remove inode_setattr
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53
54 struct btrfs_iget_args {
55 u64 ino;
56 struct btrfs_root *root;
57 };
58
59 static const struct inode_operations btrfs_dir_inode_operations;
60 static const struct inode_operations btrfs_symlink_inode_operations;
61 static const struct inode_operations btrfs_dir_ro_inode_operations;
62 static const struct inode_operations btrfs_special_inode_operations;
63 static const struct inode_operations btrfs_file_inode_operations;
64 static const struct address_space_operations btrfs_aops;
65 static const struct address_space_operations btrfs_symlink_aops;
66 static const struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
68
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
73
74 #define S_SHIFT 12
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
83 };
84
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88 struct page *locked_page,
89 u64 start, u64 end, int *page_started,
90 unsigned long *nr_written, int unlock);
91
92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
93 struct inode *inode, struct inode *dir)
94 {
95 int err;
96
97 err = btrfs_init_acl(trans, inode, dir);
98 if (!err)
99 err = btrfs_xattr_security_init(trans, inode, dir);
100 return err;
101 }
102
103 /*
104 * this does all the hard work for inserting an inline extent into
105 * the btree. The caller should have done a btrfs_drop_extents so that
106 * no overlapping inline items exist in the btree
107 */
108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root, struct inode *inode,
110 u64 start, size_t size, size_t compressed_size,
111 struct page **compressed_pages)
112 {
113 struct btrfs_key key;
114 struct btrfs_path *path;
115 struct extent_buffer *leaf;
116 struct page *page = NULL;
117 char *kaddr;
118 unsigned long ptr;
119 struct btrfs_file_extent_item *ei;
120 int err = 0;
121 int ret;
122 size_t cur_size = size;
123 size_t datasize;
124 unsigned long offset;
125 int use_compress = 0;
126
127 if (compressed_size && compressed_pages) {
128 use_compress = 1;
129 cur_size = compressed_size;
130 }
131
132 path = btrfs_alloc_path();
133 if (!path)
134 return -ENOMEM;
135
136 path->leave_spinning = 1;
137 btrfs_set_trans_block_group(trans, inode);
138
139 key.objectid = inode->i_ino;
140 key.offset = start;
141 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
142 datasize = btrfs_file_extent_calc_inline_size(cur_size);
143
144 inode_add_bytes(inode, size);
145 ret = btrfs_insert_empty_item(trans, root, path, &key,
146 datasize);
147 BUG_ON(ret);
148 if (ret) {
149 err = ret;
150 goto fail;
151 }
152 leaf = path->nodes[0];
153 ei = btrfs_item_ptr(leaf, path->slots[0],
154 struct btrfs_file_extent_item);
155 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157 btrfs_set_file_extent_encryption(leaf, ei, 0);
158 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160 ptr = btrfs_file_extent_inline_start(ei);
161
162 if (use_compress) {
163 struct page *cpage;
164 int i = 0;
165 while (compressed_size > 0) {
166 cpage = compressed_pages[i];
167 cur_size = min_t(unsigned long, compressed_size,
168 PAGE_CACHE_SIZE);
169
170 kaddr = kmap_atomic(cpage, KM_USER0);
171 write_extent_buffer(leaf, kaddr, ptr, cur_size);
172 kunmap_atomic(kaddr, KM_USER0);
173
174 i++;
175 ptr += cur_size;
176 compressed_size -= cur_size;
177 }
178 btrfs_set_file_extent_compression(leaf, ei,
179 BTRFS_COMPRESS_ZLIB);
180 } else {
181 page = find_get_page(inode->i_mapping,
182 start >> PAGE_CACHE_SHIFT);
183 btrfs_set_file_extent_compression(leaf, ei, 0);
184 kaddr = kmap_atomic(page, KM_USER0);
185 offset = start & (PAGE_CACHE_SIZE - 1);
186 write_extent_buffer(leaf, kaddr + offset, ptr, size);
187 kunmap_atomic(kaddr, KM_USER0);
188 page_cache_release(page);
189 }
190 btrfs_mark_buffer_dirty(leaf);
191 btrfs_free_path(path);
192
193 /*
194 * we're an inline extent, so nobody can
195 * extend the file past i_size without locking
196 * a page we already have locked.
197 *
198 * We must do any isize and inode updates
199 * before we unlock the pages. Otherwise we
200 * could end up racing with unlink.
201 */
202 BTRFS_I(inode)->disk_i_size = inode->i_size;
203 btrfs_update_inode(trans, root, inode);
204
205 return 0;
206 fail:
207 btrfs_free_path(path);
208 return err;
209 }
210
211
212 /*
213 * conditionally insert an inline extent into the file. This
214 * does the checks required to make sure the data is small enough
215 * to fit as an inline extent.
216 */
217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
218 struct btrfs_root *root,
219 struct inode *inode, u64 start, u64 end,
220 size_t compressed_size,
221 struct page **compressed_pages)
222 {
223 u64 isize = i_size_read(inode);
224 u64 actual_end = min(end + 1, isize);
225 u64 inline_len = actual_end - start;
226 u64 aligned_end = (end + root->sectorsize - 1) &
227 ~((u64)root->sectorsize - 1);
228 u64 hint_byte;
229 u64 data_len = inline_len;
230 int ret;
231
232 if (compressed_size)
233 data_len = compressed_size;
234
235 if (start > 0 ||
236 actual_end >= PAGE_CACHE_SIZE ||
237 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
238 (!compressed_size &&
239 (actual_end & (root->sectorsize - 1)) == 0) ||
240 end + 1 < isize ||
241 data_len > root->fs_info->max_inline) {
242 return 1;
243 }
244
245 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
246 &hint_byte, 1);
247 BUG_ON(ret);
248
249 if (isize > actual_end)
250 inline_len = min_t(u64, isize, actual_end);
251 ret = insert_inline_extent(trans, root, inode, start,
252 inline_len, compressed_size,
253 compressed_pages);
254 BUG_ON(ret);
255 btrfs_delalloc_release_metadata(inode, end + 1 - start);
256 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
257 return 0;
258 }
259
260 struct async_extent {
261 u64 start;
262 u64 ram_size;
263 u64 compressed_size;
264 struct page **pages;
265 unsigned long nr_pages;
266 struct list_head list;
267 };
268
269 struct async_cow {
270 struct inode *inode;
271 struct btrfs_root *root;
272 struct page *locked_page;
273 u64 start;
274 u64 end;
275 struct list_head extents;
276 struct btrfs_work work;
277 };
278
279 static noinline int add_async_extent(struct async_cow *cow,
280 u64 start, u64 ram_size,
281 u64 compressed_size,
282 struct page **pages,
283 unsigned long nr_pages)
284 {
285 struct async_extent *async_extent;
286
287 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
288 async_extent->start = start;
289 async_extent->ram_size = ram_size;
290 async_extent->compressed_size = compressed_size;
291 async_extent->pages = pages;
292 async_extent->nr_pages = nr_pages;
293 list_add_tail(&async_extent->list, &cow->extents);
294 return 0;
295 }
296
297 /*
298 * we create compressed extents in two phases. The first
299 * phase compresses a range of pages that have already been
300 * locked (both pages and state bits are locked).
301 *
302 * This is done inside an ordered work queue, and the compression
303 * is spread across many cpus. The actual IO submission is step
304 * two, and the ordered work queue takes care of making sure that
305 * happens in the same order things were put onto the queue by
306 * writepages and friends.
307 *
308 * If this code finds it can't get good compression, it puts an
309 * entry onto the work queue to write the uncompressed bytes. This
310 * makes sure that both compressed inodes and uncompressed inodes
311 * are written in the same order that pdflush sent them down.
312 */
313 static noinline int compress_file_range(struct inode *inode,
314 struct page *locked_page,
315 u64 start, u64 end,
316 struct async_cow *async_cow,
317 int *num_added)
318 {
319 struct btrfs_root *root = BTRFS_I(inode)->root;
320 struct btrfs_trans_handle *trans;
321 u64 num_bytes;
322 u64 orig_start;
323 u64 disk_num_bytes;
324 u64 blocksize = root->sectorsize;
325 u64 actual_end;
326 u64 isize = i_size_read(inode);
327 int ret = 0;
328 struct page **pages = NULL;
329 unsigned long nr_pages;
330 unsigned long nr_pages_ret = 0;
331 unsigned long total_compressed = 0;
332 unsigned long total_in = 0;
333 unsigned long max_compressed = 128 * 1024;
334 unsigned long max_uncompressed = 128 * 1024;
335 int i;
336 int will_compress;
337
338 orig_start = start;
339
340 actual_end = min_t(u64, isize, end + 1);
341 again:
342 will_compress = 0;
343 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
344 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
345
346 /*
347 * we don't want to send crud past the end of i_size through
348 * compression, that's just a waste of CPU time. So, if the
349 * end of the file is before the start of our current
350 * requested range of bytes, we bail out to the uncompressed
351 * cleanup code that can deal with all of this.
352 *
353 * It isn't really the fastest way to fix things, but this is a
354 * very uncommon corner.
355 */
356 if (actual_end <= start)
357 goto cleanup_and_bail_uncompressed;
358
359 total_compressed = actual_end - start;
360
361 /* we want to make sure that amount of ram required to uncompress
362 * an extent is reasonable, so we limit the total size in ram
363 * of a compressed extent to 128k. This is a crucial number
364 * because it also controls how easily we can spread reads across
365 * cpus for decompression.
366 *
367 * We also want to make sure the amount of IO required to do
368 * a random read is reasonably small, so we limit the size of
369 * a compressed extent to 128k.
370 */
371 total_compressed = min(total_compressed, max_uncompressed);
372 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
373 num_bytes = max(blocksize, num_bytes);
374 disk_num_bytes = num_bytes;
375 total_in = 0;
376 ret = 0;
377
378 /*
379 * we do compression for mount -o compress and when the
380 * inode has not been flagged as nocompress. This flag can
381 * change at any time if we discover bad compression ratios.
382 */
383 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
384 (btrfs_test_opt(root, COMPRESS) ||
385 (BTRFS_I(inode)->force_compress))) {
386 WARN_ON(pages);
387 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
388
389 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
390 total_compressed, pages,
391 nr_pages, &nr_pages_ret,
392 &total_in,
393 &total_compressed,
394 max_compressed);
395
396 if (!ret) {
397 unsigned long offset = total_compressed &
398 (PAGE_CACHE_SIZE - 1);
399 struct page *page = pages[nr_pages_ret - 1];
400 char *kaddr;
401
402 /* zero the tail end of the last page, we might be
403 * sending it down to disk
404 */
405 if (offset) {
406 kaddr = kmap_atomic(page, KM_USER0);
407 memset(kaddr + offset, 0,
408 PAGE_CACHE_SIZE - offset);
409 kunmap_atomic(kaddr, KM_USER0);
410 }
411 will_compress = 1;
412 }
413 }
414 if (start == 0) {
415 trans = btrfs_join_transaction(root, 1);
416 BUG_ON(!trans);
417 btrfs_set_trans_block_group(trans, inode);
418 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
419
420 /* lets try to make an inline extent */
421 if (ret || total_in < (actual_end - start)) {
422 /* we didn't compress the entire range, try
423 * to make an uncompressed inline extent.
424 */
425 ret = cow_file_range_inline(trans, root, inode,
426 start, end, 0, NULL);
427 } else {
428 /* try making a compressed inline extent */
429 ret = cow_file_range_inline(trans, root, inode,
430 start, end,
431 total_compressed, pages);
432 }
433 if (ret == 0) {
434 /*
435 * inline extent creation worked, we don't need
436 * to create any more async work items. Unlock
437 * and free up our temp pages.
438 */
439 extent_clear_unlock_delalloc(inode,
440 &BTRFS_I(inode)->io_tree,
441 start, end, NULL,
442 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
443 EXTENT_CLEAR_DELALLOC |
444 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
445
446 btrfs_end_transaction(trans, root);
447 goto free_pages_out;
448 }
449 btrfs_end_transaction(trans, root);
450 }
451
452 if (will_compress) {
453 /*
454 * we aren't doing an inline extent round the compressed size
455 * up to a block size boundary so the allocator does sane
456 * things
457 */
458 total_compressed = (total_compressed + blocksize - 1) &
459 ~(blocksize - 1);
460
461 /*
462 * one last check to make sure the compression is really a
463 * win, compare the page count read with the blocks on disk
464 */
465 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
466 ~(PAGE_CACHE_SIZE - 1);
467 if (total_compressed >= total_in) {
468 will_compress = 0;
469 } else {
470 disk_num_bytes = total_compressed;
471 num_bytes = total_in;
472 }
473 }
474 if (!will_compress && pages) {
475 /*
476 * the compression code ran but failed to make things smaller,
477 * free any pages it allocated and our page pointer array
478 */
479 for (i = 0; i < nr_pages_ret; i++) {
480 WARN_ON(pages[i]->mapping);
481 page_cache_release(pages[i]);
482 }
483 kfree(pages);
484 pages = NULL;
485 total_compressed = 0;
486 nr_pages_ret = 0;
487
488 /* flag the file so we don't compress in the future */
489 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
490 !(BTRFS_I(inode)->force_compress)) {
491 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
492 }
493 }
494 if (will_compress) {
495 *num_added += 1;
496
497 /* the async work queues will take care of doing actual
498 * allocation on disk for these compressed pages,
499 * and will submit them to the elevator.
500 */
501 add_async_extent(async_cow, start, num_bytes,
502 total_compressed, pages, nr_pages_ret);
503
504 if (start + num_bytes < end && start + num_bytes < actual_end) {
505 start += num_bytes;
506 pages = NULL;
507 cond_resched();
508 goto again;
509 }
510 } else {
511 cleanup_and_bail_uncompressed:
512 /*
513 * No compression, but we still need to write the pages in
514 * the file we've been given so far. redirty the locked
515 * page if it corresponds to our extent and set things up
516 * for the async work queue to run cow_file_range to do
517 * the normal delalloc dance
518 */
519 if (page_offset(locked_page) >= start &&
520 page_offset(locked_page) <= end) {
521 __set_page_dirty_nobuffers(locked_page);
522 /* unlocked later on in the async handlers */
523 }
524 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
525 *num_added += 1;
526 }
527
528 out:
529 return 0;
530
531 free_pages_out:
532 for (i = 0; i < nr_pages_ret; i++) {
533 WARN_ON(pages[i]->mapping);
534 page_cache_release(pages[i]);
535 }
536 kfree(pages);
537
538 goto out;
539 }
540
541 /*
542 * phase two of compressed writeback. This is the ordered portion
543 * of the code, which only gets called in the order the work was
544 * queued. We walk all the async extents created by compress_file_range
545 * and send them down to the disk.
546 */
547 static noinline int submit_compressed_extents(struct inode *inode,
548 struct async_cow *async_cow)
549 {
550 struct async_extent *async_extent;
551 u64 alloc_hint = 0;
552 struct btrfs_trans_handle *trans;
553 struct btrfs_key ins;
554 struct extent_map *em;
555 struct btrfs_root *root = BTRFS_I(inode)->root;
556 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
557 struct extent_io_tree *io_tree;
558 int ret = 0;
559
560 if (list_empty(&async_cow->extents))
561 return 0;
562
563
564 while (!list_empty(&async_cow->extents)) {
565 async_extent = list_entry(async_cow->extents.next,
566 struct async_extent, list);
567 list_del(&async_extent->list);
568
569 io_tree = &BTRFS_I(inode)->io_tree;
570
571 retry:
572 /* did the compression code fall back to uncompressed IO? */
573 if (!async_extent->pages) {
574 int page_started = 0;
575 unsigned long nr_written = 0;
576
577 lock_extent(io_tree, async_extent->start,
578 async_extent->start +
579 async_extent->ram_size - 1, GFP_NOFS);
580
581 /* allocate blocks */
582 ret = cow_file_range(inode, async_cow->locked_page,
583 async_extent->start,
584 async_extent->start +
585 async_extent->ram_size - 1,
586 &page_started, &nr_written, 0);
587
588 /*
589 * if page_started, cow_file_range inserted an
590 * inline extent and took care of all the unlocking
591 * and IO for us. Otherwise, we need to submit
592 * all those pages down to the drive.
593 */
594 if (!page_started && !ret)
595 extent_write_locked_range(io_tree,
596 inode, async_extent->start,
597 async_extent->start +
598 async_extent->ram_size - 1,
599 btrfs_get_extent,
600 WB_SYNC_ALL);
601 kfree(async_extent);
602 cond_resched();
603 continue;
604 }
605
606 lock_extent(io_tree, async_extent->start,
607 async_extent->start + async_extent->ram_size - 1,
608 GFP_NOFS);
609
610 trans = btrfs_join_transaction(root, 1);
611 ret = btrfs_reserve_extent(trans, root,
612 async_extent->compressed_size,
613 async_extent->compressed_size,
614 0, alloc_hint,
615 (u64)-1, &ins, 1);
616 btrfs_end_transaction(trans, root);
617
618 if (ret) {
619 int i;
620 for (i = 0; i < async_extent->nr_pages; i++) {
621 WARN_ON(async_extent->pages[i]->mapping);
622 page_cache_release(async_extent->pages[i]);
623 }
624 kfree(async_extent->pages);
625 async_extent->nr_pages = 0;
626 async_extent->pages = NULL;
627 unlock_extent(io_tree, async_extent->start,
628 async_extent->start +
629 async_extent->ram_size - 1, GFP_NOFS);
630 goto retry;
631 }
632
633 /*
634 * here we're doing allocation and writeback of the
635 * compressed pages
636 */
637 btrfs_drop_extent_cache(inode, async_extent->start,
638 async_extent->start +
639 async_extent->ram_size - 1, 0);
640
641 em = alloc_extent_map(GFP_NOFS);
642 em->start = async_extent->start;
643 em->len = async_extent->ram_size;
644 em->orig_start = em->start;
645
646 em->block_start = ins.objectid;
647 em->block_len = ins.offset;
648 em->bdev = root->fs_info->fs_devices->latest_bdev;
649 set_bit(EXTENT_FLAG_PINNED, &em->flags);
650 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
651
652 while (1) {
653 write_lock(&em_tree->lock);
654 ret = add_extent_mapping(em_tree, em);
655 write_unlock(&em_tree->lock);
656 if (ret != -EEXIST) {
657 free_extent_map(em);
658 break;
659 }
660 btrfs_drop_extent_cache(inode, async_extent->start,
661 async_extent->start +
662 async_extent->ram_size - 1, 0);
663 }
664
665 ret = btrfs_add_ordered_extent(inode, async_extent->start,
666 ins.objectid,
667 async_extent->ram_size,
668 ins.offset,
669 BTRFS_ORDERED_COMPRESSED);
670 BUG_ON(ret);
671
672 /*
673 * clear dirty, set writeback and unlock the pages.
674 */
675 extent_clear_unlock_delalloc(inode,
676 &BTRFS_I(inode)->io_tree,
677 async_extent->start,
678 async_extent->start +
679 async_extent->ram_size - 1,
680 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
681 EXTENT_CLEAR_UNLOCK |
682 EXTENT_CLEAR_DELALLOC |
683 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
684
685 ret = btrfs_submit_compressed_write(inode,
686 async_extent->start,
687 async_extent->ram_size,
688 ins.objectid,
689 ins.offset, async_extent->pages,
690 async_extent->nr_pages);
691
692 BUG_ON(ret);
693 alloc_hint = ins.objectid + ins.offset;
694 kfree(async_extent);
695 cond_resched();
696 }
697
698 return 0;
699 }
700
701 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
702 u64 num_bytes)
703 {
704 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
705 struct extent_map *em;
706 u64 alloc_hint = 0;
707
708 read_lock(&em_tree->lock);
709 em = search_extent_mapping(em_tree, start, num_bytes);
710 if (em) {
711 /*
712 * if block start isn't an actual block number then find the
713 * first block in this inode and use that as a hint. If that
714 * block is also bogus then just don't worry about it.
715 */
716 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
717 free_extent_map(em);
718 em = search_extent_mapping(em_tree, 0, 0);
719 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
720 alloc_hint = em->block_start;
721 if (em)
722 free_extent_map(em);
723 } else {
724 alloc_hint = em->block_start;
725 free_extent_map(em);
726 }
727 }
728 read_unlock(&em_tree->lock);
729
730 return alloc_hint;
731 }
732
733 /*
734 * when extent_io.c finds a delayed allocation range in the file,
735 * the call backs end up in this code. The basic idea is to
736 * allocate extents on disk for the range, and create ordered data structs
737 * in ram to track those extents.
738 *
739 * locked_page is the page that writepage had locked already. We use
740 * it to make sure we don't do extra locks or unlocks.
741 *
742 * *page_started is set to one if we unlock locked_page and do everything
743 * required to start IO on it. It may be clean and already done with
744 * IO when we return.
745 */
746 static noinline int cow_file_range(struct inode *inode,
747 struct page *locked_page,
748 u64 start, u64 end, int *page_started,
749 unsigned long *nr_written,
750 int unlock)
751 {
752 struct btrfs_root *root = BTRFS_I(inode)->root;
753 struct btrfs_trans_handle *trans;
754 u64 alloc_hint = 0;
755 u64 num_bytes;
756 unsigned long ram_size;
757 u64 disk_num_bytes;
758 u64 cur_alloc_size;
759 u64 blocksize = root->sectorsize;
760 u64 actual_end;
761 u64 isize = i_size_read(inode);
762 struct btrfs_key ins;
763 struct extent_map *em;
764 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
765 int ret = 0;
766
767 trans = btrfs_join_transaction(root, 1);
768 BUG_ON(!trans);
769 btrfs_set_trans_block_group(trans, inode);
770 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771
772 actual_end = min_t(u64, isize, end + 1);
773
774 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
775 num_bytes = max(blocksize, num_bytes);
776 disk_num_bytes = num_bytes;
777 ret = 0;
778
779 if (start == 0) {
780 /* lets try to make an inline extent */
781 ret = cow_file_range_inline(trans, root, inode,
782 start, end, 0, NULL);
783 if (ret == 0) {
784 extent_clear_unlock_delalloc(inode,
785 &BTRFS_I(inode)->io_tree,
786 start, end, NULL,
787 EXTENT_CLEAR_UNLOCK_PAGE |
788 EXTENT_CLEAR_UNLOCK |
789 EXTENT_CLEAR_DELALLOC |
790 EXTENT_CLEAR_DIRTY |
791 EXTENT_SET_WRITEBACK |
792 EXTENT_END_WRITEBACK);
793
794 *nr_written = *nr_written +
795 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
796 *page_started = 1;
797 ret = 0;
798 goto out;
799 }
800 }
801
802 BUG_ON(disk_num_bytes >
803 btrfs_super_total_bytes(&root->fs_info->super_copy));
804
805 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
806 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
807
808 while (disk_num_bytes > 0) {
809 unsigned long op;
810
811 cur_alloc_size = disk_num_bytes;
812 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
813 root->sectorsize, 0, alloc_hint,
814 (u64)-1, &ins, 1);
815 BUG_ON(ret);
816
817 em = alloc_extent_map(GFP_NOFS);
818 em->start = start;
819 em->orig_start = em->start;
820 ram_size = ins.offset;
821 em->len = ins.offset;
822
823 em->block_start = ins.objectid;
824 em->block_len = ins.offset;
825 em->bdev = root->fs_info->fs_devices->latest_bdev;
826 set_bit(EXTENT_FLAG_PINNED, &em->flags);
827
828 while (1) {
829 write_lock(&em_tree->lock);
830 ret = add_extent_mapping(em_tree, em);
831 write_unlock(&em_tree->lock);
832 if (ret != -EEXIST) {
833 free_extent_map(em);
834 break;
835 }
836 btrfs_drop_extent_cache(inode, start,
837 start + ram_size - 1, 0);
838 }
839
840 cur_alloc_size = ins.offset;
841 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
842 ram_size, cur_alloc_size, 0);
843 BUG_ON(ret);
844
845 if (root->root_key.objectid ==
846 BTRFS_DATA_RELOC_TREE_OBJECTID) {
847 ret = btrfs_reloc_clone_csums(inode, start,
848 cur_alloc_size);
849 BUG_ON(ret);
850 }
851
852 if (disk_num_bytes < cur_alloc_size)
853 break;
854
855 /* we're not doing compressed IO, don't unlock the first
856 * page (which the caller expects to stay locked), don't
857 * clear any dirty bits and don't set any writeback bits
858 *
859 * Do set the Private2 bit so we know this page was properly
860 * setup for writepage
861 */
862 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
863 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
864 EXTENT_SET_PRIVATE2;
865
866 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
867 start, start + ram_size - 1,
868 locked_page, op);
869 disk_num_bytes -= cur_alloc_size;
870 num_bytes -= cur_alloc_size;
871 alloc_hint = ins.objectid + ins.offset;
872 start += cur_alloc_size;
873 }
874 out:
875 ret = 0;
876 btrfs_end_transaction(trans, root);
877
878 return ret;
879 }
880
881 /*
882 * work queue call back to started compression on a file and pages
883 */
884 static noinline void async_cow_start(struct btrfs_work *work)
885 {
886 struct async_cow *async_cow;
887 int num_added = 0;
888 async_cow = container_of(work, struct async_cow, work);
889
890 compress_file_range(async_cow->inode, async_cow->locked_page,
891 async_cow->start, async_cow->end, async_cow,
892 &num_added);
893 if (num_added == 0)
894 async_cow->inode = NULL;
895 }
896
897 /*
898 * work queue call back to submit previously compressed pages
899 */
900 static noinline void async_cow_submit(struct btrfs_work *work)
901 {
902 struct async_cow *async_cow;
903 struct btrfs_root *root;
904 unsigned long nr_pages;
905
906 async_cow = container_of(work, struct async_cow, work);
907
908 root = async_cow->root;
909 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
910 PAGE_CACHE_SHIFT;
911
912 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
913
914 if (atomic_read(&root->fs_info->async_delalloc_pages) <
915 5 * 1042 * 1024 &&
916 waitqueue_active(&root->fs_info->async_submit_wait))
917 wake_up(&root->fs_info->async_submit_wait);
918
919 if (async_cow->inode)
920 submit_compressed_extents(async_cow->inode, async_cow);
921 }
922
923 static noinline void async_cow_free(struct btrfs_work *work)
924 {
925 struct async_cow *async_cow;
926 async_cow = container_of(work, struct async_cow, work);
927 kfree(async_cow);
928 }
929
930 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
931 u64 start, u64 end, int *page_started,
932 unsigned long *nr_written)
933 {
934 struct async_cow *async_cow;
935 struct btrfs_root *root = BTRFS_I(inode)->root;
936 unsigned long nr_pages;
937 u64 cur_end;
938 int limit = 10 * 1024 * 1042;
939
940 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
941 1, 0, NULL, GFP_NOFS);
942 while (start < end) {
943 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
944 async_cow->inode = inode;
945 async_cow->root = root;
946 async_cow->locked_page = locked_page;
947 async_cow->start = start;
948
949 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
950 cur_end = end;
951 else
952 cur_end = min(end, start + 512 * 1024 - 1);
953
954 async_cow->end = cur_end;
955 INIT_LIST_HEAD(&async_cow->extents);
956
957 async_cow->work.func = async_cow_start;
958 async_cow->work.ordered_func = async_cow_submit;
959 async_cow->work.ordered_free = async_cow_free;
960 async_cow->work.flags = 0;
961
962 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
963 PAGE_CACHE_SHIFT;
964 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
965
966 btrfs_queue_worker(&root->fs_info->delalloc_workers,
967 &async_cow->work);
968
969 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
970 wait_event(root->fs_info->async_submit_wait,
971 (atomic_read(&root->fs_info->async_delalloc_pages) <
972 limit));
973 }
974
975 while (atomic_read(&root->fs_info->async_submit_draining) &&
976 atomic_read(&root->fs_info->async_delalloc_pages)) {
977 wait_event(root->fs_info->async_submit_wait,
978 (atomic_read(&root->fs_info->async_delalloc_pages) ==
979 0));
980 }
981
982 *nr_written += nr_pages;
983 start = cur_end + 1;
984 }
985 *page_started = 1;
986 return 0;
987 }
988
989 static noinline int csum_exist_in_range(struct btrfs_root *root,
990 u64 bytenr, u64 num_bytes)
991 {
992 int ret;
993 struct btrfs_ordered_sum *sums;
994 LIST_HEAD(list);
995
996 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
997 bytenr + num_bytes - 1, &list);
998 if (ret == 0 && list_empty(&list))
999 return 0;
1000
1001 while (!list_empty(&list)) {
1002 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1003 list_del(&sums->list);
1004 kfree(sums);
1005 }
1006 return 1;
1007 }
1008
1009 /*
1010 * when nowcow writeback call back. This checks for snapshots or COW copies
1011 * of the extents that exist in the file, and COWs the file as required.
1012 *
1013 * If no cow copies or snapshots exist, we write directly to the existing
1014 * blocks on disk
1015 */
1016 static noinline int run_delalloc_nocow(struct inode *inode,
1017 struct page *locked_page,
1018 u64 start, u64 end, int *page_started, int force,
1019 unsigned long *nr_written)
1020 {
1021 struct btrfs_root *root = BTRFS_I(inode)->root;
1022 struct btrfs_trans_handle *trans;
1023 struct extent_buffer *leaf;
1024 struct btrfs_path *path;
1025 struct btrfs_file_extent_item *fi;
1026 struct btrfs_key found_key;
1027 u64 cow_start;
1028 u64 cur_offset;
1029 u64 extent_end;
1030 u64 extent_offset;
1031 u64 disk_bytenr;
1032 u64 num_bytes;
1033 int extent_type;
1034 int ret;
1035 int type;
1036 int nocow;
1037 int check_prev = 1;
1038
1039 path = btrfs_alloc_path();
1040 BUG_ON(!path);
1041 trans = btrfs_join_transaction(root, 1);
1042 BUG_ON(!trans);
1043
1044 cow_start = (u64)-1;
1045 cur_offset = start;
1046 while (1) {
1047 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1048 cur_offset, 0);
1049 BUG_ON(ret < 0);
1050 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1051 leaf = path->nodes[0];
1052 btrfs_item_key_to_cpu(leaf, &found_key,
1053 path->slots[0] - 1);
1054 if (found_key.objectid == inode->i_ino &&
1055 found_key.type == BTRFS_EXTENT_DATA_KEY)
1056 path->slots[0]--;
1057 }
1058 check_prev = 0;
1059 next_slot:
1060 leaf = path->nodes[0];
1061 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1062 ret = btrfs_next_leaf(root, path);
1063 if (ret < 0)
1064 BUG_ON(1);
1065 if (ret > 0)
1066 break;
1067 leaf = path->nodes[0];
1068 }
1069
1070 nocow = 0;
1071 disk_bytenr = 0;
1072 num_bytes = 0;
1073 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1074
1075 if (found_key.objectid > inode->i_ino ||
1076 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1077 found_key.offset > end)
1078 break;
1079
1080 if (found_key.offset > cur_offset) {
1081 extent_end = found_key.offset;
1082 extent_type = 0;
1083 goto out_check;
1084 }
1085
1086 fi = btrfs_item_ptr(leaf, path->slots[0],
1087 struct btrfs_file_extent_item);
1088 extent_type = btrfs_file_extent_type(leaf, fi);
1089
1090 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1091 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1092 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1093 extent_offset = btrfs_file_extent_offset(leaf, fi);
1094 extent_end = found_key.offset +
1095 btrfs_file_extent_num_bytes(leaf, fi);
1096 if (extent_end <= start) {
1097 path->slots[0]++;
1098 goto next_slot;
1099 }
1100 if (disk_bytenr == 0)
1101 goto out_check;
1102 if (btrfs_file_extent_compression(leaf, fi) ||
1103 btrfs_file_extent_encryption(leaf, fi) ||
1104 btrfs_file_extent_other_encoding(leaf, fi))
1105 goto out_check;
1106 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1107 goto out_check;
1108 if (btrfs_extent_readonly(root, disk_bytenr))
1109 goto out_check;
1110 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1111 found_key.offset -
1112 extent_offset, disk_bytenr))
1113 goto out_check;
1114 disk_bytenr += extent_offset;
1115 disk_bytenr += cur_offset - found_key.offset;
1116 num_bytes = min(end + 1, extent_end) - cur_offset;
1117 /*
1118 * force cow if csum exists in the range.
1119 * this ensure that csum for a given extent are
1120 * either valid or do not exist.
1121 */
1122 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1123 goto out_check;
1124 nocow = 1;
1125 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1126 extent_end = found_key.offset +
1127 btrfs_file_extent_inline_len(leaf, fi);
1128 extent_end = ALIGN(extent_end, root->sectorsize);
1129 } else {
1130 BUG_ON(1);
1131 }
1132 out_check:
1133 if (extent_end <= start) {
1134 path->slots[0]++;
1135 goto next_slot;
1136 }
1137 if (!nocow) {
1138 if (cow_start == (u64)-1)
1139 cow_start = cur_offset;
1140 cur_offset = extent_end;
1141 if (cur_offset > end)
1142 break;
1143 path->slots[0]++;
1144 goto next_slot;
1145 }
1146
1147 btrfs_release_path(root, path);
1148 if (cow_start != (u64)-1) {
1149 ret = cow_file_range(inode, locked_page, cow_start,
1150 found_key.offset - 1, page_started,
1151 nr_written, 1);
1152 BUG_ON(ret);
1153 cow_start = (u64)-1;
1154 }
1155
1156 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1157 struct extent_map *em;
1158 struct extent_map_tree *em_tree;
1159 em_tree = &BTRFS_I(inode)->extent_tree;
1160 em = alloc_extent_map(GFP_NOFS);
1161 em->start = cur_offset;
1162 em->orig_start = em->start;
1163 em->len = num_bytes;
1164 em->block_len = num_bytes;
1165 em->block_start = disk_bytenr;
1166 em->bdev = root->fs_info->fs_devices->latest_bdev;
1167 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1168 while (1) {
1169 write_lock(&em_tree->lock);
1170 ret = add_extent_mapping(em_tree, em);
1171 write_unlock(&em_tree->lock);
1172 if (ret != -EEXIST) {
1173 free_extent_map(em);
1174 break;
1175 }
1176 btrfs_drop_extent_cache(inode, em->start,
1177 em->start + em->len - 1, 0);
1178 }
1179 type = BTRFS_ORDERED_PREALLOC;
1180 } else {
1181 type = BTRFS_ORDERED_NOCOW;
1182 }
1183
1184 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1185 num_bytes, num_bytes, type);
1186 BUG_ON(ret);
1187
1188 if (root->root_key.objectid ==
1189 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1190 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1191 num_bytes);
1192 BUG_ON(ret);
1193 }
1194
1195 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1196 cur_offset, cur_offset + num_bytes - 1,
1197 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1198 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1199 EXTENT_SET_PRIVATE2);
1200 cur_offset = extent_end;
1201 if (cur_offset > end)
1202 break;
1203 }
1204 btrfs_release_path(root, path);
1205
1206 if (cur_offset <= end && cow_start == (u64)-1)
1207 cow_start = cur_offset;
1208 if (cow_start != (u64)-1) {
1209 ret = cow_file_range(inode, locked_page, cow_start, end,
1210 page_started, nr_written, 1);
1211 BUG_ON(ret);
1212 }
1213
1214 ret = btrfs_end_transaction(trans, root);
1215 BUG_ON(ret);
1216 btrfs_free_path(path);
1217 return 0;
1218 }
1219
1220 /*
1221 * extent_io.c call back to do delayed allocation processing
1222 */
1223 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1224 u64 start, u64 end, int *page_started,
1225 unsigned long *nr_written)
1226 {
1227 int ret;
1228 struct btrfs_root *root = BTRFS_I(inode)->root;
1229
1230 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1231 ret = run_delalloc_nocow(inode, locked_page, start, end,
1232 page_started, 1, nr_written);
1233 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1234 ret = run_delalloc_nocow(inode, locked_page, start, end,
1235 page_started, 0, nr_written);
1236 else if (!btrfs_test_opt(root, COMPRESS) &&
1237 !(BTRFS_I(inode)->force_compress))
1238 ret = cow_file_range(inode, locked_page, start, end,
1239 page_started, nr_written, 1);
1240 else
1241 ret = cow_file_range_async(inode, locked_page, start, end,
1242 page_started, nr_written);
1243 return ret;
1244 }
1245
1246 static int btrfs_split_extent_hook(struct inode *inode,
1247 struct extent_state *orig, u64 split)
1248 {
1249 /* not delalloc, ignore it */
1250 if (!(orig->state & EXTENT_DELALLOC))
1251 return 0;
1252
1253 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1254 return 0;
1255 }
1256
1257 /*
1258 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1259 * extents so we can keep track of new extents that are just merged onto old
1260 * extents, such as when we are doing sequential writes, so we can properly
1261 * account for the metadata space we'll need.
1262 */
1263 static int btrfs_merge_extent_hook(struct inode *inode,
1264 struct extent_state *new,
1265 struct extent_state *other)
1266 {
1267 /* not delalloc, ignore it */
1268 if (!(other->state & EXTENT_DELALLOC))
1269 return 0;
1270
1271 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1272 return 0;
1273 }
1274
1275 /*
1276 * extent_io.c set_bit_hook, used to track delayed allocation
1277 * bytes in this file, and to maintain the list of inodes that
1278 * have pending delalloc work to be done.
1279 */
1280 static int btrfs_set_bit_hook(struct inode *inode,
1281 struct extent_state *state, int *bits)
1282 {
1283
1284 /*
1285 * set_bit and clear bit hooks normally require _irqsave/restore
1286 * but in this case, we are only testeing for the DELALLOC
1287 * bit, which is only set or cleared with irqs on
1288 */
1289 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1290 struct btrfs_root *root = BTRFS_I(inode)->root;
1291 u64 len = state->end + 1 - state->start;
1292
1293 if (*bits & EXTENT_FIRST_DELALLOC)
1294 *bits &= ~EXTENT_FIRST_DELALLOC;
1295 else
1296 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1297
1298 spin_lock(&root->fs_info->delalloc_lock);
1299 BTRFS_I(inode)->delalloc_bytes += len;
1300 root->fs_info->delalloc_bytes += len;
1301 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1302 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1303 &root->fs_info->delalloc_inodes);
1304 }
1305 spin_unlock(&root->fs_info->delalloc_lock);
1306 }
1307 return 0;
1308 }
1309
1310 /*
1311 * extent_io.c clear_bit_hook, see set_bit_hook for why
1312 */
1313 static int btrfs_clear_bit_hook(struct inode *inode,
1314 struct extent_state *state, int *bits)
1315 {
1316 /*
1317 * set_bit and clear bit hooks normally require _irqsave/restore
1318 * but in this case, we are only testeing for the DELALLOC
1319 * bit, which is only set or cleared with irqs on
1320 */
1321 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1322 struct btrfs_root *root = BTRFS_I(inode)->root;
1323 u64 len = state->end + 1 - state->start;
1324
1325 if (*bits & EXTENT_FIRST_DELALLOC)
1326 *bits &= ~EXTENT_FIRST_DELALLOC;
1327 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1328 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1329
1330 if (*bits & EXTENT_DO_ACCOUNTING)
1331 btrfs_delalloc_release_metadata(inode, len);
1332
1333 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1334 btrfs_free_reserved_data_space(inode, len);
1335
1336 spin_lock(&root->fs_info->delalloc_lock);
1337 root->fs_info->delalloc_bytes -= len;
1338 BTRFS_I(inode)->delalloc_bytes -= len;
1339
1340 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1341 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1342 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1343 }
1344 spin_unlock(&root->fs_info->delalloc_lock);
1345 }
1346 return 0;
1347 }
1348
1349 /*
1350 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1351 * we don't create bios that span stripes or chunks
1352 */
1353 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1354 size_t size, struct bio *bio,
1355 unsigned long bio_flags)
1356 {
1357 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1358 struct btrfs_mapping_tree *map_tree;
1359 u64 logical = (u64)bio->bi_sector << 9;
1360 u64 length = 0;
1361 u64 map_length;
1362 int ret;
1363
1364 if (bio_flags & EXTENT_BIO_COMPRESSED)
1365 return 0;
1366
1367 length = bio->bi_size;
1368 map_tree = &root->fs_info->mapping_tree;
1369 map_length = length;
1370 ret = btrfs_map_block(map_tree, READ, logical,
1371 &map_length, NULL, 0);
1372
1373 if (map_length < length + size)
1374 return 1;
1375 return 0;
1376 }
1377
1378 /*
1379 * in order to insert checksums into the metadata in large chunks,
1380 * we wait until bio submission time. All the pages in the bio are
1381 * checksummed and sums are attached onto the ordered extent record.
1382 *
1383 * At IO completion time the cums attached on the ordered extent record
1384 * are inserted into the btree
1385 */
1386 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1387 struct bio *bio, int mirror_num,
1388 unsigned long bio_flags,
1389 u64 bio_offset)
1390 {
1391 struct btrfs_root *root = BTRFS_I(inode)->root;
1392 int ret = 0;
1393
1394 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1395 BUG_ON(ret);
1396 return 0;
1397 }
1398
1399 /*
1400 * in order to insert checksums into the metadata in large chunks,
1401 * we wait until bio submission time. All the pages in the bio are
1402 * checksummed and sums are attached onto the ordered extent record.
1403 *
1404 * At IO completion time the cums attached on the ordered extent record
1405 * are inserted into the btree
1406 */
1407 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1408 int mirror_num, unsigned long bio_flags,
1409 u64 bio_offset)
1410 {
1411 struct btrfs_root *root = BTRFS_I(inode)->root;
1412 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1413 }
1414
1415 /*
1416 * extent_io.c submission hook. This does the right thing for csum calculation
1417 * on write, or reading the csums from the tree before a read
1418 */
1419 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1420 int mirror_num, unsigned long bio_flags,
1421 u64 bio_offset)
1422 {
1423 struct btrfs_root *root = BTRFS_I(inode)->root;
1424 int ret = 0;
1425 int skip_sum;
1426
1427 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1428
1429 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1430 BUG_ON(ret);
1431
1432 if (!(rw & (1 << BIO_RW))) {
1433 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1434 return btrfs_submit_compressed_read(inode, bio,
1435 mirror_num, bio_flags);
1436 } else if (!skip_sum)
1437 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1438 goto mapit;
1439 } else if (!skip_sum) {
1440 /* csum items have already been cloned */
1441 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1442 goto mapit;
1443 /* we're doing a write, do the async checksumming */
1444 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1445 inode, rw, bio, mirror_num,
1446 bio_flags, bio_offset,
1447 __btrfs_submit_bio_start,
1448 __btrfs_submit_bio_done);
1449 }
1450
1451 mapit:
1452 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1453 }
1454
1455 /*
1456 * given a list of ordered sums record them in the inode. This happens
1457 * at IO completion time based on sums calculated at bio submission time.
1458 */
1459 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1460 struct inode *inode, u64 file_offset,
1461 struct list_head *list)
1462 {
1463 struct btrfs_ordered_sum *sum;
1464
1465 btrfs_set_trans_block_group(trans, inode);
1466
1467 list_for_each_entry(sum, list, list) {
1468 btrfs_csum_file_blocks(trans,
1469 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1470 }
1471 return 0;
1472 }
1473
1474 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1475 struct extent_state **cached_state)
1476 {
1477 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1478 WARN_ON(1);
1479 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1480 cached_state, GFP_NOFS);
1481 }
1482
1483 /* see btrfs_writepage_start_hook for details on why this is required */
1484 struct btrfs_writepage_fixup {
1485 struct page *page;
1486 struct btrfs_work work;
1487 };
1488
1489 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1490 {
1491 struct btrfs_writepage_fixup *fixup;
1492 struct btrfs_ordered_extent *ordered;
1493 struct extent_state *cached_state = NULL;
1494 struct page *page;
1495 struct inode *inode;
1496 u64 page_start;
1497 u64 page_end;
1498
1499 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1500 page = fixup->page;
1501 again:
1502 lock_page(page);
1503 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1504 ClearPageChecked(page);
1505 goto out_page;
1506 }
1507
1508 inode = page->mapping->host;
1509 page_start = page_offset(page);
1510 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1511
1512 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1513 &cached_state, GFP_NOFS);
1514
1515 /* already ordered? We're done */
1516 if (PagePrivate2(page))
1517 goto out;
1518
1519 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1520 if (ordered) {
1521 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1522 page_end, &cached_state, GFP_NOFS);
1523 unlock_page(page);
1524 btrfs_start_ordered_extent(inode, ordered, 1);
1525 goto again;
1526 }
1527
1528 BUG();
1529 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1530 ClearPageChecked(page);
1531 out:
1532 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1533 &cached_state, GFP_NOFS);
1534 out_page:
1535 unlock_page(page);
1536 page_cache_release(page);
1537 }
1538
1539 /*
1540 * There are a few paths in the higher layers of the kernel that directly
1541 * set the page dirty bit without asking the filesystem if it is a
1542 * good idea. This causes problems because we want to make sure COW
1543 * properly happens and the data=ordered rules are followed.
1544 *
1545 * In our case any range that doesn't have the ORDERED bit set
1546 * hasn't been properly setup for IO. We kick off an async process
1547 * to fix it up. The async helper will wait for ordered extents, set
1548 * the delalloc bit and make it safe to write the page.
1549 */
1550 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1551 {
1552 struct inode *inode = page->mapping->host;
1553 struct btrfs_writepage_fixup *fixup;
1554 struct btrfs_root *root = BTRFS_I(inode)->root;
1555
1556 /* this page is properly in the ordered list */
1557 if (TestClearPagePrivate2(page))
1558 return 0;
1559
1560 if (PageChecked(page))
1561 return -EAGAIN;
1562
1563 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1564 if (!fixup)
1565 return -EAGAIN;
1566
1567 SetPageChecked(page);
1568 page_cache_get(page);
1569 fixup->work.func = btrfs_writepage_fixup_worker;
1570 fixup->page = page;
1571 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1572 return -EAGAIN;
1573 }
1574
1575 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1576 struct inode *inode, u64 file_pos,
1577 u64 disk_bytenr, u64 disk_num_bytes,
1578 u64 num_bytes, u64 ram_bytes,
1579 u8 compression, u8 encryption,
1580 u16 other_encoding, int extent_type)
1581 {
1582 struct btrfs_root *root = BTRFS_I(inode)->root;
1583 struct btrfs_file_extent_item *fi;
1584 struct btrfs_path *path;
1585 struct extent_buffer *leaf;
1586 struct btrfs_key ins;
1587 u64 hint;
1588 int ret;
1589
1590 path = btrfs_alloc_path();
1591 BUG_ON(!path);
1592
1593 path->leave_spinning = 1;
1594
1595 /*
1596 * we may be replacing one extent in the tree with another.
1597 * The new extent is pinned in the extent map, and we don't want
1598 * to drop it from the cache until it is completely in the btree.
1599 *
1600 * So, tell btrfs_drop_extents to leave this extent in the cache.
1601 * the caller is expected to unpin it and allow it to be merged
1602 * with the others.
1603 */
1604 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1605 &hint, 0);
1606 BUG_ON(ret);
1607
1608 ins.objectid = inode->i_ino;
1609 ins.offset = file_pos;
1610 ins.type = BTRFS_EXTENT_DATA_KEY;
1611 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1612 BUG_ON(ret);
1613 leaf = path->nodes[0];
1614 fi = btrfs_item_ptr(leaf, path->slots[0],
1615 struct btrfs_file_extent_item);
1616 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1617 btrfs_set_file_extent_type(leaf, fi, extent_type);
1618 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1619 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1620 btrfs_set_file_extent_offset(leaf, fi, 0);
1621 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1622 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1623 btrfs_set_file_extent_compression(leaf, fi, compression);
1624 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1625 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1626
1627 btrfs_unlock_up_safe(path, 1);
1628 btrfs_set_lock_blocking(leaf);
1629
1630 btrfs_mark_buffer_dirty(leaf);
1631
1632 inode_add_bytes(inode, num_bytes);
1633
1634 ins.objectid = disk_bytenr;
1635 ins.offset = disk_num_bytes;
1636 ins.type = BTRFS_EXTENT_ITEM_KEY;
1637 ret = btrfs_alloc_reserved_file_extent(trans, root,
1638 root->root_key.objectid,
1639 inode->i_ino, file_pos, &ins);
1640 BUG_ON(ret);
1641 btrfs_free_path(path);
1642
1643 return 0;
1644 }
1645
1646 /*
1647 * helper function for btrfs_finish_ordered_io, this
1648 * just reads in some of the csum leaves to prime them into ram
1649 * before we start the transaction. It limits the amount of btree
1650 * reads required while inside the transaction.
1651 */
1652 /* as ordered data IO finishes, this gets called so we can finish
1653 * an ordered extent if the range of bytes in the file it covers are
1654 * fully written.
1655 */
1656 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1657 {
1658 struct btrfs_root *root = BTRFS_I(inode)->root;
1659 struct btrfs_trans_handle *trans = NULL;
1660 struct btrfs_ordered_extent *ordered_extent = NULL;
1661 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1662 struct extent_state *cached_state = NULL;
1663 int compressed = 0;
1664 int ret;
1665
1666 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1667 end - start + 1);
1668 if (!ret)
1669 return 0;
1670 BUG_ON(!ordered_extent);
1671
1672 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1673 BUG_ON(!list_empty(&ordered_extent->list));
1674 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1675 if (!ret) {
1676 trans = btrfs_join_transaction(root, 1);
1677 btrfs_set_trans_block_group(trans, inode);
1678 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1679 ret = btrfs_update_inode(trans, root, inode);
1680 BUG_ON(ret);
1681 }
1682 goto out;
1683 }
1684
1685 lock_extent_bits(io_tree, ordered_extent->file_offset,
1686 ordered_extent->file_offset + ordered_extent->len - 1,
1687 0, &cached_state, GFP_NOFS);
1688
1689 trans = btrfs_join_transaction(root, 1);
1690 btrfs_set_trans_block_group(trans, inode);
1691 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1692
1693 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1694 compressed = 1;
1695 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1696 BUG_ON(compressed);
1697 ret = btrfs_mark_extent_written(trans, inode,
1698 ordered_extent->file_offset,
1699 ordered_extent->file_offset +
1700 ordered_extent->len);
1701 BUG_ON(ret);
1702 } else {
1703 ret = insert_reserved_file_extent(trans, inode,
1704 ordered_extent->file_offset,
1705 ordered_extent->start,
1706 ordered_extent->disk_len,
1707 ordered_extent->len,
1708 ordered_extent->len,
1709 compressed, 0, 0,
1710 BTRFS_FILE_EXTENT_REG);
1711 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1712 ordered_extent->file_offset,
1713 ordered_extent->len);
1714 BUG_ON(ret);
1715 }
1716 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1717 ordered_extent->file_offset +
1718 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1719
1720 add_pending_csums(trans, inode, ordered_extent->file_offset,
1721 &ordered_extent->list);
1722
1723 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1724 ret = btrfs_update_inode(trans, root, inode);
1725 BUG_ON(ret);
1726 out:
1727 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1728 if (trans)
1729 btrfs_end_transaction(trans, root);
1730 /* once for us */
1731 btrfs_put_ordered_extent(ordered_extent);
1732 /* once for the tree */
1733 btrfs_put_ordered_extent(ordered_extent);
1734
1735 return 0;
1736 }
1737
1738 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1739 struct extent_state *state, int uptodate)
1740 {
1741 ClearPagePrivate2(page);
1742 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1743 }
1744
1745 /*
1746 * When IO fails, either with EIO or csum verification fails, we
1747 * try other mirrors that might have a good copy of the data. This
1748 * io_failure_record is used to record state as we go through all the
1749 * mirrors. If another mirror has good data, the page is set up to date
1750 * and things continue. If a good mirror can't be found, the original
1751 * bio end_io callback is called to indicate things have failed.
1752 */
1753 struct io_failure_record {
1754 struct page *page;
1755 u64 start;
1756 u64 len;
1757 u64 logical;
1758 unsigned long bio_flags;
1759 int last_mirror;
1760 };
1761
1762 static int btrfs_io_failed_hook(struct bio *failed_bio,
1763 struct page *page, u64 start, u64 end,
1764 struct extent_state *state)
1765 {
1766 struct io_failure_record *failrec = NULL;
1767 u64 private;
1768 struct extent_map *em;
1769 struct inode *inode = page->mapping->host;
1770 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1771 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1772 struct bio *bio;
1773 int num_copies;
1774 int ret;
1775 int rw;
1776 u64 logical;
1777
1778 ret = get_state_private(failure_tree, start, &private);
1779 if (ret) {
1780 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1781 if (!failrec)
1782 return -ENOMEM;
1783 failrec->start = start;
1784 failrec->len = end - start + 1;
1785 failrec->last_mirror = 0;
1786 failrec->bio_flags = 0;
1787
1788 read_lock(&em_tree->lock);
1789 em = lookup_extent_mapping(em_tree, start, failrec->len);
1790 if (em->start > start || em->start + em->len < start) {
1791 free_extent_map(em);
1792 em = NULL;
1793 }
1794 read_unlock(&em_tree->lock);
1795
1796 if (!em || IS_ERR(em)) {
1797 kfree(failrec);
1798 return -EIO;
1799 }
1800 logical = start - em->start;
1801 logical = em->block_start + logical;
1802 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1803 logical = em->block_start;
1804 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1805 }
1806 failrec->logical = logical;
1807 free_extent_map(em);
1808 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1809 EXTENT_DIRTY, GFP_NOFS);
1810 set_state_private(failure_tree, start,
1811 (u64)(unsigned long)failrec);
1812 } else {
1813 failrec = (struct io_failure_record *)(unsigned long)private;
1814 }
1815 num_copies = btrfs_num_copies(
1816 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1817 failrec->logical, failrec->len);
1818 failrec->last_mirror++;
1819 if (!state) {
1820 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1821 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1822 failrec->start,
1823 EXTENT_LOCKED);
1824 if (state && state->start != failrec->start)
1825 state = NULL;
1826 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1827 }
1828 if (!state || failrec->last_mirror > num_copies) {
1829 set_state_private(failure_tree, failrec->start, 0);
1830 clear_extent_bits(failure_tree, failrec->start,
1831 failrec->start + failrec->len - 1,
1832 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1833 kfree(failrec);
1834 return -EIO;
1835 }
1836 bio = bio_alloc(GFP_NOFS, 1);
1837 bio->bi_private = state;
1838 bio->bi_end_io = failed_bio->bi_end_io;
1839 bio->bi_sector = failrec->logical >> 9;
1840 bio->bi_bdev = failed_bio->bi_bdev;
1841 bio->bi_size = 0;
1842
1843 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1844 if (failed_bio->bi_rw & (1 << BIO_RW))
1845 rw = WRITE;
1846 else
1847 rw = READ;
1848
1849 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1850 failrec->last_mirror,
1851 failrec->bio_flags, 0);
1852 return 0;
1853 }
1854
1855 /*
1856 * each time an IO finishes, we do a fast check in the IO failure tree
1857 * to see if we need to process or clean up an io_failure_record
1858 */
1859 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1860 {
1861 u64 private;
1862 u64 private_failure;
1863 struct io_failure_record *failure;
1864 int ret;
1865
1866 private = 0;
1867 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1868 (u64)-1, 1, EXTENT_DIRTY)) {
1869 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1870 start, &private_failure);
1871 if (ret == 0) {
1872 failure = (struct io_failure_record *)(unsigned long)
1873 private_failure;
1874 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1875 failure->start, 0);
1876 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1877 failure->start,
1878 failure->start + failure->len - 1,
1879 EXTENT_DIRTY | EXTENT_LOCKED,
1880 GFP_NOFS);
1881 kfree(failure);
1882 }
1883 }
1884 return 0;
1885 }
1886
1887 /*
1888 * when reads are done, we need to check csums to verify the data is correct
1889 * if there's a match, we allow the bio to finish. If not, we go through
1890 * the io_failure_record routines to find good copies
1891 */
1892 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1893 struct extent_state *state)
1894 {
1895 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1896 struct inode *inode = page->mapping->host;
1897 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1898 char *kaddr;
1899 u64 private = ~(u32)0;
1900 int ret;
1901 struct btrfs_root *root = BTRFS_I(inode)->root;
1902 u32 csum = ~(u32)0;
1903
1904 if (PageChecked(page)) {
1905 ClearPageChecked(page);
1906 goto good;
1907 }
1908
1909 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1910 return 0;
1911
1912 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1913 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1914 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1915 GFP_NOFS);
1916 return 0;
1917 }
1918
1919 if (state && state->start == start) {
1920 private = state->private;
1921 ret = 0;
1922 } else {
1923 ret = get_state_private(io_tree, start, &private);
1924 }
1925 kaddr = kmap_atomic(page, KM_USER0);
1926 if (ret)
1927 goto zeroit;
1928
1929 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1930 btrfs_csum_final(csum, (char *)&csum);
1931 if (csum != private)
1932 goto zeroit;
1933
1934 kunmap_atomic(kaddr, KM_USER0);
1935 good:
1936 /* if the io failure tree for this inode is non-empty,
1937 * check to see if we've recovered from a failed IO
1938 */
1939 btrfs_clean_io_failures(inode, start);
1940 return 0;
1941
1942 zeroit:
1943 if (printk_ratelimit()) {
1944 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1945 "private %llu\n", page->mapping->host->i_ino,
1946 (unsigned long long)start, csum,
1947 (unsigned long long)private);
1948 }
1949 memset(kaddr + offset, 1, end - start + 1);
1950 flush_dcache_page(page);
1951 kunmap_atomic(kaddr, KM_USER0);
1952 if (private == 0)
1953 return 0;
1954 return -EIO;
1955 }
1956
1957 struct delayed_iput {
1958 struct list_head list;
1959 struct inode *inode;
1960 };
1961
1962 void btrfs_add_delayed_iput(struct inode *inode)
1963 {
1964 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1965 struct delayed_iput *delayed;
1966
1967 if (atomic_add_unless(&inode->i_count, -1, 1))
1968 return;
1969
1970 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1971 delayed->inode = inode;
1972
1973 spin_lock(&fs_info->delayed_iput_lock);
1974 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
1975 spin_unlock(&fs_info->delayed_iput_lock);
1976 }
1977
1978 void btrfs_run_delayed_iputs(struct btrfs_root *root)
1979 {
1980 LIST_HEAD(list);
1981 struct btrfs_fs_info *fs_info = root->fs_info;
1982 struct delayed_iput *delayed;
1983 int empty;
1984
1985 spin_lock(&fs_info->delayed_iput_lock);
1986 empty = list_empty(&fs_info->delayed_iputs);
1987 spin_unlock(&fs_info->delayed_iput_lock);
1988 if (empty)
1989 return;
1990
1991 down_read(&root->fs_info->cleanup_work_sem);
1992 spin_lock(&fs_info->delayed_iput_lock);
1993 list_splice_init(&fs_info->delayed_iputs, &list);
1994 spin_unlock(&fs_info->delayed_iput_lock);
1995
1996 while (!list_empty(&list)) {
1997 delayed = list_entry(list.next, struct delayed_iput, list);
1998 list_del(&delayed->list);
1999 iput(delayed->inode);
2000 kfree(delayed);
2001 }
2002 up_read(&root->fs_info->cleanup_work_sem);
2003 }
2004
2005 /*
2006 * calculate extra metadata reservation when snapshotting a subvolume
2007 * contains orphan files.
2008 */
2009 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2010 struct btrfs_pending_snapshot *pending,
2011 u64 *bytes_to_reserve)
2012 {
2013 struct btrfs_root *root;
2014 struct btrfs_block_rsv *block_rsv;
2015 u64 num_bytes;
2016 int index;
2017
2018 root = pending->root;
2019 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2020 return;
2021
2022 block_rsv = root->orphan_block_rsv;
2023
2024 /* orphan block reservation for the snapshot */
2025 num_bytes = block_rsv->size;
2026
2027 /*
2028 * after the snapshot is created, COWing tree blocks may use more
2029 * space than it frees. So we should make sure there is enough
2030 * reserved space.
2031 */
2032 index = trans->transid & 0x1;
2033 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2034 num_bytes += block_rsv->size -
2035 (block_rsv->reserved + block_rsv->freed[index]);
2036 }
2037
2038 *bytes_to_reserve += num_bytes;
2039 }
2040
2041 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2042 struct btrfs_pending_snapshot *pending)
2043 {
2044 struct btrfs_root *root = pending->root;
2045 struct btrfs_root *snap = pending->snap;
2046 struct btrfs_block_rsv *block_rsv;
2047 u64 num_bytes;
2048 int index;
2049 int ret;
2050
2051 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2052 return;
2053
2054 /* refill source subvolume's orphan block reservation */
2055 block_rsv = root->orphan_block_rsv;
2056 index = trans->transid & 0x1;
2057 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2058 num_bytes = block_rsv->size -
2059 (block_rsv->reserved + block_rsv->freed[index]);
2060 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2061 root->orphan_block_rsv,
2062 num_bytes);
2063 BUG_ON(ret);
2064 }
2065
2066 /* setup orphan block reservation for the snapshot */
2067 block_rsv = btrfs_alloc_block_rsv(snap);
2068 BUG_ON(!block_rsv);
2069
2070 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2071 snap->orphan_block_rsv = block_rsv;
2072
2073 num_bytes = root->orphan_block_rsv->size;
2074 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2075 block_rsv, num_bytes);
2076 BUG_ON(ret);
2077
2078 #if 0
2079 /* insert orphan item for the snapshot */
2080 WARN_ON(!root->orphan_item_inserted);
2081 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2082 snap->root_key.objectid);
2083 BUG_ON(ret);
2084 snap->orphan_item_inserted = 1;
2085 #endif
2086 }
2087
2088 enum btrfs_orphan_cleanup_state {
2089 ORPHAN_CLEANUP_STARTED = 1,
2090 ORPHAN_CLEANUP_DONE = 2,
2091 };
2092
2093 /*
2094 * This is called in transaction commmit time. If there are no orphan
2095 * files in the subvolume, it removes orphan item and frees block_rsv
2096 * structure.
2097 */
2098 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2099 struct btrfs_root *root)
2100 {
2101 int ret;
2102
2103 if (!list_empty(&root->orphan_list) ||
2104 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2105 return;
2106
2107 if (root->orphan_item_inserted &&
2108 btrfs_root_refs(&root->root_item) > 0) {
2109 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2110 root->root_key.objectid);
2111 BUG_ON(ret);
2112 root->orphan_item_inserted = 0;
2113 }
2114
2115 if (root->orphan_block_rsv) {
2116 WARN_ON(root->orphan_block_rsv->size > 0);
2117 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2118 root->orphan_block_rsv = NULL;
2119 }
2120 }
2121
2122 /*
2123 * This creates an orphan entry for the given inode in case something goes
2124 * wrong in the middle of an unlink/truncate.
2125 *
2126 * NOTE: caller of this function should reserve 5 units of metadata for
2127 * this function.
2128 */
2129 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2130 {
2131 struct btrfs_root *root = BTRFS_I(inode)->root;
2132 struct btrfs_block_rsv *block_rsv = NULL;
2133 int reserve = 0;
2134 int insert = 0;
2135 int ret;
2136
2137 if (!root->orphan_block_rsv) {
2138 block_rsv = btrfs_alloc_block_rsv(root);
2139 BUG_ON(!block_rsv);
2140 }
2141
2142 spin_lock(&root->orphan_lock);
2143 if (!root->orphan_block_rsv) {
2144 root->orphan_block_rsv = block_rsv;
2145 } else if (block_rsv) {
2146 btrfs_free_block_rsv(root, block_rsv);
2147 block_rsv = NULL;
2148 }
2149
2150 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2151 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2152 #if 0
2153 /*
2154 * For proper ENOSPC handling, we should do orphan
2155 * cleanup when mounting. But this introduces backward
2156 * compatibility issue.
2157 */
2158 if (!xchg(&root->orphan_item_inserted, 1))
2159 insert = 2;
2160 else
2161 insert = 1;
2162 #endif
2163 insert = 1;
2164 } else {
2165 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2166 }
2167
2168 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2169 BTRFS_I(inode)->orphan_meta_reserved = 1;
2170 reserve = 1;
2171 }
2172 spin_unlock(&root->orphan_lock);
2173
2174 if (block_rsv)
2175 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2176
2177 /* grab metadata reservation from transaction handle */
2178 if (reserve) {
2179 ret = btrfs_orphan_reserve_metadata(trans, inode);
2180 BUG_ON(ret);
2181 }
2182
2183 /* insert an orphan item to track this unlinked/truncated file */
2184 if (insert >= 1) {
2185 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2186 BUG_ON(ret);
2187 }
2188
2189 /* insert an orphan item to track subvolume contains orphan files */
2190 if (insert >= 2) {
2191 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2192 root->root_key.objectid);
2193 BUG_ON(ret);
2194 }
2195 return 0;
2196 }
2197
2198 /*
2199 * We have done the truncate/delete so we can go ahead and remove the orphan
2200 * item for this particular inode.
2201 */
2202 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2203 {
2204 struct btrfs_root *root = BTRFS_I(inode)->root;
2205 int delete_item = 0;
2206 int release_rsv = 0;
2207 int ret = 0;
2208
2209 spin_lock(&root->orphan_lock);
2210 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2211 list_del_init(&BTRFS_I(inode)->i_orphan);
2212 delete_item = 1;
2213 }
2214
2215 if (BTRFS_I(inode)->orphan_meta_reserved) {
2216 BTRFS_I(inode)->orphan_meta_reserved = 0;
2217 release_rsv = 1;
2218 }
2219 spin_unlock(&root->orphan_lock);
2220
2221 if (trans && delete_item) {
2222 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2223 BUG_ON(ret);
2224 }
2225
2226 if (release_rsv)
2227 btrfs_orphan_release_metadata(inode);
2228
2229 return 0;
2230 }
2231
2232 /*
2233 * this cleans up any orphans that may be left on the list from the last use
2234 * of this root.
2235 */
2236 void btrfs_orphan_cleanup(struct btrfs_root *root)
2237 {
2238 struct btrfs_path *path;
2239 struct extent_buffer *leaf;
2240 struct btrfs_item *item;
2241 struct btrfs_key key, found_key;
2242 struct btrfs_trans_handle *trans;
2243 struct inode *inode;
2244 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2245
2246 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2247 return;
2248
2249 path = btrfs_alloc_path();
2250 BUG_ON(!path);
2251 path->reada = -1;
2252
2253 key.objectid = BTRFS_ORPHAN_OBJECTID;
2254 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2255 key.offset = (u64)-1;
2256
2257 while (1) {
2258 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2259 if (ret < 0) {
2260 printk(KERN_ERR "Error searching slot for orphan: %d"
2261 "\n", ret);
2262 break;
2263 }
2264
2265 /*
2266 * if ret == 0 means we found what we were searching for, which
2267 * is weird, but possible, so only screw with path if we didnt
2268 * find the key and see if we have stuff that matches
2269 */
2270 if (ret > 0) {
2271 if (path->slots[0] == 0)
2272 break;
2273 path->slots[0]--;
2274 }
2275
2276 /* pull out the item */
2277 leaf = path->nodes[0];
2278 item = btrfs_item_nr(leaf, path->slots[0]);
2279 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2280
2281 /* make sure the item matches what we want */
2282 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2283 break;
2284 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2285 break;
2286
2287 /* release the path since we're done with it */
2288 btrfs_release_path(root, path);
2289
2290 /*
2291 * this is where we are basically btrfs_lookup, without the
2292 * crossing root thing. we store the inode number in the
2293 * offset of the orphan item.
2294 */
2295 found_key.objectid = found_key.offset;
2296 found_key.type = BTRFS_INODE_ITEM_KEY;
2297 found_key.offset = 0;
2298 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2299 BUG_ON(IS_ERR(inode));
2300
2301 /*
2302 * add this inode to the orphan list so btrfs_orphan_del does
2303 * the proper thing when we hit it
2304 */
2305 spin_lock(&root->orphan_lock);
2306 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2307 spin_unlock(&root->orphan_lock);
2308
2309 /*
2310 * if this is a bad inode, means we actually succeeded in
2311 * removing the inode, but not the orphan record, which means
2312 * we need to manually delete the orphan since iput will just
2313 * do a destroy_inode
2314 */
2315 if (is_bad_inode(inode)) {
2316 trans = btrfs_start_transaction(root, 0);
2317 btrfs_orphan_del(trans, inode);
2318 btrfs_end_transaction(trans, root);
2319 iput(inode);
2320 continue;
2321 }
2322
2323 /* if we have links, this was a truncate, lets do that */
2324 if (inode->i_nlink) {
2325 nr_truncate++;
2326 btrfs_truncate(inode);
2327 } else {
2328 nr_unlink++;
2329 }
2330
2331 /* this will do delete_inode and everything for us */
2332 iput(inode);
2333 }
2334 btrfs_free_path(path);
2335
2336 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2337
2338 if (root->orphan_block_rsv)
2339 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2340 (u64)-1);
2341
2342 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2343 trans = btrfs_join_transaction(root, 1);
2344 btrfs_end_transaction(trans, root);
2345 }
2346
2347 if (nr_unlink)
2348 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2349 if (nr_truncate)
2350 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2351 }
2352
2353 /*
2354 * very simple check to peek ahead in the leaf looking for xattrs. If we
2355 * don't find any xattrs, we know there can't be any acls.
2356 *
2357 * slot is the slot the inode is in, objectid is the objectid of the inode
2358 */
2359 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2360 int slot, u64 objectid)
2361 {
2362 u32 nritems = btrfs_header_nritems(leaf);
2363 struct btrfs_key found_key;
2364 int scanned = 0;
2365
2366 slot++;
2367 while (slot < nritems) {
2368 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2369
2370 /* we found a different objectid, there must not be acls */
2371 if (found_key.objectid != objectid)
2372 return 0;
2373
2374 /* we found an xattr, assume we've got an acl */
2375 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2376 return 1;
2377
2378 /*
2379 * we found a key greater than an xattr key, there can't
2380 * be any acls later on
2381 */
2382 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2383 return 0;
2384
2385 slot++;
2386 scanned++;
2387
2388 /*
2389 * it goes inode, inode backrefs, xattrs, extents,
2390 * so if there are a ton of hard links to an inode there can
2391 * be a lot of backrefs. Don't waste time searching too hard,
2392 * this is just an optimization
2393 */
2394 if (scanned >= 8)
2395 break;
2396 }
2397 /* we hit the end of the leaf before we found an xattr or
2398 * something larger than an xattr. We have to assume the inode
2399 * has acls
2400 */
2401 return 1;
2402 }
2403
2404 /*
2405 * read an inode from the btree into the in-memory inode
2406 */
2407 static void btrfs_read_locked_inode(struct inode *inode)
2408 {
2409 struct btrfs_path *path;
2410 struct extent_buffer *leaf;
2411 struct btrfs_inode_item *inode_item;
2412 struct btrfs_timespec *tspec;
2413 struct btrfs_root *root = BTRFS_I(inode)->root;
2414 struct btrfs_key location;
2415 int maybe_acls;
2416 u64 alloc_group_block;
2417 u32 rdev;
2418 int ret;
2419
2420 path = btrfs_alloc_path();
2421 BUG_ON(!path);
2422 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2423
2424 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2425 if (ret)
2426 goto make_bad;
2427
2428 leaf = path->nodes[0];
2429 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2430 struct btrfs_inode_item);
2431
2432 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2433 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2434 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2435 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2436 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2437
2438 tspec = btrfs_inode_atime(inode_item);
2439 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2440 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2441
2442 tspec = btrfs_inode_mtime(inode_item);
2443 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2444 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2445
2446 tspec = btrfs_inode_ctime(inode_item);
2447 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2448 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2449
2450 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2451 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2452 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2453 inode->i_generation = BTRFS_I(inode)->generation;
2454 inode->i_rdev = 0;
2455 rdev = btrfs_inode_rdev(leaf, inode_item);
2456
2457 BTRFS_I(inode)->index_cnt = (u64)-1;
2458 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2459
2460 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2461
2462 /*
2463 * try to precache a NULL acl entry for files that don't have
2464 * any xattrs or acls
2465 */
2466 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2467 if (!maybe_acls)
2468 cache_no_acl(inode);
2469
2470 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2471 alloc_group_block, 0);
2472 btrfs_free_path(path);
2473 inode_item = NULL;
2474
2475 switch (inode->i_mode & S_IFMT) {
2476 case S_IFREG:
2477 inode->i_mapping->a_ops = &btrfs_aops;
2478 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2479 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2480 inode->i_fop = &btrfs_file_operations;
2481 inode->i_op = &btrfs_file_inode_operations;
2482 break;
2483 case S_IFDIR:
2484 inode->i_fop = &btrfs_dir_file_operations;
2485 if (root == root->fs_info->tree_root)
2486 inode->i_op = &btrfs_dir_ro_inode_operations;
2487 else
2488 inode->i_op = &btrfs_dir_inode_operations;
2489 break;
2490 case S_IFLNK:
2491 inode->i_op = &btrfs_symlink_inode_operations;
2492 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2493 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2494 break;
2495 default:
2496 inode->i_op = &btrfs_special_inode_operations;
2497 init_special_inode(inode, inode->i_mode, rdev);
2498 break;
2499 }
2500
2501 btrfs_update_iflags(inode);
2502 return;
2503
2504 make_bad:
2505 btrfs_free_path(path);
2506 make_bad_inode(inode);
2507 }
2508
2509 /*
2510 * given a leaf and an inode, copy the inode fields into the leaf
2511 */
2512 static void fill_inode_item(struct btrfs_trans_handle *trans,
2513 struct extent_buffer *leaf,
2514 struct btrfs_inode_item *item,
2515 struct inode *inode)
2516 {
2517 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2518 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2519 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2520 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2521 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2522
2523 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2524 inode->i_atime.tv_sec);
2525 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2526 inode->i_atime.tv_nsec);
2527
2528 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2529 inode->i_mtime.tv_sec);
2530 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2531 inode->i_mtime.tv_nsec);
2532
2533 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2534 inode->i_ctime.tv_sec);
2535 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2536 inode->i_ctime.tv_nsec);
2537
2538 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2539 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2540 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2541 btrfs_set_inode_transid(leaf, item, trans->transid);
2542 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2543 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2544 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2545 }
2546
2547 /*
2548 * copy everything in the in-memory inode into the btree.
2549 */
2550 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2551 struct btrfs_root *root, struct inode *inode)
2552 {
2553 struct btrfs_inode_item *inode_item;
2554 struct btrfs_path *path;
2555 struct extent_buffer *leaf;
2556 int ret;
2557
2558 path = btrfs_alloc_path();
2559 BUG_ON(!path);
2560 path->leave_spinning = 1;
2561 ret = btrfs_lookup_inode(trans, root, path,
2562 &BTRFS_I(inode)->location, 1);
2563 if (ret) {
2564 if (ret > 0)
2565 ret = -ENOENT;
2566 goto failed;
2567 }
2568
2569 btrfs_unlock_up_safe(path, 1);
2570 leaf = path->nodes[0];
2571 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2572 struct btrfs_inode_item);
2573
2574 fill_inode_item(trans, leaf, inode_item, inode);
2575 btrfs_mark_buffer_dirty(leaf);
2576 btrfs_set_inode_last_trans(trans, inode);
2577 ret = 0;
2578 failed:
2579 btrfs_free_path(path);
2580 return ret;
2581 }
2582
2583
2584 /*
2585 * unlink helper that gets used here in inode.c and in the tree logging
2586 * recovery code. It remove a link in a directory with a given name, and
2587 * also drops the back refs in the inode to the directory
2588 */
2589 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2590 struct btrfs_root *root,
2591 struct inode *dir, struct inode *inode,
2592 const char *name, int name_len)
2593 {
2594 struct btrfs_path *path;
2595 int ret = 0;
2596 struct extent_buffer *leaf;
2597 struct btrfs_dir_item *di;
2598 struct btrfs_key key;
2599 u64 index;
2600
2601 path = btrfs_alloc_path();
2602 if (!path) {
2603 ret = -ENOMEM;
2604 goto err;
2605 }
2606
2607 path->leave_spinning = 1;
2608 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2609 name, name_len, -1);
2610 if (IS_ERR(di)) {
2611 ret = PTR_ERR(di);
2612 goto err;
2613 }
2614 if (!di) {
2615 ret = -ENOENT;
2616 goto err;
2617 }
2618 leaf = path->nodes[0];
2619 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2620 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2621 if (ret)
2622 goto err;
2623 btrfs_release_path(root, path);
2624
2625 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2626 inode->i_ino,
2627 dir->i_ino, &index);
2628 if (ret) {
2629 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2630 "inode %lu parent %lu\n", name_len, name,
2631 inode->i_ino, dir->i_ino);
2632 goto err;
2633 }
2634
2635 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2636 index, name, name_len, -1);
2637 if (IS_ERR(di)) {
2638 ret = PTR_ERR(di);
2639 goto err;
2640 }
2641 if (!di) {
2642 ret = -ENOENT;
2643 goto err;
2644 }
2645 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2646 btrfs_release_path(root, path);
2647
2648 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2649 inode, dir->i_ino);
2650 BUG_ON(ret != 0 && ret != -ENOENT);
2651
2652 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2653 dir, index);
2654 BUG_ON(ret);
2655 err:
2656 btrfs_free_path(path);
2657 if (ret)
2658 goto out;
2659
2660 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2661 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2662 btrfs_update_inode(trans, root, dir);
2663 btrfs_drop_nlink(inode);
2664 ret = btrfs_update_inode(trans, root, inode);
2665 out:
2666 return ret;
2667 }
2668
2669 /* helper to check if there is any shared block in the path */
2670 static int check_path_shared(struct btrfs_root *root,
2671 struct btrfs_path *path)
2672 {
2673 struct extent_buffer *eb;
2674 int level;
2675 int ret;
2676 u64 refs = 1;
2677
2678 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2679 if (!path->nodes[level])
2680 break;
2681 eb = path->nodes[level];
2682 if (!btrfs_block_can_be_shared(root, eb))
2683 continue;
2684 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2685 &refs, NULL);
2686 if (refs > 1)
2687 return 1;
2688 }
2689 return 0;
2690 }
2691
2692 /*
2693 * helper to start transaction for unlink and rmdir.
2694 *
2695 * unlink and rmdir are special in btrfs, they do not always free space.
2696 * so in enospc case, we should make sure they will free space before
2697 * allowing them to use the global metadata reservation.
2698 */
2699 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2700 struct dentry *dentry)
2701 {
2702 struct btrfs_trans_handle *trans;
2703 struct btrfs_root *root = BTRFS_I(dir)->root;
2704 struct btrfs_path *path;
2705 struct btrfs_inode_ref *ref;
2706 struct btrfs_dir_item *di;
2707 struct inode *inode = dentry->d_inode;
2708 u64 index;
2709 int check_link = 1;
2710 int err = -ENOSPC;
2711 int ret;
2712
2713 trans = btrfs_start_transaction(root, 10);
2714 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2715 return trans;
2716
2717 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2718 return ERR_PTR(-ENOSPC);
2719
2720 /* check if there is someone else holds reference */
2721 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2722 return ERR_PTR(-ENOSPC);
2723
2724 if (atomic_read(&inode->i_count) > 2)
2725 return ERR_PTR(-ENOSPC);
2726
2727 if (xchg(&root->fs_info->enospc_unlink, 1))
2728 return ERR_PTR(-ENOSPC);
2729
2730 path = btrfs_alloc_path();
2731 if (!path) {
2732 root->fs_info->enospc_unlink = 0;
2733 return ERR_PTR(-ENOMEM);
2734 }
2735
2736 trans = btrfs_start_transaction(root, 0);
2737 if (IS_ERR(trans)) {
2738 btrfs_free_path(path);
2739 root->fs_info->enospc_unlink = 0;
2740 return trans;
2741 }
2742
2743 path->skip_locking = 1;
2744 path->search_commit_root = 1;
2745
2746 ret = btrfs_lookup_inode(trans, root, path,
2747 &BTRFS_I(dir)->location, 0);
2748 if (ret < 0) {
2749 err = ret;
2750 goto out;
2751 }
2752 if (ret == 0) {
2753 if (check_path_shared(root, path))
2754 goto out;
2755 } else {
2756 check_link = 0;
2757 }
2758 btrfs_release_path(root, path);
2759
2760 ret = btrfs_lookup_inode(trans, root, path,
2761 &BTRFS_I(inode)->location, 0);
2762 if (ret < 0) {
2763 err = ret;
2764 goto out;
2765 }
2766 if (ret == 0) {
2767 if (check_path_shared(root, path))
2768 goto out;
2769 } else {
2770 check_link = 0;
2771 }
2772 btrfs_release_path(root, path);
2773
2774 if (ret == 0 && S_ISREG(inode->i_mode)) {
2775 ret = btrfs_lookup_file_extent(trans, root, path,
2776 inode->i_ino, (u64)-1, 0);
2777 if (ret < 0) {
2778 err = ret;
2779 goto out;
2780 }
2781 BUG_ON(ret == 0);
2782 if (check_path_shared(root, path))
2783 goto out;
2784 btrfs_release_path(root, path);
2785 }
2786
2787 if (!check_link) {
2788 err = 0;
2789 goto out;
2790 }
2791
2792 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2793 dentry->d_name.name, dentry->d_name.len, 0);
2794 if (IS_ERR(di)) {
2795 err = PTR_ERR(di);
2796 goto out;
2797 }
2798 if (di) {
2799 if (check_path_shared(root, path))
2800 goto out;
2801 } else {
2802 err = 0;
2803 goto out;
2804 }
2805 btrfs_release_path(root, path);
2806
2807 ref = btrfs_lookup_inode_ref(trans, root, path,
2808 dentry->d_name.name, dentry->d_name.len,
2809 inode->i_ino, dir->i_ino, 0);
2810 if (IS_ERR(ref)) {
2811 err = PTR_ERR(ref);
2812 goto out;
2813 }
2814 BUG_ON(!ref);
2815 if (check_path_shared(root, path))
2816 goto out;
2817 index = btrfs_inode_ref_index(path->nodes[0], ref);
2818 btrfs_release_path(root, path);
2819
2820 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2821 dentry->d_name.name, dentry->d_name.len, 0);
2822 if (IS_ERR(di)) {
2823 err = PTR_ERR(di);
2824 goto out;
2825 }
2826 BUG_ON(ret == -ENOENT);
2827 if (check_path_shared(root, path))
2828 goto out;
2829
2830 err = 0;
2831 out:
2832 btrfs_free_path(path);
2833 if (err) {
2834 btrfs_end_transaction(trans, root);
2835 root->fs_info->enospc_unlink = 0;
2836 return ERR_PTR(err);
2837 }
2838
2839 trans->block_rsv = &root->fs_info->global_block_rsv;
2840 return trans;
2841 }
2842
2843 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2844 struct btrfs_root *root)
2845 {
2846 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2847 BUG_ON(!root->fs_info->enospc_unlink);
2848 root->fs_info->enospc_unlink = 0;
2849 }
2850 btrfs_end_transaction_throttle(trans, root);
2851 }
2852
2853 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2854 {
2855 struct btrfs_root *root = BTRFS_I(dir)->root;
2856 struct btrfs_trans_handle *trans;
2857 struct inode *inode = dentry->d_inode;
2858 int ret;
2859 unsigned long nr = 0;
2860
2861 trans = __unlink_start_trans(dir, dentry);
2862 if (IS_ERR(trans))
2863 return PTR_ERR(trans);
2864
2865 btrfs_set_trans_block_group(trans, dir);
2866
2867 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2868
2869 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2870 dentry->d_name.name, dentry->d_name.len);
2871 BUG_ON(ret);
2872
2873 if (inode->i_nlink == 0) {
2874 ret = btrfs_orphan_add(trans, inode);
2875 BUG_ON(ret);
2876 }
2877
2878 nr = trans->blocks_used;
2879 __unlink_end_trans(trans, root);
2880 btrfs_btree_balance_dirty(root, nr);
2881 return ret;
2882 }
2883
2884 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2885 struct btrfs_root *root,
2886 struct inode *dir, u64 objectid,
2887 const char *name, int name_len)
2888 {
2889 struct btrfs_path *path;
2890 struct extent_buffer *leaf;
2891 struct btrfs_dir_item *di;
2892 struct btrfs_key key;
2893 u64 index;
2894 int ret;
2895
2896 path = btrfs_alloc_path();
2897 if (!path)
2898 return -ENOMEM;
2899
2900 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2901 name, name_len, -1);
2902 BUG_ON(!di || IS_ERR(di));
2903
2904 leaf = path->nodes[0];
2905 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2906 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2907 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2908 BUG_ON(ret);
2909 btrfs_release_path(root, path);
2910
2911 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2912 objectid, root->root_key.objectid,
2913 dir->i_ino, &index, name, name_len);
2914 if (ret < 0) {
2915 BUG_ON(ret != -ENOENT);
2916 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2917 name, name_len);
2918 BUG_ON(!di || IS_ERR(di));
2919
2920 leaf = path->nodes[0];
2921 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2922 btrfs_release_path(root, path);
2923 index = key.offset;
2924 }
2925
2926 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2927 index, name, name_len, -1);
2928 BUG_ON(!di || IS_ERR(di));
2929
2930 leaf = path->nodes[0];
2931 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2932 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2933 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2934 BUG_ON(ret);
2935 btrfs_release_path(root, path);
2936
2937 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2938 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2939 ret = btrfs_update_inode(trans, root, dir);
2940 BUG_ON(ret);
2941 dir->i_sb->s_dirt = 1;
2942
2943 btrfs_free_path(path);
2944 return 0;
2945 }
2946
2947 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2948 {
2949 struct inode *inode = dentry->d_inode;
2950 int err = 0;
2951 struct btrfs_root *root = BTRFS_I(dir)->root;
2952 struct btrfs_trans_handle *trans;
2953 unsigned long nr = 0;
2954
2955 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2956 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2957 return -ENOTEMPTY;
2958
2959 trans = __unlink_start_trans(dir, dentry);
2960 if (IS_ERR(trans))
2961 return PTR_ERR(trans);
2962
2963 btrfs_set_trans_block_group(trans, dir);
2964
2965 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2966 err = btrfs_unlink_subvol(trans, root, dir,
2967 BTRFS_I(inode)->location.objectid,
2968 dentry->d_name.name,
2969 dentry->d_name.len);
2970 goto out;
2971 }
2972
2973 err = btrfs_orphan_add(trans, inode);
2974 if (err)
2975 goto out;
2976
2977 /* now the directory is empty */
2978 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2979 dentry->d_name.name, dentry->d_name.len);
2980 if (!err)
2981 btrfs_i_size_write(inode, 0);
2982 out:
2983 nr = trans->blocks_used;
2984 __unlink_end_trans(trans, root);
2985 btrfs_btree_balance_dirty(root, nr);
2986
2987 return err;
2988 }
2989
2990 #if 0
2991 /*
2992 * when truncating bytes in a file, it is possible to avoid reading
2993 * the leaves that contain only checksum items. This can be the
2994 * majority of the IO required to delete a large file, but it must
2995 * be done carefully.
2996 *
2997 * The keys in the level just above the leaves are checked to make sure
2998 * the lowest key in a given leaf is a csum key, and starts at an offset
2999 * after the new size.
3000 *
3001 * Then the key for the next leaf is checked to make sure it also has
3002 * a checksum item for the same file. If it does, we know our target leaf
3003 * contains only checksum items, and it can be safely freed without reading
3004 * it.
3005 *
3006 * This is just an optimization targeted at large files. It may do
3007 * nothing. It will return 0 unless things went badly.
3008 */
3009 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3010 struct btrfs_root *root,
3011 struct btrfs_path *path,
3012 struct inode *inode, u64 new_size)
3013 {
3014 struct btrfs_key key;
3015 int ret;
3016 int nritems;
3017 struct btrfs_key found_key;
3018 struct btrfs_key other_key;
3019 struct btrfs_leaf_ref *ref;
3020 u64 leaf_gen;
3021 u64 leaf_start;
3022
3023 path->lowest_level = 1;
3024 key.objectid = inode->i_ino;
3025 key.type = BTRFS_CSUM_ITEM_KEY;
3026 key.offset = new_size;
3027 again:
3028 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3029 if (ret < 0)
3030 goto out;
3031
3032 if (path->nodes[1] == NULL) {
3033 ret = 0;
3034 goto out;
3035 }
3036 ret = 0;
3037 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3038 nritems = btrfs_header_nritems(path->nodes[1]);
3039
3040 if (!nritems)
3041 goto out;
3042
3043 if (path->slots[1] >= nritems)
3044 goto next_node;
3045
3046 /* did we find a key greater than anything we want to delete? */
3047 if (found_key.objectid > inode->i_ino ||
3048 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3049 goto out;
3050
3051 /* we check the next key in the node to make sure the leave contains
3052 * only checksum items. This comparison doesn't work if our
3053 * leaf is the last one in the node
3054 */
3055 if (path->slots[1] + 1 >= nritems) {
3056 next_node:
3057 /* search forward from the last key in the node, this
3058 * will bring us into the next node in the tree
3059 */
3060 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3061
3062 /* unlikely, but we inc below, so check to be safe */
3063 if (found_key.offset == (u64)-1)
3064 goto out;
3065
3066 /* search_forward needs a path with locks held, do the
3067 * search again for the original key. It is possible
3068 * this will race with a balance and return a path that
3069 * we could modify, but this drop is just an optimization
3070 * and is allowed to miss some leaves.
3071 */
3072 btrfs_release_path(root, path);
3073 found_key.offset++;
3074
3075 /* setup a max key for search_forward */
3076 other_key.offset = (u64)-1;
3077 other_key.type = key.type;
3078 other_key.objectid = key.objectid;
3079
3080 path->keep_locks = 1;
3081 ret = btrfs_search_forward(root, &found_key, &other_key,
3082 path, 0, 0);
3083 path->keep_locks = 0;
3084 if (ret || found_key.objectid != key.objectid ||
3085 found_key.type != key.type) {
3086 ret = 0;
3087 goto out;
3088 }
3089
3090 key.offset = found_key.offset;
3091 btrfs_release_path(root, path);
3092 cond_resched();
3093 goto again;
3094 }
3095
3096 /* we know there's one more slot after us in the tree,
3097 * read that key so we can verify it is also a checksum item
3098 */
3099 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3100
3101 if (found_key.objectid < inode->i_ino)
3102 goto next_key;
3103
3104 if (found_key.type != key.type || found_key.offset < new_size)
3105 goto next_key;
3106
3107 /*
3108 * if the key for the next leaf isn't a csum key from this objectid,
3109 * we can't be sure there aren't good items inside this leaf.
3110 * Bail out
3111 */
3112 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3113 goto out;
3114
3115 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3116 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3117 /*
3118 * it is safe to delete this leaf, it contains only
3119 * csum items from this inode at an offset >= new_size
3120 */
3121 ret = btrfs_del_leaf(trans, root, path, leaf_start);
3122 BUG_ON(ret);
3123
3124 if (root->ref_cows && leaf_gen < trans->transid) {
3125 ref = btrfs_alloc_leaf_ref(root, 0);
3126 if (ref) {
3127 ref->root_gen = root->root_key.offset;
3128 ref->bytenr = leaf_start;
3129 ref->owner = 0;
3130 ref->generation = leaf_gen;
3131 ref->nritems = 0;
3132
3133 btrfs_sort_leaf_ref(ref);
3134
3135 ret = btrfs_add_leaf_ref(root, ref, 0);
3136 WARN_ON(ret);
3137 btrfs_free_leaf_ref(root, ref);
3138 } else {
3139 WARN_ON(1);
3140 }
3141 }
3142 next_key:
3143 btrfs_release_path(root, path);
3144
3145 if (other_key.objectid == inode->i_ino &&
3146 other_key.type == key.type && other_key.offset > key.offset) {
3147 key.offset = other_key.offset;
3148 cond_resched();
3149 goto again;
3150 }
3151 ret = 0;
3152 out:
3153 /* fixup any changes we've made to the path */
3154 path->lowest_level = 0;
3155 path->keep_locks = 0;
3156 btrfs_release_path(root, path);
3157 return ret;
3158 }
3159
3160 #endif
3161
3162 /*
3163 * this can truncate away extent items, csum items and directory items.
3164 * It starts at a high offset and removes keys until it can't find
3165 * any higher than new_size
3166 *
3167 * csum items that cross the new i_size are truncated to the new size
3168 * as well.
3169 *
3170 * min_type is the minimum key type to truncate down to. If set to 0, this
3171 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3172 */
3173 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3174 struct btrfs_root *root,
3175 struct inode *inode,
3176 u64 new_size, u32 min_type)
3177 {
3178 struct btrfs_path *path;
3179 struct extent_buffer *leaf;
3180 struct btrfs_file_extent_item *fi;
3181 struct btrfs_key key;
3182 struct btrfs_key found_key;
3183 u64 extent_start = 0;
3184 u64 extent_num_bytes = 0;
3185 u64 extent_offset = 0;
3186 u64 item_end = 0;
3187 u64 mask = root->sectorsize - 1;
3188 u32 found_type = (u8)-1;
3189 int found_extent;
3190 int del_item;
3191 int pending_del_nr = 0;
3192 int pending_del_slot = 0;
3193 int extent_type = -1;
3194 int encoding;
3195 int ret;
3196 int err = 0;
3197
3198 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3199
3200 if (root->ref_cows)
3201 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3202
3203 path = btrfs_alloc_path();
3204 BUG_ON(!path);
3205 path->reada = -1;
3206
3207 key.objectid = inode->i_ino;
3208 key.offset = (u64)-1;
3209 key.type = (u8)-1;
3210
3211 search_again:
3212 path->leave_spinning = 1;
3213 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3214 if (ret < 0) {
3215 err = ret;
3216 goto out;
3217 }
3218
3219 if (ret > 0) {
3220 /* there are no items in the tree for us to truncate, we're
3221 * done
3222 */
3223 if (path->slots[0] == 0)
3224 goto out;
3225 path->slots[0]--;
3226 }
3227
3228 while (1) {
3229 fi = NULL;
3230 leaf = path->nodes[0];
3231 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3232 found_type = btrfs_key_type(&found_key);
3233 encoding = 0;
3234
3235 if (found_key.objectid != inode->i_ino)
3236 break;
3237
3238 if (found_type < min_type)
3239 break;
3240
3241 item_end = found_key.offset;
3242 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3243 fi = btrfs_item_ptr(leaf, path->slots[0],
3244 struct btrfs_file_extent_item);
3245 extent_type = btrfs_file_extent_type(leaf, fi);
3246 encoding = btrfs_file_extent_compression(leaf, fi);
3247 encoding |= btrfs_file_extent_encryption(leaf, fi);
3248 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3249
3250 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3251 item_end +=
3252 btrfs_file_extent_num_bytes(leaf, fi);
3253 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3254 item_end += btrfs_file_extent_inline_len(leaf,
3255 fi);
3256 }
3257 item_end--;
3258 }
3259 if (found_type > min_type) {
3260 del_item = 1;
3261 } else {
3262 if (item_end < new_size)
3263 break;
3264 if (found_key.offset >= new_size)
3265 del_item = 1;
3266 else
3267 del_item = 0;
3268 }
3269 found_extent = 0;
3270 /* FIXME, shrink the extent if the ref count is only 1 */
3271 if (found_type != BTRFS_EXTENT_DATA_KEY)
3272 goto delete;
3273
3274 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3275 u64 num_dec;
3276 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3277 if (!del_item && !encoding) {
3278 u64 orig_num_bytes =
3279 btrfs_file_extent_num_bytes(leaf, fi);
3280 extent_num_bytes = new_size -
3281 found_key.offset + root->sectorsize - 1;
3282 extent_num_bytes = extent_num_bytes &
3283 ~((u64)root->sectorsize - 1);
3284 btrfs_set_file_extent_num_bytes(leaf, fi,
3285 extent_num_bytes);
3286 num_dec = (orig_num_bytes -
3287 extent_num_bytes);
3288 if (root->ref_cows && extent_start != 0)
3289 inode_sub_bytes(inode, num_dec);
3290 btrfs_mark_buffer_dirty(leaf);
3291 } else {
3292 extent_num_bytes =
3293 btrfs_file_extent_disk_num_bytes(leaf,
3294 fi);
3295 extent_offset = found_key.offset -
3296 btrfs_file_extent_offset(leaf, fi);
3297
3298 /* FIXME blocksize != 4096 */
3299 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3300 if (extent_start != 0) {
3301 found_extent = 1;
3302 if (root->ref_cows)
3303 inode_sub_bytes(inode, num_dec);
3304 }
3305 }
3306 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3307 /*
3308 * we can't truncate inline items that have had
3309 * special encodings
3310 */
3311 if (!del_item &&
3312 btrfs_file_extent_compression(leaf, fi) == 0 &&
3313 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3314 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3315 u32 size = new_size - found_key.offset;
3316
3317 if (root->ref_cows) {
3318 inode_sub_bytes(inode, item_end + 1 -
3319 new_size);
3320 }
3321 size =
3322 btrfs_file_extent_calc_inline_size(size);
3323 ret = btrfs_truncate_item(trans, root, path,
3324 size, 1);
3325 BUG_ON(ret);
3326 } else if (root->ref_cows) {
3327 inode_sub_bytes(inode, item_end + 1 -
3328 found_key.offset);
3329 }
3330 }
3331 delete:
3332 if (del_item) {
3333 if (!pending_del_nr) {
3334 /* no pending yet, add ourselves */
3335 pending_del_slot = path->slots[0];
3336 pending_del_nr = 1;
3337 } else if (pending_del_nr &&
3338 path->slots[0] + 1 == pending_del_slot) {
3339 /* hop on the pending chunk */
3340 pending_del_nr++;
3341 pending_del_slot = path->slots[0];
3342 } else {
3343 BUG();
3344 }
3345 } else {
3346 break;
3347 }
3348 if (found_extent && root->ref_cows) {
3349 btrfs_set_path_blocking(path);
3350 ret = btrfs_free_extent(trans, root, extent_start,
3351 extent_num_bytes, 0,
3352 btrfs_header_owner(leaf),
3353 inode->i_ino, extent_offset);
3354 BUG_ON(ret);
3355 }
3356
3357 if (found_type == BTRFS_INODE_ITEM_KEY)
3358 break;
3359
3360 if (path->slots[0] == 0 ||
3361 path->slots[0] != pending_del_slot) {
3362 if (root->ref_cows) {
3363 err = -EAGAIN;
3364 goto out;
3365 }
3366 if (pending_del_nr) {
3367 ret = btrfs_del_items(trans, root, path,
3368 pending_del_slot,
3369 pending_del_nr);
3370 BUG_ON(ret);
3371 pending_del_nr = 0;
3372 }
3373 btrfs_release_path(root, path);
3374 goto search_again;
3375 } else {
3376 path->slots[0]--;
3377 }
3378 }
3379 out:
3380 if (pending_del_nr) {
3381 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3382 pending_del_nr);
3383 BUG_ON(ret);
3384 }
3385 btrfs_free_path(path);
3386 return err;
3387 }
3388
3389 /*
3390 * taken from block_truncate_page, but does cow as it zeros out
3391 * any bytes left in the last page in the file.
3392 */
3393 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3394 {
3395 struct inode *inode = mapping->host;
3396 struct btrfs_root *root = BTRFS_I(inode)->root;
3397 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3398 struct btrfs_ordered_extent *ordered;
3399 struct extent_state *cached_state = NULL;
3400 char *kaddr;
3401 u32 blocksize = root->sectorsize;
3402 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3403 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3404 struct page *page;
3405 int ret = 0;
3406 u64 page_start;
3407 u64 page_end;
3408
3409 if ((offset & (blocksize - 1)) == 0)
3410 goto out;
3411 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3412 if (ret)
3413 goto out;
3414
3415 ret = -ENOMEM;
3416 again:
3417 page = grab_cache_page(mapping, index);
3418 if (!page) {
3419 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3420 goto out;
3421 }
3422
3423 page_start = page_offset(page);
3424 page_end = page_start + PAGE_CACHE_SIZE - 1;
3425
3426 if (!PageUptodate(page)) {
3427 ret = btrfs_readpage(NULL, page);
3428 lock_page(page);
3429 if (page->mapping != mapping) {
3430 unlock_page(page);
3431 page_cache_release(page);
3432 goto again;
3433 }
3434 if (!PageUptodate(page)) {
3435 ret = -EIO;
3436 goto out_unlock;
3437 }
3438 }
3439 wait_on_page_writeback(page);
3440
3441 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3442 GFP_NOFS);
3443 set_page_extent_mapped(page);
3444
3445 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3446 if (ordered) {
3447 unlock_extent_cached(io_tree, page_start, page_end,
3448 &cached_state, GFP_NOFS);
3449 unlock_page(page);
3450 page_cache_release(page);
3451 btrfs_start_ordered_extent(inode, ordered, 1);
3452 btrfs_put_ordered_extent(ordered);
3453 goto again;
3454 }
3455
3456 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3457 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3458 0, 0, &cached_state, GFP_NOFS);
3459
3460 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3461 &cached_state);
3462 if (ret) {
3463 unlock_extent_cached(io_tree, page_start, page_end,
3464 &cached_state, GFP_NOFS);
3465 goto out_unlock;
3466 }
3467
3468 ret = 0;
3469 if (offset != PAGE_CACHE_SIZE) {
3470 kaddr = kmap(page);
3471 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3472 flush_dcache_page(page);
3473 kunmap(page);
3474 }
3475 ClearPageChecked(page);
3476 set_page_dirty(page);
3477 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3478 GFP_NOFS);
3479
3480 out_unlock:
3481 if (ret)
3482 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3483 unlock_page(page);
3484 page_cache_release(page);
3485 out:
3486 return ret;
3487 }
3488
3489 int btrfs_cont_expand(struct inode *inode, loff_t size)
3490 {
3491 struct btrfs_trans_handle *trans;
3492 struct btrfs_root *root = BTRFS_I(inode)->root;
3493 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3494 struct extent_map *em = NULL;
3495 struct extent_state *cached_state = NULL;
3496 u64 mask = root->sectorsize - 1;
3497 u64 hole_start = (inode->i_size + mask) & ~mask;
3498 u64 block_end = (size + mask) & ~mask;
3499 u64 last_byte;
3500 u64 cur_offset;
3501 u64 hole_size;
3502 int err = 0;
3503
3504 if (size <= hole_start)
3505 return 0;
3506
3507 while (1) {
3508 struct btrfs_ordered_extent *ordered;
3509 btrfs_wait_ordered_range(inode, hole_start,
3510 block_end - hole_start);
3511 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3512 &cached_state, GFP_NOFS);
3513 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3514 if (!ordered)
3515 break;
3516 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3517 &cached_state, GFP_NOFS);
3518 btrfs_put_ordered_extent(ordered);
3519 }
3520
3521 cur_offset = hole_start;
3522 while (1) {
3523 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3524 block_end - cur_offset, 0);
3525 BUG_ON(IS_ERR(em) || !em);
3526 last_byte = min(extent_map_end(em), block_end);
3527 last_byte = (last_byte + mask) & ~mask;
3528 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3529 u64 hint_byte = 0;
3530 hole_size = last_byte - cur_offset;
3531
3532 trans = btrfs_start_transaction(root, 2);
3533 if (IS_ERR(trans)) {
3534 err = PTR_ERR(trans);
3535 break;
3536 }
3537 btrfs_set_trans_block_group(trans, inode);
3538
3539 err = btrfs_drop_extents(trans, inode, cur_offset,
3540 cur_offset + hole_size,
3541 &hint_byte, 1);
3542 BUG_ON(err);
3543
3544 err = btrfs_insert_file_extent(trans, root,
3545 inode->i_ino, cur_offset, 0,
3546 0, hole_size, 0, hole_size,
3547 0, 0, 0);
3548 BUG_ON(err);
3549
3550 btrfs_drop_extent_cache(inode, hole_start,
3551 last_byte - 1, 0);
3552
3553 btrfs_end_transaction(trans, root);
3554 }
3555 free_extent_map(em);
3556 em = NULL;
3557 cur_offset = last_byte;
3558 if (cur_offset >= block_end)
3559 break;
3560 }
3561
3562 free_extent_map(em);
3563 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3564 GFP_NOFS);
3565 return err;
3566 }
3567
3568 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3569 {
3570 struct btrfs_root *root = BTRFS_I(inode)->root;
3571 struct btrfs_trans_handle *trans;
3572 unsigned long nr;
3573 int ret;
3574
3575 if (attr->ia_size == inode->i_size)
3576 return 0;
3577
3578 if (attr->ia_size > inode->i_size) {
3579 unsigned long limit;
3580 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3581 if (attr->ia_size > inode->i_sb->s_maxbytes)
3582 return -EFBIG;
3583 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3584 send_sig(SIGXFSZ, current, 0);
3585 return -EFBIG;
3586 }
3587 }
3588
3589 trans = btrfs_start_transaction(root, 5);
3590 if (IS_ERR(trans))
3591 return PTR_ERR(trans);
3592
3593 btrfs_set_trans_block_group(trans, inode);
3594
3595 ret = btrfs_orphan_add(trans, inode);
3596 BUG_ON(ret);
3597
3598 nr = trans->blocks_used;
3599 btrfs_end_transaction(trans, root);
3600 btrfs_btree_balance_dirty(root, nr);
3601
3602 if (attr->ia_size > inode->i_size) {
3603 ret = btrfs_cont_expand(inode, attr->ia_size);
3604 if (ret) {
3605 btrfs_truncate(inode);
3606 return ret;
3607 }
3608
3609 i_size_write(inode, attr->ia_size);
3610 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3611
3612 trans = btrfs_start_transaction(root, 0);
3613 BUG_ON(IS_ERR(trans));
3614 btrfs_set_trans_block_group(trans, inode);
3615 trans->block_rsv = root->orphan_block_rsv;
3616 BUG_ON(!trans->block_rsv);
3617
3618 ret = btrfs_update_inode(trans, root, inode);
3619 BUG_ON(ret);
3620 if (inode->i_nlink > 0) {
3621 ret = btrfs_orphan_del(trans, inode);
3622 BUG_ON(ret);
3623 }
3624 nr = trans->blocks_used;
3625 btrfs_end_transaction(trans, root);
3626 btrfs_btree_balance_dirty(root, nr);
3627 return 0;
3628 }
3629
3630 /*
3631 * We're truncating a file that used to have good data down to
3632 * zero. Make sure it gets into the ordered flush list so that
3633 * any new writes get down to disk quickly.
3634 */
3635 if (attr->ia_size == 0)
3636 BTRFS_I(inode)->ordered_data_close = 1;
3637
3638 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3639 ret = vmtruncate(inode, attr->ia_size);
3640 BUG_ON(ret);
3641
3642 return 0;
3643 }
3644
3645 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3646 {
3647 struct inode *inode = dentry->d_inode;
3648 int err;
3649
3650 err = inode_change_ok(inode, attr);
3651 if (err)
3652 return err;
3653
3654 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3655 err = btrfs_setattr_size(inode, attr);
3656 if (err)
3657 return err;
3658 }
3659
3660 if (attr->ia_valid) {
3661 setattr_copy(inode, attr);
3662 mark_inode_dirty(inode);
3663
3664 if (attr->ia_valid & ATTR_MODE)
3665 err = btrfs_acl_chmod(inode);
3666 }
3667
3668 return err;
3669 }
3670
3671 void btrfs_delete_inode(struct inode *inode)
3672 {
3673 struct btrfs_trans_handle *trans;
3674 struct btrfs_root *root = BTRFS_I(inode)->root;
3675 unsigned long nr;
3676 int ret;
3677
3678 truncate_inode_pages(&inode->i_data, 0);
3679 if (is_bad_inode(inode)) {
3680 btrfs_orphan_del(NULL, inode);
3681 goto no_delete;
3682 }
3683 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3684
3685 if (root->fs_info->log_root_recovering) {
3686 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3687 goto no_delete;
3688 }
3689
3690 if (inode->i_nlink > 0) {
3691 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3692 goto no_delete;
3693 }
3694
3695 btrfs_i_size_write(inode, 0);
3696
3697 while (1) {
3698 trans = btrfs_start_transaction(root, 0);
3699 BUG_ON(IS_ERR(trans));
3700 btrfs_set_trans_block_group(trans, inode);
3701 trans->block_rsv = root->orphan_block_rsv;
3702
3703 ret = btrfs_block_rsv_check(trans, root,
3704 root->orphan_block_rsv, 0, 5);
3705 if (ret) {
3706 BUG_ON(ret != -EAGAIN);
3707 ret = btrfs_commit_transaction(trans, root);
3708 BUG_ON(ret);
3709 continue;
3710 }
3711
3712 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3713 if (ret != -EAGAIN)
3714 break;
3715
3716 nr = trans->blocks_used;
3717 btrfs_end_transaction(trans, root);
3718 trans = NULL;
3719 btrfs_btree_balance_dirty(root, nr);
3720
3721 }
3722
3723 if (ret == 0) {
3724 ret = btrfs_orphan_del(trans, inode);
3725 BUG_ON(ret);
3726 }
3727
3728 nr = trans->blocks_used;
3729 btrfs_end_transaction(trans, root);
3730 btrfs_btree_balance_dirty(root, nr);
3731 no_delete:
3732 clear_inode(inode);
3733 return;
3734 }
3735
3736 /*
3737 * this returns the key found in the dir entry in the location pointer.
3738 * If no dir entries were found, location->objectid is 0.
3739 */
3740 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3741 struct btrfs_key *location)
3742 {
3743 const char *name = dentry->d_name.name;
3744 int namelen = dentry->d_name.len;
3745 struct btrfs_dir_item *di;
3746 struct btrfs_path *path;
3747 struct btrfs_root *root = BTRFS_I(dir)->root;
3748 int ret = 0;
3749
3750 path = btrfs_alloc_path();
3751 BUG_ON(!path);
3752
3753 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3754 namelen, 0);
3755 if (IS_ERR(di))
3756 ret = PTR_ERR(di);
3757
3758 if (!di || IS_ERR(di))
3759 goto out_err;
3760
3761 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3762 out:
3763 btrfs_free_path(path);
3764 return ret;
3765 out_err:
3766 location->objectid = 0;
3767 goto out;
3768 }
3769
3770 /*
3771 * when we hit a tree root in a directory, the btrfs part of the inode
3772 * needs to be changed to reflect the root directory of the tree root. This
3773 * is kind of like crossing a mount point.
3774 */
3775 static int fixup_tree_root_location(struct btrfs_root *root,
3776 struct inode *dir,
3777 struct dentry *dentry,
3778 struct btrfs_key *location,
3779 struct btrfs_root **sub_root)
3780 {
3781 struct btrfs_path *path;
3782 struct btrfs_root *new_root;
3783 struct btrfs_root_ref *ref;
3784 struct extent_buffer *leaf;
3785 int ret;
3786 int err = 0;
3787
3788 path = btrfs_alloc_path();
3789 if (!path) {
3790 err = -ENOMEM;
3791 goto out;
3792 }
3793
3794 err = -ENOENT;
3795 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3796 BTRFS_I(dir)->root->root_key.objectid,
3797 location->objectid);
3798 if (ret) {
3799 if (ret < 0)
3800 err = ret;
3801 goto out;
3802 }
3803
3804 leaf = path->nodes[0];
3805 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3806 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3807 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3808 goto out;
3809
3810 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3811 (unsigned long)(ref + 1),
3812 dentry->d_name.len);
3813 if (ret)
3814 goto out;
3815
3816 btrfs_release_path(root->fs_info->tree_root, path);
3817
3818 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3819 if (IS_ERR(new_root)) {
3820 err = PTR_ERR(new_root);
3821 goto out;
3822 }
3823
3824 if (btrfs_root_refs(&new_root->root_item) == 0) {
3825 err = -ENOENT;
3826 goto out;
3827 }
3828
3829 *sub_root = new_root;
3830 location->objectid = btrfs_root_dirid(&new_root->root_item);
3831 location->type = BTRFS_INODE_ITEM_KEY;
3832 location->offset = 0;
3833 err = 0;
3834 out:
3835 btrfs_free_path(path);
3836 return err;
3837 }
3838
3839 static void inode_tree_add(struct inode *inode)
3840 {
3841 struct btrfs_root *root = BTRFS_I(inode)->root;
3842 struct btrfs_inode *entry;
3843 struct rb_node **p;
3844 struct rb_node *parent;
3845 again:
3846 p = &root->inode_tree.rb_node;
3847 parent = NULL;
3848
3849 if (hlist_unhashed(&inode->i_hash))
3850 return;
3851
3852 spin_lock(&root->inode_lock);
3853 while (*p) {
3854 parent = *p;
3855 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3856
3857 if (inode->i_ino < entry->vfs_inode.i_ino)
3858 p = &parent->rb_left;
3859 else if (inode->i_ino > entry->vfs_inode.i_ino)
3860 p = &parent->rb_right;
3861 else {
3862 WARN_ON(!(entry->vfs_inode.i_state &
3863 (I_WILL_FREE | I_FREEING | I_CLEAR)));
3864 rb_erase(parent, &root->inode_tree);
3865 RB_CLEAR_NODE(parent);
3866 spin_unlock(&root->inode_lock);
3867 goto again;
3868 }
3869 }
3870 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3871 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3872 spin_unlock(&root->inode_lock);
3873 }
3874
3875 static void inode_tree_del(struct inode *inode)
3876 {
3877 struct btrfs_root *root = BTRFS_I(inode)->root;
3878 int empty = 0;
3879
3880 spin_lock(&root->inode_lock);
3881 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3882 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3883 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3884 empty = RB_EMPTY_ROOT(&root->inode_tree);
3885 }
3886 spin_unlock(&root->inode_lock);
3887
3888 if (empty && btrfs_root_refs(&root->root_item) == 0) {
3889 synchronize_srcu(&root->fs_info->subvol_srcu);
3890 spin_lock(&root->inode_lock);
3891 empty = RB_EMPTY_ROOT(&root->inode_tree);
3892 spin_unlock(&root->inode_lock);
3893 if (empty)
3894 btrfs_add_dead_root(root);
3895 }
3896 }
3897
3898 int btrfs_invalidate_inodes(struct btrfs_root *root)
3899 {
3900 struct rb_node *node;
3901 struct rb_node *prev;
3902 struct btrfs_inode *entry;
3903 struct inode *inode;
3904 u64 objectid = 0;
3905
3906 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3907
3908 spin_lock(&root->inode_lock);
3909 again:
3910 node = root->inode_tree.rb_node;
3911 prev = NULL;
3912 while (node) {
3913 prev = node;
3914 entry = rb_entry(node, struct btrfs_inode, rb_node);
3915
3916 if (objectid < entry->vfs_inode.i_ino)
3917 node = node->rb_left;
3918 else if (objectid > entry->vfs_inode.i_ino)
3919 node = node->rb_right;
3920 else
3921 break;
3922 }
3923 if (!node) {
3924 while (prev) {
3925 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3926 if (objectid <= entry->vfs_inode.i_ino) {
3927 node = prev;
3928 break;
3929 }
3930 prev = rb_next(prev);
3931 }
3932 }
3933 while (node) {
3934 entry = rb_entry(node, struct btrfs_inode, rb_node);
3935 objectid = entry->vfs_inode.i_ino + 1;
3936 inode = igrab(&entry->vfs_inode);
3937 if (inode) {
3938 spin_unlock(&root->inode_lock);
3939 if (atomic_read(&inode->i_count) > 1)
3940 d_prune_aliases(inode);
3941 /*
3942 * btrfs_drop_inode will remove it from
3943 * the inode cache when its usage count
3944 * hits zero.
3945 */
3946 iput(inode);
3947 cond_resched();
3948 spin_lock(&root->inode_lock);
3949 goto again;
3950 }
3951
3952 if (cond_resched_lock(&root->inode_lock))
3953 goto again;
3954
3955 node = rb_next(node);
3956 }
3957 spin_unlock(&root->inode_lock);
3958 return 0;
3959 }
3960
3961 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3962 {
3963 struct btrfs_iget_args *args = p;
3964 inode->i_ino = args->ino;
3965 BTRFS_I(inode)->root = args->root;
3966 btrfs_set_inode_space_info(args->root, inode);
3967 return 0;
3968 }
3969
3970 static int btrfs_find_actor(struct inode *inode, void *opaque)
3971 {
3972 struct btrfs_iget_args *args = opaque;
3973 return args->ino == inode->i_ino &&
3974 args->root == BTRFS_I(inode)->root;
3975 }
3976
3977 static struct inode *btrfs_iget_locked(struct super_block *s,
3978 u64 objectid,
3979 struct btrfs_root *root)
3980 {
3981 struct inode *inode;
3982 struct btrfs_iget_args args;
3983 args.ino = objectid;
3984 args.root = root;
3985
3986 inode = iget5_locked(s, objectid, btrfs_find_actor,
3987 btrfs_init_locked_inode,
3988 (void *)&args);
3989 return inode;
3990 }
3991
3992 /* Get an inode object given its location and corresponding root.
3993 * Returns in *is_new if the inode was read from disk
3994 */
3995 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3996 struct btrfs_root *root, int *new)
3997 {
3998 struct inode *inode;
3999
4000 inode = btrfs_iget_locked(s, location->objectid, root);
4001 if (!inode)
4002 return ERR_PTR(-ENOMEM);
4003
4004 if (inode->i_state & I_NEW) {
4005 BTRFS_I(inode)->root = root;
4006 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4007 btrfs_read_locked_inode(inode);
4008
4009 inode_tree_add(inode);
4010 unlock_new_inode(inode);
4011 if (new)
4012 *new = 1;
4013 }
4014
4015 return inode;
4016 }
4017
4018 static struct inode *new_simple_dir(struct super_block *s,
4019 struct btrfs_key *key,
4020 struct btrfs_root *root)
4021 {
4022 struct inode *inode = new_inode(s);
4023
4024 if (!inode)
4025 return ERR_PTR(-ENOMEM);
4026
4027 BTRFS_I(inode)->root = root;
4028 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4029 BTRFS_I(inode)->dummy_inode = 1;
4030
4031 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4032 inode->i_op = &simple_dir_inode_operations;
4033 inode->i_fop = &simple_dir_operations;
4034 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4035 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4036
4037 return inode;
4038 }
4039
4040 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4041 {
4042 struct inode *inode;
4043 struct btrfs_root *root = BTRFS_I(dir)->root;
4044 struct btrfs_root *sub_root = root;
4045 struct btrfs_key location;
4046 int index;
4047 int ret;
4048
4049 dentry->d_op = &btrfs_dentry_operations;
4050
4051 if (dentry->d_name.len > BTRFS_NAME_LEN)
4052 return ERR_PTR(-ENAMETOOLONG);
4053
4054 ret = btrfs_inode_by_name(dir, dentry, &location);
4055
4056 if (ret < 0)
4057 return ERR_PTR(ret);
4058
4059 if (location.objectid == 0)
4060 return NULL;
4061
4062 if (location.type == BTRFS_INODE_ITEM_KEY) {
4063 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4064 return inode;
4065 }
4066
4067 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4068
4069 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4070 ret = fixup_tree_root_location(root, dir, dentry,
4071 &location, &sub_root);
4072 if (ret < 0) {
4073 if (ret != -ENOENT)
4074 inode = ERR_PTR(ret);
4075 else
4076 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4077 } else {
4078 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4079 }
4080 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4081
4082 if (root != sub_root) {
4083 down_read(&root->fs_info->cleanup_work_sem);
4084 if (!(inode->i_sb->s_flags & MS_RDONLY))
4085 btrfs_orphan_cleanup(sub_root);
4086 up_read(&root->fs_info->cleanup_work_sem);
4087 }
4088
4089 return inode;
4090 }
4091
4092 static int btrfs_dentry_delete(struct dentry *dentry)
4093 {
4094 struct btrfs_root *root;
4095
4096 if (!dentry->d_inode && !IS_ROOT(dentry))
4097 dentry = dentry->d_parent;
4098
4099 if (dentry->d_inode) {
4100 root = BTRFS_I(dentry->d_inode)->root;
4101 if (btrfs_root_refs(&root->root_item) == 0)
4102 return 1;
4103 }
4104 return 0;
4105 }
4106
4107 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4108 struct nameidata *nd)
4109 {
4110 struct inode *inode;
4111
4112 inode = btrfs_lookup_dentry(dir, dentry);
4113 if (IS_ERR(inode))
4114 return ERR_CAST(inode);
4115
4116 return d_splice_alias(inode, dentry);
4117 }
4118
4119 static unsigned char btrfs_filetype_table[] = {
4120 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4121 };
4122
4123 static int btrfs_real_readdir(struct file *filp, void *dirent,
4124 filldir_t filldir)
4125 {
4126 struct inode *inode = filp->f_dentry->d_inode;
4127 struct btrfs_root *root = BTRFS_I(inode)->root;
4128 struct btrfs_item *item;
4129 struct btrfs_dir_item *di;
4130 struct btrfs_key key;
4131 struct btrfs_key found_key;
4132 struct btrfs_path *path;
4133 int ret;
4134 u32 nritems;
4135 struct extent_buffer *leaf;
4136 int slot;
4137 int advance;
4138 unsigned char d_type;
4139 int over = 0;
4140 u32 di_cur;
4141 u32 di_total;
4142 u32 di_len;
4143 int key_type = BTRFS_DIR_INDEX_KEY;
4144 char tmp_name[32];
4145 char *name_ptr;
4146 int name_len;
4147
4148 /* FIXME, use a real flag for deciding about the key type */
4149 if (root->fs_info->tree_root == root)
4150 key_type = BTRFS_DIR_ITEM_KEY;
4151
4152 /* special case for "." */
4153 if (filp->f_pos == 0) {
4154 over = filldir(dirent, ".", 1,
4155 1, inode->i_ino,
4156 DT_DIR);
4157 if (over)
4158 return 0;
4159 filp->f_pos = 1;
4160 }
4161 /* special case for .., just use the back ref */
4162 if (filp->f_pos == 1) {
4163 u64 pino = parent_ino(filp->f_path.dentry);
4164 over = filldir(dirent, "..", 2,
4165 2, pino, DT_DIR);
4166 if (over)
4167 return 0;
4168 filp->f_pos = 2;
4169 }
4170 path = btrfs_alloc_path();
4171 path->reada = 2;
4172
4173 btrfs_set_key_type(&key, key_type);
4174 key.offset = filp->f_pos;
4175 key.objectid = inode->i_ino;
4176
4177 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4178 if (ret < 0)
4179 goto err;
4180 advance = 0;
4181
4182 while (1) {
4183 leaf = path->nodes[0];
4184 nritems = btrfs_header_nritems(leaf);
4185 slot = path->slots[0];
4186 if (advance || slot >= nritems) {
4187 if (slot >= nritems - 1) {
4188 ret = btrfs_next_leaf(root, path);
4189 if (ret)
4190 break;
4191 leaf = path->nodes[0];
4192 nritems = btrfs_header_nritems(leaf);
4193 slot = path->slots[0];
4194 } else {
4195 slot++;
4196 path->slots[0]++;
4197 }
4198 }
4199
4200 advance = 1;
4201 item = btrfs_item_nr(leaf, slot);
4202 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4203
4204 if (found_key.objectid != key.objectid)
4205 break;
4206 if (btrfs_key_type(&found_key) != key_type)
4207 break;
4208 if (found_key.offset < filp->f_pos)
4209 continue;
4210
4211 filp->f_pos = found_key.offset;
4212
4213 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4214 di_cur = 0;
4215 di_total = btrfs_item_size(leaf, item);
4216
4217 while (di_cur < di_total) {
4218 struct btrfs_key location;
4219
4220 name_len = btrfs_dir_name_len(leaf, di);
4221 if (name_len <= sizeof(tmp_name)) {
4222 name_ptr = tmp_name;
4223 } else {
4224 name_ptr = kmalloc(name_len, GFP_NOFS);
4225 if (!name_ptr) {
4226 ret = -ENOMEM;
4227 goto err;
4228 }
4229 }
4230 read_extent_buffer(leaf, name_ptr,
4231 (unsigned long)(di + 1), name_len);
4232
4233 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4234 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4235
4236 /* is this a reference to our own snapshot? If so
4237 * skip it
4238 */
4239 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4240 location.objectid == root->root_key.objectid) {
4241 over = 0;
4242 goto skip;
4243 }
4244 over = filldir(dirent, name_ptr, name_len,
4245 found_key.offset, location.objectid,
4246 d_type);
4247
4248 skip:
4249 if (name_ptr != tmp_name)
4250 kfree(name_ptr);
4251
4252 if (over)
4253 goto nopos;
4254 di_len = btrfs_dir_name_len(leaf, di) +
4255 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4256 di_cur += di_len;
4257 di = (struct btrfs_dir_item *)((char *)di + di_len);
4258 }
4259 }
4260
4261 /* Reached end of directory/root. Bump pos past the last item. */
4262 if (key_type == BTRFS_DIR_INDEX_KEY)
4263 /*
4264 * 32-bit glibc will use getdents64, but then strtol -
4265 * so the last number we can serve is this.
4266 */
4267 filp->f_pos = 0x7fffffff;
4268 else
4269 filp->f_pos++;
4270 nopos:
4271 ret = 0;
4272 err:
4273 btrfs_free_path(path);
4274 return ret;
4275 }
4276
4277 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4278 {
4279 struct btrfs_root *root = BTRFS_I(inode)->root;
4280 struct btrfs_trans_handle *trans;
4281 int ret = 0;
4282
4283 if (BTRFS_I(inode)->dummy_inode)
4284 return 0;
4285
4286 if (wbc->sync_mode == WB_SYNC_ALL) {
4287 trans = btrfs_join_transaction(root, 1);
4288 btrfs_set_trans_block_group(trans, inode);
4289 ret = btrfs_commit_transaction(trans, root);
4290 }
4291 return ret;
4292 }
4293
4294 /*
4295 * This is somewhat expensive, updating the tree every time the
4296 * inode changes. But, it is most likely to find the inode in cache.
4297 * FIXME, needs more benchmarking...there are no reasons other than performance
4298 * to keep or drop this code.
4299 */
4300 void btrfs_dirty_inode(struct inode *inode)
4301 {
4302 struct btrfs_root *root = BTRFS_I(inode)->root;
4303 struct btrfs_trans_handle *trans;
4304 int ret;
4305
4306 if (BTRFS_I(inode)->dummy_inode)
4307 return;
4308
4309 trans = btrfs_join_transaction(root, 1);
4310 btrfs_set_trans_block_group(trans, inode);
4311
4312 ret = btrfs_update_inode(trans, root, inode);
4313 if (ret && ret == -ENOSPC) {
4314 /* whoops, lets try again with the full transaction */
4315 btrfs_end_transaction(trans, root);
4316 trans = btrfs_start_transaction(root, 1);
4317 if (IS_ERR(trans)) {
4318 if (printk_ratelimit()) {
4319 printk(KERN_ERR "btrfs: fail to "
4320 "dirty inode %lu error %ld\n",
4321 inode->i_ino, PTR_ERR(trans));
4322 }
4323 return;
4324 }
4325 btrfs_set_trans_block_group(trans, inode);
4326
4327 ret = btrfs_update_inode(trans, root, inode);
4328 if (ret) {
4329 if (printk_ratelimit()) {
4330 printk(KERN_ERR "btrfs: fail to "
4331 "dirty inode %lu error %d\n",
4332 inode->i_ino, ret);
4333 }
4334 }
4335 }
4336 btrfs_end_transaction(trans, root);
4337 }
4338
4339 /*
4340 * find the highest existing sequence number in a directory
4341 * and then set the in-memory index_cnt variable to reflect
4342 * free sequence numbers
4343 */
4344 static int btrfs_set_inode_index_count(struct inode *inode)
4345 {
4346 struct btrfs_root *root = BTRFS_I(inode)->root;
4347 struct btrfs_key key, found_key;
4348 struct btrfs_path *path;
4349 struct extent_buffer *leaf;
4350 int ret;
4351
4352 key.objectid = inode->i_ino;
4353 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4354 key.offset = (u64)-1;
4355
4356 path = btrfs_alloc_path();
4357 if (!path)
4358 return -ENOMEM;
4359
4360 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4361 if (ret < 0)
4362 goto out;
4363 /* FIXME: we should be able to handle this */
4364 if (ret == 0)
4365 goto out;
4366 ret = 0;
4367
4368 /*
4369 * MAGIC NUMBER EXPLANATION:
4370 * since we search a directory based on f_pos we have to start at 2
4371 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4372 * else has to start at 2
4373 */
4374 if (path->slots[0] == 0) {
4375 BTRFS_I(inode)->index_cnt = 2;
4376 goto out;
4377 }
4378
4379 path->slots[0]--;
4380
4381 leaf = path->nodes[0];
4382 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4383
4384 if (found_key.objectid != inode->i_ino ||
4385 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4386 BTRFS_I(inode)->index_cnt = 2;
4387 goto out;
4388 }
4389
4390 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4391 out:
4392 btrfs_free_path(path);
4393 return ret;
4394 }
4395
4396 /*
4397 * helper to find a free sequence number in a given directory. This current
4398 * code is very simple, later versions will do smarter things in the btree
4399 */
4400 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4401 {
4402 int ret = 0;
4403
4404 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4405 ret = btrfs_set_inode_index_count(dir);
4406 if (ret)
4407 return ret;
4408 }
4409
4410 *index = BTRFS_I(dir)->index_cnt;
4411 BTRFS_I(dir)->index_cnt++;
4412
4413 return ret;
4414 }
4415
4416 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4417 struct btrfs_root *root,
4418 struct inode *dir,
4419 const char *name, int name_len,
4420 u64 ref_objectid, u64 objectid,
4421 u64 alloc_hint, int mode, u64 *index)
4422 {
4423 struct inode *inode;
4424 struct btrfs_inode_item *inode_item;
4425 struct btrfs_key *location;
4426 struct btrfs_path *path;
4427 struct btrfs_inode_ref *ref;
4428 struct btrfs_key key[2];
4429 u32 sizes[2];
4430 unsigned long ptr;
4431 int ret;
4432 int owner;
4433
4434 path = btrfs_alloc_path();
4435 BUG_ON(!path);
4436
4437 inode = new_inode(root->fs_info->sb);
4438 if (!inode)
4439 return ERR_PTR(-ENOMEM);
4440
4441 if (dir) {
4442 ret = btrfs_set_inode_index(dir, index);
4443 if (ret) {
4444 iput(inode);
4445 return ERR_PTR(ret);
4446 }
4447 }
4448 /*
4449 * index_cnt is ignored for everything but a dir,
4450 * btrfs_get_inode_index_count has an explanation for the magic
4451 * number
4452 */
4453 BTRFS_I(inode)->index_cnt = 2;
4454 BTRFS_I(inode)->root = root;
4455 BTRFS_I(inode)->generation = trans->transid;
4456 btrfs_set_inode_space_info(root, inode);
4457
4458 if (mode & S_IFDIR)
4459 owner = 0;
4460 else
4461 owner = 1;
4462 BTRFS_I(inode)->block_group =
4463 btrfs_find_block_group(root, 0, alloc_hint, owner);
4464
4465 key[0].objectid = objectid;
4466 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4467 key[0].offset = 0;
4468
4469 key[1].objectid = objectid;
4470 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4471 key[1].offset = ref_objectid;
4472
4473 sizes[0] = sizeof(struct btrfs_inode_item);
4474 sizes[1] = name_len + sizeof(*ref);
4475
4476 path->leave_spinning = 1;
4477 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4478 if (ret != 0)
4479 goto fail;
4480
4481 inode_init_owner(inode, dir, mode);
4482 inode->i_ino = objectid;
4483 inode_set_bytes(inode, 0);
4484 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4485 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4486 struct btrfs_inode_item);
4487 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4488
4489 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4490 struct btrfs_inode_ref);
4491 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4492 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4493 ptr = (unsigned long)(ref + 1);
4494 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4495
4496 btrfs_mark_buffer_dirty(path->nodes[0]);
4497 btrfs_free_path(path);
4498
4499 location = &BTRFS_I(inode)->location;
4500 location->objectid = objectid;
4501 location->offset = 0;
4502 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4503
4504 btrfs_inherit_iflags(inode, dir);
4505
4506 if ((mode & S_IFREG)) {
4507 if (btrfs_test_opt(root, NODATASUM))
4508 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4509 if (btrfs_test_opt(root, NODATACOW))
4510 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4511 }
4512
4513 insert_inode_hash(inode);
4514 inode_tree_add(inode);
4515 return inode;
4516 fail:
4517 if (dir)
4518 BTRFS_I(dir)->index_cnt--;
4519 btrfs_free_path(path);
4520 iput(inode);
4521 return ERR_PTR(ret);
4522 }
4523
4524 static inline u8 btrfs_inode_type(struct inode *inode)
4525 {
4526 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4527 }
4528
4529 /*
4530 * utility function to add 'inode' into 'parent_inode' with
4531 * a give name and a given sequence number.
4532 * if 'add_backref' is true, also insert a backref from the
4533 * inode to the parent directory.
4534 */
4535 int btrfs_add_link(struct btrfs_trans_handle *trans,
4536 struct inode *parent_inode, struct inode *inode,
4537 const char *name, int name_len, int add_backref, u64 index)
4538 {
4539 int ret = 0;
4540 struct btrfs_key key;
4541 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4542
4543 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4544 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4545 } else {
4546 key.objectid = inode->i_ino;
4547 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4548 key.offset = 0;
4549 }
4550
4551 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4552 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4553 key.objectid, root->root_key.objectid,
4554 parent_inode->i_ino,
4555 index, name, name_len);
4556 } else if (add_backref) {
4557 ret = btrfs_insert_inode_ref(trans, root,
4558 name, name_len, inode->i_ino,
4559 parent_inode->i_ino, index);
4560 }
4561
4562 if (ret == 0) {
4563 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4564 parent_inode->i_ino, &key,
4565 btrfs_inode_type(inode), index);
4566 BUG_ON(ret);
4567
4568 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4569 name_len * 2);
4570 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4571 ret = btrfs_update_inode(trans, root, parent_inode);
4572 }
4573 return ret;
4574 }
4575
4576 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4577 struct dentry *dentry, struct inode *inode,
4578 int backref, u64 index)
4579 {
4580 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4581 inode, dentry->d_name.name,
4582 dentry->d_name.len, backref, index);
4583 if (!err) {
4584 d_instantiate(dentry, inode);
4585 return 0;
4586 }
4587 if (err > 0)
4588 err = -EEXIST;
4589 return err;
4590 }
4591
4592 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4593 int mode, dev_t rdev)
4594 {
4595 struct btrfs_trans_handle *trans;
4596 struct btrfs_root *root = BTRFS_I(dir)->root;
4597 struct inode *inode = NULL;
4598 int err;
4599 int drop_inode = 0;
4600 u64 objectid;
4601 unsigned long nr = 0;
4602 u64 index = 0;
4603
4604 if (!new_valid_dev(rdev))
4605 return -EINVAL;
4606
4607 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4608 if (err)
4609 return err;
4610
4611 /*
4612 * 2 for inode item and ref
4613 * 2 for dir items
4614 * 1 for xattr if selinux is on
4615 */
4616 trans = btrfs_start_transaction(root, 5);
4617 if (IS_ERR(trans))
4618 return PTR_ERR(trans);
4619
4620 btrfs_set_trans_block_group(trans, dir);
4621
4622 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4623 dentry->d_name.len,
4624 dentry->d_parent->d_inode->i_ino, objectid,
4625 BTRFS_I(dir)->block_group, mode, &index);
4626 err = PTR_ERR(inode);
4627 if (IS_ERR(inode))
4628 goto out_unlock;
4629
4630 err = btrfs_init_inode_security(trans, inode, dir);
4631 if (err) {
4632 drop_inode = 1;
4633 goto out_unlock;
4634 }
4635
4636 btrfs_set_trans_block_group(trans, inode);
4637 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4638 if (err)
4639 drop_inode = 1;
4640 else {
4641 inode->i_op = &btrfs_special_inode_operations;
4642 init_special_inode(inode, inode->i_mode, rdev);
4643 btrfs_update_inode(trans, root, inode);
4644 }
4645 btrfs_update_inode_block_group(trans, inode);
4646 btrfs_update_inode_block_group(trans, dir);
4647 out_unlock:
4648 nr = trans->blocks_used;
4649 btrfs_end_transaction_throttle(trans, root);
4650 btrfs_btree_balance_dirty(root, nr);
4651 if (drop_inode) {
4652 inode_dec_link_count(inode);
4653 iput(inode);
4654 }
4655 return err;
4656 }
4657
4658 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4659 int mode, struct nameidata *nd)
4660 {
4661 struct btrfs_trans_handle *trans;
4662 struct btrfs_root *root = BTRFS_I(dir)->root;
4663 struct inode *inode = NULL;
4664 int drop_inode = 0;
4665 int err;
4666 unsigned long nr = 0;
4667 u64 objectid;
4668 u64 index = 0;
4669
4670 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4671 if (err)
4672 return err;
4673 /*
4674 * 2 for inode item and ref
4675 * 2 for dir items
4676 * 1 for xattr if selinux is on
4677 */
4678 trans = btrfs_start_transaction(root, 5);
4679 if (IS_ERR(trans))
4680 return PTR_ERR(trans);
4681
4682 btrfs_set_trans_block_group(trans, dir);
4683
4684 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4685 dentry->d_name.len,
4686 dentry->d_parent->d_inode->i_ino,
4687 objectid, BTRFS_I(dir)->block_group, mode,
4688 &index);
4689 err = PTR_ERR(inode);
4690 if (IS_ERR(inode))
4691 goto out_unlock;
4692
4693 err = btrfs_init_inode_security(trans, inode, dir);
4694 if (err) {
4695 drop_inode = 1;
4696 goto out_unlock;
4697 }
4698
4699 btrfs_set_trans_block_group(trans, inode);
4700 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4701 if (err)
4702 drop_inode = 1;
4703 else {
4704 inode->i_mapping->a_ops = &btrfs_aops;
4705 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4706 inode->i_fop = &btrfs_file_operations;
4707 inode->i_op = &btrfs_file_inode_operations;
4708 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4709 }
4710 btrfs_update_inode_block_group(trans, inode);
4711 btrfs_update_inode_block_group(trans, dir);
4712 out_unlock:
4713 nr = trans->blocks_used;
4714 btrfs_end_transaction_throttle(trans, root);
4715 if (drop_inode) {
4716 inode_dec_link_count(inode);
4717 iput(inode);
4718 }
4719 btrfs_btree_balance_dirty(root, nr);
4720 return err;
4721 }
4722
4723 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4724 struct dentry *dentry)
4725 {
4726 struct btrfs_trans_handle *trans;
4727 struct btrfs_root *root = BTRFS_I(dir)->root;
4728 struct inode *inode = old_dentry->d_inode;
4729 u64 index;
4730 unsigned long nr = 0;
4731 int err;
4732 int drop_inode = 0;
4733
4734 if (inode->i_nlink == 0)
4735 return -ENOENT;
4736
4737 /* do not allow sys_link's with other subvols of the same device */
4738 if (root->objectid != BTRFS_I(inode)->root->objectid)
4739 return -EPERM;
4740
4741 btrfs_inc_nlink(inode);
4742
4743 err = btrfs_set_inode_index(dir, &index);
4744 if (err)
4745 goto fail;
4746
4747 /*
4748 * 1 item for inode ref
4749 * 2 items for dir items
4750 */
4751 trans = btrfs_start_transaction(root, 3);
4752 if (IS_ERR(trans)) {
4753 err = PTR_ERR(trans);
4754 goto fail;
4755 }
4756
4757 btrfs_set_trans_block_group(trans, dir);
4758 atomic_inc(&inode->i_count);
4759
4760 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4761
4762 if (err) {
4763 drop_inode = 1;
4764 } else {
4765 btrfs_update_inode_block_group(trans, dir);
4766 err = btrfs_update_inode(trans, root, inode);
4767 BUG_ON(err);
4768 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4769 }
4770
4771 nr = trans->blocks_used;
4772 btrfs_end_transaction_throttle(trans, root);
4773 fail:
4774 if (drop_inode) {
4775 inode_dec_link_count(inode);
4776 iput(inode);
4777 }
4778 btrfs_btree_balance_dirty(root, nr);
4779 return err;
4780 }
4781
4782 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4783 {
4784 struct inode *inode = NULL;
4785 struct btrfs_trans_handle *trans;
4786 struct btrfs_root *root = BTRFS_I(dir)->root;
4787 int err = 0;
4788 int drop_on_err = 0;
4789 u64 objectid = 0;
4790 u64 index = 0;
4791 unsigned long nr = 1;
4792
4793 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4794 if (err)
4795 return err;
4796
4797 /*
4798 * 2 items for inode and ref
4799 * 2 items for dir items
4800 * 1 for xattr if selinux is on
4801 */
4802 trans = btrfs_start_transaction(root, 5);
4803 if (IS_ERR(trans))
4804 return PTR_ERR(trans);
4805 btrfs_set_trans_block_group(trans, dir);
4806
4807 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4808 dentry->d_name.len,
4809 dentry->d_parent->d_inode->i_ino, objectid,
4810 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4811 &index);
4812 if (IS_ERR(inode)) {
4813 err = PTR_ERR(inode);
4814 goto out_fail;
4815 }
4816
4817 drop_on_err = 1;
4818
4819 err = btrfs_init_inode_security(trans, inode, dir);
4820 if (err)
4821 goto out_fail;
4822
4823 inode->i_op = &btrfs_dir_inode_operations;
4824 inode->i_fop = &btrfs_dir_file_operations;
4825 btrfs_set_trans_block_group(trans, inode);
4826
4827 btrfs_i_size_write(inode, 0);
4828 err = btrfs_update_inode(trans, root, inode);
4829 if (err)
4830 goto out_fail;
4831
4832 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4833 inode, dentry->d_name.name,
4834 dentry->d_name.len, 0, index);
4835 if (err)
4836 goto out_fail;
4837
4838 d_instantiate(dentry, inode);
4839 drop_on_err = 0;
4840 btrfs_update_inode_block_group(trans, inode);
4841 btrfs_update_inode_block_group(trans, dir);
4842
4843 out_fail:
4844 nr = trans->blocks_used;
4845 btrfs_end_transaction_throttle(trans, root);
4846 if (drop_on_err)
4847 iput(inode);
4848 btrfs_btree_balance_dirty(root, nr);
4849 return err;
4850 }
4851
4852 /* helper for btfs_get_extent. Given an existing extent in the tree,
4853 * and an extent that you want to insert, deal with overlap and insert
4854 * the new extent into the tree.
4855 */
4856 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4857 struct extent_map *existing,
4858 struct extent_map *em,
4859 u64 map_start, u64 map_len)
4860 {
4861 u64 start_diff;
4862
4863 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4864 start_diff = map_start - em->start;
4865 em->start = map_start;
4866 em->len = map_len;
4867 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4868 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4869 em->block_start += start_diff;
4870 em->block_len -= start_diff;
4871 }
4872 return add_extent_mapping(em_tree, em);
4873 }
4874
4875 static noinline int uncompress_inline(struct btrfs_path *path,
4876 struct inode *inode, struct page *page,
4877 size_t pg_offset, u64 extent_offset,
4878 struct btrfs_file_extent_item *item)
4879 {
4880 int ret;
4881 struct extent_buffer *leaf = path->nodes[0];
4882 char *tmp;
4883 size_t max_size;
4884 unsigned long inline_size;
4885 unsigned long ptr;
4886
4887 WARN_ON(pg_offset != 0);
4888 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4889 inline_size = btrfs_file_extent_inline_item_len(leaf,
4890 btrfs_item_nr(leaf, path->slots[0]));
4891 tmp = kmalloc(inline_size, GFP_NOFS);
4892 ptr = btrfs_file_extent_inline_start(item);
4893
4894 read_extent_buffer(leaf, tmp, ptr, inline_size);
4895
4896 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4897 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4898 inline_size, max_size);
4899 if (ret) {
4900 char *kaddr = kmap_atomic(page, KM_USER0);
4901 unsigned long copy_size = min_t(u64,
4902 PAGE_CACHE_SIZE - pg_offset,
4903 max_size - extent_offset);
4904 memset(kaddr + pg_offset, 0, copy_size);
4905 kunmap_atomic(kaddr, KM_USER0);
4906 }
4907 kfree(tmp);
4908 return 0;
4909 }
4910
4911 /*
4912 * a bit scary, this does extent mapping from logical file offset to the disk.
4913 * the ugly parts come from merging extents from the disk with the in-ram
4914 * representation. This gets more complex because of the data=ordered code,
4915 * where the in-ram extents might be locked pending data=ordered completion.
4916 *
4917 * This also copies inline extents directly into the page.
4918 */
4919
4920 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4921 size_t pg_offset, u64 start, u64 len,
4922 int create)
4923 {
4924 int ret;
4925 int err = 0;
4926 u64 bytenr;
4927 u64 extent_start = 0;
4928 u64 extent_end = 0;
4929 u64 objectid = inode->i_ino;
4930 u32 found_type;
4931 struct btrfs_path *path = NULL;
4932 struct btrfs_root *root = BTRFS_I(inode)->root;
4933 struct btrfs_file_extent_item *item;
4934 struct extent_buffer *leaf;
4935 struct btrfs_key found_key;
4936 struct extent_map *em = NULL;
4937 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4938 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4939 struct btrfs_trans_handle *trans = NULL;
4940 int compressed;
4941
4942 again:
4943 read_lock(&em_tree->lock);
4944 em = lookup_extent_mapping(em_tree, start, len);
4945 if (em)
4946 em->bdev = root->fs_info->fs_devices->latest_bdev;
4947 read_unlock(&em_tree->lock);
4948
4949 if (em) {
4950 if (em->start > start || em->start + em->len <= start)
4951 free_extent_map(em);
4952 else if (em->block_start == EXTENT_MAP_INLINE && page)
4953 free_extent_map(em);
4954 else
4955 goto out;
4956 }
4957 em = alloc_extent_map(GFP_NOFS);
4958 if (!em) {
4959 err = -ENOMEM;
4960 goto out;
4961 }
4962 em->bdev = root->fs_info->fs_devices->latest_bdev;
4963 em->start = EXTENT_MAP_HOLE;
4964 em->orig_start = EXTENT_MAP_HOLE;
4965 em->len = (u64)-1;
4966 em->block_len = (u64)-1;
4967
4968 if (!path) {
4969 path = btrfs_alloc_path();
4970 BUG_ON(!path);
4971 }
4972
4973 ret = btrfs_lookup_file_extent(trans, root, path,
4974 objectid, start, trans != NULL);
4975 if (ret < 0) {
4976 err = ret;
4977 goto out;
4978 }
4979
4980 if (ret != 0) {
4981 if (path->slots[0] == 0)
4982 goto not_found;
4983 path->slots[0]--;
4984 }
4985
4986 leaf = path->nodes[0];
4987 item = btrfs_item_ptr(leaf, path->slots[0],
4988 struct btrfs_file_extent_item);
4989 /* are we inside the extent that was found? */
4990 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4991 found_type = btrfs_key_type(&found_key);
4992 if (found_key.objectid != objectid ||
4993 found_type != BTRFS_EXTENT_DATA_KEY) {
4994 goto not_found;
4995 }
4996
4997 found_type = btrfs_file_extent_type(leaf, item);
4998 extent_start = found_key.offset;
4999 compressed = btrfs_file_extent_compression(leaf, item);
5000 if (found_type == BTRFS_FILE_EXTENT_REG ||
5001 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5002 extent_end = extent_start +
5003 btrfs_file_extent_num_bytes(leaf, item);
5004 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5005 size_t size;
5006 size = btrfs_file_extent_inline_len(leaf, item);
5007 extent_end = (extent_start + size + root->sectorsize - 1) &
5008 ~((u64)root->sectorsize - 1);
5009 }
5010
5011 if (start >= extent_end) {
5012 path->slots[0]++;
5013 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5014 ret = btrfs_next_leaf(root, path);
5015 if (ret < 0) {
5016 err = ret;
5017 goto out;
5018 }
5019 if (ret > 0)
5020 goto not_found;
5021 leaf = path->nodes[0];
5022 }
5023 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5024 if (found_key.objectid != objectid ||
5025 found_key.type != BTRFS_EXTENT_DATA_KEY)
5026 goto not_found;
5027 if (start + len <= found_key.offset)
5028 goto not_found;
5029 em->start = start;
5030 em->len = found_key.offset - start;
5031 goto not_found_em;
5032 }
5033
5034 if (found_type == BTRFS_FILE_EXTENT_REG ||
5035 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5036 em->start = extent_start;
5037 em->len = extent_end - extent_start;
5038 em->orig_start = extent_start -
5039 btrfs_file_extent_offset(leaf, item);
5040 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5041 if (bytenr == 0) {
5042 em->block_start = EXTENT_MAP_HOLE;
5043 goto insert;
5044 }
5045 if (compressed) {
5046 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5047 em->block_start = bytenr;
5048 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5049 item);
5050 } else {
5051 bytenr += btrfs_file_extent_offset(leaf, item);
5052 em->block_start = bytenr;
5053 em->block_len = em->len;
5054 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5055 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5056 }
5057 goto insert;
5058 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5059 unsigned long ptr;
5060 char *map;
5061 size_t size;
5062 size_t extent_offset;
5063 size_t copy_size;
5064
5065 em->block_start = EXTENT_MAP_INLINE;
5066 if (!page || create) {
5067 em->start = extent_start;
5068 em->len = extent_end - extent_start;
5069 goto out;
5070 }
5071
5072 size = btrfs_file_extent_inline_len(leaf, item);
5073 extent_offset = page_offset(page) + pg_offset - extent_start;
5074 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5075 size - extent_offset);
5076 em->start = extent_start + extent_offset;
5077 em->len = (copy_size + root->sectorsize - 1) &
5078 ~((u64)root->sectorsize - 1);
5079 em->orig_start = EXTENT_MAP_INLINE;
5080 if (compressed)
5081 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5082 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5083 if (create == 0 && !PageUptodate(page)) {
5084 if (btrfs_file_extent_compression(leaf, item) ==
5085 BTRFS_COMPRESS_ZLIB) {
5086 ret = uncompress_inline(path, inode, page,
5087 pg_offset,
5088 extent_offset, item);
5089 BUG_ON(ret);
5090 } else {
5091 map = kmap(page);
5092 read_extent_buffer(leaf, map + pg_offset, ptr,
5093 copy_size);
5094 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5095 memset(map + pg_offset + copy_size, 0,
5096 PAGE_CACHE_SIZE - pg_offset -
5097 copy_size);
5098 }
5099 kunmap(page);
5100 }
5101 flush_dcache_page(page);
5102 } else if (create && PageUptodate(page)) {
5103 WARN_ON(1);
5104 if (!trans) {
5105 kunmap(page);
5106 free_extent_map(em);
5107 em = NULL;
5108 btrfs_release_path(root, path);
5109 trans = btrfs_join_transaction(root, 1);
5110 goto again;
5111 }
5112 map = kmap(page);
5113 write_extent_buffer(leaf, map + pg_offset, ptr,
5114 copy_size);
5115 kunmap(page);
5116 btrfs_mark_buffer_dirty(leaf);
5117 }
5118 set_extent_uptodate(io_tree, em->start,
5119 extent_map_end(em) - 1, GFP_NOFS);
5120 goto insert;
5121 } else {
5122 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5123 WARN_ON(1);
5124 }
5125 not_found:
5126 em->start = start;
5127 em->len = len;
5128 not_found_em:
5129 em->block_start = EXTENT_MAP_HOLE;
5130 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5131 insert:
5132 btrfs_release_path(root, path);
5133 if (em->start > start || extent_map_end(em) <= start) {
5134 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5135 "[%llu %llu]\n", (unsigned long long)em->start,
5136 (unsigned long long)em->len,
5137 (unsigned long long)start,
5138 (unsigned long long)len);
5139 err = -EIO;
5140 goto out;
5141 }
5142
5143 err = 0;
5144 write_lock(&em_tree->lock);
5145 ret = add_extent_mapping(em_tree, em);
5146 /* it is possible that someone inserted the extent into the tree
5147 * while we had the lock dropped. It is also possible that
5148 * an overlapping map exists in the tree
5149 */
5150 if (ret == -EEXIST) {
5151 struct extent_map *existing;
5152
5153 ret = 0;
5154
5155 existing = lookup_extent_mapping(em_tree, start, len);
5156 if (existing && (existing->start > start ||
5157 existing->start + existing->len <= start)) {
5158 free_extent_map(existing);
5159 existing = NULL;
5160 }
5161 if (!existing) {
5162 existing = lookup_extent_mapping(em_tree, em->start,
5163 em->len);
5164 if (existing) {
5165 err = merge_extent_mapping(em_tree, existing,
5166 em, start,
5167 root->sectorsize);
5168 free_extent_map(existing);
5169 if (err) {
5170 free_extent_map(em);
5171 em = NULL;
5172 }
5173 } else {
5174 err = -EIO;
5175 free_extent_map(em);
5176 em = NULL;
5177 }
5178 } else {
5179 free_extent_map(em);
5180 em = existing;
5181 err = 0;
5182 }
5183 }
5184 write_unlock(&em_tree->lock);
5185 out:
5186 if (path)
5187 btrfs_free_path(path);
5188 if (trans) {
5189 ret = btrfs_end_transaction(trans, root);
5190 if (!err)
5191 err = ret;
5192 }
5193 if (err) {
5194 free_extent_map(em);
5195 return ERR_PTR(err);
5196 }
5197 return em;
5198 }
5199
5200 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5201 u64 start, u64 len)
5202 {
5203 struct btrfs_root *root = BTRFS_I(inode)->root;
5204 struct btrfs_trans_handle *trans;
5205 struct extent_map *em;
5206 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5207 struct btrfs_key ins;
5208 u64 alloc_hint;
5209 int ret;
5210
5211 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5212
5213 trans = btrfs_join_transaction(root, 0);
5214 if (!trans)
5215 return ERR_PTR(-ENOMEM);
5216
5217 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5218
5219 alloc_hint = get_extent_allocation_hint(inode, start, len);
5220 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5221 alloc_hint, (u64)-1, &ins, 1);
5222 if (ret) {
5223 em = ERR_PTR(ret);
5224 goto out;
5225 }
5226
5227 em = alloc_extent_map(GFP_NOFS);
5228 if (!em) {
5229 em = ERR_PTR(-ENOMEM);
5230 goto out;
5231 }
5232
5233 em->start = start;
5234 em->orig_start = em->start;
5235 em->len = ins.offset;
5236
5237 em->block_start = ins.objectid;
5238 em->block_len = ins.offset;
5239 em->bdev = root->fs_info->fs_devices->latest_bdev;
5240 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5241
5242 while (1) {
5243 write_lock(&em_tree->lock);
5244 ret = add_extent_mapping(em_tree, em);
5245 write_unlock(&em_tree->lock);
5246 if (ret != -EEXIST)
5247 break;
5248 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5249 }
5250
5251 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5252 ins.offset, ins.offset, 0);
5253 if (ret) {
5254 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5255 em = ERR_PTR(ret);
5256 }
5257 out:
5258 btrfs_end_transaction(trans, root);
5259 return em;
5260 }
5261
5262 /*
5263 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5264 * block must be cow'd
5265 */
5266 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5267 struct inode *inode, u64 offset, u64 len)
5268 {
5269 struct btrfs_path *path;
5270 int ret;
5271 struct extent_buffer *leaf;
5272 struct btrfs_root *root = BTRFS_I(inode)->root;
5273 struct btrfs_file_extent_item *fi;
5274 struct btrfs_key key;
5275 u64 disk_bytenr;
5276 u64 backref_offset;
5277 u64 extent_end;
5278 u64 num_bytes;
5279 int slot;
5280 int found_type;
5281
5282 path = btrfs_alloc_path();
5283 if (!path)
5284 return -ENOMEM;
5285
5286 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5287 offset, 0);
5288 if (ret < 0)
5289 goto out;
5290
5291 slot = path->slots[0];
5292 if (ret == 1) {
5293 if (slot == 0) {
5294 /* can't find the item, must cow */
5295 ret = 0;
5296 goto out;
5297 }
5298 slot--;
5299 }
5300 ret = 0;
5301 leaf = path->nodes[0];
5302 btrfs_item_key_to_cpu(leaf, &key, slot);
5303 if (key.objectid != inode->i_ino ||
5304 key.type != BTRFS_EXTENT_DATA_KEY) {
5305 /* not our file or wrong item type, must cow */
5306 goto out;
5307 }
5308
5309 if (key.offset > offset) {
5310 /* Wrong offset, must cow */
5311 goto out;
5312 }
5313
5314 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5315 found_type = btrfs_file_extent_type(leaf, fi);
5316 if (found_type != BTRFS_FILE_EXTENT_REG &&
5317 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5318 /* not a regular extent, must cow */
5319 goto out;
5320 }
5321 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5322 backref_offset = btrfs_file_extent_offset(leaf, fi);
5323
5324 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5325 if (extent_end < offset + len) {
5326 /* extent doesn't include our full range, must cow */
5327 goto out;
5328 }
5329
5330 if (btrfs_extent_readonly(root, disk_bytenr))
5331 goto out;
5332
5333 /*
5334 * look for other files referencing this extent, if we
5335 * find any we must cow
5336 */
5337 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5338 key.offset - backref_offset, disk_bytenr))
5339 goto out;
5340
5341 /*
5342 * adjust disk_bytenr and num_bytes to cover just the bytes
5343 * in this extent we are about to write. If there
5344 * are any csums in that range we have to cow in order
5345 * to keep the csums correct
5346 */
5347 disk_bytenr += backref_offset;
5348 disk_bytenr += offset - key.offset;
5349 num_bytes = min(offset + len, extent_end) - offset;
5350 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5351 goto out;
5352 /*
5353 * all of the above have passed, it is safe to overwrite this extent
5354 * without cow
5355 */
5356 ret = 1;
5357 out:
5358 btrfs_free_path(path);
5359 return ret;
5360 }
5361
5362 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5363 struct buffer_head *bh_result, int create)
5364 {
5365 struct extent_map *em;
5366 struct btrfs_root *root = BTRFS_I(inode)->root;
5367 u64 start = iblock << inode->i_blkbits;
5368 u64 len = bh_result->b_size;
5369 struct btrfs_trans_handle *trans;
5370
5371 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5372 if (IS_ERR(em))
5373 return PTR_ERR(em);
5374
5375 /*
5376 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5377 * io. INLINE is special, and we could probably kludge it in here, but
5378 * it's still buffered so for safety lets just fall back to the generic
5379 * buffered path.
5380 *
5381 * For COMPRESSED we _have_ to read the entire extent in so we can
5382 * decompress it, so there will be buffering required no matter what we
5383 * do, so go ahead and fallback to buffered.
5384 *
5385 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5386 * to buffered IO. Don't blame me, this is the price we pay for using
5387 * the generic code.
5388 */
5389 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5390 em->block_start == EXTENT_MAP_INLINE) {
5391 free_extent_map(em);
5392 return -ENOTBLK;
5393 }
5394
5395 /* Just a good old fashioned hole, return */
5396 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5397 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5398 free_extent_map(em);
5399 /* DIO will do one hole at a time, so just unlock a sector */
5400 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5401 start + root->sectorsize - 1, GFP_NOFS);
5402 return 0;
5403 }
5404
5405 /*
5406 * We don't allocate a new extent in the following cases
5407 *
5408 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5409 * existing extent.
5410 * 2) The extent is marked as PREALLOC. We're good to go here and can
5411 * just use the extent.
5412 *
5413 */
5414 if (!create) {
5415 len = em->len - (start - em->start);
5416 goto map;
5417 }
5418
5419 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5420 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5421 em->block_start != EXTENT_MAP_HOLE)) {
5422 int type;
5423 int ret;
5424 u64 block_start;
5425
5426 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5427 type = BTRFS_ORDERED_PREALLOC;
5428 else
5429 type = BTRFS_ORDERED_NOCOW;
5430 len = min(len, em->len - (start - em->start));
5431 block_start = em->block_start + (start - em->start);
5432
5433 /*
5434 * we're not going to log anything, but we do need
5435 * to make sure the current transaction stays open
5436 * while we look for nocow cross refs
5437 */
5438 trans = btrfs_join_transaction(root, 0);
5439 if (!trans)
5440 goto must_cow;
5441
5442 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5443 ret = btrfs_add_ordered_extent_dio(inode, start,
5444 block_start, len, len, type);
5445 btrfs_end_transaction(trans, root);
5446 if (ret) {
5447 free_extent_map(em);
5448 return ret;
5449 }
5450 goto unlock;
5451 }
5452 btrfs_end_transaction(trans, root);
5453 }
5454 must_cow:
5455 /*
5456 * this will cow the extent, reset the len in case we changed
5457 * it above
5458 */
5459 len = bh_result->b_size;
5460 free_extent_map(em);
5461 em = btrfs_new_extent_direct(inode, start, len);
5462 if (IS_ERR(em))
5463 return PTR_ERR(em);
5464 len = min(len, em->len - (start - em->start));
5465 unlock:
5466 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5467 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5468 0, NULL, GFP_NOFS);
5469 map:
5470 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5471 inode->i_blkbits;
5472 bh_result->b_size = len;
5473 bh_result->b_bdev = em->bdev;
5474 set_buffer_mapped(bh_result);
5475 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5476 set_buffer_new(bh_result);
5477
5478 free_extent_map(em);
5479
5480 return 0;
5481 }
5482
5483 struct btrfs_dio_private {
5484 struct inode *inode;
5485 u64 logical_offset;
5486 u64 disk_bytenr;
5487 u64 bytes;
5488 u32 *csums;
5489 void *private;
5490 };
5491
5492 static void btrfs_endio_direct_read(struct bio *bio, int err)
5493 {
5494 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5495 struct bio_vec *bvec = bio->bi_io_vec;
5496 struct btrfs_dio_private *dip = bio->bi_private;
5497 struct inode *inode = dip->inode;
5498 struct btrfs_root *root = BTRFS_I(inode)->root;
5499 u64 start;
5500 u32 *private = dip->csums;
5501
5502 start = dip->logical_offset;
5503 do {
5504 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5505 struct page *page = bvec->bv_page;
5506 char *kaddr;
5507 u32 csum = ~(u32)0;
5508 unsigned long flags;
5509
5510 local_irq_save(flags);
5511 kaddr = kmap_atomic(page, KM_IRQ0);
5512 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5513 csum, bvec->bv_len);
5514 btrfs_csum_final(csum, (char *)&csum);
5515 kunmap_atomic(kaddr, KM_IRQ0);
5516 local_irq_restore(flags);
5517
5518 flush_dcache_page(bvec->bv_page);
5519 if (csum != *private) {
5520 printk(KERN_ERR "btrfs csum failed ino %lu off"
5521 " %llu csum %u private %u\n",
5522 inode->i_ino, (unsigned long long)start,
5523 csum, *private);
5524 err = -EIO;
5525 }
5526 }
5527
5528 start += bvec->bv_len;
5529 private++;
5530 bvec++;
5531 } while (bvec <= bvec_end);
5532
5533 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5534 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5535 bio->bi_private = dip->private;
5536
5537 kfree(dip->csums);
5538 kfree(dip);
5539 dio_end_io(bio, err);
5540 }
5541
5542 static void btrfs_endio_direct_write(struct bio *bio, int err)
5543 {
5544 struct btrfs_dio_private *dip = bio->bi_private;
5545 struct inode *inode = dip->inode;
5546 struct btrfs_root *root = BTRFS_I(inode)->root;
5547 struct btrfs_trans_handle *trans;
5548 struct btrfs_ordered_extent *ordered = NULL;
5549 struct extent_state *cached_state = NULL;
5550 int ret;
5551
5552 if (err)
5553 goto out_done;
5554
5555 ret = btrfs_dec_test_ordered_pending(inode, &ordered,
5556 dip->logical_offset, dip->bytes);
5557 if (!ret)
5558 goto out_done;
5559
5560 BUG_ON(!ordered);
5561
5562 trans = btrfs_join_transaction(root, 1);
5563 if (!trans) {
5564 err = -ENOMEM;
5565 goto out;
5566 }
5567 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5568
5569 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5570 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5571 if (!ret)
5572 ret = btrfs_update_inode(trans, root, inode);
5573 err = ret;
5574 goto out;
5575 }
5576
5577 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5578 ordered->file_offset + ordered->len - 1, 0,
5579 &cached_state, GFP_NOFS);
5580
5581 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5582 ret = btrfs_mark_extent_written(trans, inode,
5583 ordered->file_offset,
5584 ordered->file_offset +
5585 ordered->len);
5586 if (ret) {
5587 err = ret;
5588 goto out_unlock;
5589 }
5590 } else {
5591 ret = insert_reserved_file_extent(trans, inode,
5592 ordered->file_offset,
5593 ordered->start,
5594 ordered->disk_len,
5595 ordered->len,
5596 ordered->len,
5597 0, 0, 0,
5598 BTRFS_FILE_EXTENT_REG);
5599 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5600 ordered->file_offset, ordered->len);
5601 if (ret) {
5602 err = ret;
5603 WARN_ON(1);
5604 goto out_unlock;
5605 }
5606 }
5607
5608 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5609 btrfs_ordered_update_i_size(inode, 0, ordered);
5610 btrfs_update_inode(trans, root, inode);
5611 out_unlock:
5612 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5613 ordered->file_offset + ordered->len - 1,
5614 &cached_state, GFP_NOFS);
5615 out:
5616 btrfs_delalloc_release_metadata(inode, ordered->len);
5617 btrfs_end_transaction(trans, root);
5618 btrfs_put_ordered_extent(ordered);
5619 btrfs_put_ordered_extent(ordered);
5620 out_done:
5621 bio->bi_private = dip->private;
5622
5623 kfree(dip->csums);
5624 kfree(dip);
5625 dio_end_io(bio, err);
5626 }
5627
5628 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5629 struct bio *bio, int mirror_num,
5630 unsigned long bio_flags, u64 offset)
5631 {
5632 int ret;
5633 struct btrfs_root *root = BTRFS_I(inode)->root;
5634 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5635 BUG_ON(ret);
5636 return 0;
5637 }
5638
5639 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
5640 loff_t file_offset)
5641 {
5642 struct btrfs_root *root = BTRFS_I(inode)->root;
5643 struct btrfs_dio_private *dip;
5644 struct bio_vec *bvec = bio->bi_io_vec;
5645 u64 start;
5646 int skip_sum;
5647 int write = rw & (1 << BIO_RW);
5648 int ret = 0;
5649
5650 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
5651
5652 dip = kmalloc(sizeof(*dip), GFP_NOFS);
5653 if (!dip) {
5654 ret = -ENOMEM;
5655 goto free_ordered;
5656 }
5657 dip->csums = NULL;
5658
5659 if (!skip_sum) {
5660 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
5661 if (!dip->csums) {
5662 ret = -ENOMEM;
5663 goto free_ordered;
5664 }
5665 }
5666
5667 dip->private = bio->bi_private;
5668 dip->inode = inode;
5669 dip->logical_offset = file_offset;
5670
5671 start = dip->logical_offset;
5672 dip->bytes = 0;
5673 do {
5674 dip->bytes += bvec->bv_len;
5675 bvec++;
5676 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
5677
5678 dip->disk_bytenr = (u64)bio->bi_sector << 9;
5679 bio->bi_private = dip;
5680
5681 if (write)
5682 bio->bi_end_io = btrfs_endio_direct_write;
5683 else
5684 bio->bi_end_io = btrfs_endio_direct_read;
5685
5686 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5687 if (ret)
5688 goto out_err;
5689
5690 if (write && !skip_sum) {
5691 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
5692 inode, rw, bio, 0, 0,
5693 dip->logical_offset,
5694 __btrfs_submit_bio_start_direct_io,
5695 __btrfs_submit_bio_done);
5696 if (ret)
5697 goto out_err;
5698 return;
5699 } else if (!skip_sum)
5700 btrfs_lookup_bio_sums_dio(root, inode, bio,
5701 dip->logical_offset, dip->csums);
5702
5703 ret = btrfs_map_bio(root, rw, bio, 0, 1);
5704 if (ret)
5705 goto out_err;
5706 return;
5707 out_err:
5708 kfree(dip->csums);
5709 kfree(dip);
5710 free_ordered:
5711 /*
5712 * If this is a write, we need to clean up the reserved space and kill
5713 * the ordered extent.
5714 */
5715 if (write) {
5716 struct btrfs_ordered_extent *ordered;
5717 ordered = btrfs_lookup_ordered_extent(inode,
5718 dip->logical_offset);
5719 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
5720 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
5721 btrfs_free_reserved_extent(root, ordered->start,
5722 ordered->disk_len);
5723 btrfs_put_ordered_extent(ordered);
5724 btrfs_put_ordered_extent(ordered);
5725 }
5726 bio_endio(bio, ret);
5727 }
5728
5729 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
5730 const struct iovec *iov, loff_t offset,
5731 unsigned long nr_segs)
5732 {
5733 int seg;
5734 size_t size;
5735 unsigned long addr;
5736 unsigned blocksize_mask = root->sectorsize - 1;
5737 ssize_t retval = -EINVAL;
5738 loff_t end = offset;
5739
5740 if (offset & blocksize_mask)
5741 goto out;
5742
5743 /* Check the memory alignment. Blocks cannot straddle pages */
5744 for (seg = 0; seg < nr_segs; seg++) {
5745 addr = (unsigned long)iov[seg].iov_base;
5746 size = iov[seg].iov_len;
5747 end += size;
5748 if ((addr & blocksize_mask) || (size & blocksize_mask))
5749 goto out;
5750 }
5751 retval = 0;
5752 out:
5753 return retval;
5754 }
5755 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
5756 const struct iovec *iov, loff_t offset,
5757 unsigned long nr_segs)
5758 {
5759 struct file *file = iocb->ki_filp;
5760 struct inode *inode = file->f_mapping->host;
5761 struct btrfs_ordered_extent *ordered;
5762 struct extent_state *cached_state = NULL;
5763 u64 lockstart, lockend;
5764 ssize_t ret;
5765 int writing = rw & WRITE;
5766 int write_bits = 0;
5767 size_t count = iov_length(iov, nr_segs);
5768
5769 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
5770 offset, nr_segs)) {
5771 return 0;
5772 }
5773
5774 lockstart = offset;
5775 lockend = offset + count - 1;
5776
5777 if (writing) {
5778 ret = btrfs_delalloc_reserve_space(inode, count);
5779 if (ret)
5780 goto out;
5781 }
5782
5783 while (1) {
5784 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5785 0, &cached_state, GFP_NOFS);
5786 /*
5787 * We're concerned with the entire range that we're going to be
5788 * doing DIO to, so we need to make sure theres no ordered
5789 * extents in this range.
5790 */
5791 ordered = btrfs_lookup_ordered_range(inode, lockstart,
5792 lockend - lockstart + 1);
5793 if (!ordered)
5794 break;
5795 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5796 &cached_state, GFP_NOFS);
5797 btrfs_start_ordered_extent(inode, ordered, 1);
5798 btrfs_put_ordered_extent(ordered);
5799 cond_resched();
5800 }
5801
5802 /*
5803 * we don't use btrfs_set_extent_delalloc because we don't want
5804 * the dirty or uptodate bits
5805 */
5806 if (writing) {
5807 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
5808 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5809 EXTENT_DELALLOC, 0, NULL, &cached_state,
5810 GFP_NOFS);
5811 if (ret) {
5812 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
5813 lockend, EXTENT_LOCKED | write_bits,
5814 1, 0, &cached_state, GFP_NOFS);
5815 goto out;
5816 }
5817 }
5818
5819 free_extent_state(cached_state);
5820 cached_state = NULL;
5821
5822 ret = __blockdev_direct_IO(rw, iocb, inode,
5823 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
5824 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
5825 btrfs_submit_direct, 0);
5826
5827 if (ret < 0 && ret != -EIOCBQUEUED) {
5828 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
5829 offset + iov_length(iov, nr_segs) - 1,
5830 EXTENT_LOCKED | write_bits, 1, 0,
5831 &cached_state, GFP_NOFS);
5832 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
5833 /*
5834 * We're falling back to buffered, unlock the section we didn't
5835 * do IO on.
5836 */
5837 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
5838 offset + iov_length(iov, nr_segs) - 1,
5839 EXTENT_LOCKED | write_bits, 1, 0,
5840 &cached_state, GFP_NOFS);
5841 }
5842 out:
5843 free_extent_state(cached_state);
5844 return ret;
5845 }
5846
5847 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5848 __u64 start, __u64 len)
5849 {
5850 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
5851 }
5852
5853 int btrfs_readpage(struct file *file, struct page *page)
5854 {
5855 struct extent_io_tree *tree;
5856 tree = &BTRFS_I(page->mapping->host)->io_tree;
5857 return extent_read_full_page(tree, page, btrfs_get_extent);
5858 }
5859
5860 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
5861 {
5862 struct extent_io_tree *tree;
5863
5864
5865 if (current->flags & PF_MEMALLOC) {
5866 redirty_page_for_writepage(wbc, page);
5867 unlock_page(page);
5868 return 0;
5869 }
5870 tree = &BTRFS_I(page->mapping->host)->io_tree;
5871 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
5872 }
5873
5874 int btrfs_writepages(struct address_space *mapping,
5875 struct writeback_control *wbc)
5876 {
5877 struct extent_io_tree *tree;
5878
5879 tree = &BTRFS_I(mapping->host)->io_tree;
5880 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
5881 }
5882
5883 static int
5884 btrfs_readpages(struct file *file, struct address_space *mapping,
5885 struct list_head *pages, unsigned nr_pages)
5886 {
5887 struct extent_io_tree *tree;
5888 tree = &BTRFS_I(mapping->host)->io_tree;
5889 return extent_readpages(tree, mapping, pages, nr_pages,
5890 btrfs_get_extent);
5891 }
5892 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
5893 {
5894 struct extent_io_tree *tree;
5895 struct extent_map_tree *map;
5896 int ret;
5897
5898 tree = &BTRFS_I(page->mapping->host)->io_tree;
5899 map = &BTRFS_I(page->mapping->host)->extent_tree;
5900 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
5901 if (ret == 1) {
5902 ClearPagePrivate(page);
5903 set_page_private(page, 0);
5904 page_cache_release(page);
5905 }
5906 return ret;
5907 }
5908
5909 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
5910 {
5911 if (PageWriteback(page) || PageDirty(page))
5912 return 0;
5913 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
5914 }
5915
5916 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
5917 {
5918 struct extent_io_tree *tree;
5919 struct btrfs_ordered_extent *ordered;
5920 struct extent_state *cached_state = NULL;
5921 u64 page_start = page_offset(page);
5922 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
5923
5924
5925 /*
5926 * we have the page locked, so new writeback can't start,
5927 * and the dirty bit won't be cleared while we are here.
5928 *
5929 * Wait for IO on this page so that we can safely clear
5930 * the PagePrivate2 bit and do ordered accounting
5931 */
5932 wait_on_page_writeback(page);
5933
5934 tree = &BTRFS_I(page->mapping->host)->io_tree;
5935 if (offset) {
5936 btrfs_releasepage(page, GFP_NOFS);
5937 return;
5938 }
5939 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
5940 GFP_NOFS);
5941 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
5942 page_offset(page));
5943 if (ordered) {
5944 /*
5945 * IO on this page will never be started, so we need
5946 * to account for any ordered extents now
5947 */
5948 clear_extent_bit(tree, page_start, page_end,
5949 EXTENT_DIRTY | EXTENT_DELALLOC |
5950 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
5951 &cached_state, GFP_NOFS);
5952 /*
5953 * whoever cleared the private bit is responsible
5954 * for the finish_ordered_io
5955 */
5956 if (TestClearPagePrivate2(page)) {
5957 btrfs_finish_ordered_io(page->mapping->host,
5958 page_start, page_end);
5959 }
5960 btrfs_put_ordered_extent(ordered);
5961 cached_state = NULL;
5962 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
5963 GFP_NOFS);
5964 }
5965 clear_extent_bit(tree, page_start, page_end,
5966 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
5967 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
5968 __btrfs_releasepage(page, GFP_NOFS);
5969
5970 ClearPageChecked(page);
5971 if (PagePrivate(page)) {
5972 ClearPagePrivate(page);
5973 set_page_private(page, 0);
5974 page_cache_release(page);
5975 }
5976 }
5977
5978 /*
5979 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
5980 * called from a page fault handler when a page is first dirtied. Hence we must
5981 * be careful to check for EOF conditions here. We set the page up correctly
5982 * for a written page which means we get ENOSPC checking when writing into
5983 * holes and correct delalloc and unwritten extent mapping on filesystems that
5984 * support these features.
5985 *
5986 * We are not allowed to take the i_mutex here so we have to play games to
5987 * protect against truncate races as the page could now be beyond EOF. Because
5988 * vmtruncate() writes the inode size before removing pages, once we have the
5989 * page lock we can determine safely if the page is beyond EOF. If it is not
5990 * beyond EOF, then the page is guaranteed safe against truncation until we
5991 * unlock the page.
5992 */
5993 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5994 {
5995 struct page *page = vmf->page;
5996 struct inode *inode = fdentry(vma->vm_file)->d_inode;
5997 struct btrfs_root *root = BTRFS_I(inode)->root;
5998 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5999 struct btrfs_ordered_extent *ordered;
6000 struct extent_state *cached_state = NULL;
6001 char *kaddr;
6002 unsigned long zero_start;
6003 loff_t size;
6004 int ret;
6005 u64 page_start;
6006 u64 page_end;
6007
6008 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6009 if (ret) {
6010 if (ret == -ENOMEM)
6011 ret = VM_FAULT_OOM;
6012 else /* -ENOSPC, -EIO, etc */
6013 ret = VM_FAULT_SIGBUS;
6014 goto out;
6015 }
6016
6017 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6018 again:
6019 lock_page(page);
6020 size = i_size_read(inode);
6021 page_start = page_offset(page);
6022 page_end = page_start + PAGE_CACHE_SIZE - 1;
6023
6024 if ((page->mapping != inode->i_mapping) ||
6025 (page_start >= size)) {
6026 /* page got truncated out from underneath us */
6027 goto out_unlock;
6028 }
6029 wait_on_page_writeback(page);
6030
6031 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6032 GFP_NOFS);
6033 set_page_extent_mapped(page);
6034
6035 /*
6036 * we can't set the delalloc bits if there are pending ordered
6037 * extents. Drop our locks and wait for them to finish
6038 */
6039 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6040 if (ordered) {
6041 unlock_extent_cached(io_tree, page_start, page_end,
6042 &cached_state, GFP_NOFS);
6043 unlock_page(page);
6044 btrfs_start_ordered_extent(inode, ordered, 1);
6045 btrfs_put_ordered_extent(ordered);
6046 goto again;
6047 }
6048
6049 /*
6050 * XXX - page_mkwrite gets called every time the page is dirtied, even
6051 * if it was already dirty, so for space accounting reasons we need to
6052 * clear any delalloc bits for the range we are fixing to save. There
6053 * is probably a better way to do this, but for now keep consistent with
6054 * prepare_pages in the normal write path.
6055 */
6056 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6057 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6058 0, 0, &cached_state, GFP_NOFS);
6059
6060 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6061 &cached_state);
6062 if (ret) {
6063 unlock_extent_cached(io_tree, page_start, page_end,
6064 &cached_state, GFP_NOFS);
6065 ret = VM_FAULT_SIGBUS;
6066 goto out_unlock;
6067 }
6068 ret = 0;
6069
6070 /* page is wholly or partially inside EOF */
6071 if (page_start + PAGE_CACHE_SIZE > size)
6072 zero_start = size & ~PAGE_CACHE_MASK;
6073 else
6074 zero_start = PAGE_CACHE_SIZE;
6075
6076 if (zero_start != PAGE_CACHE_SIZE) {
6077 kaddr = kmap(page);
6078 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6079 flush_dcache_page(page);
6080 kunmap(page);
6081 }
6082 ClearPageChecked(page);
6083 set_page_dirty(page);
6084 SetPageUptodate(page);
6085
6086 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6087 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6088
6089 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6090
6091 out_unlock:
6092 if (!ret)
6093 return VM_FAULT_LOCKED;
6094 unlock_page(page);
6095 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6096 out:
6097 return ret;
6098 }
6099
6100 static void btrfs_truncate(struct inode *inode)
6101 {
6102 struct btrfs_root *root = BTRFS_I(inode)->root;
6103 int ret;
6104 struct btrfs_trans_handle *trans;
6105 unsigned long nr;
6106 u64 mask = root->sectorsize - 1;
6107
6108 if (!S_ISREG(inode->i_mode)) {
6109 WARN_ON(1);
6110 return;
6111 }
6112
6113 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6114 if (ret)
6115 return;
6116
6117 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6118 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6119
6120 trans = btrfs_start_transaction(root, 0);
6121 BUG_ON(IS_ERR(trans));
6122 btrfs_set_trans_block_group(trans, inode);
6123 trans->block_rsv = root->orphan_block_rsv;
6124
6125 /*
6126 * setattr is responsible for setting the ordered_data_close flag,
6127 * but that is only tested during the last file release. That
6128 * could happen well after the next commit, leaving a great big
6129 * window where new writes may get lost if someone chooses to write
6130 * to this file after truncating to zero
6131 *
6132 * The inode doesn't have any dirty data here, and so if we commit
6133 * this is a noop. If someone immediately starts writing to the inode
6134 * it is very likely we'll catch some of their writes in this
6135 * transaction, and the commit will find this file on the ordered
6136 * data list with good things to send down.
6137 *
6138 * This is a best effort solution, there is still a window where
6139 * using truncate to replace the contents of the file will
6140 * end up with a zero length file after a crash.
6141 */
6142 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6143 btrfs_add_ordered_operation(trans, root, inode);
6144
6145 while (1) {
6146 if (!trans) {
6147 trans = btrfs_start_transaction(root, 0);
6148 BUG_ON(IS_ERR(trans));
6149 btrfs_set_trans_block_group(trans, inode);
6150 trans->block_rsv = root->orphan_block_rsv;
6151 }
6152
6153 ret = btrfs_block_rsv_check(trans, root,
6154 root->orphan_block_rsv, 0, 5);
6155 if (ret) {
6156 BUG_ON(ret != -EAGAIN);
6157 ret = btrfs_commit_transaction(trans, root);
6158 BUG_ON(ret);
6159 trans = NULL;
6160 continue;
6161 }
6162
6163 ret = btrfs_truncate_inode_items(trans, root, inode,
6164 inode->i_size,
6165 BTRFS_EXTENT_DATA_KEY);
6166 if (ret != -EAGAIN)
6167 break;
6168
6169 ret = btrfs_update_inode(trans, root, inode);
6170 BUG_ON(ret);
6171
6172 nr = trans->blocks_used;
6173 btrfs_end_transaction(trans, root);
6174 trans = NULL;
6175 btrfs_btree_balance_dirty(root, nr);
6176 }
6177
6178 if (ret == 0 && inode->i_nlink > 0) {
6179 ret = btrfs_orphan_del(trans, inode);
6180 BUG_ON(ret);
6181 }
6182
6183 ret = btrfs_update_inode(trans, root, inode);
6184 BUG_ON(ret);
6185
6186 nr = trans->blocks_used;
6187 ret = btrfs_end_transaction_throttle(trans, root);
6188 BUG_ON(ret);
6189 btrfs_btree_balance_dirty(root, nr);
6190 }
6191
6192 /*
6193 * create a new subvolume directory/inode (helper for the ioctl).
6194 */
6195 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6196 struct btrfs_root *new_root,
6197 u64 new_dirid, u64 alloc_hint)
6198 {
6199 struct inode *inode;
6200 int err;
6201 u64 index = 0;
6202
6203 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6204 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6205 if (IS_ERR(inode))
6206 return PTR_ERR(inode);
6207 inode->i_op = &btrfs_dir_inode_operations;
6208 inode->i_fop = &btrfs_dir_file_operations;
6209
6210 inode->i_nlink = 1;
6211 btrfs_i_size_write(inode, 0);
6212
6213 err = btrfs_update_inode(trans, new_root, inode);
6214 BUG_ON(err);
6215
6216 iput(inode);
6217 return 0;
6218 }
6219
6220 /* helper function for file defrag and space balancing. This
6221 * forces readahead on a given range of bytes in an inode
6222 */
6223 unsigned long btrfs_force_ra(struct address_space *mapping,
6224 struct file_ra_state *ra, struct file *file,
6225 pgoff_t offset, pgoff_t last_index)
6226 {
6227 pgoff_t req_size = last_index - offset + 1;
6228
6229 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6230 return offset + req_size;
6231 }
6232
6233 struct inode *btrfs_alloc_inode(struct super_block *sb)
6234 {
6235 struct btrfs_inode *ei;
6236 struct inode *inode;
6237
6238 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6239 if (!ei)
6240 return NULL;
6241
6242 ei->root = NULL;
6243 ei->space_info = NULL;
6244 ei->generation = 0;
6245 ei->sequence = 0;
6246 ei->last_trans = 0;
6247 ei->last_sub_trans = 0;
6248 ei->logged_trans = 0;
6249 ei->delalloc_bytes = 0;
6250 ei->reserved_bytes = 0;
6251 ei->disk_i_size = 0;
6252 ei->flags = 0;
6253 ei->index_cnt = (u64)-1;
6254 ei->last_unlink_trans = 0;
6255
6256 spin_lock_init(&ei->accounting_lock);
6257 atomic_set(&ei->outstanding_extents, 0);
6258 ei->reserved_extents = 0;
6259
6260 ei->ordered_data_close = 0;
6261 ei->orphan_meta_reserved = 0;
6262 ei->dummy_inode = 0;
6263 ei->force_compress = 0;
6264
6265 inode = &ei->vfs_inode;
6266 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6267 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6268 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6269 mutex_init(&ei->log_mutex);
6270 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6271 INIT_LIST_HEAD(&ei->i_orphan);
6272 INIT_LIST_HEAD(&ei->delalloc_inodes);
6273 INIT_LIST_HEAD(&ei->ordered_operations);
6274 RB_CLEAR_NODE(&ei->rb_node);
6275
6276 return inode;
6277 }
6278
6279 void btrfs_destroy_inode(struct inode *inode)
6280 {
6281 struct btrfs_ordered_extent *ordered;
6282 struct btrfs_root *root = BTRFS_I(inode)->root;
6283
6284 WARN_ON(!list_empty(&inode->i_dentry));
6285 WARN_ON(inode->i_data.nrpages);
6286 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6287 WARN_ON(BTRFS_I(inode)->reserved_extents);
6288
6289 /*
6290 * This can happen where we create an inode, but somebody else also
6291 * created the same inode and we need to destroy the one we already
6292 * created.
6293 */
6294 if (!root)
6295 goto free;
6296
6297 /*
6298 * Make sure we're properly removed from the ordered operation
6299 * lists.
6300 */
6301 smp_mb();
6302 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6303 spin_lock(&root->fs_info->ordered_extent_lock);
6304 list_del_init(&BTRFS_I(inode)->ordered_operations);
6305 spin_unlock(&root->fs_info->ordered_extent_lock);
6306 }
6307
6308 spin_lock(&root->orphan_lock);
6309 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6310 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6311 inode->i_ino);
6312 list_del_init(&BTRFS_I(inode)->i_orphan);
6313 }
6314 spin_unlock(&root->orphan_lock);
6315
6316 while (1) {
6317 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6318 if (!ordered)
6319 break;
6320 else {
6321 printk(KERN_ERR "btrfs found ordered "
6322 "extent %llu %llu on inode cleanup\n",
6323 (unsigned long long)ordered->file_offset,
6324 (unsigned long long)ordered->len);
6325 btrfs_remove_ordered_extent(inode, ordered);
6326 btrfs_put_ordered_extent(ordered);
6327 btrfs_put_ordered_extent(ordered);
6328 }
6329 }
6330 inode_tree_del(inode);
6331 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6332 free:
6333 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6334 }
6335
6336 void btrfs_drop_inode(struct inode *inode)
6337 {
6338 struct btrfs_root *root = BTRFS_I(inode)->root;
6339 if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
6340 generic_delete_inode(inode);
6341 else
6342 generic_drop_inode(inode);
6343 }
6344
6345 static void init_once(void *foo)
6346 {
6347 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6348
6349 inode_init_once(&ei->vfs_inode);
6350 }
6351
6352 void btrfs_destroy_cachep(void)
6353 {
6354 if (btrfs_inode_cachep)
6355 kmem_cache_destroy(btrfs_inode_cachep);
6356 if (btrfs_trans_handle_cachep)
6357 kmem_cache_destroy(btrfs_trans_handle_cachep);
6358 if (btrfs_transaction_cachep)
6359 kmem_cache_destroy(btrfs_transaction_cachep);
6360 if (btrfs_path_cachep)
6361 kmem_cache_destroy(btrfs_path_cachep);
6362 }
6363
6364 int btrfs_init_cachep(void)
6365 {
6366 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6367 sizeof(struct btrfs_inode), 0,
6368 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6369 if (!btrfs_inode_cachep)
6370 goto fail;
6371
6372 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6373 sizeof(struct btrfs_trans_handle), 0,
6374 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6375 if (!btrfs_trans_handle_cachep)
6376 goto fail;
6377
6378 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6379 sizeof(struct btrfs_transaction), 0,
6380 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6381 if (!btrfs_transaction_cachep)
6382 goto fail;
6383
6384 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6385 sizeof(struct btrfs_path), 0,
6386 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6387 if (!btrfs_path_cachep)
6388 goto fail;
6389
6390 return 0;
6391 fail:
6392 btrfs_destroy_cachep();
6393 return -ENOMEM;
6394 }
6395
6396 static int btrfs_getattr(struct vfsmount *mnt,
6397 struct dentry *dentry, struct kstat *stat)
6398 {
6399 struct inode *inode = dentry->d_inode;
6400 generic_fillattr(inode, stat);
6401 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6402 stat->blksize = PAGE_CACHE_SIZE;
6403 stat->blocks = (inode_get_bytes(inode) +
6404 BTRFS_I(inode)->delalloc_bytes) >> 9;
6405 return 0;
6406 }
6407
6408 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6409 struct inode *new_dir, struct dentry *new_dentry)
6410 {
6411 struct btrfs_trans_handle *trans;
6412 struct btrfs_root *root = BTRFS_I(old_dir)->root;
6413 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6414 struct inode *new_inode = new_dentry->d_inode;
6415 struct inode *old_inode = old_dentry->d_inode;
6416 struct timespec ctime = CURRENT_TIME;
6417 u64 index = 0;
6418 u64 root_objectid;
6419 int ret;
6420
6421 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6422 return -EPERM;
6423
6424 /* we only allow rename subvolume link between subvolumes */
6425 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6426 return -EXDEV;
6427
6428 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6429 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6430 return -ENOTEMPTY;
6431
6432 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6433 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6434 return -ENOTEMPTY;
6435 /*
6436 * we're using rename to replace one file with another.
6437 * and the replacement file is large. Start IO on it now so
6438 * we don't add too much work to the end of the transaction
6439 */
6440 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6441 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6442 filemap_flush(old_inode->i_mapping);
6443
6444 /* close the racy window with snapshot create/destroy ioctl */
6445 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6446 down_read(&root->fs_info->subvol_sem);
6447 /*
6448 * We want to reserve the absolute worst case amount of items. So if
6449 * both inodes are subvols and we need to unlink them then that would
6450 * require 4 item modifications, but if they are both normal inodes it
6451 * would require 5 item modifications, so we'll assume their normal
6452 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6453 * should cover the worst case number of items we'll modify.
6454 */
6455 trans = btrfs_start_transaction(root, 20);
6456 if (IS_ERR(trans))
6457 return PTR_ERR(trans);
6458
6459 btrfs_set_trans_block_group(trans, new_dir);
6460
6461 if (dest != root)
6462 btrfs_record_root_in_trans(trans, dest);
6463
6464 ret = btrfs_set_inode_index(new_dir, &index);
6465 if (ret)
6466 goto out_fail;
6467
6468 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6469 /* force full log commit if subvolume involved. */
6470 root->fs_info->last_trans_log_full_commit = trans->transid;
6471 } else {
6472 ret = btrfs_insert_inode_ref(trans, dest,
6473 new_dentry->d_name.name,
6474 new_dentry->d_name.len,
6475 old_inode->i_ino,
6476 new_dir->i_ino, index);
6477 if (ret)
6478 goto out_fail;
6479 /*
6480 * this is an ugly little race, but the rename is required
6481 * to make sure that if we crash, the inode is either at the
6482 * old name or the new one. pinning the log transaction lets
6483 * us make sure we don't allow a log commit to come in after
6484 * we unlink the name but before we add the new name back in.
6485 */
6486 btrfs_pin_log_trans(root);
6487 }
6488 /*
6489 * make sure the inode gets flushed if it is replacing
6490 * something.
6491 */
6492 if (new_inode && new_inode->i_size &&
6493 old_inode && S_ISREG(old_inode->i_mode)) {
6494 btrfs_add_ordered_operation(trans, root, old_inode);
6495 }
6496
6497 old_dir->i_ctime = old_dir->i_mtime = ctime;
6498 new_dir->i_ctime = new_dir->i_mtime = ctime;
6499 old_inode->i_ctime = ctime;
6500
6501 if (old_dentry->d_parent != new_dentry->d_parent)
6502 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6503
6504 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6505 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6506 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6507 old_dentry->d_name.name,
6508 old_dentry->d_name.len);
6509 } else {
6510 btrfs_inc_nlink(old_dentry->d_inode);
6511 ret = btrfs_unlink_inode(trans, root, old_dir,
6512 old_dentry->d_inode,
6513 old_dentry->d_name.name,
6514 old_dentry->d_name.len);
6515 }
6516 BUG_ON(ret);
6517
6518 if (new_inode) {
6519 new_inode->i_ctime = CURRENT_TIME;
6520 if (unlikely(new_inode->i_ino ==
6521 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6522 root_objectid = BTRFS_I(new_inode)->location.objectid;
6523 ret = btrfs_unlink_subvol(trans, dest, new_dir,
6524 root_objectid,
6525 new_dentry->d_name.name,
6526 new_dentry->d_name.len);
6527 BUG_ON(new_inode->i_nlink == 0);
6528 } else {
6529 ret = btrfs_unlink_inode(trans, dest, new_dir,
6530 new_dentry->d_inode,
6531 new_dentry->d_name.name,
6532 new_dentry->d_name.len);
6533 }
6534 BUG_ON(ret);
6535 if (new_inode->i_nlink == 0) {
6536 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
6537 BUG_ON(ret);
6538 }
6539 }
6540
6541 ret = btrfs_add_link(trans, new_dir, old_inode,
6542 new_dentry->d_name.name,
6543 new_dentry->d_name.len, 0, index);
6544 BUG_ON(ret);
6545
6546 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6547 btrfs_log_new_name(trans, old_inode, old_dir,
6548 new_dentry->d_parent);
6549 btrfs_end_log_trans(root);
6550 }
6551 out_fail:
6552 btrfs_end_transaction_throttle(trans, root);
6553
6554 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6555 up_read(&root->fs_info->subvol_sem);
6556
6557 return ret;
6558 }
6559
6560 /*
6561 * some fairly slow code that needs optimization. This walks the list
6562 * of all the inodes with pending delalloc and forces them to disk.
6563 */
6564 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
6565 {
6566 struct list_head *head = &root->fs_info->delalloc_inodes;
6567 struct btrfs_inode *binode;
6568 struct inode *inode;
6569
6570 if (root->fs_info->sb->s_flags & MS_RDONLY)
6571 return -EROFS;
6572
6573 spin_lock(&root->fs_info->delalloc_lock);
6574 while (!list_empty(head)) {
6575 binode = list_entry(head->next, struct btrfs_inode,
6576 delalloc_inodes);
6577 inode = igrab(&binode->vfs_inode);
6578 if (!inode)
6579 list_del_init(&binode->delalloc_inodes);
6580 spin_unlock(&root->fs_info->delalloc_lock);
6581 if (inode) {
6582 filemap_flush(inode->i_mapping);
6583 if (delay_iput)
6584 btrfs_add_delayed_iput(inode);
6585 else
6586 iput(inode);
6587 }
6588 cond_resched();
6589 spin_lock(&root->fs_info->delalloc_lock);
6590 }
6591 spin_unlock(&root->fs_info->delalloc_lock);
6592
6593 /* the filemap_flush will queue IO into the worker threads, but
6594 * we have to make sure the IO is actually started and that
6595 * ordered extents get created before we return
6596 */
6597 atomic_inc(&root->fs_info->async_submit_draining);
6598 while (atomic_read(&root->fs_info->nr_async_submits) ||
6599 atomic_read(&root->fs_info->async_delalloc_pages)) {
6600 wait_event(root->fs_info->async_submit_wait,
6601 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
6602 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
6603 }
6604 atomic_dec(&root->fs_info->async_submit_draining);
6605 return 0;
6606 }
6607
6608 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput)
6609 {
6610 struct btrfs_inode *binode;
6611 struct inode *inode = NULL;
6612
6613 spin_lock(&root->fs_info->delalloc_lock);
6614 while (!list_empty(&root->fs_info->delalloc_inodes)) {
6615 binode = list_entry(root->fs_info->delalloc_inodes.next,
6616 struct btrfs_inode, delalloc_inodes);
6617 inode = igrab(&binode->vfs_inode);
6618 if (inode) {
6619 list_move_tail(&binode->delalloc_inodes,
6620 &root->fs_info->delalloc_inodes);
6621 break;
6622 }
6623
6624 list_del_init(&binode->delalloc_inodes);
6625 cond_resched_lock(&root->fs_info->delalloc_lock);
6626 }
6627 spin_unlock(&root->fs_info->delalloc_lock);
6628
6629 if (inode) {
6630 write_inode_now(inode, 0);
6631 if (delay_iput)
6632 btrfs_add_delayed_iput(inode);
6633 else
6634 iput(inode);
6635 return 1;
6636 }
6637 return 0;
6638 }
6639
6640 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
6641 const char *symname)
6642 {
6643 struct btrfs_trans_handle *trans;
6644 struct btrfs_root *root = BTRFS_I(dir)->root;
6645 struct btrfs_path *path;
6646 struct btrfs_key key;
6647 struct inode *inode = NULL;
6648 int err;
6649 int drop_inode = 0;
6650 u64 objectid;
6651 u64 index = 0 ;
6652 int name_len;
6653 int datasize;
6654 unsigned long ptr;
6655 struct btrfs_file_extent_item *ei;
6656 struct extent_buffer *leaf;
6657 unsigned long nr = 0;
6658
6659 name_len = strlen(symname) + 1;
6660 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
6661 return -ENAMETOOLONG;
6662
6663 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
6664 if (err)
6665 return err;
6666 /*
6667 * 2 items for inode item and ref
6668 * 2 items for dir items
6669 * 1 item for xattr if selinux is on
6670 */
6671 trans = btrfs_start_transaction(root, 5);
6672 if (IS_ERR(trans))
6673 return PTR_ERR(trans);
6674
6675 btrfs_set_trans_block_group(trans, dir);
6676
6677 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6678 dentry->d_name.len,
6679 dentry->d_parent->d_inode->i_ino, objectid,
6680 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
6681 &index);
6682 err = PTR_ERR(inode);
6683 if (IS_ERR(inode))
6684 goto out_unlock;
6685
6686 err = btrfs_init_inode_security(trans, inode, dir);
6687 if (err) {
6688 drop_inode = 1;
6689 goto out_unlock;
6690 }
6691
6692 btrfs_set_trans_block_group(trans, inode);
6693 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
6694 if (err)
6695 drop_inode = 1;
6696 else {
6697 inode->i_mapping->a_ops = &btrfs_aops;
6698 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6699 inode->i_fop = &btrfs_file_operations;
6700 inode->i_op = &btrfs_file_inode_operations;
6701 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6702 }
6703 btrfs_update_inode_block_group(trans, inode);
6704 btrfs_update_inode_block_group(trans, dir);
6705 if (drop_inode)
6706 goto out_unlock;
6707
6708 path = btrfs_alloc_path();
6709 BUG_ON(!path);
6710 key.objectid = inode->i_ino;
6711 key.offset = 0;
6712 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
6713 datasize = btrfs_file_extent_calc_inline_size(name_len);
6714 err = btrfs_insert_empty_item(trans, root, path, &key,
6715 datasize);
6716 if (err) {
6717 drop_inode = 1;
6718 goto out_unlock;
6719 }
6720 leaf = path->nodes[0];
6721 ei = btrfs_item_ptr(leaf, path->slots[0],
6722 struct btrfs_file_extent_item);
6723 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
6724 btrfs_set_file_extent_type(leaf, ei,
6725 BTRFS_FILE_EXTENT_INLINE);
6726 btrfs_set_file_extent_encryption(leaf, ei, 0);
6727 btrfs_set_file_extent_compression(leaf, ei, 0);
6728 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
6729 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
6730
6731 ptr = btrfs_file_extent_inline_start(ei);
6732 write_extent_buffer(leaf, symname, ptr, name_len);
6733 btrfs_mark_buffer_dirty(leaf);
6734 btrfs_free_path(path);
6735
6736 inode->i_op = &btrfs_symlink_inode_operations;
6737 inode->i_mapping->a_ops = &btrfs_symlink_aops;
6738 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6739 inode_set_bytes(inode, name_len);
6740 btrfs_i_size_write(inode, name_len - 1);
6741 err = btrfs_update_inode(trans, root, inode);
6742 if (err)
6743 drop_inode = 1;
6744
6745 out_unlock:
6746 nr = trans->blocks_used;
6747 btrfs_end_transaction_throttle(trans, root);
6748 if (drop_inode) {
6749 inode_dec_link_count(inode);
6750 iput(inode);
6751 }
6752 btrfs_btree_balance_dirty(root, nr);
6753 return err;
6754 }
6755
6756 int btrfs_prealloc_file_range(struct inode *inode, int mode,
6757 u64 start, u64 num_bytes, u64 min_size,
6758 loff_t actual_len, u64 *alloc_hint)
6759 {
6760 struct btrfs_trans_handle *trans;
6761 struct btrfs_root *root = BTRFS_I(inode)->root;
6762 struct btrfs_key ins;
6763 u64 cur_offset = start;
6764 int ret = 0;
6765
6766 while (num_bytes > 0) {
6767 trans = btrfs_start_transaction(root, 3);
6768 if (IS_ERR(trans)) {
6769 ret = PTR_ERR(trans);
6770 break;
6771 }
6772
6773 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
6774 0, *alloc_hint, (u64)-1, &ins, 1);
6775 if (ret) {
6776 btrfs_end_transaction(trans, root);
6777 break;
6778 }
6779
6780 ret = insert_reserved_file_extent(trans, inode,
6781 cur_offset, ins.objectid,
6782 ins.offset, ins.offset,
6783 ins.offset, 0, 0, 0,
6784 BTRFS_FILE_EXTENT_PREALLOC);
6785 BUG_ON(ret);
6786 btrfs_drop_extent_cache(inode, cur_offset,
6787 cur_offset + ins.offset -1, 0);
6788
6789 num_bytes -= ins.offset;
6790 cur_offset += ins.offset;
6791 *alloc_hint = ins.objectid + ins.offset;
6792
6793 inode->i_ctime = CURRENT_TIME;
6794 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
6795 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
6796 (actual_len > inode->i_size) &&
6797 (cur_offset > inode->i_size)) {
6798 if (cur_offset > actual_len)
6799 i_size_write(inode, actual_len);
6800 else
6801 i_size_write(inode, cur_offset);
6802 i_size_write(inode, cur_offset);
6803 btrfs_ordered_update_i_size(inode, cur_offset, NULL);
6804 }
6805
6806 ret = btrfs_update_inode(trans, root, inode);
6807 BUG_ON(ret);
6808
6809 btrfs_end_transaction(trans, root);
6810 }
6811 return ret;
6812 }
6813
6814 static long btrfs_fallocate(struct inode *inode, int mode,
6815 loff_t offset, loff_t len)
6816 {
6817 struct extent_state *cached_state = NULL;
6818 u64 cur_offset;
6819 u64 last_byte;
6820 u64 alloc_start;
6821 u64 alloc_end;
6822 u64 alloc_hint = 0;
6823 u64 locked_end;
6824 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
6825 struct extent_map *em;
6826 int ret;
6827
6828 alloc_start = offset & ~mask;
6829 alloc_end = (offset + len + mask) & ~mask;
6830
6831 /*
6832 * wait for ordered IO before we have any locks. We'll loop again
6833 * below with the locks held.
6834 */
6835 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
6836
6837 mutex_lock(&inode->i_mutex);
6838 if (alloc_start > inode->i_size) {
6839 ret = btrfs_cont_expand(inode, alloc_start);
6840 if (ret)
6841 goto out;
6842 }
6843
6844 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
6845 if (ret)
6846 goto out;
6847
6848 locked_end = alloc_end - 1;
6849 while (1) {
6850 struct btrfs_ordered_extent *ordered;
6851
6852 /* the extent lock is ordered inside the running
6853 * transaction
6854 */
6855 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
6856 locked_end, 0, &cached_state, GFP_NOFS);
6857 ordered = btrfs_lookup_first_ordered_extent(inode,
6858 alloc_end - 1);
6859 if (ordered &&
6860 ordered->file_offset + ordered->len > alloc_start &&
6861 ordered->file_offset < alloc_end) {
6862 btrfs_put_ordered_extent(ordered);
6863 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
6864 alloc_start, locked_end,
6865 &cached_state, GFP_NOFS);
6866 /*
6867 * we can't wait on the range with the transaction
6868 * running or with the extent lock held
6869 */
6870 btrfs_wait_ordered_range(inode, alloc_start,
6871 alloc_end - alloc_start);
6872 } else {
6873 if (ordered)
6874 btrfs_put_ordered_extent(ordered);
6875 break;
6876 }
6877 }
6878
6879 cur_offset = alloc_start;
6880 while (1) {
6881 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
6882 alloc_end - cur_offset, 0);
6883 BUG_ON(IS_ERR(em) || !em);
6884 last_byte = min(extent_map_end(em), alloc_end);
6885 last_byte = (last_byte + mask) & ~mask;
6886 if (em->block_start == EXTENT_MAP_HOLE ||
6887 (cur_offset >= inode->i_size &&
6888 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6889 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
6890 last_byte - cur_offset,
6891 1 << inode->i_blkbits,
6892 offset + len,
6893 &alloc_hint);
6894 if (ret < 0) {
6895 free_extent_map(em);
6896 break;
6897 }
6898 }
6899 free_extent_map(em);
6900
6901 cur_offset = last_byte;
6902 if (cur_offset >= alloc_end) {
6903 ret = 0;
6904 break;
6905 }
6906 }
6907 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
6908 &cached_state, GFP_NOFS);
6909
6910 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
6911 out:
6912 mutex_unlock(&inode->i_mutex);
6913 return ret;
6914 }
6915
6916 static int btrfs_set_page_dirty(struct page *page)
6917 {
6918 return __set_page_dirty_nobuffers(page);
6919 }
6920
6921 static int btrfs_permission(struct inode *inode, int mask)
6922 {
6923 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
6924 return -EACCES;
6925 return generic_permission(inode, mask, btrfs_check_acl);
6926 }
6927
6928 static const struct inode_operations btrfs_dir_inode_operations = {
6929 .getattr = btrfs_getattr,
6930 .lookup = btrfs_lookup,
6931 .create = btrfs_create,
6932 .unlink = btrfs_unlink,
6933 .link = btrfs_link,
6934 .mkdir = btrfs_mkdir,
6935 .rmdir = btrfs_rmdir,
6936 .rename = btrfs_rename,
6937 .symlink = btrfs_symlink,
6938 .setattr = btrfs_setattr,
6939 .mknod = btrfs_mknod,
6940 .setxattr = btrfs_setxattr,
6941 .getxattr = btrfs_getxattr,
6942 .listxattr = btrfs_listxattr,
6943 .removexattr = btrfs_removexattr,
6944 .permission = btrfs_permission,
6945 };
6946 static const struct inode_operations btrfs_dir_ro_inode_operations = {
6947 .lookup = btrfs_lookup,
6948 .permission = btrfs_permission,
6949 };
6950
6951 static const struct file_operations btrfs_dir_file_operations = {
6952 .llseek = generic_file_llseek,
6953 .read = generic_read_dir,
6954 .readdir = btrfs_real_readdir,
6955 .unlocked_ioctl = btrfs_ioctl,
6956 #ifdef CONFIG_COMPAT
6957 .compat_ioctl = btrfs_ioctl,
6958 #endif
6959 .release = btrfs_release_file,
6960 .fsync = btrfs_sync_file,
6961 };
6962
6963 static struct extent_io_ops btrfs_extent_io_ops = {
6964 .fill_delalloc = run_delalloc_range,
6965 .submit_bio_hook = btrfs_submit_bio_hook,
6966 .merge_bio_hook = btrfs_merge_bio_hook,
6967 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
6968 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
6969 .writepage_start_hook = btrfs_writepage_start_hook,
6970 .readpage_io_failed_hook = btrfs_io_failed_hook,
6971 .set_bit_hook = btrfs_set_bit_hook,
6972 .clear_bit_hook = btrfs_clear_bit_hook,
6973 .merge_extent_hook = btrfs_merge_extent_hook,
6974 .split_extent_hook = btrfs_split_extent_hook,
6975 };
6976
6977 /*
6978 * btrfs doesn't support the bmap operation because swapfiles
6979 * use bmap to make a mapping of extents in the file. They assume
6980 * these extents won't change over the life of the file and they
6981 * use the bmap result to do IO directly to the drive.
6982 *
6983 * the btrfs bmap call would return logical addresses that aren't
6984 * suitable for IO and they also will change frequently as COW
6985 * operations happen. So, swapfile + btrfs == corruption.
6986 *
6987 * For now we're avoiding this by dropping bmap.
6988 */
6989 static const struct address_space_operations btrfs_aops = {
6990 .readpage = btrfs_readpage,
6991 .writepage = btrfs_writepage,
6992 .writepages = btrfs_writepages,
6993 .readpages = btrfs_readpages,
6994 .sync_page = block_sync_page,
6995 .direct_IO = btrfs_direct_IO,
6996 .invalidatepage = btrfs_invalidatepage,
6997 .releasepage = btrfs_releasepage,
6998 .set_page_dirty = btrfs_set_page_dirty,
6999 .error_remove_page = generic_error_remove_page,
7000 };
7001
7002 static const struct address_space_operations btrfs_symlink_aops = {
7003 .readpage = btrfs_readpage,
7004 .writepage = btrfs_writepage,
7005 .invalidatepage = btrfs_invalidatepage,
7006 .releasepage = btrfs_releasepage,
7007 };
7008
7009 static const struct inode_operations btrfs_file_inode_operations = {
7010 .truncate = btrfs_truncate,
7011 .getattr = btrfs_getattr,
7012 .setattr = btrfs_setattr,
7013 .setxattr = btrfs_setxattr,
7014 .getxattr = btrfs_getxattr,
7015 .listxattr = btrfs_listxattr,
7016 .removexattr = btrfs_removexattr,
7017 .permission = btrfs_permission,
7018 .fallocate = btrfs_fallocate,
7019 .fiemap = btrfs_fiemap,
7020 };
7021 static const struct inode_operations btrfs_special_inode_operations = {
7022 .getattr = btrfs_getattr,
7023 .setattr = btrfs_setattr,
7024 .permission = btrfs_permission,
7025 .setxattr = btrfs_setxattr,
7026 .getxattr = btrfs_getxattr,
7027 .listxattr = btrfs_listxattr,
7028 .removexattr = btrfs_removexattr,
7029 };
7030 static const struct inode_operations btrfs_symlink_inode_operations = {
7031 .readlink = generic_readlink,
7032 .follow_link = page_follow_link_light,
7033 .put_link = page_put_link,
7034 .permission = btrfs_permission,
7035 .setxattr = btrfs_setxattr,
7036 .getxattr = btrfs_getxattr,
7037 .listxattr = btrfs_listxattr,
7038 .removexattr = btrfs_removexattr,
7039 };
7040
7041 const struct dentry_operations btrfs_dentry_operations = {
7042 .d_delete = btrfs_dentry_delete,
7043 };