Input: sur40 - skip all blobs that are not touches
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 #include "transaction.h"
24
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27 static struct bio_set *btrfs_bioset;
28
29 static inline bool extent_state_in_tree(const struct extent_state *state)
30 {
31 return !RB_EMPTY_NODE(&state->rb_node);
32 }
33
34 #ifdef CONFIG_BTRFS_DEBUG
35 static LIST_HEAD(buffers);
36 static LIST_HEAD(states);
37
38 static DEFINE_SPINLOCK(leak_lock);
39
40 static inline
41 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42 {
43 unsigned long flags;
44
45 spin_lock_irqsave(&leak_lock, flags);
46 list_add(new, head);
47 spin_unlock_irqrestore(&leak_lock, flags);
48 }
49
50 static inline
51 void btrfs_leak_debug_del(struct list_head *entry)
52 {
53 unsigned long flags;
54
55 spin_lock_irqsave(&leak_lock, flags);
56 list_del(entry);
57 spin_unlock_irqrestore(&leak_lock, flags);
58 }
59
60 static inline
61 void btrfs_leak_debug_check(void)
62 {
63 struct extent_state *state;
64 struct extent_buffer *eb;
65
66 while (!list_empty(&states)) {
67 state = list_entry(states.next, struct extent_state, leak_list);
68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
69 state->start, state->end, state->state,
70 extent_state_in_tree(state),
71 refcount_read(&state->refs));
72 list_del(&state->leak_list);
73 kmem_cache_free(extent_state_cache, state);
74 }
75
76 while (!list_empty(&buffers)) {
77 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 struct inode *inode;
91 u64 isize;
92
93 if (!tree->mapping)
94 return;
95
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
102 }
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
109 #endif
110
111 #define BUFFER_LRU_MAX 64
112
113 struct tree_entry {
114 u64 start;
115 u64 end;
116 struct rb_node rb_node;
117 };
118
119 struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
123 unsigned long bio_flags;
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use REQ_SYNC */
131 unsigned int sync_io:1;
132 };
133
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137 {
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
144 if (!set && (state->state & bits) == 0)
145 return;
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(&changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151 }
152
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
156 {
157 if (!tree->mapping)
158 return NULL;
159 return btrfs_sb(tree->mapping->host->i_sb);
160 }
161
162 int __init extent_io_init(void)
163 {
164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 sizeof(struct extent_state), 0,
166 SLAB_MEM_SPREAD, NULL);
167 if (!extent_state_cache)
168 return -ENOMEM;
169
170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 sizeof(struct extent_buffer), 0,
172 SLAB_MEM_SPREAD, NULL);
173 if (!extent_buffer_cache)
174 goto free_state_cache;
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
184 return 0;
185
186 free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
190 free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
194 free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
196 extent_state_cache = NULL;
197 return -ENOMEM;
198 }
199
200 void extent_io_exit(void)
201 {
202 btrfs_leak_debug_check();
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
211 if (btrfs_bioset)
212 bioset_free(btrfs_bioset);
213 }
214
215 void extent_io_tree_init(struct extent_io_tree *tree,
216 struct address_space *mapping)
217 {
218 tree->state = RB_ROOT;
219 tree->ops = NULL;
220 tree->dirty_bytes = 0;
221 spin_lock_init(&tree->lock);
222 tree->mapping = mapping;
223 }
224
225 static struct extent_state *alloc_extent_state(gfp_t mask)
226 {
227 struct extent_state *state;
228
229 /*
230 * The given mask might be not appropriate for the slab allocator,
231 * drop the unsupported bits
232 */
233 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
234 state = kmem_cache_alloc(extent_state_cache, mask);
235 if (!state)
236 return state;
237 state->state = 0;
238 state->failrec = NULL;
239 RB_CLEAR_NODE(&state->rb_node);
240 btrfs_leak_debug_add(&state->leak_list, &states);
241 refcount_set(&state->refs, 1);
242 init_waitqueue_head(&state->wq);
243 trace_alloc_extent_state(state, mask, _RET_IP_);
244 return state;
245 }
246
247 void free_extent_state(struct extent_state *state)
248 {
249 if (!state)
250 return;
251 if (refcount_dec_and_test(&state->refs)) {
252 WARN_ON(extent_state_in_tree(state));
253 btrfs_leak_debug_del(&state->leak_list);
254 trace_free_extent_state(state, _RET_IP_);
255 kmem_cache_free(extent_state_cache, state);
256 }
257 }
258
259 static struct rb_node *tree_insert(struct rb_root *root,
260 struct rb_node *search_start,
261 u64 offset,
262 struct rb_node *node,
263 struct rb_node ***p_in,
264 struct rb_node **parent_in)
265 {
266 struct rb_node **p;
267 struct rb_node *parent = NULL;
268 struct tree_entry *entry;
269
270 if (p_in && parent_in) {
271 p = *p_in;
272 parent = *parent_in;
273 goto do_insert;
274 }
275
276 p = search_start ? &search_start : &root->rb_node;
277 while (*p) {
278 parent = *p;
279 entry = rb_entry(parent, struct tree_entry, rb_node);
280
281 if (offset < entry->start)
282 p = &(*p)->rb_left;
283 else if (offset > entry->end)
284 p = &(*p)->rb_right;
285 else
286 return parent;
287 }
288
289 do_insert:
290 rb_link_node(node, parent, p);
291 rb_insert_color(node, root);
292 return NULL;
293 }
294
295 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
296 struct rb_node **prev_ret,
297 struct rb_node **next_ret,
298 struct rb_node ***p_ret,
299 struct rb_node **parent_ret)
300 {
301 struct rb_root *root = &tree->state;
302 struct rb_node **n = &root->rb_node;
303 struct rb_node *prev = NULL;
304 struct rb_node *orig_prev = NULL;
305 struct tree_entry *entry;
306 struct tree_entry *prev_entry = NULL;
307
308 while (*n) {
309 prev = *n;
310 entry = rb_entry(prev, struct tree_entry, rb_node);
311 prev_entry = entry;
312
313 if (offset < entry->start)
314 n = &(*n)->rb_left;
315 else if (offset > entry->end)
316 n = &(*n)->rb_right;
317 else
318 return *n;
319 }
320
321 if (p_ret)
322 *p_ret = n;
323 if (parent_ret)
324 *parent_ret = prev;
325
326 if (prev_ret) {
327 orig_prev = prev;
328 while (prev && offset > prev_entry->end) {
329 prev = rb_next(prev);
330 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 }
332 *prev_ret = prev;
333 prev = orig_prev;
334 }
335
336 if (next_ret) {
337 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
338 while (prev && offset < prev_entry->start) {
339 prev = rb_prev(prev);
340 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
341 }
342 *next_ret = prev;
343 }
344 return NULL;
345 }
346
347 static inline struct rb_node *
348 tree_search_for_insert(struct extent_io_tree *tree,
349 u64 offset,
350 struct rb_node ***p_ret,
351 struct rb_node **parent_ret)
352 {
353 struct rb_node *prev = NULL;
354 struct rb_node *ret;
355
356 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
357 if (!ret)
358 return prev;
359 return ret;
360 }
361
362 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
363 u64 offset)
364 {
365 return tree_search_for_insert(tree, offset, NULL, NULL);
366 }
367
368 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
369 struct extent_state *other)
370 {
371 if (tree->ops && tree->ops->merge_extent_hook)
372 tree->ops->merge_extent_hook(tree->mapping->host, new,
373 other);
374 }
375
376 /*
377 * utility function to look for merge candidates inside a given range.
378 * Any extents with matching state are merged together into a single
379 * extent in the tree. Extents with EXTENT_IO in their state field
380 * are not merged because the end_io handlers need to be able to do
381 * operations on them without sleeping (or doing allocations/splits).
382 *
383 * This should be called with the tree lock held.
384 */
385 static void merge_state(struct extent_io_tree *tree,
386 struct extent_state *state)
387 {
388 struct extent_state *other;
389 struct rb_node *other_node;
390
391 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
392 return;
393
394 other_node = rb_prev(&state->rb_node);
395 if (other_node) {
396 other = rb_entry(other_node, struct extent_state, rb_node);
397 if (other->end == state->start - 1 &&
398 other->state == state->state) {
399 merge_cb(tree, state, other);
400 state->start = other->start;
401 rb_erase(&other->rb_node, &tree->state);
402 RB_CLEAR_NODE(&other->rb_node);
403 free_extent_state(other);
404 }
405 }
406 other_node = rb_next(&state->rb_node);
407 if (other_node) {
408 other = rb_entry(other_node, struct extent_state, rb_node);
409 if (other->start == state->end + 1 &&
410 other->state == state->state) {
411 merge_cb(tree, state, other);
412 state->end = other->end;
413 rb_erase(&other->rb_node, &tree->state);
414 RB_CLEAR_NODE(&other->rb_node);
415 free_extent_state(other);
416 }
417 }
418 }
419
420 static void set_state_cb(struct extent_io_tree *tree,
421 struct extent_state *state, unsigned *bits)
422 {
423 if (tree->ops && tree->ops->set_bit_hook)
424 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
425 }
426
427 static void clear_state_cb(struct extent_io_tree *tree,
428 struct extent_state *state, unsigned *bits)
429 {
430 if (tree->ops && tree->ops->clear_bit_hook)
431 tree->ops->clear_bit_hook(BTRFS_I(tree->mapping->host),
432 state, bits);
433 }
434
435 static void set_state_bits(struct extent_io_tree *tree,
436 struct extent_state *state, unsigned *bits,
437 struct extent_changeset *changeset);
438
439 /*
440 * insert an extent_state struct into the tree. 'bits' are set on the
441 * struct before it is inserted.
442 *
443 * This may return -EEXIST if the extent is already there, in which case the
444 * state struct is freed.
445 *
446 * The tree lock is not taken internally. This is a utility function and
447 * probably isn't what you want to call (see set/clear_extent_bit).
448 */
449 static int insert_state(struct extent_io_tree *tree,
450 struct extent_state *state, u64 start, u64 end,
451 struct rb_node ***p,
452 struct rb_node **parent,
453 unsigned *bits, struct extent_changeset *changeset)
454 {
455 struct rb_node *node;
456
457 if (end < start)
458 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
459 end, start);
460 state->start = start;
461 state->end = end;
462
463 set_state_bits(tree, state, bits, changeset);
464
465 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
466 if (node) {
467 struct extent_state *found;
468 found = rb_entry(node, struct extent_state, rb_node);
469 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
470 found->start, found->end, start, end);
471 return -EEXIST;
472 }
473 merge_state(tree, state);
474 return 0;
475 }
476
477 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
478 u64 split)
479 {
480 if (tree->ops && tree->ops->split_extent_hook)
481 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
482 }
483
484 /*
485 * split a given extent state struct in two, inserting the preallocated
486 * struct 'prealloc' as the newly created second half. 'split' indicates an
487 * offset inside 'orig' where it should be split.
488 *
489 * Before calling,
490 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
491 * are two extent state structs in the tree:
492 * prealloc: [orig->start, split - 1]
493 * orig: [ split, orig->end ]
494 *
495 * The tree locks are not taken by this function. They need to be held
496 * by the caller.
497 */
498 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
499 struct extent_state *prealloc, u64 split)
500 {
501 struct rb_node *node;
502
503 split_cb(tree, orig, split);
504
505 prealloc->start = orig->start;
506 prealloc->end = split - 1;
507 prealloc->state = orig->state;
508 orig->start = split;
509
510 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
511 &prealloc->rb_node, NULL, NULL);
512 if (node) {
513 free_extent_state(prealloc);
514 return -EEXIST;
515 }
516 return 0;
517 }
518
519 static struct extent_state *next_state(struct extent_state *state)
520 {
521 struct rb_node *next = rb_next(&state->rb_node);
522 if (next)
523 return rb_entry(next, struct extent_state, rb_node);
524 else
525 return NULL;
526 }
527
528 /*
529 * utility function to clear some bits in an extent state struct.
530 * it will optionally wake up any one waiting on this state (wake == 1).
531 *
532 * If no bits are set on the state struct after clearing things, the
533 * struct is freed and removed from the tree
534 */
535 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
536 struct extent_state *state,
537 unsigned *bits, int wake,
538 struct extent_changeset *changeset)
539 {
540 struct extent_state *next;
541 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
542
543 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
544 u64 range = state->end - state->start + 1;
545 WARN_ON(range > tree->dirty_bytes);
546 tree->dirty_bytes -= range;
547 }
548 clear_state_cb(tree, state, bits);
549 add_extent_changeset(state, bits_to_clear, changeset, 0);
550 state->state &= ~bits_to_clear;
551 if (wake)
552 wake_up(&state->wq);
553 if (state->state == 0) {
554 next = next_state(state);
555 if (extent_state_in_tree(state)) {
556 rb_erase(&state->rb_node, &tree->state);
557 RB_CLEAR_NODE(&state->rb_node);
558 free_extent_state(state);
559 } else {
560 WARN_ON(1);
561 }
562 } else {
563 merge_state(tree, state);
564 next = next_state(state);
565 }
566 return next;
567 }
568
569 static struct extent_state *
570 alloc_extent_state_atomic(struct extent_state *prealloc)
571 {
572 if (!prealloc)
573 prealloc = alloc_extent_state(GFP_ATOMIC);
574
575 return prealloc;
576 }
577
578 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
579 {
580 btrfs_panic(tree_fs_info(tree), err,
581 "Locking error: Extent tree was modified by another thread while locked.");
582 }
583
584 /*
585 * clear some bits on a range in the tree. This may require splitting
586 * or inserting elements in the tree, so the gfp mask is used to
587 * indicate which allocations or sleeping are allowed.
588 *
589 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
590 * the given range from the tree regardless of state (ie for truncate).
591 *
592 * the range [start, end] is inclusive.
593 *
594 * This takes the tree lock, and returns 0 on success and < 0 on error.
595 */
596 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
597 unsigned bits, int wake, int delete,
598 struct extent_state **cached_state,
599 gfp_t mask, struct extent_changeset *changeset)
600 {
601 struct extent_state *state;
602 struct extent_state *cached;
603 struct extent_state *prealloc = NULL;
604 struct rb_node *node;
605 u64 last_end;
606 int err;
607 int clear = 0;
608
609 btrfs_debug_check_extent_io_range(tree, start, end);
610
611 if (bits & EXTENT_DELALLOC)
612 bits |= EXTENT_NORESERVE;
613
614 if (delete)
615 bits |= ~EXTENT_CTLBITS;
616 bits |= EXTENT_FIRST_DELALLOC;
617
618 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
619 clear = 1;
620 again:
621 if (!prealloc && gfpflags_allow_blocking(mask)) {
622 /*
623 * Don't care for allocation failure here because we might end
624 * up not needing the pre-allocated extent state at all, which
625 * is the case if we only have in the tree extent states that
626 * cover our input range and don't cover too any other range.
627 * If we end up needing a new extent state we allocate it later.
628 */
629 prealloc = alloc_extent_state(mask);
630 }
631
632 spin_lock(&tree->lock);
633 if (cached_state) {
634 cached = *cached_state;
635
636 if (clear) {
637 *cached_state = NULL;
638 cached_state = NULL;
639 }
640
641 if (cached && extent_state_in_tree(cached) &&
642 cached->start <= start && cached->end > start) {
643 if (clear)
644 refcount_dec(&cached->refs);
645 state = cached;
646 goto hit_next;
647 }
648 if (clear)
649 free_extent_state(cached);
650 }
651 /*
652 * this search will find the extents that end after
653 * our range starts
654 */
655 node = tree_search(tree, start);
656 if (!node)
657 goto out;
658 state = rb_entry(node, struct extent_state, rb_node);
659 hit_next:
660 if (state->start > end)
661 goto out;
662 WARN_ON(state->end < start);
663 last_end = state->end;
664
665 /* the state doesn't have the wanted bits, go ahead */
666 if (!(state->state & bits)) {
667 state = next_state(state);
668 goto next;
669 }
670
671 /*
672 * | ---- desired range ---- |
673 * | state | or
674 * | ------------- state -------------- |
675 *
676 * We need to split the extent we found, and may flip
677 * bits on second half.
678 *
679 * If the extent we found extends past our range, we
680 * just split and search again. It'll get split again
681 * the next time though.
682 *
683 * If the extent we found is inside our range, we clear
684 * the desired bit on it.
685 */
686
687 if (state->start < start) {
688 prealloc = alloc_extent_state_atomic(prealloc);
689 BUG_ON(!prealloc);
690 err = split_state(tree, state, prealloc, start);
691 if (err)
692 extent_io_tree_panic(tree, err);
693
694 prealloc = NULL;
695 if (err)
696 goto out;
697 if (state->end <= end) {
698 state = clear_state_bit(tree, state, &bits, wake,
699 changeset);
700 goto next;
701 }
702 goto search_again;
703 }
704 /*
705 * | ---- desired range ---- |
706 * | state |
707 * We need to split the extent, and clear the bit
708 * on the first half
709 */
710 if (state->start <= end && state->end > end) {
711 prealloc = alloc_extent_state_atomic(prealloc);
712 BUG_ON(!prealloc);
713 err = split_state(tree, state, prealloc, end + 1);
714 if (err)
715 extent_io_tree_panic(tree, err);
716
717 if (wake)
718 wake_up(&state->wq);
719
720 clear_state_bit(tree, prealloc, &bits, wake, changeset);
721
722 prealloc = NULL;
723 goto out;
724 }
725
726 state = clear_state_bit(tree, state, &bits, wake, changeset);
727 next:
728 if (last_end == (u64)-1)
729 goto out;
730 start = last_end + 1;
731 if (start <= end && state && !need_resched())
732 goto hit_next;
733
734 search_again:
735 if (start > end)
736 goto out;
737 spin_unlock(&tree->lock);
738 if (gfpflags_allow_blocking(mask))
739 cond_resched();
740 goto again;
741
742 out:
743 spin_unlock(&tree->lock);
744 if (prealloc)
745 free_extent_state(prealloc);
746
747 return 0;
748
749 }
750
751 static void wait_on_state(struct extent_io_tree *tree,
752 struct extent_state *state)
753 __releases(tree->lock)
754 __acquires(tree->lock)
755 {
756 DEFINE_WAIT(wait);
757 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
758 spin_unlock(&tree->lock);
759 schedule();
760 spin_lock(&tree->lock);
761 finish_wait(&state->wq, &wait);
762 }
763
764 /*
765 * waits for one or more bits to clear on a range in the state tree.
766 * The range [start, end] is inclusive.
767 * The tree lock is taken by this function
768 */
769 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
770 unsigned long bits)
771 {
772 struct extent_state *state;
773 struct rb_node *node;
774
775 btrfs_debug_check_extent_io_range(tree, start, end);
776
777 spin_lock(&tree->lock);
778 again:
779 while (1) {
780 /*
781 * this search will find all the extents that end after
782 * our range starts
783 */
784 node = tree_search(tree, start);
785 process_node:
786 if (!node)
787 break;
788
789 state = rb_entry(node, struct extent_state, rb_node);
790
791 if (state->start > end)
792 goto out;
793
794 if (state->state & bits) {
795 start = state->start;
796 refcount_inc(&state->refs);
797 wait_on_state(tree, state);
798 free_extent_state(state);
799 goto again;
800 }
801 start = state->end + 1;
802
803 if (start > end)
804 break;
805
806 if (!cond_resched_lock(&tree->lock)) {
807 node = rb_next(node);
808 goto process_node;
809 }
810 }
811 out:
812 spin_unlock(&tree->lock);
813 }
814
815 static void set_state_bits(struct extent_io_tree *tree,
816 struct extent_state *state,
817 unsigned *bits, struct extent_changeset *changeset)
818 {
819 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
820
821 set_state_cb(tree, state, bits);
822 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
823 u64 range = state->end - state->start + 1;
824 tree->dirty_bytes += range;
825 }
826 add_extent_changeset(state, bits_to_set, changeset, 1);
827 state->state |= bits_to_set;
828 }
829
830 static void cache_state_if_flags(struct extent_state *state,
831 struct extent_state **cached_ptr,
832 unsigned flags)
833 {
834 if (cached_ptr && !(*cached_ptr)) {
835 if (!flags || (state->state & flags)) {
836 *cached_ptr = state;
837 refcount_inc(&state->refs);
838 }
839 }
840 }
841
842 static void cache_state(struct extent_state *state,
843 struct extent_state **cached_ptr)
844 {
845 return cache_state_if_flags(state, cached_ptr,
846 EXTENT_IOBITS | EXTENT_BOUNDARY);
847 }
848
849 /*
850 * set some bits on a range in the tree. This may require allocations or
851 * sleeping, so the gfp mask is used to indicate what is allowed.
852 *
853 * If any of the exclusive bits are set, this will fail with -EEXIST if some
854 * part of the range already has the desired bits set. The start of the
855 * existing range is returned in failed_start in this case.
856 *
857 * [start, end] is inclusive This takes the tree lock.
858 */
859
860 static int __must_check
861 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
862 unsigned bits, unsigned exclusive_bits,
863 u64 *failed_start, struct extent_state **cached_state,
864 gfp_t mask, struct extent_changeset *changeset)
865 {
866 struct extent_state *state;
867 struct extent_state *prealloc = NULL;
868 struct rb_node *node;
869 struct rb_node **p;
870 struct rb_node *parent;
871 int err = 0;
872 u64 last_start;
873 u64 last_end;
874
875 btrfs_debug_check_extent_io_range(tree, start, end);
876
877 bits |= EXTENT_FIRST_DELALLOC;
878 again:
879 if (!prealloc && gfpflags_allow_blocking(mask)) {
880 /*
881 * Don't care for allocation failure here because we might end
882 * up not needing the pre-allocated extent state at all, which
883 * is the case if we only have in the tree extent states that
884 * cover our input range and don't cover too any other range.
885 * If we end up needing a new extent state we allocate it later.
886 */
887 prealloc = alloc_extent_state(mask);
888 }
889
890 spin_lock(&tree->lock);
891 if (cached_state && *cached_state) {
892 state = *cached_state;
893 if (state->start <= start && state->end > start &&
894 extent_state_in_tree(state)) {
895 node = &state->rb_node;
896 goto hit_next;
897 }
898 }
899 /*
900 * this search will find all the extents that end after
901 * our range starts.
902 */
903 node = tree_search_for_insert(tree, start, &p, &parent);
904 if (!node) {
905 prealloc = alloc_extent_state_atomic(prealloc);
906 BUG_ON(!prealloc);
907 err = insert_state(tree, prealloc, start, end,
908 &p, &parent, &bits, changeset);
909 if (err)
910 extent_io_tree_panic(tree, err);
911
912 cache_state(prealloc, cached_state);
913 prealloc = NULL;
914 goto out;
915 }
916 state = rb_entry(node, struct extent_state, rb_node);
917 hit_next:
918 last_start = state->start;
919 last_end = state->end;
920
921 /*
922 * | ---- desired range ---- |
923 * | state |
924 *
925 * Just lock what we found and keep going
926 */
927 if (state->start == start && state->end <= end) {
928 if (state->state & exclusive_bits) {
929 *failed_start = state->start;
930 err = -EEXIST;
931 goto out;
932 }
933
934 set_state_bits(tree, state, &bits, changeset);
935 cache_state(state, cached_state);
936 merge_state(tree, state);
937 if (last_end == (u64)-1)
938 goto out;
939 start = last_end + 1;
940 state = next_state(state);
941 if (start < end && state && state->start == start &&
942 !need_resched())
943 goto hit_next;
944 goto search_again;
945 }
946
947 /*
948 * | ---- desired range ---- |
949 * | state |
950 * or
951 * | ------------- state -------------- |
952 *
953 * We need to split the extent we found, and may flip bits on
954 * second half.
955 *
956 * If the extent we found extends past our
957 * range, we just split and search again. It'll get split
958 * again the next time though.
959 *
960 * If the extent we found is inside our range, we set the
961 * desired bit on it.
962 */
963 if (state->start < start) {
964 if (state->state & exclusive_bits) {
965 *failed_start = start;
966 err = -EEXIST;
967 goto out;
968 }
969
970 prealloc = alloc_extent_state_atomic(prealloc);
971 BUG_ON(!prealloc);
972 err = split_state(tree, state, prealloc, start);
973 if (err)
974 extent_io_tree_panic(tree, err);
975
976 prealloc = NULL;
977 if (err)
978 goto out;
979 if (state->end <= end) {
980 set_state_bits(tree, state, &bits, changeset);
981 cache_state(state, cached_state);
982 merge_state(tree, state);
983 if (last_end == (u64)-1)
984 goto out;
985 start = last_end + 1;
986 state = next_state(state);
987 if (start < end && state && state->start == start &&
988 !need_resched())
989 goto hit_next;
990 }
991 goto search_again;
992 }
993 /*
994 * | ---- desired range ---- |
995 * | state | or | state |
996 *
997 * There's a hole, we need to insert something in it and
998 * ignore the extent we found.
999 */
1000 if (state->start > start) {
1001 u64 this_end;
1002 if (end < last_start)
1003 this_end = end;
1004 else
1005 this_end = last_start - 1;
1006
1007 prealloc = alloc_extent_state_atomic(prealloc);
1008 BUG_ON(!prealloc);
1009
1010 /*
1011 * Avoid to free 'prealloc' if it can be merged with
1012 * the later extent.
1013 */
1014 err = insert_state(tree, prealloc, start, this_end,
1015 NULL, NULL, &bits, changeset);
1016 if (err)
1017 extent_io_tree_panic(tree, err);
1018
1019 cache_state(prealloc, cached_state);
1020 prealloc = NULL;
1021 start = this_end + 1;
1022 goto search_again;
1023 }
1024 /*
1025 * | ---- desired range ---- |
1026 * | state |
1027 * We need to split the extent, and set the bit
1028 * on the first half
1029 */
1030 if (state->start <= end && state->end > end) {
1031 if (state->state & exclusive_bits) {
1032 *failed_start = start;
1033 err = -EEXIST;
1034 goto out;
1035 }
1036
1037 prealloc = alloc_extent_state_atomic(prealloc);
1038 BUG_ON(!prealloc);
1039 err = split_state(tree, state, prealloc, end + 1);
1040 if (err)
1041 extent_io_tree_panic(tree, err);
1042
1043 set_state_bits(tree, prealloc, &bits, changeset);
1044 cache_state(prealloc, cached_state);
1045 merge_state(tree, prealloc);
1046 prealloc = NULL;
1047 goto out;
1048 }
1049
1050 search_again:
1051 if (start > end)
1052 goto out;
1053 spin_unlock(&tree->lock);
1054 if (gfpflags_allow_blocking(mask))
1055 cond_resched();
1056 goto again;
1057
1058 out:
1059 spin_unlock(&tree->lock);
1060 if (prealloc)
1061 free_extent_state(prealloc);
1062
1063 return err;
1064
1065 }
1066
1067 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1068 unsigned bits, u64 * failed_start,
1069 struct extent_state **cached_state, gfp_t mask)
1070 {
1071 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1072 cached_state, mask, NULL);
1073 }
1074
1075
1076 /**
1077 * convert_extent_bit - convert all bits in a given range from one bit to
1078 * another
1079 * @tree: the io tree to search
1080 * @start: the start offset in bytes
1081 * @end: the end offset in bytes (inclusive)
1082 * @bits: the bits to set in this range
1083 * @clear_bits: the bits to clear in this range
1084 * @cached_state: state that we're going to cache
1085 *
1086 * This will go through and set bits for the given range. If any states exist
1087 * already in this range they are set with the given bit and cleared of the
1088 * clear_bits. This is only meant to be used by things that are mergeable, ie
1089 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1090 * boundary bits like LOCK.
1091 *
1092 * All allocations are done with GFP_NOFS.
1093 */
1094 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1095 unsigned bits, unsigned clear_bits,
1096 struct extent_state **cached_state)
1097 {
1098 struct extent_state *state;
1099 struct extent_state *prealloc = NULL;
1100 struct rb_node *node;
1101 struct rb_node **p;
1102 struct rb_node *parent;
1103 int err = 0;
1104 u64 last_start;
1105 u64 last_end;
1106 bool first_iteration = true;
1107
1108 btrfs_debug_check_extent_io_range(tree, start, end);
1109
1110 again:
1111 if (!prealloc) {
1112 /*
1113 * Best effort, don't worry if extent state allocation fails
1114 * here for the first iteration. We might have a cached state
1115 * that matches exactly the target range, in which case no
1116 * extent state allocations are needed. We'll only know this
1117 * after locking the tree.
1118 */
1119 prealloc = alloc_extent_state(GFP_NOFS);
1120 if (!prealloc && !first_iteration)
1121 return -ENOMEM;
1122 }
1123
1124 spin_lock(&tree->lock);
1125 if (cached_state && *cached_state) {
1126 state = *cached_state;
1127 if (state->start <= start && state->end > start &&
1128 extent_state_in_tree(state)) {
1129 node = &state->rb_node;
1130 goto hit_next;
1131 }
1132 }
1133
1134 /*
1135 * this search will find all the extents that end after
1136 * our range starts.
1137 */
1138 node = tree_search_for_insert(tree, start, &p, &parent);
1139 if (!node) {
1140 prealloc = alloc_extent_state_atomic(prealloc);
1141 if (!prealloc) {
1142 err = -ENOMEM;
1143 goto out;
1144 }
1145 err = insert_state(tree, prealloc, start, end,
1146 &p, &parent, &bits, NULL);
1147 if (err)
1148 extent_io_tree_panic(tree, err);
1149 cache_state(prealloc, cached_state);
1150 prealloc = NULL;
1151 goto out;
1152 }
1153 state = rb_entry(node, struct extent_state, rb_node);
1154 hit_next:
1155 last_start = state->start;
1156 last_end = state->end;
1157
1158 /*
1159 * | ---- desired range ---- |
1160 * | state |
1161 *
1162 * Just lock what we found and keep going
1163 */
1164 if (state->start == start && state->end <= end) {
1165 set_state_bits(tree, state, &bits, NULL);
1166 cache_state(state, cached_state);
1167 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1168 if (last_end == (u64)-1)
1169 goto out;
1170 start = last_end + 1;
1171 if (start < end && state && state->start == start &&
1172 !need_resched())
1173 goto hit_next;
1174 goto search_again;
1175 }
1176
1177 /*
1178 * | ---- desired range ---- |
1179 * | state |
1180 * or
1181 * | ------------- state -------------- |
1182 *
1183 * We need to split the extent we found, and may flip bits on
1184 * second half.
1185 *
1186 * If the extent we found extends past our
1187 * range, we just split and search again. It'll get split
1188 * again the next time though.
1189 *
1190 * If the extent we found is inside our range, we set the
1191 * desired bit on it.
1192 */
1193 if (state->start < start) {
1194 prealloc = alloc_extent_state_atomic(prealloc);
1195 if (!prealloc) {
1196 err = -ENOMEM;
1197 goto out;
1198 }
1199 err = split_state(tree, state, prealloc, start);
1200 if (err)
1201 extent_io_tree_panic(tree, err);
1202 prealloc = NULL;
1203 if (err)
1204 goto out;
1205 if (state->end <= end) {
1206 set_state_bits(tree, state, &bits, NULL);
1207 cache_state(state, cached_state);
1208 state = clear_state_bit(tree, state, &clear_bits, 0,
1209 NULL);
1210 if (last_end == (u64)-1)
1211 goto out;
1212 start = last_end + 1;
1213 if (start < end && state && state->start == start &&
1214 !need_resched())
1215 goto hit_next;
1216 }
1217 goto search_again;
1218 }
1219 /*
1220 * | ---- desired range ---- |
1221 * | state | or | state |
1222 *
1223 * There's a hole, we need to insert something in it and
1224 * ignore the extent we found.
1225 */
1226 if (state->start > start) {
1227 u64 this_end;
1228 if (end < last_start)
1229 this_end = end;
1230 else
1231 this_end = last_start - 1;
1232
1233 prealloc = alloc_extent_state_atomic(prealloc);
1234 if (!prealloc) {
1235 err = -ENOMEM;
1236 goto out;
1237 }
1238
1239 /*
1240 * Avoid to free 'prealloc' if it can be merged with
1241 * the later extent.
1242 */
1243 err = insert_state(tree, prealloc, start, this_end,
1244 NULL, NULL, &bits, NULL);
1245 if (err)
1246 extent_io_tree_panic(tree, err);
1247 cache_state(prealloc, cached_state);
1248 prealloc = NULL;
1249 start = this_end + 1;
1250 goto search_again;
1251 }
1252 /*
1253 * | ---- desired range ---- |
1254 * | state |
1255 * We need to split the extent, and set the bit
1256 * on the first half
1257 */
1258 if (state->start <= end && state->end > end) {
1259 prealloc = alloc_extent_state_atomic(prealloc);
1260 if (!prealloc) {
1261 err = -ENOMEM;
1262 goto out;
1263 }
1264
1265 err = split_state(tree, state, prealloc, end + 1);
1266 if (err)
1267 extent_io_tree_panic(tree, err);
1268
1269 set_state_bits(tree, prealloc, &bits, NULL);
1270 cache_state(prealloc, cached_state);
1271 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1272 prealloc = NULL;
1273 goto out;
1274 }
1275
1276 search_again:
1277 if (start > end)
1278 goto out;
1279 spin_unlock(&tree->lock);
1280 cond_resched();
1281 first_iteration = false;
1282 goto again;
1283
1284 out:
1285 spin_unlock(&tree->lock);
1286 if (prealloc)
1287 free_extent_state(prealloc);
1288
1289 return err;
1290 }
1291
1292 /* wrappers around set/clear extent bit */
1293 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1294 unsigned bits, struct extent_changeset *changeset)
1295 {
1296 /*
1297 * We don't support EXTENT_LOCKED yet, as current changeset will
1298 * record any bits changed, so for EXTENT_LOCKED case, it will
1299 * either fail with -EEXIST or changeset will record the whole
1300 * range.
1301 */
1302 BUG_ON(bits & EXTENT_LOCKED);
1303
1304 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1305 changeset);
1306 }
1307
1308 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1309 unsigned bits, int wake, int delete,
1310 struct extent_state **cached, gfp_t mask)
1311 {
1312 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1313 cached, mask, NULL);
1314 }
1315
1316 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1317 unsigned bits, struct extent_changeset *changeset)
1318 {
1319 /*
1320 * Don't support EXTENT_LOCKED case, same reason as
1321 * set_record_extent_bits().
1322 */
1323 BUG_ON(bits & EXTENT_LOCKED);
1324
1325 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1326 changeset);
1327 }
1328
1329 /*
1330 * either insert or lock state struct between start and end use mask to tell
1331 * us if waiting is desired.
1332 */
1333 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1334 struct extent_state **cached_state)
1335 {
1336 int err;
1337 u64 failed_start;
1338
1339 while (1) {
1340 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1341 EXTENT_LOCKED, &failed_start,
1342 cached_state, GFP_NOFS, NULL);
1343 if (err == -EEXIST) {
1344 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1345 start = failed_start;
1346 } else
1347 break;
1348 WARN_ON(start > end);
1349 }
1350 return err;
1351 }
1352
1353 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1354 {
1355 int err;
1356 u64 failed_start;
1357
1358 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1359 &failed_start, NULL, GFP_NOFS, NULL);
1360 if (err == -EEXIST) {
1361 if (failed_start > start)
1362 clear_extent_bit(tree, start, failed_start - 1,
1363 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1364 return 0;
1365 }
1366 return 1;
1367 }
1368
1369 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1370 {
1371 unsigned long index = start >> PAGE_SHIFT;
1372 unsigned long end_index = end >> PAGE_SHIFT;
1373 struct page *page;
1374
1375 while (index <= end_index) {
1376 page = find_get_page(inode->i_mapping, index);
1377 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1378 clear_page_dirty_for_io(page);
1379 put_page(page);
1380 index++;
1381 }
1382 }
1383
1384 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1385 {
1386 unsigned long index = start >> PAGE_SHIFT;
1387 unsigned long end_index = end >> PAGE_SHIFT;
1388 struct page *page;
1389
1390 while (index <= end_index) {
1391 page = find_get_page(inode->i_mapping, index);
1392 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1393 __set_page_dirty_nobuffers(page);
1394 account_page_redirty(page);
1395 put_page(page);
1396 index++;
1397 }
1398 }
1399
1400 /*
1401 * helper function to set both pages and extents in the tree writeback
1402 */
1403 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1404 {
1405 unsigned long index = start >> PAGE_SHIFT;
1406 unsigned long end_index = end >> PAGE_SHIFT;
1407 struct page *page;
1408
1409 while (index <= end_index) {
1410 page = find_get_page(tree->mapping, index);
1411 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1412 set_page_writeback(page);
1413 put_page(page);
1414 index++;
1415 }
1416 }
1417
1418 /* find the first state struct with 'bits' set after 'start', and
1419 * return it. tree->lock must be held. NULL will returned if
1420 * nothing was found after 'start'
1421 */
1422 static struct extent_state *
1423 find_first_extent_bit_state(struct extent_io_tree *tree,
1424 u64 start, unsigned bits)
1425 {
1426 struct rb_node *node;
1427 struct extent_state *state;
1428
1429 /*
1430 * this search will find all the extents that end after
1431 * our range starts.
1432 */
1433 node = tree_search(tree, start);
1434 if (!node)
1435 goto out;
1436
1437 while (1) {
1438 state = rb_entry(node, struct extent_state, rb_node);
1439 if (state->end >= start && (state->state & bits))
1440 return state;
1441
1442 node = rb_next(node);
1443 if (!node)
1444 break;
1445 }
1446 out:
1447 return NULL;
1448 }
1449
1450 /*
1451 * find the first offset in the io tree with 'bits' set. zero is
1452 * returned if we find something, and *start_ret and *end_ret are
1453 * set to reflect the state struct that was found.
1454 *
1455 * If nothing was found, 1 is returned. If found something, return 0.
1456 */
1457 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1458 u64 *start_ret, u64 *end_ret, unsigned bits,
1459 struct extent_state **cached_state)
1460 {
1461 struct extent_state *state;
1462 struct rb_node *n;
1463 int ret = 1;
1464
1465 spin_lock(&tree->lock);
1466 if (cached_state && *cached_state) {
1467 state = *cached_state;
1468 if (state->end == start - 1 && extent_state_in_tree(state)) {
1469 n = rb_next(&state->rb_node);
1470 while (n) {
1471 state = rb_entry(n, struct extent_state,
1472 rb_node);
1473 if (state->state & bits)
1474 goto got_it;
1475 n = rb_next(n);
1476 }
1477 free_extent_state(*cached_state);
1478 *cached_state = NULL;
1479 goto out;
1480 }
1481 free_extent_state(*cached_state);
1482 *cached_state = NULL;
1483 }
1484
1485 state = find_first_extent_bit_state(tree, start, bits);
1486 got_it:
1487 if (state) {
1488 cache_state_if_flags(state, cached_state, 0);
1489 *start_ret = state->start;
1490 *end_ret = state->end;
1491 ret = 0;
1492 }
1493 out:
1494 spin_unlock(&tree->lock);
1495 return ret;
1496 }
1497
1498 /*
1499 * find a contiguous range of bytes in the file marked as delalloc, not
1500 * more than 'max_bytes'. start and end are used to return the range,
1501 *
1502 * 1 is returned if we find something, 0 if nothing was in the tree
1503 */
1504 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1505 u64 *start, u64 *end, u64 max_bytes,
1506 struct extent_state **cached_state)
1507 {
1508 struct rb_node *node;
1509 struct extent_state *state;
1510 u64 cur_start = *start;
1511 u64 found = 0;
1512 u64 total_bytes = 0;
1513
1514 spin_lock(&tree->lock);
1515
1516 /*
1517 * this search will find all the extents that end after
1518 * our range starts.
1519 */
1520 node = tree_search(tree, cur_start);
1521 if (!node) {
1522 if (!found)
1523 *end = (u64)-1;
1524 goto out;
1525 }
1526
1527 while (1) {
1528 state = rb_entry(node, struct extent_state, rb_node);
1529 if (found && (state->start != cur_start ||
1530 (state->state & EXTENT_BOUNDARY))) {
1531 goto out;
1532 }
1533 if (!(state->state & EXTENT_DELALLOC)) {
1534 if (!found)
1535 *end = state->end;
1536 goto out;
1537 }
1538 if (!found) {
1539 *start = state->start;
1540 *cached_state = state;
1541 refcount_inc(&state->refs);
1542 }
1543 found++;
1544 *end = state->end;
1545 cur_start = state->end + 1;
1546 node = rb_next(node);
1547 total_bytes += state->end - state->start + 1;
1548 if (total_bytes >= max_bytes)
1549 break;
1550 if (!node)
1551 break;
1552 }
1553 out:
1554 spin_unlock(&tree->lock);
1555 return found;
1556 }
1557
1558 static int __process_pages_contig(struct address_space *mapping,
1559 struct page *locked_page,
1560 pgoff_t start_index, pgoff_t end_index,
1561 unsigned long page_ops, pgoff_t *index_ret);
1562
1563 static noinline void __unlock_for_delalloc(struct inode *inode,
1564 struct page *locked_page,
1565 u64 start, u64 end)
1566 {
1567 unsigned long index = start >> PAGE_SHIFT;
1568 unsigned long end_index = end >> PAGE_SHIFT;
1569
1570 ASSERT(locked_page);
1571 if (index == locked_page->index && end_index == index)
1572 return;
1573
1574 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1575 PAGE_UNLOCK, NULL);
1576 }
1577
1578 static noinline int lock_delalloc_pages(struct inode *inode,
1579 struct page *locked_page,
1580 u64 delalloc_start,
1581 u64 delalloc_end)
1582 {
1583 unsigned long index = delalloc_start >> PAGE_SHIFT;
1584 unsigned long index_ret = index;
1585 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1586 int ret;
1587
1588 ASSERT(locked_page);
1589 if (index == locked_page->index && index == end_index)
1590 return 0;
1591
1592 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1593 end_index, PAGE_LOCK, &index_ret);
1594 if (ret == -EAGAIN)
1595 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1596 (u64)index_ret << PAGE_SHIFT);
1597 return ret;
1598 }
1599
1600 /*
1601 * find a contiguous range of bytes in the file marked as delalloc, not
1602 * more than 'max_bytes'. start and end are used to return the range,
1603 *
1604 * 1 is returned if we find something, 0 if nothing was in the tree
1605 */
1606 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1607 struct extent_io_tree *tree,
1608 struct page *locked_page, u64 *start,
1609 u64 *end, u64 max_bytes)
1610 {
1611 u64 delalloc_start;
1612 u64 delalloc_end;
1613 u64 found;
1614 struct extent_state *cached_state = NULL;
1615 int ret;
1616 int loops = 0;
1617
1618 again:
1619 /* step one, find a bunch of delalloc bytes starting at start */
1620 delalloc_start = *start;
1621 delalloc_end = 0;
1622 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1623 max_bytes, &cached_state);
1624 if (!found || delalloc_end <= *start) {
1625 *start = delalloc_start;
1626 *end = delalloc_end;
1627 free_extent_state(cached_state);
1628 return 0;
1629 }
1630
1631 /*
1632 * start comes from the offset of locked_page. We have to lock
1633 * pages in order, so we can't process delalloc bytes before
1634 * locked_page
1635 */
1636 if (delalloc_start < *start)
1637 delalloc_start = *start;
1638
1639 /*
1640 * make sure to limit the number of pages we try to lock down
1641 */
1642 if (delalloc_end + 1 - delalloc_start > max_bytes)
1643 delalloc_end = delalloc_start + max_bytes - 1;
1644
1645 /* step two, lock all the pages after the page that has start */
1646 ret = lock_delalloc_pages(inode, locked_page,
1647 delalloc_start, delalloc_end);
1648 if (ret == -EAGAIN) {
1649 /* some of the pages are gone, lets avoid looping by
1650 * shortening the size of the delalloc range we're searching
1651 */
1652 free_extent_state(cached_state);
1653 cached_state = NULL;
1654 if (!loops) {
1655 max_bytes = PAGE_SIZE;
1656 loops = 1;
1657 goto again;
1658 } else {
1659 found = 0;
1660 goto out_failed;
1661 }
1662 }
1663 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1664
1665 /* step three, lock the state bits for the whole range */
1666 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1667
1668 /* then test to make sure it is all still delalloc */
1669 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1670 EXTENT_DELALLOC, 1, cached_state);
1671 if (!ret) {
1672 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1673 &cached_state, GFP_NOFS);
1674 __unlock_for_delalloc(inode, locked_page,
1675 delalloc_start, delalloc_end);
1676 cond_resched();
1677 goto again;
1678 }
1679 free_extent_state(cached_state);
1680 *start = delalloc_start;
1681 *end = delalloc_end;
1682 out_failed:
1683 return found;
1684 }
1685
1686 static int __process_pages_contig(struct address_space *mapping,
1687 struct page *locked_page,
1688 pgoff_t start_index, pgoff_t end_index,
1689 unsigned long page_ops, pgoff_t *index_ret)
1690 {
1691 unsigned long nr_pages = end_index - start_index + 1;
1692 unsigned long pages_locked = 0;
1693 pgoff_t index = start_index;
1694 struct page *pages[16];
1695 unsigned ret;
1696 int err = 0;
1697 int i;
1698
1699 if (page_ops & PAGE_LOCK) {
1700 ASSERT(page_ops == PAGE_LOCK);
1701 ASSERT(index_ret && *index_ret == start_index);
1702 }
1703
1704 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1705 mapping_set_error(mapping, -EIO);
1706
1707 while (nr_pages > 0) {
1708 ret = find_get_pages_contig(mapping, index,
1709 min_t(unsigned long,
1710 nr_pages, ARRAY_SIZE(pages)), pages);
1711 if (ret == 0) {
1712 /*
1713 * Only if we're going to lock these pages,
1714 * can we find nothing at @index.
1715 */
1716 ASSERT(page_ops & PAGE_LOCK);
1717 err = -EAGAIN;
1718 goto out;
1719 }
1720
1721 for (i = 0; i < ret; i++) {
1722 if (page_ops & PAGE_SET_PRIVATE2)
1723 SetPagePrivate2(pages[i]);
1724
1725 if (pages[i] == locked_page) {
1726 put_page(pages[i]);
1727 pages_locked++;
1728 continue;
1729 }
1730 if (page_ops & PAGE_CLEAR_DIRTY)
1731 clear_page_dirty_for_io(pages[i]);
1732 if (page_ops & PAGE_SET_WRITEBACK)
1733 set_page_writeback(pages[i]);
1734 if (page_ops & PAGE_SET_ERROR)
1735 SetPageError(pages[i]);
1736 if (page_ops & PAGE_END_WRITEBACK)
1737 end_page_writeback(pages[i]);
1738 if (page_ops & PAGE_UNLOCK)
1739 unlock_page(pages[i]);
1740 if (page_ops & PAGE_LOCK) {
1741 lock_page(pages[i]);
1742 if (!PageDirty(pages[i]) ||
1743 pages[i]->mapping != mapping) {
1744 unlock_page(pages[i]);
1745 put_page(pages[i]);
1746 err = -EAGAIN;
1747 goto out;
1748 }
1749 }
1750 put_page(pages[i]);
1751 pages_locked++;
1752 }
1753 nr_pages -= ret;
1754 index += ret;
1755 cond_resched();
1756 }
1757 out:
1758 if (err && index_ret)
1759 *index_ret = start_index + pages_locked - 1;
1760 return err;
1761 }
1762
1763 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1764 u64 delalloc_end, struct page *locked_page,
1765 unsigned clear_bits,
1766 unsigned long page_ops)
1767 {
1768 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1769 NULL, GFP_NOFS);
1770
1771 __process_pages_contig(inode->i_mapping, locked_page,
1772 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1773 page_ops, NULL);
1774 }
1775
1776 /*
1777 * count the number of bytes in the tree that have a given bit(s)
1778 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1779 * cached. The total number found is returned.
1780 */
1781 u64 count_range_bits(struct extent_io_tree *tree,
1782 u64 *start, u64 search_end, u64 max_bytes,
1783 unsigned bits, int contig)
1784 {
1785 struct rb_node *node;
1786 struct extent_state *state;
1787 u64 cur_start = *start;
1788 u64 total_bytes = 0;
1789 u64 last = 0;
1790 int found = 0;
1791
1792 if (WARN_ON(search_end <= cur_start))
1793 return 0;
1794
1795 spin_lock(&tree->lock);
1796 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1797 total_bytes = tree->dirty_bytes;
1798 goto out;
1799 }
1800 /*
1801 * this search will find all the extents that end after
1802 * our range starts.
1803 */
1804 node = tree_search(tree, cur_start);
1805 if (!node)
1806 goto out;
1807
1808 while (1) {
1809 state = rb_entry(node, struct extent_state, rb_node);
1810 if (state->start > search_end)
1811 break;
1812 if (contig && found && state->start > last + 1)
1813 break;
1814 if (state->end >= cur_start && (state->state & bits) == bits) {
1815 total_bytes += min(search_end, state->end) + 1 -
1816 max(cur_start, state->start);
1817 if (total_bytes >= max_bytes)
1818 break;
1819 if (!found) {
1820 *start = max(cur_start, state->start);
1821 found = 1;
1822 }
1823 last = state->end;
1824 } else if (contig && found) {
1825 break;
1826 }
1827 node = rb_next(node);
1828 if (!node)
1829 break;
1830 }
1831 out:
1832 spin_unlock(&tree->lock);
1833 return total_bytes;
1834 }
1835
1836 /*
1837 * set the private field for a given byte offset in the tree. If there isn't
1838 * an extent_state there already, this does nothing.
1839 */
1840 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1841 struct io_failure_record *failrec)
1842 {
1843 struct rb_node *node;
1844 struct extent_state *state;
1845 int ret = 0;
1846
1847 spin_lock(&tree->lock);
1848 /*
1849 * this search will find all the extents that end after
1850 * our range starts.
1851 */
1852 node = tree_search(tree, start);
1853 if (!node) {
1854 ret = -ENOENT;
1855 goto out;
1856 }
1857 state = rb_entry(node, struct extent_state, rb_node);
1858 if (state->start != start) {
1859 ret = -ENOENT;
1860 goto out;
1861 }
1862 state->failrec = failrec;
1863 out:
1864 spin_unlock(&tree->lock);
1865 return ret;
1866 }
1867
1868 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1869 struct io_failure_record **failrec)
1870 {
1871 struct rb_node *node;
1872 struct extent_state *state;
1873 int ret = 0;
1874
1875 spin_lock(&tree->lock);
1876 /*
1877 * this search will find all the extents that end after
1878 * our range starts.
1879 */
1880 node = tree_search(tree, start);
1881 if (!node) {
1882 ret = -ENOENT;
1883 goto out;
1884 }
1885 state = rb_entry(node, struct extent_state, rb_node);
1886 if (state->start != start) {
1887 ret = -ENOENT;
1888 goto out;
1889 }
1890 *failrec = state->failrec;
1891 out:
1892 spin_unlock(&tree->lock);
1893 return ret;
1894 }
1895
1896 /*
1897 * searches a range in the state tree for a given mask.
1898 * If 'filled' == 1, this returns 1 only if every extent in the tree
1899 * has the bits set. Otherwise, 1 is returned if any bit in the
1900 * range is found set.
1901 */
1902 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1903 unsigned bits, int filled, struct extent_state *cached)
1904 {
1905 struct extent_state *state = NULL;
1906 struct rb_node *node;
1907 int bitset = 0;
1908
1909 spin_lock(&tree->lock);
1910 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1911 cached->end > start)
1912 node = &cached->rb_node;
1913 else
1914 node = tree_search(tree, start);
1915 while (node && start <= end) {
1916 state = rb_entry(node, struct extent_state, rb_node);
1917
1918 if (filled && state->start > start) {
1919 bitset = 0;
1920 break;
1921 }
1922
1923 if (state->start > end)
1924 break;
1925
1926 if (state->state & bits) {
1927 bitset = 1;
1928 if (!filled)
1929 break;
1930 } else if (filled) {
1931 bitset = 0;
1932 break;
1933 }
1934
1935 if (state->end == (u64)-1)
1936 break;
1937
1938 start = state->end + 1;
1939 if (start > end)
1940 break;
1941 node = rb_next(node);
1942 if (!node) {
1943 if (filled)
1944 bitset = 0;
1945 break;
1946 }
1947 }
1948 spin_unlock(&tree->lock);
1949 return bitset;
1950 }
1951
1952 /*
1953 * helper function to set a given page up to date if all the
1954 * extents in the tree for that page are up to date
1955 */
1956 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1957 {
1958 u64 start = page_offset(page);
1959 u64 end = start + PAGE_SIZE - 1;
1960 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1961 SetPageUptodate(page);
1962 }
1963
1964 int free_io_failure(struct btrfs_inode *inode, struct io_failure_record *rec)
1965 {
1966 int ret;
1967 int err = 0;
1968 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
1969
1970 set_state_failrec(failure_tree, rec->start, NULL);
1971 ret = clear_extent_bits(failure_tree, rec->start,
1972 rec->start + rec->len - 1,
1973 EXTENT_LOCKED | EXTENT_DIRTY);
1974 if (ret)
1975 err = ret;
1976
1977 ret = clear_extent_bits(&inode->io_tree, rec->start,
1978 rec->start + rec->len - 1,
1979 EXTENT_DAMAGED);
1980 if (ret && !err)
1981 err = ret;
1982
1983 kfree(rec);
1984 return err;
1985 }
1986
1987 /*
1988 * this bypasses the standard btrfs submit functions deliberately, as
1989 * the standard behavior is to write all copies in a raid setup. here we only
1990 * want to write the one bad copy. so we do the mapping for ourselves and issue
1991 * submit_bio directly.
1992 * to avoid any synchronization issues, wait for the data after writing, which
1993 * actually prevents the read that triggered the error from finishing.
1994 * currently, there can be no more than two copies of every data bit. thus,
1995 * exactly one rewrite is required.
1996 */
1997 int repair_io_failure(struct btrfs_inode *inode, u64 start, u64 length,
1998 u64 logical, struct page *page,
1999 unsigned int pg_offset, int mirror_num)
2000 {
2001 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2002 struct bio *bio;
2003 struct btrfs_device *dev;
2004 u64 map_length = 0;
2005 u64 sector;
2006 struct btrfs_bio *bbio = NULL;
2007 int ret;
2008
2009 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2010 BUG_ON(!mirror_num);
2011
2012 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2013 if (!bio)
2014 return -EIO;
2015 bio->bi_iter.bi_size = 0;
2016 map_length = length;
2017
2018 /*
2019 * Avoid races with device replace and make sure our bbio has devices
2020 * associated to its stripes that don't go away while we are doing the
2021 * read repair operation.
2022 */
2023 btrfs_bio_counter_inc_blocked(fs_info);
2024 if (btrfs_is_parity_mirror(fs_info, logical, length, mirror_num)) {
2025 /*
2026 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2027 * to update all raid stripes, but here we just want to correct
2028 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2029 * stripe's dev and sector.
2030 */
2031 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2032 &map_length, &bbio, 0);
2033 if (ret) {
2034 btrfs_bio_counter_dec(fs_info);
2035 bio_put(bio);
2036 return -EIO;
2037 }
2038 ASSERT(bbio->mirror_num == 1);
2039 } else {
2040 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2041 &map_length, &bbio, mirror_num);
2042 if (ret) {
2043 btrfs_bio_counter_dec(fs_info);
2044 bio_put(bio);
2045 return -EIO;
2046 }
2047 BUG_ON(mirror_num != bbio->mirror_num);
2048 }
2049
2050 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2051 bio->bi_iter.bi_sector = sector;
2052 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2053 btrfs_put_bbio(bbio);
2054 if (!dev || !dev->bdev || !dev->writeable) {
2055 btrfs_bio_counter_dec(fs_info);
2056 bio_put(bio);
2057 return -EIO;
2058 }
2059 bio->bi_bdev = dev->bdev;
2060 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2061 bio_add_page(bio, page, length, pg_offset);
2062
2063 if (btrfsic_submit_bio_wait(bio)) {
2064 /* try to remap that extent elsewhere? */
2065 btrfs_bio_counter_dec(fs_info);
2066 bio_put(bio);
2067 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2068 return -EIO;
2069 }
2070
2071 btrfs_info_rl_in_rcu(fs_info,
2072 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2073 btrfs_ino(inode), start,
2074 rcu_str_deref(dev->name), sector);
2075 btrfs_bio_counter_dec(fs_info);
2076 bio_put(bio);
2077 return 0;
2078 }
2079
2080 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2081 struct extent_buffer *eb, int mirror_num)
2082 {
2083 u64 start = eb->start;
2084 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2085 int ret = 0;
2086
2087 if (fs_info->sb->s_flags & MS_RDONLY)
2088 return -EROFS;
2089
2090 for (i = 0; i < num_pages; i++) {
2091 struct page *p = eb->pages[i];
2092
2093 ret = repair_io_failure(BTRFS_I(fs_info->btree_inode), start,
2094 PAGE_SIZE, start, p,
2095 start - page_offset(p), mirror_num);
2096 if (ret)
2097 break;
2098 start += PAGE_SIZE;
2099 }
2100
2101 return ret;
2102 }
2103
2104 /*
2105 * each time an IO finishes, we do a fast check in the IO failure tree
2106 * to see if we need to process or clean up an io_failure_record
2107 */
2108 int clean_io_failure(struct btrfs_inode *inode, u64 start, struct page *page,
2109 unsigned int pg_offset)
2110 {
2111 u64 private;
2112 struct io_failure_record *failrec;
2113 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2114 struct extent_state *state;
2115 int num_copies;
2116 int ret;
2117
2118 private = 0;
2119 ret = count_range_bits(&inode->io_failure_tree, &private,
2120 (u64)-1, 1, EXTENT_DIRTY, 0);
2121 if (!ret)
2122 return 0;
2123
2124 ret = get_state_failrec(&inode->io_failure_tree, start,
2125 &failrec);
2126 if (ret)
2127 return 0;
2128
2129 BUG_ON(!failrec->this_mirror);
2130
2131 if (failrec->in_validation) {
2132 /* there was no real error, just free the record */
2133 btrfs_debug(fs_info,
2134 "clean_io_failure: freeing dummy error at %llu",
2135 failrec->start);
2136 goto out;
2137 }
2138 if (fs_info->sb->s_flags & MS_RDONLY)
2139 goto out;
2140
2141 spin_lock(&inode->io_tree.lock);
2142 state = find_first_extent_bit_state(&inode->io_tree,
2143 failrec->start,
2144 EXTENT_LOCKED);
2145 spin_unlock(&inode->io_tree.lock);
2146
2147 if (state && state->start <= failrec->start &&
2148 state->end >= failrec->start + failrec->len - 1) {
2149 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2150 failrec->len);
2151 if (num_copies > 1) {
2152 repair_io_failure(inode, start, failrec->len,
2153 failrec->logical, page,
2154 pg_offset, failrec->failed_mirror);
2155 }
2156 }
2157
2158 out:
2159 free_io_failure(inode, failrec);
2160
2161 return 0;
2162 }
2163
2164 /*
2165 * Can be called when
2166 * - hold extent lock
2167 * - under ordered extent
2168 * - the inode is freeing
2169 */
2170 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2171 {
2172 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2173 struct io_failure_record *failrec;
2174 struct extent_state *state, *next;
2175
2176 if (RB_EMPTY_ROOT(&failure_tree->state))
2177 return;
2178
2179 spin_lock(&failure_tree->lock);
2180 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2181 while (state) {
2182 if (state->start > end)
2183 break;
2184
2185 ASSERT(state->end <= end);
2186
2187 next = next_state(state);
2188
2189 failrec = state->failrec;
2190 free_extent_state(state);
2191 kfree(failrec);
2192
2193 state = next;
2194 }
2195 spin_unlock(&failure_tree->lock);
2196 }
2197
2198 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2199 struct io_failure_record **failrec_ret)
2200 {
2201 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2202 struct io_failure_record *failrec;
2203 struct extent_map *em;
2204 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2205 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2206 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2207 int ret;
2208 u64 logical;
2209
2210 ret = get_state_failrec(failure_tree, start, &failrec);
2211 if (ret) {
2212 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2213 if (!failrec)
2214 return -ENOMEM;
2215
2216 failrec->start = start;
2217 failrec->len = end - start + 1;
2218 failrec->this_mirror = 0;
2219 failrec->bio_flags = 0;
2220 failrec->in_validation = 0;
2221
2222 read_lock(&em_tree->lock);
2223 em = lookup_extent_mapping(em_tree, start, failrec->len);
2224 if (!em) {
2225 read_unlock(&em_tree->lock);
2226 kfree(failrec);
2227 return -EIO;
2228 }
2229
2230 if (em->start > start || em->start + em->len <= start) {
2231 free_extent_map(em);
2232 em = NULL;
2233 }
2234 read_unlock(&em_tree->lock);
2235 if (!em) {
2236 kfree(failrec);
2237 return -EIO;
2238 }
2239
2240 logical = start - em->start;
2241 logical = em->block_start + logical;
2242 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2243 logical = em->block_start;
2244 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2245 extent_set_compress_type(&failrec->bio_flags,
2246 em->compress_type);
2247 }
2248
2249 btrfs_debug(fs_info,
2250 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2251 logical, start, failrec->len);
2252
2253 failrec->logical = logical;
2254 free_extent_map(em);
2255
2256 /* set the bits in the private failure tree */
2257 ret = set_extent_bits(failure_tree, start, end,
2258 EXTENT_LOCKED | EXTENT_DIRTY);
2259 if (ret >= 0)
2260 ret = set_state_failrec(failure_tree, start, failrec);
2261 /* set the bits in the inode's tree */
2262 if (ret >= 0)
2263 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2264 if (ret < 0) {
2265 kfree(failrec);
2266 return ret;
2267 }
2268 } else {
2269 btrfs_debug(fs_info,
2270 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2271 failrec->logical, failrec->start, failrec->len,
2272 failrec->in_validation);
2273 /*
2274 * when data can be on disk more than twice, add to failrec here
2275 * (e.g. with a list for failed_mirror) to make
2276 * clean_io_failure() clean all those errors at once.
2277 */
2278 }
2279
2280 *failrec_ret = failrec;
2281
2282 return 0;
2283 }
2284
2285 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2286 struct io_failure_record *failrec, int failed_mirror)
2287 {
2288 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2289 int num_copies;
2290
2291 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2292 if (num_copies == 1) {
2293 /*
2294 * we only have a single copy of the data, so don't bother with
2295 * all the retry and error correction code that follows. no
2296 * matter what the error is, it is very likely to persist.
2297 */
2298 btrfs_debug(fs_info,
2299 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2300 num_copies, failrec->this_mirror, failed_mirror);
2301 return 0;
2302 }
2303
2304 /*
2305 * there are two premises:
2306 * a) deliver good data to the caller
2307 * b) correct the bad sectors on disk
2308 */
2309 if (failed_bio->bi_vcnt > 1) {
2310 /*
2311 * to fulfill b), we need to know the exact failing sectors, as
2312 * we don't want to rewrite any more than the failed ones. thus,
2313 * we need separate read requests for the failed bio
2314 *
2315 * if the following BUG_ON triggers, our validation request got
2316 * merged. we need separate requests for our algorithm to work.
2317 */
2318 BUG_ON(failrec->in_validation);
2319 failrec->in_validation = 1;
2320 failrec->this_mirror = failed_mirror;
2321 } else {
2322 /*
2323 * we're ready to fulfill a) and b) alongside. get a good copy
2324 * of the failed sector and if we succeed, we have setup
2325 * everything for repair_io_failure to do the rest for us.
2326 */
2327 if (failrec->in_validation) {
2328 BUG_ON(failrec->this_mirror != failed_mirror);
2329 failrec->in_validation = 0;
2330 failrec->this_mirror = 0;
2331 }
2332 failrec->failed_mirror = failed_mirror;
2333 failrec->this_mirror++;
2334 if (failrec->this_mirror == failed_mirror)
2335 failrec->this_mirror++;
2336 }
2337
2338 if (failrec->this_mirror > num_copies) {
2339 btrfs_debug(fs_info,
2340 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2341 num_copies, failrec->this_mirror, failed_mirror);
2342 return 0;
2343 }
2344
2345 return 1;
2346 }
2347
2348
2349 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2350 struct io_failure_record *failrec,
2351 struct page *page, int pg_offset, int icsum,
2352 bio_end_io_t *endio_func, void *data)
2353 {
2354 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2355 struct bio *bio;
2356 struct btrfs_io_bio *btrfs_failed_bio;
2357 struct btrfs_io_bio *btrfs_bio;
2358
2359 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2360 if (!bio)
2361 return NULL;
2362
2363 bio->bi_end_io = endio_func;
2364 bio->bi_iter.bi_sector = failrec->logical >> 9;
2365 bio->bi_bdev = fs_info->fs_devices->latest_bdev;
2366 bio->bi_iter.bi_size = 0;
2367 bio->bi_private = data;
2368
2369 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2370 if (btrfs_failed_bio->csum) {
2371 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2372
2373 btrfs_bio = btrfs_io_bio(bio);
2374 btrfs_bio->csum = btrfs_bio->csum_inline;
2375 icsum *= csum_size;
2376 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2377 csum_size);
2378 }
2379
2380 bio_add_page(bio, page, failrec->len, pg_offset);
2381
2382 return bio;
2383 }
2384
2385 /*
2386 * this is a generic handler for readpage errors (default
2387 * readpage_io_failed_hook). if other copies exist, read those and write back
2388 * good data to the failed position. does not investigate in remapping the
2389 * failed extent elsewhere, hoping the device will be smart enough to do this as
2390 * needed
2391 */
2392
2393 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2394 struct page *page, u64 start, u64 end,
2395 int failed_mirror)
2396 {
2397 struct io_failure_record *failrec;
2398 struct inode *inode = page->mapping->host;
2399 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2400 struct bio *bio;
2401 int read_mode = 0;
2402 int ret;
2403
2404 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2405
2406 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2407 if (ret)
2408 return ret;
2409
2410 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2411 if (!ret) {
2412 free_io_failure(BTRFS_I(inode), failrec);
2413 return -EIO;
2414 }
2415
2416 if (failed_bio->bi_vcnt > 1)
2417 read_mode |= REQ_FAILFAST_DEV;
2418
2419 phy_offset >>= inode->i_sb->s_blocksize_bits;
2420 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2421 start - page_offset(page),
2422 (int)phy_offset, failed_bio->bi_end_io,
2423 NULL);
2424 if (!bio) {
2425 free_io_failure(BTRFS_I(inode), failrec);
2426 return -EIO;
2427 }
2428 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2429
2430 btrfs_debug(btrfs_sb(inode->i_sb),
2431 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2432 read_mode, failrec->this_mirror, failrec->in_validation);
2433
2434 ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
2435 failrec->bio_flags, 0);
2436 if (ret) {
2437 free_io_failure(BTRFS_I(inode), failrec);
2438 bio_put(bio);
2439 }
2440
2441 return ret;
2442 }
2443
2444 /* lots and lots of room for performance fixes in the end_bio funcs */
2445
2446 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2447 {
2448 int uptodate = (err == 0);
2449 struct extent_io_tree *tree;
2450 int ret = 0;
2451
2452 tree = &BTRFS_I(page->mapping->host)->io_tree;
2453
2454 if (tree->ops && tree->ops->writepage_end_io_hook)
2455 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2456 uptodate);
2457
2458 if (!uptodate) {
2459 ClearPageUptodate(page);
2460 SetPageError(page);
2461 ret = ret < 0 ? ret : -EIO;
2462 mapping_set_error(page->mapping, ret);
2463 }
2464 }
2465
2466 /*
2467 * after a writepage IO is done, we need to:
2468 * clear the uptodate bits on error
2469 * clear the writeback bits in the extent tree for this IO
2470 * end_page_writeback if the page has no more pending IO
2471 *
2472 * Scheduling is not allowed, so the extent state tree is expected
2473 * to have one and only one object corresponding to this IO.
2474 */
2475 static void end_bio_extent_writepage(struct bio *bio)
2476 {
2477 struct bio_vec *bvec;
2478 u64 start;
2479 u64 end;
2480 int i;
2481
2482 bio_for_each_segment_all(bvec, bio, i) {
2483 struct page *page = bvec->bv_page;
2484 struct inode *inode = page->mapping->host;
2485 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2486
2487 /* We always issue full-page reads, but if some block
2488 * in a page fails to read, blk_update_request() will
2489 * advance bv_offset and adjust bv_len to compensate.
2490 * Print a warning for nonzero offsets, and an error
2491 * if they don't add up to a full page. */
2492 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2493 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2494 btrfs_err(fs_info,
2495 "partial page write in btrfs with offset %u and length %u",
2496 bvec->bv_offset, bvec->bv_len);
2497 else
2498 btrfs_info(fs_info,
2499 "incomplete page write in btrfs with offset %u and length %u",
2500 bvec->bv_offset, bvec->bv_len);
2501 }
2502
2503 start = page_offset(page);
2504 end = start + bvec->bv_offset + bvec->bv_len - 1;
2505
2506 end_extent_writepage(page, bio->bi_error, start, end);
2507 end_page_writeback(page);
2508 }
2509
2510 bio_put(bio);
2511 }
2512
2513 static void
2514 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2515 int uptodate)
2516 {
2517 struct extent_state *cached = NULL;
2518 u64 end = start + len - 1;
2519
2520 if (uptodate && tree->track_uptodate)
2521 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2522 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2523 }
2524
2525 /*
2526 * after a readpage IO is done, we need to:
2527 * clear the uptodate bits on error
2528 * set the uptodate bits if things worked
2529 * set the page up to date if all extents in the tree are uptodate
2530 * clear the lock bit in the extent tree
2531 * unlock the page if there are no other extents locked for it
2532 *
2533 * Scheduling is not allowed, so the extent state tree is expected
2534 * to have one and only one object corresponding to this IO.
2535 */
2536 static void end_bio_extent_readpage(struct bio *bio)
2537 {
2538 struct bio_vec *bvec;
2539 int uptodate = !bio->bi_error;
2540 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2541 struct extent_io_tree *tree;
2542 u64 offset = 0;
2543 u64 start;
2544 u64 end;
2545 u64 len;
2546 u64 extent_start = 0;
2547 u64 extent_len = 0;
2548 int mirror;
2549 int ret;
2550 int i;
2551
2552 bio_for_each_segment_all(bvec, bio, i) {
2553 struct page *page = bvec->bv_page;
2554 struct inode *inode = page->mapping->host;
2555 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2556
2557 btrfs_debug(fs_info,
2558 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2559 (u64)bio->bi_iter.bi_sector, bio->bi_error,
2560 io_bio->mirror_num);
2561 tree = &BTRFS_I(inode)->io_tree;
2562
2563 /* We always issue full-page reads, but if some block
2564 * in a page fails to read, blk_update_request() will
2565 * advance bv_offset and adjust bv_len to compensate.
2566 * Print a warning for nonzero offsets, and an error
2567 * if they don't add up to a full page. */
2568 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2569 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2570 btrfs_err(fs_info,
2571 "partial page read in btrfs with offset %u and length %u",
2572 bvec->bv_offset, bvec->bv_len);
2573 else
2574 btrfs_info(fs_info,
2575 "incomplete page read in btrfs with offset %u and length %u",
2576 bvec->bv_offset, bvec->bv_len);
2577 }
2578
2579 start = page_offset(page);
2580 end = start + bvec->bv_offset + bvec->bv_len - 1;
2581 len = bvec->bv_len;
2582
2583 mirror = io_bio->mirror_num;
2584 if (likely(uptodate && tree->ops)) {
2585 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2586 page, start, end,
2587 mirror);
2588 if (ret)
2589 uptodate = 0;
2590 else
2591 clean_io_failure(BTRFS_I(inode), start,
2592 page, 0);
2593 }
2594
2595 if (likely(uptodate))
2596 goto readpage_ok;
2597
2598 if (tree->ops) {
2599 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2600 if (ret == -EAGAIN) {
2601 /*
2602 * Data inode's readpage_io_failed_hook() always
2603 * returns -EAGAIN.
2604 *
2605 * The generic bio_readpage_error handles errors
2606 * the following way: If possible, new read
2607 * requests are created and submitted and will
2608 * end up in end_bio_extent_readpage as well (if
2609 * we're lucky, not in the !uptodate case). In
2610 * that case it returns 0 and we just go on with
2611 * the next page in our bio. If it can't handle
2612 * the error it will return -EIO and we remain
2613 * responsible for that page.
2614 */
2615 ret = bio_readpage_error(bio, offset, page,
2616 start, end, mirror);
2617 if (ret == 0) {
2618 uptodate = !bio->bi_error;
2619 offset += len;
2620 continue;
2621 }
2622 }
2623
2624 /*
2625 * metadata's readpage_io_failed_hook() always returns
2626 * -EIO and fixes nothing. -EIO is also returned if
2627 * data inode error could not be fixed.
2628 */
2629 ASSERT(ret == -EIO);
2630 }
2631 readpage_ok:
2632 if (likely(uptodate)) {
2633 loff_t i_size = i_size_read(inode);
2634 pgoff_t end_index = i_size >> PAGE_SHIFT;
2635 unsigned off;
2636
2637 /* Zero out the end if this page straddles i_size */
2638 off = i_size & (PAGE_SIZE-1);
2639 if (page->index == end_index && off)
2640 zero_user_segment(page, off, PAGE_SIZE);
2641 SetPageUptodate(page);
2642 } else {
2643 ClearPageUptodate(page);
2644 SetPageError(page);
2645 }
2646 unlock_page(page);
2647 offset += len;
2648
2649 if (unlikely(!uptodate)) {
2650 if (extent_len) {
2651 endio_readpage_release_extent(tree,
2652 extent_start,
2653 extent_len, 1);
2654 extent_start = 0;
2655 extent_len = 0;
2656 }
2657 endio_readpage_release_extent(tree, start,
2658 end - start + 1, 0);
2659 } else if (!extent_len) {
2660 extent_start = start;
2661 extent_len = end + 1 - start;
2662 } else if (extent_start + extent_len == start) {
2663 extent_len += end + 1 - start;
2664 } else {
2665 endio_readpage_release_extent(tree, extent_start,
2666 extent_len, uptodate);
2667 extent_start = start;
2668 extent_len = end + 1 - start;
2669 }
2670 }
2671
2672 if (extent_len)
2673 endio_readpage_release_extent(tree, extent_start, extent_len,
2674 uptodate);
2675 if (io_bio->end_io)
2676 io_bio->end_io(io_bio, bio->bi_error);
2677 bio_put(bio);
2678 }
2679
2680 /*
2681 * this allocates from the btrfs_bioset. We're returning a bio right now
2682 * but you can call btrfs_io_bio for the appropriate container_of magic
2683 */
2684 struct bio *
2685 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2686 gfp_t gfp_flags)
2687 {
2688 struct btrfs_io_bio *btrfs_bio;
2689 struct bio *bio;
2690
2691 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2692
2693 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2694 while (!bio && (nr_vecs /= 2)) {
2695 bio = bio_alloc_bioset(gfp_flags,
2696 nr_vecs, btrfs_bioset);
2697 }
2698 }
2699
2700 if (bio) {
2701 bio->bi_bdev = bdev;
2702 bio->bi_iter.bi_sector = first_sector;
2703 btrfs_bio = btrfs_io_bio(bio);
2704 btrfs_bio->csum = NULL;
2705 btrfs_bio->csum_allocated = NULL;
2706 btrfs_bio->end_io = NULL;
2707 }
2708 return bio;
2709 }
2710
2711 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2712 {
2713 struct btrfs_io_bio *btrfs_bio;
2714 struct bio *new;
2715
2716 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2717 if (new) {
2718 btrfs_bio = btrfs_io_bio(new);
2719 btrfs_bio->csum = NULL;
2720 btrfs_bio->csum_allocated = NULL;
2721 btrfs_bio->end_io = NULL;
2722 }
2723 return new;
2724 }
2725
2726 /* this also allocates from the btrfs_bioset */
2727 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2728 {
2729 struct btrfs_io_bio *btrfs_bio;
2730 struct bio *bio;
2731
2732 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2733 if (bio) {
2734 btrfs_bio = btrfs_io_bio(bio);
2735 btrfs_bio->csum = NULL;
2736 btrfs_bio->csum_allocated = NULL;
2737 btrfs_bio->end_io = NULL;
2738 }
2739 return bio;
2740 }
2741
2742
2743 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2744 unsigned long bio_flags)
2745 {
2746 int ret = 0;
2747 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2748 struct page *page = bvec->bv_page;
2749 struct extent_io_tree *tree = bio->bi_private;
2750 u64 start;
2751
2752 start = page_offset(page) + bvec->bv_offset;
2753
2754 bio->bi_private = NULL;
2755 bio_get(bio);
2756
2757 if (tree->ops)
2758 ret = tree->ops->submit_bio_hook(page->mapping->host, bio,
2759 mirror_num, bio_flags, start);
2760 else
2761 btrfsic_submit_bio(bio);
2762
2763 bio_put(bio);
2764 return ret;
2765 }
2766
2767 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2768 unsigned long offset, size_t size, struct bio *bio,
2769 unsigned long bio_flags)
2770 {
2771 int ret = 0;
2772 if (tree->ops)
2773 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2774 bio_flags);
2775 return ret;
2776
2777 }
2778
2779 static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
2780 struct writeback_control *wbc,
2781 struct page *page, sector_t sector,
2782 size_t size, unsigned long offset,
2783 struct block_device *bdev,
2784 struct bio **bio_ret,
2785 bio_end_io_t end_io_func,
2786 int mirror_num,
2787 unsigned long prev_bio_flags,
2788 unsigned long bio_flags,
2789 bool force_bio_submit)
2790 {
2791 int ret = 0;
2792 struct bio *bio;
2793 int contig = 0;
2794 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2795 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2796
2797 if (bio_ret && *bio_ret) {
2798 bio = *bio_ret;
2799 if (old_compressed)
2800 contig = bio->bi_iter.bi_sector == sector;
2801 else
2802 contig = bio_end_sector(bio) == sector;
2803
2804 if (prev_bio_flags != bio_flags || !contig ||
2805 force_bio_submit ||
2806 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2807 bio_add_page(bio, page, page_size, offset) < page_size) {
2808 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2809 if (ret < 0) {
2810 *bio_ret = NULL;
2811 return ret;
2812 }
2813 bio = NULL;
2814 } else {
2815 if (wbc)
2816 wbc_account_io(wbc, page, page_size);
2817 return 0;
2818 }
2819 }
2820
2821 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2822 GFP_NOFS | __GFP_HIGH);
2823 if (!bio)
2824 return -ENOMEM;
2825
2826 bio_add_page(bio, page, page_size, offset);
2827 bio->bi_end_io = end_io_func;
2828 bio->bi_private = tree;
2829 bio_set_op_attrs(bio, op, op_flags);
2830 if (wbc) {
2831 wbc_init_bio(wbc, bio);
2832 wbc_account_io(wbc, page, page_size);
2833 }
2834
2835 if (bio_ret)
2836 *bio_ret = bio;
2837 else
2838 ret = submit_one_bio(bio, mirror_num, bio_flags);
2839
2840 return ret;
2841 }
2842
2843 static void attach_extent_buffer_page(struct extent_buffer *eb,
2844 struct page *page)
2845 {
2846 if (!PagePrivate(page)) {
2847 SetPagePrivate(page);
2848 get_page(page);
2849 set_page_private(page, (unsigned long)eb);
2850 } else {
2851 WARN_ON(page->private != (unsigned long)eb);
2852 }
2853 }
2854
2855 void set_page_extent_mapped(struct page *page)
2856 {
2857 if (!PagePrivate(page)) {
2858 SetPagePrivate(page);
2859 get_page(page);
2860 set_page_private(page, EXTENT_PAGE_PRIVATE);
2861 }
2862 }
2863
2864 static struct extent_map *
2865 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2866 u64 start, u64 len, get_extent_t *get_extent,
2867 struct extent_map **em_cached)
2868 {
2869 struct extent_map *em;
2870
2871 if (em_cached && *em_cached) {
2872 em = *em_cached;
2873 if (extent_map_in_tree(em) && start >= em->start &&
2874 start < extent_map_end(em)) {
2875 refcount_inc(&em->refs);
2876 return em;
2877 }
2878
2879 free_extent_map(em);
2880 *em_cached = NULL;
2881 }
2882
2883 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2884 if (em_cached && !IS_ERR_OR_NULL(em)) {
2885 BUG_ON(*em_cached);
2886 refcount_inc(&em->refs);
2887 *em_cached = em;
2888 }
2889 return em;
2890 }
2891 /*
2892 * basic readpage implementation. Locked extent state structs are inserted
2893 * into the tree that are removed when the IO is done (by the end_io
2894 * handlers)
2895 * XXX JDM: This needs looking at to ensure proper page locking
2896 * return 0 on success, otherwise return error
2897 */
2898 static int __do_readpage(struct extent_io_tree *tree,
2899 struct page *page,
2900 get_extent_t *get_extent,
2901 struct extent_map **em_cached,
2902 struct bio **bio, int mirror_num,
2903 unsigned long *bio_flags, int read_flags,
2904 u64 *prev_em_start)
2905 {
2906 struct inode *inode = page->mapping->host;
2907 u64 start = page_offset(page);
2908 u64 page_end = start + PAGE_SIZE - 1;
2909 u64 end;
2910 u64 cur = start;
2911 u64 extent_offset;
2912 u64 last_byte = i_size_read(inode);
2913 u64 block_start;
2914 u64 cur_end;
2915 sector_t sector;
2916 struct extent_map *em;
2917 struct block_device *bdev;
2918 int ret = 0;
2919 int nr = 0;
2920 size_t pg_offset = 0;
2921 size_t iosize;
2922 size_t disk_io_size;
2923 size_t blocksize = inode->i_sb->s_blocksize;
2924 unsigned long this_bio_flag = 0;
2925
2926 set_page_extent_mapped(page);
2927
2928 end = page_end;
2929 if (!PageUptodate(page)) {
2930 if (cleancache_get_page(page) == 0) {
2931 BUG_ON(blocksize != PAGE_SIZE);
2932 unlock_extent(tree, start, end);
2933 goto out;
2934 }
2935 }
2936
2937 if (page->index == last_byte >> PAGE_SHIFT) {
2938 char *userpage;
2939 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2940
2941 if (zero_offset) {
2942 iosize = PAGE_SIZE - zero_offset;
2943 userpage = kmap_atomic(page);
2944 memset(userpage + zero_offset, 0, iosize);
2945 flush_dcache_page(page);
2946 kunmap_atomic(userpage);
2947 }
2948 }
2949 while (cur <= end) {
2950 bool force_bio_submit = false;
2951
2952 if (cur >= last_byte) {
2953 char *userpage;
2954 struct extent_state *cached = NULL;
2955
2956 iosize = PAGE_SIZE - pg_offset;
2957 userpage = kmap_atomic(page);
2958 memset(userpage + pg_offset, 0, iosize);
2959 flush_dcache_page(page);
2960 kunmap_atomic(userpage);
2961 set_extent_uptodate(tree, cur, cur + iosize - 1,
2962 &cached, GFP_NOFS);
2963 unlock_extent_cached(tree, cur,
2964 cur + iosize - 1,
2965 &cached, GFP_NOFS);
2966 break;
2967 }
2968 em = __get_extent_map(inode, page, pg_offset, cur,
2969 end - cur + 1, get_extent, em_cached);
2970 if (IS_ERR_OR_NULL(em)) {
2971 SetPageError(page);
2972 unlock_extent(tree, cur, end);
2973 break;
2974 }
2975 extent_offset = cur - em->start;
2976 BUG_ON(extent_map_end(em) <= cur);
2977 BUG_ON(end < cur);
2978
2979 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2980 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2981 extent_set_compress_type(&this_bio_flag,
2982 em->compress_type);
2983 }
2984
2985 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2986 cur_end = min(extent_map_end(em) - 1, end);
2987 iosize = ALIGN(iosize, blocksize);
2988 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2989 disk_io_size = em->block_len;
2990 sector = em->block_start >> 9;
2991 } else {
2992 sector = (em->block_start + extent_offset) >> 9;
2993 disk_io_size = iosize;
2994 }
2995 bdev = em->bdev;
2996 block_start = em->block_start;
2997 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2998 block_start = EXTENT_MAP_HOLE;
2999
3000 /*
3001 * If we have a file range that points to a compressed extent
3002 * and it's followed by a consecutive file range that points to
3003 * to the same compressed extent (possibly with a different
3004 * offset and/or length, so it either points to the whole extent
3005 * or only part of it), we must make sure we do not submit a
3006 * single bio to populate the pages for the 2 ranges because
3007 * this makes the compressed extent read zero out the pages
3008 * belonging to the 2nd range. Imagine the following scenario:
3009 *
3010 * File layout
3011 * [0 - 8K] [8K - 24K]
3012 * | |
3013 * | |
3014 * points to extent X, points to extent X,
3015 * offset 4K, length of 8K offset 0, length 16K
3016 *
3017 * [extent X, compressed length = 4K uncompressed length = 16K]
3018 *
3019 * If the bio to read the compressed extent covers both ranges,
3020 * it will decompress extent X into the pages belonging to the
3021 * first range and then it will stop, zeroing out the remaining
3022 * pages that belong to the other range that points to extent X.
3023 * So here we make sure we submit 2 bios, one for the first
3024 * range and another one for the third range. Both will target
3025 * the same physical extent from disk, but we can't currently
3026 * make the compressed bio endio callback populate the pages
3027 * for both ranges because each compressed bio is tightly
3028 * coupled with a single extent map, and each range can have
3029 * an extent map with a different offset value relative to the
3030 * uncompressed data of our extent and different lengths. This
3031 * is a corner case so we prioritize correctness over
3032 * non-optimal behavior (submitting 2 bios for the same extent).
3033 */
3034 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3035 prev_em_start && *prev_em_start != (u64)-1 &&
3036 *prev_em_start != em->orig_start)
3037 force_bio_submit = true;
3038
3039 if (prev_em_start)
3040 *prev_em_start = em->orig_start;
3041
3042 free_extent_map(em);
3043 em = NULL;
3044
3045 /* we've found a hole, just zero and go on */
3046 if (block_start == EXTENT_MAP_HOLE) {
3047 char *userpage;
3048 struct extent_state *cached = NULL;
3049
3050 userpage = kmap_atomic(page);
3051 memset(userpage + pg_offset, 0, iosize);
3052 flush_dcache_page(page);
3053 kunmap_atomic(userpage);
3054
3055 set_extent_uptodate(tree, cur, cur + iosize - 1,
3056 &cached, GFP_NOFS);
3057 unlock_extent_cached(tree, cur,
3058 cur + iosize - 1,
3059 &cached, GFP_NOFS);
3060 cur = cur + iosize;
3061 pg_offset += iosize;
3062 continue;
3063 }
3064 /* the get_extent function already copied into the page */
3065 if (test_range_bit(tree, cur, cur_end,
3066 EXTENT_UPTODATE, 1, NULL)) {
3067 check_page_uptodate(tree, page);
3068 unlock_extent(tree, cur, cur + iosize - 1);
3069 cur = cur + iosize;
3070 pg_offset += iosize;
3071 continue;
3072 }
3073 /* we have an inline extent but it didn't get marked up
3074 * to date. Error out
3075 */
3076 if (block_start == EXTENT_MAP_INLINE) {
3077 SetPageError(page);
3078 unlock_extent(tree, cur, cur + iosize - 1);
3079 cur = cur + iosize;
3080 pg_offset += iosize;
3081 continue;
3082 }
3083
3084 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3085 page, sector, disk_io_size, pg_offset,
3086 bdev, bio,
3087 end_bio_extent_readpage, mirror_num,
3088 *bio_flags,
3089 this_bio_flag,
3090 force_bio_submit);
3091 if (!ret) {
3092 nr++;
3093 *bio_flags = this_bio_flag;
3094 } else {
3095 SetPageError(page);
3096 unlock_extent(tree, cur, cur + iosize - 1);
3097 goto out;
3098 }
3099 cur = cur + iosize;
3100 pg_offset += iosize;
3101 }
3102 out:
3103 if (!nr) {
3104 if (!PageError(page))
3105 SetPageUptodate(page);
3106 unlock_page(page);
3107 }
3108 return ret;
3109 }
3110
3111 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3112 struct page *pages[], int nr_pages,
3113 u64 start, u64 end,
3114 get_extent_t *get_extent,
3115 struct extent_map **em_cached,
3116 struct bio **bio, int mirror_num,
3117 unsigned long *bio_flags,
3118 u64 *prev_em_start)
3119 {
3120 struct inode *inode;
3121 struct btrfs_ordered_extent *ordered;
3122 int index;
3123
3124 inode = pages[0]->mapping->host;
3125 while (1) {
3126 lock_extent(tree, start, end);
3127 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3128 end - start + 1);
3129 if (!ordered)
3130 break;
3131 unlock_extent(tree, start, end);
3132 btrfs_start_ordered_extent(inode, ordered, 1);
3133 btrfs_put_ordered_extent(ordered);
3134 }
3135
3136 for (index = 0; index < nr_pages; index++) {
3137 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3138 mirror_num, bio_flags, 0, prev_em_start);
3139 put_page(pages[index]);
3140 }
3141 }
3142
3143 static void __extent_readpages(struct extent_io_tree *tree,
3144 struct page *pages[],
3145 int nr_pages, get_extent_t *get_extent,
3146 struct extent_map **em_cached,
3147 struct bio **bio, int mirror_num,
3148 unsigned long *bio_flags,
3149 u64 *prev_em_start)
3150 {
3151 u64 start = 0;
3152 u64 end = 0;
3153 u64 page_start;
3154 int index;
3155 int first_index = 0;
3156
3157 for (index = 0; index < nr_pages; index++) {
3158 page_start = page_offset(pages[index]);
3159 if (!end) {
3160 start = page_start;
3161 end = start + PAGE_SIZE - 1;
3162 first_index = index;
3163 } else if (end + 1 == page_start) {
3164 end += PAGE_SIZE;
3165 } else {
3166 __do_contiguous_readpages(tree, &pages[first_index],
3167 index - first_index, start,
3168 end, get_extent, em_cached,
3169 bio, mirror_num, bio_flags,
3170 prev_em_start);
3171 start = page_start;
3172 end = start + PAGE_SIZE - 1;
3173 first_index = index;
3174 }
3175 }
3176
3177 if (end)
3178 __do_contiguous_readpages(tree, &pages[first_index],
3179 index - first_index, start,
3180 end, get_extent, em_cached, bio,
3181 mirror_num, bio_flags,
3182 prev_em_start);
3183 }
3184
3185 static int __extent_read_full_page(struct extent_io_tree *tree,
3186 struct page *page,
3187 get_extent_t *get_extent,
3188 struct bio **bio, int mirror_num,
3189 unsigned long *bio_flags, int read_flags)
3190 {
3191 struct inode *inode = page->mapping->host;
3192 struct btrfs_ordered_extent *ordered;
3193 u64 start = page_offset(page);
3194 u64 end = start + PAGE_SIZE - 1;
3195 int ret;
3196
3197 while (1) {
3198 lock_extent(tree, start, end);
3199 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3200 PAGE_SIZE);
3201 if (!ordered)
3202 break;
3203 unlock_extent(tree, start, end);
3204 btrfs_start_ordered_extent(inode, ordered, 1);
3205 btrfs_put_ordered_extent(ordered);
3206 }
3207
3208 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3209 bio_flags, read_flags, NULL);
3210 return ret;
3211 }
3212
3213 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3214 get_extent_t *get_extent, int mirror_num)
3215 {
3216 struct bio *bio = NULL;
3217 unsigned long bio_flags = 0;
3218 int ret;
3219
3220 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3221 &bio_flags, 0);
3222 if (bio)
3223 ret = submit_one_bio(bio, mirror_num, bio_flags);
3224 return ret;
3225 }
3226
3227 static void update_nr_written(struct writeback_control *wbc,
3228 unsigned long nr_written)
3229 {
3230 wbc->nr_to_write -= nr_written;
3231 }
3232
3233 /*
3234 * helper for __extent_writepage, doing all of the delayed allocation setup.
3235 *
3236 * This returns 1 if our fill_delalloc function did all the work required
3237 * to write the page (copy into inline extent). In this case the IO has
3238 * been started and the page is already unlocked.
3239 *
3240 * This returns 0 if all went well (page still locked)
3241 * This returns < 0 if there were errors (page still locked)
3242 */
3243 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3244 struct page *page, struct writeback_control *wbc,
3245 struct extent_page_data *epd,
3246 u64 delalloc_start,
3247 unsigned long *nr_written)
3248 {
3249 struct extent_io_tree *tree = epd->tree;
3250 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3251 u64 nr_delalloc;
3252 u64 delalloc_to_write = 0;
3253 u64 delalloc_end = 0;
3254 int ret;
3255 int page_started = 0;
3256
3257 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3258 return 0;
3259
3260 while (delalloc_end < page_end) {
3261 nr_delalloc = find_lock_delalloc_range(inode, tree,
3262 page,
3263 &delalloc_start,
3264 &delalloc_end,
3265 BTRFS_MAX_EXTENT_SIZE);
3266 if (nr_delalloc == 0) {
3267 delalloc_start = delalloc_end + 1;
3268 continue;
3269 }
3270 ret = tree->ops->fill_delalloc(inode, page,
3271 delalloc_start,
3272 delalloc_end,
3273 &page_started,
3274 nr_written);
3275 /* File system has been set read-only */
3276 if (ret) {
3277 SetPageError(page);
3278 /* fill_delalloc should be return < 0 for error
3279 * but just in case, we use > 0 here meaning the
3280 * IO is started, so we don't want to return > 0
3281 * unless things are going well.
3282 */
3283 ret = ret < 0 ? ret : -EIO;
3284 goto done;
3285 }
3286 /*
3287 * delalloc_end is already one less than the total length, so
3288 * we don't subtract one from PAGE_SIZE
3289 */
3290 delalloc_to_write += (delalloc_end - delalloc_start +
3291 PAGE_SIZE) >> PAGE_SHIFT;
3292 delalloc_start = delalloc_end + 1;
3293 }
3294 if (wbc->nr_to_write < delalloc_to_write) {
3295 int thresh = 8192;
3296
3297 if (delalloc_to_write < thresh * 2)
3298 thresh = delalloc_to_write;
3299 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3300 thresh);
3301 }
3302
3303 /* did the fill delalloc function already unlock and start
3304 * the IO?
3305 */
3306 if (page_started) {
3307 /*
3308 * we've unlocked the page, so we can't update
3309 * the mapping's writeback index, just update
3310 * nr_to_write.
3311 */
3312 wbc->nr_to_write -= *nr_written;
3313 return 1;
3314 }
3315
3316 ret = 0;
3317
3318 done:
3319 return ret;
3320 }
3321
3322 /*
3323 * helper for __extent_writepage. This calls the writepage start hooks,
3324 * and does the loop to map the page into extents and bios.
3325 *
3326 * We return 1 if the IO is started and the page is unlocked,
3327 * 0 if all went well (page still locked)
3328 * < 0 if there were errors (page still locked)
3329 */
3330 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3331 struct page *page,
3332 struct writeback_control *wbc,
3333 struct extent_page_data *epd,
3334 loff_t i_size,
3335 unsigned long nr_written,
3336 int write_flags, int *nr_ret)
3337 {
3338 struct extent_io_tree *tree = epd->tree;
3339 u64 start = page_offset(page);
3340 u64 page_end = start + PAGE_SIZE - 1;
3341 u64 end;
3342 u64 cur = start;
3343 u64 extent_offset;
3344 u64 block_start;
3345 u64 iosize;
3346 sector_t sector;
3347 struct extent_map *em;
3348 struct block_device *bdev;
3349 size_t pg_offset = 0;
3350 size_t blocksize;
3351 int ret = 0;
3352 int nr = 0;
3353 bool compressed;
3354
3355 if (tree->ops && tree->ops->writepage_start_hook) {
3356 ret = tree->ops->writepage_start_hook(page, start,
3357 page_end);
3358 if (ret) {
3359 /* Fixup worker will requeue */
3360 if (ret == -EBUSY)
3361 wbc->pages_skipped++;
3362 else
3363 redirty_page_for_writepage(wbc, page);
3364
3365 update_nr_written(wbc, nr_written);
3366 unlock_page(page);
3367 return 1;
3368 }
3369 }
3370
3371 /*
3372 * we don't want to touch the inode after unlocking the page,
3373 * so we update the mapping writeback index now
3374 */
3375 update_nr_written(wbc, nr_written + 1);
3376
3377 end = page_end;
3378 if (i_size <= start) {
3379 if (tree->ops && tree->ops->writepage_end_io_hook)
3380 tree->ops->writepage_end_io_hook(page, start,
3381 page_end, NULL, 1);
3382 goto done;
3383 }
3384
3385 blocksize = inode->i_sb->s_blocksize;
3386
3387 while (cur <= end) {
3388 u64 em_end;
3389
3390 if (cur >= i_size) {
3391 if (tree->ops && tree->ops->writepage_end_io_hook)
3392 tree->ops->writepage_end_io_hook(page, cur,
3393 page_end, NULL, 1);
3394 break;
3395 }
3396 em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
3397 end - cur + 1, 1);
3398 if (IS_ERR_OR_NULL(em)) {
3399 SetPageError(page);
3400 ret = PTR_ERR_OR_ZERO(em);
3401 break;
3402 }
3403
3404 extent_offset = cur - em->start;
3405 em_end = extent_map_end(em);
3406 BUG_ON(em_end <= cur);
3407 BUG_ON(end < cur);
3408 iosize = min(em_end - cur, end - cur + 1);
3409 iosize = ALIGN(iosize, blocksize);
3410 sector = (em->block_start + extent_offset) >> 9;
3411 bdev = em->bdev;
3412 block_start = em->block_start;
3413 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3414 free_extent_map(em);
3415 em = NULL;
3416
3417 /*
3418 * compressed and inline extents are written through other
3419 * paths in the FS
3420 */
3421 if (compressed || block_start == EXTENT_MAP_HOLE ||
3422 block_start == EXTENT_MAP_INLINE) {
3423 /*
3424 * end_io notification does not happen here for
3425 * compressed extents
3426 */
3427 if (!compressed && tree->ops &&
3428 tree->ops->writepage_end_io_hook)
3429 tree->ops->writepage_end_io_hook(page, cur,
3430 cur + iosize - 1,
3431 NULL, 1);
3432 else if (compressed) {
3433 /* we don't want to end_page_writeback on
3434 * a compressed extent. this happens
3435 * elsewhere
3436 */
3437 nr++;
3438 }
3439
3440 cur += iosize;
3441 pg_offset += iosize;
3442 continue;
3443 }
3444
3445 set_range_writeback(tree, cur, cur + iosize - 1);
3446 if (!PageWriteback(page)) {
3447 btrfs_err(BTRFS_I(inode)->root->fs_info,
3448 "page %lu not writeback, cur %llu end %llu",
3449 page->index, cur, end);
3450 }
3451
3452 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3453 page, sector, iosize, pg_offset,
3454 bdev, &epd->bio,
3455 end_bio_extent_writepage,
3456 0, 0, 0, false);
3457 if (ret) {
3458 SetPageError(page);
3459 if (PageWriteback(page))
3460 end_page_writeback(page);
3461 }
3462
3463 cur = cur + iosize;
3464 pg_offset += iosize;
3465 nr++;
3466 }
3467 done:
3468 *nr_ret = nr;
3469 return ret;
3470 }
3471
3472 /*
3473 * the writepage semantics are similar to regular writepage. extent
3474 * records are inserted to lock ranges in the tree, and as dirty areas
3475 * are found, they are marked writeback. Then the lock bits are removed
3476 * and the end_io handler clears the writeback ranges
3477 */
3478 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3479 void *data)
3480 {
3481 struct inode *inode = page->mapping->host;
3482 struct extent_page_data *epd = data;
3483 u64 start = page_offset(page);
3484 u64 page_end = start + PAGE_SIZE - 1;
3485 int ret;
3486 int nr = 0;
3487 size_t pg_offset = 0;
3488 loff_t i_size = i_size_read(inode);
3489 unsigned long end_index = i_size >> PAGE_SHIFT;
3490 int write_flags = 0;
3491 unsigned long nr_written = 0;
3492
3493 if (wbc->sync_mode == WB_SYNC_ALL)
3494 write_flags = REQ_SYNC;
3495
3496 trace___extent_writepage(page, inode, wbc);
3497
3498 WARN_ON(!PageLocked(page));
3499
3500 ClearPageError(page);
3501
3502 pg_offset = i_size & (PAGE_SIZE - 1);
3503 if (page->index > end_index ||
3504 (page->index == end_index && !pg_offset)) {
3505 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3506 unlock_page(page);
3507 return 0;
3508 }
3509
3510 if (page->index == end_index) {
3511 char *userpage;
3512
3513 userpage = kmap_atomic(page);
3514 memset(userpage + pg_offset, 0,
3515 PAGE_SIZE - pg_offset);
3516 kunmap_atomic(userpage);
3517 flush_dcache_page(page);
3518 }
3519
3520 pg_offset = 0;
3521
3522 set_page_extent_mapped(page);
3523
3524 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3525 if (ret == 1)
3526 goto done_unlocked;
3527 if (ret)
3528 goto done;
3529
3530 ret = __extent_writepage_io(inode, page, wbc, epd,
3531 i_size, nr_written, write_flags, &nr);
3532 if (ret == 1)
3533 goto done_unlocked;
3534
3535 done:
3536 if (nr == 0) {
3537 /* make sure the mapping tag for page dirty gets cleared */
3538 set_page_writeback(page);
3539 end_page_writeback(page);
3540 }
3541 if (PageError(page)) {
3542 ret = ret < 0 ? ret : -EIO;
3543 end_extent_writepage(page, ret, start, page_end);
3544 }
3545 unlock_page(page);
3546 return ret;
3547
3548 done_unlocked:
3549 return 0;
3550 }
3551
3552 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3553 {
3554 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3555 TASK_UNINTERRUPTIBLE);
3556 }
3557
3558 static noinline_for_stack int
3559 lock_extent_buffer_for_io(struct extent_buffer *eb,
3560 struct btrfs_fs_info *fs_info,
3561 struct extent_page_data *epd)
3562 {
3563 unsigned long i, num_pages;
3564 int flush = 0;
3565 int ret = 0;
3566
3567 if (!btrfs_try_tree_write_lock(eb)) {
3568 flush = 1;
3569 flush_write_bio(epd);
3570 btrfs_tree_lock(eb);
3571 }
3572
3573 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3574 btrfs_tree_unlock(eb);
3575 if (!epd->sync_io)
3576 return 0;
3577 if (!flush) {
3578 flush_write_bio(epd);
3579 flush = 1;
3580 }
3581 while (1) {
3582 wait_on_extent_buffer_writeback(eb);
3583 btrfs_tree_lock(eb);
3584 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3585 break;
3586 btrfs_tree_unlock(eb);
3587 }
3588 }
3589
3590 /*
3591 * We need to do this to prevent races in people who check if the eb is
3592 * under IO since we can end up having no IO bits set for a short period
3593 * of time.
3594 */
3595 spin_lock(&eb->refs_lock);
3596 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3597 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3598 spin_unlock(&eb->refs_lock);
3599 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3600 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3601 -eb->len,
3602 fs_info->dirty_metadata_batch);
3603 ret = 1;
3604 } else {
3605 spin_unlock(&eb->refs_lock);
3606 }
3607
3608 btrfs_tree_unlock(eb);
3609
3610 if (!ret)
3611 return ret;
3612
3613 num_pages = num_extent_pages(eb->start, eb->len);
3614 for (i = 0; i < num_pages; i++) {
3615 struct page *p = eb->pages[i];
3616
3617 if (!trylock_page(p)) {
3618 if (!flush) {
3619 flush_write_bio(epd);
3620 flush = 1;
3621 }
3622 lock_page(p);
3623 }
3624 }
3625
3626 return ret;
3627 }
3628
3629 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3630 {
3631 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3632 smp_mb__after_atomic();
3633 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3634 }
3635
3636 static void set_btree_ioerr(struct page *page)
3637 {
3638 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3639
3640 SetPageError(page);
3641 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3642 return;
3643
3644 /*
3645 * If writeback for a btree extent that doesn't belong to a log tree
3646 * failed, increment the counter transaction->eb_write_errors.
3647 * We do this because while the transaction is running and before it's
3648 * committing (when we call filemap_fdata[write|wait]_range against
3649 * the btree inode), we might have
3650 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3651 * returns an error or an error happens during writeback, when we're
3652 * committing the transaction we wouldn't know about it, since the pages
3653 * can be no longer dirty nor marked anymore for writeback (if a
3654 * subsequent modification to the extent buffer didn't happen before the
3655 * transaction commit), which makes filemap_fdata[write|wait]_range not
3656 * able to find the pages tagged with SetPageError at transaction
3657 * commit time. So if this happens we must abort the transaction,
3658 * otherwise we commit a super block with btree roots that point to
3659 * btree nodes/leafs whose content on disk is invalid - either garbage
3660 * or the content of some node/leaf from a past generation that got
3661 * cowed or deleted and is no longer valid.
3662 *
3663 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3664 * not be enough - we need to distinguish between log tree extents vs
3665 * non-log tree extents, and the next filemap_fdatawait_range() call
3666 * will catch and clear such errors in the mapping - and that call might
3667 * be from a log sync and not from a transaction commit. Also, checking
3668 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3669 * not done and would not be reliable - the eb might have been released
3670 * from memory and reading it back again means that flag would not be
3671 * set (since it's a runtime flag, not persisted on disk).
3672 *
3673 * Using the flags below in the btree inode also makes us achieve the
3674 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3675 * writeback for all dirty pages and before filemap_fdatawait_range()
3676 * is called, the writeback for all dirty pages had already finished
3677 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3678 * filemap_fdatawait_range() would return success, as it could not know
3679 * that writeback errors happened (the pages were no longer tagged for
3680 * writeback).
3681 */
3682 switch (eb->log_index) {
3683 case -1:
3684 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3685 break;
3686 case 0:
3687 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3688 break;
3689 case 1:
3690 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3691 break;
3692 default:
3693 BUG(); /* unexpected, logic error */
3694 }
3695 }
3696
3697 static void end_bio_extent_buffer_writepage(struct bio *bio)
3698 {
3699 struct bio_vec *bvec;
3700 struct extent_buffer *eb;
3701 int i, done;
3702
3703 bio_for_each_segment_all(bvec, bio, i) {
3704 struct page *page = bvec->bv_page;
3705
3706 eb = (struct extent_buffer *)page->private;
3707 BUG_ON(!eb);
3708 done = atomic_dec_and_test(&eb->io_pages);
3709
3710 if (bio->bi_error ||
3711 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3712 ClearPageUptodate(page);
3713 set_btree_ioerr(page);
3714 }
3715
3716 end_page_writeback(page);
3717
3718 if (!done)
3719 continue;
3720
3721 end_extent_buffer_writeback(eb);
3722 }
3723
3724 bio_put(bio);
3725 }
3726
3727 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3728 struct btrfs_fs_info *fs_info,
3729 struct writeback_control *wbc,
3730 struct extent_page_data *epd)
3731 {
3732 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3733 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3734 u64 offset = eb->start;
3735 u32 nritems;
3736 unsigned long i, num_pages;
3737 unsigned long bio_flags = 0;
3738 unsigned long start, end;
3739 int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
3740 int ret = 0;
3741
3742 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3743 num_pages = num_extent_pages(eb->start, eb->len);
3744 atomic_set(&eb->io_pages, num_pages);
3745 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3746 bio_flags = EXTENT_BIO_TREE_LOG;
3747
3748 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3749 nritems = btrfs_header_nritems(eb);
3750 if (btrfs_header_level(eb) > 0) {
3751 end = btrfs_node_key_ptr_offset(nritems);
3752
3753 memzero_extent_buffer(eb, end, eb->len - end);
3754 } else {
3755 /*
3756 * leaf:
3757 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3758 */
3759 start = btrfs_item_nr_offset(nritems);
3760 end = btrfs_leaf_data(eb) + leaf_data_end(fs_info, eb);
3761 memzero_extent_buffer(eb, start, end - start);
3762 }
3763
3764 for (i = 0; i < num_pages; i++) {
3765 struct page *p = eb->pages[i];
3766
3767 clear_page_dirty_for_io(p);
3768 set_page_writeback(p);
3769 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3770 p, offset >> 9, PAGE_SIZE, 0, bdev,
3771 &epd->bio,
3772 end_bio_extent_buffer_writepage,
3773 0, epd->bio_flags, bio_flags, false);
3774 epd->bio_flags = bio_flags;
3775 if (ret) {
3776 set_btree_ioerr(p);
3777 if (PageWriteback(p))
3778 end_page_writeback(p);
3779 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3780 end_extent_buffer_writeback(eb);
3781 ret = -EIO;
3782 break;
3783 }
3784 offset += PAGE_SIZE;
3785 update_nr_written(wbc, 1);
3786 unlock_page(p);
3787 }
3788
3789 if (unlikely(ret)) {
3790 for (; i < num_pages; i++) {
3791 struct page *p = eb->pages[i];
3792 clear_page_dirty_for_io(p);
3793 unlock_page(p);
3794 }
3795 }
3796
3797 return ret;
3798 }
3799
3800 int btree_write_cache_pages(struct address_space *mapping,
3801 struct writeback_control *wbc)
3802 {
3803 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3804 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3805 struct extent_buffer *eb, *prev_eb = NULL;
3806 struct extent_page_data epd = {
3807 .bio = NULL,
3808 .tree = tree,
3809 .extent_locked = 0,
3810 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3811 .bio_flags = 0,
3812 };
3813 int ret = 0;
3814 int done = 0;
3815 int nr_to_write_done = 0;
3816 struct pagevec pvec;
3817 int nr_pages;
3818 pgoff_t index;
3819 pgoff_t end; /* Inclusive */
3820 int scanned = 0;
3821 int tag;
3822
3823 pagevec_init(&pvec, 0);
3824 if (wbc->range_cyclic) {
3825 index = mapping->writeback_index; /* Start from prev offset */
3826 end = -1;
3827 } else {
3828 index = wbc->range_start >> PAGE_SHIFT;
3829 end = wbc->range_end >> PAGE_SHIFT;
3830 scanned = 1;
3831 }
3832 if (wbc->sync_mode == WB_SYNC_ALL)
3833 tag = PAGECACHE_TAG_TOWRITE;
3834 else
3835 tag = PAGECACHE_TAG_DIRTY;
3836 retry:
3837 if (wbc->sync_mode == WB_SYNC_ALL)
3838 tag_pages_for_writeback(mapping, index, end);
3839 while (!done && !nr_to_write_done && (index <= end) &&
3840 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3841 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3842 unsigned i;
3843
3844 scanned = 1;
3845 for (i = 0; i < nr_pages; i++) {
3846 struct page *page = pvec.pages[i];
3847
3848 if (!PagePrivate(page))
3849 continue;
3850
3851 if (!wbc->range_cyclic && page->index > end) {
3852 done = 1;
3853 break;
3854 }
3855
3856 spin_lock(&mapping->private_lock);
3857 if (!PagePrivate(page)) {
3858 spin_unlock(&mapping->private_lock);
3859 continue;
3860 }
3861
3862 eb = (struct extent_buffer *)page->private;
3863
3864 /*
3865 * Shouldn't happen and normally this would be a BUG_ON
3866 * but no sense in crashing the users box for something
3867 * we can survive anyway.
3868 */
3869 if (WARN_ON(!eb)) {
3870 spin_unlock(&mapping->private_lock);
3871 continue;
3872 }
3873
3874 if (eb == prev_eb) {
3875 spin_unlock(&mapping->private_lock);
3876 continue;
3877 }
3878
3879 ret = atomic_inc_not_zero(&eb->refs);
3880 spin_unlock(&mapping->private_lock);
3881 if (!ret)
3882 continue;
3883
3884 prev_eb = eb;
3885 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3886 if (!ret) {
3887 free_extent_buffer(eb);
3888 continue;
3889 }
3890
3891 ret = write_one_eb(eb, fs_info, wbc, &epd);
3892 if (ret) {
3893 done = 1;
3894 free_extent_buffer(eb);
3895 break;
3896 }
3897 free_extent_buffer(eb);
3898
3899 /*
3900 * the filesystem may choose to bump up nr_to_write.
3901 * We have to make sure to honor the new nr_to_write
3902 * at any time
3903 */
3904 nr_to_write_done = wbc->nr_to_write <= 0;
3905 }
3906 pagevec_release(&pvec);
3907 cond_resched();
3908 }
3909 if (!scanned && !done) {
3910 /*
3911 * We hit the last page and there is more work to be done: wrap
3912 * back to the start of the file
3913 */
3914 scanned = 1;
3915 index = 0;
3916 goto retry;
3917 }
3918 flush_write_bio(&epd);
3919 return ret;
3920 }
3921
3922 /**
3923 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3924 * @mapping: address space structure to write
3925 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3926 * @writepage: function called for each page
3927 * @data: data passed to writepage function
3928 *
3929 * If a page is already under I/O, write_cache_pages() skips it, even
3930 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3931 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3932 * and msync() need to guarantee that all the data which was dirty at the time
3933 * the call was made get new I/O started against them. If wbc->sync_mode is
3934 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3935 * existing IO to complete.
3936 */
3937 static int extent_write_cache_pages(struct address_space *mapping,
3938 struct writeback_control *wbc,
3939 writepage_t writepage, void *data,
3940 void (*flush_fn)(void *))
3941 {
3942 struct inode *inode = mapping->host;
3943 int ret = 0;
3944 int done = 0;
3945 int nr_to_write_done = 0;
3946 struct pagevec pvec;
3947 int nr_pages;
3948 pgoff_t index;
3949 pgoff_t end; /* Inclusive */
3950 pgoff_t done_index;
3951 int range_whole = 0;
3952 int scanned = 0;
3953 int tag;
3954
3955 /*
3956 * We have to hold onto the inode so that ordered extents can do their
3957 * work when the IO finishes. The alternative to this is failing to add
3958 * an ordered extent if the igrab() fails there and that is a huge pain
3959 * to deal with, so instead just hold onto the inode throughout the
3960 * writepages operation. If it fails here we are freeing up the inode
3961 * anyway and we'd rather not waste our time writing out stuff that is
3962 * going to be truncated anyway.
3963 */
3964 if (!igrab(inode))
3965 return 0;
3966
3967 pagevec_init(&pvec, 0);
3968 if (wbc->range_cyclic) {
3969 index = mapping->writeback_index; /* Start from prev offset */
3970 end = -1;
3971 } else {
3972 index = wbc->range_start >> PAGE_SHIFT;
3973 end = wbc->range_end >> PAGE_SHIFT;
3974 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3975 range_whole = 1;
3976 scanned = 1;
3977 }
3978 if (wbc->sync_mode == WB_SYNC_ALL)
3979 tag = PAGECACHE_TAG_TOWRITE;
3980 else
3981 tag = PAGECACHE_TAG_DIRTY;
3982 retry:
3983 if (wbc->sync_mode == WB_SYNC_ALL)
3984 tag_pages_for_writeback(mapping, index, end);
3985 done_index = index;
3986 while (!done && !nr_to_write_done && (index <= end) &&
3987 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3988 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3989 unsigned i;
3990
3991 scanned = 1;
3992 for (i = 0; i < nr_pages; i++) {
3993 struct page *page = pvec.pages[i];
3994
3995 done_index = page->index;
3996 /*
3997 * At this point we hold neither mapping->tree_lock nor
3998 * lock on the page itself: the page may be truncated or
3999 * invalidated (changing page->mapping to NULL), or even
4000 * swizzled back from swapper_space to tmpfs file
4001 * mapping
4002 */
4003 if (!trylock_page(page)) {
4004 flush_fn(data);
4005 lock_page(page);
4006 }
4007
4008 if (unlikely(page->mapping != mapping)) {
4009 unlock_page(page);
4010 continue;
4011 }
4012
4013 if (!wbc->range_cyclic && page->index > end) {
4014 done = 1;
4015 unlock_page(page);
4016 continue;
4017 }
4018
4019 if (wbc->sync_mode != WB_SYNC_NONE) {
4020 if (PageWriteback(page))
4021 flush_fn(data);
4022 wait_on_page_writeback(page);
4023 }
4024
4025 if (PageWriteback(page) ||
4026 !clear_page_dirty_for_io(page)) {
4027 unlock_page(page);
4028 continue;
4029 }
4030
4031 ret = (*writepage)(page, wbc, data);
4032
4033 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4034 unlock_page(page);
4035 ret = 0;
4036 }
4037 if (ret < 0) {
4038 /*
4039 * done_index is set past this page,
4040 * so media errors will not choke
4041 * background writeout for the entire
4042 * file. This has consequences for
4043 * range_cyclic semantics (ie. it may
4044 * not be suitable for data integrity
4045 * writeout).
4046 */
4047 done_index = page->index + 1;
4048 done = 1;
4049 break;
4050 }
4051
4052 /*
4053 * the filesystem may choose to bump up nr_to_write.
4054 * We have to make sure to honor the new nr_to_write
4055 * at any time
4056 */
4057 nr_to_write_done = wbc->nr_to_write <= 0;
4058 }
4059 pagevec_release(&pvec);
4060 cond_resched();
4061 }
4062 if (!scanned && !done) {
4063 /*
4064 * We hit the last page and there is more work to be done: wrap
4065 * back to the start of the file
4066 */
4067 scanned = 1;
4068 index = 0;
4069 goto retry;
4070 }
4071
4072 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4073 mapping->writeback_index = done_index;
4074
4075 btrfs_add_delayed_iput(inode);
4076 return ret;
4077 }
4078
4079 static void flush_epd_write_bio(struct extent_page_data *epd)
4080 {
4081 if (epd->bio) {
4082 int ret;
4083
4084 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4085 epd->sync_io ? REQ_SYNC : 0);
4086
4087 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4088 BUG_ON(ret < 0); /* -ENOMEM */
4089 epd->bio = NULL;
4090 }
4091 }
4092
4093 static noinline void flush_write_bio(void *data)
4094 {
4095 struct extent_page_data *epd = data;
4096 flush_epd_write_bio(epd);
4097 }
4098
4099 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4100 get_extent_t *get_extent,
4101 struct writeback_control *wbc)
4102 {
4103 int ret;
4104 struct extent_page_data epd = {
4105 .bio = NULL,
4106 .tree = tree,
4107 .get_extent = get_extent,
4108 .extent_locked = 0,
4109 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4110 .bio_flags = 0,
4111 };
4112
4113 ret = __extent_writepage(page, wbc, &epd);
4114
4115 flush_epd_write_bio(&epd);
4116 return ret;
4117 }
4118
4119 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4120 u64 start, u64 end, get_extent_t *get_extent,
4121 int mode)
4122 {
4123 int ret = 0;
4124 struct address_space *mapping = inode->i_mapping;
4125 struct page *page;
4126 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4127 PAGE_SHIFT;
4128
4129 struct extent_page_data epd = {
4130 .bio = NULL,
4131 .tree = tree,
4132 .get_extent = get_extent,
4133 .extent_locked = 1,
4134 .sync_io = mode == WB_SYNC_ALL,
4135 .bio_flags = 0,
4136 };
4137 struct writeback_control wbc_writepages = {
4138 .sync_mode = mode,
4139 .nr_to_write = nr_pages * 2,
4140 .range_start = start,
4141 .range_end = end + 1,
4142 };
4143
4144 while (start <= end) {
4145 page = find_get_page(mapping, start >> PAGE_SHIFT);
4146 if (clear_page_dirty_for_io(page))
4147 ret = __extent_writepage(page, &wbc_writepages, &epd);
4148 else {
4149 if (tree->ops && tree->ops->writepage_end_io_hook)
4150 tree->ops->writepage_end_io_hook(page, start,
4151 start + PAGE_SIZE - 1,
4152 NULL, 1);
4153 unlock_page(page);
4154 }
4155 put_page(page);
4156 start += PAGE_SIZE;
4157 }
4158
4159 flush_epd_write_bio(&epd);
4160 return ret;
4161 }
4162
4163 int extent_writepages(struct extent_io_tree *tree,
4164 struct address_space *mapping,
4165 get_extent_t *get_extent,
4166 struct writeback_control *wbc)
4167 {
4168 int ret = 0;
4169 struct extent_page_data epd = {
4170 .bio = NULL,
4171 .tree = tree,
4172 .get_extent = get_extent,
4173 .extent_locked = 0,
4174 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4175 .bio_flags = 0,
4176 };
4177
4178 ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
4179 flush_write_bio);
4180 flush_epd_write_bio(&epd);
4181 return ret;
4182 }
4183
4184 int extent_readpages(struct extent_io_tree *tree,
4185 struct address_space *mapping,
4186 struct list_head *pages, unsigned nr_pages,
4187 get_extent_t get_extent)
4188 {
4189 struct bio *bio = NULL;
4190 unsigned page_idx;
4191 unsigned long bio_flags = 0;
4192 struct page *pagepool[16];
4193 struct page *page;
4194 struct extent_map *em_cached = NULL;
4195 int nr = 0;
4196 u64 prev_em_start = (u64)-1;
4197
4198 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4199 page = list_entry(pages->prev, struct page, lru);
4200
4201 prefetchw(&page->flags);
4202 list_del(&page->lru);
4203 if (add_to_page_cache_lru(page, mapping,
4204 page->index,
4205 readahead_gfp_mask(mapping))) {
4206 put_page(page);
4207 continue;
4208 }
4209
4210 pagepool[nr++] = page;
4211 if (nr < ARRAY_SIZE(pagepool))
4212 continue;
4213 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4214 &bio, 0, &bio_flags, &prev_em_start);
4215 nr = 0;
4216 }
4217 if (nr)
4218 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4219 &bio, 0, &bio_flags, &prev_em_start);
4220
4221 if (em_cached)
4222 free_extent_map(em_cached);
4223
4224 BUG_ON(!list_empty(pages));
4225 if (bio)
4226 return submit_one_bio(bio, 0, bio_flags);
4227 return 0;
4228 }
4229
4230 /*
4231 * basic invalidatepage code, this waits on any locked or writeback
4232 * ranges corresponding to the page, and then deletes any extent state
4233 * records from the tree
4234 */
4235 int extent_invalidatepage(struct extent_io_tree *tree,
4236 struct page *page, unsigned long offset)
4237 {
4238 struct extent_state *cached_state = NULL;
4239 u64 start = page_offset(page);
4240 u64 end = start + PAGE_SIZE - 1;
4241 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4242
4243 start += ALIGN(offset, blocksize);
4244 if (start > end)
4245 return 0;
4246
4247 lock_extent_bits(tree, start, end, &cached_state);
4248 wait_on_page_writeback(page);
4249 clear_extent_bit(tree, start, end,
4250 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4251 EXTENT_DO_ACCOUNTING,
4252 1, 1, &cached_state, GFP_NOFS);
4253 return 0;
4254 }
4255
4256 /*
4257 * a helper for releasepage, this tests for areas of the page that
4258 * are locked or under IO and drops the related state bits if it is safe
4259 * to drop the page.
4260 */
4261 static int try_release_extent_state(struct extent_map_tree *map,
4262 struct extent_io_tree *tree,
4263 struct page *page, gfp_t mask)
4264 {
4265 u64 start = page_offset(page);
4266 u64 end = start + PAGE_SIZE - 1;
4267 int ret = 1;
4268
4269 if (test_range_bit(tree, start, end,
4270 EXTENT_IOBITS, 0, NULL))
4271 ret = 0;
4272 else {
4273 /*
4274 * at this point we can safely clear everything except the
4275 * locked bit and the nodatasum bit
4276 */
4277 ret = clear_extent_bit(tree, start, end,
4278 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4279 0, 0, NULL, mask);
4280
4281 /* if clear_extent_bit failed for enomem reasons,
4282 * we can't allow the release to continue.
4283 */
4284 if (ret < 0)
4285 ret = 0;
4286 else
4287 ret = 1;
4288 }
4289 return ret;
4290 }
4291
4292 /*
4293 * a helper for releasepage. As long as there are no locked extents
4294 * in the range corresponding to the page, both state records and extent
4295 * map records are removed
4296 */
4297 int try_release_extent_mapping(struct extent_map_tree *map,
4298 struct extent_io_tree *tree, struct page *page,
4299 gfp_t mask)
4300 {
4301 struct extent_map *em;
4302 u64 start = page_offset(page);
4303 u64 end = start + PAGE_SIZE - 1;
4304
4305 if (gfpflags_allow_blocking(mask) &&
4306 page->mapping->host->i_size > SZ_16M) {
4307 u64 len;
4308 while (start <= end) {
4309 len = end - start + 1;
4310 write_lock(&map->lock);
4311 em = lookup_extent_mapping(map, start, len);
4312 if (!em) {
4313 write_unlock(&map->lock);
4314 break;
4315 }
4316 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4317 em->start != start) {
4318 write_unlock(&map->lock);
4319 free_extent_map(em);
4320 break;
4321 }
4322 if (!test_range_bit(tree, em->start,
4323 extent_map_end(em) - 1,
4324 EXTENT_LOCKED | EXTENT_WRITEBACK,
4325 0, NULL)) {
4326 remove_extent_mapping(map, em);
4327 /* once for the rb tree */
4328 free_extent_map(em);
4329 }
4330 start = extent_map_end(em);
4331 write_unlock(&map->lock);
4332
4333 /* once for us */
4334 free_extent_map(em);
4335 }
4336 }
4337 return try_release_extent_state(map, tree, page, mask);
4338 }
4339
4340 /*
4341 * helper function for fiemap, which doesn't want to see any holes.
4342 * This maps until we find something past 'last'
4343 */
4344 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4345 u64 offset,
4346 u64 last,
4347 get_extent_t *get_extent)
4348 {
4349 u64 sectorsize = btrfs_inode_sectorsize(inode);
4350 struct extent_map *em;
4351 u64 len;
4352
4353 if (offset >= last)
4354 return NULL;
4355
4356 while (1) {
4357 len = last - offset;
4358 if (len == 0)
4359 break;
4360 len = ALIGN(len, sectorsize);
4361 em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
4362 if (IS_ERR_OR_NULL(em))
4363 return em;
4364
4365 /* if this isn't a hole return it */
4366 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4367 em->block_start != EXTENT_MAP_HOLE) {
4368 return em;
4369 }
4370
4371 /* this is a hole, advance to the next extent */
4372 offset = extent_map_end(em);
4373 free_extent_map(em);
4374 if (offset >= last)
4375 break;
4376 }
4377 return NULL;
4378 }
4379
4380 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4381 __u64 start, __u64 len, get_extent_t *get_extent)
4382 {
4383 int ret = 0;
4384 u64 off = start;
4385 u64 max = start + len;
4386 u32 flags = 0;
4387 u32 found_type;
4388 u64 last;
4389 u64 last_for_get_extent = 0;
4390 u64 disko = 0;
4391 u64 isize = i_size_read(inode);
4392 struct btrfs_key found_key;
4393 struct extent_map *em = NULL;
4394 struct extent_state *cached_state = NULL;
4395 struct btrfs_path *path;
4396 struct btrfs_root *root = BTRFS_I(inode)->root;
4397 int end = 0;
4398 u64 em_start = 0;
4399 u64 em_len = 0;
4400 u64 em_end = 0;
4401
4402 if (len == 0)
4403 return -EINVAL;
4404
4405 path = btrfs_alloc_path();
4406 if (!path)
4407 return -ENOMEM;
4408 path->leave_spinning = 1;
4409
4410 start = round_down(start, btrfs_inode_sectorsize(inode));
4411 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4412
4413 /*
4414 * lookup the last file extent. We're not using i_size here
4415 * because there might be preallocation past i_size
4416 */
4417 ret = btrfs_lookup_file_extent(NULL, root, path,
4418 btrfs_ino(BTRFS_I(inode)), -1, 0);
4419 if (ret < 0) {
4420 btrfs_free_path(path);
4421 return ret;
4422 } else {
4423 WARN_ON(!ret);
4424 if (ret == 1)
4425 ret = 0;
4426 }
4427
4428 path->slots[0]--;
4429 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4430 found_type = found_key.type;
4431
4432 /* No extents, but there might be delalloc bits */
4433 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4434 found_type != BTRFS_EXTENT_DATA_KEY) {
4435 /* have to trust i_size as the end */
4436 last = (u64)-1;
4437 last_for_get_extent = isize;
4438 } else {
4439 /*
4440 * remember the start of the last extent. There are a
4441 * bunch of different factors that go into the length of the
4442 * extent, so its much less complex to remember where it started
4443 */
4444 last = found_key.offset;
4445 last_for_get_extent = last + 1;
4446 }
4447 btrfs_release_path(path);
4448
4449 /*
4450 * we might have some extents allocated but more delalloc past those
4451 * extents. so, we trust isize unless the start of the last extent is
4452 * beyond isize
4453 */
4454 if (last < isize) {
4455 last = (u64)-1;
4456 last_for_get_extent = isize;
4457 }
4458
4459 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4460 &cached_state);
4461
4462 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4463 get_extent);
4464 if (!em)
4465 goto out;
4466 if (IS_ERR(em)) {
4467 ret = PTR_ERR(em);
4468 goto out;
4469 }
4470
4471 while (!end) {
4472 u64 offset_in_extent = 0;
4473
4474 /* break if the extent we found is outside the range */
4475 if (em->start >= max || extent_map_end(em) < off)
4476 break;
4477
4478 /*
4479 * get_extent may return an extent that starts before our
4480 * requested range. We have to make sure the ranges
4481 * we return to fiemap always move forward and don't
4482 * overlap, so adjust the offsets here
4483 */
4484 em_start = max(em->start, off);
4485
4486 /*
4487 * record the offset from the start of the extent
4488 * for adjusting the disk offset below. Only do this if the
4489 * extent isn't compressed since our in ram offset may be past
4490 * what we have actually allocated on disk.
4491 */
4492 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4493 offset_in_extent = em_start - em->start;
4494 em_end = extent_map_end(em);
4495 em_len = em_end - em_start;
4496 disko = 0;
4497 flags = 0;
4498
4499 /*
4500 * bump off for our next call to get_extent
4501 */
4502 off = extent_map_end(em);
4503 if (off >= max)
4504 end = 1;
4505
4506 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4507 end = 1;
4508 flags |= FIEMAP_EXTENT_LAST;
4509 } else if (em->block_start == EXTENT_MAP_INLINE) {
4510 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4511 FIEMAP_EXTENT_NOT_ALIGNED);
4512 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4513 flags |= (FIEMAP_EXTENT_DELALLOC |
4514 FIEMAP_EXTENT_UNKNOWN);
4515 } else if (fieinfo->fi_extents_max) {
4516 struct btrfs_trans_handle *trans;
4517
4518 u64 bytenr = em->block_start -
4519 (em->start - em->orig_start);
4520
4521 disko = em->block_start + offset_in_extent;
4522
4523 /*
4524 * We need a trans handle to get delayed refs
4525 */
4526 trans = btrfs_join_transaction(root);
4527 /*
4528 * It's OK if we can't start a trans we can still check
4529 * from commit_root
4530 */
4531 if (IS_ERR(trans))
4532 trans = NULL;
4533
4534 /*
4535 * As btrfs supports shared space, this information
4536 * can be exported to userspace tools via
4537 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4538 * then we're just getting a count and we can skip the
4539 * lookup stuff.
4540 */
4541 ret = btrfs_check_shared(trans, root->fs_info,
4542 root->objectid,
4543 btrfs_ino(BTRFS_I(inode)), bytenr);
4544 if (trans)
4545 btrfs_end_transaction(trans);
4546 if (ret < 0)
4547 goto out_free;
4548 if (ret)
4549 flags |= FIEMAP_EXTENT_SHARED;
4550 ret = 0;
4551 }
4552 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4553 flags |= FIEMAP_EXTENT_ENCODED;
4554 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4555 flags |= FIEMAP_EXTENT_UNWRITTEN;
4556
4557 free_extent_map(em);
4558 em = NULL;
4559 if ((em_start >= last) || em_len == (u64)-1 ||
4560 (last == (u64)-1 && isize <= em_end)) {
4561 flags |= FIEMAP_EXTENT_LAST;
4562 end = 1;
4563 }
4564
4565 /* now scan forward to see if this is really the last extent. */
4566 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4567 get_extent);
4568 if (IS_ERR(em)) {
4569 ret = PTR_ERR(em);
4570 goto out;
4571 }
4572 if (!em) {
4573 flags |= FIEMAP_EXTENT_LAST;
4574 end = 1;
4575 }
4576 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4577 em_len, flags);
4578 if (ret) {
4579 if (ret == 1)
4580 ret = 0;
4581 goto out_free;
4582 }
4583 }
4584 out_free:
4585 free_extent_map(em);
4586 out:
4587 btrfs_free_path(path);
4588 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4589 &cached_state, GFP_NOFS);
4590 return ret;
4591 }
4592
4593 static void __free_extent_buffer(struct extent_buffer *eb)
4594 {
4595 btrfs_leak_debug_del(&eb->leak_list);
4596 kmem_cache_free(extent_buffer_cache, eb);
4597 }
4598
4599 int extent_buffer_under_io(struct extent_buffer *eb)
4600 {
4601 return (atomic_read(&eb->io_pages) ||
4602 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4603 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4604 }
4605
4606 /*
4607 * Helper for releasing extent buffer page.
4608 */
4609 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4610 {
4611 unsigned long index;
4612 struct page *page;
4613 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4614
4615 BUG_ON(extent_buffer_under_io(eb));
4616
4617 index = num_extent_pages(eb->start, eb->len);
4618 if (index == 0)
4619 return;
4620
4621 do {
4622 index--;
4623 page = eb->pages[index];
4624 if (!page)
4625 continue;
4626 if (mapped)
4627 spin_lock(&page->mapping->private_lock);
4628 /*
4629 * We do this since we'll remove the pages after we've
4630 * removed the eb from the radix tree, so we could race
4631 * and have this page now attached to the new eb. So
4632 * only clear page_private if it's still connected to
4633 * this eb.
4634 */
4635 if (PagePrivate(page) &&
4636 page->private == (unsigned long)eb) {
4637 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4638 BUG_ON(PageDirty(page));
4639 BUG_ON(PageWriteback(page));
4640 /*
4641 * We need to make sure we haven't be attached
4642 * to a new eb.
4643 */
4644 ClearPagePrivate(page);
4645 set_page_private(page, 0);
4646 /* One for the page private */
4647 put_page(page);
4648 }
4649
4650 if (mapped)
4651 spin_unlock(&page->mapping->private_lock);
4652
4653 /* One for when we allocated the page */
4654 put_page(page);
4655 } while (index != 0);
4656 }
4657
4658 /*
4659 * Helper for releasing the extent buffer.
4660 */
4661 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4662 {
4663 btrfs_release_extent_buffer_page(eb);
4664 __free_extent_buffer(eb);
4665 }
4666
4667 static struct extent_buffer *
4668 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4669 unsigned long len)
4670 {
4671 struct extent_buffer *eb = NULL;
4672
4673 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4674 eb->start = start;
4675 eb->len = len;
4676 eb->fs_info = fs_info;
4677 eb->bflags = 0;
4678 rwlock_init(&eb->lock);
4679 atomic_set(&eb->write_locks, 0);
4680 atomic_set(&eb->read_locks, 0);
4681 atomic_set(&eb->blocking_readers, 0);
4682 atomic_set(&eb->blocking_writers, 0);
4683 atomic_set(&eb->spinning_readers, 0);
4684 atomic_set(&eb->spinning_writers, 0);
4685 eb->lock_nested = 0;
4686 init_waitqueue_head(&eb->write_lock_wq);
4687 init_waitqueue_head(&eb->read_lock_wq);
4688
4689 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4690
4691 spin_lock_init(&eb->refs_lock);
4692 atomic_set(&eb->refs, 1);
4693 atomic_set(&eb->io_pages, 0);
4694
4695 /*
4696 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4697 */
4698 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4699 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4700 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4701
4702 return eb;
4703 }
4704
4705 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4706 {
4707 unsigned long i;
4708 struct page *p;
4709 struct extent_buffer *new;
4710 unsigned long num_pages = num_extent_pages(src->start, src->len);
4711
4712 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4713 if (new == NULL)
4714 return NULL;
4715
4716 for (i = 0; i < num_pages; i++) {
4717 p = alloc_page(GFP_NOFS);
4718 if (!p) {
4719 btrfs_release_extent_buffer(new);
4720 return NULL;
4721 }
4722 attach_extent_buffer_page(new, p);
4723 WARN_ON(PageDirty(p));
4724 SetPageUptodate(p);
4725 new->pages[i] = p;
4726 copy_page(page_address(p), page_address(src->pages[i]));
4727 }
4728
4729 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4730 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4731
4732 return new;
4733 }
4734
4735 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4736 u64 start, unsigned long len)
4737 {
4738 struct extent_buffer *eb;
4739 unsigned long num_pages;
4740 unsigned long i;
4741
4742 num_pages = num_extent_pages(start, len);
4743
4744 eb = __alloc_extent_buffer(fs_info, start, len);
4745 if (!eb)
4746 return NULL;
4747
4748 for (i = 0; i < num_pages; i++) {
4749 eb->pages[i] = alloc_page(GFP_NOFS);
4750 if (!eb->pages[i])
4751 goto err;
4752 }
4753 set_extent_buffer_uptodate(eb);
4754 btrfs_set_header_nritems(eb, 0);
4755 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4756
4757 return eb;
4758 err:
4759 for (; i > 0; i--)
4760 __free_page(eb->pages[i - 1]);
4761 __free_extent_buffer(eb);
4762 return NULL;
4763 }
4764
4765 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4766 u64 start)
4767 {
4768 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4769 }
4770
4771 static void check_buffer_tree_ref(struct extent_buffer *eb)
4772 {
4773 int refs;
4774 /* the ref bit is tricky. We have to make sure it is set
4775 * if we have the buffer dirty. Otherwise the
4776 * code to free a buffer can end up dropping a dirty
4777 * page
4778 *
4779 * Once the ref bit is set, it won't go away while the
4780 * buffer is dirty or in writeback, and it also won't
4781 * go away while we have the reference count on the
4782 * eb bumped.
4783 *
4784 * We can't just set the ref bit without bumping the
4785 * ref on the eb because free_extent_buffer might
4786 * see the ref bit and try to clear it. If this happens
4787 * free_extent_buffer might end up dropping our original
4788 * ref by mistake and freeing the page before we are able
4789 * to add one more ref.
4790 *
4791 * So bump the ref count first, then set the bit. If someone
4792 * beat us to it, drop the ref we added.
4793 */
4794 refs = atomic_read(&eb->refs);
4795 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4796 return;
4797
4798 spin_lock(&eb->refs_lock);
4799 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4800 atomic_inc(&eb->refs);
4801 spin_unlock(&eb->refs_lock);
4802 }
4803
4804 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4805 struct page *accessed)
4806 {
4807 unsigned long num_pages, i;
4808
4809 check_buffer_tree_ref(eb);
4810
4811 num_pages = num_extent_pages(eb->start, eb->len);
4812 for (i = 0; i < num_pages; i++) {
4813 struct page *p = eb->pages[i];
4814
4815 if (p != accessed)
4816 mark_page_accessed(p);
4817 }
4818 }
4819
4820 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4821 u64 start)
4822 {
4823 struct extent_buffer *eb;
4824
4825 rcu_read_lock();
4826 eb = radix_tree_lookup(&fs_info->buffer_radix,
4827 start >> PAGE_SHIFT);
4828 if (eb && atomic_inc_not_zero(&eb->refs)) {
4829 rcu_read_unlock();
4830 /*
4831 * Lock our eb's refs_lock to avoid races with
4832 * free_extent_buffer. When we get our eb it might be flagged
4833 * with EXTENT_BUFFER_STALE and another task running
4834 * free_extent_buffer might have seen that flag set,
4835 * eb->refs == 2, that the buffer isn't under IO (dirty and
4836 * writeback flags not set) and it's still in the tree (flag
4837 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4838 * of decrementing the extent buffer's reference count twice.
4839 * So here we could race and increment the eb's reference count,
4840 * clear its stale flag, mark it as dirty and drop our reference
4841 * before the other task finishes executing free_extent_buffer,
4842 * which would later result in an attempt to free an extent
4843 * buffer that is dirty.
4844 */
4845 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4846 spin_lock(&eb->refs_lock);
4847 spin_unlock(&eb->refs_lock);
4848 }
4849 mark_extent_buffer_accessed(eb, NULL);
4850 return eb;
4851 }
4852 rcu_read_unlock();
4853
4854 return NULL;
4855 }
4856
4857 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4858 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4859 u64 start)
4860 {
4861 struct extent_buffer *eb, *exists = NULL;
4862 int ret;
4863
4864 eb = find_extent_buffer(fs_info, start);
4865 if (eb)
4866 return eb;
4867 eb = alloc_dummy_extent_buffer(fs_info, start);
4868 if (!eb)
4869 return NULL;
4870 eb->fs_info = fs_info;
4871 again:
4872 ret = radix_tree_preload(GFP_NOFS);
4873 if (ret)
4874 goto free_eb;
4875 spin_lock(&fs_info->buffer_lock);
4876 ret = radix_tree_insert(&fs_info->buffer_radix,
4877 start >> PAGE_SHIFT, eb);
4878 spin_unlock(&fs_info->buffer_lock);
4879 radix_tree_preload_end();
4880 if (ret == -EEXIST) {
4881 exists = find_extent_buffer(fs_info, start);
4882 if (exists)
4883 goto free_eb;
4884 else
4885 goto again;
4886 }
4887 check_buffer_tree_ref(eb);
4888 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4889
4890 /*
4891 * We will free dummy extent buffer's if they come into
4892 * free_extent_buffer with a ref count of 2, but if we are using this we
4893 * want the buffers to stay in memory until we're done with them, so
4894 * bump the ref count again.
4895 */
4896 atomic_inc(&eb->refs);
4897 return eb;
4898 free_eb:
4899 btrfs_release_extent_buffer(eb);
4900 return exists;
4901 }
4902 #endif
4903
4904 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4905 u64 start)
4906 {
4907 unsigned long len = fs_info->nodesize;
4908 unsigned long num_pages = num_extent_pages(start, len);
4909 unsigned long i;
4910 unsigned long index = start >> PAGE_SHIFT;
4911 struct extent_buffer *eb;
4912 struct extent_buffer *exists = NULL;
4913 struct page *p;
4914 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4915 int uptodate = 1;
4916 int ret;
4917
4918 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4919 btrfs_err(fs_info, "bad tree block start %llu", start);
4920 return ERR_PTR(-EINVAL);
4921 }
4922
4923 eb = find_extent_buffer(fs_info, start);
4924 if (eb)
4925 return eb;
4926
4927 eb = __alloc_extent_buffer(fs_info, start, len);
4928 if (!eb)
4929 return ERR_PTR(-ENOMEM);
4930
4931 for (i = 0; i < num_pages; i++, index++) {
4932 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4933 if (!p) {
4934 exists = ERR_PTR(-ENOMEM);
4935 goto free_eb;
4936 }
4937
4938 spin_lock(&mapping->private_lock);
4939 if (PagePrivate(p)) {
4940 /*
4941 * We could have already allocated an eb for this page
4942 * and attached one so lets see if we can get a ref on
4943 * the existing eb, and if we can we know it's good and
4944 * we can just return that one, else we know we can just
4945 * overwrite page->private.
4946 */
4947 exists = (struct extent_buffer *)p->private;
4948 if (atomic_inc_not_zero(&exists->refs)) {
4949 spin_unlock(&mapping->private_lock);
4950 unlock_page(p);
4951 put_page(p);
4952 mark_extent_buffer_accessed(exists, p);
4953 goto free_eb;
4954 }
4955 exists = NULL;
4956
4957 /*
4958 * Do this so attach doesn't complain and we need to
4959 * drop the ref the old guy had.
4960 */
4961 ClearPagePrivate(p);
4962 WARN_ON(PageDirty(p));
4963 put_page(p);
4964 }
4965 attach_extent_buffer_page(eb, p);
4966 spin_unlock(&mapping->private_lock);
4967 WARN_ON(PageDirty(p));
4968 eb->pages[i] = p;
4969 if (!PageUptodate(p))
4970 uptodate = 0;
4971
4972 /*
4973 * see below about how we avoid a nasty race with release page
4974 * and why we unlock later
4975 */
4976 }
4977 if (uptodate)
4978 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4979 again:
4980 ret = radix_tree_preload(GFP_NOFS);
4981 if (ret) {
4982 exists = ERR_PTR(ret);
4983 goto free_eb;
4984 }
4985
4986 spin_lock(&fs_info->buffer_lock);
4987 ret = radix_tree_insert(&fs_info->buffer_radix,
4988 start >> PAGE_SHIFT, eb);
4989 spin_unlock(&fs_info->buffer_lock);
4990 radix_tree_preload_end();
4991 if (ret == -EEXIST) {
4992 exists = find_extent_buffer(fs_info, start);
4993 if (exists)
4994 goto free_eb;
4995 else
4996 goto again;
4997 }
4998 /* add one reference for the tree */
4999 check_buffer_tree_ref(eb);
5000 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5001
5002 /*
5003 * there is a race where release page may have
5004 * tried to find this extent buffer in the radix
5005 * but failed. It will tell the VM it is safe to
5006 * reclaim the, and it will clear the page private bit.
5007 * We must make sure to set the page private bit properly
5008 * after the extent buffer is in the radix tree so
5009 * it doesn't get lost
5010 */
5011 SetPageChecked(eb->pages[0]);
5012 for (i = 1; i < num_pages; i++) {
5013 p = eb->pages[i];
5014 ClearPageChecked(p);
5015 unlock_page(p);
5016 }
5017 unlock_page(eb->pages[0]);
5018 return eb;
5019
5020 free_eb:
5021 WARN_ON(!atomic_dec_and_test(&eb->refs));
5022 for (i = 0; i < num_pages; i++) {
5023 if (eb->pages[i])
5024 unlock_page(eb->pages[i]);
5025 }
5026
5027 btrfs_release_extent_buffer(eb);
5028 return exists;
5029 }
5030
5031 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5032 {
5033 struct extent_buffer *eb =
5034 container_of(head, struct extent_buffer, rcu_head);
5035
5036 __free_extent_buffer(eb);
5037 }
5038
5039 /* Expects to have eb->eb_lock already held */
5040 static int release_extent_buffer(struct extent_buffer *eb)
5041 {
5042 WARN_ON(atomic_read(&eb->refs) == 0);
5043 if (atomic_dec_and_test(&eb->refs)) {
5044 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5045 struct btrfs_fs_info *fs_info = eb->fs_info;
5046
5047 spin_unlock(&eb->refs_lock);
5048
5049 spin_lock(&fs_info->buffer_lock);
5050 radix_tree_delete(&fs_info->buffer_radix,
5051 eb->start >> PAGE_SHIFT);
5052 spin_unlock(&fs_info->buffer_lock);
5053 } else {
5054 spin_unlock(&eb->refs_lock);
5055 }
5056
5057 /* Should be safe to release our pages at this point */
5058 btrfs_release_extent_buffer_page(eb);
5059 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5060 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5061 __free_extent_buffer(eb);
5062 return 1;
5063 }
5064 #endif
5065 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5066 return 1;
5067 }
5068 spin_unlock(&eb->refs_lock);
5069
5070 return 0;
5071 }
5072
5073 void free_extent_buffer(struct extent_buffer *eb)
5074 {
5075 int refs;
5076 int old;
5077 if (!eb)
5078 return;
5079
5080 while (1) {
5081 refs = atomic_read(&eb->refs);
5082 if (refs <= 3)
5083 break;
5084 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5085 if (old == refs)
5086 return;
5087 }
5088
5089 spin_lock(&eb->refs_lock);
5090 if (atomic_read(&eb->refs) == 2 &&
5091 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5092 atomic_dec(&eb->refs);
5093
5094 if (atomic_read(&eb->refs) == 2 &&
5095 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5096 !extent_buffer_under_io(eb) &&
5097 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5098 atomic_dec(&eb->refs);
5099
5100 /*
5101 * I know this is terrible, but it's temporary until we stop tracking
5102 * the uptodate bits and such for the extent buffers.
5103 */
5104 release_extent_buffer(eb);
5105 }
5106
5107 void free_extent_buffer_stale(struct extent_buffer *eb)
5108 {
5109 if (!eb)
5110 return;
5111
5112 spin_lock(&eb->refs_lock);
5113 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5114
5115 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5116 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5117 atomic_dec(&eb->refs);
5118 release_extent_buffer(eb);
5119 }
5120
5121 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5122 {
5123 unsigned long i;
5124 unsigned long num_pages;
5125 struct page *page;
5126
5127 num_pages = num_extent_pages(eb->start, eb->len);
5128
5129 for (i = 0; i < num_pages; i++) {
5130 page = eb->pages[i];
5131 if (!PageDirty(page))
5132 continue;
5133
5134 lock_page(page);
5135 WARN_ON(!PagePrivate(page));
5136
5137 clear_page_dirty_for_io(page);
5138 spin_lock_irq(&page->mapping->tree_lock);
5139 if (!PageDirty(page)) {
5140 radix_tree_tag_clear(&page->mapping->page_tree,
5141 page_index(page),
5142 PAGECACHE_TAG_DIRTY);
5143 }
5144 spin_unlock_irq(&page->mapping->tree_lock);
5145 ClearPageError(page);
5146 unlock_page(page);
5147 }
5148 WARN_ON(atomic_read(&eb->refs) == 0);
5149 }
5150
5151 int set_extent_buffer_dirty(struct extent_buffer *eb)
5152 {
5153 unsigned long i;
5154 unsigned long num_pages;
5155 int was_dirty = 0;
5156
5157 check_buffer_tree_ref(eb);
5158
5159 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5160
5161 num_pages = num_extent_pages(eb->start, eb->len);
5162 WARN_ON(atomic_read(&eb->refs) == 0);
5163 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5164
5165 for (i = 0; i < num_pages; i++)
5166 set_page_dirty(eb->pages[i]);
5167 return was_dirty;
5168 }
5169
5170 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5171 {
5172 unsigned long i;
5173 struct page *page;
5174 unsigned long num_pages;
5175
5176 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5177 num_pages = num_extent_pages(eb->start, eb->len);
5178 for (i = 0; i < num_pages; i++) {
5179 page = eb->pages[i];
5180 if (page)
5181 ClearPageUptodate(page);
5182 }
5183 }
5184
5185 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5186 {
5187 unsigned long i;
5188 struct page *page;
5189 unsigned long num_pages;
5190
5191 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5192 num_pages = num_extent_pages(eb->start, eb->len);
5193 for (i = 0; i < num_pages; i++) {
5194 page = eb->pages[i];
5195 SetPageUptodate(page);
5196 }
5197 }
5198
5199 int extent_buffer_uptodate(struct extent_buffer *eb)
5200 {
5201 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5202 }
5203
5204 int read_extent_buffer_pages(struct extent_io_tree *tree,
5205 struct extent_buffer *eb, int wait,
5206 get_extent_t *get_extent, int mirror_num)
5207 {
5208 unsigned long i;
5209 struct page *page;
5210 int err;
5211 int ret = 0;
5212 int locked_pages = 0;
5213 int all_uptodate = 1;
5214 unsigned long num_pages;
5215 unsigned long num_reads = 0;
5216 struct bio *bio = NULL;
5217 unsigned long bio_flags = 0;
5218
5219 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5220 return 0;
5221
5222 num_pages = num_extent_pages(eb->start, eb->len);
5223 for (i = 0; i < num_pages; i++) {
5224 page = eb->pages[i];
5225 if (wait == WAIT_NONE) {
5226 if (!trylock_page(page))
5227 goto unlock_exit;
5228 } else {
5229 lock_page(page);
5230 }
5231 locked_pages++;
5232 }
5233 /*
5234 * We need to firstly lock all pages to make sure that
5235 * the uptodate bit of our pages won't be affected by
5236 * clear_extent_buffer_uptodate().
5237 */
5238 for (i = 0; i < num_pages; i++) {
5239 page = eb->pages[i];
5240 if (!PageUptodate(page)) {
5241 num_reads++;
5242 all_uptodate = 0;
5243 }
5244 }
5245
5246 if (all_uptodate) {
5247 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5248 goto unlock_exit;
5249 }
5250
5251 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5252 eb->read_mirror = 0;
5253 atomic_set(&eb->io_pages, num_reads);
5254 for (i = 0; i < num_pages; i++) {
5255 page = eb->pages[i];
5256
5257 if (!PageUptodate(page)) {
5258 if (ret) {
5259 atomic_dec(&eb->io_pages);
5260 unlock_page(page);
5261 continue;
5262 }
5263
5264 ClearPageError(page);
5265 err = __extent_read_full_page(tree, page,
5266 get_extent, &bio,
5267 mirror_num, &bio_flags,
5268 REQ_META);
5269 if (err) {
5270 ret = err;
5271 /*
5272 * We use &bio in above __extent_read_full_page,
5273 * so we ensure that if it returns error, the
5274 * current page fails to add itself to bio and
5275 * it's been unlocked.
5276 *
5277 * We must dec io_pages by ourselves.
5278 */
5279 atomic_dec(&eb->io_pages);
5280 }
5281 } else {
5282 unlock_page(page);
5283 }
5284 }
5285
5286 if (bio) {
5287 err = submit_one_bio(bio, mirror_num, bio_flags);
5288 if (err)
5289 return err;
5290 }
5291
5292 if (ret || wait != WAIT_COMPLETE)
5293 return ret;
5294
5295 for (i = 0; i < num_pages; i++) {
5296 page = eb->pages[i];
5297 wait_on_page_locked(page);
5298 if (!PageUptodate(page))
5299 ret = -EIO;
5300 }
5301
5302 return ret;
5303
5304 unlock_exit:
5305 while (locked_pages > 0) {
5306 locked_pages--;
5307 page = eb->pages[locked_pages];
5308 unlock_page(page);
5309 }
5310 return ret;
5311 }
5312
5313 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5314 unsigned long start,
5315 unsigned long len)
5316 {
5317 size_t cur;
5318 size_t offset;
5319 struct page *page;
5320 char *kaddr;
5321 char *dst = (char *)dstv;
5322 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5323 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5324
5325 WARN_ON(start > eb->len);
5326 WARN_ON(start + len > eb->start + eb->len);
5327
5328 offset = (start_offset + start) & (PAGE_SIZE - 1);
5329
5330 while (len > 0) {
5331 page = eb->pages[i];
5332
5333 cur = min(len, (PAGE_SIZE - offset));
5334 kaddr = page_address(page);
5335 memcpy(dst, kaddr + offset, cur);
5336
5337 dst += cur;
5338 len -= cur;
5339 offset = 0;
5340 i++;
5341 }
5342 }
5343
5344 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5345 unsigned long start,
5346 unsigned long len)
5347 {
5348 size_t cur;
5349 size_t offset;
5350 struct page *page;
5351 char *kaddr;
5352 char __user *dst = (char __user *)dstv;
5353 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5354 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5355 int ret = 0;
5356
5357 WARN_ON(start > eb->len);
5358 WARN_ON(start + len > eb->start + eb->len);
5359
5360 offset = (start_offset + start) & (PAGE_SIZE - 1);
5361
5362 while (len > 0) {
5363 page = eb->pages[i];
5364
5365 cur = min(len, (PAGE_SIZE - offset));
5366 kaddr = page_address(page);
5367 if (copy_to_user(dst, kaddr + offset, cur)) {
5368 ret = -EFAULT;
5369 break;
5370 }
5371
5372 dst += cur;
5373 len -= cur;
5374 offset = 0;
5375 i++;
5376 }
5377
5378 return ret;
5379 }
5380
5381 /*
5382 * return 0 if the item is found within a page.
5383 * return 1 if the item spans two pages.
5384 * return -EINVAL otherwise.
5385 */
5386 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5387 unsigned long min_len, char **map,
5388 unsigned long *map_start,
5389 unsigned long *map_len)
5390 {
5391 size_t offset = start & (PAGE_SIZE - 1);
5392 char *kaddr;
5393 struct page *p;
5394 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5395 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5396 unsigned long end_i = (start_offset + start + min_len - 1) >>
5397 PAGE_SHIFT;
5398
5399 if (i != end_i)
5400 return 1;
5401
5402 if (i == 0) {
5403 offset = start_offset;
5404 *map_start = 0;
5405 } else {
5406 offset = 0;
5407 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5408 }
5409
5410 if (start + min_len > eb->len) {
5411 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5412 eb->start, eb->len, start, min_len);
5413 return -EINVAL;
5414 }
5415
5416 p = eb->pages[i];
5417 kaddr = page_address(p);
5418 *map = kaddr + offset;
5419 *map_len = PAGE_SIZE - offset;
5420 return 0;
5421 }
5422
5423 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5424 unsigned long start,
5425 unsigned long len)
5426 {
5427 size_t cur;
5428 size_t offset;
5429 struct page *page;
5430 char *kaddr;
5431 char *ptr = (char *)ptrv;
5432 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5433 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5434 int ret = 0;
5435
5436 WARN_ON(start > eb->len);
5437 WARN_ON(start + len > eb->start + eb->len);
5438
5439 offset = (start_offset + start) & (PAGE_SIZE - 1);
5440
5441 while (len > 0) {
5442 page = eb->pages[i];
5443
5444 cur = min(len, (PAGE_SIZE - offset));
5445
5446 kaddr = page_address(page);
5447 ret = memcmp(ptr, kaddr + offset, cur);
5448 if (ret)
5449 break;
5450
5451 ptr += cur;
5452 len -= cur;
5453 offset = 0;
5454 i++;
5455 }
5456 return ret;
5457 }
5458
5459 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5460 const void *srcv)
5461 {
5462 char *kaddr;
5463
5464 WARN_ON(!PageUptodate(eb->pages[0]));
5465 kaddr = page_address(eb->pages[0]);
5466 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5467 BTRFS_FSID_SIZE);
5468 }
5469
5470 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5471 {
5472 char *kaddr;
5473
5474 WARN_ON(!PageUptodate(eb->pages[0]));
5475 kaddr = page_address(eb->pages[0]);
5476 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5477 BTRFS_FSID_SIZE);
5478 }
5479
5480 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5481 unsigned long start, unsigned long len)
5482 {
5483 size_t cur;
5484 size_t offset;
5485 struct page *page;
5486 char *kaddr;
5487 char *src = (char *)srcv;
5488 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5489 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5490
5491 WARN_ON(start > eb->len);
5492 WARN_ON(start + len > eb->start + eb->len);
5493
5494 offset = (start_offset + start) & (PAGE_SIZE - 1);
5495
5496 while (len > 0) {
5497 page = eb->pages[i];
5498 WARN_ON(!PageUptodate(page));
5499
5500 cur = min(len, PAGE_SIZE - offset);
5501 kaddr = page_address(page);
5502 memcpy(kaddr + offset, src, cur);
5503
5504 src += cur;
5505 len -= cur;
5506 offset = 0;
5507 i++;
5508 }
5509 }
5510
5511 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5512 unsigned long len)
5513 {
5514 size_t cur;
5515 size_t offset;
5516 struct page *page;
5517 char *kaddr;
5518 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5519 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5520
5521 WARN_ON(start > eb->len);
5522 WARN_ON(start + len > eb->start + eb->len);
5523
5524 offset = (start_offset + start) & (PAGE_SIZE - 1);
5525
5526 while (len > 0) {
5527 page = eb->pages[i];
5528 WARN_ON(!PageUptodate(page));
5529
5530 cur = min(len, PAGE_SIZE - offset);
5531 kaddr = page_address(page);
5532 memset(kaddr + offset, 0, cur);
5533
5534 len -= cur;
5535 offset = 0;
5536 i++;
5537 }
5538 }
5539
5540 void copy_extent_buffer_full(struct extent_buffer *dst,
5541 struct extent_buffer *src)
5542 {
5543 int i;
5544 unsigned num_pages;
5545
5546 ASSERT(dst->len == src->len);
5547
5548 num_pages = num_extent_pages(dst->start, dst->len);
5549 for (i = 0; i < num_pages; i++)
5550 copy_page(page_address(dst->pages[i]),
5551 page_address(src->pages[i]));
5552 }
5553
5554 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5555 unsigned long dst_offset, unsigned long src_offset,
5556 unsigned long len)
5557 {
5558 u64 dst_len = dst->len;
5559 size_t cur;
5560 size_t offset;
5561 struct page *page;
5562 char *kaddr;
5563 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5564 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5565
5566 WARN_ON(src->len != dst_len);
5567
5568 offset = (start_offset + dst_offset) &
5569 (PAGE_SIZE - 1);
5570
5571 while (len > 0) {
5572 page = dst->pages[i];
5573 WARN_ON(!PageUptodate(page));
5574
5575 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5576
5577 kaddr = page_address(page);
5578 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5579
5580 src_offset += cur;
5581 len -= cur;
5582 offset = 0;
5583 i++;
5584 }
5585 }
5586
5587 void le_bitmap_set(u8 *map, unsigned int start, int len)
5588 {
5589 u8 *p = map + BIT_BYTE(start);
5590 const unsigned int size = start + len;
5591 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5592 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5593
5594 while (len - bits_to_set >= 0) {
5595 *p |= mask_to_set;
5596 len -= bits_to_set;
5597 bits_to_set = BITS_PER_BYTE;
5598 mask_to_set = ~0;
5599 p++;
5600 }
5601 if (len) {
5602 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5603 *p |= mask_to_set;
5604 }
5605 }
5606
5607 void le_bitmap_clear(u8 *map, unsigned int start, int len)
5608 {
5609 u8 *p = map + BIT_BYTE(start);
5610 const unsigned int size = start + len;
5611 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5612 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5613
5614 while (len - bits_to_clear >= 0) {
5615 *p &= ~mask_to_clear;
5616 len -= bits_to_clear;
5617 bits_to_clear = BITS_PER_BYTE;
5618 mask_to_clear = ~0;
5619 p++;
5620 }
5621 if (len) {
5622 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5623 *p &= ~mask_to_clear;
5624 }
5625 }
5626
5627 /*
5628 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5629 * given bit number
5630 * @eb: the extent buffer
5631 * @start: offset of the bitmap item in the extent buffer
5632 * @nr: bit number
5633 * @page_index: return index of the page in the extent buffer that contains the
5634 * given bit number
5635 * @page_offset: return offset into the page given by page_index
5636 *
5637 * This helper hides the ugliness of finding the byte in an extent buffer which
5638 * contains a given bit.
5639 */
5640 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5641 unsigned long start, unsigned long nr,
5642 unsigned long *page_index,
5643 size_t *page_offset)
5644 {
5645 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5646 size_t byte_offset = BIT_BYTE(nr);
5647 size_t offset;
5648
5649 /*
5650 * The byte we want is the offset of the extent buffer + the offset of
5651 * the bitmap item in the extent buffer + the offset of the byte in the
5652 * bitmap item.
5653 */
5654 offset = start_offset + start + byte_offset;
5655
5656 *page_index = offset >> PAGE_SHIFT;
5657 *page_offset = offset & (PAGE_SIZE - 1);
5658 }
5659
5660 /**
5661 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5662 * @eb: the extent buffer
5663 * @start: offset of the bitmap item in the extent buffer
5664 * @nr: bit number to test
5665 */
5666 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5667 unsigned long nr)
5668 {
5669 u8 *kaddr;
5670 struct page *page;
5671 unsigned long i;
5672 size_t offset;
5673
5674 eb_bitmap_offset(eb, start, nr, &i, &offset);
5675 page = eb->pages[i];
5676 WARN_ON(!PageUptodate(page));
5677 kaddr = page_address(page);
5678 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5679 }
5680
5681 /**
5682 * extent_buffer_bitmap_set - set an area of a bitmap
5683 * @eb: the extent buffer
5684 * @start: offset of the bitmap item in the extent buffer
5685 * @pos: bit number of the first bit
5686 * @len: number of bits to set
5687 */
5688 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5689 unsigned long pos, unsigned long len)
5690 {
5691 u8 *kaddr;
5692 struct page *page;
5693 unsigned long i;
5694 size_t offset;
5695 const unsigned int size = pos + len;
5696 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5697 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5698
5699 eb_bitmap_offset(eb, start, pos, &i, &offset);
5700 page = eb->pages[i];
5701 WARN_ON(!PageUptodate(page));
5702 kaddr = page_address(page);
5703
5704 while (len >= bits_to_set) {
5705 kaddr[offset] |= mask_to_set;
5706 len -= bits_to_set;
5707 bits_to_set = BITS_PER_BYTE;
5708 mask_to_set = ~0;
5709 if (++offset >= PAGE_SIZE && len > 0) {
5710 offset = 0;
5711 page = eb->pages[++i];
5712 WARN_ON(!PageUptodate(page));
5713 kaddr = page_address(page);
5714 }
5715 }
5716 if (len) {
5717 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5718 kaddr[offset] |= mask_to_set;
5719 }
5720 }
5721
5722
5723 /**
5724 * extent_buffer_bitmap_clear - clear an area of a bitmap
5725 * @eb: the extent buffer
5726 * @start: offset of the bitmap item in the extent buffer
5727 * @pos: bit number of the first bit
5728 * @len: number of bits to clear
5729 */
5730 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5731 unsigned long pos, unsigned long len)
5732 {
5733 u8 *kaddr;
5734 struct page *page;
5735 unsigned long i;
5736 size_t offset;
5737 const unsigned int size = pos + len;
5738 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5739 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5740
5741 eb_bitmap_offset(eb, start, pos, &i, &offset);
5742 page = eb->pages[i];
5743 WARN_ON(!PageUptodate(page));
5744 kaddr = page_address(page);
5745
5746 while (len >= bits_to_clear) {
5747 kaddr[offset] &= ~mask_to_clear;
5748 len -= bits_to_clear;
5749 bits_to_clear = BITS_PER_BYTE;
5750 mask_to_clear = ~0;
5751 if (++offset >= PAGE_SIZE && len > 0) {
5752 offset = 0;
5753 page = eb->pages[++i];
5754 WARN_ON(!PageUptodate(page));
5755 kaddr = page_address(page);
5756 }
5757 }
5758 if (len) {
5759 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5760 kaddr[offset] &= ~mask_to_clear;
5761 }
5762 }
5763
5764 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5765 {
5766 unsigned long distance = (src > dst) ? src - dst : dst - src;
5767 return distance < len;
5768 }
5769
5770 static void copy_pages(struct page *dst_page, struct page *src_page,
5771 unsigned long dst_off, unsigned long src_off,
5772 unsigned long len)
5773 {
5774 char *dst_kaddr = page_address(dst_page);
5775 char *src_kaddr;
5776 int must_memmove = 0;
5777
5778 if (dst_page != src_page) {
5779 src_kaddr = page_address(src_page);
5780 } else {
5781 src_kaddr = dst_kaddr;
5782 if (areas_overlap(src_off, dst_off, len))
5783 must_memmove = 1;
5784 }
5785
5786 if (must_memmove)
5787 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5788 else
5789 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5790 }
5791
5792 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5793 unsigned long src_offset, unsigned long len)
5794 {
5795 struct btrfs_fs_info *fs_info = dst->fs_info;
5796 size_t cur;
5797 size_t dst_off_in_page;
5798 size_t src_off_in_page;
5799 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5800 unsigned long dst_i;
5801 unsigned long src_i;
5802
5803 if (src_offset + len > dst->len) {
5804 btrfs_err(fs_info,
5805 "memmove bogus src_offset %lu move len %lu dst len %lu",
5806 src_offset, len, dst->len);
5807 BUG_ON(1);
5808 }
5809 if (dst_offset + len > dst->len) {
5810 btrfs_err(fs_info,
5811 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5812 dst_offset, len, dst->len);
5813 BUG_ON(1);
5814 }
5815
5816 while (len > 0) {
5817 dst_off_in_page = (start_offset + dst_offset) &
5818 (PAGE_SIZE - 1);
5819 src_off_in_page = (start_offset + src_offset) &
5820 (PAGE_SIZE - 1);
5821
5822 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5823 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5824
5825 cur = min(len, (unsigned long)(PAGE_SIZE -
5826 src_off_in_page));
5827 cur = min_t(unsigned long, cur,
5828 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5829
5830 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5831 dst_off_in_page, src_off_in_page, cur);
5832
5833 src_offset += cur;
5834 dst_offset += cur;
5835 len -= cur;
5836 }
5837 }
5838
5839 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5840 unsigned long src_offset, unsigned long len)
5841 {
5842 struct btrfs_fs_info *fs_info = dst->fs_info;
5843 size_t cur;
5844 size_t dst_off_in_page;
5845 size_t src_off_in_page;
5846 unsigned long dst_end = dst_offset + len - 1;
5847 unsigned long src_end = src_offset + len - 1;
5848 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5849 unsigned long dst_i;
5850 unsigned long src_i;
5851
5852 if (src_offset + len > dst->len) {
5853 btrfs_err(fs_info,
5854 "memmove bogus src_offset %lu move len %lu len %lu",
5855 src_offset, len, dst->len);
5856 BUG_ON(1);
5857 }
5858 if (dst_offset + len > dst->len) {
5859 btrfs_err(fs_info,
5860 "memmove bogus dst_offset %lu move len %lu len %lu",
5861 dst_offset, len, dst->len);
5862 BUG_ON(1);
5863 }
5864 if (dst_offset < src_offset) {
5865 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5866 return;
5867 }
5868 while (len > 0) {
5869 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5870 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5871
5872 dst_off_in_page = (start_offset + dst_end) &
5873 (PAGE_SIZE - 1);
5874 src_off_in_page = (start_offset + src_end) &
5875 (PAGE_SIZE - 1);
5876
5877 cur = min_t(unsigned long, len, src_off_in_page + 1);
5878 cur = min(cur, dst_off_in_page + 1);
5879 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5880 dst_off_in_page - cur + 1,
5881 src_off_in_page - cur + 1, cur);
5882
5883 dst_end -= cur;
5884 src_end -= cur;
5885 len -= cur;
5886 }
5887 }
5888
5889 int try_release_extent_buffer(struct page *page)
5890 {
5891 struct extent_buffer *eb;
5892
5893 /*
5894 * We need to make sure nobody is attaching this page to an eb right
5895 * now.
5896 */
5897 spin_lock(&page->mapping->private_lock);
5898 if (!PagePrivate(page)) {
5899 spin_unlock(&page->mapping->private_lock);
5900 return 1;
5901 }
5902
5903 eb = (struct extent_buffer *)page->private;
5904 BUG_ON(!eb);
5905
5906 /*
5907 * This is a little awful but should be ok, we need to make sure that
5908 * the eb doesn't disappear out from under us while we're looking at
5909 * this page.
5910 */
5911 spin_lock(&eb->refs_lock);
5912 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5913 spin_unlock(&eb->refs_lock);
5914 spin_unlock(&page->mapping->private_lock);
5915 return 0;
5916 }
5917 spin_unlock(&page->mapping->private_lock);
5918
5919 /*
5920 * If tree ref isn't set then we know the ref on this eb is a real ref,
5921 * so just return, this page will likely be freed soon anyway.
5922 */
5923 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5924 spin_unlock(&eb->refs_lock);
5925 return 0;
5926 }
5927
5928 return release_extent_buffer(eb);
5929 }