Merge tag 'tty-3.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22
23 static struct kmem_cache *extent_state_cache;
24 static struct kmem_cache *extent_buffer_cache;
25
26 static LIST_HEAD(buffers);
27 static LIST_HEAD(states);
28
29 #define LEAK_DEBUG 0
30 #if LEAK_DEBUG
31 static DEFINE_SPINLOCK(leak_lock);
32 #endif
33
34 #define BUFFER_LRU_MAX 64
35
36 struct tree_entry {
37 u64 start;
38 u64 end;
39 struct rb_node rb_node;
40 };
41
42 struct extent_page_data {
43 struct bio *bio;
44 struct extent_io_tree *tree;
45 get_extent_t *get_extent;
46
47 /* tells writepage not to lock the state bits for this range
48 * it still does the unlocking
49 */
50 unsigned int extent_locked:1;
51
52 /* tells the submit_bio code to use a WRITE_SYNC */
53 unsigned int sync_io:1;
54 };
55
56 int __init extent_io_init(void)
57 {
58 extent_state_cache = kmem_cache_create("extent_state",
59 sizeof(struct extent_state), 0,
60 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
61 if (!extent_state_cache)
62 return -ENOMEM;
63
64 extent_buffer_cache = kmem_cache_create("extent_buffers",
65 sizeof(struct extent_buffer), 0,
66 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
67 if (!extent_buffer_cache)
68 goto free_state_cache;
69 return 0;
70
71 free_state_cache:
72 kmem_cache_destroy(extent_state_cache);
73 return -ENOMEM;
74 }
75
76 void extent_io_exit(void)
77 {
78 struct extent_state *state;
79 struct extent_buffer *eb;
80
81 while (!list_empty(&states)) {
82 state = list_entry(states.next, struct extent_state, leak_list);
83 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
84 "state %lu in tree %p refs %d\n",
85 (unsigned long long)state->start,
86 (unsigned long long)state->end,
87 state->state, state->tree, atomic_read(&state->refs));
88 list_del(&state->leak_list);
89 kmem_cache_free(extent_state_cache, state);
90
91 }
92
93 while (!list_empty(&buffers)) {
94 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
95 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
96 "refs %d\n", (unsigned long long)eb->start,
97 eb->len, atomic_read(&eb->refs));
98 list_del(&eb->leak_list);
99 kmem_cache_free(extent_buffer_cache, eb);
100 }
101 if (extent_state_cache)
102 kmem_cache_destroy(extent_state_cache);
103 if (extent_buffer_cache)
104 kmem_cache_destroy(extent_buffer_cache);
105 }
106
107 void extent_io_tree_init(struct extent_io_tree *tree,
108 struct address_space *mapping)
109 {
110 tree->state = RB_ROOT;
111 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
112 tree->ops = NULL;
113 tree->dirty_bytes = 0;
114 spin_lock_init(&tree->lock);
115 spin_lock_init(&tree->buffer_lock);
116 tree->mapping = mapping;
117 }
118
119 static struct extent_state *alloc_extent_state(gfp_t mask)
120 {
121 struct extent_state *state;
122 #if LEAK_DEBUG
123 unsigned long flags;
124 #endif
125
126 state = kmem_cache_alloc(extent_state_cache, mask);
127 if (!state)
128 return state;
129 state->state = 0;
130 state->private = 0;
131 state->tree = NULL;
132 #if LEAK_DEBUG
133 spin_lock_irqsave(&leak_lock, flags);
134 list_add(&state->leak_list, &states);
135 spin_unlock_irqrestore(&leak_lock, flags);
136 #endif
137 atomic_set(&state->refs, 1);
138 init_waitqueue_head(&state->wq);
139 return state;
140 }
141
142 void free_extent_state(struct extent_state *state)
143 {
144 if (!state)
145 return;
146 if (atomic_dec_and_test(&state->refs)) {
147 #if LEAK_DEBUG
148 unsigned long flags;
149 #endif
150 WARN_ON(state->tree);
151 #if LEAK_DEBUG
152 spin_lock_irqsave(&leak_lock, flags);
153 list_del(&state->leak_list);
154 spin_unlock_irqrestore(&leak_lock, flags);
155 #endif
156 kmem_cache_free(extent_state_cache, state);
157 }
158 }
159
160 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
161 struct rb_node *node)
162 {
163 struct rb_node **p = &root->rb_node;
164 struct rb_node *parent = NULL;
165 struct tree_entry *entry;
166
167 while (*p) {
168 parent = *p;
169 entry = rb_entry(parent, struct tree_entry, rb_node);
170
171 if (offset < entry->start)
172 p = &(*p)->rb_left;
173 else if (offset > entry->end)
174 p = &(*p)->rb_right;
175 else
176 return parent;
177 }
178
179 entry = rb_entry(node, struct tree_entry, rb_node);
180 rb_link_node(node, parent, p);
181 rb_insert_color(node, root);
182 return NULL;
183 }
184
185 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
186 struct rb_node **prev_ret,
187 struct rb_node **next_ret)
188 {
189 struct rb_root *root = &tree->state;
190 struct rb_node *n = root->rb_node;
191 struct rb_node *prev = NULL;
192 struct rb_node *orig_prev = NULL;
193 struct tree_entry *entry;
194 struct tree_entry *prev_entry = NULL;
195
196 while (n) {
197 entry = rb_entry(n, struct tree_entry, rb_node);
198 prev = n;
199 prev_entry = entry;
200
201 if (offset < entry->start)
202 n = n->rb_left;
203 else if (offset > entry->end)
204 n = n->rb_right;
205 else
206 return n;
207 }
208
209 if (prev_ret) {
210 orig_prev = prev;
211 while (prev && offset > prev_entry->end) {
212 prev = rb_next(prev);
213 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
214 }
215 *prev_ret = prev;
216 prev = orig_prev;
217 }
218
219 if (next_ret) {
220 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
221 while (prev && offset < prev_entry->start) {
222 prev = rb_prev(prev);
223 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
224 }
225 *next_ret = prev;
226 }
227 return NULL;
228 }
229
230 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
231 u64 offset)
232 {
233 struct rb_node *prev = NULL;
234 struct rb_node *ret;
235
236 ret = __etree_search(tree, offset, &prev, NULL);
237 if (!ret)
238 return prev;
239 return ret;
240 }
241
242 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
243 struct extent_state *other)
244 {
245 if (tree->ops && tree->ops->merge_extent_hook)
246 tree->ops->merge_extent_hook(tree->mapping->host, new,
247 other);
248 }
249
250 /*
251 * utility function to look for merge candidates inside a given range.
252 * Any extents with matching state are merged together into a single
253 * extent in the tree. Extents with EXTENT_IO in their state field
254 * are not merged because the end_io handlers need to be able to do
255 * operations on them without sleeping (or doing allocations/splits).
256 *
257 * This should be called with the tree lock held.
258 */
259 static void merge_state(struct extent_io_tree *tree,
260 struct extent_state *state)
261 {
262 struct extent_state *other;
263 struct rb_node *other_node;
264
265 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
266 return;
267
268 other_node = rb_prev(&state->rb_node);
269 if (other_node) {
270 other = rb_entry(other_node, struct extent_state, rb_node);
271 if (other->end == state->start - 1 &&
272 other->state == state->state) {
273 merge_cb(tree, state, other);
274 state->start = other->start;
275 other->tree = NULL;
276 rb_erase(&other->rb_node, &tree->state);
277 free_extent_state(other);
278 }
279 }
280 other_node = rb_next(&state->rb_node);
281 if (other_node) {
282 other = rb_entry(other_node, struct extent_state, rb_node);
283 if (other->start == state->end + 1 &&
284 other->state == state->state) {
285 merge_cb(tree, state, other);
286 state->end = other->end;
287 other->tree = NULL;
288 rb_erase(&other->rb_node, &tree->state);
289 free_extent_state(other);
290 }
291 }
292 }
293
294 static void set_state_cb(struct extent_io_tree *tree,
295 struct extent_state *state, int *bits)
296 {
297 if (tree->ops && tree->ops->set_bit_hook)
298 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
299 }
300
301 static void clear_state_cb(struct extent_io_tree *tree,
302 struct extent_state *state, int *bits)
303 {
304 if (tree->ops && tree->ops->clear_bit_hook)
305 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
306 }
307
308 static void set_state_bits(struct extent_io_tree *tree,
309 struct extent_state *state, int *bits);
310
311 /*
312 * insert an extent_state struct into the tree. 'bits' are set on the
313 * struct before it is inserted.
314 *
315 * This may return -EEXIST if the extent is already there, in which case the
316 * state struct is freed.
317 *
318 * The tree lock is not taken internally. This is a utility function and
319 * probably isn't what you want to call (see set/clear_extent_bit).
320 */
321 static int insert_state(struct extent_io_tree *tree,
322 struct extent_state *state, u64 start, u64 end,
323 int *bits)
324 {
325 struct rb_node *node;
326
327 if (end < start) {
328 printk(KERN_ERR "btrfs end < start %llu %llu\n",
329 (unsigned long long)end,
330 (unsigned long long)start);
331 WARN_ON(1);
332 }
333 state->start = start;
334 state->end = end;
335
336 set_state_bits(tree, state, bits);
337
338 node = tree_insert(&tree->state, end, &state->rb_node);
339 if (node) {
340 struct extent_state *found;
341 found = rb_entry(node, struct extent_state, rb_node);
342 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
343 "%llu %llu\n", (unsigned long long)found->start,
344 (unsigned long long)found->end,
345 (unsigned long long)start, (unsigned long long)end);
346 return -EEXIST;
347 }
348 state->tree = tree;
349 merge_state(tree, state);
350 return 0;
351 }
352
353 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
354 u64 split)
355 {
356 if (tree->ops && tree->ops->split_extent_hook)
357 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
358 }
359
360 /*
361 * split a given extent state struct in two, inserting the preallocated
362 * struct 'prealloc' as the newly created second half. 'split' indicates an
363 * offset inside 'orig' where it should be split.
364 *
365 * Before calling,
366 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
367 * are two extent state structs in the tree:
368 * prealloc: [orig->start, split - 1]
369 * orig: [ split, orig->end ]
370 *
371 * The tree locks are not taken by this function. They need to be held
372 * by the caller.
373 */
374 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
375 struct extent_state *prealloc, u64 split)
376 {
377 struct rb_node *node;
378
379 split_cb(tree, orig, split);
380
381 prealloc->start = orig->start;
382 prealloc->end = split - 1;
383 prealloc->state = orig->state;
384 orig->start = split;
385
386 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
387 if (node) {
388 free_extent_state(prealloc);
389 return -EEXIST;
390 }
391 prealloc->tree = tree;
392 return 0;
393 }
394
395 /*
396 * utility function to clear some bits in an extent state struct.
397 * it will optionally wake up any one waiting on this state (wake == 1), or
398 * forcibly remove the state from the tree (delete == 1).
399 *
400 * If no bits are set on the state struct after clearing things, the
401 * struct is freed and removed from the tree
402 */
403 static int clear_state_bit(struct extent_io_tree *tree,
404 struct extent_state *state,
405 int *bits, int wake)
406 {
407 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
408 int ret = state->state & bits_to_clear;
409
410 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
411 u64 range = state->end - state->start + 1;
412 WARN_ON(range > tree->dirty_bytes);
413 tree->dirty_bytes -= range;
414 }
415 clear_state_cb(tree, state, bits);
416 state->state &= ~bits_to_clear;
417 if (wake)
418 wake_up(&state->wq);
419 if (state->state == 0) {
420 if (state->tree) {
421 rb_erase(&state->rb_node, &tree->state);
422 state->tree = NULL;
423 free_extent_state(state);
424 } else {
425 WARN_ON(1);
426 }
427 } else {
428 merge_state(tree, state);
429 }
430 return ret;
431 }
432
433 static struct extent_state *
434 alloc_extent_state_atomic(struct extent_state *prealloc)
435 {
436 if (!prealloc)
437 prealloc = alloc_extent_state(GFP_ATOMIC);
438
439 return prealloc;
440 }
441
442 /*
443 * clear some bits on a range in the tree. This may require splitting
444 * or inserting elements in the tree, so the gfp mask is used to
445 * indicate which allocations or sleeping are allowed.
446 *
447 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
448 * the given range from the tree regardless of state (ie for truncate).
449 *
450 * the range [start, end] is inclusive.
451 *
452 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
453 * bits were already set, or zero if none of the bits were already set.
454 */
455 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
456 int bits, int wake, int delete,
457 struct extent_state **cached_state,
458 gfp_t mask)
459 {
460 struct extent_state *state;
461 struct extent_state *cached;
462 struct extent_state *prealloc = NULL;
463 struct rb_node *next_node;
464 struct rb_node *node;
465 u64 last_end;
466 int err;
467 int set = 0;
468 int clear = 0;
469
470 if (delete)
471 bits |= ~EXTENT_CTLBITS;
472 bits |= EXTENT_FIRST_DELALLOC;
473
474 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
475 clear = 1;
476 again:
477 if (!prealloc && (mask & __GFP_WAIT)) {
478 prealloc = alloc_extent_state(mask);
479 if (!prealloc)
480 return -ENOMEM;
481 }
482
483 spin_lock(&tree->lock);
484 if (cached_state) {
485 cached = *cached_state;
486
487 if (clear) {
488 *cached_state = NULL;
489 cached_state = NULL;
490 }
491
492 if (cached && cached->tree && cached->start <= start &&
493 cached->end > start) {
494 if (clear)
495 atomic_dec(&cached->refs);
496 state = cached;
497 goto hit_next;
498 }
499 if (clear)
500 free_extent_state(cached);
501 }
502 /*
503 * this search will find the extents that end after
504 * our range starts
505 */
506 node = tree_search(tree, start);
507 if (!node)
508 goto out;
509 state = rb_entry(node, struct extent_state, rb_node);
510 hit_next:
511 if (state->start > end)
512 goto out;
513 WARN_ON(state->end < start);
514 last_end = state->end;
515
516 /*
517 * | ---- desired range ---- |
518 * | state | or
519 * | ------------- state -------------- |
520 *
521 * We need to split the extent we found, and may flip
522 * bits on second half.
523 *
524 * If the extent we found extends past our range, we
525 * just split and search again. It'll get split again
526 * the next time though.
527 *
528 * If the extent we found is inside our range, we clear
529 * the desired bit on it.
530 */
531
532 if (state->start < start) {
533 prealloc = alloc_extent_state_atomic(prealloc);
534 BUG_ON(!prealloc);
535 err = split_state(tree, state, prealloc, start);
536 BUG_ON(err == -EEXIST);
537 prealloc = NULL;
538 if (err)
539 goto out;
540 if (state->end <= end) {
541 set |= clear_state_bit(tree, state, &bits, wake);
542 if (last_end == (u64)-1)
543 goto out;
544 start = last_end + 1;
545 }
546 goto search_again;
547 }
548 /*
549 * | ---- desired range ---- |
550 * | state |
551 * We need to split the extent, and clear the bit
552 * on the first half
553 */
554 if (state->start <= end && state->end > end) {
555 prealloc = alloc_extent_state_atomic(prealloc);
556 BUG_ON(!prealloc);
557 err = split_state(tree, state, prealloc, end + 1);
558 BUG_ON(err == -EEXIST);
559 if (wake)
560 wake_up(&state->wq);
561
562 set |= clear_state_bit(tree, prealloc, &bits, wake);
563
564 prealloc = NULL;
565 goto out;
566 }
567
568 if (state->end < end && prealloc && !need_resched())
569 next_node = rb_next(&state->rb_node);
570 else
571 next_node = NULL;
572
573 set |= clear_state_bit(tree, state, &bits, wake);
574 if (last_end == (u64)-1)
575 goto out;
576 start = last_end + 1;
577 if (start <= end && next_node) {
578 state = rb_entry(next_node, struct extent_state,
579 rb_node);
580 if (state->start == start)
581 goto hit_next;
582 }
583 goto search_again;
584
585 out:
586 spin_unlock(&tree->lock);
587 if (prealloc)
588 free_extent_state(prealloc);
589
590 return set;
591
592 search_again:
593 if (start > end)
594 goto out;
595 spin_unlock(&tree->lock);
596 if (mask & __GFP_WAIT)
597 cond_resched();
598 goto again;
599 }
600
601 static int wait_on_state(struct extent_io_tree *tree,
602 struct extent_state *state)
603 __releases(tree->lock)
604 __acquires(tree->lock)
605 {
606 DEFINE_WAIT(wait);
607 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
608 spin_unlock(&tree->lock);
609 schedule();
610 spin_lock(&tree->lock);
611 finish_wait(&state->wq, &wait);
612 return 0;
613 }
614
615 /*
616 * waits for one or more bits to clear on a range in the state tree.
617 * The range [start, end] is inclusive.
618 * The tree lock is taken by this function
619 */
620 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
621 {
622 struct extent_state *state;
623 struct rb_node *node;
624
625 spin_lock(&tree->lock);
626 again:
627 while (1) {
628 /*
629 * this search will find all the extents that end after
630 * our range starts
631 */
632 node = tree_search(tree, start);
633 if (!node)
634 break;
635
636 state = rb_entry(node, struct extent_state, rb_node);
637
638 if (state->start > end)
639 goto out;
640
641 if (state->state & bits) {
642 start = state->start;
643 atomic_inc(&state->refs);
644 wait_on_state(tree, state);
645 free_extent_state(state);
646 goto again;
647 }
648 start = state->end + 1;
649
650 if (start > end)
651 break;
652
653 cond_resched_lock(&tree->lock);
654 }
655 out:
656 spin_unlock(&tree->lock);
657 return 0;
658 }
659
660 static void set_state_bits(struct extent_io_tree *tree,
661 struct extent_state *state,
662 int *bits)
663 {
664 int bits_to_set = *bits & ~EXTENT_CTLBITS;
665
666 set_state_cb(tree, state, bits);
667 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
668 u64 range = state->end - state->start + 1;
669 tree->dirty_bytes += range;
670 }
671 state->state |= bits_to_set;
672 }
673
674 static void cache_state(struct extent_state *state,
675 struct extent_state **cached_ptr)
676 {
677 if (cached_ptr && !(*cached_ptr)) {
678 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
679 *cached_ptr = state;
680 atomic_inc(&state->refs);
681 }
682 }
683 }
684
685 static void uncache_state(struct extent_state **cached_ptr)
686 {
687 if (cached_ptr && (*cached_ptr)) {
688 struct extent_state *state = *cached_ptr;
689 *cached_ptr = NULL;
690 free_extent_state(state);
691 }
692 }
693
694 /*
695 * set some bits on a range in the tree. This may require allocations or
696 * sleeping, so the gfp mask is used to indicate what is allowed.
697 *
698 * If any of the exclusive bits are set, this will fail with -EEXIST if some
699 * part of the range already has the desired bits set. The start of the
700 * existing range is returned in failed_start in this case.
701 *
702 * [start, end] is inclusive This takes the tree lock.
703 */
704
705 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
706 int bits, int exclusive_bits, u64 *failed_start,
707 struct extent_state **cached_state, gfp_t mask)
708 {
709 struct extent_state *state;
710 struct extent_state *prealloc = NULL;
711 struct rb_node *node;
712 int err = 0;
713 u64 last_start;
714 u64 last_end;
715
716 bits |= EXTENT_FIRST_DELALLOC;
717 again:
718 if (!prealloc && (mask & __GFP_WAIT)) {
719 prealloc = alloc_extent_state(mask);
720 BUG_ON(!prealloc);
721 }
722
723 spin_lock(&tree->lock);
724 if (cached_state && *cached_state) {
725 state = *cached_state;
726 if (state->start <= start && state->end > start &&
727 state->tree) {
728 node = &state->rb_node;
729 goto hit_next;
730 }
731 }
732 /*
733 * this search will find all the extents that end after
734 * our range starts.
735 */
736 node = tree_search(tree, start);
737 if (!node) {
738 prealloc = alloc_extent_state_atomic(prealloc);
739 BUG_ON(!prealloc);
740 err = insert_state(tree, prealloc, start, end, &bits);
741 prealloc = NULL;
742 BUG_ON(err == -EEXIST);
743 goto out;
744 }
745 state = rb_entry(node, struct extent_state, rb_node);
746 hit_next:
747 last_start = state->start;
748 last_end = state->end;
749
750 /*
751 * | ---- desired range ---- |
752 * | state |
753 *
754 * Just lock what we found and keep going
755 */
756 if (state->start == start && state->end <= end) {
757 struct rb_node *next_node;
758 if (state->state & exclusive_bits) {
759 *failed_start = state->start;
760 err = -EEXIST;
761 goto out;
762 }
763
764 set_state_bits(tree, state, &bits);
765
766 cache_state(state, cached_state);
767 merge_state(tree, state);
768 if (last_end == (u64)-1)
769 goto out;
770
771 start = last_end + 1;
772 next_node = rb_next(&state->rb_node);
773 if (next_node && start < end && prealloc && !need_resched()) {
774 state = rb_entry(next_node, struct extent_state,
775 rb_node);
776 if (state->start == start)
777 goto hit_next;
778 }
779 goto search_again;
780 }
781
782 /*
783 * | ---- desired range ---- |
784 * | state |
785 * or
786 * | ------------- state -------------- |
787 *
788 * We need to split the extent we found, and may flip bits on
789 * second half.
790 *
791 * If the extent we found extends past our
792 * range, we just split and search again. It'll get split
793 * again the next time though.
794 *
795 * If the extent we found is inside our range, we set the
796 * desired bit on it.
797 */
798 if (state->start < start) {
799 if (state->state & exclusive_bits) {
800 *failed_start = start;
801 err = -EEXIST;
802 goto out;
803 }
804
805 prealloc = alloc_extent_state_atomic(prealloc);
806 BUG_ON(!prealloc);
807 err = split_state(tree, state, prealloc, start);
808 BUG_ON(err == -EEXIST);
809 prealloc = NULL;
810 if (err)
811 goto out;
812 if (state->end <= end) {
813 set_state_bits(tree, state, &bits);
814 cache_state(state, cached_state);
815 merge_state(tree, state);
816 if (last_end == (u64)-1)
817 goto out;
818 start = last_end + 1;
819 }
820 goto search_again;
821 }
822 /*
823 * | ---- desired range ---- |
824 * | state | or | state |
825 *
826 * There's a hole, we need to insert something in it and
827 * ignore the extent we found.
828 */
829 if (state->start > start) {
830 u64 this_end;
831 if (end < last_start)
832 this_end = end;
833 else
834 this_end = last_start - 1;
835
836 prealloc = alloc_extent_state_atomic(prealloc);
837 BUG_ON(!prealloc);
838
839 /*
840 * Avoid to free 'prealloc' if it can be merged with
841 * the later extent.
842 */
843 err = insert_state(tree, prealloc, start, this_end,
844 &bits);
845 BUG_ON(err == -EEXIST);
846 if (err) {
847 free_extent_state(prealloc);
848 prealloc = NULL;
849 goto out;
850 }
851 cache_state(prealloc, cached_state);
852 prealloc = NULL;
853 start = this_end + 1;
854 goto search_again;
855 }
856 /*
857 * | ---- desired range ---- |
858 * | state |
859 * We need to split the extent, and set the bit
860 * on the first half
861 */
862 if (state->start <= end && state->end > end) {
863 if (state->state & exclusive_bits) {
864 *failed_start = start;
865 err = -EEXIST;
866 goto out;
867 }
868
869 prealloc = alloc_extent_state_atomic(prealloc);
870 BUG_ON(!prealloc);
871 err = split_state(tree, state, prealloc, end + 1);
872 BUG_ON(err == -EEXIST);
873
874 set_state_bits(tree, prealloc, &bits);
875 cache_state(prealloc, cached_state);
876 merge_state(tree, prealloc);
877 prealloc = NULL;
878 goto out;
879 }
880
881 goto search_again;
882
883 out:
884 spin_unlock(&tree->lock);
885 if (prealloc)
886 free_extent_state(prealloc);
887
888 return err;
889
890 search_again:
891 if (start > end)
892 goto out;
893 spin_unlock(&tree->lock);
894 if (mask & __GFP_WAIT)
895 cond_resched();
896 goto again;
897 }
898
899 /**
900 * convert_extent - convert all bits in a given range from one bit to another
901 * @tree: the io tree to search
902 * @start: the start offset in bytes
903 * @end: the end offset in bytes (inclusive)
904 * @bits: the bits to set in this range
905 * @clear_bits: the bits to clear in this range
906 * @mask: the allocation mask
907 *
908 * This will go through and set bits for the given range. If any states exist
909 * already in this range they are set with the given bit and cleared of the
910 * clear_bits. This is only meant to be used by things that are mergeable, ie
911 * converting from say DELALLOC to DIRTY. This is not meant to be used with
912 * boundary bits like LOCK.
913 */
914 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
915 int bits, int clear_bits, gfp_t mask)
916 {
917 struct extent_state *state;
918 struct extent_state *prealloc = NULL;
919 struct rb_node *node;
920 int err = 0;
921 u64 last_start;
922 u64 last_end;
923
924 again:
925 if (!prealloc && (mask & __GFP_WAIT)) {
926 prealloc = alloc_extent_state(mask);
927 if (!prealloc)
928 return -ENOMEM;
929 }
930
931 spin_lock(&tree->lock);
932 /*
933 * this search will find all the extents that end after
934 * our range starts.
935 */
936 node = tree_search(tree, start);
937 if (!node) {
938 prealloc = alloc_extent_state_atomic(prealloc);
939 if (!prealloc) {
940 err = -ENOMEM;
941 goto out;
942 }
943 err = insert_state(tree, prealloc, start, end, &bits);
944 prealloc = NULL;
945 BUG_ON(err == -EEXIST);
946 goto out;
947 }
948 state = rb_entry(node, struct extent_state, rb_node);
949 hit_next:
950 last_start = state->start;
951 last_end = state->end;
952
953 /*
954 * | ---- desired range ---- |
955 * | state |
956 *
957 * Just lock what we found and keep going
958 */
959 if (state->start == start && state->end <= end) {
960 struct rb_node *next_node;
961
962 set_state_bits(tree, state, &bits);
963 clear_state_bit(tree, state, &clear_bits, 0);
964
965 merge_state(tree, state);
966 if (last_end == (u64)-1)
967 goto out;
968
969 start = last_end + 1;
970 next_node = rb_next(&state->rb_node);
971 if (next_node && start < end && prealloc && !need_resched()) {
972 state = rb_entry(next_node, struct extent_state,
973 rb_node);
974 if (state->start == start)
975 goto hit_next;
976 }
977 goto search_again;
978 }
979
980 /*
981 * | ---- desired range ---- |
982 * | state |
983 * or
984 * | ------------- state -------------- |
985 *
986 * We need to split the extent we found, and may flip bits on
987 * second half.
988 *
989 * If the extent we found extends past our
990 * range, we just split and search again. It'll get split
991 * again the next time though.
992 *
993 * If the extent we found is inside our range, we set the
994 * desired bit on it.
995 */
996 if (state->start < start) {
997 prealloc = alloc_extent_state_atomic(prealloc);
998 if (!prealloc) {
999 err = -ENOMEM;
1000 goto out;
1001 }
1002 err = split_state(tree, state, prealloc, start);
1003 BUG_ON(err == -EEXIST);
1004 prealloc = NULL;
1005 if (err)
1006 goto out;
1007 if (state->end <= end) {
1008 set_state_bits(tree, state, &bits);
1009 clear_state_bit(tree, state, &clear_bits, 0);
1010 merge_state(tree, state);
1011 if (last_end == (u64)-1)
1012 goto out;
1013 start = last_end + 1;
1014 }
1015 goto search_again;
1016 }
1017 /*
1018 * | ---- desired range ---- |
1019 * | state | or | state |
1020 *
1021 * There's a hole, we need to insert something in it and
1022 * ignore the extent we found.
1023 */
1024 if (state->start > start) {
1025 u64 this_end;
1026 if (end < last_start)
1027 this_end = end;
1028 else
1029 this_end = last_start - 1;
1030
1031 prealloc = alloc_extent_state_atomic(prealloc);
1032 if (!prealloc) {
1033 err = -ENOMEM;
1034 goto out;
1035 }
1036
1037 /*
1038 * Avoid to free 'prealloc' if it can be merged with
1039 * the later extent.
1040 */
1041 err = insert_state(tree, prealloc, start, this_end,
1042 &bits);
1043 BUG_ON(err == -EEXIST);
1044 if (err) {
1045 free_extent_state(prealloc);
1046 prealloc = NULL;
1047 goto out;
1048 }
1049 prealloc = NULL;
1050 start = this_end + 1;
1051 goto search_again;
1052 }
1053 /*
1054 * | ---- desired range ---- |
1055 * | state |
1056 * We need to split the extent, and set the bit
1057 * on the first half
1058 */
1059 if (state->start <= end && state->end > end) {
1060 prealloc = alloc_extent_state_atomic(prealloc);
1061 if (!prealloc) {
1062 err = -ENOMEM;
1063 goto out;
1064 }
1065
1066 err = split_state(tree, state, prealloc, end + 1);
1067 BUG_ON(err == -EEXIST);
1068
1069 set_state_bits(tree, prealloc, &bits);
1070 clear_state_bit(tree, prealloc, &clear_bits, 0);
1071
1072 merge_state(tree, prealloc);
1073 prealloc = NULL;
1074 goto out;
1075 }
1076
1077 goto search_again;
1078
1079 out:
1080 spin_unlock(&tree->lock);
1081 if (prealloc)
1082 free_extent_state(prealloc);
1083
1084 return err;
1085
1086 search_again:
1087 if (start > end)
1088 goto out;
1089 spin_unlock(&tree->lock);
1090 if (mask & __GFP_WAIT)
1091 cond_resched();
1092 goto again;
1093 }
1094
1095 /* wrappers around set/clear extent bit */
1096 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1097 gfp_t mask)
1098 {
1099 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
1100 NULL, mask);
1101 }
1102
1103 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1104 int bits, gfp_t mask)
1105 {
1106 return set_extent_bit(tree, start, end, bits, 0, NULL,
1107 NULL, mask);
1108 }
1109
1110 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1111 int bits, gfp_t mask)
1112 {
1113 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1114 }
1115
1116 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1117 struct extent_state **cached_state, gfp_t mask)
1118 {
1119 return set_extent_bit(tree, start, end,
1120 EXTENT_DELALLOC | EXTENT_UPTODATE,
1121 0, NULL, cached_state, mask);
1122 }
1123
1124 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1125 gfp_t mask)
1126 {
1127 return clear_extent_bit(tree, start, end,
1128 EXTENT_DIRTY | EXTENT_DELALLOC |
1129 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1130 }
1131
1132 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1133 gfp_t mask)
1134 {
1135 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
1136 NULL, mask);
1137 }
1138
1139 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1140 struct extent_state **cached_state, gfp_t mask)
1141 {
1142 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1143 NULL, cached_state, mask);
1144 }
1145
1146 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
1147 u64 end, struct extent_state **cached_state,
1148 gfp_t mask)
1149 {
1150 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1151 cached_state, mask);
1152 }
1153
1154 /*
1155 * either insert or lock state struct between start and end use mask to tell
1156 * us if waiting is desired.
1157 */
1158 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1159 int bits, struct extent_state **cached_state, gfp_t mask)
1160 {
1161 int err;
1162 u64 failed_start;
1163 while (1) {
1164 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1165 EXTENT_LOCKED, &failed_start,
1166 cached_state, mask);
1167 if (err == -EEXIST && (mask & __GFP_WAIT)) {
1168 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1169 start = failed_start;
1170 } else {
1171 break;
1172 }
1173 WARN_ON(start > end);
1174 }
1175 return err;
1176 }
1177
1178 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1179 {
1180 return lock_extent_bits(tree, start, end, 0, NULL, mask);
1181 }
1182
1183 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1184 gfp_t mask)
1185 {
1186 int err;
1187 u64 failed_start;
1188
1189 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1190 &failed_start, NULL, mask);
1191 if (err == -EEXIST) {
1192 if (failed_start > start)
1193 clear_extent_bit(tree, start, failed_start - 1,
1194 EXTENT_LOCKED, 1, 0, NULL, mask);
1195 return 0;
1196 }
1197 return 1;
1198 }
1199
1200 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1201 struct extent_state **cached, gfp_t mask)
1202 {
1203 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1204 mask);
1205 }
1206
1207 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1208 {
1209 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1210 mask);
1211 }
1212
1213 /*
1214 * helper function to set both pages and extents in the tree writeback
1215 */
1216 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1217 {
1218 unsigned long index = start >> PAGE_CACHE_SHIFT;
1219 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1220 struct page *page;
1221
1222 while (index <= end_index) {
1223 page = find_get_page(tree->mapping, index);
1224 BUG_ON(!page);
1225 set_page_writeback(page);
1226 page_cache_release(page);
1227 index++;
1228 }
1229 return 0;
1230 }
1231
1232 /* find the first state struct with 'bits' set after 'start', and
1233 * return it. tree->lock must be held. NULL will returned if
1234 * nothing was found after 'start'
1235 */
1236 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1237 u64 start, int bits)
1238 {
1239 struct rb_node *node;
1240 struct extent_state *state;
1241
1242 /*
1243 * this search will find all the extents that end after
1244 * our range starts.
1245 */
1246 node = tree_search(tree, start);
1247 if (!node)
1248 goto out;
1249
1250 while (1) {
1251 state = rb_entry(node, struct extent_state, rb_node);
1252 if (state->end >= start && (state->state & bits))
1253 return state;
1254
1255 node = rb_next(node);
1256 if (!node)
1257 break;
1258 }
1259 out:
1260 return NULL;
1261 }
1262
1263 /*
1264 * find the first offset in the io tree with 'bits' set. zero is
1265 * returned if we find something, and *start_ret and *end_ret are
1266 * set to reflect the state struct that was found.
1267 *
1268 * If nothing was found, 1 is returned, < 0 on error
1269 */
1270 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1271 u64 *start_ret, u64 *end_ret, int bits)
1272 {
1273 struct extent_state *state;
1274 int ret = 1;
1275
1276 spin_lock(&tree->lock);
1277 state = find_first_extent_bit_state(tree, start, bits);
1278 if (state) {
1279 *start_ret = state->start;
1280 *end_ret = state->end;
1281 ret = 0;
1282 }
1283 spin_unlock(&tree->lock);
1284 return ret;
1285 }
1286
1287 /*
1288 * find a contiguous range of bytes in the file marked as delalloc, not
1289 * more than 'max_bytes'. start and end are used to return the range,
1290 *
1291 * 1 is returned if we find something, 0 if nothing was in the tree
1292 */
1293 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1294 u64 *start, u64 *end, u64 max_bytes,
1295 struct extent_state **cached_state)
1296 {
1297 struct rb_node *node;
1298 struct extent_state *state;
1299 u64 cur_start = *start;
1300 u64 found = 0;
1301 u64 total_bytes = 0;
1302
1303 spin_lock(&tree->lock);
1304
1305 /*
1306 * this search will find all the extents that end after
1307 * our range starts.
1308 */
1309 node = tree_search(tree, cur_start);
1310 if (!node) {
1311 if (!found)
1312 *end = (u64)-1;
1313 goto out;
1314 }
1315
1316 while (1) {
1317 state = rb_entry(node, struct extent_state, rb_node);
1318 if (found && (state->start != cur_start ||
1319 (state->state & EXTENT_BOUNDARY))) {
1320 goto out;
1321 }
1322 if (!(state->state & EXTENT_DELALLOC)) {
1323 if (!found)
1324 *end = state->end;
1325 goto out;
1326 }
1327 if (!found) {
1328 *start = state->start;
1329 *cached_state = state;
1330 atomic_inc(&state->refs);
1331 }
1332 found++;
1333 *end = state->end;
1334 cur_start = state->end + 1;
1335 node = rb_next(node);
1336 if (!node)
1337 break;
1338 total_bytes += state->end - state->start + 1;
1339 if (total_bytes >= max_bytes)
1340 break;
1341 }
1342 out:
1343 spin_unlock(&tree->lock);
1344 return found;
1345 }
1346
1347 static noinline int __unlock_for_delalloc(struct inode *inode,
1348 struct page *locked_page,
1349 u64 start, u64 end)
1350 {
1351 int ret;
1352 struct page *pages[16];
1353 unsigned long index = start >> PAGE_CACHE_SHIFT;
1354 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1355 unsigned long nr_pages = end_index - index + 1;
1356 int i;
1357
1358 if (index == locked_page->index && end_index == index)
1359 return 0;
1360
1361 while (nr_pages > 0) {
1362 ret = find_get_pages_contig(inode->i_mapping, index,
1363 min_t(unsigned long, nr_pages,
1364 ARRAY_SIZE(pages)), pages);
1365 for (i = 0; i < ret; i++) {
1366 if (pages[i] != locked_page)
1367 unlock_page(pages[i]);
1368 page_cache_release(pages[i]);
1369 }
1370 nr_pages -= ret;
1371 index += ret;
1372 cond_resched();
1373 }
1374 return 0;
1375 }
1376
1377 static noinline int lock_delalloc_pages(struct inode *inode,
1378 struct page *locked_page,
1379 u64 delalloc_start,
1380 u64 delalloc_end)
1381 {
1382 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1383 unsigned long start_index = index;
1384 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1385 unsigned long pages_locked = 0;
1386 struct page *pages[16];
1387 unsigned long nrpages;
1388 int ret;
1389 int i;
1390
1391 /* the caller is responsible for locking the start index */
1392 if (index == locked_page->index && index == end_index)
1393 return 0;
1394
1395 /* skip the page at the start index */
1396 nrpages = end_index - index + 1;
1397 while (nrpages > 0) {
1398 ret = find_get_pages_contig(inode->i_mapping, index,
1399 min_t(unsigned long,
1400 nrpages, ARRAY_SIZE(pages)), pages);
1401 if (ret == 0) {
1402 ret = -EAGAIN;
1403 goto done;
1404 }
1405 /* now we have an array of pages, lock them all */
1406 for (i = 0; i < ret; i++) {
1407 /*
1408 * the caller is taking responsibility for
1409 * locked_page
1410 */
1411 if (pages[i] != locked_page) {
1412 lock_page(pages[i]);
1413 if (!PageDirty(pages[i]) ||
1414 pages[i]->mapping != inode->i_mapping) {
1415 ret = -EAGAIN;
1416 unlock_page(pages[i]);
1417 page_cache_release(pages[i]);
1418 goto done;
1419 }
1420 }
1421 page_cache_release(pages[i]);
1422 pages_locked++;
1423 }
1424 nrpages -= ret;
1425 index += ret;
1426 cond_resched();
1427 }
1428 ret = 0;
1429 done:
1430 if (ret && pages_locked) {
1431 __unlock_for_delalloc(inode, locked_page,
1432 delalloc_start,
1433 ((u64)(start_index + pages_locked - 1)) <<
1434 PAGE_CACHE_SHIFT);
1435 }
1436 return ret;
1437 }
1438
1439 /*
1440 * find a contiguous range of bytes in the file marked as delalloc, not
1441 * more than 'max_bytes'. start and end are used to return the range,
1442 *
1443 * 1 is returned if we find something, 0 if nothing was in the tree
1444 */
1445 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1446 struct extent_io_tree *tree,
1447 struct page *locked_page,
1448 u64 *start, u64 *end,
1449 u64 max_bytes)
1450 {
1451 u64 delalloc_start;
1452 u64 delalloc_end;
1453 u64 found;
1454 struct extent_state *cached_state = NULL;
1455 int ret;
1456 int loops = 0;
1457
1458 again:
1459 /* step one, find a bunch of delalloc bytes starting at start */
1460 delalloc_start = *start;
1461 delalloc_end = 0;
1462 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1463 max_bytes, &cached_state);
1464 if (!found || delalloc_end <= *start) {
1465 *start = delalloc_start;
1466 *end = delalloc_end;
1467 free_extent_state(cached_state);
1468 return found;
1469 }
1470
1471 /*
1472 * start comes from the offset of locked_page. We have to lock
1473 * pages in order, so we can't process delalloc bytes before
1474 * locked_page
1475 */
1476 if (delalloc_start < *start)
1477 delalloc_start = *start;
1478
1479 /*
1480 * make sure to limit the number of pages we try to lock down
1481 * if we're looping.
1482 */
1483 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1484 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1485
1486 /* step two, lock all the pages after the page that has start */
1487 ret = lock_delalloc_pages(inode, locked_page,
1488 delalloc_start, delalloc_end);
1489 if (ret == -EAGAIN) {
1490 /* some of the pages are gone, lets avoid looping by
1491 * shortening the size of the delalloc range we're searching
1492 */
1493 free_extent_state(cached_state);
1494 if (!loops) {
1495 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1496 max_bytes = PAGE_CACHE_SIZE - offset;
1497 loops = 1;
1498 goto again;
1499 } else {
1500 found = 0;
1501 goto out_failed;
1502 }
1503 }
1504 BUG_ON(ret);
1505
1506 /* step three, lock the state bits for the whole range */
1507 lock_extent_bits(tree, delalloc_start, delalloc_end,
1508 0, &cached_state, GFP_NOFS);
1509
1510 /* then test to make sure it is all still delalloc */
1511 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1512 EXTENT_DELALLOC, 1, cached_state);
1513 if (!ret) {
1514 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1515 &cached_state, GFP_NOFS);
1516 __unlock_for_delalloc(inode, locked_page,
1517 delalloc_start, delalloc_end);
1518 cond_resched();
1519 goto again;
1520 }
1521 free_extent_state(cached_state);
1522 *start = delalloc_start;
1523 *end = delalloc_end;
1524 out_failed:
1525 return found;
1526 }
1527
1528 int extent_clear_unlock_delalloc(struct inode *inode,
1529 struct extent_io_tree *tree,
1530 u64 start, u64 end, struct page *locked_page,
1531 unsigned long op)
1532 {
1533 int ret;
1534 struct page *pages[16];
1535 unsigned long index = start >> PAGE_CACHE_SHIFT;
1536 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1537 unsigned long nr_pages = end_index - index + 1;
1538 int i;
1539 int clear_bits = 0;
1540
1541 if (op & EXTENT_CLEAR_UNLOCK)
1542 clear_bits |= EXTENT_LOCKED;
1543 if (op & EXTENT_CLEAR_DIRTY)
1544 clear_bits |= EXTENT_DIRTY;
1545
1546 if (op & EXTENT_CLEAR_DELALLOC)
1547 clear_bits |= EXTENT_DELALLOC;
1548
1549 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1550 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1551 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1552 EXTENT_SET_PRIVATE2)))
1553 return 0;
1554
1555 while (nr_pages > 0) {
1556 ret = find_get_pages_contig(inode->i_mapping, index,
1557 min_t(unsigned long,
1558 nr_pages, ARRAY_SIZE(pages)), pages);
1559 for (i = 0; i < ret; i++) {
1560
1561 if (op & EXTENT_SET_PRIVATE2)
1562 SetPagePrivate2(pages[i]);
1563
1564 if (pages[i] == locked_page) {
1565 page_cache_release(pages[i]);
1566 continue;
1567 }
1568 if (op & EXTENT_CLEAR_DIRTY)
1569 clear_page_dirty_for_io(pages[i]);
1570 if (op & EXTENT_SET_WRITEBACK)
1571 set_page_writeback(pages[i]);
1572 if (op & EXTENT_END_WRITEBACK)
1573 end_page_writeback(pages[i]);
1574 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1575 unlock_page(pages[i]);
1576 page_cache_release(pages[i]);
1577 }
1578 nr_pages -= ret;
1579 index += ret;
1580 cond_resched();
1581 }
1582 return 0;
1583 }
1584
1585 /*
1586 * count the number of bytes in the tree that have a given bit(s)
1587 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1588 * cached. The total number found is returned.
1589 */
1590 u64 count_range_bits(struct extent_io_tree *tree,
1591 u64 *start, u64 search_end, u64 max_bytes,
1592 unsigned long bits, int contig)
1593 {
1594 struct rb_node *node;
1595 struct extent_state *state;
1596 u64 cur_start = *start;
1597 u64 total_bytes = 0;
1598 u64 last = 0;
1599 int found = 0;
1600
1601 if (search_end <= cur_start) {
1602 WARN_ON(1);
1603 return 0;
1604 }
1605
1606 spin_lock(&tree->lock);
1607 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1608 total_bytes = tree->dirty_bytes;
1609 goto out;
1610 }
1611 /*
1612 * this search will find all the extents that end after
1613 * our range starts.
1614 */
1615 node = tree_search(tree, cur_start);
1616 if (!node)
1617 goto out;
1618
1619 while (1) {
1620 state = rb_entry(node, struct extent_state, rb_node);
1621 if (state->start > search_end)
1622 break;
1623 if (contig && found && state->start > last + 1)
1624 break;
1625 if (state->end >= cur_start && (state->state & bits) == bits) {
1626 total_bytes += min(search_end, state->end) + 1 -
1627 max(cur_start, state->start);
1628 if (total_bytes >= max_bytes)
1629 break;
1630 if (!found) {
1631 *start = max(cur_start, state->start);
1632 found = 1;
1633 }
1634 last = state->end;
1635 } else if (contig && found) {
1636 break;
1637 }
1638 node = rb_next(node);
1639 if (!node)
1640 break;
1641 }
1642 out:
1643 spin_unlock(&tree->lock);
1644 return total_bytes;
1645 }
1646
1647 /*
1648 * set the private field for a given byte offset in the tree. If there isn't
1649 * an extent_state there already, this does nothing.
1650 */
1651 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1652 {
1653 struct rb_node *node;
1654 struct extent_state *state;
1655 int ret = 0;
1656
1657 spin_lock(&tree->lock);
1658 /*
1659 * this search will find all the extents that end after
1660 * our range starts.
1661 */
1662 node = tree_search(tree, start);
1663 if (!node) {
1664 ret = -ENOENT;
1665 goto out;
1666 }
1667 state = rb_entry(node, struct extent_state, rb_node);
1668 if (state->start != start) {
1669 ret = -ENOENT;
1670 goto out;
1671 }
1672 state->private = private;
1673 out:
1674 spin_unlock(&tree->lock);
1675 return ret;
1676 }
1677
1678 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1679 {
1680 struct rb_node *node;
1681 struct extent_state *state;
1682 int ret = 0;
1683
1684 spin_lock(&tree->lock);
1685 /*
1686 * this search will find all the extents that end after
1687 * our range starts.
1688 */
1689 node = tree_search(tree, start);
1690 if (!node) {
1691 ret = -ENOENT;
1692 goto out;
1693 }
1694 state = rb_entry(node, struct extent_state, rb_node);
1695 if (state->start != start) {
1696 ret = -ENOENT;
1697 goto out;
1698 }
1699 *private = state->private;
1700 out:
1701 spin_unlock(&tree->lock);
1702 return ret;
1703 }
1704
1705 /*
1706 * searches a range in the state tree for a given mask.
1707 * If 'filled' == 1, this returns 1 only if every extent in the tree
1708 * has the bits set. Otherwise, 1 is returned if any bit in the
1709 * range is found set.
1710 */
1711 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1712 int bits, int filled, struct extent_state *cached)
1713 {
1714 struct extent_state *state = NULL;
1715 struct rb_node *node;
1716 int bitset = 0;
1717
1718 spin_lock(&tree->lock);
1719 if (cached && cached->tree && cached->start <= start &&
1720 cached->end > start)
1721 node = &cached->rb_node;
1722 else
1723 node = tree_search(tree, start);
1724 while (node && start <= end) {
1725 state = rb_entry(node, struct extent_state, rb_node);
1726
1727 if (filled && state->start > start) {
1728 bitset = 0;
1729 break;
1730 }
1731
1732 if (state->start > end)
1733 break;
1734
1735 if (state->state & bits) {
1736 bitset = 1;
1737 if (!filled)
1738 break;
1739 } else if (filled) {
1740 bitset = 0;
1741 break;
1742 }
1743
1744 if (state->end == (u64)-1)
1745 break;
1746
1747 start = state->end + 1;
1748 if (start > end)
1749 break;
1750 node = rb_next(node);
1751 if (!node) {
1752 if (filled)
1753 bitset = 0;
1754 break;
1755 }
1756 }
1757 spin_unlock(&tree->lock);
1758 return bitset;
1759 }
1760
1761 /*
1762 * helper function to set a given page up to date if all the
1763 * extents in the tree for that page are up to date
1764 */
1765 static int check_page_uptodate(struct extent_io_tree *tree,
1766 struct page *page)
1767 {
1768 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1769 u64 end = start + PAGE_CACHE_SIZE - 1;
1770 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1771 SetPageUptodate(page);
1772 return 0;
1773 }
1774
1775 /*
1776 * helper function to unlock a page if all the extents in the tree
1777 * for that page are unlocked
1778 */
1779 static int check_page_locked(struct extent_io_tree *tree,
1780 struct page *page)
1781 {
1782 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1783 u64 end = start + PAGE_CACHE_SIZE - 1;
1784 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1785 unlock_page(page);
1786 return 0;
1787 }
1788
1789 /*
1790 * helper function to end page writeback if all the extents
1791 * in the tree for that page are done with writeback
1792 */
1793 static int check_page_writeback(struct extent_io_tree *tree,
1794 struct page *page)
1795 {
1796 end_page_writeback(page);
1797 return 0;
1798 }
1799
1800 /*
1801 * When IO fails, either with EIO or csum verification fails, we
1802 * try other mirrors that might have a good copy of the data. This
1803 * io_failure_record is used to record state as we go through all the
1804 * mirrors. If another mirror has good data, the page is set up to date
1805 * and things continue. If a good mirror can't be found, the original
1806 * bio end_io callback is called to indicate things have failed.
1807 */
1808 struct io_failure_record {
1809 struct page *page;
1810 u64 start;
1811 u64 len;
1812 u64 logical;
1813 unsigned long bio_flags;
1814 int this_mirror;
1815 int failed_mirror;
1816 int in_validation;
1817 };
1818
1819 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1820 int did_repair)
1821 {
1822 int ret;
1823 int err = 0;
1824 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1825
1826 set_state_private(failure_tree, rec->start, 0);
1827 ret = clear_extent_bits(failure_tree, rec->start,
1828 rec->start + rec->len - 1,
1829 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1830 if (ret)
1831 err = ret;
1832
1833 if (did_repair) {
1834 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1835 rec->start + rec->len - 1,
1836 EXTENT_DAMAGED, GFP_NOFS);
1837 if (ret && !err)
1838 err = ret;
1839 }
1840
1841 kfree(rec);
1842 return err;
1843 }
1844
1845 static void repair_io_failure_callback(struct bio *bio, int err)
1846 {
1847 complete(bio->bi_private);
1848 }
1849
1850 /*
1851 * this bypasses the standard btrfs submit functions deliberately, as
1852 * the standard behavior is to write all copies in a raid setup. here we only
1853 * want to write the one bad copy. so we do the mapping for ourselves and issue
1854 * submit_bio directly.
1855 * to avoid any synchonization issues, wait for the data after writing, which
1856 * actually prevents the read that triggered the error from finishing.
1857 * currently, there can be no more than two copies of every data bit. thus,
1858 * exactly one rewrite is required.
1859 */
1860 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1861 u64 length, u64 logical, struct page *page,
1862 int mirror_num)
1863 {
1864 struct bio *bio;
1865 struct btrfs_device *dev;
1866 DECLARE_COMPLETION_ONSTACK(compl);
1867 u64 map_length = 0;
1868 u64 sector;
1869 struct btrfs_bio *bbio = NULL;
1870 int ret;
1871
1872 BUG_ON(!mirror_num);
1873
1874 bio = bio_alloc(GFP_NOFS, 1);
1875 if (!bio)
1876 return -EIO;
1877 bio->bi_private = &compl;
1878 bio->bi_end_io = repair_io_failure_callback;
1879 bio->bi_size = 0;
1880 map_length = length;
1881
1882 ret = btrfs_map_block(map_tree, WRITE, logical,
1883 &map_length, &bbio, mirror_num);
1884 if (ret) {
1885 bio_put(bio);
1886 return -EIO;
1887 }
1888 BUG_ON(mirror_num != bbio->mirror_num);
1889 sector = bbio->stripes[mirror_num-1].physical >> 9;
1890 bio->bi_sector = sector;
1891 dev = bbio->stripes[mirror_num-1].dev;
1892 kfree(bbio);
1893 if (!dev || !dev->bdev || !dev->writeable) {
1894 bio_put(bio);
1895 return -EIO;
1896 }
1897 bio->bi_bdev = dev->bdev;
1898 bio_add_page(bio, page, length, start-page_offset(page));
1899 btrfsic_submit_bio(WRITE_SYNC, bio);
1900 wait_for_completion(&compl);
1901
1902 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1903 /* try to remap that extent elsewhere? */
1904 bio_put(bio);
1905 return -EIO;
1906 }
1907
1908 printk(KERN_INFO "btrfs read error corrected: ino %lu off %llu (dev %s "
1909 "sector %llu)\n", page->mapping->host->i_ino, start,
1910 dev->name, sector);
1911
1912 bio_put(bio);
1913 return 0;
1914 }
1915
1916 /*
1917 * each time an IO finishes, we do a fast check in the IO failure tree
1918 * to see if we need to process or clean up an io_failure_record
1919 */
1920 static int clean_io_failure(u64 start, struct page *page)
1921 {
1922 u64 private;
1923 u64 private_failure;
1924 struct io_failure_record *failrec;
1925 struct btrfs_mapping_tree *map_tree;
1926 struct extent_state *state;
1927 int num_copies;
1928 int did_repair = 0;
1929 int ret;
1930 struct inode *inode = page->mapping->host;
1931
1932 private = 0;
1933 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1934 (u64)-1, 1, EXTENT_DIRTY, 0);
1935 if (!ret)
1936 return 0;
1937
1938 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1939 &private_failure);
1940 if (ret)
1941 return 0;
1942
1943 failrec = (struct io_failure_record *)(unsigned long) private_failure;
1944 BUG_ON(!failrec->this_mirror);
1945
1946 if (failrec->in_validation) {
1947 /* there was no real error, just free the record */
1948 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1949 failrec->start);
1950 did_repair = 1;
1951 goto out;
1952 }
1953
1954 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1955 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1956 failrec->start,
1957 EXTENT_LOCKED);
1958 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1959
1960 if (state && state->start == failrec->start) {
1961 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
1962 num_copies = btrfs_num_copies(map_tree, failrec->logical,
1963 failrec->len);
1964 if (num_copies > 1) {
1965 ret = repair_io_failure(map_tree, start, failrec->len,
1966 failrec->logical, page,
1967 failrec->failed_mirror);
1968 did_repair = !ret;
1969 }
1970 }
1971
1972 out:
1973 if (!ret)
1974 ret = free_io_failure(inode, failrec, did_repair);
1975
1976 return ret;
1977 }
1978
1979 /*
1980 * this is a generic handler for readpage errors (default
1981 * readpage_io_failed_hook). if other copies exist, read those and write back
1982 * good data to the failed position. does not investigate in remapping the
1983 * failed extent elsewhere, hoping the device will be smart enough to do this as
1984 * needed
1985 */
1986
1987 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
1988 u64 start, u64 end, int failed_mirror,
1989 struct extent_state *state)
1990 {
1991 struct io_failure_record *failrec = NULL;
1992 u64 private;
1993 struct extent_map *em;
1994 struct inode *inode = page->mapping->host;
1995 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1996 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1997 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1998 struct bio *bio;
1999 int num_copies;
2000 int ret;
2001 int read_mode;
2002 u64 logical;
2003
2004 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2005
2006 ret = get_state_private(failure_tree, start, &private);
2007 if (ret) {
2008 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2009 if (!failrec)
2010 return -ENOMEM;
2011 failrec->start = start;
2012 failrec->len = end - start + 1;
2013 failrec->this_mirror = 0;
2014 failrec->bio_flags = 0;
2015 failrec->in_validation = 0;
2016
2017 read_lock(&em_tree->lock);
2018 em = lookup_extent_mapping(em_tree, start, failrec->len);
2019 if (!em) {
2020 read_unlock(&em_tree->lock);
2021 kfree(failrec);
2022 return -EIO;
2023 }
2024
2025 if (em->start > start || em->start + em->len < start) {
2026 free_extent_map(em);
2027 em = NULL;
2028 }
2029 read_unlock(&em_tree->lock);
2030
2031 if (!em || IS_ERR(em)) {
2032 kfree(failrec);
2033 return -EIO;
2034 }
2035 logical = start - em->start;
2036 logical = em->block_start + logical;
2037 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2038 logical = em->block_start;
2039 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2040 extent_set_compress_type(&failrec->bio_flags,
2041 em->compress_type);
2042 }
2043 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2044 "len=%llu\n", logical, start, failrec->len);
2045 failrec->logical = logical;
2046 free_extent_map(em);
2047
2048 /* set the bits in the private failure tree */
2049 ret = set_extent_bits(failure_tree, start, end,
2050 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2051 if (ret >= 0)
2052 ret = set_state_private(failure_tree, start,
2053 (u64)(unsigned long)failrec);
2054 /* set the bits in the inode's tree */
2055 if (ret >= 0)
2056 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2057 GFP_NOFS);
2058 if (ret < 0) {
2059 kfree(failrec);
2060 return ret;
2061 }
2062 } else {
2063 failrec = (struct io_failure_record *)(unsigned long)private;
2064 pr_debug("bio_readpage_error: (found) logical=%llu, "
2065 "start=%llu, len=%llu, validation=%d\n",
2066 failrec->logical, failrec->start, failrec->len,
2067 failrec->in_validation);
2068 /*
2069 * when data can be on disk more than twice, add to failrec here
2070 * (e.g. with a list for failed_mirror) to make
2071 * clean_io_failure() clean all those errors at once.
2072 */
2073 }
2074 num_copies = btrfs_num_copies(
2075 &BTRFS_I(inode)->root->fs_info->mapping_tree,
2076 failrec->logical, failrec->len);
2077 if (num_copies == 1) {
2078 /*
2079 * we only have a single copy of the data, so don't bother with
2080 * all the retry and error correction code that follows. no
2081 * matter what the error is, it is very likely to persist.
2082 */
2083 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2084 "state=%p, num_copies=%d, next_mirror %d, "
2085 "failed_mirror %d\n", state, num_copies,
2086 failrec->this_mirror, failed_mirror);
2087 free_io_failure(inode, failrec, 0);
2088 return -EIO;
2089 }
2090
2091 if (!state) {
2092 spin_lock(&tree->lock);
2093 state = find_first_extent_bit_state(tree, failrec->start,
2094 EXTENT_LOCKED);
2095 if (state && state->start != failrec->start)
2096 state = NULL;
2097 spin_unlock(&tree->lock);
2098 }
2099
2100 /*
2101 * there are two premises:
2102 * a) deliver good data to the caller
2103 * b) correct the bad sectors on disk
2104 */
2105 if (failed_bio->bi_vcnt > 1) {
2106 /*
2107 * to fulfill b), we need to know the exact failing sectors, as
2108 * we don't want to rewrite any more than the failed ones. thus,
2109 * we need separate read requests for the failed bio
2110 *
2111 * if the following BUG_ON triggers, our validation request got
2112 * merged. we need separate requests for our algorithm to work.
2113 */
2114 BUG_ON(failrec->in_validation);
2115 failrec->in_validation = 1;
2116 failrec->this_mirror = failed_mirror;
2117 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2118 } else {
2119 /*
2120 * we're ready to fulfill a) and b) alongside. get a good copy
2121 * of the failed sector and if we succeed, we have setup
2122 * everything for repair_io_failure to do the rest for us.
2123 */
2124 if (failrec->in_validation) {
2125 BUG_ON(failrec->this_mirror != failed_mirror);
2126 failrec->in_validation = 0;
2127 failrec->this_mirror = 0;
2128 }
2129 failrec->failed_mirror = failed_mirror;
2130 failrec->this_mirror++;
2131 if (failrec->this_mirror == failed_mirror)
2132 failrec->this_mirror++;
2133 read_mode = READ_SYNC;
2134 }
2135
2136 if (!state || failrec->this_mirror > num_copies) {
2137 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2138 "next_mirror %d, failed_mirror %d\n", state,
2139 num_copies, failrec->this_mirror, failed_mirror);
2140 free_io_failure(inode, failrec, 0);
2141 return -EIO;
2142 }
2143
2144 bio = bio_alloc(GFP_NOFS, 1);
2145 bio->bi_private = state;
2146 bio->bi_end_io = failed_bio->bi_end_io;
2147 bio->bi_sector = failrec->logical >> 9;
2148 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2149 bio->bi_size = 0;
2150
2151 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2152
2153 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2154 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2155 failrec->this_mirror, num_copies, failrec->in_validation);
2156
2157 tree->ops->submit_bio_hook(inode, read_mode, bio, failrec->this_mirror,
2158 failrec->bio_flags, 0);
2159 return 0;
2160 }
2161
2162 /* lots and lots of room for performance fixes in the end_bio funcs */
2163
2164 /*
2165 * after a writepage IO is done, we need to:
2166 * clear the uptodate bits on error
2167 * clear the writeback bits in the extent tree for this IO
2168 * end_page_writeback if the page has no more pending IO
2169 *
2170 * Scheduling is not allowed, so the extent state tree is expected
2171 * to have one and only one object corresponding to this IO.
2172 */
2173 static void end_bio_extent_writepage(struct bio *bio, int err)
2174 {
2175 int uptodate = err == 0;
2176 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2177 struct extent_io_tree *tree;
2178 u64 start;
2179 u64 end;
2180 int whole_page;
2181 int ret;
2182
2183 do {
2184 struct page *page = bvec->bv_page;
2185 tree = &BTRFS_I(page->mapping->host)->io_tree;
2186
2187 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2188 bvec->bv_offset;
2189 end = start + bvec->bv_len - 1;
2190
2191 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2192 whole_page = 1;
2193 else
2194 whole_page = 0;
2195
2196 if (--bvec >= bio->bi_io_vec)
2197 prefetchw(&bvec->bv_page->flags);
2198 if (tree->ops && tree->ops->writepage_end_io_hook) {
2199 ret = tree->ops->writepage_end_io_hook(page, start,
2200 end, NULL, uptodate);
2201 if (ret)
2202 uptodate = 0;
2203 }
2204
2205 if (!uptodate && tree->ops &&
2206 tree->ops->writepage_io_failed_hook) {
2207 ret = tree->ops->writepage_io_failed_hook(bio, page,
2208 start, end, NULL);
2209 if (ret == 0) {
2210 uptodate = (err == 0);
2211 continue;
2212 }
2213 }
2214
2215 if (!uptodate) {
2216 clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
2217 ClearPageUptodate(page);
2218 SetPageError(page);
2219 }
2220
2221 if (whole_page)
2222 end_page_writeback(page);
2223 else
2224 check_page_writeback(tree, page);
2225 } while (bvec >= bio->bi_io_vec);
2226
2227 bio_put(bio);
2228 }
2229
2230 /*
2231 * after a readpage IO is done, we need to:
2232 * clear the uptodate bits on error
2233 * set the uptodate bits if things worked
2234 * set the page up to date if all extents in the tree are uptodate
2235 * clear the lock bit in the extent tree
2236 * unlock the page if there are no other extents locked for it
2237 *
2238 * Scheduling is not allowed, so the extent state tree is expected
2239 * to have one and only one object corresponding to this IO.
2240 */
2241 static void end_bio_extent_readpage(struct bio *bio, int err)
2242 {
2243 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2244 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2245 struct bio_vec *bvec = bio->bi_io_vec;
2246 struct extent_io_tree *tree;
2247 u64 start;
2248 u64 end;
2249 int whole_page;
2250 int ret;
2251
2252 if (err)
2253 uptodate = 0;
2254
2255 do {
2256 struct page *page = bvec->bv_page;
2257 struct extent_state *cached = NULL;
2258 struct extent_state *state;
2259
2260 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2261 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2262 (long int)bio->bi_bdev);
2263 tree = &BTRFS_I(page->mapping->host)->io_tree;
2264
2265 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2266 bvec->bv_offset;
2267 end = start + bvec->bv_len - 1;
2268
2269 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2270 whole_page = 1;
2271 else
2272 whole_page = 0;
2273
2274 if (++bvec <= bvec_end)
2275 prefetchw(&bvec->bv_page->flags);
2276
2277 spin_lock(&tree->lock);
2278 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2279 if (state && state->start == start) {
2280 /*
2281 * take a reference on the state, unlock will drop
2282 * the ref
2283 */
2284 cache_state(state, &cached);
2285 }
2286 spin_unlock(&tree->lock);
2287
2288 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2289 ret = tree->ops->readpage_end_io_hook(page, start, end,
2290 state);
2291 if (ret)
2292 uptodate = 0;
2293 else
2294 clean_io_failure(start, page);
2295 }
2296 if (!uptodate) {
2297 int failed_mirror;
2298 failed_mirror = (int)(unsigned long)bio->bi_bdev;
2299 /*
2300 * The generic bio_readpage_error handles errors the
2301 * following way: If possible, new read requests are
2302 * created and submitted and will end up in
2303 * end_bio_extent_readpage as well (if we're lucky, not
2304 * in the !uptodate case). In that case it returns 0 and
2305 * we just go on with the next page in our bio. If it
2306 * can't handle the error it will return -EIO and we
2307 * remain responsible for that page.
2308 */
2309 ret = bio_readpage_error(bio, page, start, end,
2310 failed_mirror, NULL);
2311 if (ret == 0) {
2312 error_handled:
2313 uptodate =
2314 test_bit(BIO_UPTODATE, &bio->bi_flags);
2315 if (err)
2316 uptodate = 0;
2317 uncache_state(&cached);
2318 continue;
2319 }
2320 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2321 ret = tree->ops->readpage_io_failed_hook(
2322 bio, page, start, end,
2323 failed_mirror, state);
2324 if (ret == 0)
2325 goto error_handled;
2326 }
2327 }
2328
2329 if (uptodate) {
2330 set_extent_uptodate(tree, start, end, &cached,
2331 GFP_ATOMIC);
2332 }
2333 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2334
2335 if (whole_page) {
2336 if (uptodate) {
2337 SetPageUptodate(page);
2338 } else {
2339 ClearPageUptodate(page);
2340 SetPageError(page);
2341 }
2342 unlock_page(page);
2343 } else {
2344 if (uptodate) {
2345 check_page_uptodate(tree, page);
2346 } else {
2347 ClearPageUptodate(page);
2348 SetPageError(page);
2349 }
2350 check_page_locked(tree, page);
2351 }
2352 } while (bvec <= bvec_end);
2353
2354 bio_put(bio);
2355 }
2356
2357 struct bio *
2358 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2359 gfp_t gfp_flags)
2360 {
2361 struct bio *bio;
2362
2363 bio = bio_alloc(gfp_flags, nr_vecs);
2364
2365 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2366 while (!bio && (nr_vecs /= 2))
2367 bio = bio_alloc(gfp_flags, nr_vecs);
2368 }
2369
2370 if (bio) {
2371 bio->bi_size = 0;
2372 bio->bi_bdev = bdev;
2373 bio->bi_sector = first_sector;
2374 }
2375 return bio;
2376 }
2377
2378 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
2379 unsigned long bio_flags)
2380 {
2381 int ret = 0;
2382 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2383 struct page *page = bvec->bv_page;
2384 struct extent_io_tree *tree = bio->bi_private;
2385 u64 start;
2386
2387 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2388
2389 bio->bi_private = NULL;
2390
2391 bio_get(bio);
2392
2393 if (tree->ops && tree->ops->submit_bio_hook)
2394 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2395 mirror_num, bio_flags, start);
2396 else
2397 btrfsic_submit_bio(rw, bio);
2398
2399 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2400 ret = -EOPNOTSUPP;
2401 bio_put(bio);
2402 return ret;
2403 }
2404
2405 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2406 struct page *page, sector_t sector,
2407 size_t size, unsigned long offset,
2408 struct block_device *bdev,
2409 struct bio **bio_ret,
2410 unsigned long max_pages,
2411 bio_end_io_t end_io_func,
2412 int mirror_num,
2413 unsigned long prev_bio_flags,
2414 unsigned long bio_flags)
2415 {
2416 int ret = 0;
2417 struct bio *bio;
2418 int nr;
2419 int contig = 0;
2420 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2421 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2422 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2423
2424 if (bio_ret && *bio_ret) {
2425 bio = *bio_ret;
2426 if (old_compressed)
2427 contig = bio->bi_sector == sector;
2428 else
2429 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2430 sector;
2431
2432 if (prev_bio_flags != bio_flags || !contig ||
2433 (tree->ops && tree->ops->merge_bio_hook &&
2434 tree->ops->merge_bio_hook(page, offset, page_size, bio,
2435 bio_flags)) ||
2436 bio_add_page(bio, page, page_size, offset) < page_size) {
2437 ret = submit_one_bio(rw, bio, mirror_num,
2438 prev_bio_flags);
2439 bio = NULL;
2440 } else {
2441 return 0;
2442 }
2443 }
2444 if (this_compressed)
2445 nr = BIO_MAX_PAGES;
2446 else
2447 nr = bio_get_nr_vecs(bdev);
2448
2449 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2450 if (!bio)
2451 return -ENOMEM;
2452
2453 bio_add_page(bio, page, page_size, offset);
2454 bio->bi_end_io = end_io_func;
2455 bio->bi_private = tree;
2456
2457 if (bio_ret)
2458 *bio_ret = bio;
2459 else
2460 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2461
2462 return ret;
2463 }
2464
2465 void set_page_extent_mapped(struct page *page)
2466 {
2467 if (!PagePrivate(page)) {
2468 SetPagePrivate(page);
2469 page_cache_get(page);
2470 set_page_private(page, EXTENT_PAGE_PRIVATE);
2471 }
2472 }
2473
2474 static void set_page_extent_head(struct page *page, unsigned long len)
2475 {
2476 WARN_ON(!PagePrivate(page));
2477 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
2478 }
2479
2480 /*
2481 * basic readpage implementation. Locked extent state structs are inserted
2482 * into the tree that are removed when the IO is done (by the end_io
2483 * handlers)
2484 */
2485 static int __extent_read_full_page(struct extent_io_tree *tree,
2486 struct page *page,
2487 get_extent_t *get_extent,
2488 struct bio **bio, int mirror_num,
2489 unsigned long *bio_flags)
2490 {
2491 struct inode *inode = page->mapping->host;
2492 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2493 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2494 u64 end;
2495 u64 cur = start;
2496 u64 extent_offset;
2497 u64 last_byte = i_size_read(inode);
2498 u64 block_start;
2499 u64 cur_end;
2500 sector_t sector;
2501 struct extent_map *em;
2502 struct block_device *bdev;
2503 struct btrfs_ordered_extent *ordered;
2504 int ret;
2505 int nr = 0;
2506 size_t pg_offset = 0;
2507 size_t iosize;
2508 size_t disk_io_size;
2509 size_t blocksize = inode->i_sb->s_blocksize;
2510 unsigned long this_bio_flag = 0;
2511
2512 set_page_extent_mapped(page);
2513
2514 if (!PageUptodate(page)) {
2515 if (cleancache_get_page(page) == 0) {
2516 BUG_ON(blocksize != PAGE_SIZE);
2517 goto out;
2518 }
2519 }
2520
2521 end = page_end;
2522 while (1) {
2523 lock_extent(tree, start, end, GFP_NOFS);
2524 ordered = btrfs_lookup_ordered_extent(inode, start);
2525 if (!ordered)
2526 break;
2527 unlock_extent(tree, start, end, GFP_NOFS);
2528 btrfs_start_ordered_extent(inode, ordered, 1);
2529 btrfs_put_ordered_extent(ordered);
2530 }
2531
2532 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2533 char *userpage;
2534 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2535
2536 if (zero_offset) {
2537 iosize = PAGE_CACHE_SIZE - zero_offset;
2538 userpage = kmap_atomic(page, KM_USER0);
2539 memset(userpage + zero_offset, 0, iosize);
2540 flush_dcache_page(page);
2541 kunmap_atomic(userpage, KM_USER0);
2542 }
2543 }
2544 while (cur <= end) {
2545 if (cur >= last_byte) {
2546 char *userpage;
2547 struct extent_state *cached = NULL;
2548
2549 iosize = PAGE_CACHE_SIZE - pg_offset;
2550 userpage = kmap_atomic(page, KM_USER0);
2551 memset(userpage + pg_offset, 0, iosize);
2552 flush_dcache_page(page);
2553 kunmap_atomic(userpage, KM_USER0);
2554 set_extent_uptodate(tree, cur, cur + iosize - 1,
2555 &cached, GFP_NOFS);
2556 unlock_extent_cached(tree, cur, cur + iosize - 1,
2557 &cached, GFP_NOFS);
2558 break;
2559 }
2560 em = get_extent(inode, page, pg_offset, cur,
2561 end - cur + 1, 0);
2562 if (IS_ERR_OR_NULL(em)) {
2563 SetPageError(page);
2564 unlock_extent(tree, cur, end, GFP_NOFS);
2565 break;
2566 }
2567 extent_offset = cur - em->start;
2568 BUG_ON(extent_map_end(em) <= cur);
2569 BUG_ON(end < cur);
2570
2571 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2572 this_bio_flag = EXTENT_BIO_COMPRESSED;
2573 extent_set_compress_type(&this_bio_flag,
2574 em->compress_type);
2575 }
2576
2577 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2578 cur_end = min(extent_map_end(em) - 1, end);
2579 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2580 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2581 disk_io_size = em->block_len;
2582 sector = em->block_start >> 9;
2583 } else {
2584 sector = (em->block_start + extent_offset) >> 9;
2585 disk_io_size = iosize;
2586 }
2587 bdev = em->bdev;
2588 block_start = em->block_start;
2589 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2590 block_start = EXTENT_MAP_HOLE;
2591 free_extent_map(em);
2592 em = NULL;
2593
2594 /* we've found a hole, just zero and go on */
2595 if (block_start == EXTENT_MAP_HOLE) {
2596 char *userpage;
2597 struct extent_state *cached = NULL;
2598
2599 userpage = kmap_atomic(page, KM_USER0);
2600 memset(userpage + pg_offset, 0, iosize);
2601 flush_dcache_page(page);
2602 kunmap_atomic(userpage, KM_USER0);
2603
2604 set_extent_uptodate(tree, cur, cur + iosize - 1,
2605 &cached, GFP_NOFS);
2606 unlock_extent_cached(tree, cur, cur + iosize - 1,
2607 &cached, GFP_NOFS);
2608 cur = cur + iosize;
2609 pg_offset += iosize;
2610 continue;
2611 }
2612 /* the get_extent function already copied into the page */
2613 if (test_range_bit(tree, cur, cur_end,
2614 EXTENT_UPTODATE, 1, NULL)) {
2615 check_page_uptodate(tree, page);
2616 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2617 cur = cur + iosize;
2618 pg_offset += iosize;
2619 continue;
2620 }
2621 /* we have an inline extent but it didn't get marked up
2622 * to date. Error out
2623 */
2624 if (block_start == EXTENT_MAP_INLINE) {
2625 SetPageError(page);
2626 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2627 cur = cur + iosize;
2628 pg_offset += iosize;
2629 continue;
2630 }
2631
2632 ret = 0;
2633 if (tree->ops && tree->ops->readpage_io_hook) {
2634 ret = tree->ops->readpage_io_hook(page, cur,
2635 cur + iosize - 1);
2636 }
2637 if (!ret) {
2638 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2639 pnr -= page->index;
2640 ret = submit_extent_page(READ, tree, page,
2641 sector, disk_io_size, pg_offset,
2642 bdev, bio, pnr,
2643 end_bio_extent_readpage, mirror_num,
2644 *bio_flags,
2645 this_bio_flag);
2646 nr++;
2647 *bio_flags = this_bio_flag;
2648 }
2649 if (ret)
2650 SetPageError(page);
2651 cur = cur + iosize;
2652 pg_offset += iosize;
2653 }
2654 out:
2655 if (!nr) {
2656 if (!PageError(page))
2657 SetPageUptodate(page);
2658 unlock_page(page);
2659 }
2660 return 0;
2661 }
2662
2663 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2664 get_extent_t *get_extent, int mirror_num)
2665 {
2666 struct bio *bio = NULL;
2667 unsigned long bio_flags = 0;
2668 int ret;
2669
2670 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2671 &bio_flags);
2672 if (bio)
2673 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2674 return ret;
2675 }
2676
2677 static noinline void update_nr_written(struct page *page,
2678 struct writeback_control *wbc,
2679 unsigned long nr_written)
2680 {
2681 wbc->nr_to_write -= nr_written;
2682 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2683 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2684 page->mapping->writeback_index = page->index + nr_written;
2685 }
2686
2687 /*
2688 * the writepage semantics are similar to regular writepage. extent
2689 * records are inserted to lock ranges in the tree, and as dirty areas
2690 * are found, they are marked writeback. Then the lock bits are removed
2691 * and the end_io handler clears the writeback ranges
2692 */
2693 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2694 void *data)
2695 {
2696 struct inode *inode = page->mapping->host;
2697 struct extent_page_data *epd = data;
2698 struct extent_io_tree *tree = epd->tree;
2699 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2700 u64 delalloc_start;
2701 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2702 u64 end;
2703 u64 cur = start;
2704 u64 extent_offset;
2705 u64 last_byte = i_size_read(inode);
2706 u64 block_start;
2707 u64 iosize;
2708 sector_t sector;
2709 struct extent_state *cached_state = NULL;
2710 struct extent_map *em;
2711 struct block_device *bdev;
2712 int ret;
2713 int nr = 0;
2714 size_t pg_offset = 0;
2715 size_t blocksize;
2716 loff_t i_size = i_size_read(inode);
2717 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2718 u64 nr_delalloc;
2719 u64 delalloc_end;
2720 int page_started;
2721 int compressed;
2722 int write_flags;
2723 unsigned long nr_written = 0;
2724 bool fill_delalloc = true;
2725
2726 if (wbc->sync_mode == WB_SYNC_ALL)
2727 write_flags = WRITE_SYNC;
2728 else
2729 write_flags = WRITE;
2730
2731 trace___extent_writepage(page, inode, wbc);
2732
2733 WARN_ON(!PageLocked(page));
2734
2735 ClearPageError(page);
2736
2737 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2738 if (page->index > end_index ||
2739 (page->index == end_index && !pg_offset)) {
2740 page->mapping->a_ops->invalidatepage(page, 0);
2741 unlock_page(page);
2742 return 0;
2743 }
2744
2745 if (page->index == end_index) {
2746 char *userpage;
2747
2748 userpage = kmap_atomic(page, KM_USER0);
2749 memset(userpage + pg_offset, 0,
2750 PAGE_CACHE_SIZE - pg_offset);
2751 kunmap_atomic(userpage, KM_USER0);
2752 flush_dcache_page(page);
2753 }
2754 pg_offset = 0;
2755
2756 set_page_extent_mapped(page);
2757
2758 if (!tree->ops || !tree->ops->fill_delalloc)
2759 fill_delalloc = false;
2760
2761 delalloc_start = start;
2762 delalloc_end = 0;
2763 page_started = 0;
2764 if (!epd->extent_locked && fill_delalloc) {
2765 u64 delalloc_to_write = 0;
2766 /*
2767 * make sure the wbc mapping index is at least updated
2768 * to this page.
2769 */
2770 update_nr_written(page, wbc, 0);
2771
2772 while (delalloc_end < page_end) {
2773 nr_delalloc = find_lock_delalloc_range(inode, tree,
2774 page,
2775 &delalloc_start,
2776 &delalloc_end,
2777 128 * 1024 * 1024);
2778 if (nr_delalloc == 0) {
2779 delalloc_start = delalloc_end + 1;
2780 continue;
2781 }
2782 tree->ops->fill_delalloc(inode, page, delalloc_start,
2783 delalloc_end, &page_started,
2784 &nr_written);
2785 /*
2786 * delalloc_end is already one less than the total
2787 * length, so we don't subtract one from
2788 * PAGE_CACHE_SIZE
2789 */
2790 delalloc_to_write += (delalloc_end - delalloc_start +
2791 PAGE_CACHE_SIZE) >>
2792 PAGE_CACHE_SHIFT;
2793 delalloc_start = delalloc_end + 1;
2794 }
2795 if (wbc->nr_to_write < delalloc_to_write) {
2796 int thresh = 8192;
2797
2798 if (delalloc_to_write < thresh * 2)
2799 thresh = delalloc_to_write;
2800 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2801 thresh);
2802 }
2803
2804 /* did the fill delalloc function already unlock and start
2805 * the IO?
2806 */
2807 if (page_started) {
2808 ret = 0;
2809 /*
2810 * we've unlocked the page, so we can't update
2811 * the mapping's writeback index, just update
2812 * nr_to_write.
2813 */
2814 wbc->nr_to_write -= nr_written;
2815 goto done_unlocked;
2816 }
2817 }
2818 if (tree->ops && tree->ops->writepage_start_hook) {
2819 ret = tree->ops->writepage_start_hook(page, start,
2820 page_end);
2821 if (ret == -EAGAIN) {
2822 redirty_page_for_writepage(wbc, page);
2823 update_nr_written(page, wbc, nr_written);
2824 unlock_page(page);
2825 ret = 0;
2826 goto done_unlocked;
2827 }
2828 }
2829
2830 /*
2831 * we don't want to touch the inode after unlocking the page,
2832 * so we update the mapping writeback index now
2833 */
2834 update_nr_written(page, wbc, nr_written + 1);
2835
2836 end = page_end;
2837 if (last_byte <= start) {
2838 if (tree->ops && tree->ops->writepage_end_io_hook)
2839 tree->ops->writepage_end_io_hook(page, start,
2840 page_end, NULL, 1);
2841 goto done;
2842 }
2843
2844 blocksize = inode->i_sb->s_blocksize;
2845
2846 while (cur <= end) {
2847 if (cur >= last_byte) {
2848 if (tree->ops && tree->ops->writepage_end_io_hook)
2849 tree->ops->writepage_end_io_hook(page, cur,
2850 page_end, NULL, 1);
2851 break;
2852 }
2853 em = epd->get_extent(inode, page, pg_offset, cur,
2854 end - cur + 1, 1);
2855 if (IS_ERR_OR_NULL(em)) {
2856 SetPageError(page);
2857 break;
2858 }
2859
2860 extent_offset = cur - em->start;
2861 BUG_ON(extent_map_end(em) <= cur);
2862 BUG_ON(end < cur);
2863 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2864 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2865 sector = (em->block_start + extent_offset) >> 9;
2866 bdev = em->bdev;
2867 block_start = em->block_start;
2868 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2869 free_extent_map(em);
2870 em = NULL;
2871
2872 /*
2873 * compressed and inline extents are written through other
2874 * paths in the FS
2875 */
2876 if (compressed || block_start == EXTENT_MAP_HOLE ||
2877 block_start == EXTENT_MAP_INLINE) {
2878 /*
2879 * end_io notification does not happen here for
2880 * compressed extents
2881 */
2882 if (!compressed && tree->ops &&
2883 tree->ops->writepage_end_io_hook)
2884 tree->ops->writepage_end_io_hook(page, cur,
2885 cur + iosize - 1,
2886 NULL, 1);
2887 else if (compressed) {
2888 /* we don't want to end_page_writeback on
2889 * a compressed extent. this happens
2890 * elsewhere
2891 */
2892 nr++;
2893 }
2894
2895 cur += iosize;
2896 pg_offset += iosize;
2897 continue;
2898 }
2899 /* leave this out until we have a page_mkwrite call */
2900 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2901 EXTENT_DIRTY, 0, NULL)) {
2902 cur = cur + iosize;
2903 pg_offset += iosize;
2904 continue;
2905 }
2906
2907 if (tree->ops && tree->ops->writepage_io_hook) {
2908 ret = tree->ops->writepage_io_hook(page, cur,
2909 cur + iosize - 1);
2910 } else {
2911 ret = 0;
2912 }
2913 if (ret) {
2914 SetPageError(page);
2915 } else {
2916 unsigned long max_nr = end_index + 1;
2917
2918 set_range_writeback(tree, cur, cur + iosize - 1);
2919 if (!PageWriteback(page)) {
2920 printk(KERN_ERR "btrfs warning page %lu not "
2921 "writeback, cur %llu end %llu\n",
2922 page->index, (unsigned long long)cur,
2923 (unsigned long long)end);
2924 }
2925
2926 ret = submit_extent_page(write_flags, tree, page,
2927 sector, iosize, pg_offset,
2928 bdev, &epd->bio, max_nr,
2929 end_bio_extent_writepage,
2930 0, 0, 0);
2931 if (ret)
2932 SetPageError(page);
2933 }
2934 cur = cur + iosize;
2935 pg_offset += iosize;
2936 nr++;
2937 }
2938 done:
2939 if (nr == 0) {
2940 /* make sure the mapping tag for page dirty gets cleared */
2941 set_page_writeback(page);
2942 end_page_writeback(page);
2943 }
2944 unlock_page(page);
2945
2946 done_unlocked:
2947
2948 /* drop our reference on any cached states */
2949 free_extent_state(cached_state);
2950 return 0;
2951 }
2952
2953 /**
2954 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2955 * @mapping: address space structure to write
2956 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2957 * @writepage: function called for each page
2958 * @data: data passed to writepage function
2959 *
2960 * If a page is already under I/O, write_cache_pages() skips it, even
2961 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2962 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2963 * and msync() need to guarantee that all the data which was dirty at the time
2964 * the call was made get new I/O started against them. If wbc->sync_mode is
2965 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2966 * existing IO to complete.
2967 */
2968 static int extent_write_cache_pages(struct extent_io_tree *tree,
2969 struct address_space *mapping,
2970 struct writeback_control *wbc,
2971 writepage_t writepage, void *data,
2972 void (*flush_fn)(void *))
2973 {
2974 int ret = 0;
2975 int done = 0;
2976 int nr_to_write_done = 0;
2977 struct pagevec pvec;
2978 int nr_pages;
2979 pgoff_t index;
2980 pgoff_t end; /* Inclusive */
2981 int scanned = 0;
2982 int tag;
2983
2984 pagevec_init(&pvec, 0);
2985 if (wbc->range_cyclic) {
2986 index = mapping->writeback_index; /* Start from prev offset */
2987 end = -1;
2988 } else {
2989 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2990 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2991 scanned = 1;
2992 }
2993 if (wbc->sync_mode == WB_SYNC_ALL)
2994 tag = PAGECACHE_TAG_TOWRITE;
2995 else
2996 tag = PAGECACHE_TAG_DIRTY;
2997 retry:
2998 if (wbc->sync_mode == WB_SYNC_ALL)
2999 tag_pages_for_writeback(mapping, index, end);
3000 while (!done && !nr_to_write_done && (index <= end) &&
3001 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3002 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3003 unsigned i;
3004
3005 scanned = 1;
3006 for (i = 0; i < nr_pages; i++) {
3007 struct page *page = pvec.pages[i];
3008
3009 /*
3010 * At this point we hold neither mapping->tree_lock nor
3011 * lock on the page itself: the page may be truncated or
3012 * invalidated (changing page->mapping to NULL), or even
3013 * swizzled back from swapper_space to tmpfs file
3014 * mapping
3015 */
3016 if (tree->ops &&
3017 tree->ops->write_cache_pages_lock_hook) {
3018 tree->ops->write_cache_pages_lock_hook(page,
3019 data, flush_fn);
3020 } else {
3021 if (!trylock_page(page)) {
3022 flush_fn(data);
3023 lock_page(page);
3024 }
3025 }
3026
3027 if (unlikely(page->mapping != mapping)) {
3028 unlock_page(page);
3029 continue;
3030 }
3031
3032 if (!wbc->range_cyclic && page->index > end) {
3033 done = 1;
3034 unlock_page(page);
3035 continue;
3036 }
3037
3038 if (wbc->sync_mode != WB_SYNC_NONE) {
3039 if (PageWriteback(page))
3040 flush_fn(data);
3041 wait_on_page_writeback(page);
3042 }
3043
3044 if (PageWriteback(page) ||
3045 !clear_page_dirty_for_io(page)) {
3046 unlock_page(page);
3047 continue;
3048 }
3049
3050 ret = (*writepage)(page, wbc, data);
3051
3052 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3053 unlock_page(page);
3054 ret = 0;
3055 }
3056 if (ret)
3057 done = 1;
3058
3059 /*
3060 * the filesystem may choose to bump up nr_to_write.
3061 * We have to make sure to honor the new nr_to_write
3062 * at any time
3063 */
3064 nr_to_write_done = wbc->nr_to_write <= 0;
3065 }
3066 pagevec_release(&pvec);
3067 cond_resched();
3068 }
3069 if (!scanned && !done) {
3070 /*
3071 * We hit the last page and there is more work to be done: wrap
3072 * back to the start of the file
3073 */
3074 scanned = 1;
3075 index = 0;
3076 goto retry;
3077 }
3078 return ret;
3079 }
3080
3081 static void flush_epd_write_bio(struct extent_page_data *epd)
3082 {
3083 if (epd->bio) {
3084 if (epd->sync_io)
3085 submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
3086 else
3087 submit_one_bio(WRITE, epd->bio, 0, 0);
3088 epd->bio = NULL;
3089 }
3090 }
3091
3092 static noinline void flush_write_bio(void *data)
3093 {
3094 struct extent_page_data *epd = data;
3095 flush_epd_write_bio(epd);
3096 }
3097
3098 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3099 get_extent_t *get_extent,
3100 struct writeback_control *wbc)
3101 {
3102 int ret;
3103 struct extent_page_data epd = {
3104 .bio = NULL,
3105 .tree = tree,
3106 .get_extent = get_extent,
3107 .extent_locked = 0,
3108 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3109 };
3110
3111 ret = __extent_writepage(page, wbc, &epd);
3112
3113 flush_epd_write_bio(&epd);
3114 return ret;
3115 }
3116
3117 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3118 u64 start, u64 end, get_extent_t *get_extent,
3119 int mode)
3120 {
3121 int ret = 0;
3122 struct address_space *mapping = inode->i_mapping;
3123 struct page *page;
3124 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3125 PAGE_CACHE_SHIFT;
3126
3127 struct extent_page_data epd = {
3128 .bio = NULL,
3129 .tree = tree,
3130 .get_extent = get_extent,
3131 .extent_locked = 1,
3132 .sync_io = mode == WB_SYNC_ALL,
3133 };
3134 struct writeback_control wbc_writepages = {
3135 .sync_mode = mode,
3136 .nr_to_write = nr_pages * 2,
3137 .range_start = start,
3138 .range_end = end + 1,
3139 };
3140
3141 while (start <= end) {
3142 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3143 if (clear_page_dirty_for_io(page))
3144 ret = __extent_writepage(page, &wbc_writepages, &epd);
3145 else {
3146 if (tree->ops && tree->ops->writepage_end_io_hook)
3147 tree->ops->writepage_end_io_hook(page, start,
3148 start + PAGE_CACHE_SIZE - 1,
3149 NULL, 1);
3150 unlock_page(page);
3151 }
3152 page_cache_release(page);
3153 start += PAGE_CACHE_SIZE;
3154 }
3155
3156 flush_epd_write_bio(&epd);
3157 return ret;
3158 }
3159
3160 int extent_writepages(struct extent_io_tree *tree,
3161 struct address_space *mapping,
3162 get_extent_t *get_extent,
3163 struct writeback_control *wbc)
3164 {
3165 int ret = 0;
3166 struct extent_page_data epd = {
3167 .bio = NULL,
3168 .tree = tree,
3169 .get_extent = get_extent,
3170 .extent_locked = 0,
3171 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3172 };
3173
3174 ret = extent_write_cache_pages(tree, mapping, wbc,
3175 __extent_writepage, &epd,
3176 flush_write_bio);
3177 flush_epd_write_bio(&epd);
3178 return ret;
3179 }
3180
3181 int extent_readpages(struct extent_io_tree *tree,
3182 struct address_space *mapping,
3183 struct list_head *pages, unsigned nr_pages,
3184 get_extent_t get_extent)
3185 {
3186 struct bio *bio = NULL;
3187 unsigned page_idx;
3188 unsigned long bio_flags = 0;
3189
3190 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3191 struct page *page = list_entry(pages->prev, struct page, lru);
3192
3193 prefetchw(&page->flags);
3194 list_del(&page->lru);
3195 if (!add_to_page_cache_lru(page, mapping,
3196 page->index, GFP_NOFS)) {
3197 __extent_read_full_page(tree, page, get_extent,
3198 &bio, 0, &bio_flags);
3199 }
3200 page_cache_release(page);
3201 }
3202 BUG_ON(!list_empty(pages));
3203 if (bio)
3204 submit_one_bio(READ, bio, 0, bio_flags);
3205 return 0;
3206 }
3207
3208 /*
3209 * basic invalidatepage code, this waits on any locked or writeback
3210 * ranges corresponding to the page, and then deletes any extent state
3211 * records from the tree
3212 */
3213 int extent_invalidatepage(struct extent_io_tree *tree,
3214 struct page *page, unsigned long offset)
3215 {
3216 struct extent_state *cached_state = NULL;
3217 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3218 u64 end = start + PAGE_CACHE_SIZE - 1;
3219 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3220
3221 start += (offset + blocksize - 1) & ~(blocksize - 1);
3222 if (start > end)
3223 return 0;
3224
3225 lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
3226 wait_on_page_writeback(page);
3227 clear_extent_bit(tree, start, end,
3228 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3229 EXTENT_DO_ACCOUNTING,
3230 1, 1, &cached_state, GFP_NOFS);
3231 return 0;
3232 }
3233
3234 /*
3235 * a helper for releasepage, this tests for areas of the page that
3236 * are locked or under IO and drops the related state bits if it is safe
3237 * to drop the page.
3238 */
3239 int try_release_extent_state(struct extent_map_tree *map,
3240 struct extent_io_tree *tree, struct page *page,
3241 gfp_t mask)
3242 {
3243 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3244 u64 end = start + PAGE_CACHE_SIZE - 1;
3245 int ret = 1;
3246
3247 if (test_range_bit(tree, start, end,
3248 EXTENT_IOBITS, 0, NULL))
3249 ret = 0;
3250 else {
3251 if ((mask & GFP_NOFS) == GFP_NOFS)
3252 mask = GFP_NOFS;
3253 /*
3254 * at this point we can safely clear everything except the
3255 * locked bit and the nodatasum bit
3256 */
3257 ret = clear_extent_bit(tree, start, end,
3258 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3259 0, 0, NULL, mask);
3260
3261 /* if clear_extent_bit failed for enomem reasons,
3262 * we can't allow the release to continue.
3263 */
3264 if (ret < 0)
3265 ret = 0;
3266 else
3267 ret = 1;
3268 }
3269 return ret;
3270 }
3271
3272 /*
3273 * a helper for releasepage. As long as there are no locked extents
3274 * in the range corresponding to the page, both state records and extent
3275 * map records are removed
3276 */
3277 int try_release_extent_mapping(struct extent_map_tree *map,
3278 struct extent_io_tree *tree, struct page *page,
3279 gfp_t mask)
3280 {
3281 struct extent_map *em;
3282 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3283 u64 end = start + PAGE_CACHE_SIZE - 1;
3284
3285 if ((mask & __GFP_WAIT) &&
3286 page->mapping->host->i_size > 16 * 1024 * 1024) {
3287 u64 len;
3288 while (start <= end) {
3289 len = end - start + 1;
3290 write_lock(&map->lock);
3291 em = lookup_extent_mapping(map, start, len);
3292 if (IS_ERR_OR_NULL(em)) {
3293 write_unlock(&map->lock);
3294 break;
3295 }
3296 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3297 em->start != start) {
3298 write_unlock(&map->lock);
3299 free_extent_map(em);
3300 break;
3301 }
3302 if (!test_range_bit(tree, em->start,
3303 extent_map_end(em) - 1,
3304 EXTENT_LOCKED | EXTENT_WRITEBACK,
3305 0, NULL)) {
3306 remove_extent_mapping(map, em);
3307 /* once for the rb tree */
3308 free_extent_map(em);
3309 }
3310 start = extent_map_end(em);
3311 write_unlock(&map->lock);
3312
3313 /* once for us */
3314 free_extent_map(em);
3315 }
3316 }
3317 return try_release_extent_state(map, tree, page, mask);
3318 }
3319
3320 /*
3321 * helper function for fiemap, which doesn't want to see any holes.
3322 * This maps until we find something past 'last'
3323 */
3324 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3325 u64 offset,
3326 u64 last,
3327 get_extent_t *get_extent)
3328 {
3329 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3330 struct extent_map *em;
3331 u64 len;
3332
3333 if (offset >= last)
3334 return NULL;
3335
3336 while(1) {
3337 len = last - offset;
3338 if (len == 0)
3339 break;
3340 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3341 em = get_extent(inode, NULL, 0, offset, len, 0);
3342 if (IS_ERR_OR_NULL(em))
3343 return em;
3344
3345 /* if this isn't a hole return it */
3346 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3347 em->block_start != EXTENT_MAP_HOLE) {
3348 return em;
3349 }
3350
3351 /* this is a hole, advance to the next extent */
3352 offset = extent_map_end(em);
3353 free_extent_map(em);
3354 if (offset >= last)
3355 break;
3356 }
3357 return NULL;
3358 }
3359
3360 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3361 __u64 start, __u64 len, get_extent_t *get_extent)
3362 {
3363 int ret = 0;
3364 u64 off = start;
3365 u64 max = start + len;
3366 u32 flags = 0;
3367 u32 found_type;
3368 u64 last;
3369 u64 last_for_get_extent = 0;
3370 u64 disko = 0;
3371 u64 isize = i_size_read(inode);
3372 struct btrfs_key found_key;
3373 struct extent_map *em = NULL;
3374 struct extent_state *cached_state = NULL;
3375 struct btrfs_path *path;
3376 struct btrfs_file_extent_item *item;
3377 int end = 0;
3378 u64 em_start = 0;
3379 u64 em_len = 0;
3380 u64 em_end = 0;
3381 unsigned long emflags;
3382
3383 if (len == 0)
3384 return -EINVAL;
3385
3386 path = btrfs_alloc_path();
3387 if (!path)
3388 return -ENOMEM;
3389 path->leave_spinning = 1;
3390
3391 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3392 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3393
3394 /*
3395 * lookup the last file extent. We're not using i_size here
3396 * because there might be preallocation past i_size
3397 */
3398 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3399 path, btrfs_ino(inode), -1, 0);
3400 if (ret < 0) {
3401 btrfs_free_path(path);
3402 return ret;
3403 }
3404 WARN_ON(!ret);
3405 path->slots[0]--;
3406 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3407 struct btrfs_file_extent_item);
3408 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3409 found_type = btrfs_key_type(&found_key);
3410
3411 /* No extents, but there might be delalloc bits */
3412 if (found_key.objectid != btrfs_ino(inode) ||
3413 found_type != BTRFS_EXTENT_DATA_KEY) {
3414 /* have to trust i_size as the end */
3415 last = (u64)-1;
3416 last_for_get_extent = isize;
3417 } else {
3418 /*
3419 * remember the start of the last extent. There are a
3420 * bunch of different factors that go into the length of the
3421 * extent, so its much less complex to remember where it started
3422 */
3423 last = found_key.offset;
3424 last_for_get_extent = last + 1;
3425 }
3426 btrfs_free_path(path);
3427
3428 /*
3429 * we might have some extents allocated but more delalloc past those
3430 * extents. so, we trust isize unless the start of the last extent is
3431 * beyond isize
3432 */
3433 if (last < isize) {
3434 last = (u64)-1;
3435 last_for_get_extent = isize;
3436 }
3437
3438 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3439 &cached_state, GFP_NOFS);
3440
3441 em = get_extent_skip_holes(inode, start, last_for_get_extent,
3442 get_extent);
3443 if (!em)
3444 goto out;
3445 if (IS_ERR(em)) {
3446 ret = PTR_ERR(em);
3447 goto out;
3448 }
3449
3450 while (!end) {
3451 u64 offset_in_extent;
3452
3453 /* break if the extent we found is outside the range */
3454 if (em->start >= max || extent_map_end(em) < off)
3455 break;
3456
3457 /*
3458 * get_extent may return an extent that starts before our
3459 * requested range. We have to make sure the ranges
3460 * we return to fiemap always move forward and don't
3461 * overlap, so adjust the offsets here
3462 */
3463 em_start = max(em->start, off);
3464
3465 /*
3466 * record the offset from the start of the extent
3467 * for adjusting the disk offset below
3468 */
3469 offset_in_extent = em_start - em->start;
3470 em_end = extent_map_end(em);
3471 em_len = em_end - em_start;
3472 emflags = em->flags;
3473 disko = 0;
3474 flags = 0;
3475
3476 /*
3477 * bump off for our next call to get_extent
3478 */
3479 off = extent_map_end(em);
3480 if (off >= max)
3481 end = 1;
3482
3483 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3484 end = 1;
3485 flags |= FIEMAP_EXTENT_LAST;
3486 } else if (em->block_start == EXTENT_MAP_INLINE) {
3487 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3488 FIEMAP_EXTENT_NOT_ALIGNED);
3489 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3490 flags |= (FIEMAP_EXTENT_DELALLOC |
3491 FIEMAP_EXTENT_UNKNOWN);
3492 } else {
3493 disko = em->block_start + offset_in_extent;
3494 }
3495 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3496 flags |= FIEMAP_EXTENT_ENCODED;
3497
3498 free_extent_map(em);
3499 em = NULL;
3500 if ((em_start >= last) || em_len == (u64)-1 ||
3501 (last == (u64)-1 && isize <= em_end)) {
3502 flags |= FIEMAP_EXTENT_LAST;
3503 end = 1;
3504 }
3505
3506 /* now scan forward to see if this is really the last extent. */
3507 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3508 get_extent);
3509 if (IS_ERR(em)) {
3510 ret = PTR_ERR(em);
3511 goto out;
3512 }
3513 if (!em) {
3514 flags |= FIEMAP_EXTENT_LAST;
3515 end = 1;
3516 }
3517 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3518 em_len, flags);
3519 if (ret)
3520 goto out_free;
3521 }
3522 out_free:
3523 free_extent_map(em);
3524 out:
3525 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3526 &cached_state, GFP_NOFS);
3527 return ret;
3528 }
3529
3530 inline struct page *extent_buffer_page(struct extent_buffer *eb,
3531 unsigned long i)
3532 {
3533 struct page *p;
3534 struct address_space *mapping;
3535
3536 if (i == 0)
3537 return eb->first_page;
3538 i += eb->start >> PAGE_CACHE_SHIFT;
3539 mapping = eb->first_page->mapping;
3540 if (!mapping)
3541 return NULL;
3542
3543 /*
3544 * extent_buffer_page is only called after pinning the page
3545 * by increasing the reference count. So we know the page must
3546 * be in the radix tree.
3547 */
3548 rcu_read_lock();
3549 p = radix_tree_lookup(&mapping->page_tree, i);
3550 rcu_read_unlock();
3551
3552 return p;
3553 }
3554
3555 inline unsigned long num_extent_pages(u64 start, u64 len)
3556 {
3557 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3558 (start >> PAGE_CACHE_SHIFT);
3559 }
3560
3561 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3562 u64 start,
3563 unsigned long len,
3564 gfp_t mask)
3565 {
3566 struct extent_buffer *eb = NULL;
3567 #if LEAK_DEBUG
3568 unsigned long flags;
3569 #endif
3570
3571 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3572 if (eb == NULL)
3573 return NULL;
3574 eb->start = start;
3575 eb->len = len;
3576 rwlock_init(&eb->lock);
3577 atomic_set(&eb->write_locks, 0);
3578 atomic_set(&eb->read_locks, 0);
3579 atomic_set(&eb->blocking_readers, 0);
3580 atomic_set(&eb->blocking_writers, 0);
3581 atomic_set(&eb->spinning_readers, 0);
3582 atomic_set(&eb->spinning_writers, 0);
3583 eb->lock_nested = 0;
3584 init_waitqueue_head(&eb->write_lock_wq);
3585 init_waitqueue_head(&eb->read_lock_wq);
3586
3587 #if LEAK_DEBUG
3588 spin_lock_irqsave(&leak_lock, flags);
3589 list_add(&eb->leak_list, &buffers);
3590 spin_unlock_irqrestore(&leak_lock, flags);
3591 #endif
3592 atomic_set(&eb->refs, 1);
3593
3594 return eb;
3595 }
3596
3597 static void __free_extent_buffer(struct extent_buffer *eb)
3598 {
3599 #if LEAK_DEBUG
3600 unsigned long flags;
3601 spin_lock_irqsave(&leak_lock, flags);
3602 list_del(&eb->leak_list);
3603 spin_unlock_irqrestore(&leak_lock, flags);
3604 #endif
3605 kmem_cache_free(extent_buffer_cache, eb);
3606 }
3607
3608 /*
3609 * Helper for releasing extent buffer page.
3610 */
3611 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3612 unsigned long start_idx)
3613 {
3614 unsigned long index;
3615 struct page *page;
3616
3617 if (!eb->first_page)
3618 return;
3619
3620 index = num_extent_pages(eb->start, eb->len);
3621 if (start_idx >= index)
3622 return;
3623
3624 do {
3625 index--;
3626 page = extent_buffer_page(eb, index);
3627 if (page)
3628 page_cache_release(page);
3629 } while (index != start_idx);
3630 }
3631
3632 /*
3633 * Helper for releasing the extent buffer.
3634 */
3635 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3636 {
3637 btrfs_release_extent_buffer_page(eb, 0);
3638 __free_extent_buffer(eb);
3639 }
3640
3641 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3642 u64 start, unsigned long len,
3643 struct page *page0)
3644 {
3645 unsigned long num_pages = num_extent_pages(start, len);
3646 unsigned long i;
3647 unsigned long index = start >> PAGE_CACHE_SHIFT;
3648 struct extent_buffer *eb;
3649 struct extent_buffer *exists = NULL;
3650 struct page *p;
3651 struct address_space *mapping = tree->mapping;
3652 int uptodate = 1;
3653 int ret;
3654
3655 rcu_read_lock();
3656 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3657 if (eb && atomic_inc_not_zero(&eb->refs)) {
3658 rcu_read_unlock();
3659 mark_page_accessed(eb->first_page);
3660 return eb;
3661 }
3662 rcu_read_unlock();
3663
3664 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
3665 if (!eb)
3666 return NULL;
3667
3668 if (page0) {
3669 eb->first_page = page0;
3670 i = 1;
3671 index++;
3672 page_cache_get(page0);
3673 mark_page_accessed(page0);
3674 set_page_extent_mapped(page0);
3675 set_page_extent_head(page0, len);
3676 uptodate = PageUptodate(page0);
3677 } else {
3678 i = 0;
3679 }
3680 for (; i < num_pages; i++, index++) {
3681 p = find_or_create_page(mapping, index, GFP_NOFS);
3682 if (!p) {
3683 WARN_ON(1);
3684 goto free_eb;
3685 }
3686 set_page_extent_mapped(p);
3687 mark_page_accessed(p);
3688 if (i == 0) {
3689 eb->first_page = p;
3690 set_page_extent_head(p, len);
3691 } else {
3692 set_page_private(p, EXTENT_PAGE_PRIVATE);
3693 }
3694 if (!PageUptodate(p))
3695 uptodate = 0;
3696
3697 /*
3698 * see below about how we avoid a nasty race with release page
3699 * and why we unlock later
3700 */
3701 if (i != 0)
3702 unlock_page(p);
3703 }
3704 if (uptodate)
3705 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3706
3707 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
3708 if (ret)
3709 goto free_eb;
3710
3711 spin_lock(&tree->buffer_lock);
3712 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
3713 if (ret == -EEXIST) {
3714 exists = radix_tree_lookup(&tree->buffer,
3715 start >> PAGE_CACHE_SHIFT);
3716 /* add one reference for the caller */
3717 atomic_inc(&exists->refs);
3718 spin_unlock(&tree->buffer_lock);
3719 radix_tree_preload_end();
3720 goto free_eb;
3721 }
3722 /* add one reference for the tree */
3723 atomic_inc(&eb->refs);
3724 spin_unlock(&tree->buffer_lock);
3725 radix_tree_preload_end();
3726
3727 /*
3728 * there is a race where release page may have
3729 * tried to find this extent buffer in the radix
3730 * but failed. It will tell the VM it is safe to
3731 * reclaim the, and it will clear the page private bit.
3732 * We must make sure to set the page private bit properly
3733 * after the extent buffer is in the radix tree so
3734 * it doesn't get lost
3735 */
3736 set_page_extent_mapped(eb->first_page);
3737 set_page_extent_head(eb->first_page, eb->len);
3738 if (!page0)
3739 unlock_page(eb->first_page);
3740 return eb;
3741
3742 free_eb:
3743 if (eb->first_page && !page0)
3744 unlock_page(eb->first_page);
3745
3746 if (!atomic_dec_and_test(&eb->refs))
3747 return exists;
3748 btrfs_release_extent_buffer(eb);
3749 return exists;
3750 }
3751
3752 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3753 u64 start, unsigned long len)
3754 {
3755 struct extent_buffer *eb;
3756
3757 rcu_read_lock();
3758 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3759 if (eb && atomic_inc_not_zero(&eb->refs)) {
3760 rcu_read_unlock();
3761 mark_page_accessed(eb->first_page);
3762 return eb;
3763 }
3764 rcu_read_unlock();
3765
3766 return NULL;
3767 }
3768
3769 void free_extent_buffer(struct extent_buffer *eb)
3770 {
3771 if (!eb)
3772 return;
3773
3774 if (!atomic_dec_and_test(&eb->refs))
3775 return;
3776
3777 WARN_ON(1);
3778 }
3779
3780 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3781 struct extent_buffer *eb)
3782 {
3783 unsigned long i;
3784 unsigned long num_pages;
3785 struct page *page;
3786
3787 num_pages = num_extent_pages(eb->start, eb->len);
3788
3789 for (i = 0; i < num_pages; i++) {
3790 page = extent_buffer_page(eb, i);
3791 if (!PageDirty(page))
3792 continue;
3793
3794 lock_page(page);
3795 WARN_ON(!PagePrivate(page));
3796
3797 set_page_extent_mapped(page);
3798 if (i == 0)
3799 set_page_extent_head(page, eb->len);
3800
3801 clear_page_dirty_for_io(page);
3802 spin_lock_irq(&page->mapping->tree_lock);
3803 if (!PageDirty(page)) {
3804 radix_tree_tag_clear(&page->mapping->page_tree,
3805 page_index(page),
3806 PAGECACHE_TAG_DIRTY);
3807 }
3808 spin_unlock_irq(&page->mapping->tree_lock);
3809 ClearPageError(page);
3810 unlock_page(page);
3811 }
3812 return 0;
3813 }
3814
3815 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3816 struct extent_buffer *eb)
3817 {
3818 unsigned long i;
3819 unsigned long num_pages;
3820 int was_dirty = 0;
3821
3822 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3823 num_pages = num_extent_pages(eb->start, eb->len);
3824 for (i = 0; i < num_pages; i++)
3825 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3826 return was_dirty;
3827 }
3828
3829 static int __eb_straddles_pages(u64 start, u64 len)
3830 {
3831 if (len < PAGE_CACHE_SIZE)
3832 return 1;
3833 if (start & (PAGE_CACHE_SIZE - 1))
3834 return 1;
3835 if ((start + len) & (PAGE_CACHE_SIZE - 1))
3836 return 1;
3837 return 0;
3838 }
3839
3840 static int eb_straddles_pages(struct extent_buffer *eb)
3841 {
3842 return __eb_straddles_pages(eb->start, eb->len);
3843 }
3844
3845 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3846 struct extent_buffer *eb,
3847 struct extent_state **cached_state)
3848 {
3849 unsigned long i;
3850 struct page *page;
3851 unsigned long num_pages;
3852
3853 num_pages = num_extent_pages(eb->start, eb->len);
3854 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3855
3856 if (eb_straddles_pages(eb)) {
3857 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3858 cached_state, GFP_NOFS);
3859 }
3860 for (i = 0; i < num_pages; i++) {
3861 page = extent_buffer_page(eb, i);
3862 if (page)
3863 ClearPageUptodate(page);
3864 }
3865 return 0;
3866 }
3867
3868 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3869 struct extent_buffer *eb)
3870 {
3871 unsigned long i;
3872 struct page *page;
3873 unsigned long num_pages;
3874
3875 num_pages = num_extent_pages(eb->start, eb->len);
3876
3877 if (eb_straddles_pages(eb)) {
3878 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3879 NULL, GFP_NOFS);
3880 }
3881 for (i = 0; i < num_pages; i++) {
3882 page = extent_buffer_page(eb, i);
3883 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3884 ((i == num_pages - 1) &&
3885 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3886 check_page_uptodate(tree, page);
3887 continue;
3888 }
3889 SetPageUptodate(page);
3890 }
3891 return 0;
3892 }
3893
3894 int extent_range_uptodate(struct extent_io_tree *tree,
3895 u64 start, u64 end)
3896 {
3897 struct page *page;
3898 int ret;
3899 int pg_uptodate = 1;
3900 int uptodate;
3901 unsigned long index;
3902
3903 if (__eb_straddles_pages(start, end - start + 1)) {
3904 ret = test_range_bit(tree, start, end,
3905 EXTENT_UPTODATE, 1, NULL);
3906 if (ret)
3907 return 1;
3908 }
3909 while (start <= end) {
3910 index = start >> PAGE_CACHE_SHIFT;
3911 page = find_get_page(tree->mapping, index);
3912 if (!page)
3913 return 1;
3914 uptodate = PageUptodate(page);
3915 page_cache_release(page);
3916 if (!uptodate) {
3917 pg_uptodate = 0;
3918 break;
3919 }
3920 start += PAGE_CACHE_SIZE;
3921 }
3922 return pg_uptodate;
3923 }
3924
3925 int extent_buffer_uptodate(struct extent_io_tree *tree,
3926 struct extent_buffer *eb,
3927 struct extent_state *cached_state)
3928 {
3929 int ret = 0;
3930 unsigned long num_pages;
3931 unsigned long i;
3932 struct page *page;
3933 int pg_uptodate = 1;
3934
3935 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3936 return 1;
3937
3938 if (eb_straddles_pages(eb)) {
3939 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3940 EXTENT_UPTODATE, 1, cached_state);
3941 if (ret)
3942 return ret;
3943 }
3944
3945 num_pages = num_extent_pages(eb->start, eb->len);
3946 for (i = 0; i < num_pages; i++) {
3947 page = extent_buffer_page(eb, i);
3948 if (!PageUptodate(page)) {
3949 pg_uptodate = 0;
3950 break;
3951 }
3952 }
3953 return pg_uptodate;
3954 }
3955
3956 int read_extent_buffer_pages(struct extent_io_tree *tree,
3957 struct extent_buffer *eb, u64 start, int wait,
3958 get_extent_t *get_extent, int mirror_num)
3959 {
3960 unsigned long i;
3961 unsigned long start_i;
3962 struct page *page;
3963 int err;
3964 int ret = 0;
3965 int locked_pages = 0;
3966 int all_uptodate = 1;
3967 int inc_all_pages = 0;
3968 unsigned long num_pages;
3969 struct bio *bio = NULL;
3970 unsigned long bio_flags = 0;
3971
3972 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3973 return 0;
3974
3975 if (eb_straddles_pages(eb)) {
3976 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3977 EXTENT_UPTODATE, 1, NULL)) {
3978 return 0;
3979 }
3980 }
3981
3982 if (start) {
3983 WARN_ON(start < eb->start);
3984 start_i = (start >> PAGE_CACHE_SHIFT) -
3985 (eb->start >> PAGE_CACHE_SHIFT);
3986 } else {
3987 start_i = 0;
3988 }
3989
3990 num_pages = num_extent_pages(eb->start, eb->len);
3991 for (i = start_i; i < num_pages; i++) {
3992 page = extent_buffer_page(eb, i);
3993 if (wait == WAIT_NONE) {
3994 if (!trylock_page(page))
3995 goto unlock_exit;
3996 } else {
3997 lock_page(page);
3998 }
3999 locked_pages++;
4000 if (!PageUptodate(page))
4001 all_uptodate = 0;
4002 }
4003 if (all_uptodate) {
4004 if (start_i == 0)
4005 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4006 goto unlock_exit;
4007 }
4008
4009 for (i = start_i; i < num_pages; i++) {
4010 page = extent_buffer_page(eb, i);
4011
4012 WARN_ON(!PagePrivate(page));
4013
4014 set_page_extent_mapped(page);
4015 if (i == 0)
4016 set_page_extent_head(page, eb->len);
4017
4018 if (inc_all_pages)
4019 page_cache_get(page);
4020 if (!PageUptodate(page)) {
4021 if (start_i == 0)
4022 inc_all_pages = 1;
4023 ClearPageError(page);
4024 err = __extent_read_full_page(tree, page,
4025 get_extent, &bio,
4026 mirror_num, &bio_flags);
4027 if (err)
4028 ret = err;
4029 } else {
4030 unlock_page(page);
4031 }
4032 }
4033
4034 if (bio)
4035 submit_one_bio(READ, bio, mirror_num, bio_flags);
4036
4037 if (ret || wait != WAIT_COMPLETE)
4038 return ret;
4039
4040 for (i = start_i; i < num_pages; i++) {
4041 page = extent_buffer_page(eb, i);
4042 wait_on_page_locked(page);
4043 if (!PageUptodate(page))
4044 ret = -EIO;
4045 }
4046
4047 if (!ret)
4048 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4049 return ret;
4050
4051 unlock_exit:
4052 i = start_i;
4053 while (locked_pages > 0) {
4054 page = extent_buffer_page(eb, i);
4055 i++;
4056 unlock_page(page);
4057 locked_pages--;
4058 }
4059 return ret;
4060 }
4061
4062 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4063 unsigned long start,
4064 unsigned long len)
4065 {
4066 size_t cur;
4067 size_t offset;
4068 struct page *page;
4069 char *kaddr;
4070 char *dst = (char *)dstv;
4071 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4072 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4073
4074 WARN_ON(start > eb->len);
4075 WARN_ON(start + len > eb->start + eb->len);
4076
4077 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4078
4079 while (len > 0) {
4080 page = extent_buffer_page(eb, i);
4081
4082 cur = min(len, (PAGE_CACHE_SIZE - offset));
4083 kaddr = page_address(page);
4084 memcpy(dst, kaddr + offset, cur);
4085
4086 dst += cur;
4087 len -= cur;
4088 offset = 0;
4089 i++;
4090 }
4091 }
4092
4093 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4094 unsigned long min_len, char **map,
4095 unsigned long *map_start,
4096 unsigned long *map_len)
4097 {
4098 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4099 char *kaddr;
4100 struct page *p;
4101 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4102 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4103 unsigned long end_i = (start_offset + start + min_len - 1) >>
4104 PAGE_CACHE_SHIFT;
4105
4106 if (i != end_i)
4107 return -EINVAL;
4108
4109 if (i == 0) {
4110 offset = start_offset;
4111 *map_start = 0;
4112 } else {
4113 offset = 0;
4114 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4115 }
4116
4117 if (start + min_len > eb->len) {
4118 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4119 "wanted %lu %lu\n", (unsigned long long)eb->start,
4120 eb->len, start, min_len);
4121 WARN_ON(1);
4122 return -EINVAL;
4123 }
4124
4125 p = extent_buffer_page(eb, i);
4126 kaddr = page_address(p);
4127 *map = kaddr + offset;
4128 *map_len = PAGE_CACHE_SIZE - offset;
4129 return 0;
4130 }
4131
4132 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4133 unsigned long start,
4134 unsigned long len)
4135 {
4136 size_t cur;
4137 size_t offset;
4138 struct page *page;
4139 char *kaddr;
4140 char *ptr = (char *)ptrv;
4141 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4142 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4143 int ret = 0;
4144
4145 WARN_ON(start > eb->len);
4146 WARN_ON(start + len > eb->start + eb->len);
4147
4148 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4149
4150 while (len > 0) {
4151 page = extent_buffer_page(eb, i);
4152
4153 cur = min(len, (PAGE_CACHE_SIZE - offset));
4154
4155 kaddr = page_address(page);
4156 ret = memcmp(ptr, kaddr + offset, cur);
4157 if (ret)
4158 break;
4159
4160 ptr += cur;
4161 len -= cur;
4162 offset = 0;
4163 i++;
4164 }
4165 return ret;
4166 }
4167
4168 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4169 unsigned long start, unsigned long len)
4170 {
4171 size_t cur;
4172 size_t offset;
4173 struct page *page;
4174 char *kaddr;
4175 char *src = (char *)srcv;
4176 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4177 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4178
4179 WARN_ON(start > eb->len);
4180 WARN_ON(start + len > eb->start + eb->len);
4181
4182 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4183
4184 while (len > 0) {
4185 page = extent_buffer_page(eb, i);
4186 WARN_ON(!PageUptodate(page));
4187
4188 cur = min(len, PAGE_CACHE_SIZE - offset);
4189 kaddr = page_address(page);
4190 memcpy(kaddr + offset, src, cur);
4191
4192 src += cur;
4193 len -= cur;
4194 offset = 0;
4195 i++;
4196 }
4197 }
4198
4199 void memset_extent_buffer(struct extent_buffer *eb, char c,
4200 unsigned long start, unsigned long len)
4201 {
4202 size_t cur;
4203 size_t offset;
4204 struct page *page;
4205 char *kaddr;
4206 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4207 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4208
4209 WARN_ON(start > eb->len);
4210 WARN_ON(start + len > eb->start + eb->len);
4211
4212 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4213
4214 while (len > 0) {
4215 page = extent_buffer_page(eb, i);
4216 WARN_ON(!PageUptodate(page));
4217
4218 cur = min(len, PAGE_CACHE_SIZE - offset);
4219 kaddr = page_address(page);
4220 memset(kaddr + offset, c, cur);
4221
4222 len -= cur;
4223 offset = 0;
4224 i++;
4225 }
4226 }
4227
4228 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4229 unsigned long dst_offset, unsigned long src_offset,
4230 unsigned long len)
4231 {
4232 u64 dst_len = dst->len;
4233 size_t cur;
4234 size_t offset;
4235 struct page *page;
4236 char *kaddr;
4237 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4238 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4239
4240 WARN_ON(src->len != dst_len);
4241
4242 offset = (start_offset + dst_offset) &
4243 ((unsigned long)PAGE_CACHE_SIZE - 1);
4244
4245 while (len > 0) {
4246 page = extent_buffer_page(dst, i);
4247 WARN_ON(!PageUptodate(page));
4248
4249 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4250
4251 kaddr = page_address(page);
4252 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4253
4254 src_offset += cur;
4255 len -= cur;
4256 offset = 0;
4257 i++;
4258 }
4259 }
4260
4261 static void move_pages(struct page *dst_page, struct page *src_page,
4262 unsigned long dst_off, unsigned long src_off,
4263 unsigned long len)
4264 {
4265 char *dst_kaddr = page_address(dst_page);
4266 if (dst_page == src_page) {
4267 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4268 } else {
4269 char *src_kaddr = page_address(src_page);
4270 char *p = dst_kaddr + dst_off + len;
4271 char *s = src_kaddr + src_off + len;
4272
4273 while (len--)
4274 *--p = *--s;
4275 }
4276 }
4277
4278 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4279 {
4280 unsigned long distance = (src > dst) ? src - dst : dst - src;
4281 return distance < len;
4282 }
4283
4284 static void copy_pages(struct page *dst_page, struct page *src_page,
4285 unsigned long dst_off, unsigned long src_off,
4286 unsigned long len)
4287 {
4288 char *dst_kaddr = page_address(dst_page);
4289 char *src_kaddr;
4290
4291 if (dst_page != src_page) {
4292 src_kaddr = page_address(src_page);
4293 } else {
4294 src_kaddr = dst_kaddr;
4295 BUG_ON(areas_overlap(src_off, dst_off, len));
4296 }
4297
4298 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4299 }
4300
4301 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4302 unsigned long src_offset, unsigned long len)
4303 {
4304 size_t cur;
4305 size_t dst_off_in_page;
4306 size_t src_off_in_page;
4307 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4308 unsigned long dst_i;
4309 unsigned long src_i;
4310
4311 if (src_offset + len > dst->len) {
4312 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4313 "len %lu dst len %lu\n", src_offset, len, dst->len);
4314 BUG_ON(1);
4315 }
4316 if (dst_offset + len > dst->len) {
4317 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4318 "len %lu dst len %lu\n", dst_offset, len, dst->len);
4319 BUG_ON(1);
4320 }
4321
4322 while (len > 0) {
4323 dst_off_in_page = (start_offset + dst_offset) &
4324 ((unsigned long)PAGE_CACHE_SIZE - 1);
4325 src_off_in_page = (start_offset + src_offset) &
4326 ((unsigned long)PAGE_CACHE_SIZE - 1);
4327
4328 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4329 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4330
4331 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4332 src_off_in_page));
4333 cur = min_t(unsigned long, cur,
4334 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4335
4336 copy_pages(extent_buffer_page(dst, dst_i),
4337 extent_buffer_page(dst, src_i),
4338 dst_off_in_page, src_off_in_page, cur);
4339
4340 src_offset += cur;
4341 dst_offset += cur;
4342 len -= cur;
4343 }
4344 }
4345
4346 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4347 unsigned long src_offset, unsigned long len)
4348 {
4349 size_t cur;
4350 size_t dst_off_in_page;
4351 size_t src_off_in_page;
4352 unsigned long dst_end = dst_offset + len - 1;
4353 unsigned long src_end = src_offset + len - 1;
4354 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4355 unsigned long dst_i;
4356 unsigned long src_i;
4357
4358 if (src_offset + len > dst->len) {
4359 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4360 "len %lu len %lu\n", src_offset, len, dst->len);
4361 BUG_ON(1);
4362 }
4363 if (dst_offset + len > dst->len) {
4364 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4365 "len %lu len %lu\n", dst_offset, len, dst->len);
4366 BUG_ON(1);
4367 }
4368 if (!areas_overlap(src_offset, dst_offset, len)) {
4369 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4370 return;
4371 }
4372 while (len > 0) {
4373 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4374 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4375
4376 dst_off_in_page = (start_offset + dst_end) &
4377 ((unsigned long)PAGE_CACHE_SIZE - 1);
4378 src_off_in_page = (start_offset + src_end) &
4379 ((unsigned long)PAGE_CACHE_SIZE - 1);
4380
4381 cur = min_t(unsigned long, len, src_off_in_page + 1);
4382 cur = min(cur, dst_off_in_page + 1);
4383 move_pages(extent_buffer_page(dst, dst_i),
4384 extent_buffer_page(dst, src_i),
4385 dst_off_in_page - cur + 1,
4386 src_off_in_page - cur + 1, cur);
4387
4388 dst_end -= cur;
4389 src_end -= cur;
4390 len -= cur;
4391 }
4392 }
4393
4394 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4395 {
4396 struct extent_buffer *eb =
4397 container_of(head, struct extent_buffer, rcu_head);
4398
4399 btrfs_release_extent_buffer(eb);
4400 }
4401
4402 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
4403 {
4404 u64 start = page_offset(page);
4405 struct extent_buffer *eb;
4406 int ret = 1;
4407
4408 spin_lock(&tree->buffer_lock);
4409 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4410 if (!eb) {
4411 spin_unlock(&tree->buffer_lock);
4412 return ret;
4413 }
4414
4415 if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4416 ret = 0;
4417 goto out;
4418 }
4419
4420 /*
4421 * set @eb->refs to 0 if it is already 1, and then release the @eb.
4422 * Or go back.
4423 */
4424 if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
4425 ret = 0;
4426 goto out;
4427 }
4428
4429 radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4430 out:
4431 spin_unlock(&tree->buffer_lock);
4432
4433 /* at this point we can safely release the extent buffer */
4434 if (atomic_read(&eb->refs) == 0)
4435 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4436 return ret;
4437 }