == 0 ||
3333 path->slots[0] != pending_del_slot) {
3334 if (root->ref_cows &&
3335 BTRFS_I(inode)->location.objectid !=
3336 BTRFS_FREE_INO_OBJECTID) {
3337 err = -EAGAIN;
3338 goto out;
3339 }
3340 if (pending_del_nr) {
3341 ret = btrfs_del_items(trans, root, path,
3342 pending_del_slot,
3343 pending_del_nr);
3344 BUG_ON(ret);
3345 pending_del_nr = 0;
3346 }
3347 btrfs_release_path(path);
3348 goto search_again;
3349 } else {
3350 path->slots[0]--;
3351 }
3352 }
3353 out:
3354 if (pending_del_nr) {
3355 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3356 pending_del_nr);
3357 BUG_ON(ret);
3358 }
3359 btrfs_free_path(path);
3360 return err;
3361 }
3362
3363 /*
3364 * taken from block_truncate_page, but does cow as it zeros out
3365 * any bytes left in the last page in the file.
3366 */
3367 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3368 {
3369 struct inode *inode = mapping->host;
3370 struct btrfs_root *root = BTRFS_I(inode)->root;
3371 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3372 struct btrfs_ordered_extent *ordered;
3373 struct extent_state *cached_state = NULL;
3374 char *kaddr;
3375 u32 blocksize = root->sectorsize;
3376 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3377 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3378 struct page *page;
3379 int ret = 0;
3380 u64 page_start;
3381 u64 page_end;
3382
3383 if ((offset & (blocksize - 1)) == 0)
3384 goto out;
3385 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3386 if (ret)
3387 goto out;
3388
3389 ret = -ENOMEM;
3390 again:
3391 page = grab_cache_page(mapping, index);
3392 if (!page) {
3393 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3394 goto out;
3395 }
3396
3397 page_start = page_offset(page);
3398 page_end = page_start + PAGE_CACHE_SIZE - 1;
3399
3400 if (!PageUptodate(page)) {
3401 ret = btrfs_readpage(NULL, page);
3402 lock_page(page);
3403 if (page->mapping != mapping) {
3404 unlock_page(page);
3405 page_cache_release(page);
3406 goto again;
3407 }
3408 if (!PageUptodate(page)) {
3409 ret = -EIO;
3410 goto out_unlock;
3411 }
3412 }
3413 wait_on_page_writeback(page);
3414
3415 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3416 GFP_NOFS);
3417 set_page_extent_mapped(page);
3418
3419 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3420 if (ordered) {
3421 unlock_extent_cached(io_tree, page_start, page_end,
3422 &cached_state, GFP_NOFS);
3423 unlock_page(page);
3424 page_cache_release(page);
3425 btrfs_start_ordered_extent(inode, ordered, 1);
3426 btrfs_put_ordered_extent(ordered);
3427 goto again;
3428 }
3429
3430 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3431 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3432 0, 0, &cached_state, GFP_NOFS);
3433
3434 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3435 &cached_state);
3436 if (ret) {
3437 unlock_extent_cached(io_tree, page_start, page_end,
3438 &cached_state, GFP_NOFS);
3439 goto out_unlock;
3440 }
3441
3442 ret = 0;
3443 if (offset != PAGE_CACHE_SIZE) {
3444 kaddr = kmap(page);
3445 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3446 flush_dcache_page(page);
3447 kunmap(page);
3448 }
3449 ClearPageChecked(page);
3450 set_page_dirty(page);
3451 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3452 GFP_NOFS);
3453
3454 out_unlock:
3455 if (ret)
3456 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3457 unlock_page(page);
3458 page_cache_release(page);
3459 out:
3460 return ret;
3461 }
3462
3463 /*
3464 * This function puts in dummy file extents for the area we're creating a hole
3465 * for. So if we are truncating this file to a larger size we need to insert
3466 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3467 * the range between oldsize and size
3468 */
3469 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3470 {
3471 struct btrfs_trans_handle *trans;
3472 struct btrfs_root *root = BTRFS_I(inode)->root;
3473 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3474 struct extent_map *em = NULL;
3475 struct extent_state *cached_state = NULL;
3476 u64 mask = root->sectorsize - 1;
3477 u64 hole_start = (oldsize + mask) & ~mask;
3478 u64 block_end = (size + mask) & ~mask;
3479 u64 last_byte;
3480 u64 cur_offset;
3481 u64 hole_size;
3482 int err = 0;
3483
3484 if (size <= hole_start)
3485 return 0;
3486
3487 while (1) {
3488 struct btrfs_ordered_extent *ordered;
3489 btrfs_wait_ordered_range(inode, hole_start,
3490 block_end - hole_start);
3491 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3492 &cached_state, GFP_NOFS);
3493 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3494 if (!ordered)
3495 break;
3496 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3497 &cached_state, GFP_NOFS);
3498 btrfs_put_ordered_extent(ordered);
3499 }
3500
3501 cur_offset = hole_start;
3502 while (1) {
3503 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3504 block_end - cur_offset, 0);
3505 BUG_ON(IS_ERR_OR_NULL(em));
3506 last_byte = min(extent_map_end(em), block_end);
3507 last_byte = (last_byte + mask) & ~mask;
3508 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3509 u64 hint_byte = 0;
3510 hole_size = last_byte - cur_offset;
3511
3512 trans = btrfs_start_transaction(root, 2);
3513 if (IS_ERR(trans)) {
3514 err = PTR_ERR(trans);
3515 break;
3516 }
3517
3518 err = btrfs_drop_extents(trans, inode, cur_offset,
3519 cur_offset + hole_size,
3520 &hint_byte, 1);
3521 if (err)
3522 break;
3523
3524 err = btrfs_insert_file_extent(trans, root,
3525 btrfs_ino(inode), cur_offset, 0,
3526 0, hole_size, 0, hole_size,
3527 0, 0, 0);
3528 if (err)
3529 break;
3530
3531 btrfs_drop_extent_cache(inode, hole_start,
3532 last_byte - 1, 0);
3533
3534 btrfs_end_transaction(trans, root);
3535 }
3536 free_extent_map(em);
3537 em = NULL;
3538 cur_offset = last_byte;
3539 if (cur_offset >= block_end)
3540 break;
3541 }
3542
3543 free_extent_map(em);
3544 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3545 GFP_NOFS);
3546 return err;
3547 }
3548
3549 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3550 {
3551 loff_t oldsize = i_size_read(inode);
3552 int ret;
3553
3554 if (newsize == oldsize)
3555 return 0;
3556
3557 if (newsize > oldsize) {
3558 i_size_write(inode, newsize);
3559 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3560 truncate_pagecache(inode, oldsize, newsize);
3561 ret = btrfs_cont_expand(inode, oldsize, newsize);
3562 if (ret) {
3563 btrfs_setsize(inode, oldsize);
3564 return ret;
3565 }
3566
3567 mark_inode_dirty(inode);
3568 } else {
3569
3570 /*
3571 * We're truncating a file that used to have good data down to
3572 * zero. Make sure it gets into the ordered flush list so that
3573 * any new writes get down to disk quickly.
3574 */
3575 if (newsize == 0)
3576 BTRFS_I(inode)->ordered_data_close = 1;
3577
3578 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3579 truncate_setsize(inode, newsize);
3580 ret = btrfs_truncate(inode);
3581 }
3582
3583 return ret;
3584 }
3585
3586 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3587 {
3588 struct inode *inode = dentry->d_inode;
3589 struct btrfs_root *root = BTRFS_I(inode)->root;
3590 int err;
3591
3592 if (btrfs_root_readonly(root))
3593 return -EROFS;
3594
3595 err = inode_change_ok(inode, attr);
3596 if (err)
3597 return err;
3598
3599 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3600 err = btrfs_setsize(inode, attr->ia_size);
3601 if (err)
3602 return err;
3603 }
3604
3605 if (attr->ia_valid) {
3606 setattr_copy(inode, attr);
3607 mark_inode_dirty(inode);
3608
3609 if (attr->ia_valid & ATTR_MODE)
3610 err = btrfs_acl_chmod(inode);
3611 }
3612
3613 return err;
3614 }
3615
3616 void btrfs_evict_inode(struct inode *inode)
3617 {
3618 struct btrfs_trans_handle *trans;
3619 struct btrfs_root *root = BTRFS_I(inode)->root;
3620 unsigned long nr;
3621 int ret;
3622
3623 trace_btrfs_inode_evict(inode);
3624
3625 truncate_inode_pages(&inode->i_data, 0);
3626 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3627 is_free_space_inode(root, inode)))
3628 goto no_delete;
3629
3630 if (is_bad_inode(inode)) {
3631 btrfs_orphan_del(NULL, inode);
3632 goto no_delete;
3633 }
3634 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3635 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3636
3637 if (root->fs_info->log_root_recovering) {
3638 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3639 goto no_delete;
3640 }
3641
3642 if (inode->i_nlink > 0) {
3643 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3644 goto no_delete;
3645 }
3646
3647 btrfs_i_size_write(inode, 0);
3648
3649 while (1) {
3650 trans = btrfs_join_transaction(root);
3651 BUG_ON(IS_ERR(trans));
3652 trans->block_rsv = root->orphan_block_rsv;
3653
3654 ret = btrfs_block_rsv_check(trans, root,
3655 root->orphan_block_rsv, 0, 5);
3656 if (ret) {
3657 BUG_ON(ret != -EAGAIN);
3658 ret = btrfs_commit_transaction(trans, root);
3659 BUG_ON(ret);
3660 continue;
3661 }
3662
3663 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3664 if (ret != -EAGAIN)
3665 break;
3666
3667 nr = trans->blocks_used;
3668 btrfs_end_transaction(trans, root);
3669 trans = NULL;
3670 btrfs_btree_balance_dirty(root, nr);
3671
3672 }
3673
3674 if (ret == 0) {
3675 ret = btrfs_orphan_del(trans, inode);
3676 BUG_ON(ret);
3677 }
3678
3679 if (!(root == root->fs_info->tree_root ||
3680 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3681 btrfs_return_ino(root, btrfs_ino(inode));
3682
3683 nr = trans->blocks_used;
3684 btrfs_end_transaction(trans, root);
3685 btrfs_btree_balance_dirty(root, nr);
3686 no_delete:
3687 end_writeback(inode);
3688 return;
3689 }
3690
3691 /*
3692 * this returns the key found in the dir entry in the location pointer.
3693 * If no dir entries were found, location->objectid is 0.
3694 */
3695 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3696 struct btrfs_key *location)
3697 {
3698 const char *name = dentry->d_name.name;
3699 int namelen = dentry->d_name.len;
3700 struct btrfs_dir_item *di;
3701 struct btrfs_path *path;
3702 struct btrfs_root *root = BTRFS_I(dir)->root;
3703 int ret = 0;
3704
3705 path = btrfs_alloc_path();
3706 BUG_ON(!path);
3707
3708 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3709 namelen, 0);
3710 if (IS_ERR(di))
3711 ret = PTR_ERR(di);
3712
3713 if (IS_ERR_OR_NULL(di))
3714 goto out_err;
3715
3716 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3717 out:
3718 btrfs_free_path(path);
3719 return ret;
3720 out_err:
3721 location->objectid = 0;
3722 goto out;
3723 }
3724
3725 /*
3726 * when we hit a tree root in a directory, the btrfs part of the inode
3727 * needs to be changed to reflect the root directory of the tree root. This
3728 * is kind of like crossing a mount point.
3729 */
3730 static int fixup_tree_root_location(struct btrfs_root *root,
3731 struct inode *dir,
3732 struct dentry *dentry,
3733 struct btrfs_key *location,
3734 struct btrfs_root **sub_root)
3735 {
3736 struct btrfs_path *path;
3737 struct btrfs_root *new_root;
3738 struct btrfs_root_ref *ref;
3739 struct extent_buffer *leaf;
3740 int ret;
3741 int err = 0;
3742
3743 path = btrfs_alloc_path();
3744 if (!path) {
3745 err = -ENOMEM;
3746 goto out;
3747 }
3748
3749 err = -ENOENT;
3750 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3751 BTRFS_I(dir)->root->root_key.objectid,
3752 location->objectid);
3753 if (ret) {
3754 if (ret < 0)
3755 err = ret;
3756 goto out;
3757 }
3758
3759 leaf = path->nodes[0];
3760 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3761 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3762 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3763 goto out;
3764
3765 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3766 (unsigned long)(ref + 1),
3767 dentry->d_name.len);
3768 if (ret)
3769 goto out;
3770
3771 btrfs_release_path(path);
3772
3773 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3774 if (IS_ERR(new_root)) {
3775 err = PTR_ERR(new_root);
3776 goto out;
3777 }
3778
3779 if (btrfs_root_refs(&new_root->root_item) == 0) {
3780 err = -ENOENT;
3781 goto out;
3782 }
3783
3784 *sub_root = new_root;
3785 location->objectid = btrfs_root_dirid(&new_root->root_item);
3786 location->type = BTRFS_INODE_ITEM_KEY;
3787 location->offset = 0;
3788 err = 0;
3789 out:
3790 btrfs_free_path(path);
3791 return err;
3792 }
3793
3794 static void inode_tree_add(struct inode *inode)
3795 {
3796 struct btrfs_root *root = BTRFS_I(inode)->root;
3797 struct btrfs_inode *entry;
3798 struct rb_node **p;
3799 struct rb_node *parent;
3800 u64 ino = btrfs_ino(inode);
3801 again:
3802 p = &root->inode_tree.rb_node;
3803 parent = NULL;
3804
3805 if (inode_unhashed(inode))
3806 return;
3807
3808 spin_lock(&root->inode_lock);
3809 while (*p) {
3810 parent = *p;
3811 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3812
3813 if (ino < btrfs_ino(&entry->vfs_inode))
3814 p = &parent->rb_left;
3815 else if (ino > btrfs_ino(&entry->vfs_inode))
3816 p = &parent->rb_right;
3817 else {
3818 WARN_ON(!(entry->vfs_inode.i_state &
3819 (I_WILL_FREE | I_FREEING)));
3820 rb_erase(parent, &root->inode_tree);
3821 RB_CLEAR_NODE(parent);
3822 spin_unlock(&root->inode_lock);
3823 goto again;
3824 }
3825 }
3826 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3827 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3828 spin_unlock(&root->inode_lock);
3829 }
3830
3831 static void inode_tree_del(struct inode *inode)
3832 {
3833 struct btrfs_root *root = BTRFS_I(inode)->root;
3834 int empty = 0;
3835
3836 spin_lock(&root->inode_lock);
3837 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3838 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3839 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3840 empty = RB_EMPTY_ROOT(&root->inode_tree);
3841 }
3842 spin_unlock(&root->inode_lock);
3843
3844 /*
3845 * Free space cache has inodes in the tree root, but the tree root has a
3846 * root_refs of 0, so this could end up dropping the tree root as a
3847 * snapshot, so we need the extra !root->fs_info->tree_root check to
3848 * make sure we don't drop it.
3849 */
3850 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3851 root != root->fs_info->tree_root) {
3852 synchronize_srcu(&root->fs_info->subvol_srcu);
3853 spin_lock(&root->inode_lock);
3854 empty = RB_EMPTY_ROOT(&root->inode_tree);
3855 spin_unlock(&root->inode_lock);
3856 if (empty)
3857 btrfs_add_dead_root(root);
3858 }
3859 }
3860
3861 int btrfs_invalidate_inodes(struct btrfs_root *root)
3862 {
3863 struct rb_node *node;
3864 struct rb_node *prev;
3865 struct btrfs_inode *entry;
3866 struct inode *inode;
3867 u64 objectid = 0;
3868
3869 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3870
3871 spin_lock(&root->inode_lock);
3872 again:
3873 node = root->inode_tree.rb_node;
3874 prev = NULL;
3875 while (node) {
3876 prev = node;
3877 entry = rb_entry(node, struct btrfs_inode, rb_node);
3878
3879 if (objectid < btrfs_ino(&entry->vfs_inode))
3880 node = node->rb_left;
3881 else if (objectid > btrfs_ino(&entry->vfs_inode))
3882 node = node->rb_right;
3883 else
3884 break;
3885 }
3886 if (!node) {
3887 while (prev) {
3888 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3889 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
3890 node = prev;
3891 break;
3892 }
3893 prev = rb_next(prev);
3894 }
3895 }
3896 while (node) {
3897 entry = rb_entry(node, struct btrfs_inode, rb_node);
3898 objectid = btrfs_ino(&entry->vfs_inode) + 1;
3899 inode = igrab(&entry->vfs_inode);
3900 if (inode) {
3901 spin_unlock(&root->inode_lock);
3902 if (atomic_read(&inode->i_count) > 1)
3903 d_prune_aliases(inode);
3904 /*
3905 * btrfs_drop_inode will have it removed from
3906 * the inode cache when its usage count
3907 * hits zero.
3908 */
3909 iput(inode);
3910 cond_resched();
3911 spin_lock(&root->inode_lock);
3912 goto again;
3913 }
3914
3915 if (cond_resched_lock(&root->inode_lock))
3916 goto again;
3917
3918 node = rb_next(node);
3919 }
3920 spin_unlock(&root->inode_lock);
3921 return 0;
3922 }
3923
3924 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3925 {
3926 struct btrfs_iget_args *args = p;
3927 inode->i_ino = args->ino;
3928 BTRFS_I(inode)->root = args->root;
3929 btrfs_set_inode_space_info(args->root, inode);
3930 return 0;
3931 }
3932
3933 static int btrfs_find_actor(struct inode *inode, void *opaque)
3934 {
3935 struct btrfs_iget_args *args = opaque;
3936 return args->ino == btrfs_ino(inode) &&
3937 args->root == BTRFS_I(inode)->root;
3938 }
3939
3940 static struct inode *btrfs_iget_locked(struct super_block *s,
3941 u64 objectid,
3942 struct btrfs_root *root)
3943 {
3944 struct inode *inode;
3945 struct btrfs_iget_args args;
3946 args.ino = objectid;
3947 args.root = root;
3948
3949 inode = iget5_locked(s, objectid, btrfs_find_actor,
3950 btrfs_init_locked_inode,
3951 (void *)&args);
3952 return inode;
3953 }
3954
3955 /* Get an inode object given its location and corresponding root.
3956 * Returns in *is_new if the inode was read from disk
3957 */
3958 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3959 struct btrfs_root *root, int *new)
3960 {
3961 struct inode *inode;
3962
3963 inode = btrfs_iget_locked(s, location->objectid, root);
3964 if (!inode)
3965 return ERR_PTR(-ENOMEM);
3966
3967 if (inode->i_state & I_NEW) {
3968 BTRFS_I(inode)->root = root;
3969 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3970 btrfs_read_locked_inode(inode);
3971 inode_tree_add(inode);
3972 unlock_new_inode(inode);
3973 if (new)
3974 *new = 1;
3975 }
3976
3977 return inode;
3978 }
3979
3980 static struct inode *new_simple_dir(struct super_block *s,
3981 struct btrfs_key *key,
3982 struct btrfs_root *root)
3983 {
3984 struct inode *inode = new_inode(s);
3985
3986 if (!inode)
3987 return ERR_PTR(-ENOMEM);
3988
3989 BTRFS_I(inode)->root = root;
3990 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3991 BTRFS_I(inode)->dummy_inode = 1;
3992
3993 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3994 inode->i_op = &simple_dir_inode_operations;
3995 inode->i_fop = &simple_dir_operations;
3996 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3997 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3998
3999 return inode;
4000 }
4001
4002 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4003 {
4004 struct inode *inode;
4005 struct btrfs_root *root = BTRFS_I(dir)->root;
4006 struct btrfs_root *sub_root = root;
4007 struct btrfs_key location;
4008 int index;
4009 int ret;
4010
4011 if (dentry->d_name.len > BTRFS_NAME_LEN)
4012 return ERR_PTR(-ENAMETOOLONG);
4013
4014 ret = btrfs_inode_by_name(dir, dentry, &location);
4015
4016 if (ret < 0)
4017 return ERR_PTR(ret);
4018
4019 if (location.objectid == 0)
4020 return NULL;
4021
4022 if (location.type == BTRFS_INODE_ITEM_KEY) {
4023 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4024 return inode;
4025 }
4026
4027 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4028
4029 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4030 ret = fixup_tree_root_location(root, dir, dentry,
4031 &location, &sub_root);
4032 if (ret < 0) {
4033 if (ret != -ENOENT)
4034 inode = ERR_PTR(ret);
4035 else
4036 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4037 } else {
4038 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4039 }
4040 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4041
4042 if (!IS_ERR(inode) && root != sub_root) {
4043 down_read(&root->fs_info->cleanup_work_sem);
4044 if (!(inode->i_sb->s_flags & MS_RDONLY))
4045 ret = btrfs_orphan_cleanup(sub_root);
4046 up_read(&root->fs_info->cleanup_work_sem);
4047 if (ret)
4048 inode = ERR_PTR(ret);
4049 }
4050
4051 return inode;
4052 }
4053
4054 static int btrfs_dentry_delete(const struct dentry *dentry)
4055 {
4056 struct btrfs_root *root;
4057
4058 if (!dentry->d_inode && !IS_ROOT(dentry))
4059 dentry = dentry->d_parent;
4060
4061 if (dentry->d_inode) {
4062 root = BTRFS_I(dentry->d_inode)->root;
4063 if (btrfs_root_refs(&root->root_item) == 0)
4064 return 1;
4065 }
4066 return 0;
4067 }
4068
4069 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4070 struct nameidata *nd)
4071 {
4072 struct inode *inode;
4073
4074 inode = btrfs_lookup_dentry(dir, dentry);
4075 if (IS_ERR(inode))
4076 return ERR_CAST(inode);
4077
4078 return d_splice_alias(inode, dentry);
4079 }
4080
4081 unsigned char btrfs_filetype_table[] = {
4082 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4083 };
4084
4085 static int btrfs_real_readdir(struct file *filp, void *dirent,
4086 filldir_t filldir)
4087 {
4088 struct inode *inode = filp->f_dentry->d_inode;
4089 struct btrfs_root *root = BTRFS_I(inode)->root;
4090 struct btrfs_item *item;
4091 struct btrfs_dir_item *di;
4092 struct btrfs_key key;
4093 struct btrfs_key found_key;
4094 struct btrfs_path *path;
4095 struct list_head ins_list;
4096 struct list_head del_list;
4097 int ret;
4098 struct extent_buffer *leaf;
4099 int slot;
4100 unsigned char d_type;
4101 int over = 0;
4102 u32 di_cur;
4103 u32 di_total;
4104 u32 di_len;
4105 int key_type = BTRFS_DIR_INDEX_KEY;
4106 char tmp_name[32];
4107 char *name_ptr;
4108 int name_len;
4109 int is_curr = 0; /* filp->f_pos points to the current index? */
4110
4111 /* FIXME, use a real flag for deciding about the key type */
4112 if (root->fs_info->tree_root == root)
4113 key_type = BTRFS_DIR_ITEM_KEY;
4114
4115 /* special case for "." */
4116 if (filp->f_pos == 0) {
4117 over = filldir(dirent, ".", 1, 1, btrfs_ino(inode), DT_DIR);
4118 if (over)
4119 return 0;
4120 filp->f_pos = 1;
4121 }
4122 /* special case for .., just use the back ref */
4123 if (filp->f_pos == 1) {
4124 u64 pino = parent_ino(filp->f_path.dentry);
4125 over = filldir(dirent, "..", 2,
4126 2, pino, DT_DIR);
4127 if (over)
4128 return 0;
4129 filp->f_pos = 2;
4130 }
4131 path = btrfs_alloc_path();
4132 if (!path)
4133 return -ENOMEM;
4134
4135 path->reada = 1;
4136
4137 if (key_type == BTRFS_DIR_INDEX_KEY) {
4138 INIT_LIST_HEAD(&ins_list);
4139 INIT_LIST_HEAD(&del_list);
4140 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4141 }
4142
4143 btrfs_set_key_type(&key, key_type);
4144 key.offset = filp->f_pos;
4145 key.objectid = btrfs_ino(inode);
4146
4147 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4148 if (ret < 0)
4149 goto err;
4150
4151 while (1) {
4152 leaf = path->nodes[0];
4153 slot = path->slots[0];
4154 if (slot >= btrfs_header_nritems(leaf)) {
4155 ret = btrfs_next_leaf(root, path);
4156 if (ret < 0)
4157 goto err;
4158 else if (ret > 0)
4159 break;
4160 continue;
4161 }
4162
4163 item = btrfs_item_nr(leaf, slot);
4164 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4165
4166 if (found_key.objectid != key.objectid)
4167 break;
4168 if (btrfs_key_type(&found_key) != key_type)
4169 break;
4170 if (found_key.offset < filp->f_pos)
4171 goto next;
4172 if (key_type == BTRFS_DIR_INDEX_KEY &&
4173 btrfs_should_delete_dir_index(&del_list,
4174 found_key.offset))
4175 goto next;
4176
4177 filp->f_pos = found_key.offset;
4178 is_curr = 1;
4179
4180 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4181 di_cur = 0;
4182 di_total = btrfs_item_size(leaf, item);
4183
4184 while (di_cur < di_total) {
4185 struct btrfs_key location;
4186
4187 if (verify_dir_item(root, leaf, di))
4188 break;
4189
4190 name_len = btrfs_dir_name_len(leaf, di);
4191 if (name_len <= sizeof(tmp_name)) {
4192 name_ptr = tmp_name;
4193 } else {
4194 name_ptr = kmalloc(name_len, GFP_NOFS);
4195 if (!name_ptr) {
4196 ret = -ENOMEM;
4197 goto err;
4198 }
4199 }
4200 read_extent_buffer(leaf, name_ptr,
4201 (unsigned long)(di + 1), name_len);
4202
4203 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4204 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4205
4206 /* is this a reference to our own snapshot? If so
4207 * skip it
4208 */
4209 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4210 location.objectid == root->root_key.objectid) {
4211 over = 0;
4212 goto skip;
4213 }
4214 over = filldir(dirent, name_ptr, name_len,
4215 found_key.offset, location.objectid,
4216 d_type);
4217
4218 skip:
4219 if (name_ptr != tmp_name)
4220 kfree(name_ptr);
4221
4222 if (over)
4223 goto nopos;
4224 di_len = btrfs_dir_name_len(leaf, di) +
4225 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4226 di_cur += di_len;
4227 di = (struct btrfs_dir_item *)((char *)di + di_len);
4228 }
4229 next:
4230 path->slots[0]++;
4231 }
4232
4233 if (key_type == BTRFS_DIR_INDEX_KEY) {
4234 if (is_curr)
4235 filp->f_pos++;
4236 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4237 &ins_list);
4238 if (ret)
4239 goto nopos;
4240 }
4241
4242 /* Reached end of directory/root. Bump pos past the last item. */
4243 if (key_type == BTRFS_DIR_INDEX_KEY)
4244 /*
4245 * 32-bit glibc will use getdents64, but then strtol -
4246 * so the last number we can serve is this.
4247 */
4248 filp->f_pos = 0x7fffffff;
4249 else
4250 filp->f_pos++;
4251 nopos:
4252 ret = 0;
4253 err:
4254 if (key_type == BTRFS_DIR_INDEX_KEY)
4255 btrfs_put_delayed_items(&ins_list, &del_list);
4256 btrfs_free_path(path);
4257 return ret;
4258 }
4259
4260 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4261 {
4262 struct btrfs_root *root = BTRFS_I(inode)->root;
4263 struct btrfs_trans_handle *trans;
4264 int ret = 0;
4265 bool nolock = false;
4266
4267 if (BTRFS_I(inode)->dummy_inode)
4268 return 0;
4269
4270 if (btrfs_fs_closing(root->fs_info) && is_free_space_inode(root, inode))
4271 nolock = true;
4272
4273 if (wbc->sync_mode == WB_SYNC_ALL) {
4274 if (nolock)
4275 trans = btrfs_join_transaction_nolock(root);
4276 else
4277 trans = btrfs_join_transaction(root);
4278 if (IS_ERR(trans))
4279 return PTR_ERR(trans);
4280 if (nolock)
4281 ret = btrfs_end_transaction_nolock(trans, root);
4282 else
4283 ret = btrfs_commit_transaction(trans, root);
4284 }
4285 return ret;
4286 }
4287
4288 /*
4289 * This is somewhat expensive, updating the tree every time the
4290 * inode changes. But, it is most likely to find the inode in cache.
4291 * FIXME, needs more benchmarking...there are no reasons other than performance
4292 * to keep or drop this code.
4293 */
4294 void btrfs_dirty_inode(struct inode *inode)
4295 {
4296 struct btrfs_root *root = BTRFS_I(inode)->root;
4297 struct btrfs_trans_handle *trans;
4298 int ret;
4299
4300 if (BTRFS_I(inode)->dummy_inode)
4301 return;
4302
4303 trans = btrfs_join_transaction(root);
4304 BUG_ON(IS_ERR(trans));
4305
4306 ret = btrfs_update_inode(trans, root, inode);
4307 if (ret && ret == -ENOSPC) {
4308 /* whoops, lets try again with the full transaction */
4309 btrfs_end_transaction(trans, root);
4310 trans = btrfs_start_transaction(root, 1);
4311 if (IS_ERR(trans)) {
4312 printk_ratelimited(KERN_ERR "btrfs: fail to "
4313 "dirty inode %llu error %ld\n",
4314 (unsigned long long)btrfs_ino(inode),
4315 PTR_ERR(trans));
4316 return;
4317 }
4318
4319 ret = btrfs_update_inode(trans, root, inode);
4320 if (ret) {
4321 printk_ratelimited(KERN_ERR "btrfs: fail to "
4322 "dirty inode %llu error %d\n",
4323 (unsigned long long)btrfs_ino(inode),
4324 ret);
4325 }
4326 }
4327 btrfs_end_transaction(trans, root);
4328 if (BTRFS_I(inode)->delayed_node)
4329 btrfs_balance_delayed_items(root);
4330 }
4331
4332 /*
4333 * find the highest existing sequence number in a directory
4334 * and then set the in-memory index_cnt variable to reflect
4335 * free sequence numbers
4336 */
4337 static int btrfs_set_inode_index_count(struct inode *inode)
4338 {
4339 struct btrfs_root *root = BTRFS_I(inode)->root;
4340 struct btrfs_key key, found_key;
4341 struct btrfs_path *path;
4342 struct extent_buffer *leaf;
4343 int ret;
4344
4345 key.objectid = btrfs_ino(inode);
4346 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4347 key.offset = (u64)-1;
4348
4349 path = btrfs_alloc_path();
4350 if (!path)
4351 return -ENOMEM;
4352
4353 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4354 if (ret < 0)
4355 goto out;
4356 /* FIXME: we should be able to handle this */
4357 if (ret == 0)
4358 goto out;
4359 ret = 0;
4360
4361 /*
4362 * MAGIC NUMBER EXPLANATION:
4363 * since we search a directory based on f_pos we have to start at 2
4364 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4365 * else has to start at 2
4366 */
4367 if (path->slots[0] == 0) {
4368 BTRFS_I(inode)->index_cnt = 2;
4369 goto out;
4370 }
4371
4372 path->slots[0]--;
4373
4374 leaf = path->nodes[0];
4375 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4376
4377 if (found_key.objectid != btrfs_ino(inode) ||
4378 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4379 BTRFS_I(inode)->index_cnt = 2;
4380 goto out;
4381 }
4382
4383 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4384 out:
4385 btrfs_free_path(path);
4386 return ret;
4387 }
4388
4389 /*
4390 * helper to find a free sequence number in a given directory. This current
4391 * code is very simple, later versions will do smarter things in the btree
4392 */
4393 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4394 {
4395 int ret = 0;
4396
4397 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4398 ret = btrfs_inode_delayed_dir_index_count(dir);
4399 if (ret) {
4400 ret = btrfs_set_inode_index_count(dir);
4401 if (ret)
4402 return ret;
4403 }
4404 }
4405
4406 *index = BTRFS_I(dir)->index_cnt;
4407 BTRFS_I(dir)->index_cnt++;
4408
4409 return ret;
4410 }
4411
4412 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4413 struct btrfs_root *root,
4414 struct inode *dir,
4415 const char *name, int name_len,
4416 u64 ref_objectid, u64 objectid, int mode,
4417 u64 *index)
4418 {
4419 struct inode *inode;
4420 struct btrfs_inode_item *inode_item;
4421 struct btrfs_key *location;
4422 struct btrfs_path *path;
4423 struct btrfs_inode_ref *ref;
4424 struct btrfs_key key[2];
4425 u32 sizes[2];
4426 unsigned long ptr;
4427 int ret;
4428 int owner;
4429
4430 path = btrfs_alloc_path();
4431 BUG_ON(!path);
4432
4433 inode = new_inode(root->fs_info->sb);
4434 if (!inode) {
4435 btrfs_free_path(path);
4436 return ERR_PTR(-ENOMEM);
4437 }
4438
4439 /*
4440 * we have to initialize this early, so we can reclaim the inode
4441 * number if we fail afterwards in this function.
4442 */
4443 inode->i_ino = objectid;
4444
4445 if (dir) {
4446 trace_btrfs_inode_request(dir);
4447
4448 ret = btrfs_set_inode_index(dir, index);
4449 if (ret) {
4450 btrfs_free_path(path);
4451 iput(inode);
4452 return ERR_PTR(ret);
4453 }
4454 }
4455 /*
4456 * index_cnt is ignored for everything but a dir,
4457 * btrfs_get_inode_index_count has an explanation for the magic
4458 * number
4459 */
4460 BTRFS_I(inode)->index_cnt = 2;
4461 BTRFS_I(inode)->root = root;
4462 BTRFS_I(inode)->generation = trans->transid;
4463 inode->i_generation = BTRFS_I(inode)->generation;
4464 btrfs_set_inode_space_info(root, inode);
4465
4466 if (mode & S_IFDIR)
4467 owner = 0;
4468 else
4469 owner = 1;
4470
4471 key[0].objectid = objectid;
4472 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4473 key[0].offset = 0;
4474
4475 key[1].objectid = objectid;
4476 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4477 key[1].offset = ref_objectid;
4478
4479 sizes[0] = sizeof(struct btrfs_inode_item);
4480 sizes[1] = name_len + sizeof(*ref);
4481
4482 path->leave_spinning = 1;
4483 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4484 if (ret != 0)
4485 goto fail;
4486
4487 inode_init_owner(inode, dir, mode);
4488 inode_set_bytes(inode, 0);
4489 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4490 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4491 struct btrfs_inode_item);
4492 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4493
4494 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4495 struct btrfs_inode_ref);
4496 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4497 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4498 ptr = (unsigned long)(ref + 1);
4499 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4500
4501 btrfs_mark_buffer_dirty(path->nodes[0]);
4502 btrfs_free_path(path);
4503
4504 location = &BTRFS_I(inode)->location;
4505 location->objectid = objectid;
4506 location->offset = 0;
4507 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4508
4509 btrfs_inherit_iflags(inode, dir);
4510
4511 if ((mode & S_IFREG)) {
4512 if (btrfs_test_opt(root, NODATASUM))
4513 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4514 if (btrfs_test_opt(root, NODATACOW) ||
4515 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4516 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4517 }
4518
4519 insert_inode_hash(inode);
4520 inode_tree_add(inode);
4521
4522 trace_btrfs_inode_new(inode);
4523 btrfs_set_inode_last_trans(trans, inode);
4524
4525 return inode;
4526 fail:
4527 if (dir)
4528 BTRFS_I(dir)->index_cnt--;
4529 btrfs_free_path(path);
4530 iput(inode);
4531 return ERR_PTR(ret);
4532 }
4533
4534 static inline u8 btrfs_inode_type(struct inode *inode)
4535 {
4536 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4537 }
4538
4539 /*
4540 * utility function to add 'inode' into 'parent_inode' with
4541 * a give name and a given sequence number.
4542 * if 'add_backref' is true, also insert a backref from the
4543 * inode to the parent directory.
4544 */
4545 int btrfs_add_link(struct btrfs_trans_handle *trans,
4546 struct inode *parent_inode, struct inode *inode,
4547 const char *name, int name_len, int add_backref, u64 index)
4548 {
4549 int ret = 0;
4550 struct btrfs_key key;
4551 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4552 u64 ino = btrfs_ino(inode);
4553 u64 parent_ino = btrfs_ino(parent_inode);
4554
4555 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4556 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4557 } else {
4558 key.objectid = ino;
4559 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4560 key.offset = 0;
4561 }
4562
4563 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4564 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4565 key.objectid, root->root_key.objectid,
4566 parent_ino, index, name, name_len);
4567 } else if (add_backref) {
4568 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4569 parent_ino, index);
4570 }
4571
4572 if (ret == 0) {
4573 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4574 parent_inode, &key,
4575 btrfs_inode_type(inode), index);
4576 BUG_ON(ret);
4577
4578 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4579 name_len * 2);
4580 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4581 ret = btrfs_update_inode(trans, root, parent_inode);
4582 }
4583 return ret;
4584 }
4585
4586 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4587 struct inode *dir, struct dentry *dentry,
4588 struct inode *inode, int backref, u64 index)
4589 {
4590 int err = btrfs_add_link(trans, dir, inode,
4591 dentry->d_name.name, dentry->d_name.len,
4592 backref, index);
4593 if (!err) {
4594 d_instantiate(dentry, inode);
4595 return 0;
4596 }
4597 if (err > 0)
4598 err = -EEXIST;
4599 return err;
4600 }
4601
4602 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4603 int mode, dev_t rdev)
4604 {
4605 struct btrfs_trans_handle *trans;
4606 struct btrfs_root *root = BTRFS_I(dir)->root;
4607 struct inode *inode = NULL;
4608 int err;
4609 int drop_inode = 0;
4610 u64 objectid;
4611 unsigned long nr = 0;
4612 u64 index = 0;
4613
4614 if (!new_valid_dev(rdev))
4615 return -EINVAL;
4616
4617 /*
4618 * 2 for inode item and ref
4619 * 2 for dir items
4620 * 1 for xattr if selinux is on
4621 */
4622 trans = btrfs_start_transaction(root, 5);
4623 if (IS_ERR(trans))
4624 return PTR_ERR(trans);
4625
4626 err = btrfs_find_free_ino(root, &objectid);
4627 if (err)
4628 goto out_unlock;
4629
4630 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4631 dentry->d_name.len, btrfs_ino(dir), objectid,
4632 mode, &index);
4633 if (IS_ERR(inode)) {
4634 err = PTR_ERR(inode);
4635 goto out_unlock;
4636 }
4637
4638 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4639 if (err) {
4640 drop_inode = 1;
4641 goto out_unlock;
4642 }
4643
4644 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4645 if (err)
4646 drop_inode = 1;
4647 else {
4648 inode->i_op = &btrfs_special_inode_operations;
4649 init_special_inode(inode, inode->i_mode, rdev);
4650 btrfs_update_inode(trans, root, inode);
4651 }
4652 out_unlock:
4653 nr = trans->blocks_used;
4654 btrfs_end_transaction_throttle(trans, root);
4655 btrfs_btree_balance_dirty(root, nr);
4656 if (drop_inode) {
4657 inode_dec_link_count(inode);
4658 iput(inode);
4659 }
4660 return err;
4661 }
4662
4663 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4664 int mode, struct nameidata *nd)
4665 {
4666 struct btrfs_trans_handle *trans;
4667 struct btrfs_root *root = BTRFS_I(dir)->root;
4668 struct inode *inode = NULL;
4669 int drop_inode = 0;
4670 int err;
4671 unsigned long nr = 0;
4672 u64 objectid;
4673 u64 index = 0;
4674
4675 /*
4676 * 2 for inode item and ref
4677 * 2 for dir items
4678 * 1 for xattr if selinux is on
4679 */
4680 trans = btrfs_start_transaction(root, 5);
4681 if (IS_ERR(trans))
4682 return PTR_ERR(trans);
4683
4684 err = btrfs_find_free_ino(root, &objectid);
4685 if (err)
4686 goto out_unlock;
4687
4688 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4689 dentry->d_name.len, btrfs_ino(dir), objectid,
4690 mode, &index);
4691 if (IS_ERR(inode)) {
4692 err = PTR_ERR(inode);
4693 goto out_unlock;
4694 }
4695
4696 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4697 if (err) {
4698 drop_inode = 1;
4699 goto out_unlock;
4700 }
4701
4702 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4703 if (err)
4704 drop_inode = 1;
4705 else {
4706 inode->i_mapping->a_ops = &btrfs_aops;
4707 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4708 inode->i_fop = &btrfs_file_operations;
4709 inode->i_op = &btrfs_file_inode_operations;
4710 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4711 }
4712 out_unlock:
4713 nr = trans->blocks_used;
4714 btrfs_end_transaction_throttle(trans, root);
4715 if (drop_inode) {
4716 inode_dec_link_count(inode);
4717 iput(inode);
4718 }
4719 btrfs_btree_balance_dirty(root, nr);
4720 return err;
4721 }
4722
4723 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4724 struct dentry *dentry)
4725 {
4726 struct btrfs_trans_handle *trans;
4727 struct btrfs_root *root = BTRFS_I(dir)->root;
4728 struct inode *inode = old_dentry->d_inode;
4729 u64 index;
4730 unsigned long nr = 0;
4731 int err;
4732 int drop_inode = 0;
4733
4734 /* do not allow sys_link's with other subvols of the same device */
4735 if (root->objectid != BTRFS_I(inode)->root->objectid)
4736 return -EXDEV;
4737
4738 if (inode->i_nlink == ~0U)
4739 return -EMLINK;
4740
4741 err = btrfs_set_inode_index(dir, &index);
4742 if (err)
4743 goto fail;
4744
4745 /*
4746 * 2 items for inode and inode ref
4747 * 2 items for dir items
4748 * 1 item for parent inode
4749 */
4750 trans = btrfs_start_transaction(root, 5);
4751 if (IS_ERR(trans)) {
4752 err = PTR_ERR(trans);
4753 goto fail;
4754 }
4755
4756 btrfs_inc_nlink(inode);
4757 inode->i_ctime = CURRENT_TIME;
4758 ihold(inode);
4759
4760 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4761
4762 if (err) {
4763 drop_inode = 1;
4764 } else {
4765 struct dentry *parent = dget_parent(dentry);
4766 err = btrfs_update_inode(trans, root, inode);
4767 BUG_ON(err);
4768 btrfs_log_new_name(trans, inode, NULL, parent);
4769 dput(parent);
4770 }
4771
4772 nr = trans->blocks_used;
4773 btrfs_end_transaction_throttle(trans, root);
4774 fail:
4775 if (drop_inode) {
4776 inode_dec_link_count(inode);
4777 iput(inode);
4778 }
4779 btrfs_btree_balance_dirty(root, nr);
4780 return err;
4781 }
4782
4783 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4784 {
4785 struct inode *inode = NULL;
4786 struct btrfs_trans_handle *trans;
4787 struct btrfs_root *root = BTRFS_I(dir)->root;
4788 int err = 0;
4789 int drop_on_err = 0;
4790 u64 objectid = 0;
4791 u64 index = 0;
4792 unsigned long nr = 1;
4793
4794 /*
4795 * 2 items for inode and ref
4796 * 2 items for dir items
4797 * 1 for xattr if selinux is on
4798 */
4799 trans = btrfs_start_transaction(root, 5);
4800 if (IS_ERR(trans))
4801 return PTR_ERR(trans);
4802
4803 err = btrfs_find_free_ino(root, &objectid);
4804 if (err)
4805 goto out_fail;
4806
4807 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4808 dentry->d_name.len, btrfs_ino(dir), objectid,
4809 S_IFDIR | mode, &index);
4810 if (IS_ERR(inode)) {
4811 err = PTR_ERR(inode);
4812 goto out_fail;
4813 }
4814
4815 drop_on_err = 1;
4816
4817 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4818 if (err)
4819 goto out_fail;
4820
4821 inode->i_op = &btrfs_dir_inode_operations;
4822 inode->i_fop = &btrfs_dir_file_operations;
4823
4824 btrfs_i_size_write(inode, 0);
4825 err = btrfs_update_inode(trans, root, inode);
4826 if (err)
4827 goto out_fail;
4828
4829 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4830 dentry->d_name.len, 0, index);
4831 if (err)
4832 goto out_fail;
4833
4834 d_instantiate(dentry, inode);
4835 drop_on_err = 0;
4836
4837 out_fail:
4838 nr = trans->blocks_used;
4839 btrfs_end_transaction_throttle(trans, root);
4840 if (drop_on_err)
4841 iput(inode);
4842 btrfs_btree_balance_dirty(root, nr);
4843 return err;
4844 }
4845
4846 /* helper for btfs_get_extent. Given an existing extent in the tree,
4847 * and an extent that you want to insert, deal with overlap and insert
4848 * the new extent into the tree.
4849 */
4850 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4851 struct extent_map *existing,
4852 struct extent_map *em,
4853 u64 map_start, u64 map_len)
4854 {
4855 u64 start_diff;
4856
4857 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4858 start_diff = map_start - em->start;
4859 em->start = map_start;
4860 em->len = map_len;
4861 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4862 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4863 em->block_start += start_diff;
4864 em->block_len -= start_diff;
4865 }
4866 return add_extent_mapping(em_tree, em);
4867 }
4868
4869 static noinline int uncompress_inline(struct btrfs_path *path,
4870 struct inode *inode, struct page *page,
4871 size_t pg_offset, u64 extent_offset,
4872 struct btrfs_file_extent_item *item)
4873 {
4874 int ret;
4875 struct extent_buffer *leaf = path->nodes[0];
4876 char *tmp;
4877 size_t max_size;
4878 unsigned long inline_size;
4879 unsigned long ptr;
4880 int compress_type;
4881
4882 WARN_ON(pg_offset != 0);
4883 compress_type = btrfs_file_extent_compression(leaf, item);
4884 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4885 inline_size = btrfs_file_extent_inline_item_len(leaf,
4886 btrfs_item_nr(leaf, path->slots[0]));
4887 tmp = kmalloc(inline_size, GFP_NOFS);
4888 if (!tmp)
4889 return -ENOMEM;
4890 ptr = btrfs_file_extent_inline_start(item);
4891
4892 read_extent_buffer(leaf, tmp, ptr, inline_size);
4893
4894 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4895 ret = btrfs_decompress(compress_type, tmp, page,
4896 extent_offset, inline_size, max_size);
4897 if (ret) {
4898 char *kaddr = kmap_atomic(page, KM_USER0);
4899 unsigned long copy_size = min_t(u64,
4900 PAGE_CACHE_SIZE - pg_offset,
4901 max_size - extent_offset);
4902 memset(kaddr + pg_offset, 0, copy_size);
4903 kunmap_atomic(kaddr, KM_USER0);
4904 }
4905 kfree(tmp);
4906 return 0;
4907 }
4908
4909 /*
4910 * a bit scary, this does extent mapping from logical file offset to the disk.
4911 * the ugly parts come from merging extents from the disk with the in-ram
4912 * representation. This gets more complex because of the data=ordered code,
4913 * where the in-ram extents might be locked pending data=ordered completion.
4914 *
4915 * This also copies inline extents directly into the page.
4916 */
4917
4918 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4919 size_t pg_offset, u64 start, u64 len,
4920 int create)
4921 {
4922 int ret;
4923 int err = 0;
4924 u64 bytenr;
4925 u64 extent_start = 0;
4926 u64 extent_end = 0;
4927 u64 objectid = btrfs_ino(inode);
4928 u32 found_type;
4929 struct btrfs_path *path = NULL;
4930 struct btrfs_root *root = BTRFS_I(inode)->root;
4931 struct btrfs_file_extent_item *item;
4932 struct extent_buffer *leaf;
4933 struct btrfs_key found_key;
4934 struct extent_map *em = NULL;
4935 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4936 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4937 struct btrfs_trans_handle *trans = NULL;
4938 int compress_type;
4939
4940 again:
4941 read_lock(&em_tree->lock);
4942 em = lookup_extent_mapping(em_tree, start, len);
4943 if (em)
4944 em->bdev = root->fs_info->fs_devices->latest_bdev;
4945 read_unlock(&em_tree->lock);
4946
4947 if (em) {
4948 if (em->start > start || em->start + em->len <= start)
4949 free_extent_map(em);
4950 else if (em->block_start == EXTENT_MAP_INLINE && page)
4951 free_extent_map(em);
4952 else
4953 goto out;
4954 }
4955 em = alloc_extent_map();
4956 if (!em) {
4957 err = -ENOMEM;
4958 goto out;
4959 }
4960 em->bdev = root->fs_info->fs_devices->latest_bdev;
4961 em->start = EXTENT_MAP_HOLE;
4962 em->orig_start = EXTENT_MAP_HOLE;
4963 em->len = (u64)-1;
4964 em->block_len = (u64)-1;
4965
4966 if (!path) {
4967 path = btrfs_alloc_path();
4968 if (!path) {
4969 err = -ENOMEM;
4970 goto out;
4971 }
4972 /*
4973 * Chances are we'll be called again, so go ahead and do
4974 * readahead
4975 */
4976 path->reada = 1;
4977 }
4978
4979 ret = btrfs_lookup_file_extent(trans, root, path,
4980 objectid, start, trans != NULL);
4981 if (ret < 0) {
4982 err = ret;
4983 goto out;
4984 }
4985
4986 if (ret != 0) {
4987 if (path->slots[0] == 0)
4988 goto not_found;
4989 path->slots[0]--;
4990 }
4991
4992 leaf = path->nodes[0];
4993 item = btrfs_item_ptr(leaf, path->slots[0],
4994 struct btrfs_file_extent_item);
4995 /* are we inside the extent that was found? */
4996 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4997 found_type = btrfs_key_type(&found_key);
4998 if (found_key.objectid != objectid ||
4999 found_type != BTRFS_EXTENT_DATA_KEY) {
5000 goto not_found;
5001 }
5002
5003 found_type = btrfs_file_extent_type(leaf, item);
5004 extent_start = found_key.offset;
5005 compress_type = btrfs_file_extent_compression(leaf, item);
5006 if (found_type == BTRFS_FILE_EXTENT_REG ||
5007 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5008 extent_end = extent_start +
5009 btrfs_file_extent_num_bytes(leaf, item);
5010 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5011 size_t size;
5012 size = btrfs_file_extent_inline_len(leaf, item);
5013 extent_end = (extent_start + size + root->sectorsize - 1) &
5014 ~((u64)root->sectorsize - 1);
5015 }
5016
5017 if (start >= extent_end) {
5018 path->slots[0]++;
5019 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5020 ret = btrfs_next_leaf(root, path);
5021 if (ret < 0) {
5022 err = ret;
5023 goto out;
5024 }
5025 if (ret > 0)
5026 goto not_found;
5027 leaf = path->nodes[0];
5028 }
5029 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5030 if (found_key.objectid != objectid ||
5031 found_key.type != BTRFS_EXTENT_DATA_KEY)
5032 goto not_found;
5033 if (start + len <= found_key.offset)
5034 goto not_found;
5035 em->start = start;
5036 em->len = found_key.offset - start;
5037 goto not_found_em;
5038 }
5039
5040 if (found_type == BTRFS_FILE_EXTENT_REG ||
5041 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5042 em->start = extent_start;
5043 em->len = extent_end - extent_start;
5044 em->orig_start = extent_start -
5045 btrfs_file_extent_offset(leaf, item);
5046 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5047 if (bytenr == 0) {
5048 em->block_start = EXTENT_MAP_HOLE;
5049 goto insert;
5050 }
5051 if (compress_type != BTRFS_COMPRESS_NONE) {
5052 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5053 em->compress_type = compress_type;
5054 em->block_start = bytenr;
5055 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5056 item);
5057 } else {
5058 bytenr += btrfs_file_extent_offset(leaf, item);
5059 em->block_start = bytenr;
5060 em->block_len = em->len;
5061 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5062 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5063 }
5064 goto insert;
5065 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5066 unsigned long ptr;
5067 char *map;
5068 size_t size;
5069 size_t extent_offset;
5070 size_t copy_size;
5071
5072 em->block_start = EXTENT_MAP_INLINE;
5073 if (!page || create) {
5074 em->start = extent_start;
5075 em->len = extent_end - extent_start;
5076 goto out;
5077 }
5078
5079 size = btrfs_file_extent_inline_len(leaf, item);
5080 extent_offset = page_offset(page) + pg_offset - extent_start;
5081 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5082 size - extent_offset);
5083 em->start = extent_start + extent_offset;
5084 em->len = (copy_size + root->sectorsize - 1) &
5085 ~((u64)root->sectorsize - 1);
5086 em->orig_start = EXTENT_MAP_INLINE;
5087 if (compress_type) {
5088 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5089 em->compress_type = compress_type;
5090 }
5091 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5092 if (create == 0 && !PageUptodate(page)) {
5093 if (btrfs_file_extent_compression(leaf, item) !=
5094 BTRFS_COMPRESS_NONE) {
5095 ret = uncompress_inline(path, inode, page,
5096 pg_offset,
5097 extent_offset, item);
5098 BUG_ON(ret);
5099 } else {
5100 map = kmap(page);
5101 read_extent_buffer(leaf, map + pg_offset, ptr,
5102 copy_size);
5103 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5104 memset(map + pg_offset + copy_size, 0,
5105 PAGE_CACHE_SIZE - pg_offset -
5106 copy_size);
5107 }
5108 kunmap(page);
5109 }
5110 flush_dcache_page(page);
5111 } else if (create && PageUptodate(page)) {
5112 WARN_ON(1);
5113 if (!trans) {
5114 kunmap(page);
5115 free_extent_map(em);
5116 em = NULL;
5117
5118 btrfs_release_path(path);
5119 trans = btrfs_join_transaction(root);
5120
5121 if (IS_ERR(trans))
5122 return ERR_CAST(trans);
5123 goto again;
5124 }
5125 map = kmap(page);
5126 write_extent_buffer(leaf, map + pg_offset, ptr,
5127 copy_size);
5128 kunmap(page);
5129 btrfs_mark_buffer_dirty(leaf);
5130 }
5131 set_extent_uptodate(io_tree, em->start,
5132 extent_map_end(em) - 1, NULL, GFP_NOFS);
5133 goto insert;
5134 } else {
5135 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5136 WARN_ON(1);
5137 }
5138 not_found:
5139 em->start = start;
5140 em->len = len;
5141 not_found_em:
5142 em->block_start = EXTENT_MAP_HOLE;
5143 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5144 insert:
5145 btrfs_release_path(path);
5146 if (em->start > start || extent_map_end(em) <= start) {
5147 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5148 "[%llu %llu]\n", (unsigned long long)em->start,
5149 (unsigned long long)em->len,
5150 (unsigned long long)start,
5151 (unsigned long long)len);
5152 err = -EIO;
5153 goto out;
5154 }
5155
5156 err = 0;
5157 write_lock(&em_tree->lock);
5158 ret = add_extent_mapping(em_tree, em);
5159 /* it is possible that someone inserted the extent into the tree
5160 * while we had the lock dropped. It is also possible that
5161 * an overlapping map exists in the tree
5162 */
5163 if (ret == -EEXIST) {
5164 struct extent_map *existing;
5165
5166 ret = 0;
5167
5168 existing = lookup_extent_mapping(em_tree, start, len);
5169 if (existing && (existing->start > start ||
5170 existing->start + existing->len <= start)) {
5171 free_extent_map(existing);
5172 existing = NULL;
5173 }
5174 if (!existing) {
5175 existing = lookup_extent_mapping(em_tree, em->start,
5176 em->len);
5177 if (existing) {
5178 err = merge_extent_mapping(em_tree, existing,
5179 em, start,
5180 root->sectorsize);
5181 free_extent_map(existing);
5182 if (err) {
5183 free_extent_map(em);
5184 em = NULL;
5185 }
5186 } else {
5187 err = -EIO;
5188 free_extent_map(em);
5189 em = NULL;
5190 }
5191 } else {
5192 free_extent_map(em);
5193 em = existing;
5194 err = 0;
5195 }
5196 }
5197 write_unlock(&em_tree->lock);
5198 out:
5199
5200 trace_btrfs_get_extent(root, em);
5201
5202 if (path)
5203 btrfs_free_path(path);
5204 if (trans) {
5205 ret = btrfs_end_transaction(trans, root);
5206 if (!err)
5207 err = ret;
5208 }
5209 if (err) {
5210 free_extent_map(em);
5211 return ERR_PTR(err);
5212 }
5213 return em;
5214 }
5215
5216 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5217 size_t pg_offset, u64 start, u64 len,
5218 int create)
5219 {
5220 struct extent_map *em;
5221 struct extent_map *hole_em = NULL;
5222 u64 range_start = start;
5223 u64 end;
5224 u64 found;
5225 u64 found_end;
5226 int err = 0;
5227
5228 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5229 if (IS_ERR(em))
5230 return em;
5231 if (em) {
5232 /*
5233 * if our em maps to a hole, there might
5234 * actually be delalloc bytes behind it
5235 */
5236 if (em->block_start != EXTENT_MAP_HOLE)
5237 return em;
5238 else
5239 hole_em = em;
5240 }
5241
5242 /* check to see if we've wrapped (len == -1 or similar) */
5243 end = start + len;
5244 if (end < start)
5245 end = (u64)-1;
5246 else
5247 end -= 1;
5248
5249 em = NULL;
5250
5251 /* ok, we didn't find anything, lets look for delalloc */
5252 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5253 end, len, EXTENT_DELALLOC, 1);
5254 found_end = range_start + found;
5255 if (found_end < range_start)
5256 found_end = (u64)-1;
5257
5258 /*
5259 * we didn't find anything useful, return
5260 * the original results from get_extent()
5261 */
5262 if (range_start > end || found_end <= start) {
5263 em = hole_em;
5264 hole_em = NULL;
5265 goto out;
5266 }
5267
5268 /* adjust the range_start to make sure it doesn't
5269 * go backwards from the start they passed in
5270 */
5271 range_start = max(start,range_start);
5272 found = found_end - range_start;
5273
5274 if (found > 0) {
5275 u64 hole_start = start;
5276 u64 hole_len = len;
5277
5278 em = alloc_extent_map();
5279 if (!em) {
5280 err = -ENOMEM;
5281 goto out;
5282 }
5283 /*
5284 * when btrfs_get_extent can't find anything it
5285 * returns one huge hole
5286 *
5287 * make sure what it found really fits our range, and
5288 * adjust to make sure it is based on the start from
5289 * the caller
5290 */
5291 if (hole_em) {
5292 u64 calc_end = extent_map_end(hole_em);
5293
5294 if (calc_end <= start || (hole_em->start > end)) {
5295 free_extent_map(hole_em);
5296 hole_em = NULL;
5297 } else {
5298 hole_start = max(hole_em->start, start);
5299 hole_len = calc_end - hole_start;
5300 }
5301 }
5302 em->bdev = NULL;
5303 if (hole_em && range_start > hole_start) {
5304 /* our hole starts before our delalloc, so we
5305 * have to return just the parts of the hole
5306 * that go until the delalloc starts
5307 */
5308 em->len = min(hole_len,
5309 range_start - hole_start);
5310 em->start = hole_start;
5311 em->orig_start = hole_start;
5312 /*
5313 * don't adjust block start at all,
5314 * it is fixed at EXTENT_MAP_HOLE
5315 */
5316 em->block_start = hole_em->block_start;
5317 em->block_len = hole_len;
5318 } else {
5319 em->start = range_start;
5320 em->len = found;
5321 em->orig_start = range_start;
5322 em->block_start = EXTENT_MAP_DELALLOC;
5323 em->block_len = found;
5324 }
5325 } else if (hole_em) {
5326 return hole_em;
5327 }
5328 out:
5329
5330 free_extent_map(hole_em);
5331 if (err) {
5332 free_extent_map(em);
5333 return ERR_PTR(err);
5334 }
5335 return em;
5336 }
5337
5338 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5339 struct extent_map *em,
5340 u64 start, u64 len)
5341 {
5342 struct btrfs_root *root = BTRFS_I(inode)->root;
5343 struct btrfs_trans_handle *trans;
5344 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5345 struct btrfs_key ins;
5346 u64 alloc_hint;
5347 int ret;
5348 bool insert = false;
5349
5350 /*
5351 * Ok if the extent map we looked up is a hole and is for the exact
5352 * range we want, there is no reason to allocate a new one, however if
5353 * it is not right then we need to free this one and drop the cache for
5354 * our range.
5355 */
5356 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5357 em->len != len) {
5358 free_extent_map(em);
5359 em = NULL;
5360 insert = true;
5361 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5362 }
5363
5364 trans = btrfs_join_transaction(root);
5365 if (IS_ERR(trans))
5366 return ERR_CAST(trans);
5367
5368 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5369 btrfs_add_inode_defrag(trans, inode);
5370
5371 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5372
5373 alloc_hint = get_extent_allocation_hint(inode, start, len);
5374 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5375 alloc_hint, (u64)-1, &ins, 1);
5376 if (ret) {
5377 em = ERR_PTR(ret);
5378 goto out;
5379 }
5380
5381 if (!em) {
5382 em = alloc_extent_map();
5383 if (!em) {
5384 em = ERR_PTR(-ENOMEM);
5385 goto out;
5386 }
5387 }
5388
5389 em->start = start;
5390 em->orig_start = em->start;
5391 em->len = ins.offset;
5392
5393 em->block_start = ins.objectid;
5394 em->block_len = ins.offset;
5395 em->bdev = root->fs_info->fs_devices->latest_bdev;
5396
5397 /*
5398 * We need to do this because if we're using the original em we searched
5399 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5400 */
5401 em->flags = 0;
5402 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5403
5404 while (insert) {
5405 write_lock(&em_tree->lock);
5406 ret = add_extent_mapping(em_tree, em);
5407 write_unlock(&em_tree->lock);
5408 if (ret != -EEXIST)
5409 break;
5410 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5411 }
5412
5413 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5414 ins.offset, ins.offset, 0);
5415 if (ret) {
5416 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5417 em = ERR_PTR(ret);
5418 }
5419 out:
5420 btrfs_end_transaction(trans, root);
5421 return em;
5422 }
5423
5424 /*
5425 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5426 * block must be cow'd
5427 */
5428 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5429 struct inode *inode, u64 offset, u64 len)
5430 {
5431 struct btrfs_path *path;
5432 int ret;
5433 struct extent_buffer *leaf;
5434 struct btrfs_root *root = BTRFS_I(inode)->root;
5435 struct btrfs_file_extent_item *fi;
5436 struct btrfs_key key;
5437 u64 disk_bytenr;
5438 u64 backref_offset;
5439 u64 extent_end;
5440 u64 num_bytes;
5441 int slot;
5442 int found_type;
5443
5444 path = btrfs_alloc_path();
5445 if (!path)
5446 return -ENOMEM;
5447
5448 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5449 offset, 0);
5450 if (ret < 0)
5451 goto out;
5452
5453 slot = path->slots[0];
5454 if (ret == 1) {
5455 if (slot == 0) {
5456 /* can't find the item, must cow */
5457 ret = 0;
5458 goto out;
5459 }
5460 slot--;
5461 }
5462 ret = 0;
5463 leaf = path->nodes[0];
5464 btrfs_item_key_to_cpu(leaf, &key, slot);
5465 if (key.objectid != btrfs_ino(inode) ||
5466 key.type != BTRFS_EXTENT_DATA_KEY) {
5467 /* not our file or wrong item type, must cow */
5468 goto out;
5469 }
5470
5471 if (key.offset > offset) {
5472 /* Wrong offset, must cow */
5473 goto out;
5474 }
5475
5476 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5477 found_type = btrfs_file_extent_type(leaf, fi);
5478 if (found_type != BTRFS_FILE_EXTENT_REG &&
5479 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5480 /* not a regular extent, must cow */
5481 goto out;
5482 }
5483 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5484 backref_offset = btrfs_file_extent_offset(leaf, fi);
5485
5486 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5487 if (extent_end < offset + len) {
5488 /* extent doesn't include our full range, must cow */
5489 goto out;
5490 }
5491
5492 if (btrfs_extent_readonly(root, disk_bytenr))
5493 goto out;
5494
5495 /*
5496 * look for other files referencing this extent, if we
5497 * find any we must cow
5498 */
5499 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5500 key.offset - backref_offset, disk_bytenr))
5501 goto out;
5502
5503 /*
5504 * adjust disk_bytenr and num_bytes to cover just the bytes
5505 * in this extent we are about to write. If there
5506 * are any csums in that range we have to cow in order
5507 * to keep the csums correct
5508 */
5509 disk_bytenr += backref_offset;
5510 disk_bytenr += offset - key.offset;
5511 num_bytes = min(offset + len, extent_end) - offset;
5512 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5513 goto out;
5514 /*
5515 * all of the above have passed, it is safe to overwrite this extent
5516 * without cow
5517 */
5518 ret = 1;
5519 out:
5520 btrfs_free_path(path);
5521 return ret;
5522 }
5523
5524 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5525 struct buffer_head *bh_result, int create)
5526 {
5527 struct extent_map *em;
5528 struct btrfs_root *root = BTRFS_I(inode)->root;
5529 u64 start = iblock << inode->i_blkbits;
5530 u64 len = bh_result->b_size;
5531 struct btrfs_trans_handle *trans;
5532
5533 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5534 if (IS_ERR(em))
5535 return PTR_ERR(em);
5536
5537 /*
5538 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5539 * io. INLINE is special, and we could probably kludge it in here, but
5540 * it's still buffered so for safety lets just fall back to the generic
5541 * buffered path.
5542 *
5543 * For COMPRESSED we _have_ to read the entire extent in so we can
5544 * decompress it, so there will be buffering required no matter what we
5545 * do, so go ahead and fallback to buffered.
5546 *
5547 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5548 * to buffered IO. Don't blame me, this is the price we pay for using
5549 * the generic code.
5550 */
5551 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5552 em->block_start == EXTENT_MAP_INLINE) {
5553 free_extent_map(em);
5554 return -ENOTBLK;
5555 }
5556
5557 /* Just a good old fashioned hole, return */
5558 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5559 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5560 free_extent_map(em);
5561 /* DIO will do one hole at a time, so just unlock a sector */
5562 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5563 start + root->sectorsize - 1, GFP_NOFS);
5564 return 0;
5565 }
5566
5567 /*
5568 * We don't allocate a new extent in the following cases
5569 *
5570 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5571 * existing extent.
5572 * 2) The extent is marked as PREALLOC. We're good to go here and can
5573 * just use the extent.
5574 *
5575 */
5576 if (!create) {
5577 len = em->len - (start - em->start);
5578 goto map;
5579 }
5580
5581 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5582 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5583 em->block_start != EXTENT_MAP_HOLE)) {
5584 int type;
5585 int ret;
5586 u64 block_start;
5587
5588 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5589 type = BTRFS_ORDERED_PREALLOC;
5590 else
5591 type = BTRFS_ORDERED_NOCOW;
5592 len = min(len, em->len - (start - em->start));
5593 block_start = em->block_start + (start - em->start);
5594
5595 /*
5596 * we're not going to log anything, but we do need
5597 * to make sure the current transaction stays open
5598 * while we look for nocow cross refs
5599 */
5600 trans = btrfs_join_transaction(root);
5601 if (IS_ERR(trans))
5602 goto must_cow;
5603
5604 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5605 ret = btrfs_add_ordered_extent_dio(inode, start,
5606 block_start, len, len, type);
5607 btrfs_end_transaction(trans, root);
5608 if (ret) {
5609 free_extent_map(em);
5610 return ret;
5611 }
5612 goto unlock;
5613 }
5614 btrfs_end_transaction(trans, root);
5615 }
5616 must_cow:
5617 /*
5618 * this will cow the extent, reset the len in case we changed
5619 * it above
5620 */
5621 len = bh_result->b_size;
5622 em = btrfs_new_extent_direct(inode, em, start, len);
5623 if (IS_ERR(em))
5624 return PTR_ERR(em);
5625 len = min(len, em->len - (start - em->start));
5626 unlock:
5627 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5628 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5629 0, NULL, GFP_NOFS);
5630 map:
5631 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5632 inode->i_blkbits;
5633 bh_result->b_size = len;
5634 bh_result->b_bdev = em->bdev;
5635 set_buffer_mapped(bh_result);
5636 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5637 set_buffer_new(bh_result);
5638
5639 free_extent_map(em);
5640
5641 return 0;
5642 }
5643
5644 struct btrfs_dio_private {
5645 struct inode *inode;
5646 u64 logical_offset;
5647 u64 disk_bytenr;
5648 u64 bytes;
5649 u32 *csums;
5650 void *private;
5651
5652 /* number of bios pending for this dio */
5653 atomic_t pending_bios;
5654
5655 /* IO errors */
5656 int errors;
5657
5658 struct bio *orig_bio;
5659 };
5660
5661 static void btrfs_endio_direct_read(struct bio *bio, int err)
5662 {
5663 struct btrfs_dio_private *dip = bio->bi_private;
5664 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5665 struct bio_vec *bvec = bio->bi_io_vec;
5666 struct inode *inode = dip->inode;
5667 struct btrfs_root *root = BTRFS_I(inode)->root;
5668 u64 start;
5669 u32 *private = dip->csums;
5670
5671 start = dip->logical_offset;
5672 do {
5673 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5674 struct page *page = bvec->bv_page;
5675 char *kaddr;
5676 u32 csum = ~(u32)0;
5677 unsigned long flags;
5678
5679 local_irq_save(flags);
5680 kaddr = kmap_atomic(page, KM_IRQ0);
5681 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5682 csum, bvec->bv_len);
5683 btrfs_csum_final(csum, (char *)&csum);
5684 kunmap_atomic(kaddr, KM_IRQ0);
5685 local_irq_restore(flags);
5686
5687 flush_dcache_page(bvec->bv_page);
5688 if (csum != *private) {
5689 printk(KERN_ERR "btrfs csum failed ino %llu off"
5690 " %llu csum %u private %u\n",
5691 (unsigned long long)btrfs_ino(inode),
5692 (unsigned long long)start,
5693 csum, *private);
5694 err = -EIO;
5695 }
5696 }
5697
5698 start += bvec->bv_len;
5699 private++;
5700 bvec++;
5701 } while (bvec <= bvec_end);
5702
5703 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5704 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5705 bio->bi_private = dip->private;
5706
5707 kfree(dip->csums);
5708 kfree(dip);
5709
5710 /* If we had a csum failure make sure to clear the uptodate flag */
5711 if (err)
5712 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5713 dio_end_io(bio, err);
5714 }
5715
5716 static void btrfs_endio_direct_write(struct bio *bio, int err)
5717 {
5718 struct btrfs_dio_private *dip = bio->bi_private;
5719 struct inode *inode = dip->inode;
5720 struct btrfs_root *root = BTRFS_I(inode)->root;
5721 struct btrfs_trans_handle *trans;
5722 struct btrfs_ordered_extent *ordered = NULL;
5723 struct extent_state *cached_state = NULL;
5724 u64 ordered_offset = dip->logical_offset;
5725 u64 ordered_bytes = dip->bytes;
5726 int ret;
5727
5728 if (err)
5729 goto out_done;
5730 again:
5731 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5732 &ordered_offset,
5733 ordered_bytes);
5734 if (!ret)
5735 goto out_test;
5736
5737 BUG_ON(!ordered);
5738
5739 trans = btrfs_join_transaction(root);
5740 if (IS_ERR(trans)) {
5741 err = -ENOMEM;
5742 goto out;
5743 }
5744 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5745
5746 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5747 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5748 if (!ret)
5749 ret = btrfs_update_inode(trans, root, inode);
5750 err = ret;
5751 goto out;
5752 }
5753
5754 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5755 ordered->file_offset + ordered->len - 1, 0,
5756 &cached_state, GFP_NOFS);
5757
5758 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5759 ret = btrfs_mark_extent_written(trans, inode,
5760 ordered->file_offset,
5761 ordered->file_offset +
5762 ordered->len);
5763 if (ret) {
5764 err = ret;
5765 goto out_unlock;
5766 }
5767 } else {
5768 ret = insert_reserved_file_extent(trans, inode,
5769 ordered->file_offset,
5770 ordered->start,
5771 ordered->disk_len,
5772 ordered->len,
5773 ordered->len,
5774 0, 0, 0,
5775 BTRFS_FILE_EXTENT_REG);
5776 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5777 ordered->file_offset, ordered->len);
5778 if (ret) {
5779 err = ret;
5780 WARN_ON(1);
5781 goto out_unlock;
5782 }
5783 }
5784
5785 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5786 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5787 if (!ret)
5788 btrfs_update_inode(trans, root, inode);
5789 ret = 0;
5790 out_unlock:
5791 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5792 ordered->file_offset + ordered->len - 1,
5793 &cached_state, GFP_NOFS);
5794 out:
5795 btrfs_delalloc_release_metadata(inode, ordered->len);
5796 btrfs_end_transaction(trans, root);
5797 ordered_offset = ordered->file_offset + ordered->len;
5798 btrfs_put_ordered_extent(ordered);
5799 btrfs_put_ordered_extent(ordered);
5800
5801 out_test:
5802 /*
5803 * our bio might span multiple ordered extents. If we haven't
5804 * completed the accounting for the whole dio, go back and try again
5805 */
5806 if (ordered_offset < dip->logical_offset + dip->bytes) {
5807 ordered_bytes = dip->logical_offset + dip->bytes -
5808 ordered_offset;
5809 goto again;
5810 }
5811 out_done:
5812 bio->bi_private = dip->private;
5813
5814 kfree(dip->csums);
5815 kfree(dip);
5816
5817 /* If we had an error make sure to clear the uptodate flag */
5818 if (err)
5819 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5820 dio_end_io(bio, err);
5821 }
5822
5823 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5824 struct bio *bio, int mirror_num,
5825 unsigned long bio_flags, u64 offset)
5826 {
5827 int ret;
5828 struct btrfs_root *root = BTRFS_I(inode)->root;
5829 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5830 BUG_ON(ret);
5831 return 0;
5832 }
5833
5834 static void btrfs_end_dio_bio(struct bio *bio, int err)
5835 {
5836 struct btrfs_dio_private *dip = bio->bi_private;
5837
5838 if (err) {
5839 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
5840 "sector %#Lx len %u err no %d\n",
5841 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
5842 (unsigned long long)bio->bi_sector, bio->bi_size, err);
5843 dip->errors = 1;
5844
5845 /*
5846 * before atomic variable goto zero, we must make sure
5847 * dip->errors is perceived to be set.
5848 */
5849 smp_mb__before_atomic_dec();
5850 }
5851
5852 /* if there are more bios still pending for this dio, just exit */
5853 if (!atomic_dec_and_test(&dip->pending_bios))
5854 goto out;
5855
5856 if (dip->errors)
5857 bio_io_error(dip->orig_bio);
5858 else {
5859 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5860 bio_endio(dip->orig_bio, 0);
5861 }
5862 out:
5863 bio_put(bio);
5864 }
5865
5866 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5867 u64 first_sector, gfp_t gfp_flags)
5868 {
5869 int nr_vecs = bio_get_nr_vecs(bdev);
5870 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5871 }
5872
5873 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5874 int rw, u64 file_offset, int skip_sum,
5875 u32 *csums, int async_submit)
5876 {
5877 int write = rw & REQ_WRITE;
5878 struct btrfs_root *root = BTRFS_I(inode)->root;
5879 int ret;
5880
5881 bio_get(bio);
5882 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5883 if (ret)
5884 goto err;
5885
5886 if (skip_sum)
5887 goto map;
5888
5889 if (write && async_submit) {
5890 ret = btrfs_wq_submit_bio(root->fs_info,
5891 inode, rw, bio, 0, 0,
5892 file_offset,
5893 __btrfs_submit_bio_start_direct_io,
5894 __btrfs_submit_bio_done);
5895 goto err;
5896 } else if (write) {
5897 /*
5898 * If we aren't doing async submit, calculate the csum of the
5899 * bio now.
5900 */
5901 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5902 if (ret)
5903 goto err;
5904 } else if (!skip_sum) {
5905 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
5906 file_offset, csums);
5907 if (ret)
5908 goto err;
5909 }
5910
5911 map:
5912 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
5913 err:
5914 bio_put(bio);
5915 return ret;
5916 }
5917
5918 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5919 int skip_sum)
5920 {
5921 struct inode *inode = dip->inode;
5922 struct btrfs_root *root = BTRFS_I(inode)->root;
5923 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5924 struct bio *bio;
5925 struct bio *orig_bio = dip->orig_bio;
5926 struct bio_vec *bvec = orig_bio->bi_io_vec;
5927 u64 start_sector = orig_bio->bi_sector;
5928 u64 file_offset = dip->logical_offset;
5929 u64 submit_len = 0;
5930 u64 map_length;
5931 int nr_pages = 0;
5932 u32 *csums = dip->csums;
5933 int ret = 0;
5934 int async_submit = 0;
5935 int write = rw & REQ_WRITE;
5936
5937 map_length = orig_bio->bi_size;
5938 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5939 &map_length, NULL, 0);
5940 if (ret) {
5941 bio_put(orig_bio);
5942 return -EIO;
5943 }
5944
5945 if (map_length >= orig_bio->bi_size) {
5946 bio = orig_bio;
5947 goto submit;
5948 }
5949
5950 async_submit = 1;
5951 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5952 if (!bio)
5953 return -ENOMEM;
5954 bio->bi_private = dip;
5955 bio->bi_end_io = btrfs_end_dio_bio;
5956 atomic_inc(&dip->pending_bios);
5957
5958 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5959 if (unlikely(map_length < submit_len + bvec->bv_len ||
5960 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5961 bvec->bv_offset) < bvec->bv_len)) {
5962 /*
5963 * inc the count before we submit the bio so
5964 * we know the end IO handler won't happen before
5965 * we inc the count. Otherwise, the dip might get freed
5966 * before we're done setting it up
5967 */
5968 atomic_inc(&dip->pending_bios);
5969 ret = __btrfs_submit_dio_bio(bio, inode, rw,
5970 file_offset, skip_sum,
5971 csums, async_submit);
5972 if (ret) {
5973 bio_put(bio);
5974 atomic_dec(&dip->pending_bios);
5975 goto out_err;
5976 }
5977
5978 /* Write's use the ordered csums */
5979 if (!write && !skip_sum)
5980 csums = csums + nr_pages;
5981 start_sector += submit_len >> 9;
5982 file_offset += submit_len;
5983
5984 submit_len = 0;
5985 nr_pages = 0;
5986
5987 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5988 start_sector, GFP_NOFS);
5989 if (!bio)
5990 goto out_err;
5991 bio->bi_private = dip;
5992 bio->bi_end_io = btrfs_end_dio_bio;
5993
5994 map_length = orig_bio->bi_size;
5995 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5996 &map_length, NULL, 0);
5997 if (ret) {
5998 bio_put(bio);
5999 goto out_err;
6000 }
6001 } else {
6002 submit_len += bvec->bv_len;
6003 nr_pages ++;
6004 bvec++;
6005 }
6006 }
6007
6008 submit:
6009 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6010 csums, async_submit);
6011 if (!ret)
6012 return 0;
6013
6014 bio_put(bio);
6015 out_err:
6016 dip->errors = 1;
6017 /*
6018 * before atomic variable goto zero, we must
6019 * make sure dip->errors is perceived to be set.
6020 */
6021 smp_mb__before_atomic_dec();
6022 if (atomic_dec_and_test(&dip->pending_bios))
6023 bio_io_error(dip->orig_bio);
6024
6025 /* bio_end_io() will handle error, so we needn't return it */
6026 return 0;
6027 }
6028
6029 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6030 loff_t file_offset)
6031 {
6032 struct btrfs_root *root = BTRFS_I(inode)->root;
6033 struct btrfs_dio_private *dip;
6034 struct bio_vec *bvec = bio->bi_io_vec;
6035 int skip_sum;
6036 int write = rw & REQ_WRITE;
6037 int ret = 0;
6038
6039 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6040
6041 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6042 if (!dip) {
6043 ret = -ENOMEM;
6044 goto free_ordered;
6045 }
6046 dip->csums = NULL;
6047
6048 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6049 if (!write && !skip_sum) {
6050 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6051 if (!dip->csums) {
6052 kfree(dip);
6053 ret = -ENOMEM;
6054 goto free_ordered;
6055 }
6056 }
6057
6058 dip->private = bio->bi_private;
6059 dip->inode = inode;
6060 dip->logical_offset = file_offset;
6061
6062 dip->bytes = 0;
6063 do {
6064 dip->bytes += bvec->bv_len;
6065 bvec++;
6066 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6067
6068 dip->disk_bytenr = (u64)bio->bi_sector << 9;
6069 bio->bi_private = dip;
6070 dip->errors = 0;
6071 dip->orig_bio = bio;
6072 atomic_set(&dip->pending_bios, 0);
6073
6074 if (write)
6075 bio->bi_end_io = btrfs_endio_direct_write;
6076 else
6077 bio->bi_end_io = btrfs_endio_direct_read;
6078
6079 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6080 if (!ret)
6081 return;
6082 free_ordered:
6083 /*
6084 * If this is a write, we need to clean up the reserved space and kill
6085 * the ordered extent.
6086 */
6087 if (write) {
6088 struct btrfs_ordered_extent *ordered;
6089 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6090 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6091 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6092 btrfs_free_reserved_extent(root, ordered->start,
6093 ordered->disk_len);
6094 btrfs_put_ordered_extent(ordered);
6095 btrfs_put_ordered_extent(ordered);
6096 }
6097 bio_endio(bio, ret);
6098 }
6099
6100 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6101 const struct iovec *iov, loff_t offset,
6102 unsigned long nr_segs)
6103 {
6104 int seg;
6105 int i;
6106 size_t size;
6107 unsigned long addr;
6108 unsigned blocksize_mask = root->sectorsize - 1;
6109 ssize_t retval = -EINVAL;
6110 loff_t end = offset;
6111
6112 if (offset & blocksize_mask)
6113 goto out;
6114
6115 /* Check the memory alignment. Blocks cannot straddle pages */
6116 for (seg = 0; seg < nr_segs; seg++) {
6117 addr = (unsigned long)iov[seg].iov_base;
6118 size = iov[seg].iov_len;
6119 end += size;
6120 if ((addr & blocksize_mask) || (size & blocksize_mask))
6121 goto out;
6122
6123 /* If this is a write we don't need to check anymore */
6124 if (rw & WRITE)
6125 continue;
6126
6127 /*
6128 * Check to make sure we don't have duplicate iov_base's in this
6129 * iovec, if so return EINVAL, otherwise we'll get csum errors
6130 * when reading back.
6131 */
6132 for (i = seg + 1; i < nr_segs; i++) {
6133 if (iov[seg].iov_base == iov[i].iov_base)
6134 goto out;
6135 }
6136 }
6137 retval = 0;
6138 out:
6139 return retval;
6140 }
6141 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6142 const struct iovec *iov, loff_t offset,
6143 unsigned long nr_segs)
6144 {
6145 struct file *file = iocb->ki_filp;
6146 struct inode *inode = file->f_mapping->host;
6147 struct btrfs_ordered_extent *ordered;
6148 struct extent_state *cached_state = NULL;
6149 u64 lockstart, lockend;
6150 ssize_t ret;
6151 int writing = rw & WRITE;
6152 int write_bits = 0;
6153 size_t count = iov_length(iov, nr_segs);
6154
6155 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6156 offset, nr_segs)) {
6157 return 0;
6158 }
6159
6160 lockstart = offset;
6161 lockend = offset + count - 1;
6162
6163 if (writing) {
6164 ret = btrfs_delalloc_reserve_space(inode, count);
6165 if (ret)
6166 goto out;
6167 }
6168
6169 while (1) {
6170 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6171 0, &cached_state, GFP_NOFS);
6172 /*
6173 * We're concerned with the entire range that we're going to be
6174 * doing DIO to, so we need to make sure theres no ordered
6175 * extents in this range.
6176 */
6177 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6178 lockend - lockstart + 1);
6179 if (!ordered)
6180 break;
6181 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6182 &cached_state, GFP_NOFS);
6183 btrfs_start_ordered_extent(inode, ordered, 1);
6184 btrfs_put_ordered_extent(ordered);
6185 cond_resched();
6186 }
6187
6188 /*
6189 * we don't use btrfs_set_extent_delalloc because we don't want
6190 * the dirty or uptodate bits
6191 */
6192 if (writing) {
6193 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6194 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6195 EXTENT_DELALLOC, 0, NULL, &cached_state,
6196 GFP_NOFS);
6197 if (ret) {
6198 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6199 lockend, EXTENT_LOCKED | write_bits,
6200 1, 0, &cached_state, GFP_NOFS);
6201 goto out;
6202 }
6203 }
6204
6205 free_extent_state(cached_state);
6206 cached_state = NULL;
6207
6208 ret = __blockdev_direct_IO(rw, iocb, inode,
6209 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6210 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6211 btrfs_submit_direct, 0);
6212
6213 if (ret < 0 && ret != -EIOCBQUEUED) {
6214 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6215 offset + iov_length(iov, nr_segs) - 1,
6216 EXTENT_LOCKED | write_bits, 1, 0,
6217 &cached_state, GFP_NOFS);
6218 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6219 /*
6220 * We're falling back to buffered, unlock the section we didn't
6221 * do IO on.
6222 */
6223 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6224 offset + iov_length(iov, nr_segs) - 1,
6225 EXTENT_LOCKED | write_bits, 1, 0,
6226 &cached_state, GFP_NOFS);
6227 }
6228 out:
6229 free_extent_state(cached_state);
6230 return ret;
6231 }
6232
6233 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6234 __u64 start, __u64 len)
6235 {
6236 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6237 }
6238
6239 int btrfs_readpage(struct file *file, struct page *page)
6240 {
6241 struct extent_io_tree *tree;
6242 tree = &BTRFS_I(page->mapping->host)->io_tree;
6243 return extent_read_full_page(tree, page, btrfs_get_extent);
6244 }
6245
6246 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6247 {
6248 struct extent_io_tree *tree;
6249
6250
6251 if (current->flags & PF_MEMALLOC) {
6252 redirty_page_for_writepage(wbc, page);
6253 unlock_page(page);
6254 return 0;
6255 }
6256 tree = &BTRFS_I(page->mapping->host)->io_tree;
6257 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6258 }
6259
6260 int btrfs_writepages(struct address_space *mapping,
6261 struct writeback_control *wbc)
6262 {
6263 struct extent_io_tree *tree;
6264
6265 tree = &BTRFS_I(mapping->host)->io_tree;
6266 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6267 }
6268
6269 static int
6270 btrfs_readpages(struct file *file, struct address_space *mapping,
6271 struct list_head *pages, unsigned nr_pages)
6272 {
6273 struct extent_io_tree *tree;
6274 tree = &BTRFS_I(mapping->host)->io_tree;
6275 return extent_readpages(tree, mapping, pages, nr_pages,
6276 btrfs_get_extent);
6277 }
6278 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6279 {
6280 struct extent_io_tree *tree;
6281 struct extent_map_tree *map;
6282 int ret;
6283
6284 tree = &BTRFS_I(page->mapping->host)->io_tree;
6285 map = &BTRFS_I(page->mapping->host)->extent_tree;
6286 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6287 if (ret == 1) {
6288 ClearPagePrivate(page);
6289 set_page_private(page, 0);
6290 page_cache_release(page);
6291 }
6292 return ret;
6293 }
6294
6295 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6296 {
6297 if (PageWriteback(page) || PageDirty(page))
6298 return 0;
6299 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6300 }
6301
6302 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6303 {
6304 struct extent_io_tree *tree;
6305 struct btrfs_ordered_extent *ordered;
6306 struct extent_state *cached_state = NULL;
6307 u64 page_start = page_offset(page);
6308 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6309
6310
6311 /*
6312 * we have the page locked, so new writeback can't start,
6313 * and the dirty bit won't be cleared while we are here.
6314 *
6315 * Wait for IO on this page so that we can safely clear
6316 * the PagePrivate2 bit and do ordered accounting
6317 */
6318 wait_on_page_writeback(page);
6319
6320 tree = &BTRFS_I(page->mapping->host)->io_tree;
6321 if (offset) {
6322 btrfs_releasepage(page, GFP_NOFS);
6323 return;
6324 }
6325 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6326 GFP_NOFS);
6327 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6328 page_offset(page));
6329 if (ordered) {
6330 /*
6331 * IO on this page will never be started, so we need
6332 * to account for any ordered extents now
6333 */
6334 clear_extent_bit(tree, page_start, page_end,
6335 EXTENT_DIRTY | EXTENT_DELALLOC |
6336 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6337 &cached_state, GFP_NOFS);
6338 /*
6339 * whoever cleared the private bit is responsible
6340 * for the finish_ordered_io
6341 */
6342 if (TestClearPagePrivate2(page)) {
6343 btrfs_finish_ordered_io(page->mapping->host,
6344 page_start, page_end);
6345 }
6346 btrfs_put_ordered_extent(ordered);
6347 cached_state = NULL;
6348 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6349 GFP_NOFS);
6350 }
6351 clear_extent_bit(tree, page_start, page_end,
6352 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6353 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6354 __btrfs_releasepage(page, GFP_NOFS);
6355
6356 ClearPageChecked(page);
6357 if (PagePrivate(page)) {
6358 ClearPagePrivate(page);
6359 set_page_private(page, 0);
6360 page_cache_release(page);
6361 }
6362 }
6363
6364 /*
6365 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6366 * called from a page fault handler when a page is first dirtied. Hence we must
6367 * be careful to check for EOF conditions here. We set the page up correctly
6368 * for a written page which means we get ENOSPC checking when writing into
6369 * holes and correct delalloc and unwritten extent mapping on filesystems that
6370 * support these features.
6371 *
6372 * We are not allowed to take the i_mutex here so we have to play games to
6373 * protect against truncate races as the page could now be beyond EOF. Because
6374 * vmtruncate() writes the inode size before removing pages, once we have the
6375 * page lock we can determine safely if the page is beyond EOF. If it is not
6376 * beyond EOF, then the page is guaranteed safe against truncation until we
6377 * unlock the page.
6378 */
6379 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6380 {
6381 struct page *page = vmf->page;
6382 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6383 struct btrfs_root *root = BTRFS_I(inode)->root;
6384 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6385 struct btrfs_ordered_extent *ordered;
6386 struct extent_state *cached_state = NULL;
6387 char *kaddr;
6388 unsigned long zero_start;
6389 loff_t size;
6390 int ret;
6391 u64 page_start;
6392 u64 page_end;
6393
6394 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6395 if (ret) {
6396 if (ret == -ENOMEM)
6397 ret = VM_FAULT_OOM;
6398 else /* -ENOSPC, -EIO, etc */
6399 ret = VM_FAULT_SIGBUS;
6400 goto out;
6401 }
6402
6403 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6404 again:
6405 lock_page(page);
6406 size = i_size_read(inode);
6407 page_start = page_offset(page);
6408 page_end = page_start + PAGE_CACHE_SIZE - 1;
6409
6410 if ((page->mapping != inode->i_mapping) ||
6411 (page_start >= size)) {
6412 /* page got truncated out from underneath us */
6413 goto out_unlock;
6414 }
6415 wait_on_page_writeback(page);
6416
6417 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6418 GFP_NOFS);
6419 set_page_extent_mapped(page);
6420
6421 /*
6422 * we can't set the delalloc bits if there are pending ordered
6423 * extents. Drop our locks and wait for them to finish
6424 */
6425 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6426 if (ordered) {
6427 unlock_extent_cached(io_tree, page_start, page_end,
6428 &cached_state, GFP_NOFS);
6429 unlock_page(page);
6430 btrfs_start_ordered_extent(inode, ordered, 1);
6431 btrfs_put_ordered_extent(ordered);
6432 goto again;
6433 }
6434
6435 /*
6436 * XXX - page_mkwrite gets called every time the page is dirtied, even
6437 * if it was already dirty, so for space accounting reasons we need to
6438 * clear any delalloc bits for the range we are fixing to save. There
6439 * is probably a better way to do this, but for now keep consistent with
6440 * prepare_pages in the normal write path.
6441 */
6442 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6443 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6444 0, 0, &cached_state, GFP_NOFS);
6445
6446 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6447 &cached_state);
6448 if (ret) {
6449 unlock_extent_cached(io_tree, page_start, page_end,
6450 &cached_state, GFP_NOFS);
6451 ret = VM_FAULT_SIGBUS;
6452 goto out_unlock;
6453 }
6454 ret = 0;
6455
6456 /* page is wholly or partially inside EOF */
6457 if (page_start + PAGE_CACHE_SIZE > size)
6458 zero_start = size & ~PAGE_CACHE_MASK;
6459 else
6460 zero_start = PAGE_CACHE_SIZE;
6461
6462 if (zero_start != PAGE_CACHE_SIZE) {
6463 kaddr = kmap(page);
6464 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6465 flush_dcache_page(page);
6466 kunmap(page);
6467 }
6468 ClearPageChecked(page);
6469 set_page_dirty(page);
6470 SetPageUptodate(page);
6471
6472 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6473 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6474
6475 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6476
6477 out_unlock:
6478 if (!ret)
6479 return VM_FAULT_LOCKED;
6480 unlock_page(page);
6481 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6482 out:
6483 return ret;
6484 }
6485
6486 static int btrfs_truncate(struct inode *inode)
6487 {
6488 struct btrfs_root *root = BTRFS_I(inode)->root;
6489 struct btrfs_block_rsv *rsv;
6490 int ret;
6491 int err = 0;
6492 struct btrfs_trans_handle *trans;
6493 unsigned long nr;
6494 u64 mask = root->sectorsize - 1;
6495
6496 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6497 if (ret)
6498 return ret;
6499
6500 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6501 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6502
6503 /*
6504 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6505 * 3 things going on here
6506 *
6507 * 1) We need to reserve space for our orphan item and the space to
6508 * delete our orphan item. Lord knows we don't want to have a dangling
6509 * orphan item because we didn't reserve space to remove it.
6510 *
6511 * 2) We need to reserve space to update our inode.
6512 *
6513 * 3) We need to have something to cache all the space that is going to
6514 * be free'd up by the truncate operation, but also have some slack
6515 * space reserved in case it uses space during the truncate (thank you
6516 * very much snapshotting).
6517 *
6518 * And we need these to all be seperate. The fact is we can use alot of
6519 * space doing the truncate, and we have no earthly idea how much space
6520 * we will use, so we need the truncate reservation to be seperate so it
6521 * doesn't end up using space reserved for updating the inode or
6522 * removing the orphan item. We also need to be able to stop the
6523 * transaction and start a new one, which means we need to be able to
6524 * update the inode several times, and we have no idea of knowing how
6525 * many times that will be, so we can't just reserve 1 item for the
6526 * entirety of the opration, so that has to be done seperately as well.
6527 * Then there is the orphan item, which does indeed need to be held on
6528 * to for the whole operation, and we need nobody to touch this reserved
6529 * space except the orphan code.
6530 *
6531 * So that leaves us with
6532 *
6533 * 1) root->orphan_block_rsv - for the orphan deletion.
6534 * 2) rsv - for the truncate reservation, which we will steal from the
6535 * transaction reservation.
6536 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6537 * updating the inode.
6538 */
6539 rsv = btrfs_alloc_block_rsv(root);
6540 if (!rsv)
6541 return -ENOMEM;
6542 btrfs_add_durable_block_rsv(root->fs_info, rsv);
6543
6544 trans = btrfs_start_transaction(root, 4);
6545 if (IS_ERR(trans)) {
6546 err = PTR_ERR(trans);
6547 goto out;
6548 }
6549
6550 /*
6551 * Reserve space for the truncate process. Truncate should be adding
6552 * space, but if there are snapshots it may end up using space.
6553 */
6554 ret = btrfs_truncate_reserve_metadata(trans, root, rsv);
6555 BUG_ON(ret);
6556
6557 ret = btrfs_orphan_add(trans, inode);
6558 if (ret) {
6559 btrfs_end_transaction(trans, root);
6560 goto out;
6561 }
6562
6563 nr = trans->blocks_used;
6564 btrfs_end_transaction(trans, root);
6565 btrfs_btree_balance_dirty(root, nr);
6566
6567 /*
6568 * Ok so we've already migrated our bytes over for the truncate, so here
6569 * just reserve the one slot we need for updating the inode.
6570 */
6571 trans = btrfs_start_transaction(root, 1);
6572 if (IS_ERR(trans)) {
6573 err = PTR_ERR(trans);
6574 goto out;
6575 }
6576 trans->block_rsv = rsv;
6577
6578 /*
6579 * setattr is responsible for setting the ordered_data_close flag,
6580 * but that is only tested during the last file release. That
6581 * could happen well after the next commit, leaving a great big
6582 * window where new writes may get lost if someone chooses to write
6583 * to this file after truncating to zero
6584 *
6585 * The inode doesn't have any dirty data here, and so if we commit
6586 * this is a noop. If someone immediately starts writing to the inode
6587 * it is very likely we'll catch some of their writes in this
6588 * transaction, and the commit will find this file on the ordered
6589 * data list with good things to send down.
6590 *
6591 * This is a best effort solution, there is still a window where
6592 * using truncate to replace the contents of the file will
6593 * end up with a zero length file after a crash.
6594 */
6595 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6596 btrfs_add_ordered_operation(trans, root, inode);
6597
6598 while (1) {
6599 if (!trans) {
6600 trans = btrfs_start_transaction(root, 3);
6601 if (IS_ERR(trans)) {
6602 err = PTR_ERR(trans);
6603 goto out;
6604 }
6605
6606 ret = btrfs_truncate_reserve_metadata(trans, root,
6607 rsv);
6608 BUG_ON(ret);
6609
6610 trans->block_rsv = rsv;
6611 }
6612
6613 ret = btrfs_truncate_inode_items(trans, root, inode,
6614 inode->i_size,
6615 BTRFS_EXTENT_DATA_KEY);
6616 if (ret != -EAGAIN) {
6617 err = ret;
6618 break;
6619 }
6620
6621 trans->block_rsv = &root->fs_info->trans_block_rsv;
6622 ret = btrfs_update_inode(trans, root, inode);
6623 if (ret) {
6624 err = ret;
6625 break;
6626 }
6627
6628 nr = trans->blocks_used;
6629 btrfs_end_transaction(trans, root);
6630 trans = NULL;
6631 btrfs_btree_balance_dirty(root, nr);
6632 }
6633
6634 if (ret == 0 && inode->i_nlink > 0) {
6635 trans->block_rsv = root->orphan_block_rsv;
6636 ret = btrfs_orphan_del(trans, inode);
6637 if (ret)
6638 err = ret;
6639 } else if (ret && inode->i_nlink > 0) {
6640 /*
6641 * Failed to do the truncate, remove us from the in memory
6642 * orphan list.
6643 */
6644 ret = btrfs_orphan_del(NULL, inode);
6645 }
6646
6647 trans->block_rsv = &root->fs_info->trans_block_rsv;
6648 ret = btrfs_update_inode(trans, root, inode);
6649 if (ret && !err)
6650 err = ret;
6651
6652 nr = trans->blocks_used;
6653 ret = btrfs_end_transaction_throttle(trans, root);
6654 btrfs_btree_balance_dirty(root, nr);
6655
6656 out:
6657 btrfs_free_block_rsv(root, rsv);
6658
6659 if (ret && !err)
6660 err = ret;
6661
6662 return err;
6663 }
6664
6665 /*
6666 * create a new subvolume directory/inode (helper for the ioctl).
6667 */
6668 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6669 struct btrfs_root *new_root, u64 new_dirid)
6670 {
6671 struct inode *inode;
6672 int err;
6673 u64 index = 0;
6674
6675 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6676 new_dirid, S_IFDIR | 0700, &index);
6677 if (IS_ERR(inode))
6678 return PTR_ERR(inode);
6679 inode->i_op = &btrfs_dir_inode_operations;
6680 inode->i_fop = &btrfs_dir_file_operations;
6681
6682 inode->i_nlink = 1;
6683 btrfs_i_size_write(inode, 0);
6684
6685 err = btrfs_update_inode(trans, new_root, inode);
6686 BUG_ON(err);
6687
6688 iput(inode);
6689 return 0;
6690 }
6691
6692 /* helper function for file defrag and space balancing. This
6693 * forces readahead on a given range of bytes in an inode
6694 */
6695 unsigned long btrfs_force_ra(struct address_space *mapping,
6696 struct file_ra_state *ra, struct file *file,
6697 pgoff_t offset, pgoff_t last_index)
6698 {
6699 pgoff_t req_size = last_index - offset + 1;
6700
6701 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6702 return offset + req_size;
6703 }
6704
6705 struct inode *btrfs_alloc_inode(struct super_block *sb)
6706 {
6707 struct btrfs_inode *ei;
6708 struct inode *inode;
6709
6710 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6711 if (!ei)
6712 return NULL;
6713
6714 ei->root = NULL;
6715 ei->space_info = NULL;
6716 ei->generation = 0;
6717 ei->sequence = 0;
6718 ei->last_trans = 0;
6719 ei->last_sub_trans = 0;
6720 ei->logged_trans = 0;
6721 ei->delalloc_bytes = 0;
6722 ei->reserved_bytes = 0;
6723 ei->disk_i_size = 0;
6724 ei->flags = 0;
6725 ei->index_cnt = (u64)-1;
6726 ei->last_unlink_trans = 0;
6727
6728 atomic_set(&ei->outstanding_extents, 0);
6729 atomic_set(&ei->reserved_extents, 0);
6730
6731 ei->ordered_data_close = 0;
6732 ei->orphan_meta_reserved = 0;
6733 ei->dummy_inode = 0;
6734 ei->in_defrag = 0;
6735 ei->force_compress = BTRFS_COMPRESS_NONE;
6736
6737 ei->delayed_node = NULL;
6738
6739 inode = &ei->vfs_inode;
6740 extent_map_tree_init(&ei->extent_tree);
6741 extent_io_tree_init(&ei->io_tree, &inode->i_data);
6742 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6743 mutex_init(&ei->log_mutex);
6744 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6745 INIT_LIST_HEAD(&ei->i_orphan);
6746 INIT_LIST_HEAD(&ei->delalloc_inodes);
6747 INIT_LIST_HEAD(&ei->ordered_operations);
6748 RB_CLEAR_NODE(&ei->rb_node);
6749
6750 return inode;
6751 }
6752
6753 static void btrfs_i_callback(struct rcu_head *head)
6754 {
6755 struct inode *inode = container_of(head, struct inode, i_rcu);
6756 INIT_LIST_HEAD(&inode->i_dentry);
6757 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6758 }
6759
6760 void btrfs_destroy_inode(struct inode *inode)
6761 {
6762 struct btrfs_ordered_extent *ordered;
6763 struct btrfs_root *root = BTRFS_I(inode)->root;
6764
6765 WARN_ON(!list_empty(&inode->i_dentry));
6766 WARN_ON(inode->i_data.nrpages);
6767 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6768 WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
6769
6770 /*
6771 * This can happen where we create an inode, but somebody else also
6772 * created the same inode and we need to destroy the one we already
6773 * created.
6774 */
6775 if (!root)
6776 goto free;
6777
6778 /*
6779 * Make sure we're properly removed from the ordered operation
6780 * lists.
6781 */
6782 smp_mb();
6783 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6784 spin_lock(&root->fs_info->ordered_extent_lock);
6785 list_del_init(&BTRFS_I(inode)->ordered_operations);
6786 spin_unlock(&root->fs_info->ordered_extent_lock);
6787 }
6788
6789 spin_lock(&root->orphan_lock);
6790 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6791 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6792 (unsigned long long)btrfs_ino(inode));
6793 list_del_init(&BTRFS_I(inode)->i_orphan);
6794 }
6795 spin_unlock(&root->orphan_lock);
6796
6797 while (1) {
6798 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6799 if (!ordered)
6800 break;
6801 else {
6802 printk(KERN_ERR "btrfs found ordered "
6803 "extent %llu %llu on inode cleanup\n",
6804 (unsigned long long)ordered->file_offset,
6805 (unsigned long long)ordered->len);
6806 btrfs_remove_ordered_extent(inode, ordered);
6807 btrfs_put_ordered_extent(ordered);
6808 btrfs_put_ordered_extent(ordered);
6809 }
6810 }
6811 inode_tree_del(inode);
6812 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6813 free:
6814 btrfs_remove_delayed_node(inode);
6815 call_rcu(&inode->i_rcu, btrfs_i_callback);
6816 }
6817
6818 int btrfs_drop_inode(struct inode *inode)
6819 {
6820 struct btrfs_root *root = BTRFS_I(inode)->root;
6821
6822 if (btrfs_root_refs(&root->root_item) == 0 &&
6823 !is_free_space_inode(root, inode))
6824 return 1;
6825 else
6826 return generic_drop_inode(inode);
6827 }
6828
6829 static void init_once(void *foo)
6830 {
6831 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6832
6833 inode_init_once(&ei->vfs_inode);
6834 }
6835
6836 void btrfs_destroy_cachep(void)
6837 {
6838 if (btrfs_inode_cachep)
6839 kmem_cache_destroy(btrfs_inode_cachep);
6840 if (btrfs_trans_handle_cachep)
6841 kmem_cache_destroy(btrfs_trans_handle_cachep);
6842 if (btrfs_transaction_cachep)
6843 kmem_cache_destroy(btrfs_transaction_cachep);
6844 if (btrfs_path_cachep)
6845 kmem_cache_destroy(btrfs_path_cachep);
6846 if (btrfs_free_space_cachep)
6847 kmem_cache_destroy(btrfs_free_space_cachep);
6848 }
6849
6850 int btrfs_init_cachep(void)
6851 {
6852 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6853 sizeof(struct btrfs_inode), 0,
6854 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6855 if (!btrfs_inode_cachep)
6856 goto fail;
6857
6858 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6859 sizeof(struct btrfs_trans_handle), 0,
6860 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6861 if (!btrfs_trans_handle_cachep)
6862 goto fail;
6863
6864 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6865 sizeof(struct btrfs_transaction), 0,
6866 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6867 if (!btrfs_transaction_cachep)
6868 goto fail;
6869
6870 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6871 sizeof(struct btrfs_path), 0,
6872 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6873 if (!btrfs_path_cachep)
6874 goto fail;
6875
6876 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6877 sizeof(struct btrfs_free_space), 0,
6878 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6879 if (!btrfs_free_space_cachep)
6880 goto fail;
6881
6882 return 0;
6883 fail:
6884 btrfs_destroy_cachep();
6885 return -ENOMEM;
6886 }
6887
6888 static int btrfs_getattr(struct vfsmount *mnt,
6889 struct dentry *dentry, struct kstat *stat)
6890 {
6891 struct inode *inode = dentry->d_inode;
6892 generic_fillattr(inode, stat);
6893 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6894 stat->blksize = PAGE_CACHE_SIZE;
6895 stat->blocks = (inode_get_bytes(inode) +
6896 BTRFS_I(inode)->delalloc_bytes) >> 9;
6897 return 0;
6898 }
6899
6900 /*
6901 * If a file is moved, it will inherit the cow and compression flags of the new
6902 * directory.
6903 */
6904 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6905 {
6906 struct btrfs_inode *b_dir = BTRFS_I(dir);
6907 struct btrfs_inode *b_inode = BTRFS_I(inode);
6908
6909 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6910 b_inode->flags |= BTRFS_INODE_NODATACOW;
6911 else
6912 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6913
6914 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6915 b_inode->flags |= BTRFS_INODE_COMPRESS;
6916 else
6917 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6918 }
6919
6920 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6921 struct inode *new_dir, struct dentry *new_dentry)
6922 {
6923 struct btrfs_trans_handle *trans;
6924 struct btrfs_root *root = BTRFS_I(old_dir)->root;
6925 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6926 struct inode *new_inode = new_dentry->d_inode;
6927 struct inode *old_inode = old_dentry->d_inode;
6928 struct timespec ctime = CURRENT_TIME;
6929 u64 index = 0;
6930 u64 root_objectid;
6931 int ret;
6932 u64 old_ino = btrfs_ino(old_inode);
6933
6934 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6935 return -EPERM;
6936
6937 /* we only allow rename subvolume link between subvolumes */
6938 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6939 return -EXDEV;
6940
6941 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6942 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
6943 return -ENOTEMPTY;
6944
6945 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6946 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6947 return -ENOTEMPTY;
6948 /*
6949 * we're using rename to replace one file with another.
6950 * and the replacement file is large. Start IO on it now so
6951 * we don't add too much work to the end of the transaction
6952 */
6953 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6954 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6955 filemap_flush(old_inode->i_mapping);
6956
6957 /* close the racy window with snapshot create/destroy ioctl */
6958 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
6959 down_read(&root->fs_info->subvol_sem);
6960 /*
6961 * We want to reserve the absolute worst case amount of items. So if
6962 * both inodes are subvols and we need to unlink them then that would
6963 * require 4 item modifications, but if they are both normal inodes it
6964 * would require 5 item modifications, so we'll assume their normal
6965 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6966 * should cover the worst case number of items we'll modify.
6967 */
6968 trans = btrfs_start_transaction(root, 20);
6969 if (IS_ERR(trans)) {
6970 ret = PTR_ERR(trans);
6971 goto out_notrans;
6972 }
6973
6974 if (dest != root)
6975 btrfs_record_root_in_trans(trans, dest);
6976
6977 ret = btrfs_set_inode_index(new_dir, &index);
6978 if (ret)
6979 goto out_fail;
6980
6981 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6982 /* force full log commit if subvolume involved. */
6983 root->fs_info->last_trans_log_full_commit = trans->transid;
6984 } else {
6985 ret = btrfs_insert_inode_ref(trans, dest,
6986 new_dentry->d_name.name,
6987 new_dentry->d_name.len,
6988 old_ino,
6989 btrfs_ino(new_dir), index);
6990 if (ret)
6991 goto out_fail;
6992 /*
6993 * this is an ugly little race, but the rename is required
6994 * to make sure that if we crash, the inode is either at the
6995 * old name or the new one. pinning the log transaction lets
6996 * us make sure we don't allow a log commit to come in after
6997 * we unlink the name but before we add the new name back in.
6998 */
6999 btrfs_pin_log_trans(root);
7000 }
7001 /*
7002 * make sure the inode gets flushed if it is replacing
7003 * something.
7004 */
7005 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7006 btrfs_add_ordered_operation(trans, root, old_inode);
7007
7008 old_dir->i_ctime = old_dir->i_mtime = ctime;
7009 new_dir->i_ctime = new_dir->i_mtime = ctime;
7010 old_inode->i_ctime = ctime;
7011
7012 if (old_dentry->d_parent != new_dentry->d_parent)
7013 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7014
7015 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7016 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7017 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7018 old_dentry->d_name.name,
7019 old_dentry->d_name.len);
7020 } else {
7021 ret = __btrfs_unlink_inode(trans, root, old_dir,
7022 old_dentry->d_inode,
7023 old_dentry->d_name.name,
7024 old_dentry->d_name.len);
7025 if (!ret)
7026 ret = btrfs_update_inode(trans, root, old_inode);
7027 }
7028 BUG_ON(ret);
7029
7030 if (new_inode) {
7031 new_inode->i_ctime = CURRENT_TIME;
7032 if (unlikely(btrfs_ino(new_inode) ==
7033 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7034 root_objectid = BTRFS_I(new_inode)->location.objectid;
7035 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7036 root_objectid,
7037 new_dentry->d_name.name,
7038 new_dentry->d_name.len);
7039 BUG_ON(new_inode->i_nlink == 0);
7040 } else {
7041 ret = btrfs_unlink_inode(trans, dest, new_dir,
7042 new_dentry->d_inode,
7043 new_dentry->d_name.name,
7044 new_dentry->d_name.len);
7045 }
7046 BUG_ON(ret);
7047 if (new_inode->i_nlink == 0) {
7048 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7049 BUG_ON(ret);
7050 }
7051 }
7052
7053 fixup_inode_flags(new_dir, old_inode);
7054
7055 ret = btrfs_add_link(trans, new_dir, old_inode,
7056 new_dentry->d_name.name,
7057 new_dentry->d_name.len, 0, index);
7058 BUG_ON(ret);
7059
7060 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7061 struct dentry *parent = dget_parent(new_dentry);
7062 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7063 dput(parent);
7064 btrfs_end_log_trans(root);
7065 }
7066 out_fail:
7067 btrfs_end_transaction_throttle(trans, root);
7068 out_notrans:
7069 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7070 up_read(&root->fs_info->subvol_sem);
7071
7072 return ret;
7073 }
7074
7075 /*
7076 * some fairly slow code that needs optimization. This walks the list
7077 * of all the inodes with pending delalloc and forces them to disk.
7078 */
7079 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7080 {
7081 struct list_head *head = &root->fs_info->delalloc_inodes;
7082 struct btrfs_inode *binode;
7083 struct inode *inode;
7084
7085 if (root->fs_info->sb->s_flags & MS_RDONLY)
7086 return -EROFS;
7087
7088 spin_lock(&root->fs_info->delalloc_lock);
7089 while (!list_empty(head)) {
7090 binode = list_entry(head->next, struct btrfs_inode,
7091 delalloc_inodes);
7092 inode = igrab(&binode->vfs_inode);
7093 if (!inode)
7094 list_del_init(&binode->delalloc_inodes);
7095 spin_unlock(&root->fs_info->delalloc_lock);
7096 if (inode) {
7097 filemap_flush(inode->i_mapping);
7098 if (delay_iput)
7099 btrfs_add_delayed_iput(inode);
7100 else
7101 iput(inode);
7102 }
7103 cond_resched();
7104 spin_lock(&root->fs_info->delalloc_lock);
7105 }
7106 spin_unlock(&root->fs_info->delalloc_lock);
7107
7108 /* the filemap_flush will queue IO into the worker threads, but
7109 * we have to make sure the IO is actually started and that
7110 * ordered extents get created before we return
7111 */
7112 atomic_inc(&root->fs_info->async_submit_draining);
7113 while (atomic_read(&root->fs_info->nr_async_submits) ||
7114 atomic_read(&root->fs_info->async_delalloc_pages)) {
7115 wait_event(root->fs_info->async_submit_wait,
7116 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7117 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7118 }
7119 atomic_dec(&root->fs_info->async_submit_draining);
7120 return 0;
7121 }
7122
7123 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7124 const char *symname)
7125 {
7126 struct btrfs_trans_handle *trans;
7127 struct btrfs_root *root = BTRFS_I(dir)->root;
7128 struct btrfs_path *path;
7129 struct btrfs_key key;
7130 struct inode *inode = NULL;
7131 int err;
7132 int drop_inode = 0;
7133 u64 objectid;
7134 u64 index = 0 ;
7135 int name_len;
7136 int datasize;
7137 unsigned long ptr;
7138 struct btrfs_file_extent_item *ei;
7139 struct extent_buffer *leaf;
7140 unsigned long nr = 0;
7141
7142 name_len = strlen(symname) + 1;
7143 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7144 return -ENAMETOOLONG;
7145
7146 /*
7147 * 2 items for inode item and ref
7148 * 2 items for dir items
7149 * 1 item for xattr if selinux is on
7150 */
7151 trans = btrfs_start_transaction(root, 5);
7152 if (IS_ERR(trans))
7153 return PTR_ERR(trans);
7154
7155 err = btrfs_find_free_ino(root, &objectid);
7156 if (err)
7157 goto out_unlock;
7158
7159 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7160 dentry->d_name.len, btrfs_ino(dir), objectid,
7161 S_IFLNK|S_IRWXUGO, &index);
7162 if (IS_ERR(inode)) {
7163 err = PTR_ERR(inode);
7164 goto out_unlock;
7165 }
7166
7167 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7168 if (err) {
7169 drop_inode = 1;
7170 goto out_unlock;
7171 }
7172
7173 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7174 if (err)
7175 drop_inode = 1;
7176 else {
7177 inode->i_mapping->a_ops = &btrfs_aops;
7178 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7179 inode->i_fop = &btrfs_file_operations;
7180 inode->i_op = &btrfs_file_inode_operations;
7181 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7182 }
7183 if (drop_inode)
7184 goto out_unlock;
7185
7186 path = btrfs_alloc_path();
7187 BUG_ON(!path);
7188 key.objectid = btrfs_ino(inode);
7189 key.offset = 0;
7190 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7191 datasize = btrfs_file_extent_calc_inline_size(name_len);
7192 err = btrfs_insert_empty_item(trans, root, path, &key,
7193 datasize);
7194 if (err) {
7195 drop_inode = 1;
7196 btrfs_free_path(path);
7197 goto out_unlock;
7198 }
7199 leaf = path->nodes[0];
7200 ei = btrfs_item_ptr(leaf, path->slots[0],
7201 struct btrfs_file_extent_item);
7202 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7203 btrfs_set_file_extent_type(leaf, ei,
7204 BTRFS_FILE_EXTENT_INLINE);
7205 btrfs_set_file_extent_encryption(leaf, ei, 0);
7206 btrfs_set_file_extent_compression(leaf, ei, 0);
7207 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7208 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7209
7210 ptr = btrfs_file_extent_inline_start(ei);
7211 write_extent_buffer(leaf, symname, ptr, name_len);
7212 btrfs_mark_buffer_dirty(leaf);
7213 btrfs_free_path(path);
7214
7215 inode->i_op = &btrfs_symlink_inode_operations;
7216 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7217 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7218 inode_set_bytes(inode, name_len);
7219 btrfs_i_size_write(inode, name_len - 1);
7220 err = btrfs_update_inode(trans, root, inode);
7221 if (err)
7222 drop_inode = 1;
7223
7224 out_unlock:
7225 nr = trans->blocks_used;
7226 btrfs_end_transaction_throttle(trans, root);
7227 if (drop_inode) {
7228 inode_dec_link_count(inode);
7229 iput(inode);
7230 }
7231 btrfs_btree_balance_dirty(root, nr);
7232 return err;
7233 }
7234
7235 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7236 u64 start, u64 num_bytes, u64 min_size,
7237 loff_t actual_len, u64 *alloc_hint,
7238 struct btrfs_trans_handle *trans)
7239 {
7240 struct btrfs_root *root = BTRFS_I(inode)->root;
7241 struct btrfs_key ins;
7242 u64 cur_offset = start;
7243 u64 i_size;
7244 int ret = 0;
7245 bool own_trans = true;
7246
7247 if (trans)
7248 own_trans = false;
7249 while (num_bytes > 0) {
7250 if (own_trans) {
7251 trans = btrfs_start_transaction(root, 3);
7252 if (IS_ERR(trans)) {
7253 ret = PTR_ERR(trans);
7254 break;
7255 }
7256 }
7257
7258 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7259 0, *alloc_hint, (u64)-1, &ins, 1);
7260 if (ret) {
7261 if (own_trans)
7262 btrfs_end_transaction(trans, root);
7263 break;
7264 }
7265
7266 ret = insert_reserved_file_extent(trans, inode,
7267 cur_offset, ins.objectid,
7268 ins.offset, ins.offset,
7269 ins.offset, 0, 0, 0,
7270 BTRFS_FILE_EXTENT_PREALLOC);
7271 BUG_ON(ret);
7272 btrfs_drop_extent_cache(inode, cur_offset,
7273 cur_offset + ins.offset -1, 0);
7274
7275 num_bytes -= ins.offset;
7276 cur_offset += ins.offset;
7277 *alloc_hint = ins.objectid + ins.offset;
7278
7279 inode->i_ctime = CURRENT_TIME;
7280 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7281 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7282 (actual_len > inode->i_size) &&
7283 (cur_offset > inode->i_size)) {
7284 if (cur_offset > actual_len)
7285 i_size = actual_len;
7286 else
7287 i_size = cur_offset;
7288 i_size_write(inode, i_size);
7289 btrfs_ordered_update_i_size(inode, i_size, NULL);
7290 }
7291
7292 ret = btrfs_update_inode(trans, root, inode);
7293 BUG_ON(ret);
7294
7295 if (own_trans)
7296 btrfs_end_transaction(trans, root);
7297 }
7298 return ret;
7299 }
7300
7301 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7302 u64 start, u64 num_bytes, u64 min_size,
7303 loff_t actual_len, u64 *alloc_hint)
7304 {
7305 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7306 min_size, actual_len, alloc_hint,
7307 NULL);
7308 }
7309
7310 int btrfs_prealloc_file_range_trans(struct inode *inode,
7311 struct btrfs_trans_handle *trans, int mode,
7312 u64 start, u64 num_bytes, u64 min_size,
7313 loff_t actual_len, u64 *alloc_hint)
7314 {
7315 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7316 min_size, actual_len, alloc_hint, trans);
7317 }
7318
7319 static int btrfs_set_page_dirty(struct page *page)
7320 {
7321 return __set_page_dirty_nobuffers(page);
7322 }
7323
7324 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7325 {
7326 struct btrfs_root *root = BTRFS_I(inode)->root;
7327
7328 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7329 return -EROFS;
7330 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7331 return -EACCES;
7332 return generic_permission(inode, mask, flags, btrfs_check_acl);
7333 }
7334
7335 static const struct inode_operations btrfs_dir_inode_operations = {
7336 .getattr = btrfs_getattr,
7337 .lookup = btrfs_lookup,
7338 .create = btrfs_create,
7339 .unlink = btrfs_unlink,
7340 .link = btrfs_link,
7341 .mkdir = btrfs_mkdir,
7342 .rmdir = btrfs_rmdir,
7343 .rename = btrfs_rename,
7344 .symlink = btrfs_symlink,
7345 .setattr = btrfs_setattr,
7346 .mknod = btrfs_mknod,
7347 .setxattr = btrfs_setxattr,
7348 .getxattr = btrfs_getxattr,
7349 .listxattr = btrfs_listxattr,
7350 .removexattr = btrfs_removexattr,
7351 .permission = btrfs_permission,
7352 };
7353 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7354 .lookup = btrfs_lookup,
7355 .permission = btrfs_permission,
7356 };
7357
7358 static const struct file_operations btrfs_dir_file_operations = {
7359 .llseek = generic_file_llseek,
7360 .read = generic_read_dir,
7361 .readdir = btrfs_real_readdir,
7362 .unlocked_ioctl = btrfs_ioctl,
7363 #ifdef CONFIG_COMPAT
7364 .compat_ioctl = btrfs_ioctl,
7365 #endif
7366 .release = btrfs_release_file,
7367 .fsync = btrfs_sync_file,
7368 };
7369
7370 static struct extent_io_ops btrfs_extent_io_ops = {
7371 .fill_delalloc = run_delalloc_range,
7372 .submit_bio_hook = btrfs_submit_bio_hook,
7373 .merge_bio_hook = btrfs_merge_bio_hook,
7374 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7375 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7376 .writepage_start_hook = btrfs_writepage_start_hook,
7377 .readpage_io_failed_hook = btrfs_io_failed_hook,
7378 .set_bit_hook = btrfs_set_bit_hook,
7379 .clear_bit_hook = btrfs_clear_bit_hook,
7380 .merge_extent_hook = btrfs_merge_extent_hook,
7381 .split_extent_hook = btrfs_split_extent_hook,
7382 };
7383
7384 /*
7385 * btrfs doesn't support the bmap operation because swapfiles
7386 * use bmap to make a mapping of extents in the file. They assume
7387 * these extents won't change over the life of the file and they
7388 * use the bmap result to do IO directly to the drive.
7389 *
7390 * the btrfs bmap call would return logical addresses that aren't
7391 * suitable for IO and they also will change frequently as COW
7392 * operations happen. So, swapfile + btrfs == corruption.
7393 *
7394 * For now we're avoiding this by dropping bmap.
7395 */
7396 static const struct address_space_operations btrfs_aops = {
7397 .readpage = btrfs_readpage,
7398 .writepage = btrfs_writepage,
7399 .writepages = btrfs_writepages,
7400 .readpages = btrfs_readpages,
7401 .direct_IO = btrfs_direct_IO,
7402 .invalidatepage = btrfs_invalidatepage,
7403 .releasepage = btrfs_releasepage,
7404 .set_page_dirty = btrfs_set_page_dirty,
7405 .error_remove_page = generic_error_remove_page,
7406 };
7407
7408 static const struct address_space_operations btrfs_symlink_aops = {
7409 .readpage = btrfs_readpage,
7410 .writepage = btrfs_writepage,
7411 .invalidatepage = btrfs_invalidatepage,
7412 .releasepage = btrfs_releasepage,
7413 };
7414
7415 static const struct inode_operations btrfs_file_inode_operations = {
7416 .getattr = btrfs_getattr,
7417 .setattr = btrfs_setattr,
7418 .setxattr = btrfs_setxattr,
7419 .getxattr = btrfs_getxattr,
7420 .listxattr = btrfs_listxattr,
7421 .removexattr = btrfs_removexattr,
7422 .permission = btrfs_permission,
7423 .fiemap = btrfs_fiemap,
7424 };
7425 static const struct inode_operations btrfs_special_inode_operations = {
7426 .getattr = btrfs_getattr,
7427 .setattr = btrfs_setattr,
7428 .permission = btrfs_permission,
7429 .setxattr = btrfs_setxattr,
7430 .getxattr = btrfs_getxattr,
7431 .listxattr = btrfs_listxattr,
7432 .removexattr = btrfs_removexattr,
7433 };
7434 static const struct inode_operations btrfs_symlink_inode_operations = {
7435 .readlink = generic_readlink,
7436 .follow_link = page_follow_link_light,
7437 .put_link = page_put_link,
7438 .getattr = btrfs_getattr,
7439 .permission = btrfs_permission,
7440 .setxattr = btrfs_setxattr,
7441 .getxattr = btrfs_getxattr,
7442 .listxattr = btrfs_listxattr,
7443 .removexattr = btrfs_removexattr,
7444 };
7445
7446 const struct dentry_operations btrfs_dentry_operations = {
7447 .d_delete = btrfs_dentry_delete,
7448 };