mm: change invalidatepage prototype to accept length
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 #include "volumes.h"
20 #include "check-integrity.h"
21 #include "locking.h"
22 #include "rcu-string.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
31
32 static DEFINE_SPINLOCK(leak_lock);
33
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36 {
37 unsigned long flags;
38
39 spin_lock_irqsave(&leak_lock, flags);
40 list_add(new, head);
41 spin_unlock_irqrestore(&leak_lock, flags);
42 }
43
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
46 {
47 unsigned long flags;
48
49 spin_lock_irqsave(&leak_lock, flags);
50 list_del(entry);
51 spin_unlock_irqrestore(&leak_lock, flags);
52 }
53
54 static inline
55 void btrfs_leak_debug_check(void)
56 {
57 struct extent_state *state;
58 struct extent_buffer *eb;
59
60 while (!list_empty(&states)) {
61 state = list_entry(states.next, struct extent_state, leak_list);
62 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63 "state %lu in tree %p refs %d\n",
64 (unsigned long long)state->start,
65 (unsigned long long)state->end,
66 state->state, state->tree, atomic_read(&state->refs));
67 list_del(&state->leak_list);
68 kmem_cache_free(extent_state_cache, state);
69 }
70
71 while (!list_empty(&buffers)) {
72 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
73 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
74 "refs %d\n", (unsigned long long)eb->start,
75 eb->len, atomic_read(&eb->refs));
76 list_del(&eb->leak_list);
77 kmem_cache_free(extent_buffer_cache, eb);
78 }
79 }
80 #else
81 #define btrfs_leak_debug_add(new, head) do {} while (0)
82 #define btrfs_leak_debug_del(entry) do {} while (0)
83 #define btrfs_leak_debug_check() do {} while (0)
84 #endif
85
86 #define BUFFER_LRU_MAX 64
87
88 struct tree_entry {
89 u64 start;
90 u64 end;
91 struct rb_node rb_node;
92 };
93
94 struct extent_page_data {
95 struct bio *bio;
96 struct extent_io_tree *tree;
97 get_extent_t *get_extent;
98 unsigned long bio_flags;
99
100 /* tells writepage not to lock the state bits for this range
101 * it still does the unlocking
102 */
103 unsigned int extent_locked:1;
104
105 /* tells the submit_bio code to use a WRITE_SYNC */
106 unsigned int sync_io:1;
107 };
108
109 static noinline void flush_write_bio(void *data);
110 static inline struct btrfs_fs_info *
111 tree_fs_info(struct extent_io_tree *tree)
112 {
113 return btrfs_sb(tree->mapping->host->i_sb);
114 }
115
116 int __init extent_io_init(void)
117 {
118 extent_state_cache = kmem_cache_create("btrfs_extent_state",
119 sizeof(struct extent_state), 0,
120 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
121 if (!extent_state_cache)
122 return -ENOMEM;
123
124 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
125 sizeof(struct extent_buffer), 0,
126 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
127 if (!extent_buffer_cache)
128 goto free_state_cache;
129
130 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
131 offsetof(struct btrfs_io_bio, bio));
132 if (!btrfs_bioset)
133 goto free_buffer_cache;
134 return 0;
135
136 free_buffer_cache:
137 kmem_cache_destroy(extent_buffer_cache);
138 extent_buffer_cache = NULL;
139
140 free_state_cache:
141 kmem_cache_destroy(extent_state_cache);
142 extent_state_cache = NULL;
143 return -ENOMEM;
144 }
145
146 void extent_io_exit(void)
147 {
148 btrfs_leak_debug_check();
149
150 /*
151 * Make sure all delayed rcu free are flushed before we
152 * destroy caches.
153 */
154 rcu_barrier();
155 if (extent_state_cache)
156 kmem_cache_destroy(extent_state_cache);
157 if (extent_buffer_cache)
158 kmem_cache_destroy(extent_buffer_cache);
159 if (btrfs_bioset)
160 bioset_free(btrfs_bioset);
161 }
162
163 void extent_io_tree_init(struct extent_io_tree *tree,
164 struct address_space *mapping)
165 {
166 tree->state = RB_ROOT;
167 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
168 tree->ops = NULL;
169 tree->dirty_bytes = 0;
170 spin_lock_init(&tree->lock);
171 spin_lock_init(&tree->buffer_lock);
172 tree->mapping = mapping;
173 }
174
175 static struct extent_state *alloc_extent_state(gfp_t mask)
176 {
177 struct extent_state *state;
178
179 state = kmem_cache_alloc(extent_state_cache, mask);
180 if (!state)
181 return state;
182 state->state = 0;
183 state->private = 0;
184 state->tree = NULL;
185 btrfs_leak_debug_add(&state->leak_list, &states);
186 atomic_set(&state->refs, 1);
187 init_waitqueue_head(&state->wq);
188 trace_alloc_extent_state(state, mask, _RET_IP_);
189 return state;
190 }
191
192 void free_extent_state(struct extent_state *state)
193 {
194 if (!state)
195 return;
196 if (atomic_dec_and_test(&state->refs)) {
197 WARN_ON(state->tree);
198 btrfs_leak_debug_del(&state->leak_list);
199 trace_free_extent_state(state, _RET_IP_);
200 kmem_cache_free(extent_state_cache, state);
201 }
202 }
203
204 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
205 struct rb_node *node)
206 {
207 struct rb_node **p = &root->rb_node;
208 struct rb_node *parent = NULL;
209 struct tree_entry *entry;
210
211 while (*p) {
212 parent = *p;
213 entry = rb_entry(parent, struct tree_entry, rb_node);
214
215 if (offset < entry->start)
216 p = &(*p)->rb_left;
217 else if (offset > entry->end)
218 p = &(*p)->rb_right;
219 else
220 return parent;
221 }
222
223 rb_link_node(node, parent, p);
224 rb_insert_color(node, root);
225 return NULL;
226 }
227
228 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
229 struct rb_node **prev_ret,
230 struct rb_node **next_ret)
231 {
232 struct rb_root *root = &tree->state;
233 struct rb_node *n = root->rb_node;
234 struct rb_node *prev = NULL;
235 struct rb_node *orig_prev = NULL;
236 struct tree_entry *entry;
237 struct tree_entry *prev_entry = NULL;
238
239 while (n) {
240 entry = rb_entry(n, struct tree_entry, rb_node);
241 prev = n;
242 prev_entry = entry;
243
244 if (offset < entry->start)
245 n = n->rb_left;
246 else if (offset > entry->end)
247 n = n->rb_right;
248 else
249 return n;
250 }
251
252 if (prev_ret) {
253 orig_prev = prev;
254 while (prev && offset > prev_entry->end) {
255 prev = rb_next(prev);
256 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
257 }
258 *prev_ret = prev;
259 prev = orig_prev;
260 }
261
262 if (next_ret) {
263 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
264 while (prev && offset < prev_entry->start) {
265 prev = rb_prev(prev);
266 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
267 }
268 *next_ret = prev;
269 }
270 return NULL;
271 }
272
273 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
274 u64 offset)
275 {
276 struct rb_node *prev = NULL;
277 struct rb_node *ret;
278
279 ret = __etree_search(tree, offset, &prev, NULL);
280 if (!ret)
281 return prev;
282 return ret;
283 }
284
285 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
286 struct extent_state *other)
287 {
288 if (tree->ops && tree->ops->merge_extent_hook)
289 tree->ops->merge_extent_hook(tree->mapping->host, new,
290 other);
291 }
292
293 /*
294 * utility function to look for merge candidates inside a given range.
295 * Any extents with matching state are merged together into a single
296 * extent in the tree. Extents with EXTENT_IO in their state field
297 * are not merged because the end_io handlers need to be able to do
298 * operations on them without sleeping (or doing allocations/splits).
299 *
300 * This should be called with the tree lock held.
301 */
302 static void merge_state(struct extent_io_tree *tree,
303 struct extent_state *state)
304 {
305 struct extent_state *other;
306 struct rb_node *other_node;
307
308 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
309 return;
310
311 other_node = rb_prev(&state->rb_node);
312 if (other_node) {
313 other = rb_entry(other_node, struct extent_state, rb_node);
314 if (other->end == state->start - 1 &&
315 other->state == state->state) {
316 merge_cb(tree, state, other);
317 state->start = other->start;
318 other->tree = NULL;
319 rb_erase(&other->rb_node, &tree->state);
320 free_extent_state(other);
321 }
322 }
323 other_node = rb_next(&state->rb_node);
324 if (other_node) {
325 other = rb_entry(other_node, struct extent_state, rb_node);
326 if (other->start == state->end + 1 &&
327 other->state == state->state) {
328 merge_cb(tree, state, other);
329 state->end = other->end;
330 other->tree = NULL;
331 rb_erase(&other->rb_node, &tree->state);
332 free_extent_state(other);
333 }
334 }
335 }
336
337 static void set_state_cb(struct extent_io_tree *tree,
338 struct extent_state *state, unsigned long *bits)
339 {
340 if (tree->ops && tree->ops->set_bit_hook)
341 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
342 }
343
344 static void clear_state_cb(struct extent_io_tree *tree,
345 struct extent_state *state, unsigned long *bits)
346 {
347 if (tree->ops && tree->ops->clear_bit_hook)
348 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
349 }
350
351 static void set_state_bits(struct extent_io_tree *tree,
352 struct extent_state *state, unsigned long *bits);
353
354 /*
355 * insert an extent_state struct into the tree. 'bits' are set on the
356 * struct before it is inserted.
357 *
358 * This may return -EEXIST if the extent is already there, in which case the
359 * state struct is freed.
360 *
361 * The tree lock is not taken internally. This is a utility function and
362 * probably isn't what you want to call (see set/clear_extent_bit).
363 */
364 static int insert_state(struct extent_io_tree *tree,
365 struct extent_state *state, u64 start, u64 end,
366 unsigned long *bits)
367 {
368 struct rb_node *node;
369
370 if (end < start)
371 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
372 (unsigned long long)end,
373 (unsigned long long)start);
374 state->start = start;
375 state->end = end;
376
377 set_state_bits(tree, state, bits);
378
379 node = tree_insert(&tree->state, end, &state->rb_node);
380 if (node) {
381 struct extent_state *found;
382 found = rb_entry(node, struct extent_state, rb_node);
383 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
384 "%llu %llu\n", (unsigned long long)found->start,
385 (unsigned long long)found->end,
386 (unsigned long long)start, (unsigned long long)end);
387 return -EEXIST;
388 }
389 state->tree = tree;
390 merge_state(tree, state);
391 return 0;
392 }
393
394 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
395 u64 split)
396 {
397 if (tree->ops && tree->ops->split_extent_hook)
398 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
399 }
400
401 /*
402 * split a given extent state struct in two, inserting the preallocated
403 * struct 'prealloc' as the newly created second half. 'split' indicates an
404 * offset inside 'orig' where it should be split.
405 *
406 * Before calling,
407 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
408 * are two extent state structs in the tree:
409 * prealloc: [orig->start, split - 1]
410 * orig: [ split, orig->end ]
411 *
412 * The tree locks are not taken by this function. They need to be held
413 * by the caller.
414 */
415 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
416 struct extent_state *prealloc, u64 split)
417 {
418 struct rb_node *node;
419
420 split_cb(tree, orig, split);
421
422 prealloc->start = orig->start;
423 prealloc->end = split - 1;
424 prealloc->state = orig->state;
425 orig->start = split;
426
427 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
428 if (node) {
429 free_extent_state(prealloc);
430 return -EEXIST;
431 }
432 prealloc->tree = tree;
433 return 0;
434 }
435
436 static struct extent_state *next_state(struct extent_state *state)
437 {
438 struct rb_node *next = rb_next(&state->rb_node);
439 if (next)
440 return rb_entry(next, struct extent_state, rb_node);
441 else
442 return NULL;
443 }
444
445 /*
446 * utility function to clear some bits in an extent state struct.
447 * it will optionally wake up any one waiting on this state (wake == 1).
448 *
449 * If no bits are set on the state struct after clearing things, the
450 * struct is freed and removed from the tree
451 */
452 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
453 struct extent_state *state,
454 unsigned long *bits, int wake)
455 {
456 struct extent_state *next;
457 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
458
459 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
460 u64 range = state->end - state->start + 1;
461 WARN_ON(range > tree->dirty_bytes);
462 tree->dirty_bytes -= range;
463 }
464 clear_state_cb(tree, state, bits);
465 state->state &= ~bits_to_clear;
466 if (wake)
467 wake_up(&state->wq);
468 if (state->state == 0) {
469 next = next_state(state);
470 if (state->tree) {
471 rb_erase(&state->rb_node, &tree->state);
472 state->tree = NULL;
473 free_extent_state(state);
474 } else {
475 WARN_ON(1);
476 }
477 } else {
478 merge_state(tree, state);
479 next = next_state(state);
480 }
481 return next;
482 }
483
484 static struct extent_state *
485 alloc_extent_state_atomic(struct extent_state *prealloc)
486 {
487 if (!prealloc)
488 prealloc = alloc_extent_state(GFP_ATOMIC);
489
490 return prealloc;
491 }
492
493 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
494 {
495 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
496 "Extent tree was modified by another "
497 "thread while locked.");
498 }
499
500 /*
501 * clear some bits on a range in the tree. This may require splitting
502 * or inserting elements in the tree, so the gfp mask is used to
503 * indicate which allocations or sleeping are allowed.
504 *
505 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
506 * the given range from the tree regardless of state (ie for truncate).
507 *
508 * the range [start, end] is inclusive.
509 *
510 * This takes the tree lock, and returns 0 on success and < 0 on error.
511 */
512 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
513 unsigned long bits, int wake, int delete,
514 struct extent_state **cached_state,
515 gfp_t mask)
516 {
517 struct extent_state *state;
518 struct extent_state *cached;
519 struct extent_state *prealloc = NULL;
520 struct rb_node *node;
521 u64 last_end;
522 int err;
523 int clear = 0;
524
525 if (delete)
526 bits |= ~EXTENT_CTLBITS;
527 bits |= EXTENT_FIRST_DELALLOC;
528
529 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
530 clear = 1;
531 again:
532 if (!prealloc && (mask & __GFP_WAIT)) {
533 prealloc = alloc_extent_state(mask);
534 if (!prealloc)
535 return -ENOMEM;
536 }
537
538 spin_lock(&tree->lock);
539 if (cached_state) {
540 cached = *cached_state;
541
542 if (clear) {
543 *cached_state = NULL;
544 cached_state = NULL;
545 }
546
547 if (cached && cached->tree && cached->start <= start &&
548 cached->end > start) {
549 if (clear)
550 atomic_dec(&cached->refs);
551 state = cached;
552 goto hit_next;
553 }
554 if (clear)
555 free_extent_state(cached);
556 }
557 /*
558 * this search will find the extents that end after
559 * our range starts
560 */
561 node = tree_search(tree, start);
562 if (!node)
563 goto out;
564 state = rb_entry(node, struct extent_state, rb_node);
565 hit_next:
566 if (state->start > end)
567 goto out;
568 WARN_ON(state->end < start);
569 last_end = state->end;
570
571 /* the state doesn't have the wanted bits, go ahead */
572 if (!(state->state & bits)) {
573 state = next_state(state);
574 goto next;
575 }
576
577 /*
578 * | ---- desired range ---- |
579 * | state | or
580 * | ------------- state -------------- |
581 *
582 * We need to split the extent we found, and may flip
583 * bits on second half.
584 *
585 * If the extent we found extends past our range, we
586 * just split and search again. It'll get split again
587 * the next time though.
588 *
589 * If the extent we found is inside our range, we clear
590 * the desired bit on it.
591 */
592
593 if (state->start < start) {
594 prealloc = alloc_extent_state_atomic(prealloc);
595 BUG_ON(!prealloc);
596 err = split_state(tree, state, prealloc, start);
597 if (err)
598 extent_io_tree_panic(tree, err);
599
600 prealloc = NULL;
601 if (err)
602 goto out;
603 if (state->end <= end) {
604 state = clear_state_bit(tree, state, &bits, wake);
605 goto next;
606 }
607 goto search_again;
608 }
609 /*
610 * | ---- desired range ---- |
611 * | state |
612 * We need to split the extent, and clear the bit
613 * on the first half
614 */
615 if (state->start <= end && state->end > end) {
616 prealloc = alloc_extent_state_atomic(prealloc);
617 BUG_ON(!prealloc);
618 err = split_state(tree, state, prealloc, end + 1);
619 if (err)
620 extent_io_tree_panic(tree, err);
621
622 if (wake)
623 wake_up(&state->wq);
624
625 clear_state_bit(tree, prealloc, &bits, wake);
626
627 prealloc = NULL;
628 goto out;
629 }
630
631 state = clear_state_bit(tree, state, &bits, wake);
632 next:
633 if (last_end == (u64)-1)
634 goto out;
635 start = last_end + 1;
636 if (start <= end && state && !need_resched())
637 goto hit_next;
638 goto search_again;
639
640 out:
641 spin_unlock(&tree->lock);
642 if (prealloc)
643 free_extent_state(prealloc);
644
645 return 0;
646
647 search_again:
648 if (start > end)
649 goto out;
650 spin_unlock(&tree->lock);
651 if (mask & __GFP_WAIT)
652 cond_resched();
653 goto again;
654 }
655
656 static void wait_on_state(struct extent_io_tree *tree,
657 struct extent_state *state)
658 __releases(tree->lock)
659 __acquires(tree->lock)
660 {
661 DEFINE_WAIT(wait);
662 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
663 spin_unlock(&tree->lock);
664 schedule();
665 spin_lock(&tree->lock);
666 finish_wait(&state->wq, &wait);
667 }
668
669 /*
670 * waits for one or more bits to clear on a range in the state tree.
671 * The range [start, end] is inclusive.
672 * The tree lock is taken by this function
673 */
674 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
675 unsigned long bits)
676 {
677 struct extent_state *state;
678 struct rb_node *node;
679
680 spin_lock(&tree->lock);
681 again:
682 while (1) {
683 /*
684 * this search will find all the extents that end after
685 * our range starts
686 */
687 node = tree_search(tree, start);
688 if (!node)
689 break;
690
691 state = rb_entry(node, struct extent_state, rb_node);
692
693 if (state->start > end)
694 goto out;
695
696 if (state->state & bits) {
697 start = state->start;
698 atomic_inc(&state->refs);
699 wait_on_state(tree, state);
700 free_extent_state(state);
701 goto again;
702 }
703 start = state->end + 1;
704
705 if (start > end)
706 break;
707
708 cond_resched_lock(&tree->lock);
709 }
710 out:
711 spin_unlock(&tree->lock);
712 }
713
714 static void set_state_bits(struct extent_io_tree *tree,
715 struct extent_state *state,
716 unsigned long *bits)
717 {
718 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
719
720 set_state_cb(tree, state, bits);
721 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
722 u64 range = state->end - state->start + 1;
723 tree->dirty_bytes += range;
724 }
725 state->state |= bits_to_set;
726 }
727
728 static void cache_state(struct extent_state *state,
729 struct extent_state **cached_ptr)
730 {
731 if (cached_ptr && !(*cached_ptr)) {
732 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
733 *cached_ptr = state;
734 atomic_inc(&state->refs);
735 }
736 }
737 }
738
739 static void uncache_state(struct extent_state **cached_ptr)
740 {
741 if (cached_ptr && (*cached_ptr)) {
742 struct extent_state *state = *cached_ptr;
743 *cached_ptr = NULL;
744 free_extent_state(state);
745 }
746 }
747
748 /*
749 * set some bits on a range in the tree. This may require allocations or
750 * sleeping, so the gfp mask is used to indicate what is allowed.
751 *
752 * If any of the exclusive bits are set, this will fail with -EEXIST if some
753 * part of the range already has the desired bits set. The start of the
754 * existing range is returned in failed_start in this case.
755 *
756 * [start, end] is inclusive This takes the tree lock.
757 */
758
759 static int __must_check
760 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
761 unsigned long bits, unsigned long exclusive_bits,
762 u64 *failed_start, struct extent_state **cached_state,
763 gfp_t mask)
764 {
765 struct extent_state *state;
766 struct extent_state *prealloc = NULL;
767 struct rb_node *node;
768 int err = 0;
769 u64 last_start;
770 u64 last_end;
771
772 bits |= EXTENT_FIRST_DELALLOC;
773 again:
774 if (!prealloc && (mask & __GFP_WAIT)) {
775 prealloc = alloc_extent_state(mask);
776 BUG_ON(!prealloc);
777 }
778
779 spin_lock(&tree->lock);
780 if (cached_state && *cached_state) {
781 state = *cached_state;
782 if (state->start <= start && state->end > start &&
783 state->tree) {
784 node = &state->rb_node;
785 goto hit_next;
786 }
787 }
788 /*
789 * this search will find all the extents that end after
790 * our range starts.
791 */
792 node = tree_search(tree, start);
793 if (!node) {
794 prealloc = alloc_extent_state_atomic(prealloc);
795 BUG_ON(!prealloc);
796 err = insert_state(tree, prealloc, start, end, &bits);
797 if (err)
798 extent_io_tree_panic(tree, err);
799
800 prealloc = NULL;
801 goto out;
802 }
803 state = rb_entry(node, struct extent_state, rb_node);
804 hit_next:
805 last_start = state->start;
806 last_end = state->end;
807
808 /*
809 * | ---- desired range ---- |
810 * | state |
811 *
812 * Just lock what we found and keep going
813 */
814 if (state->start == start && state->end <= end) {
815 if (state->state & exclusive_bits) {
816 *failed_start = state->start;
817 err = -EEXIST;
818 goto out;
819 }
820
821 set_state_bits(tree, state, &bits);
822 cache_state(state, cached_state);
823 merge_state(tree, state);
824 if (last_end == (u64)-1)
825 goto out;
826 start = last_end + 1;
827 state = next_state(state);
828 if (start < end && state && state->start == start &&
829 !need_resched())
830 goto hit_next;
831 goto search_again;
832 }
833
834 /*
835 * | ---- desired range ---- |
836 * | state |
837 * or
838 * | ------------- state -------------- |
839 *
840 * We need to split the extent we found, and may flip bits on
841 * second half.
842 *
843 * If the extent we found extends past our
844 * range, we just split and search again. It'll get split
845 * again the next time though.
846 *
847 * If the extent we found is inside our range, we set the
848 * desired bit on it.
849 */
850 if (state->start < start) {
851 if (state->state & exclusive_bits) {
852 *failed_start = start;
853 err = -EEXIST;
854 goto out;
855 }
856
857 prealloc = alloc_extent_state_atomic(prealloc);
858 BUG_ON(!prealloc);
859 err = split_state(tree, state, prealloc, start);
860 if (err)
861 extent_io_tree_panic(tree, err);
862
863 prealloc = NULL;
864 if (err)
865 goto out;
866 if (state->end <= end) {
867 set_state_bits(tree, state, &bits);
868 cache_state(state, cached_state);
869 merge_state(tree, state);
870 if (last_end == (u64)-1)
871 goto out;
872 start = last_end + 1;
873 state = next_state(state);
874 if (start < end && state && state->start == start &&
875 !need_resched())
876 goto hit_next;
877 }
878 goto search_again;
879 }
880 /*
881 * | ---- desired range ---- |
882 * | state | or | state |
883 *
884 * There's a hole, we need to insert something in it and
885 * ignore the extent we found.
886 */
887 if (state->start > start) {
888 u64 this_end;
889 if (end < last_start)
890 this_end = end;
891 else
892 this_end = last_start - 1;
893
894 prealloc = alloc_extent_state_atomic(prealloc);
895 BUG_ON(!prealloc);
896
897 /*
898 * Avoid to free 'prealloc' if it can be merged with
899 * the later extent.
900 */
901 err = insert_state(tree, prealloc, start, this_end,
902 &bits);
903 if (err)
904 extent_io_tree_panic(tree, err);
905
906 cache_state(prealloc, cached_state);
907 prealloc = NULL;
908 start = this_end + 1;
909 goto search_again;
910 }
911 /*
912 * | ---- desired range ---- |
913 * | state |
914 * We need to split the extent, and set the bit
915 * on the first half
916 */
917 if (state->start <= end && state->end > end) {
918 if (state->state & exclusive_bits) {
919 *failed_start = start;
920 err = -EEXIST;
921 goto out;
922 }
923
924 prealloc = alloc_extent_state_atomic(prealloc);
925 BUG_ON(!prealloc);
926 err = split_state(tree, state, prealloc, end + 1);
927 if (err)
928 extent_io_tree_panic(tree, err);
929
930 set_state_bits(tree, prealloc, &bits);
931 cache_state(prealloc, cached_state);
932 merge_state(tree, prealloc);
933 prealloc = NULL;
934 goto out;
935 }
936
937 goto search_again;
938
939 out:
940 spin_unlock(&tree->lock);
941 if (prealloc)
942 free_extent_state(prealloc);
943
944 return err;
945
946 search_again:
947 if (start > end)
948 goto out;
949 spin_unlock(&tree->lock);
950 if (mask & __GFP_WAIT)
951 cond_resched();
952 goto again;
953 }
954
955 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
956 unsigned long bits, u64 * failed_start,
957 struct extent_state **cached_state, gfp_t mask)
958 {
959 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
960 cached_state, mask);
961 }
962
963
964 /**
965 * convert_extent_bit - convert all bits in a given range from one bit to
966 * another
967 * @tree: the io tree to search
968 * @start: the start offset in bytes
969 * @end: the end offset in bytes (inclusive)
970 * @bits: the bits to set in this range
971 * @clear_bits: the bits to clear in this range
972 * @cached_state: state that we're going to cache
973 * @mask: the allocation mask
974 *
975 * This will go through and set bits for the given range. If any states exist
976 * already in this range they are set with the given bit and cleared of the
977 * clear_bits. This is only meant to be used by things that are mergeable, ie
978 * converting from say DELALLOC to DIRTY. This is not meant to be used with
979 * boundary bits like LOCK.
980 */
981 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
982 unsigned long bits, unsigned long clear_bits,
983 struct extent_state **cached_state, gfp_t mask)
984 {
985 struct extent_state *state;
986 struct extent_state *prealloc = NULL;
987 struct rb_node *node;
988 int err = 0;
989 u64 last_start;
990 u64 last_end;
991
992 again:
993 if (!prealloc && (mask & __GFP_WAIT)) {
994 prealloc = alloc_extent_state(mask);
995 if (!prealloc)
996 return -ENOMEM;
997 }
998
999 spin_lock(&tree->lock);
1000 if (cached_state && *cached_state) {
1001 state = *cached_state;
1002 if (state->start <= start && state->end > start &&
1003 state->tree) {
1004 node = &state->rb_node;
1005 goto hit_next;
1006 }
1007 }
1008
1009 /*
1010 * this search will find all the extents that end after
1011 * our range starts.
1012 */
1013 node = tree_search(tree, start);
1014 if (!node) {
1015 prealloc = alloc_extent_state_atomic(prealloc);
1016 if (!prealloc) {
1017 err = -ENOMEM;
1018 goto out;
1019 }
1020 err = insert_state(tree, prealloc, start, end, &bits);
1021 prealloc = NULL;
1022 if (err)
1023 extent_io_tree_panic(tree, err);
1024 goto out;
1025 }
1026 state = rb_entry(node, struct extent_state, rb_node);
1027 hit_next:
1028 last_start = state->start;
1029 last_end = state->end;
1030
1031 /*
1032 * | ---- desired range ---- |
1033 * | state |
1034 *
1035 * Just lock what we found and keep going
1036 */
1037 if (state->start == start && state->end <= end) {
1038 set_state_bits(tree, state, &bits);
1039 cache_state(state, cached_state);
1040 state = clear_state_bit(tree, state, &clear_bits, 0);
1041 if (last_end == (u64)-1)
1042 goto out;
1043 start = last_end + 1;
1044 if (start < end && state && state->start == start &&
1045 !need_resched())
1046 goto hit_next;
1047 goto search_again;
1048 }
1049
1050 /*
1051 * | ---- desired range ---- |
1052 * | state |
1053 * or
1054 * | ------------- state -------------- |
1055 *
1056 * We need to split the extent we found, and may flip bits on
1057 * second half.
1058 *
1059 * If the extent we found extends past our
1060 * range, we just split and search again. It'll get split
1061 * again the next time though.
1062 *
1063 * If the extent we found is inside our range, we set the
1064 * desired bit on it.
1065 */
1066 if (state->start < start) {
1067 prealloc = alloc_extent_state_atomic(prealloc);
1068 if (!prealloc) {
1069 err = -ENOMEM;
1070 goto out;
1071 }
1072 err = split_state(tree, state, prealloc, start);
1073 if (err)
1074 extent_io_tree_panic(tree, err);
1075 prealloc = NULL;
1076 if (err)
1077 goto out;
1078 if (state->end <= end) {
1079 set_state_bits(tree, state, &bits);
1080 cache_state(state, cached_state);
1081 state = clear_state_bit(tree, state, &clear_bits, 0);
1082 if (last_end == (u64)-1)
1083 goto out;
1084 start = last_end + 1;
1085 if (start < end && state && state->start == start &&
1086 !need_resched())
1087 goto hit_next;
1088 }
1089 goto search_again;
1090 }
1091 /*
1092 * | ---- desired range ---- |
1093 * | state | or | state |
1094 *
1095 * There's a hole, we need to insert something in it and
1096 * ignore the extent we found.
1097 */
1098 if (state->start > start) {
1099 u64 this_end;
1100 if (end < last_start)
1101 this_end = end;
1102 else
1103 this_end = last_start - 1;
1104
1105 prealloc = alloc_extent_state_atomic(prealloc);
1106 if (!prealloc) {
1107 err = -ENOMEM;
1108 goto out;
1109 }
1110
1111 /*
1112 * Avoid to free 'prealloc' if it can be merged with
1113 * the later extent.
1114 */
1115 err = insert_state(tree, prealloc, start, this_end,
1116 &bits);
1117 if (err)
1118 extent_io_tree_panic(tree, err);
1119 cache_state(prealloc, cached_state);
1120 prealloc = NULL;
1121 start = this_end + 1;
1122 goto search_again;
1123 }
1124 /*
1125 * | ---- desired range ---- |
1126 * | state |
1127 * We need to split the extent, and set the bit
1128 * on the first half
1129 */
1130 if (state->start <= end && state->end > end) {
1131 prealloc = alloc_extent_state_atomic(prealloc);
1132 if (!prealloc) {
1133 err = -ENOMEM;
1134 goto out;
1135 }
1136
1137 err = split_state(tree, state, prealloc, end + 1);
1138 if (err)
1139 extent_io_tree_panic(tree, err);
1140
1141 set_state_bits(tree, prealloc, &bits);
1142 cache_state(prealloc, cached_state);
1143 clear_state_bit(tree, prealloc, &clear_bits, 0);
1144 prealloc = NULL;
1145 goto out;
1146 }
1147
1148 goto search_again;
1149
1150 out:
1151 spin_unlock(&tree->lock);
1152 if (prealloc)
1153 free_extent_state(prealloc);
1154
1155 return err;
1156
1157 search_again:
1158 if (start > end)
1159 goto out;
1160 spin_unlock(&tree->lock);
1161 if (mask & __GFP_WAIT)
1162 cond_resched();
1163 goto again;
1164 }
1165
1166 /* wrappers around set/clear extent bit */
1167 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1168 gfp_t mask)
1169 {
1170 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1171 NULL, mask);
1172 }
1173
1174 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1175 unsigned long bits, gfp_t mask)
1176 {
1177 return set_extent_bit(tree, start, end, bits, NULL,
1178 NULL, mask);
1179 }
1180
1181 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1182 unsigned long bits, gfp_t mask)
1183 {
1184 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1185 }
1186
1187 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1188 struct extent_state **cached_state, gfp_t mask)
1189 {
1190 return set_extent_bit(tree, start, end,
1191 EXTENT_DELALLOC | EXTENT_UPTODATE,
1192 NULL, cached_state, mask);
1193 }
1194
1195 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1196 struct extent_state **cached_state, gfp_t mask)
1197 {
1198 return set_extent_bit(tree, start, end,
1199 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1200 NULL, cached_state, mask);
1201 }
1202
1203 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1204 gfp_t mask)
1205 {
1206 return clear_extent_bit(tree, start, end,
1207 EXTENT_DIRTY | EXTENT_DELALLOC |
1208 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1209 }
1210
1211 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1212 gfp_t mask)
1213 {
1214 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1215 NULL, mask);
1216 }
1217
1218 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1219 struct extent_state **cached_state, gfp_t mask)
1220 {
1221 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1222 cached_state, mask);
1223 }
1224
1225 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1226 struct extent_state **cached_state, gfp_t mask)
1227 {
1228 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1229 cached_state, mask);
1230 }
1231
1232 /*
1233 * either insert or lock state struct between start and end use mask to tell
1234 * us if waiting is desired.
1235 */
1236 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1237 unsigned long bits, struct extent_state **cached_state)
1238 {
1239 int err;
1240 u64 failed_start;
1241 while (1) {
1242 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1243 EXTENT_LOCKED, &failed_start,
1244 cached_state, GFP_NOFS);
1245 if (err == -EEXIST) {
1246 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1247 start = failed_start;
1248 } else
1249 break;
1250 WARN_ON(start > end);
1251 }
1252 return err;
1253 }
1254
1255 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1256 {
1257 return lock_extent_bits(tree, start, end, 0, NULL);
1258 }
1259
1260 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1261 {
1262 int err;
1263 u64 failed_start;
1264
1265 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1266 &failed_start, NULL, GFP_NOFS);
1267 if (err == -EEXIST) {
1268 if (failed_start > start)
1269 clear_extent_bit(tree, start, failed_start - 1,
1270 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1271 return 0;
1272 }
1273 return 1;
1274 }
1275
1276 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1277 struct extent_state **cached, gfp_t mask)
1278 {
1279 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1280 mask);
1281 }
1282
1283 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1284 {
1285 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1286 GFP_NOFS);
1287 }
1288
1289 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1290 {
1291 unsigned long index = start >> PAGE_CACHE_SHIFT;
1292 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1293 struct page *page;
1294
1295 while (index <= end_index) {
1296 page = find_get_page(inode->i_mapping, index);
1297 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1298 clear_page_dirty_for_io(page);
1299 page_cache_release(page);
1300 index++;
1301 }
1302 return 0;
1303 }
1304
1305 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1306 {
1307 unsigned long index = start >> PAGE_CACHE_SHIFT;
1308 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1309 struct page *page;
1310
1311 while (index <= end_index) {
1312 page = find_get_page(inode->i_mapping, index);
1313 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1314 account_page_redirty(page);
1315 __set_page_dirty_nobuffers(page);
1316 page_cache_release(page);
1317 index++;
1318 }
1319 return 0;
1320 }
1321
1322 /*
1323 * helper function to set both pages and extents in the tree writeback
1324 */
1325 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1326 {
1327 unsigned long index = start >> PAGE_CACHE_SHIFT;
1328 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1329 struct page *page;
1330
1331 while (index <= end_index) {
1332 page = find_get_page(tree->mapping, index);
1333 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1334 set_page_writeback(page);
1335 page_cache_release(page);
1336 index++;
1337 }
1338 return 0;
1339 }
1340
1341 /* find the first state struct with 'bits' set after 'start', and
1342 * return it. tree->lock must be held. NULL will returned if
1343 * nothing was found after 'start'
1344 */
1345 static struct extent_state *
1346 find_first_extent_bit_state(struct extent_io_tree *tree,
1347 u64 start, unsigned long bits)
1348 {
1349 struct rb_node *node;
1350 struct extent_state *state;
1351
1352 /*
1353 * this search will find all the extents that end after
1354 * our range starts.
1355 */
1356 node = tree_search(tree, start);
1357 if (!node)
1358 goto out;
1359
1360 while (1) {
1361 state = rb_entry(node, struct extent_state, rb_node);
1362 if (state->end >= start && (state->state & bits))
1363 return state;
1364
1365 node = rb_next(node);
1366 if (!node)
1367 break;
1368 }
1369 out:
1370 return NULL;
1371 }
1372
1373 /*
1374 * find the first offset in the io tree with 'bits' set. zero is
1375 * returned if we find something, and *start_ret and *end_ret are
1376 * set to reflect the state struct that was found.
1377 *
1378 * If nothing was found, 1 is returned. If found something, return 0.
1379 */
1380 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1381 u64 *start_ret, u64 *end_ret, unsigned long bits,
1382 struct extent_state **cached_state)
1383 {
1384 struct extent_state *state;
1385 struct rb_node *n;
1386 int ret = 1;
1387
1388 spin_lock(&tree->lock);
1389 if (cached_state && *cached_state) {
1390 state = *cached_state;
1391 if (state->end == start - 1 && state->tree) {
1392 n = rb_next(&state->rb_node);
1393 while (n) {
1394 state = rb_entry(n, struct extent_state,
1395 rb_node);
1396 if (state->state & bits)
1397 goto got_it;
1398 n = rb_next(n);
1399 }
1400 free_extent_state(*cached_state);
1401 *cached_state = NULL;
1402 goto out;
1403 }
1404 free_extent_state(*cached_state);
1405 *cached_state = NULL;
1406 }
1407
1408 state = find_first_extent_bit_state(tree, start, bits);
1409 got_it:
1410 if (state) {
1411 cache_state(state, cached_state);
1412 *start_ret = state->start;
1413 *end_ret = state->end;
1414 ret = 0;
1415 }
1416 out:
1417 spin_unlock(&tree->lock);
1418 return ret;
1419 }
1420
1421 /*
1422 * find a contiguous range of bytes in the file marked as delalloc, not
1423 * more than 'max_bytes'. start and end are used to return the range,
1424 *
1425 * 1 is returned if we find something, 0 if nothing was in the tree
1426 */
1427 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1428 u64 *start, u64 *end, u64 max_bytes,
1429 struct extent_state **cached_state)
1430 {
1431 struct rb_node *node;
1432 struct extent_state *state;
1433 u64 cur_start = *start;
1434 u64 found = 0;
1435 u64 total_bytes = 0;
1436
1437 spin_lock(&tree->lock);
1438
1439 /*
1440 * this search will find all the extents that end after
1441 * our range starts.
1442 */
1443 node = tree_search(tree, cur_start);
1444 if (!node) {
1445 if (!found)
1446 *end = (u64)-1;
1447 goto out;
1448 }
1449
1450 while (1) {
1451 state = rb_entry(node, struct extent_state, rb_node);
1452 if (found && (state->start != cur_start ||
1453 (state->state & EXTENT_BOUNDARY))) {
1454 goto out;
1455 }
1456 if (!(state->state & EXTENT_DELALLOC)) {
1457 if (!found)
1458 *end = state->end;
1459 goto out;
1460 }
1461 if (!found) {
1462 *start = state->start;
1463 *cached_state = state;
1464 atomic_inc(&state->refs);
1465 }
1466 found++;
1467 *end = state->end;
1468 cur_start = state->end + 1;
1469 node = rb_next(node);
1470 if (!node)
1471 break;
1472 total_bytes += state->end - state->start + 1;
1473 if (total_bytes >= max_bytes)
1474 break;
1475 }
1476 out:
1477 spin_unlock(&tree->lock);
1478 return found;
1479 }
1480
1481 static noinline void __unlock_for_delalloc(struct inode *inode,
1482 struct page *locked_page,
1483 u64 start, u64 end)
1484 {
1485 int ret;
1486 struct page *pages[16];
1487 unsigned long index = start >> PAGE_CACHE_SHIFT;
1488 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1489 unsigned long nr_pages = end_index - index + 1;
1490 int i;
1491
1492 if (index == locked_page->index && end_index == index)
1493 return;
1494
1495 while (nr_pages > 0) {
1496 ret = find_get_pages_contig(inode->i_mapping, index,
1497 min_t(unsigned long, nr_pages,
1498 ARRAY_SIZE(pages)), pages);
1499 for (i = 0; i < ret; i++) {
1500 if (pages[i] != locked_page)
1501 unlock_page(pages[i]);
1502 page_cache_release(pages[i]);
1503 }
1504 nr_pages -= ret;
1505 index += ret;
1506 cond_resched();
1507 }
1508 }
1509
1510 static noinline int lock_delalloc_pages(struct inode *inode,
1511 struct page *locked_page,
1512 u64 delalloc_start,
1513 u64 delalloc_end)
1514 {
1515 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1516 unsigned long start_index = index;
1517 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1518 unsigned long pages_locked = 0;
1519 struct page *pages[16];
1520 unsigned long nrpages;
1521 int ret;
1522 int i;
1523
1524 /* the caller is responsible for locking the start index */
1525 if (index == locked_page->index && index == end_index)
1526 return 0;
1527
1528 /* skip the page at the start index */
1529 nrpages = end_index - index + 1;
1530 while (nrpages > 0) {
1531 ret = find_get_pages_contig(inode->i_mapping, index,
1532 min_t(unsigned long,
1533 nrpages, ARRAY_SIZE(pages)), pages);
1534 if (ret == 0) {
1535 ret = -EAGAIN;
1536 goto done;
1537 }
1538 /* now we have an array of pages, lock them all */
1539 for (i = 0; i < ret; i++) {
1540 /*
1541 * the caller is taking responsibility for
1542 * locked_page
1543 */
1544 if (pages[i] != locked_page) {
1545 lock_page(pages[i]);
1546 if (!PageDirty(pages[i]) ||
1547 pages[i]->mapping != inode->i_mapping) {
1548 ret = -EAGAIN;
1549 unlock_page(pages[i]);
1550 page_cache_release(pages[i]);
1551 goto done;
1552 }
1553 }
1554 page_cache_release(pages[i]);
1555 pages_locked++;
1556 }
1557 nrpages -= ret;
1558 index += ret;
1559 cond_resched();
1560 }
1561 ret = 0;
1562 done:
1563 if (ret && pages_locked) {
1564 __unlock_for_delalloc(inode, locked_page,
1565 delalloc_start,
1566 ((u64)(start_index + pages_locked - 1)) <<
1567 PAGE_CACHE_SHIFT);
1568 }
1569 return ret;
1570 }
1571
1572 /*
1573 * find a contiguous range of bytes in the file marked as delalloc, not
1574 * more than 'max_bytes'. start and end are used to return the range,
1575 *
1576 * 1 is returned if we find something, 0 if nothing was in the tree
1577 */
1578 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1579 struct extent_io_tree *tree,
1580 struct page *locked_page,
1581 u64 *start, u64 *end,
1582 u64 max_bytes)
1583 {
1584 u64 delalloc_start;
1585 u64 delalloc_end;
1586 u64 found;
1587 struct extent_state *cached_state = NULL;
1588 int ret;
1589 int loops = 0;
1590
1591 again:
1592 /* step one, find a bunch of delalloc bytes starting at start */
1593 delalloc_start = *start;
1594 delalloc_end = 0;
1595 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1596 max_bytes, &cached_state);
1597 if (!found || delalloc_end <= *start) {
1598 *start = delalloc_start;
1599 *end = delalloc_end;
1600 free_extent_state(cached_state);
1601 return found;
1602 }
1603
1604 /*
1605 * start comes from the offset of locked_page. We have to lock
1606 * pages in order, so we can't process delalloc bytes before
1607 * locked_page
1608 */
1609 if (delalloc_start < *start)
1610 delalloc_start = *start;
1611
1612 /*
1613 * make sure to limit the number of pages we try to lock down
1614 * if we're looping.
1615 */
1616 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1617 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1618
1619 /* step two, lock all the pages after the page that has start */
1620 ret = lock_delalloc_pages(inode, locked_page,
1621 delalloc_start, delalloc_end);
1622 if (ret == -EAGAIN) {
1623 /* some of the pages are gone, lets avoid looping by
1624 * shortening the size of the delalloc range we're searching
1625 */
1626 free_extent_state(cached_state);
1627 if (!loops) {
1628 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1629 max_bytes = PAGE_CACHE_SIZE - offset;
1630 loops = 1;
1631 goto again;
1632 } else {
1633 found = 0;
1634 goto out_failed;
1635 }
1636 }
1637 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1638
1639 /* step three, lock the state bits for the whole range */
1640 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1641
1642 /* then test to make sure it is all still delalloc */
1643 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1644 EXTENT_DELALLOC, 1, cached_state);
1645 if (!ret) {
1646 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1647 &cached_state, GFP_NOFS);
1648 __unlock_for_delalloc(inode, locked_page,
1649 delalloc_start, delalloc_end);
1650 cond_resched();
1651 goto again;
1652 }
1653 free_extent_state(cached_state);
1654 *start = delalloc_start;
1655 *end = delalloc_end;
1656 out_failed:
1657 return found;
1658 }
1659
1660 int extent_clear_unlock_delalloc(struct inode *inode,
1661 struct extent_io_tree *tree,
1662 u64 start, u64 end, struct page *locked_page,
1663 unsigned long op)
1664 {
1665 int ret;
1666 struct page *pages[16];
1667 unsigned long index = start >> PAGE_CACHE_SHIFT;
1668 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1669 unsigned long nr_pages = end_index - index + 1;
1670 int i;
1671 unsigned long clear_bits = 0;
1672
1673 if (op & EXTENT_CLEAR_UNLOCK)
1674 clear_bits |= EXTENT_LOCKED;
1675 if (op & EXTENT_CLEAR_DIRTY)
1676 clear_bits |= EXTENT_DIRTY;
1677
1678 if (op & EXTENT_CLEAR_DELALLOC)
1679 clear_bits |= EXTENT_DELALLOC;
1680
1681 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1682 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1683 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1684 EXTENT_SET_PRIVATE2)))
1685 return 0;
1686
1687 while (nr_pages > 0) {
1688 ret = find_get_pages_contig(inode->i_mapping, index,
1689 min_t(unsigned long,
1690 nr_pages, ARRAY_SIZE(pages)), pages);
1691 for (i = 0; i < ret; i++) {
1692
1693 if (op & EXTENT_SET_PRIVATE2)
1694 SetPagePrivate2(pages[i]);
1695
1696 if (pages[i] == locked_page) {
1697 page_cache_release(pages[i]);
1698 continue;
1699 }
1700 if (op & EXTENT_CLEAR_DIRTY)
1701 clear_page_dirty_for_io(pages[i]);
1702 if (op & EXTENT_SET_WRITEBACK)
1703 set_page_writeback(pages[i]);
1704 if (op & EXTENT_END_WRITEBACK)
1705 end_page_writeback(pages[i]);
1706 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1707 unlock_page(pages[i]);
1708 page_cache_release(pages[i]);
1709 }
1710 nr_pages -= ret;
1711 index += ret;
1712 cond_resched();
1713 }
1714 return 0;
1715 }
1716
1717 /*
1718 * count the number of bytes in the tree that have a given bit(s)
1719 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1720 * cached. The total number found is returned.
1721 */
1722 u64 count_range_bits(struct extent_io_tree *tree,
1723 u64 *start, u64 search_end, u64 max_bytes,
1724 unsigned long bits, int contig)
1725 {
1726 struct rb_node *node;
1727 struct extent_state *state;
1728 u64 cur_start = *start;
1729 u64 total_bytes = 0;
1730 u64 last = 0;
1731 int found = 0;
1732
1733 if (search_end <= cur_start) {
1734 WARN_ON(1);
1735 return 0;
1736 }
1737
1738 spin_lock(&tree->lock);
1739 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1740 total_bytes = tree->dirty_bytes;
1741 goto out;
1742 }
1743 /*
1744 * this search will find all the extents that end after
1745 * our range starts.
1746 */
1747 node = tree_search(tree, cur_start);
1748 if (!node)
1749 goto out;
1750
1751 while (1) {
1752 state = rb_entry(node, struct extent_state, rb_node);
1753 if (state->start > search_end)
1754 break;
1755 if (contig && found && state->start > last + 1)
1756 break;
1757 if (state->end >= cur_start && (state->state & bits) == bits) {
1758 total_bytes += min(search_end, state->end) + 1 -
1759 max(cur_start, state->start);
1760 if (total_bytes >= max_bytes)
1761 break;
1762 if (!found) {
1763 *start = max(cur_start, state->start);
1764 found = 1;
1765 }
1766 last = state->end;
1767 } else if (contig && found) {
1768 break;
1769 }
1770 node = rb_next(node);
1771 if (!node)
1772 break;
1773 }
1774 out:
1775 spin_unlock(&tree->lock);
1776 return total_bytes;
1777 }
1778
1779 /*
1780 * set the private field for a given byte offset in the tree. If there isn't
1781 * an extent_state there already, this does nothing.
1782 */
1783 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1784 {
1785 struct rb_node *node;
1786 struct extent_state *state;
1787 int ret = 0;
1788
1789 spin_lock(&tree->lock);
1790 /*
1791 * this search will find all the extents that end after
1792 * our range starts.
1793 */
1794 node = tree_search(tree, start);
1795 if (!node) {
1796 ret = -ENOENT;
1797 goto out;
1798 }
1799 state = rb_entry(node, struct extent_state, rb_node);
1800 if (state->start != start) {
1801 ret = -ENOENT;
1802 goto out;
1803 }
1804 state->private = private;
1805 out:
1806 spin_unlock(&tree->lock);
1807 return ret;
1808 }
1809
1810 void extent_cache_csums_dio(struct extent_io_tree *tree, u64 start, u32 csums[],
1811 int count)
1812 {
1813 struct rb_node *node;
1814 struct extent_state *state;
1815
1816 spin_lock(&tree->lock);
1817 /*
1818 * this search will find all the extents that end after
1819 * our range starts.
1820 */
1821 node = tree_search(tree, start);
1822 BUG_ON(!node);
1823
1824 state = rb_entry(node, struct extent_state, rb_node);
1825 BUG_ON(state->start != start);
1826
1827 while (count) {
1828 state->private = *csums++;
1829 count--;
1830 state = next_state(state);
1831 }
1832 spin_unlock(&tree->lock);
1833 }
1834
1835 static inline u64 __btrfs_get_bio_offset(struct bio *bio, int bio_index)
1836 {
1837 struct bio_vec *bvec = bio->bi_io_vec + bio_index;
1838
1839 return page_offset(bvec->bv_page) + bvec->bv_offset;
1840 }
1841
1842 void extent_cache_csums(struct extent_io_tree *tree, struct bio *bio, int bio_index,
1843 u32 csums[], int count)
1844 {
1845 struct rb_node *node;
1846 struct extent_state *state = NULL;
1847 u64 start;
1848
1849 spin_lock(&tree->lock);
1850 do {
1851 start = __btrfs_get_bio_offset(bio, bio_index);
1852 if (state == NULL || state->start != start) {
1853 node = tree_search(tree, start);
1854 BUG_ON(!node);
1855
1856 state = rb_entry(node, struct extent_state, rb_node);
1857 BUG_ON(state->start != start);
1858 }
1859 state->private = *csums++;
1860 count--;
1861 bio_index++;
1862
1863 state = next_state(state);
1864 } while (count);
1865 spin_unlock(&tree->lock);
1866 }
1867
1868 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1869 {
1870 struct rb_node *node;
1871 struct extent_state *state;
1872 int ret = 0;
1873
1874 spin_lock(&tree->lock);
1875 /*
1876 * this search will find all the extents that end after
1877 * our range starts.
1878 */
1879 node = tree_search(tree, start);
1880 if (!node) {
1881 ret = -ENOENT;
1882 goto out;
1883 }
1884 state = rb_entry(node, struct extent_state, rb_node);
1885 if (state->start != start) {
1886 ret = -ENOENT;
1887 goto out;
1888 }
1889 *private = state->private;
1890 out:
1891 spin_unlock(&tree->lock);
1892 return ret;
1893 }
1894
1895 /*
1896 * searches a range in the state tree for a given mask.
1897 * If 'filled' == 1, this returns 1 only if every extent in the tree
1898 * has the bits set. Otherwise, 1 is returned if any bit in the
1899 * range is found set.
1900 */
1901 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1902 unsigned long bits, int filled, struct extent_state *cached)
1903 {
1904 struct extent_state *state = NULL;
1905 struct rb_node *node;
1906 int bitset = 0;
1907
1908 spin_lock(&tree->lock);
1909 if (cached && cached->tree && cached->start <= start &&
1910 cached->end > start)
1911 node = &cached->rb_node;
1912 else
1913 node = tree_search(tree, start);
1914 while (node && start <= end) {
1915 state = rb_entry(node, struct extent_state, rb_node);
1916
1917 if (filled && state->start > start) {
1918 bitset = 0;
1919 break;
1920 }
1921
1922 if (state->start > end)
1923 break;
1924
1925 if (state->state & bits) {
1926 bitset = 1;
1927 if (!filled)
1928 break;
1929 } else if (filled) {
1930 bitset = 0;
1931 break;
1932 }
1933
1934 if (state->end == (u64)-1)
1935 break;
1936
1937 start = state->end + 1;
1938 if (start > end)
1939 break;
1940 node = rb_next(node);
1941 if (!node) {
1942 if (filled)
1943 bitset = 0;
1944 break;
1945 }
1946 }
1947 spin_unlock(&tree->lock);
1948 return bitset;
1949 }
1950
1951 /*
1952 * helper function to set a given page up to date if all the
1953 * extents in the tree for that page are up to date
1954 */
1955 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1956 {
1957 u64 start = page_offset(page);
1958 u64 end = start + PAGE_CACHE_SIZE - 1;
1959 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1960 SetPageUptodate(page);
1961 }
1962
1963 /*
1964 * When IO fails, either with EIO or csum verification fails, we
1965 * try other mirrors that might have a good copy of the data. This
1966 * io_failure_record is used to record state as we go through all the
1967 * mirrors. If another mirror has good data, the page is set up to date
1968 * and things continue. If a good mirror can't be found, the original
1969 * bio end_io callback is called to indicate things have failed.
1970 */
1971 struct io_failure_record {
1972 struct page *page;
1973 u64 start;
1974 u64 len;
1975 u64 logical;
1976 unsigned long bio_flags;
1977 int this_mirror;
1978 int failed_mirror;
1979 int in_validation;
1980 };
1981
1982 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1983 int did_repair)
1984 {
1985 int ret;
1986 int err = 0;
1987 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1988
1989 set_state_private(failure_tree, rec->start, 0);
1990 ret = clear_extent_bits(failure_tree, rec->start,
1991 rec->start + rec->len - 1,
1992 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1993 if (ret)
1994 err = ret;
1995
1996 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1997 rec->start + rec->len - 1,
1998 EXTENT_DAMAGED, GFP_NOFS);
1999 if (ret && !err)
2000 err = ret;
2001
2002 kfree(rec);
2003 return err;
2004 }
2005
2006 static void repair_io_failure_callback(struct bio *bio, int err)
2007 {
2008 complete(bio->bi_private);
2009 }
2010
2011 /*
2012 * this bypasses the standard btrfs submit functions deliberately, as
2013 * the standard behavior is to write all copies in a raid setup. here we only
2014 * want to write the one bad copy. so we do the mapping for ourselves and issue
2015 * submit_bio directly.
2016 * to avoid any synchronization issues, wait for the data after writing, which
2017 * actually prevents the read that triggered the error from finishing.
2018 * currently, there can be no more than two copies of every data bit. thus,
2019 * exactly one rewrite is required.
2020 */
2021 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
2022 u64 length, u64 logical, struct page *page,
2023 int mirror_num)
2024 {
2025 struct bio *bio;
2026 struct btrfs_device *dev;
2027 DECLARE_COMPLETION_ONSTACK(compl);
2028 u64 map_length = 0;
2029 u64 sector;
2030 struct btrfs_bio *bbio = NULL;
2031 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2032 int ret;
2033
2034 BUG_ON(!mirror_num);
2035
2036 /* we can't repair anything in raid56 yet */
2037 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2038 return 0;
2039
2040 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2041 if (!bio)
2042 return -EIO;
2043 bio->bi_private = &compl;
2044 bio->bi_end_io = repair_io_failure_callback;
2045 bio->bi_size = 0;
2046 map_length = length;
2047
2048 ret = btrfs_map_block(fs_info, WRITE, logical,
2049 &map_length, &bbio, mirror_num);
2050 if (ret) {
2051 bio_put(bio);
2052 return -EIO;
2053 }
2054 BUG_ON(mirror_num != bbio->mirror_num);
2055 sector = bbio->stripes[mirror_num-1].physical >> 9;
2056 bio->bi_sector = sector;
2057 dev = bbio->stripes[mirror_num-1].dev;
2058 kfree(bbio);
2059 if (!dev || !dev->bdev || !dev->writeable) {
2060 bio_put(bio);
2061 return -EIO;
2062 }
2063 bio->bi_bdev = dev->bdev;
2064 bio_add_page(bio, page, length, start - page_offset(page));
2065 btrfsic_submit_bio(WRITE_SYNC, bio);
2066 wait_for_completion(&compl);
2067
2068 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2069 /* try to remap that extent elsewhere? */
2070 bio_put(bio);
2071 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2072 return -EIO;
2073 }
2074
2075 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
2076 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2077 start, rcu_str_deref(dev->name), sector);
2078
2079 bio_put(bio);
2080 return 0;
2081 }
2082
2083 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2084 int mirror_num)
2085 {
2086 u64 start = eb->start;
2087 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2088 int ret = 0;
2089
2090 for (i = 0; i < num_pages; i++) {
2091 struct page *p = extent_buffer_page(eb, i);
2092 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2093 start, p, mirror_num);
2094 if (ret)
2095 break;
2096 start += PAGE_CACHE_SIZE;
2097 }
2098
2099 return ret;
2100 }
2101
2102 /*
2103 * each time an IO finishes, we do a fast check in the IO failure tree
2104 * to see if we need to process or clean up an io_failure_record
2105 */
2106 static int clean_io_failure(u64 start, struct page *page)
2107 {
2108 u64 private;
2109 u64 private_failure;
2110 struct io_failure_record *failrec;
2111 struct btrfs_fs_info *fs_info;
2112 struct extent_state *state;
2113 int num_copies;
2114 int did_repair = 0;
2115 int ret;
2116 struct inode *inode = page->mapping->host;
2117
2118 private = 0;
2119 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2120 (u64)-1, 1, EXTENT_DIRTY, 0);
2121 if (!ret)
2122 return 0;
2123
2124 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2125 &private_failure);
2126 if (ret)
2127 return 0;
2128
2129 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2130 BUG_ON(!failrec->this_mirror);
2131
2132 if (failrec->in_validation) {
2133 /* there was no real error, just free the record */
2134 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2135 failrec->start);
2136 did_repair = 1;
2137 goto out;
2138 }
2139
2140 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2141 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2142 failrec->start,
2143 EXTENT_LOCKED);
2144 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2145
2146 if (state && state->start == failrec->start) {
2147 fs_info = BTRFS_I(inode)->root->fs_info;
2148 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2149 failrec->len);
2150 if (num_copies > 1) {
2151 ret = repair_io_failure(fs_info, start, failrec->len,
2152 failrec->logical, page,
2153 failrec->failed_mirror);
2154 did_repair = !ret;
2155 }
2156 ret = 0;
2157 }
2158
2159 out:
2160 if (!ret)
2161 ret = free_io_failure(inode, failrec, did_repair);
2162
2163 return ret;
2164 }
2165
2166 /*
2167 * this is a generic handler for readpage errors (default
2168 * readpage_io_failed_hook). if other copies exist, read those and write back
2169 * good data to the failed position. does not investigate in remapping the
2170 * failed extent elsewhere, hoping the device will be smart enough to do this as
2171 * needed
2172 */
2173
2174 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2175 u64 start, u64 end, int failed_mirror,
2176 struct extent_state *state)
2177 {
2178 struct io_failure_record *failrec = NULL;
2179 u64 private;
2180 struct extent_map *em;
2181 struct inode *inode = page->mapping->host;
2182 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2183 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2184 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2185 struct bio *bio;
2186 int num_copies;
2187 int ret;
2188 int read_mode;
2189 u64 logical;
2190
2191 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2192
2193 ret = get_state_private(failure_tree, start, &private);
2194 if (ret) {
2195 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2196 if (!failrec)
2197 return -ENOMEM;
2198 failrec->start = start;
2199 failrec->len = end - start + 1;
2200 failrec->this_mirror = 0;
2201 failrec->bio_flags = 0;
2202 failrec->in_validation = 0;
2203
2204 read_lock(&em_tree->lock);
2205 em = lookup_extent_mapping(em_tree, start, failrec->len);
2206 if (!em) {
2207 read_unlock(&em_tree->lock);
2208 kfree(failrec);
2209 return -EIO;
2210 }
2211
2212 if (em->start > start || em->start + em->len < start) {
2213 free_extent_map(em);
2214 em = NULL;
2215 }
2216 read_unlock(&em_tree->lock);
2217
2218 if (!em) {
2219 kfree(failrec);
2220 return -EIO;
2221 }
2222 logical = start - em->start;
2223 logical = em->block_start + logical;
2224 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2225 logical = em->block_start;
2226 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2227 extent_set_compress_type(&failrec->bio_flags,
2228 em->compress_type);
2229 }
2230 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2231 "len=%llu\n", logical, start, failrec->len);
2232 failrec->logical = logical;
2233 free_extent_map(em);
2234
2235 /* set the bits in the private failure tree */
2236 ret = set_extent_bits(failure_tree, start, end,
2237 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2238 if (ret >= 0)
2239 ret = set_state_private(failure_tree, start,
2240 (u64)(unsigned long)failrec);
2241 /* set the bits in the inode's tree */
2242 if (ret >= 0)
2243 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2244 GFP_NOFS);
2245 if (ret < 0) {
2246 kfree(failrec);
2247 return ret;
2248 }
2249 } else {
2250 failrec = (struct io_failure_record *)(unsigned long)private;
2251 pr_debug("bio_readpage_error: (found) logical=%llu, "
2252 "start=%llu, len=%llu, validation=%d\n",
2253 failrec->logical, failrec->start, failrec->len,
2254 failrec->in_validation);
2255 /*
2256 * when data can be on disk more than twice, add to failrec here
2257 * (e.g. with a list for failed_mirror) to make
2258 * clean_io_failure() clean all those errors at once.
2259 */
2260 }
2261 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2262 failrec->logical, failrec->len);
2263 if (num_copies == 1) {
2264 /*
2265 * we only have a single copy of the data, so don't bother with
2266 * all the retry and error correction code that follows. no
2267 * matter what the error is, it is very likely to persist.
2268 */
2269 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2270 "state=%p, num_copies=%d, next_mirror %d, "
2271 "failed_mirror %d\n", state, num_copies,
2272 failrec->this_mirror, failed_mirror);
2273 free_io_failure(inode, failrec, 0);
2274 return -EIO;
2275 }
2276
2277 if (!state) {
2278 spin_lock(&tree->lock);
2279 state = find_first_extent_bit_state(tree, failrec->start,
2280 EXTENT_LOCKED);
2281 if (state && state->start != failrec->start)
2282 state = NULL;
2283 spin_unlock(&tree->lock);
2284 }
2285
2286 /*
2287 * there are two premises:
2288 * a) deliver good data to the caller
2289 * b) correct the bad sectors on disk
2290 */
2291 if (failed_bio->bi_vcnt > 1) {
2292 /*
2293 * to fulfill b), we need to know the exact failing sectors, as
2294 * we don't want to rewrite any more than the failed ones. thus,
2295 * we need separate read requests for the failed bio
2296 *
2297 * if the following BUG_ON triggers, our validation request got
2298 * merged. we need separate requests for our algorithm to work.
2299 */
2300 BUG_ON(failrec->in_validation);
2301 failrec->in_validation = 1;
2302 failrec->this_mirror = failed_mirror;
2303 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2304 } else {
2305 /*
2306 * we're ready to fulfill a) and b) alongside. get a good copy
2307 * of the failed sector and if we succeed, we have setup
2308 * everything for repair_io_failure to do the rest for us.
2309 */
2310 if (failrec->in_validation) {
2311 BUG_ON(failrec->this_mirror != failed_mirror);
2312 failrec->in_validation = 0;
2313 failrec->this_mirror = 0;
2314 }
2315 failrec->failed_mirror = failed_mirror;
2316 failrec->this_mirror++;
2317 if (failrec->this_mirror == failed_mirror)
2318 failrec->this_mirror++;
2319 read_mode = READ_SYNC;
2320 }
2321
2322 if (!state || failrec->this_mirror > num_copies) {
2323 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2324 "next_mirror %d, failed_mirror %d\n", state,
2325 num_copies, failrec->this_mirror, failed_mirror);
2326 free_io_failure(inode, failrec, 0);
2327 return -EIO;
2328 }
2329
2330 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2331 if (!bio) {
2332 free_io_failure(inode, failrec, 0);
2333 return -EIO;
2334 }
2335 bio->bi_private = state;
2336 bio->bi_end_io = failed_bio->bi_end_io;
2337 bio->bi_sector = failrec->logical >> 9;
2338 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2339 bio->bi_size = 0;
2340
2341 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2342
2343 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2344 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2345 failrec->this_mirror, num_copies, failrec->in_validation);
2346
2347 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2348 failrec->this_mirror,
2349 failrec->bio_flags, 0);
2350 return ret;
2351 }
2352
2353 /* lots and lots of room for performance fixes in the end_bio funcs */
2354
2355 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2356 {
2357 int uptodate = (err == 0);
2358 struct extent_io_tree *tree;
2359 int ret;
2360
2361 tree = &BTRFS_I(page->mapping->host)->io_tree;
2362
2363 if (tree->ops && tree->ops->writepage_end_io_hook) {
2364 ret = tree->ops->writepage_end_io_hook(page, start,
2365 end, NULL, uptodate);
2366 if (ret)
2367 uptodate = 0;
2368 }
2369
2370 if (!uptodate) {
2371 ClearPageUptodate(page);
2372 SetPageError(page);
2373 }
2374 return 0;
2375 }
2376
2377 /*
2378 * after a writepage IO is done, we need to:
2379 * clear the uptodate bits on error
2380 * clear the writeback bits in the extent tree for this IO
2381 * end_page_writeback if the page has no more pending IO
2382 *
2383 * Scheduling is not allowed, so the extent state tree is expected
2384 * to have one and only one object corresponding to this IO.
2385 */
2386 static void end_bio_extent_writepage(struct bio *bio, int err)
2387 {
2388 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2389 struct extent_io_tree *tree;
2390 u64 start;
2391 u64 end;
2392
2393 do {
2394 struct page *page = bvec->bv_page;
2395 tree = &BTRFS_I(page->mapping->host)->io_tree;
2396
2397 /* We always issue full-page reads, but if some block
2398 * in a page fails to read, blk_update_request() will
2399 * advance bv_offset and adjust bv_len to compensate.
2400 * Print a warning for nonzero offsets, and an error
2401 * if they don't add up to a full page. */
2402 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2403 printk("%s page write in btrfs with offset %u and length %u\n",
2404 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2405 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2406 bvec->bv_offset, bvec->bv_len);
2407
2408 start = page_offset(page);
2409 end = start + bvec->bv_offset + bvec->bv_len - 1;
2410
2411 if (--bvec >= bio->bi_io_vec)
2412 prefetchw(&bvec->bv_page->flags);
2413
2414 if (end_extent_writepage(page, err, start, end))
2415 continue;
2416
2417 end_page_writeback(page);
2418 } while (bvec >= bio->bi_io_vec);
2419
2420 bio_put(bio);
2421 }
2422
2423 /*
2424 * after a readpage IO is done, we need to:
2425 * clear the uptodate bits on error
2426 * set the uptodate bits if things worked
2427 * set the page up to date if all extents in the tree are uptodate
2428 * clear the lock bit in the extent tree
2429 * unlock the page if there are no other extents locked for it
2430 *
2431 * Scheduling is not allowed, so the extent state tree is expected
2432 * to have one and only one object corresponding to this IO.
2433 */
2434 static void end_bio_extent_readpage(struct bio *bio, int err)
2435 {
2436 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2437 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2438 struct bio_vec *bvec = bio->bi_io_vec;
2439 struct extent_io_tree *tree;
2440 u64 start;
2441 u64 end;
2442 int mirror;
2443 int ret;
2444
2445 if (err)
2446 uptodate = 0;
2447
2448 do {
2449 struct page *page = bvec->bv_page;
2450 struct extent_state *cached = NULL;
2451 struct extent_state *state;
2452 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2453
2454 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2455 "mirror=%lu\n", (u64)bio->bi_sector, err,
2456 io_bio->mirror_num);
2457 tree = &BTRFS_I(page->mapping->host)->io_tree;
2458
2459 /* We always issue full-page reads, but if some block
2460 * in a page fails to read, blk_update_request() will
2461 * advance bv_offset and adjust bv_len to compensate.
2462 * Print a warning for nonzero offsets, and an error
2463 * if they don't add up to a full page. */
2464 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2465 printk("%s page read in btrfs with offset %u and length %u\n",
2466 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2467 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2468 bvec->bv_offset, bvec->bv_len);
2469
2470 start = page_offset(page);
2471 end = start + bvec->bv_offset + bvec->bv_len - 1;
2472
2473 if (++bvec <= bvec_end)
2474 prefetchw(&bvec->bv_page->flags);
2475
2476 spin_lock(&tree->lock);
2477 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2478 if (state && state->start == start) {
2479 /*
2480 * take a reference on the state, unlock will drop
2481 * the ref
2482 */
2483 cache_state(state, &cached);
2484 }
2485 spin_unlock(&tree->lock);
2486
2487 mirror = io_bio->mirror_num;
2488 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2489 ret = tree->ops->readpage_end_io_hook(page, start, end,
2490 state, mirror);
2491 if (ret)
2492 uptodate = 0;
2493 else
2494 clean_io_failure(start, page);
2495 }
2496
2497 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2498 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2499 if (!ret && !err &&
2500 test_bit(BIO_UPTODATE, &bio->bi_flags))
2501 uptodate = 1;
2502 } else if (!uptodate) {
2503 /*
2504 * The generic bio_readpage_error handles errors the
2505 * following way: If possible, new read requests are
2506 * created and submitted and will end up in
2507 * end_bio_extent_readpage as well (if we're lucky, not
2508 * in the !uptodate case). In that case it returns 0 and
2509 * we just go on with the next page in our bio. If it
2510 * can't handle the error it will return -EIO and we
2511 * remain responsible for that page.
2512 */
2513 ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2514 if (ret == 0) {
2515 uptodate =
2516 test_bit(BIO_UPTODATE, &bio->bi_flags);
2517 if (err)
2518 uptodate = 0;
2519 uncache_state(&cached);
2520 continue;
2521 }
2522 }
2523
2524 if (uptodate && tree->track_uptodate) {
2525 set_extent_uptodate(tree, start, end, &cached,
2526 GFP_ATOMIC);
2527 }
2528 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2529
2530 if (uptodate) {
2531 SetPageUptodate(page);
2532 } else {
2533 ClearPageUptodate(page);
2534 SetPageError(page);
2535 }
2536 unlock_page(page);
2537 } while (bvec <= bvec_end);
2538
2539 bio_put(bio);
2540 }
2541
2542 /*
2543 * this allocates from the btrfs_bioset. We're returning a bio right now
2544 * but you can call btrfs_io_bio for the appropriate container_of magic
2545 */
2546 struct bio *
2547 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2548 gfp_t gfp_flags)
2549 {
2550 struct bio *bio;
2551
2552 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2553
2554 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2555 while (!bio && (nr_vecs /= 2)) {
2556 bio = bio_alloc_bioset(gfp_flags,
2557 nr_vecs, btrfs_bioset);
2558 }
2559 }
2560
2561 if (bio) {
2562 bio->bi_size = 0;
2563 bio->bi_bdev = bdev;
2564 bio->bi_sector = first_sector;
2565 }
2566 return bio;
2567 }
2568
2569 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2570 {
2571 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2572 }
2573
2574
2575 /* this also allocates from the btrfs_bioset */
2576 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2577 {
2578 return bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2579 }
2580
2581
2582 static int __must_check submit_one_bio(int rw, struct bio *bio,
2583 int mirror_num, unsigned long bio_flags)
2584 {
2585 int ret = 0;
2586 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2587 struct page *page = bvec->bv_page;
2588 struct extent_io_tree *tree = bio->bi_private;
2589 u64 start;
2590
2591 start = page_offset(page) + bvec->bv_offset;
2592
2593 bio->bi_private = NULL;
2594
2595 bio_get(bio);
2596
2597 if (tree->ops && tree->ops->submit_bio_hook)
2598 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2599 mirror_num, bio_flags, start);
2600 else
2601 btrfsic_submit_bio(rw, bio);
2602
2603 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2604 ret = -EOPNOTSUPP;
2605 bio_put(bio);
2606 return ret;
2607 }
2608
2609 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2610 unsigned long offset, size_t size, struct bio *bio,
2611 unsigned long bio_flags)
2612 {
2613 int ret = 0;
2614 if (tree->ops && tree->ops->merge_bio_hook)
2615 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2616 bio_flags);
2617 BUG_ON(ret < 0);
2618 return ret;
2619
2620 }
2621
2622 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2623 struct page *page, sector_t sector,
2624 size_t size, unsigned long offset,
2625 struct block_device *bdev,
2626 struct bio **bio_ret,
2627 unsigned long max_pages,
2628 bio_end_io_t end_io_func,
2629 int mirror_num,
2630 unsigned long prev_bio_flags,
2631 unsigned long bio_flags)
2632 {
2633 int ret = 0;
2634 struct bio *bio;
2635 int nr;
2636 int contig = 0;
2637 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2638 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2639 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2640
2641 if (bio_ret && *bio_ret) {
2642 bio = *bio_ret;
2643 if (old_compressed)
2644 contig = bio->bi_sector == sector;
2645 else
2646 contig = bio_end_sector(bio) == sector;
2647
2648 if (prev_bio_flags != bio_flags || !contig ||
2649 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2650 bio_add_page(bio, page, page_size, offset) < page_size) {
2651 ret = submit_one_bio(rw, bio, mirror_num,
2652 prev_bio_flags);
2653 if (ret < 0)
2654 return ret;
2655 bio = NULL;
2656 } else {
2657 return 0;
2658 }
2659 }
2660 if (this_compressed)
2661 nr = BIO_MAX_PAGES;
2662 else
2663 nr = bio_get_nr_vecs(bdev);
2664
2665 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2666 if (!bio)
2667 return -ENOMEM;
2668
2669 bio_add_page(bio, page, page_size, offset);
2670 bio->bi_end_io = end_io_func;
2671 bio->bi_private = tree;
2672
2673 if (bio_ret)
2674 *bio_ret = bio;
2675 else
2676 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2677
2678 return ret;
2679 }
2680
2681 static void attach_extent_buffer_page(struct extent_buffer *eb,
2682 struct page *page)
2683 {
2684 if (!PagePrivate(page)) {
2685 SetPagePrivate(page);
2686 page_cache_get(page);
2687 set_page_private(page, (unsigned long)eb);
2688 } else {
2689 WARN_ON(page->private != (unsigned long)eb);
2690 }
2691 }
2692
2693 void set_page_extent_mapped(struct page *page)
2694 {
2695 if (!PagePrivate(page)) {
2696 SetPagePrivate(page);
2697 page_cache_get(page);
2698 set_page_private(page, EXTENT_PAGE_PRIVATE);
2699 }
2700 }
2701
2702 /*
2703 * basic readpage implementation. Locked extent state structs are inserted
2704 * into the tree that are removed when the IO is done (by the end_io
2705 * handlers)
2706 * XXX JDM: This needs looking at to ensure proper page locking
2707 */
2708 static int __extent_read_full_page(struct extent_io_tree *tree,
2709 struct page *page,
2710 get_extent_t *get_extent,
2711 struct bio **bio, int mirror_num,
2712 unsigned long *bio_flags, int rw)
2713 {
2714 struct inode *inode = page->mapping->host;
2715 u64 start = page_offset(page);
2716 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2717 u64 end;
2718 u64 cur = start;
2719 u64 extent_offset;
2720 u64 last_byte = i_size_read(inode);
2721 u64 block_start;
2722 u64 cur_end;
2723 sector_t sector;
2724 struct extent_map *em;
2725 struct block_device *bdev;
2726 struct btrfs_ordered_extent *ordered;
2727 int ret;
2728 int nr = 0;
2729 size_t pg_offset = 0;
2730 size_t iosize;
2731 size_t disk_io_size;
2732 size_t blocksize = inode->i_sb->s_blocksize;
2733 unsigned long this_bio_flag = 0;
2734
2735 set_page_extent_mapped(page);
2736
2737 if (!PageUptodate(page)) {
2738 if (cleancache_get_page(page) == 0) {
2739 BUG_ON(blocksize != PAGE_SIZE);
2740 goto out;
2741 }
2742 }
2743
2744 end = page_end;
2745 while (1) {
2746 lock_extent(tree, start, end);
2747 ordered = btrfs_lookup_ordered_extent(inode, start);
2748 if (!ordered)
2749 break;
2750 unlock_extent(tree, start, end);
2751 btrfs_start_ordered_extent(inode, ordered, 1);
2752 btrfs_put_ordered_extent(ordered);
2753 }
2754
2755 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2756 char *userpage;
2757 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2758
2759 if (zero_offset) {
2760 iosize = PAGE_CACHE_SIZE - zero_offset;
2761 userpage = kmap_atomic(page);
2762 memset(userpage + zero_offset, 0, iosize);
2763 flush_dcache_page(page);
2764 kunmap_atomic(userpage);
2765 }
2766 }
2767 while (cur <= end) {
2768 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2769
2770 if (cur >= last_byte) {
2771 char *userpage;
2772 struct extent_state *cached = NULL;
2773
2774 iosize = PAGE_CACHE_SIZE - pg_offset;
2775 userpage = kmap_atomic(page);
2776 memset(userpage + pg_offset, 0, iosize);
2777 flush_dcache_page(page);
2778 kunmap_atomic(userpage);
2779 set_extent_uptodate(tree, cur, cur + iosize - 1,
2780 &cached, GFP_NOFS);
2781 unlock_extent_cached(tree, cur, cur + iosize - 1,
2782 &cached, GFP_NOFS);
2783 break;
2784 }
2785 em = get_extent(inode, page, pg_offset, cur,
2786 end - cur + 1, 0);
2787 if (IS_ERR_OR_NULL(em)) {
2788 SetPageError(page);
2789 unlock_extent(tree, cur, end);
2790 break;
2791 }
2792 extent_offset = cur - em->start;
2793 BUG_ON(extent_map_end(em) <= cur);
2794 BUG_ON(end < cur);
2795
2796 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2797 this_bio_flag = EXTENT_BIO_COMPRESSED;
2798 extent_set_compress_type(&this_bio_flag,
2799 em->compress_type);
2800 }
2801
2802 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2803 cur_end = min(extent_map_end(em) - 1, end);
2804 iosize = ALIGN(iosize, blocksize);
2805 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2806 disk_io_size = em->block_len;
2807 sector = em->block_start >> 9;
2808 } else {
2809 sector = (em->block_start + extent_offset) >> 9;
2810 disk_io_size = iosize;
2811 }
2812 bdev = em->bdev;
2813 block_start = em->block_start;
2814 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2815 block_start = EXTENT_MAP_HOLE;
2816 free_extent_map(em);
2817 em = NULL;
2818
2819 /* we've found a hole, just zero and go on */
2820 if (block_start == EXTENT_MAP_HOLE) {
2821 char *userpage;
2822 struct extent_state *cached = NULL;
2823
2824 userpage = kmap_atomic(page);
2825 memset(userpage + pg_offset, 0, iosize);
2826 flush_dcache_page(page);
2827 kunmap_atomic(userpage);
2828
2829 set_extent_uptodate(tree, cur, cur + iosize - 1,
2830 &cached, GFP_NOFS);
2831 unlock_extent_cached(tree, cur, cur + iosize - 1,
2832 &cached, GFP_NOFS);
2833 cur = cur + iosize;
2834 pg_offset += iosize;
2835 continue;
2836 }
2837 /* the get_extent function already copied into the page */
2838 if (test_range_bit(tree, cur, cur_end,
2839 EXTENT_UPTODATE, 1, NULL)) {
2840 check_page_uptodate(tree, page);
2841 unlock_extent(tree, cur, cur + iosize - 1);
2842 cur = cur + iosize;
2843 pg_offset += iosize;
2844 continue;
2845 }
2846 /* we have an inline extent but it didn't get marked up
2847 * to date. Error out
2848 */
2849 if (block_start == EXTENT_MAP_INLINE) {
2850 SetPageError(page);
2851 unlock_extent(tree, cur, cur + iosize - 1);
2852 cur = cur + iosize;
2853 pg_offset += iosize;
2854 continue;
2855 }
2856
2857 pnr -= page->index;
2858 ret = submit_extent_page(rw, tree, page,
2859 sector, disk_io_size, pg_offset,
2860 bdev, bio, pnr,
2861 end_bio_extent_readpage, mirror_num,
2862 *bio_flags,
2863 this_bio_flag);
2864 if (!ret) {
2865 nr++;
2866 *bio_flags = this_bio_flag;
2867 } else {
2868 SetPageError(page);
2869 unlock_extent(tree, cur, cur + iosize - 1);
2870 }
2871 cur = cur + iosize;
2872 pg_offset += iosize;
2873 }
2874 out:
2875 if (!nr) {
2876 if (!PageError(page))
2877 SetPageUptodate(page);
2878 unlock_page(page);
2879 }
2880 return 0;
2881 }
2882
2883 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2884 get_extent_t *get_extent, int mirror_num)
2885 {
2886 struct bio *bio = NULL;
2887 unsigned long bio_flags = 0;
2888 int ret;
2889
2890 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2891 &bio_flags, READ);
2892 if (bio)
2893 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2894 return ret;
2895 }
2896
2897 static noinline void update_nr_written(struct page *page,
2898 struct writeback_control *wbc,
2899 unsigned long nr_written)
2900 {
2901 wbc->nr_to_write -= nr_written;
2902 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2903 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2904 page->mapping->writeback_index = page->index + nr_written;
2905 }
2906
2907 /*
2908 * the writepage semantics are similar to regular writepage. extent
2909 * records are inserted to lock ranges in the tree, and as dirty areas
2910 * are found, they are marked writeback. Then the lock bits are removed
2911 * and the end_io handler clears the writeback ranges
2912 */
2913 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2914 void *data)
2915 {
2916 struct inode *inode = page->mapping->host;
2917 struct extent_page_data *epd = data;
2918 struct extent_io_tree *tree = epd->tree;
2919 u64 start = page_offset(page);
2920 u64 delalloc_start;
2921 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2922 u64 end;
2923 u64 cur = start;
2924 u64 extent_offset;
2925 u64 last_byte = i_size_read(inode);
2926 u64 block_start;
2927 u64 iosize;
2928 sector_t sector;
2929 struct extent_state *cached_state = NULL;
2930 struct extent_map *em;
2931 struct block_device *bdev;
2932 int ret;
2933 int nr = 0;
2934 size_t pg_offset = 0;
2935 size_t blocksize;
2936 loff_t i_size = i_size_read(inode);
2937 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2938 u64 nr_delalloc;
2939 u64 delalloc_end;
2940 int page_started;
2941 int compressed;
2942 int write_flags;
2943 unsigned long nr_written = 0;
2944 bool fill_delalloc = true;
2945
2946 if (wbc->sync_mode == WB_SYNC_ALL)
2947 write_flags = WRITE_SYNC;
2948 else
2949 write_flags = WRITE;
2950
2951 trace___extent_writepage(page, inode, wbc);
2952
2953 WARN_ON(!PageLocked(page));
2954
2955 ClearPageError(page);
2956
2957 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2958 if (page->index > end_index ||
2959 (page->index == end_index && !pg_offset)) {
2960 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
2961 unlock_page(page);
2962 return 0;
2963 }
2964
2965 if (page->index == end_index) {
2966 char *userpage;
2967
2968 userpage = kmap_atomic(page);
2969 memset(userpage + pg_offset, 0,
2970 PAGE_CACHE_SIZE - pg_offset);
2971 kunmap_atomic(userpage);
2972 flush_dcache_page(page);
2973 }
2974 pg_offset = 0;
2975
2976 set_page_extent_mapped(page);
2977
2978 if (!tree->ops || !tree->ops->fill_delalloc)
2979 fill_delalloc = false;
2980
2981 delalloc_start = start;
2982 delalloc_end = 0;
2983 page_started = 0;
2984 if (!epd->extent_locked && fill_delalloc) {
2985 u64 delalloc_to_write = 0;
2986 /*
2987 * make sure the wbc mapping index is at least updated
2988 * to this page.
2989 */
2990 update_nr_written(page, wbc, 0);
2991
2992 while (delalloc_end < page_end) {
2993 nr_delalloc = find_lock_delalloc_range(inode, tree,
2994 page,
2995 &delalloc_start,
2996 &delalloc_end,
2997 128 * 1024 * 1024);
2998 if (nr_delalloc == 0) {
2999 delalloc_start = delalloc_end + 1;
3000 continue;
3001 }
3002 ret = tree->ops->fill_delalloc(inode, page,
3003 delalloc_start,
3004 delalloc_end,
3005 &page_started,
3006 &nr_written);
3007 /* File system has been set read-only */
3008 if (ret) {
3009 SetPageError(page);
3010 goto done;
3011 }
3012 /*
3013 * delalloc_end is already one less than the total
3014 * length, so we don't subtract one from
3015 * PAGE_CACHE_SIZE
3016 */
3017 delalloc_to_write += (delalloc_end - delalloc_start +
3018 PAGE_CACHE_SIZE) >>
3019 PAGE_CACHE_SHIFT;
3020 delalloc_start = delalloc_end + 1;
3021 }
3022 if (wbc->nr_to_write < delalloc_to_write) {
3023 int thresh = 8192;
3024
3025 if (delalloc_to_write < thresh * 2)
3026 thresh = delalloc_to_write;
3027 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3028 thresh);
3029 }
3030
3031 /* did the fill delalloc function already unlock and start
3032 * the IO?
3033 */
3034 if (page_started) {
3035 ret = 0;
3036 /*
3037 * we've unlocked the page, so we can't update
3038 * the mapping's writeback index, just update
3039 * nr_to_write.
3040 */
3041 wbc->nr_to_write -= nr_written;
3042 goto done_unlocked;
3043 }
3044 }
3045 if (tree->ops && tree->ops->writepage_start_hook) {
3046 ret = tree->ops->writepage_start_hook(page, start,
3047 page_end);
3048 if (ret) {
3049 /* Fixup worker will requeue */
3050 if (ret == -EBUSY)
3051 wbc->pages_skipped++;
3052 else
3053 redirty_page_for_writepage(wbc, page);
3054 update_nr_written(page, wbc, nr_written);
3055 unlock_page(page);
3056 ret = 0;
3057 goto done_unlocked;
3058 }
3059 }
3060
3061 /*
3062 * we don't want to touch the inode after unlocking the page,
3063 * so we update the mapping writeback index now
3064 */
3065 update_nr_written(page, wbc, nr_written + 1);
3066
3067 end = page_end;
3068 if (last_byte <= start) {
3069 if (tree->ops && tree->ops->writepage_end_io_hook)
3070 tree->ops->writepage_end_io_hook(page, start,
3071 page_end, NULL, 1);
3072 goto done;
3073 }
3074
3075 blocksize = inode->i_sb->s_blocksize;
3076
3077 while (cur <= end) {
3078 if (cur >= last_byte) {
3079 if (tree->ops && tree->ops->writepage_end_io_hook)
3080 tree->ops->writepage_end_io_hook(page, cur,
3081 page_end, NULL, 1);
3082 break;
3083 }
3084 em = epd->get_extent(inode, page, pg_offset, cur,
3085 end - cur + 1, 1);
3086 if (IS_ERR_OR_NULL(em)) {
3087 SetPageError(page);
3088 break;
3089 }
3090
3091 extent_offset = cur - em->start;
3092 BUG_ON(extent_map_end(em) <= cur);
3093 BUG_ON(end < cur);
3094 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3095 iosize = ALIGN(iosize, blocksize);
3096 sector = (em->block_start + extent_offset) >> 9;
3097 bdev = em->bdev;
3098 block_start = em->block_start;
3099 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3100 free_extent_map(em);
3101 em = NULL;
3102
3103 /*
3104 * compressed and inline extents are written through other
3105 * paths in the FS
3106 */
3107 if (compressed || block_start == EXTENT_MAP_HOLE ||
3108 block_start == EXTENT_MAP_INLINE) {
3109 /*
3110 * end_io notification does not happen here for
3111 * compressed extents
3112 */
3113 if (!compressed && tree->ops &&
3114 tree->ops->writepage_end_io_hook)
3115 tree->ops->writepage_end_io_hook(page, cur,
3116 cur + iosize - 1,
3117 NULL, 1);
3118 else if (compressed) {
3119 /* we don't want to end_page_writeback on
3120 * a compressed extent. this happens
3121 * elsewhere
3122 */
3123 nr++;
3124 }
3125
3126 cur += iosize;
3127 pg_offset += iosize;
3128 continue;
3129 }
3130 /* leave this out until we have a page_mkwrite call */
3131 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3132 EXTENT_DIRTY, 0, NULL)) {
3133 cur = cur + iosize;
3134 pg_offset += iosize;
3135 continue;
3136 }
3137
3138 if (tree->ops && tree->ops->writepage_io_hook) {
3139 ret = tree->ops->writepage_io_hook(page, cur,
3140 cur + iosize - 1);
3141 } else {
3142 ret = 0;
3143 }
3144 if (ret) {
3145 SetPageError(page);
3146 } else {
3147 unsigned long max_nr = end_index + 1;
3148
3149 set_range_writeback(tree, cur, cur + iosize - 1);
3150 if (!PageWriteback(page)) {
3151 printk(KERN_ERR "btrfs warning page %lu not "
3152 "writeback, cur %llu end %llu\n",
3153 page->index, (unsigned long long)cur,
3154 (unsigned long long)end);
3155 }
3156
3157 ret = submit_extent_page(write_flags, tree, page,
3158 sector, iosize, pg_offset,
3159 bdev, &epd->bio, max_nr,
3160 end_bio_extent_writepage,
3161 0, 0, 0);
3162 if (ret)
3163 SetPageError(page);
3164 }
3165 cur = cur + iosize;
3166 pg_offset += iosize;
3167 nr++;
3168 }
3169 done:
3170 if (nr == 0) {
3171 /* make sure the mapping tag for page dirty gets cleared */
3172 set_page_writeback(page);
3173 end_page_writeback(page);
3174 }
3175 unlock_page(page);
3176
3177 done_unlocked:
3178
3179 /* drop our reference on any cached states */
3180 free_extent_state(cached_state);
3181 return 0;
3182 }
3183
3184 static int eb_wait(void *word)
3185 {
3186 io_schedule();
3187 return 0;
3188 }
3189
3190 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3191 {
3192 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3193 TASK_UNINTERRUPTIBLE);
3194 }
3195
3196 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3197 struct btrfs_fs_info *fs_info,
3198 struct extent_page_data *epd)
3199 {
3200 unsigned long i, num_pages;
3201 int flush = 0;
3202 int ret = 0;
3203
3204 if (!btrfs_try_tree_write_lock(eb)) {
3205 flush = 1;
3206 flush_write_bio(epd);
3207 btrfs_tree_lock(eb);
3208 }
3209
3210 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3211 btrfs_tree_unlock(eb);
3212 if (!epd->sync_io)
3213 return 0;
3214 if (!flush) {
3215 flush_write_bio(epd);
3216 flush = 1;
3217 }
3218 while (1) {
3219 wait_on_extent_buffer_writeback(eb);
3220 btrfs_tree_lock(eb);
3221 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3222 break;
3223 btrfs_tree_unlock(eb);
3224 }
3225 }
3226
3227 /*
3228 * We need to do this to prevent races in people who check if the eb is
3229 * under IO since we can end up having no IO bits set for a short period
3230 * of time.
3231 */
3232 spin_lock(&eb->refs_lock);
3233 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3234 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3235 spin_unlock(&eb->refs_lock);
3236 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3237 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3238 -eb->len,
3239 fs_info->dirty_metadata_batch);
3240 ret = 1;
3241 } else {
3242 spin_unlock(&eb->refs_lock);
3243 }
3244
3245 btrfs_tree_unlock(eb);
3246
3247 if (!ret)
3248 return ret;
3249
3250 num_pages = num_extent_pages(eb->start, eb->len);
3251 for (i = 0; i < num_pages; i++) {
3252 struct page *p = extent_buffer_page(eb, i);
3253
3254 if (!trylock_page(p)) {
3255 if (!flush) {
3256 flush_write_bio(epd);
3257 flush = 1;
3258 }
3259 lock_page(p);
3260 }
3261 }
3262
3263 return ret;
3264 }
3265
3266 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3267 {
3268 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3269 smp_mb__after_clear_bit();
3270 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3271 }
3272
3273 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3274 {
3275 int uptodate = err == 0;
3276 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3277 struct extent_buffer *eb;
3278 int done;
3279
3280 do {
3281 struct page *page = bvec->bv_page;
3282
3283 bvec--;
3284 eb = (struct extent_buffer *)page->private;
3285 BUG_ON(!eb);
3286 done = atomic_dec_and_test(&eb->io_pages);
3287
3288 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3289 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3290 ClearPageUptodate(page);
3291 SetPageError(page);
3292 }
3293
3294 end_page_writeback(page);
3295
3296 if (!done)
3297 continue;
3298
3299 end_extent_buffer_writeback(eb);
3300 } while (bvec >= bio->bi_io_vec);
3301
3302 bio_put(bio);
3303
3304 }
3305
3306 static int write_one_eb(struct extent_buffer *eb,
3307 struct btrfs_fs_info *fs_info,
3308 struct writeback_control *wbc,
3309 struct extent_page_data *epd)
3310 {
3311 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3312 u64 offset = eb->start;
3313 unsigned long i, num_pages;
3314 unsigned long bio_flags = 0;
3315 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3316 int ret = 0;
3317
3318 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3319 num_pages = num_extent_pages(eb->start, eb->len);
3320 atomic_set(&eb->io_pages, num_pages);
3321 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3322 bio_flags = EXTENT_BIO_TREE_LOG;
3323
3324 for (i = 0; i < num_pages; i++) {
3325 struct page *p = extent_buffer_page(eb, i);
3326
3327 clear_page_dirty_for_io(p);
3328 set_page_writeback(p);
3329 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3330 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3331 -1, end_bio_extent_buffer_writepage,
3332 0, epd->bio_flags, bio_flags);
3333 epd->bio_flags = bio_flags;
3334 if (ret) {
3335 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3336 SetPageError(p);
3337 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3338 end_extent_buffer_writeback(eb);
3339 ret = -EIO;
3340 break;
3341 }
3342 offset += PAGE_CACHE_SIZE;
3343 update_nr_written(p, wbc, 1);
3344 unlock_page(p);
3345 }
3346
3347 if (unlikely(ret)) {
3348 for (; i < num_pages; i++) {
3349 struct page *p = extent_buffer_page(eb, i);
3350 unlock_page(p);
3351 }
3352 }
3353
3354 return ret;
3355 }
3356
3357 int btree_write_cache_pages(struct address_space *mapping,
3358 struct writeback_control *wbc)
3359 {
3360 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3361 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3362 struct extent_buffer *eb, *prev_eb = NULL;
3363 struct extent_page_data epd = {
3364 .bio = NULL,
3365 .tree = tree,
3366 .extent_locked = 0,
3367 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3368 .bio_flags = 0,
3369 };
3370 int ret = 0;
3371 int done = 0;
3372 int nr_to_write_done = 0;
3373 struct pagevec pvec;
3374 int nr_pages;
3375 pgoff_t index;
3376 pgoff_t end; /* Inclusive */
3377 int scanned = 0;
3378 int tag;
3379
3380 pagevec_init(&pvec, 0);
3381 if (wbc->range_cyclic) {
3382 index = mapping->writeback_index; /* Start from prev offset */
3383 end = -1;
3384 } else {
3385 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3386 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3387 scanned = 1;
3388 }
3389 if (wbc->sync_mode == WB_SYNC_ALL)
3390 tag = PAGECACHE_TAG_TOWRITE;
3391 else
3392 tag = PAGECACHE_TAG_DIRTY;
3393 retry:
3394 if (wbc->sync_mode == WB_SYNC_ALL)
3395 tag_pages_for_writeback(mapping, index, end);
3396 while (!done && !nr_to_write_done && (index <= end) &&
3397 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3398 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3399 unsigned i;
3400
3401 scanned = 1;
3402 for (i = 0; i < nr_pages; i++) {
3403 struct page *page = pvec.pages[i];
3404
3405 if (!PagePrivate(page))
3406 continue;
3407
3408 if (!wbc->range_cyclic && page->index > end) {
3409 done = 1;
3410 break;
3411 }
3412
3413 spin_lock(&mapping->private_lock);
3414 if (!PagePrivate(page)) {
3415 spin_unlock(&mapping->private_lock);
3416 continue;
3417 }
3418
3419 eb = (struct extent_buffer *)page->private;
3420
3421 /*
3422 * Shouldn't happen and normally this would be a BUG_ON
3423 * but no sense in crashing the users box for something
3424 * we can survive anyway.
3425 */
3426 if (!eb) {
3427 spin_unlock(&mapping->private_lock);
3428 WARN_ON(1);
3429 continue;
3430 }
3431
3432 if (eb == prev_eb) {
3433 spin_unlock(&mapping->private_lock);
3434 continue;
3435 }
3436
3437 ret = atomic_inc_not_zero(&eb->refs);
3438 spin_unlock(&mapping->private_lock);
3439 if (!ret)
3440 continue;
3441
3442 prev_eb = eb;
3443 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3444 if (!ret) {
3445 free_extent_buffer(eb);
3446 continue;
3447 }
3448
3449 ret = write_one_eb(eb, fs_info, wbc, &epd);
3450 if (ret) {
3451 done = 1;
3452 free_extent_buffer(eb);
3453 break;
3454 }
3455 free_extent_buffer(eb);
3456
3457 /*
3458 * the filesystem may choose to bump up nr_to_write.
3459 * We have to make sure to honor the new nr_to_write
3460 * at any time
3461 */
3462 nr_to_write_done = wbc->nr_to_write <= 0;
3463 }
3464 pagevec_release(&pvec);
3465 cond_resched();
3466 }
3467 if (!scanned && !done) {
3468 /*
3469 * We hit the last page and there is more work to be done: wrap
3470 * back to the start of the file
3471 */
3472 scanned = 1;
3473 index = 0;
3474 goto retry;
3475 }
3476 flush_write_bio(&epd);
3477 return ret;
3478 }
3479
3480 /**
3481 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3482 * @mapping: address space structure to write
3483 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3484 * @writepage: function called for each page
3485 * @data: data passed to writepage function
3486 *
3487 * If a page is already under I/O, write_cache_pages() skips it, even
3488 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3489 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3490 * and msync() need to guarantee that all the data which was dirty at the time
3491 * the call was made get new I/O started against them. If wbc->sync_mode is
3492 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3493 * existing IO to complete.
3494 */
3495 static int extent_write_cache_pages(struct extent_io_tree *tree,
3496 struct address_space *mapping,
3497 struct writeback_control *wbc,
3498 writepage_t writepage, void *data,
3499 void (*flush_fn)(void *))
3500 {
3501 struct inode *inode = mapping->host;
3502 int ret = 0;
3503 int done = 0;
3504 int nr_to_write_done = 0;
3505 struct pagevec pvec;
3506 int nr_pages;
3507 pgoff_t index;
3508 pgoff_t end; /* Inclusive */
3509 int scanned = 0;
3510 int tag;
3511
3512 /*
3513 * We have to hold onto the inode so that ordered extents can do their
3514 * work when the IO finishes. The alternative to this is failing to add
3515 * an ordered extent if the igrab() fails there and that is a huge pain
3516 * to deal with, so instead just hold onto the inode throughout the
3517 * writepages operation. If it fails here we are freeing up the inode
3518 * anyway and we'd rather not waste our time writing out stuff that is
3519 * going to be truncated anyway.
3520 */
3521 if (!igrab(inode))
3522 return 0;
3523
3524 pagevec_init(&pvec, 0);
3525 if (wbc->range_cyclic) {
3526 index = mapping->writeback_index; /* Start from prev offset */
3527 end = -1;
3528 } else {
3529 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3530 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3531 scanned = 1;
3532 }
3533 if (wbc->sync_mode == WB_SYNC_ALL)
3534 tag = PAGECACHE_TAG_TOWRITE;
3535 else
3536 tag = PAGECACHE_TAG_DIRTY;
3537 retry:
3538 if (wbc->sync_mode == WB_SYNC_ALL)
3539 tag_pages_for_writeback(mapping, index, end);
3540 while (!done && !nr_to_write_done && (index <= end) &&
3541 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3542 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3543 unsigned i;
3544
3545 scanned = 1;
3546 for (i = 0; i < nr_pages; i++) {
3547 struct page *page = pvec.pages[i];
3548
3549 /*
3550 * At this point we hold neither mapping->tree_lock nor
3551 * lock on the page itself: the page may be truncated or
3552 * invalidated (changing page->mapping to NULL), or even
3553 * swizzled back from swapper_space to tmpfs file
3554 * mapping
3555 */
3556 if (!trylock_page(page)) {
3557 flush_fn(data);
3558 lock_page(page);
3559 }
3560
3561 if (unlikely(page->mapping != mapping)) {
3562 unlock_page(page);
3563 continue;
3564 }
3565
3566 if (!wbc->range_cyclic && page->index > end) {
3567 done = 1;
3568 unlock_page(page);
3569 continue;
3570 }
3571
3572 if (wbc->sync_mode != WB_SYNC_NONE) {
3573 if (PageWriteback(page))
3574 flush_fn(data);
3575 wait_on_page_writeback(page);
3576 }
3577
3578 if (PageWriteback(page) ||
3579 !clear_page_dirty_for_io(page)) {
3580 unlock_page(page);
3581 continue;
3582 }
3583
3584 ret = (*writepage)(page, wbc, data);
3585
3586 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3587 unlock_page(page);
3588 ret = 0;
3589 }
3590 if (ret)
3591 done = 1;
3592
3593 /*
3594 * the filesystem may choose to bump up nr_to_write.
3595 * We have to make sure to honor the new nr_to_write
3596 * at any time
3597 */
3598 nr_to_write_done = wbc->nr_to_write <= 0;
3599 }
3600 pagevec_release(&pvec);
3601 cond_resched();
3602 }
3603 if (!scanned && !done) {
3604 /*
3605 * We hit the last page and there is more work to be done: wrap
3606 * back to the start of the file
3607 */
3608 scanned = 1;
3609 index = 0;
3610 goto retry;
3611 }
3612 btrfs_add_delayed_iput(inode);
3613 return ret;
3614 }
3615
3616 static void flush_epd_write_bio(struct extent_page_data *epd)
3617 {
3618 if (epd->bio) {
3619 int rw = WRITE;
3620 int ret;
3621
3622 if (epd->sync_io)
3623 rw = WRITE_SYNC;
3624
3625 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3626 BUG_ON(ret < 0); /* -ENOMEM */
3627 epd->bio = NULL;
3628 }
3629 }
3630
3631 static noinline void flush_write_bio(void *data)
3632 {
3633 struct extent_page_data *epd = data;
3634 flush_epd_write_bio(epd);
3635 }
3636
3637 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3638 get_extent_t *get_extent,
3639 struct writeback_control *wbc)
3640 {
3641 int ret;
3642 struct extent_page_data epd = {
3643 .bio = NULL,
3644 .tree = tree,
3645 .get_extent = get_extent,
3646 .extent_locked = 0,
3647 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3648 .bio_flags = 0,
3649 };
3650
3651 ret = __extent_writepage(page, wbc, &epd);
3652
3653 flush_epd_write_bio(&epd);
3654 return ret;
3655 }
3656
3657 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3658 u64 start, u64 end, get_extent_t *get_extent,
3659 int mode)
3660 {
3661 int ret = 0;
3662 struct address_space *mapping = inode->i_mapping;
3663 struct page *page;
3664 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3665 PAGE_CACHE_SHIFT;
3666
3667 struct extent_page_data epd = {
3668 .bio = NULL,
3669 .tree = tree,
3670 .get_extent = get_extent,
3671 .extent_locked = 1,
3672 .sync_io = mode == WB_SYNC_ALL,
3673 .bio_flags = 0,
3674 };
3675 struct writeback_control wbc_writepages = {
3676 .sync_mode = mode,
3677 .nr_to_write = nr_pages * 2,
3678 .range_start = start,
3679 .range_end = end + 1,
3680 };
3681
3682 while (start <= end) {
3683 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3684 if (clear_page_dirty_for_io(page))
3685 ret = __extent_writepage(page, &wbc_writepages, &epd);
3686 else {
3687 if (tree->ops && tree->ops->writepage_end_io_hook)
3688 tree->ops->writepage_end_io_hook(page, start,
3689 start + PAGE_CACHE_SIZE - 1,
3690 NULL, 1);
3691 unlock_page(page);
3692 }
3693 page_cache_release(page);
3694 start += PAGE_CACHE_SIZE;
3695 }
3696
3697 flush_epd_write_bio(&epd);
3698 return ret;
3699 }
3700
3701 int extent_writepages(struct extent_io_tree *tree,
3702 struct address_space *mapping,
3703 get_extent_t *get_extent,
3704 struct writeback_control *wbc)
3705 {
3706 int ret = 0;
3707 struct extent_page_data epd = {
3708 .bio = NULL,
3709 .tree = tree,
3710 .get_extent = get_extent,
3711 .extent_locked = 0,
3712 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3713 .bio_flags = 0,
3714 };
3715
3716 ret = extent_write_cache_pages(tree, mapping, wbc,
3717 __extent_writepage, &epd,
3718 flush_write_bio);
3719 flush_epd_write_bio(&epd);
3720 return ret;
3721 }
3722
3723 int extent_readpages(struct extent_io_tree *tree,
3724 struct address_space *mapping,
3725 struct list_head *pages, unsigned nr_pages,
3726 get_extent_t get_extent)
3727 {
3728 struct bio *bio = NULL;
3729 unsigned page_idx;
3730 unsigned long bio_flags = 0;
3731 struct page *pagepool[16];
3732 struct page *page;
3733 int i = 0;
3734 int nr = 0;
3735
3736 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3737 page = list_entry(pages->prev, struct page, lru);
3738
3739 prefetchw(&page->flags);
3740 list_del(&page->lru);
3741 if (add_to_page_cache_lru(page, mapping,
3742 page->index, GFP_NOFS)) {
3743 page_cache_release(page);
3744 continue;
3745 }
3746
3747 pagepool[nr++] = page;
3748 if (nr < ARRAY_SIZE(pagepool))
3749 continue;
3750 for (i = 0; i < nr; i++) {
3751 __extent_read_full_page(tree, pagepool[i], get_extent,
3752 &bio, 0, &bio_flags, READ);
3753 page_cache_release(pagepool[i]);
3754 }
3755 nr = 0;
3756 }
3757 for (i = 0; i < nr; i++) {
3758 __extent_read_full_page(tree, pagepool[i], get_extent,
3759 &bio, 0, &bio_flags, READ);
3760 page_cache_release(pagepool[i]);
3761 }
3762
3763 BUG_ON(!list_empty(pages));
3764 if (bio)
3765 return submit_one_bio(READ, bio, 0, bio_flags);
3766 return 0;
3767 }
3768
3769 /*
3770 * basic invalidatepage code, this waits on any locked or writeback
3771 * ranges corresponding to the page, and then deletes any extent state
3772 * records from the tree
3773 */
3774 int extent_invalidatepage(struct extent_io_tree *tree,
3775 struct page *page, unsigned long offset)
3776 {
3777 struct extent_state *cached_state = NULL;
3778 u64 start = page_offset(page);
3779 u64 end = start + PAGE_CACHE_SIZE - 1;
3780 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3781
3782 start += ALIGN(offset, blocksize);
3783 if (start > end)
3784 return 0;
3785
3786 lock_extent_bits(tree, start, end, 0, &cached_state);
3787 wait_on_page_writeback(page);
3788 clear_extent_bit(tree, start, end,
3789 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3790 EXTENT_DO_ACCOUNTING,
3791 1, 1, &cached_state, GFP_NOFS);
3792 return 0;
3793 }
3794
3795 /*
3796 * a helper for releasepage, this tests for areas of the page that
3797 * are locked or under IO and drops the related state bits if it is safe
3798 * to drop the page.
3799 */
3800 static int try_release_extent_state(struct extent_map_tree *map,
3801 struct extent_io_tree *tree,
3802 struct page *page, gfp_t mask)
3803 {
3804 u64 start = page_offset(page);
3805 u64 end = start + PAGE_CACHE_SIZE - 1;
3806 int ret = 1;
3807
3808 if (test_range_bit(tree, start, end,
3809 EXTENT_IOBITS, 0, NULL))
3810 ret = 0;
3811 else {
3812 if ((mask & GFP_NOFS) == GFP_NOFS)
3813 mask = GFP_NOFS;
3814 /*
3815 * at this point we can safely clear everything except the
3816 * locked bit and the nodatasum bit
3817 */
3818 ret = clear_extent_bit(tree, start, end,
3819 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3820 0, 0, NULL, mask);
3821
3822 /* if clear_extent_bit failed for enomem reasons,
3823 * we can't allow the release to continue.
3824 */
3825 if (ret < 0)
3826 ret = 0;
3827 else
3828 ret = 1;
3829 }
3830 return ret;
3831 }
3832
3833 /*
3834 * a helper for releasepage. As long as there are no locked extents
3835 * in the range corresponding to the page, both state records and extent
3836 * map records are removed
3837 */
3838 int try_release_extent_mapping(struct extent_map_tree *map,
3839 struct extent_io_tree *tree, struct page *page,
3840 gfp_t mask)
3841 {
3842 struct extent_map *em;
3843 u64 start = page_offset(page);
3844 u64 end = start + PAGE_CACHE_SIZE - 1;
3845
3846 if ((mask & __GFP_WAIT) &&
3847 page->mapping->host->i_size > 16 * 1024 * 1024) {
3848 u64 len;
3849 while (start <= end) {
3850 len = end - start + 1;
3851 write_lock(&map->lock);
3852 em = lookup_extent_mapping(map, start, len);
3853 if (!em) {
3854 write_unlock(&map->lock);
3855 break;
3856 }
3857 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3858 em->start != start) {
3859 write_unlock(&map->lock);
3860 free_extent_map(em);
3861 break;
3862 }
3863 if (!test_range_bit(tree, em->start,
3864 extent_map_end(em) - 1,
3865 EXTENT_LOCKED | EXTENT_WRITEBACK,
3866 0, NULL)) {
3867 remove_extent_mapping(map, em);
3868 /* once for the rb tree */
3869 free_extent_map(em);
3870 }
3871 start = extent_map_end(em);
3872 write_unlock(&map->lock);
3873
3874 /* once for us */
3875 free_extent_map(em);
3876 }
3877 }
3878 return try_release_extent_state(map, tree, page, mask);
3879 }
3880
3881 /*
3882 * helper function for fiemap, which doesn't want to see any holes.
3883 * This maps until we find something past 'last'
3884 */
3885 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3886 u64 offset,
3887 u64 last,
3888 get_extent_t *get_extent)
3889 {
3890 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3891 struct extent_map *em;
3892 u64 len;
3893
3894 if (offset >= last)
3895 return NULL;
3896
3897 while(1) {
3898 len = last - offset;
3899 if (len == 0)
3900 break;
3901 len = ALIGN(len, sectorsize);
3902 em = get_extent(inode, NULL, 0, offset, len, 0);
3903 if (IS_ERR_OR_NULL(em))
3904 return em;
3905
3906 /* if this isn't a hole return it */
3907 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3908 em->block_start != EXTENT_MAP_HOLE) {
3909 return em;
3910 }
3911
3912 /* this is a hole, advance to the next extent */
3913 offset = extent_map_end(em);
3914 free_extent_map(em);
3915 if (offset >= last)
3916 break;
3917 }
3918 return NULL;
3919 }
3920
3921 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3922 __u64 start, __u64 len, get_extent_t *get_extent)
3923 {
3924 int ret = 0;
3925 u64 off = start;
3926 u64 max = start + len;
3927 u32 flags = 0;
3928 u32 found_type;
3929 u64 last;
3930 u64 last_for_get_extent = 0;
3931 u64 disko = 0;
3932 u64 isize = i_size_read(inode);
3933 struct btrfs_key found_key;
3934 struct extent_map *em = NULL;
3935 struct extent_state *cached_state = NULL;
3936 struct btrfs_path *path;
3937 struct btrfs_file_extent_item *item;
3938 int end = 0;
3939 u64 em_start = 0;
3940 u64 em_len = 0;
3941 u64 em_end = 0;
3942 unsigned long emflags;
3943
3944 if (len == 0)
3945 return -EINVAL;
3946
3947 path = btrfs_alloc_path();
3948 if (!path)
3949 return -ENOMEM;
3950 path->leave_spinning = 1;
3951
3952 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3953 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3954
3955 /*
3956 * lookup the last file extent. We're not using i_size here
3957 * because there might be preallocation past i_size
3958 */
3959 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3960 path, btrfs_ino(inode), -1, 0);
3961 if (ret < 0) {
3962 btrfs_free_path(path);
3963 return ret;
3964 }
3965 WARN_ON(!ret);
3966 path->slots[0]--;
3967 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3968 struct btrfs_file_extent_item);
3969 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3970 found_type = btrfs_key_type(&found_key);
3971
3972 /* No extents, but there might be delalloc bits */
3973 if (found_key.objectid != btrfs_ino(inode) ||
3974 found_type != BTRFS_EXTENT_DATA_KEY) {
3975 /* have to trust i_size as the end */
3976 last = (u64)-1;
3977 last_for_get_extent = isize;
3978 } else {
3979 /*
3980 * remember the start of the last extent. There are a
3981 * bunch of different factors that go into the length of the
3982 * extent, so its much less complex to remember where it started
3983 */
3984 last = found_key.offset;
3985 last_for_get_extent = last + 1;
3986 }
3987 btrfs_free_path(path);
3988
3989 /*
3990 * we might have some extents allocated but more delalloc past those
3991 * extents. so, we trust isize unless the start of the last extent is
3992 * beyond isize
3993 */
3994 if (last < isize) {
3995 last = (u64)-1;
3996 last_for_get_extent = isize;
3997 }
3998
3999 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4000 &cached_state);
4001
4002 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4003 get_extent);
4004 if (!em)
4005 goto out;
4006 if (IS_ERR(em)) {
4007 ret = PTR_ERR(em);
4008 goto out;
4009 }
4010
4011 while (!end) {
4012 u64 offset_in_extent;
4013
4014 /* break if the extent we found is outside the range */
4015 if (em->start >= max || extent_map_end(em) < off)
4016 break;
4017
4018 /*
4019 * get_extent may return an extent that starts before our
4020 * requested range. We have to make sure the ranges
4021 * we return to fiemap always move forward and don't
4022 * overlap, so adjust the offsets here
4023 */
4024 em_start = max(em->start, off);
4025
4026 /*
4027 * record the offset from the start of the extent
4028 * for adjusting the disk offset below
4029 */
4030 offset_in_extent = em_start - em->start;
4031 em_end = extent_map_end(em);
4032 em_len = em_end - em_start;
4033 emflags = em->flags;
4034 disko = 0;
4035 flags = 0;
4036
4037 /*
4038 * bump off for our next call to get_extent
4039 */
4040 off = extent_map_end(em);
4041 if (off >= max)
4042 end = 1;
4043
4044 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4045 end = 1;
4046 flags |= FIEMAP_EXTENT_LAST;
4047 } else if (em->block_start == EXTENT_MAP_INLINE) {
4048 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4049 FIEMAP_EXTENT_NOT_ALIGNED);
4050 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4051 flags |= (FIEMAP_EXTENT_DELALLOC |
4052 FIEMAP_EXTENT_UNKNOWN);
4053 } else {
4054 disko = em->block_start + offset_in_extent;
4055 }
4056 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4057 flags |= FIEMAP_EXTENT_ENCODED;
4058
4059 free_extent_map(em);
4060 em = NULL;
4061 if ((em_start >= last) || em_len == (u64)-1 ||
4062 (last == (u64)-1 && isize <= em_end)) {
4063 flags |= FIEMAP_EXTENT_LAST;
4064 end = 1;
4065 }
4066
4067 /* now scan forward to see if this is really the last extent. */
4068 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4069 get_extent);
4070 if (IS_ERR(em)) {
4071 ret = PTR_ERR(em);
4072 goto out;
4073 }
4074 if (!em) {
4075 flags |= FIEMAP_EXTENT_LAST;
4076 end = 1;
4077 }
4078 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4079 em_len, flags);
4080 if (ret)
4081 goto out_free;
4082 }
4083 out_free:
4084 free_extent_map(em);
4085 out:
4086 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4087 &cached_state, GFP_NOFS);
4088 return ret;
4089 }
4090
4091 static void __free_extent_buffer(struct extent_buffer *eb)
4092 {
4093 btrfs_leak_debug_del(&eb->leak_list);
4094 kmem_cache_free(extent_buffer_cache, eb);
4095 }
4096
4097 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4098 u64 start,
4099 unsigned long len,
4100 gfp_t mask)
4101 {
4102 struct extent_buffer *eb = NULL;
4103
4104 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4105 if (eb == NULL)
4106 return NULL;
4107 eb->start = start;
4108 eb->len = len;
4109 eb->tree = tree;
4110 eb->bflags = 0;
4111 rwlock_init(&eb->lock);
4112 atomic_set(&eb->write_locks, 0);
4113 atomic_set(&eb->read_locks, 0);
4114 atomic_set(&eb->blocking_readers, 0);
4115 atomic_set(&eb->blocking_writers, 0);
4116 atomic_set(&eb->spinning_readers, 0);
4117 atomic_set(&eb->spinning_writers, 0);
4118 eb->lock_nested = 0;
4119 init_waitqueue_head(&eb->write_lock_wq);
4120 init_waitqueue_head(&eb->read_lock_wq);
4121
4122 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4123
4124 spin_lock_init(&eb->refs_lock);
4125 atomic_set(&eb->refs, 1);
4126 atomic_set(&eb->io_pages, 0);
4127
4128 /*
4129 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4130 */
4131 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4132 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4133 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4134
4135 return eb;
4136 }
4137
4138 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4139 {
4140 unsigned long i;
4141 struct page *p;
4142 struct extent_buffer *new;
4143 unsigned long num_pages = num_extent_pages(src->start, src->len);
4144
4145 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4146 if (new == NULL)
4147 return NULL;
4148
4149 for (i = 0; i < num_pages; i++) {
4150 p = alloc_page(GFP_ATOMIC);
4151 BUG_ON(!p);
4152 attach_extent_buffer_page(new, p);
4153 WARN_ON(PageDirty(p));
4154 SetPageUptodate(p);
4155 new->pages[i] = p;
4156 }
4157
4158 copy_extent_buffer(new, src, 0, 0, src->len);
4159 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4160 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4161
4162 return new;
4163 }
4164
4165 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4166 {
4167 struct extent_buffer *eb;
4168 unsigned long num_pages = num_extent_pages(0, len);
4169 unsigned long i;
4170
4171 eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4172 if (!eb)
4173 return NULL;
4174
4175 for (i = 0; i < num_pages; i++) {
4176 eb->pages[i] = alloc_page(GFP_ATOMIC);
4177 if (!eb->pages[i])
4178 goto err;
4179 }
4180 set_extent_buffer_uptodate(eb);
4181 btrfs_set_header_nritems(eb, 0);
4182 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4183
4184 return eb;
4185 err:
4186 for (; i > 0; i--)
4187 __free_page(eb->pages[i - 1]);
4188 __free_extent_buffer(eb);
4189 return NULL;
4190 }
4191
4192 static int extent_buffer_under_io(struct extent_buffer *eb)
4193 {
4194 return (atomic_read(&eb->io_pages) ||
4195 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4196 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4197 }
4198
4199 /*
4200 * Helper for releasing extent buffer page.
4201 */
4202 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4203 unsigned long start_idx)
4204 {
4205 unsigned long index;
4206 unsigned long num_pages;
4207 struct page *page;
4208 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4209
4210 BUG_ON(extent_buffer_under_io(eb));
4211
4212 num_pages = num_extent_pages(eb->start, eb->len);
4213 index = start_idx + num_pages;
4214 if (start_idx >= index)
4215 return;
4216
4217 do {
4218 index--;
4219 page = extent_buffer_page(eb, index);
4220 if (page && mapped) {
4221 spin_lock(&page->mapping->private_lock);
4222 /*
4223 * We do this since we'll remove the pages after we've
4224 * removed the eb from the radix tree, so we could race
4225 * and have this page now attached to the new eb. So
4226 * only clear page_private if it's still connected to
4227 * this eb.
4228 */
4229 if (PagePrivate(page) &&
4230 page->private == (unsigned long)eb) {
4231 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4232 BUG_ON(PageDirty(page));
4233 BUG_ON(PageWriteback(page));
4234 /*
4235 * We need to make sure we haven't be attached
4236 * to a new eb.
4237 */
4238 ClearPagePrivate(page);
4239 set_page_private(page, 0);
4240 /* One for the page private */
4241 page_cache_release(page);
4242 }
4243 spin_unlock(&page->mapping->private_lock);
4244
4245 }
4246 if (page) {
4247 /* One for when we alloced the page */
4248 page_cache_release(page);
4249 }
4250 } while (index != start_idx);
4251 }
4252
4253 /*
4254 * Helper for releasing the extent buffer.
4255 */
4256 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4257 {
4258 btrfs_release_extent_buffer_page(eb, 0);
4259 __free_extent_buffer(eb);
4260 }
4261
4262 static void check_buffer_tree_ref(struct extent_buffer *eb)
4263 {
4264 int refs;
4265 /* the ref bit is tricky. We have to make sure it is set
4266 * if we have the buffer dirty. Otherwise the
4267 * code to free a buffer can end up dropping a dirty
4268 * page
4269 *
4270 * Once the ref bit is set, it won't go away while the
4271 * buffer is dirty or in writeback, and it also won't
4272 * go away while we have the reference count on the
4273 * eb bumped.
4274 *
4275 * We can't just set the ref bit without bumping the
4276 * ref on the eb because free_extent_buffer might
4277 * see the ref bit and try to clear it. If this happens
4278 * free_extent_buffer might end up dropping our original
4279 * ref by mistake and freeing the page before we are able
4280 * to add one more ref.
4281 *
4282 * So bump the ref count first, then set the bit. If someone
4283 * beat us to it, drop the ref we added.
4284 */
4285 refs = atomic_read(&eb->refs);
4286 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4287 return;
4288
4289 spin_lock(&eb->refs_lock);
4290 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4291 atomic_inc(&eb->refs);
4292 spin_unlock(&eb->refs_lock);
4293 }
4294
4295 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4296 {
4297 unsigned long num_pages, i;
4298
4299 check_buffer_tree_ref(eb);
4300
4301 num_pages = num_extent_pages(eb->start, eb->len);
4302 for (i = 0; i < num_pages; i++) {
4303 struct page *p = extent_buffer_page(eb, i);
4304 mark_page_accessed(p);
4305 }
4306 }
4307
4308 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4309 u64 start, unsigned long len)
4310 {
4311 unsigned long num_pages = num_extent_pages(start, len);
4312 unsigned long i;
4313 unsigned long index = start >> PAGE_CACHE_SHIFT;
4314 struct extent_buffer *eb;
4315 struct extent_buffer *exists = NULL;
4316 struct page *p;
4317 struct address_space *mapping = tree->mapping;
4318 int uptodate = 1;
4319 int ret;
4320
4321 rcu_read_lock();
4322 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4323 if (eb && atomic_inc_not_zero(&eb->refs)) {
4324 rcu_read_unlock();
4325 mark_extent_buffer_accessed(eb);
4326 return eb;
4327 }
4328 rcu_read_unlock();
4329
4330 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4331 if (!eb)
4332 return NULL;
4333
4334 for (i = 0; i < num_pages; i++, index++) {
4335 p = find_or_create_page(mapping, index, GFP_NOFS);
4336 if (!p)
4337 goto free_eb;
4338
4339 spin_lock(&mapping->private_lock);
4340 if (PagePrivate(p)) {
4341 /*
4342 * We could have already allocated an eb for this page
4343 * and attached one so lets see if we can get a ref on
4344 * the existing eb, and if we can we know it's good and
4345 * we can just return that one, else we know we can just
4346 * overwrite page->private.
4347 */
4348 exists = (struct extent_buffer *)p->private;
4349 if (atomic_inc_not_zero(&exists->refs)) {
4350 spin_unlock(&mapping->private_lock);
4351 unlock_page(p);
4352 page_cache_release(p);
4353 mark_extent_buffer_accessed(exists);
4354 goto free_eb;
4355 }
4356
4357 /*
4358 * Do this so attach doesn't complain and we need to
4359 * drop the ref the old guy had.
4360 */
4361 ClearPagePrivate(p);
4362 WARN_ON(PageDirty(p));
4363 page_cache_release(p);
4364 }
4365 attach_extent_buffer_page(eb, p);
4366 spin_unlock(&mapping->private_lock);
4367 WARN_ON(PageDirty(p));
4368 mark_page_accessed(p);
4369 eb->pages[i] = p;
4370 if (!PageUptodate(p))
4371 uptodate = 0;
4372
4373 /*
4374 * see below about how we avoid a nasty race with release page
4375 * and why we unlock later
4376 */
4377 }
4378 if (uptodate)
4379 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4380 again:
4381 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4382 if (ret)
4383 goto free_eb;
4384
4385 spin_lock(&tree->buffer_lock);
4386 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4387 if (ret == -EEXIST) {
4388 exists = radix_tree_lookup(&tree->buffer,
4389 start >> PAGE_CACHE_SHIFT);
4390 if (!atomic_inc_not_zero(&exists->refs)) {
4391 spin_unlock(&tree->buffer_lock);
4392 radix_tree_preload_end();
4393 exists = NULL;
4394 goto again;
4395 }
4396 spin_unlock(&tree->buffer_lock);
4397 radix_tree_preload_end();
4398 mark_extent_buffer_accessed(exists);
4399 goto free_eb;
4400 }
4401 /* add one reference for the tree */
4402 check_buffer_tree_ref(eb);
4403 spin_unlock(&tree->buffer_lock);
4404 radix_tree_preload_end();
4405
4406 /*
4407 * there is a race where release page may have
4408 * tried to find this extent buffer in the radix
4409 * but failed. It will tell the VM it is safe to
4410 * reclaim the, and it will clear the page private bit.
4411 * We must make sure to set the page private bit properly
4412 * after the extent buffer is in the radix tree so
4413 * it doesn't get lost
4414 */
4415 SetPageChecked(eb->pages[0]);
4416 for (i = 1; i < num_pages; i++) {
4417 p = extent_buffer_page(eb, i);
4418 ClearPageChecked(p);
4419 unlock_page(p);
4420 }
4421 unlock_page(eb->pages[0]);
4422 return eb;
4423
4424 free_eb:
4425 for (i = 0; i < num_pages; i++) {
4426 if (eb->pages[i])
4427 unlock_page(eb->pages[i]);
4428 }
4429
4430 WARN_ON(!atomic_dec_and_test(&eb->refs));
4431 btrfs_release_extent_buffer(eb);
4432 return exists;
4433 }
4434
4435 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4436 u64 start, unsigned long len)
4437 {
4438 struct extent_buffer *eb;
4439
4440 rcu_read_lock();
4441 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4442 if (eb && atomic_inc_not_zero(&eb->refs)) {
4443 rcu_read_unlock();
4444 mark_extent_buffer_accessed(eb);
4445 return eb;
4446 }
4447 rcu_read_unlock();
4448
4449 return NULL;
4450 }
4451
4452 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4453 {
4454 struct extent_buffer *eb =
4455 container_of(head, struct extent_buffer, rcu_head);
4456
4457 __free_extent_buffer(eb);
4458 }
4459
4460 /* Expects to have eb->eb_lock already held */
4461 static int release_extent_buffer(struct extent_buffer *eb)
4462 {
4463 WARN_ON(atomic_read(&eb->refs) == 0);
4464 if (atomic_dec_and_test(&eb->refs)) {
4465 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4466 spin_unlock(&eb->refs_lock);
4467 } else {
4468 struct extent_io_tree *tree = eb->tree;
4469
4470 spin_unlock(&eb->refs_lock);
4471
4472 spin_lock(&tree->buffer_lock);
4473 radix_tree_delete(&tree->buffer,
4474 eb->start >> PAGE_CACHE_SHIFT);
4475 spin_unlock(&tree->buffer_lock);
4476 }
4477
4478 /* Should be safe to release our pages at this point */
4479 btrfs_release_extent_buffer_page(eb, 0);
4480 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4481 return 1;
4482 }
4483 spin_unlock(&eb->refs_lock);
4484
4485 return 0;
4486 }
4487
4488 void free_extent_buffer(struct extent_buffer *eb)
4489 {
4490 int refs;
4491 int old;
4492 if (!eb)
4493 return;
4494
4495 while (1) {
4496 refs = atomic_read(&eb->refs);
4497 if (refs <= 3)
4498 break;
4499 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4500 if (old == refs)
4501 return;
4502 }
4503
4504 spin_lock(&eb->refs_lock);
4505 if (atomic_read(&eb->refs) == 2 &&
4506 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4507 atomic_dec(&eb->refs);
4508
4509 if (atomic_read(&eb->refs) == 2 &&
4510 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4511 !extent_buffer_under_io(eb) &&
4512 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4513 atomic_dec(&eb->refs);
4514
4515 /*
4516 * I know this is terrible, but it's temporary until we stop tracking
4517 * the uptodate bits and such for the extent buffers.
4518 */
4519 release_extent_buffer(eb);
4520 }
4521
4522 void free_extent_buffer_stale(struct extent_buffer *eb)
4523 {
4524 if (!eb)
4525 return;
4526
4527 spin_lock(&eb->refs_lock);
4528 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4529
4530 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4531 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4532 atomic_dec(&eb->refs);
4533 release_extent_buffer(eb);
4534 }
4535
4536 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4537 {
4538 unsigned long i;
4539 unsigned long num_pages;
4540 struct page *page;
4541
4542 num_pages = num_extent_pages(eb->start, eb->len);
4543
4544 for (i = 0; i < num_pages; i++) {
4545 page = extent_buffer_page(eb, i);
4546 if (!PageDirty(page))
4547 continue;
4548
4549 lock_page(page);
4550 WARN_ON(!PagePrivate(page));
4551
4552 clear_page_dirty_for_io(page);
4553 spin_lock_irq(&page->mapping->tree_lock);
4554 if (!PageDirty(page)) {
4555 radix_tree_tag_clear(&page->mapping->page_tree,
4556 page_index(page),
4557 PAGECACHE_TAG_DIRTY);
4558 }
4559 spin_unlock_irq(&page->mapping->tree_lock);
4560 ClearPageError(page);
4561 unlock_page(page);
4562 }
4563 WARN_ON(atomic_read(&eb->refs) == 0);
4564 }
4565
4566 int set_extent_buffer_dirty(struct extent_buffer *eb)
4567 {
4568 unsigned long i;
4569 unsigned long num_pages;
4570 int was_dirty = 0;
4571
4572 check_buffer_tree_ref(eb);
4573
4574 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4575
4576 num_pages = num_extent_pages(eb->start, eb->len);
4577 WARN_ON(atomic_read(&eb->refs) == 0);
4578 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4579
4580 for (i = 0; i < num_pages; i++)
4581 set_page_dirty(extent_buffer_page(eb, i));
4582 return was_dirty;
4583 }
4584
4585 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4586 {
4587 unsigned long i;
4588 struct page *page;
4589 unsigned long num_pages;
4590
4591 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4592 num_pages = num_extent_pages(eb->start, eb->len);
4593 for (i = 0; i < num_pages; i++) {
4594 page = extent_buffer_page(eb, i);
4595 if (page)
4596 ClearPageUptodate(page);
4597 }
4598 return 0;
4599 }
4600
4601 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4602 {
4603 unsigned long i;
4604 struct page *page;
4605 unsigned long num_pages;
4606
4607 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4608 num_pages = num_extent_pages(eb->start, eb->len);
4609 for (i = 0; i < num_pages; i++) {
4610 page = extent_buffer_page(eb, i);
4611 SetPageUptodate(page);
4612 }
4613 return 0;
4614 }
4615
4616 int extent_buffer_uptodate(struct extent_buffer *eb)
4617 {
4618 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4619 }
4620
4621 int read_extent_buffer_pages(struct extent_io_tree *tree,
4622 struct extent_buffer *eb, u64 start, int wait,
4623 get_extent_t *get_extent, int mirror_num)
4624 {
4625 unsigned long i;
4626 unsigned long start_i;
4627 struct page *page;
4628 int err;
4629 int ret = 0;
4630 int locked_pages = 0;
4631 int all_uptodate = 1;
4632 unsigned long num_pages;
4633 unsigned long num_reads = 0;
4634 struct bio *bio = NULL;
4635 unsigned long bio_flags = 0;
4636
4637 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4638 return 0;
4639
4640 if (start) {
4641 WARN_ON(start < eb->start);
4642 start_i = (start >> PAGE_CACHE_SHIFT) -
4643 (eb->start >> PAGE_CACHE_SHIFT);
4644 } else {
4645 start_i = 0;
4646 }
4647
4648 num_pages = num_extent_pages(eb->start, eb->len);
4649 for (i = start_i; i < num_pages; i++) {
4650 page = extent_buffer_page(eb, i);
4651 if (wait == WAIT_NONE) {
4652 if (!trylock_page(page))
4653 goto unlock_exit;
4654 } else {
4655 lock_page(page);
4656 }
4657 locked_pages++;
4658 if (!PageUptodate(page)) {
4659 num_reads++;
4660 all_uptodate = 0;
4661 }
4662 }
4663 if (all_uptodate) {
4664 if (start_i == 0)
4665 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4666 goto unlock_exit;
4667 }
4668
4669 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4670 eb->read_mirror = 0;
4671 atomic_set(&eb->io_pages, num_reads);
4672 for (i = start_i; i < num_pages; i++) {
4673 page = extent_buffer_page(eb, i);
4674 if (!PageUptodate(page)) {
4675 ClearPageError(page);
4676 err = __extent_read_full_page(tree, page,
4677 get_extent, &bio,
4678 mirror_num, &bio_flags,
4679 READ | REQ_META);
4680 if (err)
4681 ret = err;
4682 } else {
4683 unlock_page(page);
4684 }
4685 }
4686
4687 if (bio) {
4688 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4689 bio_flags);
4690 if (err)
4691 return err;
4692 }
4693
4694 if (ret || wait != WAIT_COMPLETE)
4695 return ret;
4696
4697 for (i = start_i; i < num_pages; i++) {
4698 page = extent_buffer_page(eb, i);
4699 wait_on_page_locked(page);
4700 if (!PageUptodate(page))
4701 ret = -EIO;
4702 }
4703
4704 return ret;
4705
4706 unlock_exit:
4707 i = start_i;
4708 while (locked_pages > 0) {
4709 page = extent_buffer_page(eb, i);
4710 i++;
4711 unlock_page(page);
4712 locked_pages--;
4713 }
4714 return ret;
4715 }
4716
4717 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4718 unsigned long start,
4719 unsigned long len)
4720 {
4721 size_t cur;
4722 size_t offset;
4723 struct page *page;
4724 char *kaddr;
4725 char *dst = (char *)dstv;
4726 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4727 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4728
4729 WARN_ON(start > eb->len);
4730 WARN_ON(start + len > eb->start + eb->len);
4731
4732 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4733
4734 while (len > 0) {
4735 page = extent_buffer_page(eb, i);
4736
4737 cur = min(len, (PAGE_CACHE_SIZE - offset));
4738 kaddr = page_address(page);
4739 memcpy(dst, kaddr + offset, cur);
4740
4741 dst += cur;
4742 len -= cur;
4743 offset = 0;
4744 i++;
4745 }
4746 }
4747
4748 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4749 unsigned long min_len, char **map,
4750 unsigned long *map_start,
4751 unsigned long *map_len)
4752 {
4753 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4754 char *kaddr;
4755 struct page *p;
4756 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4757 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4758 unsigned long end_i = (start_offset + start + min_len - 1) >>
4759 PAGE_CACHE_SHIFT;
4760
4761 if (i != end_i)
4762 return -EINVAL;
4763
4764 if (i == 0) {
4765 offset = start_offset;
4766 *map_start = 0;
4767 } else {
4768 offset = 0;
4769 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4770 }
4771
4772 if (start + min_len > eb->len) {
4773 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4774 "wanted %lu %lu\n", (unsigned long long)eb->start,
4775 eb->len, start, min_len);
4776 return -EINVAL;
4777 }
4778
4779 p = extent_buffer_page(eb, i);
4780 kaddr = page_address(p);
4781 *map = kaddr + offset;
4782 *map_len = PAGE_CACHE_SIZE - offset;
4783 return 0;
4784 }
4785
4786 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4787 unsigned long start,
4788 unsigned long len)
4789 {
4790 size_t cur;
4791 size_t offset;
4792 struct page *page;
4793 char *kaddr;
4794 char *ptr = (char *)ptrv;
4795 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4796 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4797 int ret = 0;
4798
4799 WARN_ON(start > eb->len);
4800 WARN_ON(start + len > eb->start + eb->len);
4801
4802 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4803
4804 while (len > 0) {
4805 page = extent_buffer_page(eb, i);
4806
4807 cur = min(len, (PAGE_CACHE_SIZE - offset));
4808
4809 kaddr = page_address(page);
4810 ret = memcmp(ptr, kaddr + offset, cur);
4811 if (ret)
4812 break;
4813
4814 ptr += cur;
4815 len -= cur;
4816 offset = 0;
4817 i++;
4818 }
4819 return ret;
4820 }
4821
4822 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4823 unsigned long start, unsigned long len)
4824 {
4825 size_t cur;
4826 size_t offset;
4827 struct page *page;
4828 char *kaddr;
4829 char *src = (char *)srcv;
4830 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4831 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4832
4833 WARN_ON(start > eb->len);
4834 WARN_ON(start + len > eb->start + eb->len);
4835
4836 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4837
4838 while (len > 0) {
4839 page = extent_buffer_page(eb, i);
4840 WARN_ON(!PageUptodate(page));
4841
4842 cur = min(len, PAGE_CACHE_SIZE - offset);
4843 kaddr = page_address(page);
4844 memcpy(kaddr + offset, src, cur);
4845
4846 src += cur;
4847 len -= cur;
4848 offset = 0;
4849 i++;
4850 }
4851 }
4852
4853 void memset_extent_buffer(struct extent_buffer *eb, char c,
4854 unsigned long start, unsigned long len)
4855 {
4856 size_t cur;
4857 size_t offset;
4858 struct page *page;
4859 char *kaddr;
4860 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4861 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4862
4863 WARN_ON(start > eb->len);
4864 WARN_ON(start + len > eb->start + eb->len);
4865
4866 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4867
4868 while (len > 0) {
4869 page = extent_buffer_page(eb, i);
4870 WARN_ON(!PageUptodate(page));
4871
4872 cur = min(len, PAGE_CACHE_SIZE - offset);
4873 kaddr = page_address(page);
4874 memset(kaddr + offset, c, cur);
4875
4876 len -= cur;
4877 offset = 0;
4878 i++;
4879 }
4880 }
4881
4882 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4883 unsigned long dst_offset, unsigned long src_offset,
4884 unsigned long len)
4885 {
4886 u64 dst_len = dst->len;
4887 size_t cur;
4888 size_t offset;
4889 struct page *page;
4890 char *kaddr;
4891 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4892 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4893
4894 WARN_ON(src->len != dst_len);
4895
4896 offset = (start_offset + dst_offset) &
4897 ((unsigned long)PAGE_CACHE_SIZE - 1);
4898
4899 while (len > 0) {
4900 page = extent_buffer_page(dst, i);
4901 WARN_ON(!PageUptodate(page));
4902
4903 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4904
4905 kaddr = page_address(page);
4906 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4907
4908 src_offset += cur;
4909 len -= cur;
4910 offset = 0;
4911 i++;
4912 }
4913 }
4914
4915 static void move_pages(struct page *dst_page, struct page *src_page,
4916 unsigned long dst_off, unsigned long src_off,
4917 unsigned long len)
4918 {
4919 char *dst_kaddr = page_address(dst_page);
4920 if (dst_page == src_page) {
4921 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4922 } else {
4923 char *src_kaddr = page_address(src_page);
4924 char *p = dst_kaddr + dst_off + len;
4925 char *s = src_kaddr + src_off + len;
4926
4927 while (len--)
4928 *--p = *--s;
4929 }
4930 }
4931
4932 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4933 {
4934 unsigned long distance = (src > dst) ? src - dst : dst - src;
4935 return distance < len;
4936 }
4937
4938 static void copy_pages(struct page *dst_page, struct page *src_page,
4939 unsigned long dst_off, unsigned long src_off,
4940 unsigned long len)
4941 {
4942 char *dst_kaddr = page_address(dst_page);
4943 char *src_kaddr;
4944 int must_memmove = 0;
4945
4946 if (dst_page != src_page) {
4947 src_kaddr = page_address(src_page);
4948 } else {
4949 src_kaddr = dst_kaddr;
4950 if (areas_overlap(src_off, dst_off, len))
4951 must_memmove = 1;
4952 }
4953
4954 if (must_memmove)
4955 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4956 else
4957 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4958 }
4959
4960 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4961 unsigned long src_offset, unsigned long len)
4962 {
4963 size_t cur;
4964 size_t dst_off_in_page;
4965 size_t src_off_in_page;
4966 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4967 unsigned long dst_i;
4968 unsigned long src_i;
4969
4970 if (src_offset + len > dst->len) {
4971 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4972 "len %lu dst len %lu\n", src_offset, len, dst->len);
4973 BUG_ON(1);
4974 }
4975 if (dst_offset + len > dst->len) {
4976 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4977 "len %lu dst len %lu\n", dst_offset, len, dst->len);
4978 BUG_ON(1);
4979 }
4980
4981 while (len > 0) {
4982 dst_off_in_page = (start_offset + dst_offset) &
4983 ((unsigned long)PAGE_CACHE_SIZE - 1);
4984 src_off_in_page = (start_offset + src_offset) &
4985 ((unsigned long)PAGE_CACHE_SIZE - 1);
4986
4987 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4988 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4989
4990 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4991 src_off_in_page));
4992 cur = min_t(unsigned long, cur,
4993 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4994
4995 copy_pages(extent_buffer_page(dst, dst_i),
4996 extent_buffer_page(dst, src_i),
4997 dst_off_in_page, src_off_in_page, cur);
4998
4999 src_offset += cur;
5000 dst_offset += cur;
5001 len -= cur;
5002 }
5003 }
5004
5005 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5006 unsigned long src_offset, unsigned long len)
5007 {
5008 size_t cur;
5009 size_t dst_off_in_page;
5010 size_t src_off_in_page;
5011 unsigned long dst_end = dst_offset + len - 1;
5012 unsigned long src_end = src_offset + len - 1;
5013 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5014 unsigned long dst_i;
5015 unsigned long src_i;
5016
5017 if (src_offset + len > dst->len) {
5018 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5019 "len %lu len %lu\n", src_offset, len, dst->len);
5020 BUG_ON(1);
5021 }
5022 if (dst_offset + len > dst->len) {
5023 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5024 "len %lu len %lu\n", dst_offset, len, dst->len);
5025 BUG_ON(1);
5026 }
5027 if (dst_offset < src_offset) {
5028 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5029 return;
5030 }
5031 while (len > 0) {
5032 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5033 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5034
5035 dst_off_in_page = (start_offset + dst_end) &
5036 ((unsigned long)PAGE_CACHE_SIZE - 1);
5037 src_off_in_page = (start_offset + src_end) &
5038 ((unsigned long)PAGE_CACHE_SIZE - 1);
5039
5040 cur = min_t(unsigned long, len, src_off_in_page + 1);
5041 cur = min(cur, dst_off_in_page + 1);
5042 move_pages(extent_buffer_page(dst, dst_i),
5043 extent_buffer_page(dst, src_i),
5044 dst_off_in_page - cur + 1,
5045 src_off_in_page - cur + 1, cur);
5046
5047 dst_end -= cur;
5048 src_end -= cur;
5049 len -= cur;
5050 }
5051 }
5052
5053 int try_release_extent_buffer(struct page *page)
5054 {
5055 struct extent_buffer *eb;
5056
5057 /*
5058 * We need to make sure noboody is attaching this page to an eb right
5059 * now.
5060 */
5061 spin_lock(&page->mapping->private_lock);
5062 if (!PagePrivate(page)) {
5063 spin_unlock(&page->mapping->private_lock);
5064 return 1;
5065 }
5066
5067 eb = (struct extent_buffer *)page->private;
5068 BUG_ON(!eb);
5069
5070 /*
5071 * This is a little awful but should be ok, we need to make sure that
5072 * the eb doesn't disappear out from under us while we're looking at
5073 * this page.
5074 */
5075 spin_lock(&eb->refs_lock);
5076 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5077 spin_unlock(&eb->refs_lock);
5078 spin_unlock(&page->mapping->private_lock);
5079 return 0;
5080 }
5081 spin_unlock(&page->mapping->private_lock);
5082
5083 /*
5084 * If tree ref isn't set then we know the ref on this eb is a real ref,
5085 * so just return, this page will likely be freed soon anyway.
5086 */
5087 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5088 spin_unlock(&eb->refs_lock);
5089 return 0;
5090 }
5091
5092 return release_extent_buffer(eb);
5093 }