Merge branch 'fix/asoc' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include "compat.h"
27 #include "hash.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "print-tree.h"
31 #include "transaction.h"
32 #include "volumes.h"
33 #include "locking.h"
34 #include "free-space-cache.h"
35
36 /* control flags for do_chunk_alloc's force field
37 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
38 * if we really need one.
39 *
40 * CHUNK_ALLOC_FORCE means it must try to allocate one
41 *
42 * CHUNK_ALLOC_LIMITED means to only try and allocate one
43 * if we have very few chunks already allocated. This is
44 * used as part of the clustering code to help make sure
45 * we have a good pool of storage to cluster in, without
46 * filling the FS with empty chunks
47 *
48 */
49 enum {
50 CHUNK_ALLOC_NO_FORCE = 0,
51 CHUNK_ALLOC_FORCE = 1,
52 CHUNK_ALLOC_LIMITED = 2,
53 };
54
55 static int update_block_group(struct btrfs_trans_handle *trans,
56 struct btrfs_root *root,
57 u64 bytenr, u64 num_bytes, int alloc);
58 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
59 struct btrfs_root *root,
60 u64 bytenr, u64 num_bytes, u64 parent,
61 u64 root_objectid, u64 owner_objectid,
62 u64 owner_offset, int refs_to_drop,
63 struct btrfs_delayed_extent_op *extra_op);
64 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
65 struct extent_buffer *leaf,
66 struct btrfs_extent_item *ei);
67 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
68 struct btrfs_root *root,
69 u64 parent, u64 root_objectid,
70 u64 flags, u64 owner, u64 offset,
71 struct btrfs_key *ins, int ref_mod);
72 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
73 struct btrfs_root *root,
74 u64 parent, u64 root_objectid,
75 u64 flags, struct btrfs_disk_key *key,
76 int level, struct btrfs_key *ins);
77 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
78 struct btrfs_root *extent_root, u64 alloc_bytes,
79 u64 flags, int force);
80 static int find_next_key(struct btrfs_path *path, int level,
81 struct btrfs_key *key);
82 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
83 int dump_block_groups);
84
85 static noinline int
86 block_group_cache_done(struct btrfs_block_group_cache *cache)
87 {
88 smp_mb();
89 return cache->cached == BTRFS_CACHE_FINISHED;
90 }
91
92 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
93 {
94 return (cache->flags & bits) == bits;
95 }
96
97 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
98 {
99 atomic_inc(&cache->count);
100 }
101
102 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
103 {
104 if (atomic_dec_and_test(&cache->count)) {
105 WARN_ON(cache->pinned > 0);
106 WARN_ON(cache->reserved > 0);
107 WARN_ON(cache->reserved_pinned > 0);
108 kfree(cache->free_space_ctl);
109 kfree(cache);
110 }
111 }
112
113 /*
114 * this adds the block group to the fs_info rb tree for the block group
115 * cache
116 */
117 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
118 struct btrfs_block_group_cache *block_group)
119 {
120 struct rb_node **p;
121 struct rb_node *parent = NULL;
122 struct btrfs_block_group_cache *cache;
123
124 spin_lock(&info->block_group_cache_lock);
125 p = &info->block_group_cache_tree.rb_node;
126
127 while (*p) {
128 parent = *p;
129 cache = rb_entry(parent, struct btrfs_block_group_cache,
130 cache_node);
131 if (block_group->key.objectid < cache->key.objectid) {
132 p = &(*p)->rb_left;
133 } else if (block_group->key.objectid > cache->key.objectid) {
134 p = &(*p)->rb_right;
135 } else {
136 spin_unlock(&info->block_group_cache_lock);
137 return -EEXIST;
138 }
139 }
140
141 rb_link_node(&block_group->cache_node, parent, p);
142 rb_insert_color(&block_group->cache_node,
143 &info->block_group_cache_tree);
144 spin_unlock(&info->block_group_cache_lock);
145
146 return 0;
147 }
148
149 /*
150 * This will return the block group at or after bytenr if contains is 0, else
151 * it will return the block group that contains the bytenr
152 */
153 static struct btrfs_block_group_cache *
154 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
155 int contains)
156 {
157 struct btrfs_block_group_cache *cache, *ret = NULL;
158 struct rb_node *n;
159 u64 end, start;
160
161 spin_lock(&info->block_group_cache_lock);
162 n = info->block_group_cache_tree.rb_node;
163
164 while (n) {
165 cache = rb_entry(n, struct btrfs_block_group_cache,
166 cache_node);
167 end = cache->key.objectid + cache->key.offset - 1;
168 start = cache->key.objectid;
169
170 if (bytenr < start) {
171 if (!contains && (!ret || start < ret->key.objectid))
172 ret = cache;
173 n = n->rb_left;
174 } else if (bytenr > start) {
175 if (contains && bytenr <= end) {
176 ret = cache;
177 break;
178 }
179 n = n->rb_right;
180 } else {
181 ret = cache;
182 break;
183 }
184 }
185 if (ret)
186 btrfs_get_block_group(ret);
187 spin_unlock(&info->block_group_cache_lock);
188
189 return ret;
190 }
191
192 static int add_excluded_extent(struct btrfs_root *root,
193 u64 start, u64 num_bytes)
194 {
195 u64 end = start + num_bytes - 1;
196 set_extent_bits(&root->fs_info->freed_extents[0],
197 start, end, EXTENT_UPTODATE, GFP_NOFS);
198 set_extent_bits(&root->fs_info->freed_extents[1],
199 start, end, EXTENT_UPTODATE, GFP_NOFS);
200 return 0;
201 }
202
203 static void free_excluded_extents(struct btrfs_root *root,
204 struct btrfs_block_group_cache *cache)
205 {
206 u64 start, end;
207
208 start = cache->key.objectid;
209 end = start + cache->key.offset - 1;
210
211 clear_extent_bits(&root->fs_info->freed_extents[0],
212 start, end, EXTENT_UPTODATE, GFP_NOFS);
213 clear_extent_bits(&root->fs_info->freed_extents[1],
214 start, end, EXTENT_UPTODATE, GFP_NOFS);
215 }
216
217 static int exclude_super_stripes(struct btrfs_root *root,
218 struct btrfs_block_group_cache *cache)
219 {
220 u64 bytenr;
221 u64 *logical;
222 int stripe_len;
223 int i, nr, ret;
224
225 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
226 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
227 cache->bytes_super += stripe_len;
228 ret = add_excluded_extent(root, cache->key.objectid,
229 stripe_len);
230 BUG_ON(ret);
231 }
232
233 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
234 bytenr = btrfs_sb_offset(i);
235 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
236 cache->key.objectid, bytenr,
237 0, &logical, &nr, &stripe_len);
238 BUG_ON(ret);
239
240 while (nr--) {
241 cache->bytes_super += stripe_len;
242 ret = add_excluded_extent(root, logical[nr],
243 stripe_len);
244 BUG_ON(ret);
245 }
246
247 kfree(logical);
248 }
249 return 0;
250 }
251
252 static struct btrfs_caching_control *
253 get_caching_control(struct btrfs_block_group_cache *cache)
254 {
255 struct btrfs_caching_control *ctl;
256
257 spin_lock(&cache->lock);
258 if (cache->cached != BTRFS_CACHE_STARTED) {
259 spin_unlock(&cache->lock);
260 return NULL;
261 }
262
263 /* We're loading it the fast way, so we don't have a caching_ctl. */
264 if (!cache->caching_ctl) {
265 spin_unlock(&cache->lock);
266 return NULL;
267 }
268
269 ctl = cache->caching_ctl;
270 atomic_inc(&ctl->count);
271 spin_unlock(&cache->lock);
272 return ctl;
273 }
274
275 static void put_caching_control(struct btrfs_caching_control *ctl)
276 {
277 if (atomic_dec_and_test(&ctl->count))
278 kfree(ctl);
279 }
280
281 /*
282 * this is only called by cache_block_group, since we could have freed extents
283 * we need to check the pinned_extents for any extents that can't be used yet
284 * since their free space will be released as soon as the transaction commits.
285 */
286 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
287 struct btrfs_fs_info *info, u64 start, u64 end)
288 {
289 u64 extent_start, extent_end, size, total_added = 0;
290 int ret;
291
292 while (start < end) {
293 ret = find_first_extent_bit(info->pinned_extents, start,
294 &extent_start, &extent_end,
295 EXTENT_DIRTY | EXTENT_UPTODATE);
296 if (ret)
297 break;
298
299 if (extent_start <= start) {
300 start = extent_end + 1;
301 } else if (extent_start > start && extent_start < end) {
302 size = extent_start - start;
303 total_added += size;
304 ret = btrfs_add_free_space(block_group, start,
305 size);
306 BUG_ON(ret);
307 start = extent_end + 1;
308 } else {
309 break;
310 }
311 }
312
313 if (start < end) {
314 size = end - start;
315 total_added += size;
316 ret = btrfs_add_free_space(block_group, start, size);
317 BUG_ON(ret);
318 }
319
320 return total_added;
321 }
322
323 static int caching_kthread(void *data)
324 {
325 struct btrfs_block_group_cache *block_group = data;
326 struct btrfs_fs_info *fs_info = block_group->fs_info;
327 struct btrfs_caching_control *caching_ctl = block_group->caching_ctl;
328 struct btrfs_root *extent_root = fs_info->extent_root;
329 struct btrfs_path *path;
330 struct extent_buffer *leaf;
331 struct btrfs_key key;
332 u64 total_found = 0;
333 u64 last = 0;
334 u32 nritems;
335 int ret = 0;
336
337 path = btrfs_alloc_path();
338 if (!path)
339 return -ENOMEM;
340
341 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
342
343 /*
344 * We don't want to deadlock with somebody trying to allocate a new
345 * extent for the extent root while also trying to search the extent
346 * root to add free space. So we skip locking and search the commit
347 * root, since its read-only
348 */
349 path->skip_locking = 1;
350 path->search_commit_root = 1;
351 path->reada = 1;
352
353 key.objectid = last;
354 key.offset = 0;
355 key.type = BTRFS_EXTENT_ITEM_KEY;
356 again:
357 mutex_lock(&caching_ctl->mutex);
358 /* need to make sure the commit_root doesn't disappear */
359 down_read(&fs_info->extent_commit_sem);
360
361 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
362 if (ret < 0)
363 goto err;
364
365 leaf = path->nodes[0];
366 nritems = btrfs_header_nritems(leaf);
367
368 while (1) {
369 if (btrfs_fs_closing(fs_info) > 1) {
370 last = (u64)-1;
371 break;
372 }
373
374 if (path->slots[0] < nritems) {
375 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
376 } else {
377 ret = find_next_key(path, 0, &key);
378 if (ret)
379 break;
380
381 if (need_resched() ||
382 btrfs_next_leaf(extent_root, path)) {
383 caching_ctl->progress = last;
384 btrfs_release_path(path);
385 up_read(&fs_info->extent_commit_sem);
386 mutex_unlock(&caching_ctl->mutex);
387 cond_resched();
388 goto again;
389 }
390 leaf = path->nodes[0];
391 nritems = btrfs_header_nritems(leaf);
392 continue;
393 }
394
395 if (key.objectid < block_group->key.objectid) {
396 path->slots[0]++;
397 continue;
398 }
399
400 if (key.objectid >= block_group->key.objectid +
401 block_group->key.offset)
402 break;
403
404 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
405 total_found += add_new_free_space(block_group,
406 fs_info, last,
407 key.objectid);
408 last = key.objectid + key.offset;
409
410 if (total_found > (1024 * 1024 * 2)) {
411 total_found = 0;
412 wake_up(&caching_ctl->wait);
413 }
414 }
415 path->slots[0]++;
416 }
417 ret = 0;
418
419 total_found += add_new_free_space(block_group, fs_info, last,
420 block_group->key.objectid +
421 block_group->key.offset);
422 caching_ctl->progress = (u64)-1;
423
424 spin_lock(&block_group->lock);
425 block_group->caching_ctl = NULL;
426 block_group->cached = BTRFS_CACHE_FINISHED;
427 spin_unlock(&block_group->lock);
428
429 err:
430 btrfs_free_path(path);
431 up_read(&fs_info->extent_commit_sem);
432
433 free_excluded_extents(extent_root, block_group);
434
435 mutex_unlock(&caching_ctl->mutex);
436 wake_up(&caching_ctl->wait);
437
438 put_caching_control(caching_ctl);
439 atomic_dec(&block_group->space_info->caching_threads);
440 btrfs_put_block_group(block_group);
441
442 return 0;
443 }
444
445 static int cache_block_group(struct btrfs_block_group_cache *cache,
446 struct btrfs_trans_handle *trans,
447 struct btrfs_root *root,
448 int load_cache_only)
449 {
450 struct btrfs_fs_info *fs_info = cache->fs_info;
451 struct btrfs_caching_control *caching_ctl;
452 struct task_struct *tsk;
453 int ret = 0;
454
455 smp_mb();
456 if (cache->cached != BTRFS_CACHE_NO)
457 return 0;
458
459 /*
460 * We can't do the read from on-disk cache during a commit since we need
461 * to have the normal tree locking. Also if we are currently trying to
462 * allocate blocks for the tree root we can't do the fast caching since
463 * we likely hold important locks.
464 */
465 if (trans && (!trans->transaction->in_commit) &&
466 (root && root != root->fs_info->tree_root)) {
467 spin_lock(&cache->lock);
468 if (cache->cached != BTRFS_CACHE_NO) {
469 spin_unlock(&cache->lock);
470 return 0;
471 }
472 cache->cached = BTRFS_CACHE_STARTED;
473 spin_unlock(&cache->lock);
474
475 ret = load_free_space_cache(fs_info, cache);
476
477 spin_lock(&cache->lock);
478 if (ret == 1) {
479 cache->cached = BTRFS_CACHE_FINISHED;
480 cache->last_byte_to_unpin = (u64)-1;
481 } else {
482 cache->cached = BTRFS_CACHE_NO;
483 }
484 spin_unlock(&cache->lock);
485 if (ret == 1) {
486 free_excluded_extents(fs_info->extent_root, cache);
487 return 0;
488 }
489 }
490
491 if (load_cache_only)
492 return 0;
493
494 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
495 BUG_ON(!caching_ctl);
496
497 INIT_LIST_HEAD(&caching_ctl->list);
498 mutex_init(&caching_ctl->mutex);
499 init_waitqueue_head(&caching_ctl->wait);
500 caching_ctl->block_group = cache;
501 caching_ctl->progress = cache->key.objectid;
502 /* one for caching kthread, one for caching block group list */
503 atomic_set(&caching_ctl->count, 2);
504
505 spin_lock(&cache->lock);
506 if (cache->cached != BTRFS_CACHE_NO) {
507 spin_unlock(&cache->lock);
508 kfree(caching_ctl);
509 return 0;
510 }
511 cache->caching_ctl = caching_ctl;
512 cache->cached = BTRFS_CACHE_STARTED;
513 spin_unlock(&cache->lock);
514
515 down_write(&fs_info->extent_commit_sem);
516 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
517 up_write(&fs_info->extent_commit_sem);
518
519 atomic_inc(&cache->space_info->caching_threads);
520 btrfs_get_block_group(cache);
521
522 tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n",
523 cache->key.objectid);
524 if (IS_ERR(tsk)) {
525 ret = PTR_ERR(tsk);
526 printk(KERN_ERR "error running thread %d\n", ret);
527 BUG();
528 }
529
530 return ret;
531 }
532
533 /*
534 * return the block group that starts at or after bytenr
535 */
536 static struct btrfs_block_group_cache *
537 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
538 {
539 struct btrfs_block_group_cache *cache;
540
541 cache = block_group_cache_tree_search(info, bytenr, 0);
542
543 return cache;
544 }
545
546 /*
547 * return the block group that contains the given bytenr
548 */
549 struct btrfs_block_group_cache *btrfs_lookup_block_group(
550 struct btrfs_fs_info *info,
551 u64 bytenr)
552 {
553 struct btrfs_block_group_cache *cache;
554
555 cache = block_group_cache_tree_search(info, bytenr, 1);
556
557 return cache;
558 }
559
560 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
561 u64 flags)
562 {
563 struct list_head *head = &info->space_info;
564 struct btrfs_space_info *found;
565
566 flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
567 BTRFS_BLOCK_GROUP_METADATA;
568
569 rcu_read_lock();
570 list_for_each_entry_rcu(found, head, list) {
571 if (found->flags & flags) {
572 rcu_read_unlock();
573 return found;
574 }
575 }
576 rcu_read_unlock();
577 return NULL;
578 }
579
580 /*
581 * after adding space to the filesystem, we need to clear the full flags
582 * on all the space infos.
583 */
584 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
585 {
586 struct list_head *head = &info->space_info;
587 struct btrfs_space_info *found;
588
589 rcu_read_lock();
590 list_for_each_entry_rcu(found, head, list)
591 found->full = 0;
592 rcu_read_unlock();
593 }
594
595 static u64 div_factor(u64 num, int factor)
596 {
597 if (factor == 10)
598 return num;
599 num *= factor;
600 do_div(num, 10);
601 return num;
602 }
603
604 static u64 div_factor_fine(u64 num, int factor)
605 {
606 if (factor == 100)
607 return num;
608 num *= factor;
609 do_div(num, 100);
610 return num;
611 }
612
613 u64 btrfs_find_block_group(struct btrfs_root *root,
614 u64 search_start, u64 search_hint, int owner)
615 {
616 struct btrfs_block_group_cache *cache;
617 u64 used;
618 u64 last = max(search_hint, search_start);
619 u64 group_start = 0;
620 int full_search = 0;
621 int factor = 9;
622 int wrapped = 0;
623 again:
624 while (1) {
625 cache = btrfs_lookup_first_block_group(root->fs_info, last);
626 if (!cache)
627 break;
628
629 spin_lock(&cache->lock);
630 last = cache->key.objectid + cache->key.offset;
631 used = btrfs_block_group_used(&cache->item);
632
633 if ((full_search || !cache->ro) &&
634 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
635 if (used + cache->pinned + cache->reserved <
636 div_factor(cache->key.offset, factor)) {
637 group_start = cache->key.objectid;
638 spin_unlock(&cache->lock);
639 btrfs_put_block_group(cache);
640 goto found;
641 }
642 }
643 spin_unlock(&cache->lock);
644 btrfs_put_block_group(cache);
645 cond_resched();
646 }
647 if (!wrapped) {
648 last = search_start;
649 wrapped = 1;
650 goto again;
651 }
652 if (!full_search && factor < 10) {
653 last = search_start;
654 full_search = 1;
655 factor = 10;
656 goto again;
657 }
658 found:
659 return group_start;
660 }
661
662 /* simple helper to search for an existing extent at a given offset */
663 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
664 {
665 int ret;
666 struct btrfs_key key;
667 struct btrfs_path *path;
668
669 path = btrfs_alloc_path();
670 BUG_ON(!path);
671 key.objectid = start;
672 key.offset = len;
673 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
674 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
675 0, 0);
676 btrfs_free_path(path);
677 return ret;
678 }
679
680 /*
681 * helper function to lookup reference count and flags of extent.
682 *
683 * the head node for delayed ref is used to store the sum of all the
684 * reference count modifications queued up in the rbtree. the head
685 * node may also store the extent flags to set. This way you can check
686 * to see what the reference count and extent flags would be if all of
687 * the delayed refs are not processed.
688 */
689 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
690 struct btrfs_root *root, u64 bytenr,
691 u64 num_bytes, u64 *refs, u64 *flags)
692 {
693 struct btrfs_delayed_ref_head *head;
694 struct btrfs_delayed_ref_root *delayed_refs;
695 struct btrfs_path *path;
696 struct btrfs_extent_item *ei;
697 struct extent_buffer *leaf;
698 struct btrfs_key key;
699 u32 item_size;
700 u64 num_refs;
701 u64 extent_flags;
702 int ret;
703
704 path = btrfs_alloc_path();
705 if (!path)
706 return -ENOMEM;
707
708 key.objectid = bytenr;
709 key.type = BTRFS_EXTENT_ITEM_KEY;
710 key.offset = num_bytes;
711 if (!trans) {
712 path->skip_locking = 1;
713 path->search_commit_root = 1;
714 }
715 again:
716 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
717 &key, path, 0, 0);
718 if (ret < 0)
719 goto out_free;
720
721 if (ret == 0) {
722 leaf = path->nodes[0];
723 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
724 if (item_size >= sizeof(*ei)) {
725 ei = btrfs_item_ptr(leaf, path->slots[0],
726 struct btrfs_extent_item);
727 num_refs = btrfs_extent_refs(leaf, ei);
728 extent_flags = btrfs_extent_flags(leaf, ei);
729 } else {
730 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
731 struct btrfs_extent_item_v0 *ei0;
732 BUG_ON(item_size != sizeof(*ei0));
733 ei0 = btrfs_item_ptr(leaf, path->slots[0],
734 struct btrfs_extent_item_v0);
735 num_refs = btrfs_extent_refs_v0(leaf, ei0);
736 /* FIXME: this isn't correct for data */
737 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
738 #else
739 BUG();
740 #endif
741 }
742 BUG_ON(num_refs == 0);
743 } else {
744 num_refs = 0;
745 extent_flags = 0;
746 ret = 0;
747 }
748
749 if (!trans)
750 goto out;
751
752 delayed_refs = &trans->transaction->delayed_refs;
753 spin_lock(&delayed_refs->lock);
754 head = btrfs_find_delayed_ref_head(trans, bytenr);
755 if (head) {
756 if (!mutex_trylock(&head->mutex)) {
757 atomic_inc(&head->node.refs);
758 spin_unlock(&delayed_refs->lock);
759
760 btrfs_release_path(path);
761
762 /*
763 * Mutex was contended, block until it's released and try
764 * again
765 */
766 mutex_lock(&head->mutex);
767 mutex_unlock(&head->mutex);
768 btrfs_put_delayed_ref(&head->node);
769 goto again;
770 }
771 if (head->extent_op && head->extent_op->update_flags)
772 extent_flags |= head->extent_op->flags_to_set;
773 else
774 BUG_ON(num_refs == 0);
775
776 num_refs += head->node.ref_mod;
777 mutex_unlock(&head->mutex);
778 }
779 spin_unlock(&delayed_refs->lock);
780 out:
781 WARN_ON(num_refs == 0);
782 if (refs)
783 *refs = num_refs;
784 if (flags)
785 *flags = extent_flags;
786 out_free:
787 btrfs_free_path(path);
788 return ret;
789 }
790
791 /*
792 * Back reference rules. Back refs have three main goals:
793 *
794 * 1) differentiate between all holders of references to an extent so that
795 * when a reference is dropped we can make sure it was a valid reference
796 * before freeing the extent.
797 *
798 * 2) Provide enough information to quickly find the holders of an extent
799 * if we notice a given block is corrupted or bad.
800 *
801 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
802 * maintenance. This is actually the same as #2, but with a slightly
803 * different use case.
804 *
805 * There are two kinds of back refs. The implicit back refs is optimized
806 * for pointers in non-shared tree blocks. For a given pointer in a block,
807 * back refs of this kind provide information about the block's owner tree
808 * and the pointer's key. These information allow us to find the block by
809 * b-tree searching. The full back refs is for pointers in tree blocks not
810 * referenced by their owner trees. The location of tree block is recorded
811 * in the back refs. Actually the full back refs is generic, and can be
812 * used in all cases the implicit back refs is used. The major shortcoming
813 * of the full back refs is its overhead. Every time a tree block gets
814 * COWed, we have to update back refs entry for all pointers in it.
815 *
816 * For a newly allocated tree block, we use implicit back refs for
817 * pointers in it. This means most tree related operations only involve
818 * implicit back refs. For a tree block created in old transaction, the
819 * only way to drop a reference to it is COW it. So we can detect the
820 * event that tree block loses its owner tree's reference and do the
821 * back refs conversion.
822 *
823 * When a tree block is COW'd through a tree, there are four cases:
824 *
825 * The reference count of the block is one and the tree is the block's
826 * owner tree. Nothing to do in this case.
827 *
828 * The reference count of the block is one and the tree is not the
829 * block's owner tree. In this case, full back refs is used for pointers
830 * in the block. Remove these full back refs, add implicit back refs for
831 * every pointers in the new block.
832 *
833 * The reference count of the block is greater than one and the tree is
834 * the block's owner tree. In this case, implicit back refs is used for
835 * pointers in the block. Add full back refs for every pointers in the
836 * block, increase lower level extents' reference counts. The original
837 * implicit back refs are entailed to the new block.
838 *
839 * The reference count of the block is greater than one and the tree is
840 * not the block's owner tree. Add implicit back refs for every pointer in
841 * the new block, increase lower level extents' reference count.
842 *
843 * Back Reference Key composing:
844 *
845 * The key objectid corresponds to the first byte in the extent,
846 * The key type is used to differentiate between types of back refs.
847 * There are different meanings of the key offset for different types
848 * of back refs.
849 *
850 * File extents can be referenced by:
851 *
852 * - multiple snapshots, subvolumes, or different generations in one subvol
853 * - different files inside a single subvolume
854 * - different offsets inside a file (bookend extents in file.c)
855 *
856 * The extent ref structure for the implicit back refs has fields for:
857 *
858 * - Objectid of the subvolume root
859 * - objectid of the file holding the reference
860 * - original offset in the file
861 * - how many bookend extents
862 *
863 * The key offset for the implicit back refs is hash of the first
864 * three fields.
865 *
866 * The extent ref structure for the full back refs has field for:
867 *
868 * - number of pointers in the tree leaf
869 *
870 * The key offset for the implicit back refs is the first byte of
871 * the tree leaf
872 *
873 * When a file extent is allocated, The implicit back refs is used.
874 * the fields are filled in:
875 *
876 * (root_key.objectid, inode objectid, offset in file, 1)
877 *
878 * When a file extent is removed file truncation, we find the
879 * corresponding implicit back refs and check the following fields:
880 *
881 * (btrfs_header_owner(leaf), inode objectid, offset in file)
882 *
883 * Btree extents can be referenced by:
884 *
885 * - Different subvolumes
886 *
887 * Both the implicit back refs and the full back refs for tree blocks
888 * only consist of key. The key offset for the implicit back refs is
889 * objectid of block's owner tree. The key offset for the full back refs
890 * is the first byte of parent block.
891 *
892 * When implicit back refs is used, information about the lowest key and
893 * level of the tree block are required. These information are stored in
894 * tree block info structure.
895 */
896
897 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
898 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
899 struct btrfs_root *root,
900 struct btrfs_path *path,
901 u64 owner, u32 extra_size)
902 {
903 struct btrfs_extent_item *item;
904 struct btrfs_extent_item_v0 *ei0;
905 struct btrfs_extent_ref_v0 *ref0;
906 struct btrfs_tree_block_info *bi;
907 struct extent_buffer *leaf;
908 struct btrfs_key key;
909 struct btrfs_key found_key;
910 u32 new_size = sizeof(*item);
911 u64 refs;
912 int ret;
913
914 leaf = path->nodes[0];
915 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
916
917 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
918 ei0 = btrfs_item_ptr(leaf, path->slots[0],
919 struct btrfs_extent_item_v0);
920 refs = btrfs_extent_refs_v0(leaf, ei0);
921
922 if (owner == (u64)-1) {
923 while (1) {
924 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
925 ret = btrfs_next_leaf(root, path);
926 if (ret < 0)
927 return ret;
928 BUG_ON(ret > 0);
929 leaf = path->nodes[0];
930 }
931 btrfs_item_key_to_cpu(leaf, &found_key,
932 path->slots[0]);
933 BUG_ON(key.objectid != found_key.objectid);
934 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
935 path->slots[0]++;
936 continue;
937 }
938 ref0 = btrfs_item_ptr(leaf, path->slots[0],
939 struct btrfs_extent_ref_v0);
940 owner = btrfs_ref_objectid_v0(leaf, ref0);
941 break;
942 }
943 }
944 btrfs_release_path(path);
945
946 if (owner < BTRFS_FIRST_FREE_OBJECTID)
947 new_size += sizeof(*bi);
948
949 new_size -= sizeof(*ei0);
950 ret = btrfs_search_slot(trans, root, &key, path,
951 new_size + extra_size, 1);
952 if (ret < 0)
953 return ret;
954 BUG_ON(ret);
955
956 ret = btrfs_extend_item(trans, root, path, new_size);
957
958 leaf = path->nodes[0];
959 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
960 btrfs_set_extent_refs(leaf, item, refs);
961 /* FIXME: get real generation */
962 btrfs_set_extent_generation(leaf, item, 0);
963 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
964 btrfs_set_extent_flags(leaf, item,
965 BTRFS_EXTENT_FLAG_TREE_BLOCK |
966 BTRFS_BLOCK_FLAG_FULL_BACKREF);
967 bi = (struct btrfs_tree_block_info *)(item + 1);
968 /* FIXME: get first key of the block */
969 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
970 btrfs_set_tree_block_level(leaf, bi, (int)owner);
971 } else {
972 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
973 }
974 btrfs_mark_buffer_dirty(leaf);
975 return 0;
976 }
977 #endif
978
979 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
980 {
981 u32 high_crc = ~(u32)0;
982 u32 low_crc = ~(u32)0;
983 __le64 lenum;
984
985 lenum = cpu_to_le64(root_objectid);
986 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
987 lenum = cpu_to_le64(owner);
988 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
989 lenum = cpu_to_le64(offset);
990 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
991
992 return ((u64)high_crc << 31) ^ (u64)low_crc;
993 }
994
995 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
996 struct btrfs_extent_data_ref *ref)
997 {
998 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
999 btrfs_extent_data_ref_objectid(leaf, ref),
1000 btrfs_extent_data_ref_offset(leaf, ref));
1001 }
1002
1003 static int match_extent_data_ref(struct extent_buffer *leaf,
1004 struct btrfs_extent_data_ref *ref,
1005 u64 root_objectid, u64 owner, u64 offset)
1006 {
1007 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1008 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1009 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1010 return 0;
1011 return 1;
1012 }
1013
1014 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1015 struct btrfs_root *root,
1016 struct btrfs_path *path,
1017 u64 bytenr, u64 parent,
1018 u64 root_objectid,
1019 u64 owner, u64 offset)
1020 {
1021 struct btrfs_key key;
1022 struct btrfs_extent_data_ref *ref;
1023 struct extent_buffer *leaf;
1024 u32 nritems;
1025 int ret;
1026 int recow;
1027 int err = -ENOENT;
1028
1029 key.objectid = bytenr;
1030 if (parent) {
1031 key.type = BTRFS_SHARED_DATA_REF_KEY;
1032 key.offset = parent;
1033 } else {
1034 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1035 key.offset = hash_extent_data_ref(root_objectid,
1036 owner, offset);
1037 }
1038 again:
1039 recow = 0;
1040 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1041 if (ret < 0) {
1042 err = ret;
1043 goto fail;
1044 }
1045
1046 if (parent) {
1047 if (!ret)
1048 return 0;
1049 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1050 key.type = BTRFS_EXTENT_REF_V0_KEY;
1051 btrfs_release_path(path);
1052 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1053 if (ret < 0) {
1054 err = ret;
1055 goto fail;
1056 }
1057 if (!ret)
1058 return 0;
1059 #endif
1060 goto fail;
1061 }
1062
1063 leaf = path->nodes[0];
1064 nritems = btrfs_header_nritems(leaf);
1065 while (1) {
1066 if (path->slots[0] >= nritems) {
1067 ret = btrfs_next_leaf(root, path);
1068 if (ret < 0)
1069 err = ret;
1070 if (ret)
1071 goto fail;
1072
1073 leaf = path->nodes[0];
1074 nritems = btrfs_header_nritems(leaf);
1075 recow = 1;
1076 }
1077
1078 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1079 if (key.objectid != bytenr ||
1080 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1081 goto fail;
1082
1083 ref = btrfs_item_ptr(leaf, path->slots[0],
1084 struct btrfs_extent_data_ref);
1085
1086 if (match_extent_data_ref(leaf, ref, root_objectid,
1087 owner, offset)) {
1088 if (recow) {
1089 btrfs_release_path(path);
1090 goto again;
1091 }
1092 err = 0;
1093 break;
1094 }
1095 path->slots[0]++;
1096 }
1097 fail:
1098 return err;
1099 }
1100
1101 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1102 struct btrfs_root *root,
1103 struct btrfs_path *path,
1104 u64 bytenr, u64 parent,
1105 u64 root_objectid, u64 owner,
1106 u64 offset, int refs_to_add)
1107 {
1108 struct btrfs_key key;
1109 struct extent_buffer *leaf;
1110 u32 size;
1111 u32 num_refs;
1112 int ret;
1113
1114 key.objectid = bytenr;
1115 if (parent) {
1116 key.type = BTRFS_SHARED_DATA_REF_KEY;
1117 key.offset = parent;
1118 size = sizeof(struct btrfs_shared_data_ref);
1119 } else {
1120 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1121 key.offset = hash_extent_data_ref(root_objectid,
1122 owner, offset);
1123 size = sizeof(struct btrfs_extent_data_ref);
1124 }
1125
1126 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1127 if (ret && ret != -EEXIST)
1128 goto fail;
1129
1130 leaf = path->nodes[0];
1131 if (parent) {
1132 struct btrfs_shared_data_ref *ref;
1133 ref = btrfs_item_ptr(leaf, path->slots[0],
1134 struct btrfs_shared_data_ref);
1135 if (ret == 0) {
1136 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1137 } else {
1138 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1139 num_refs += refs_to_add;
1140 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1141 }
1142 } else {
1143 struct btrfs_extent_data_ref *ref;
1144 while (ret == -EEXIST) {
1145 ref = btrfs_item_ptr(leaf, path->slots[0],
1146 struct btrfs_extent_data_ref);
1147 if (match_extent_data_ref(leaf, ref, root_objectid,
1148 owner, offset))
1149 break;
1150 btrfs_release_path(path);
1151 key.offset++;
1152 ret = btrfs_insert_empty_item(trans, root, path, &key,
1153 size);
1154 if (ret && ret != -EEXIST)
1155 goto fail;
1156
1157 leaf = path->nodes[0];
1158 }
1159 ref = btrfs_item_ptr(leaf, path->slots[0],
1160 struct btrfs_extent_data_ref);
1161 if (ret == 0) {
1162 btrfs_set_extent_data_ref_root(leaf, ref,
1163 root_objectid);
1164 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1165 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1166 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1167 } else {
1168 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1169 num_refs += refs_to_add;
1170 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1171 }
1172 }
1173 btrfs_mark_buffer_dirty(leaf);
1174 ret = 0;
1175 fail:
1176 btrfs_release_path(path);
1177 return ret;
1178 }
1179
1180 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1181 struct btrfs_root *root,
1182 struct btrfs_path *path,
1183 int refs_to_drop)
1184 {
1185 struct btrfs_key key;
1186 struct btrfs_extent_data_ref *ref1 = NULL;
1187 struct btrfs_shared_data_ref *ref2 = NULL;
1188 struct extent_buffer *leaf;
1189 u32 num_refs = 0;
1190 int ret = 0;
1191
1192 leaf = path->nodes[0];
1193 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1194
1195 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1196 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1197 struct btrfs_extent_data_ref);
1198 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1199 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1200 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1201 struct btrfs_shared_data_ref);
1202 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1203 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1204 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1205 struct btrfs_extent_ref_v0 *ref0;
1206 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1207 struct btrfs_extent_ref_v0);
1208 num_refs = btrfs_ref_count_v0(leaf, ref0);
1209 #endif
1210 } else {
1211 BUG();
1212 }
1213
1214 BUG_ON(num_refs < refs_to_drop);
1215 num_refs -= refs_to_drop;
1216
1217 if (num_refs == 0) {
1218 ret = btrfs_del_item(trans, root, path);
1219 } else {
1220 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1221 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1222 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1223 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1224 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1225 else {
1226 struct btrfs_extent_ref_v0 *ref0;
1227 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_extent_ref_v0);
1229 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1230 }
1231 #endif
1232 btrfs_mark_buffer_dirty(leaf);
1233 }
1234 return ret;
1235 }
1236
1237 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1238 struct btrfs_path *path,
1239 struct btrfs_extent_inline_ref *iref)
1240 {
1241 struct btrfs_key key;
1242 struct extent_buffer *leaf;
1243 struct btrfs_extent_data_ref *ref1;
1244 struct btrfs_shared_data_ref *ref2;
1245 u32 num_refs = 0;
1246
1247 leaf = path->nodes[0];
1248 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1249 if (iref) {
1250 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1251 BTRFS_EXTENT_DATA_REF_KEY) {
1252 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1253 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1254 } else {
1255 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1256 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1257 }
1258 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1259 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1260 struct btrfs_extent_data_ref);
1261 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1262 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1263 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1264 struct btrfs_shared_data_ref);
1265 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1266 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1267 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1268 struct btrfs_extent_ref_v0 *ref0;
1269 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1270 struct btrfs_extent_ref_v0);
1271 num_refs = btrfs_ref_count_v0(leaf, ref0);
1272 #endif
1273 } else {
1274 WARN_ON(1);
1275 }
1276 return num_refs;
1277 }
1278
1279 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1280 struct btrfs_root *root,
1281 struct btrfs_path *path,
1282 u64 bytenr, u64 parent,
1283 u64 root_objectid)
1284 {
1285 struct btrfs_key key;
1286 int ret;
1287
1288 key.objectid = bytenr;
1289 if (parent) {
1290 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1291 key.offset = parent;
1292 } else {
1293 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1294 key.offset = root_objectid;
1295 }
1296
1297 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1298 if (ret > 0)
1299 ret = -ENOENT;
1300 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1301 if (ret == -ENOENT && parent) {
1302 btrfs_release_path(path);
1303 key.type = BTRFS_EXTENT_REF_V0_KEY;
1304 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1305 if (ret > 0)
1306 ret = -ENOENT;
1307 }
1308 #endif
1309 return ret;
1310 }
1311
1312 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1313 struct btrfs_root *root,
1314 struct btrfs_path *path,
1315 u64 bytenr, u64 parent,
1316 u64 root_objectid)
1317 {
1318 struct btrfs_key key;
1319 int ret;
1320
1321 key.objectid = bytenr;
1322 if (parent) {
1323 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1324 key.offset = parent;
1325 } else {
1326 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1327 key.offset = root_objectid;
1328 }
1329
1330 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1331 btrfs_release_path(path);
1332 return ret;
1333 }
1334
1335 static inline int extent_ref_type(u64 parent, u64 owner)
1336 {
1337 int type;
1338 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1339 if (parent > 0)
1340 type = BTRFS_SHARED_BLOCK_REF_KEY;
1341 else
1342 type = BTRFS_TREE_BLOCK_REF_KEY;
1343 } else {
1344 if (parent > 0)
1345 type = BTRFS_SHARED_DATA_REF_KEY;
1346 else
1347 type = BTRFS_EXTENT_DATA_REF_KEY;
1348 }
1349 return type;
1350 }
1351
1352 static int find_next_key(struct btrfs_path *path, int level,
1353 struct btrfs_key *key)
1354
1355 {
1356 for (; level < BTRFS_MAX_LEVEL; level++) {
1357 if (!path->nodes[level])
1358 break;
1359 if (path->slots[level] + 1 >=
1360 btrfs_header_nritems(path->nodes[level]))
1361 continue;
1362 if (level == 0)
1363 btrfs_item_key_to_cpu(path->nodes[level], key,
1364 path->slots[level] + 1);
1365 else
1366 btrfs_node_key_to_cpu(path->nodes[level], key,
1367 path->slots[level] + 1);
1368 return 0;
1369 }
1370 return 1;
1371 }
1372
1373 /*
1374 * look for inline back ref. if back ref is found, *ref_ret is set
1375 * to the address of inline back ref, and 0 is returned.
1376 *
1377 * if back ref isn't found, *ref_ret is set to the address where it
1378 * should be inserted, and -ENOENT is returned.
1379 *
1380 * if insert is true and there are too many inline back refs, the path
1381 * points to the extent item, and -EAGAIN is returned.
1382 *
1383 * NOTE: inline back refs are ordered in the same way that back ref
1384 * items in the tree are ordered.
1385 */
1386 static noinline_for_stack
1387 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1388 struct btrfs_root *root,
1389 struct btrfs_path *path,
1390 struct btrfs_extent_inline_ref **ref_ret,
1391 u64 bytenr, u64 num_bytes,
1392 u64 parent, u64 root_objectid,
1393 u64 owner, u64 offset, int insert)
1394 {
1395 struct btrfs_key key;
1396 struct extent_buffer *leaf;
1397 struct btrfs_extent_item *ei;
1398 struct btrfs_extent_inline_ref *iref;
1399 u64 flags;
1400 u64 item_size;
1401 unsigned long ptr;
1402 unsigned long end;
1403 int extra_size;
1404 int type;
1405 int want;
1406 int ret;
1407 int err = 0;
1408
1409 key.objectid = bytenr;
1410 key.type = BTRFS_EXTENT_ITEM_KEY;
1411 key.offset = num_bytes;
1412
1413 want = extent_ref_type(parent, owner);
1414 if (insert) {
1415 extra_size = btrfs_extent_inline_ref_size(want);
1416 path->keep_locks = 1;
1417 } else
1418 extra_size = -1;
1419 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1420 if (ret < 0) {
1421 err = ret;
1422 goto out;
1423 }
1424 BUG_ON(ret);
1425
1426 leaf = path->nodes[0];
1427 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1428 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1429 if (item_size < sizeof(*ei)) {
1430 if (!insert) {
1431 err = -ENOENT;
1432 goto out;
1433 }
1434 ret = convert_extent_item_v0(trans, root, path, owner,
1435 extra_size);
1436 if (ret < 0) {
1437 err = ret;
1438 goto out;
1439 }
1440 leaf = path->nodes[0];
1441 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1442 }
1443 #endif
1444 BUG_ON(item_size < sizeof(*ei));
1445
1446 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1447 flags = btrfs_extent_flags(leaf, ei);
1448
1449 ptr = (unsigned long)(ei + 1);
1450 end = (unsigned long)ei + item_size;
1451
1452 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1453 ptr += sizeof(struct btrfs_tree_block_info);
1454 BUG_ON(ptr > end);
1455 } else {
1456 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1457 }
1458
1459 err = -ENOENT;
1460 while (1) {
1461 if (ptr >= end) {
1462 WARN_ON(ptr > end);
1463 break;
1464 }
1465 iref = (struct btrfs_extent_inline_ref *)ptr;
1466 type = btrfs_extent_inline_ref_type(leaf, iref);
1467 if (want < type)
1468 break;
1469 if (want > type) {
1470 ptr += btrfs_extent_inline_ref_size(type);
1471 continue;
1472 }
1473
1474 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1475 struct btrfs_extent_data_ref *dref;
1476 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1477 if (match_extent_data_ref(leaf, dref, root_objectid,
1478 owner, offset)) {
1479 err = 0;
1480 break;
1481 }
1482 if (hash_extent_data_ref_item(leaf, dref) <
1483 hash_extent_data_ref(root_objectid, owner, offset))
1484 break;
1485 } else {
1486 u64 ref_offset;
1487 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1488 if (parent > 0) {
1489 if (parent == ref_offset) {
1490 err = 0;
1491 break;
1492 }
1493 if (ref_offset < parent)
1494 break;
1495 } else {
1496 if (root_objectid == ref_offset) {
1497 err = 0;
1498 break;
1499 }
1500 if (ref_offset < root_objectid)
1501 break;
1502 }
1503 }
1504 ptr += btrfs_extent_inline_ref_size(type);
1505 }
1506 if (err == -ENOENT && insert) {
1507 if (item_size + extra_size >=
1508 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1509 err = -EAGAIN;
1510 goto out;
1511 }
1512 /*
1513 * To add new inline back ref, we have to make sure
1514 * there is no corresponding back ref item.
1515 * For simplicity, we just do not add new inline back
1516 * ref if there is any kind of item for this block
1517 */
1518 if (find_next_key(path, 0, &key) == 0 &&
1519 key.objectid == bytenr &&
1520 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1521 err = -EAGAIN;
1522 goto out;
1523 }
1524 }
1525 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1526 out:
1527 if (insert) {
1528 path->keep_locks = 0;
1529 btrfs_unlock_up_safe(path, 1);
1530 }
1531 return err;
1532 }
1533
1534 /*
1535 * helper to add new inline back ref
1536 */
1537 static noinline_for_stack
1538 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1539 struct btrfs_root *root,
1540 struct btrfs_path *path,
1541 struct btrfs_extent_inline_ref *iref,
1542 u64 parent, u64 root_objectid,
1543 u64 owner, u64 offset, int refs_to_add,
1544 struct btrfs_delayed_extent_op *extent_op)
1545 {
1546 struct extent_buffer *leaf;
1547 struct btrfs_extent_item *ei;
1548 unsigned long ptr;
1549 unsigned long end;
1550 unsigned long item_offset;
1551 u64 refs;
1552 int size;
1553 int type;
1554 int ret;
1555
1556 leaf = path->nodes[0];
1557 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1558 item_offset = (unsigned long)iref - (unsigned long)ei;
1559
1560 type = extent_ref_type(parent, owner);
1561 size = btrfs_extent_inline_ref_size(type);
1562
1563 ret = btrfs_extend_item(trans, root, path, size);
1564
1565 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1566 refs = btrfs_extent_refs(leaf, ei);
1567 refs += refs_to_add;
1568 btrfs_set_extent_refs(leaf, ei, refs);
1569 if (extent_op)
1570 __run_delayed_extent_op(extent_op, leaf, ei);
1571
1572 ptr = (unsigned long)ei + item_offset;
1573 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1574 if (ptr < end - size)
1575 memmove_extent_buffer(leaf, ptr + size, ptr,
1576 end - size - ptr);
1577
1578 iref = (struct btrfs_extent_inline_ref *)ptr;
1579 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1580 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1581 struct btrfs_extent_data_ref *dref;
1582 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1583 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1584 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1585 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1586 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1587 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1588 struct btrfs_shared_data_ref *sref;
1589 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1590 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1591 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1592 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1593 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1594 } else {
1595 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1596 }
1597 btrfs_mark_buffer_dirty(leaf);
1598 return 0;
1599 }
1600
1601 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1602 struct btrfs_root *root,
1603 struct btrfs_path *path,
1604 struct btrfs_extent_inline_ref **ref_ret,
1605 u64 bytenr, u64 num_bytes, u64 parent,
1606 u64 root_objectid, u64 owner, u64 offset)
1607 {
1608 int ret;
1609
1610 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1611 bytenr, num_bytes, parent,
1612 root_objectid, owner, offset, 0);
1613 if (ret != -ENOENT)
1614 return ret;
1615
1616 btrfs_release_path(path);
1617 *ref_ret = NULL;
1618
1619 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1620 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1621 root_objectid);
1622 } else {
1623 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1624 root_objectid, owner, offset);
1625 }
1626 return ret;
1627 }
1628
1629 /*
1630 * helper to update/remove inline back ref
1631 */
1632 static noinline_for_stack
1633 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1634 struct btrfs_root *root,
1635 struct btrfs_path *path,
1636 struct btrfs_extent_inline_ref *iref,
1637 int refs_to_mod,
1638 struct btrfs_delayed_extent_op *extent_op)
1639 {
1640 struct extent_buffer *leaf;
1641 struct btrfs_extent_item *ei;
1642 struct btrfs_extent_data_ref *dref = NULL;
1643 struct btrfs_shared_data_ref *sref = NULL;
1644 unsigned long ptr;
1645 unsigned long end;
1646 u32 item_size;
1647 int size;
1648 int type;
1649 int ret;
1650 u64 refs;
1651
1652 leaf = path->nodes[0];
1653 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1654 refs = btrfs_extent_refs(leaf, ei);
1655 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1656 refs += refs_to_mod;
1657 btrfs_set_extent_refs(leaf, ei, refs);
1658 if (extent_op)
1659 __run_delayed_extent_op(extent_op, leaf, ei);
1660
1661 type = btrfs_extent_inline_ref_type(leaf, iref);
1662
1663 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1664 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1665 refs = btrfs_extent_data_ref_count(leaf, dref);
1666 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1667 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1668 refs = btrfs_shared_data_ref_count(leaf, sref);
1669 } else {
1670 refs = 1;
1671 BUG_ON(refs_to_mod != -1);
1672 }
1673
1674 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1675 refs += refs_to_mod;
1676
1677 if (refs > 0) {
1678 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1679 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1680 else
1681 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1682 } else {
1683 size = btrfs_extent_inline_ref_size(type);
1684 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1685 ptr = (unsigned long)iref;
1686 end = (unsigned long)ei + item_size;
1687 if (ptr + size < end)
1688 memmove_extent_buffer(leaf, ptr, ptr + size,
1689 end - ptr - size);
1690 item_size -= size;
1691 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1692 }
1693 btrfs_mark_buffer_dirty(leaf);
1694 return 0;
1695 }
1696
1697 static noinline_for_stack
1698 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1699 struct btrfs_root *root,
1700 struct btrfs_path *path,
1701 u64 bytenr, u64 num_bytes, u64 parent,
1702 u64 root_objectid, u64 owner,
1703 u64 offset, int refs_to_add,
1704 struct btrfs_delayed_extent_op *extent_op)
1705 {
1706 struct btrfs_extent_inline_ref *iref;
1707 int ret;
1708
1709 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1710 bytenr, num_bytes, parent,
1711 root_objectid, owner, offset, 1);
1712 if (ret == 0) {
1713 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1714 ret = update_inline_extent_backref(trans, root, path, iref,
1715 refs_to_add, extent_op);
1716 } else if (ret == -ENOENT) {
1717 ret = setup_inline_extent_backref(trans, root, path, iref,
1718 parent, root_objectid,
1719 owner, offset, refs_to_add,
1720 extent_op);
1721 }
1722 return ret;
1723 }
1724
1725 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1726 struct btrfs_root *root,
1727 struct btrfs_path *path,
1728 u64 bytenr, u64 parent, u64 root_objectid,
1729 u64 owner, u64 offset, int refs_to_add)
1730 {
1731 int ret;
1732 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1733 BUG_ON(refs_to_add != 1);
1734 ret = insert_tree_block_ref(trans, root, path, bytenr,
1735 parent, root_objectid);
1736 } else {
1737 ret = insert_extent_data_ref(trans, root, path, bytenr,
1738 parent, root_objectid,
1739 owner, offset, refs_to_add);
1740 }
1741 return ret;
1742 }
1743
1744 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1745 struct btrfs_root *root,
1746 struct btrfs_path *path,
1747 struct btrfs_extent_inline_ref *iref,
1748 int refs_to_drop, int is_data)
1749 {
1750 int ret;
1751
1752 BUG_ON(!is_data && refs_to_drop != 1);
1753 if (iref) {
1754 ret = update_inline_extent_backref(trans, root, path, iref,
1755 -refs_to_drop, NULL);
1756 } else if (is_data) {
1757 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1758 } else {
1759 ret = btrfs_del_item(trans, root, path);
1760 }
1761 return ret;
1762 }
1763
1764 static int btrfs_issue_discard(struct block_device *bdev,
1765 u64 start, u64 len)
1766 {
1767 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1768 }
1769
1770 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1771 u64 num_bytes, u64 *actual_bytes)
1772 {
1773 int ret;
1774 u64 discarded_bytes = 0;
1775 struct btrfs_multi_bio *multi = NULL;
1776
1777
1778 /* Tell the block device(s) that the sectors can be discarded */
1779 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1780 bytenr, &num_bytes, &multi, 0);
1781 if (!ret) {
1782 struct btrfs_bio_stripe *stripe = multi->stripes;
1783 int i;
1784
1785
1786 for (i = 0; i < multi->num_stripes; i++, stripe++) {
1787 ret = btrfs_issue_discard(stripe->dev->bdev,
1788 stripe->physical,
1789 stripe->length);
1790 if (!ret)
1791 discarded_bytes += stripe->length;
1792 else if (ret != -EOPNOTSUPP)
1793 break;
1794 }
1795 kfree(multi);
1796 }
1797 if (discarded_bytes && ret == -EOPNOTSUPP)
1798 ret = 0;
1799
1800 if (actual_bytes)
1801 *actual_bytes = discarded_bytes;
1802
1803
1804 return ret;
1805 }
1806
1807 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1808 struct btrfs_root *root,
1809 u64 bytenr, u64 num_bytes, u64 parent,
1810 u64 root_objectid, u64 owner, u64 offset)
1811 {
1812 int ret;
1813 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1814 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1815
1816 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1817 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1818 parent, root_objectid, (int)owner,
1819 BTRFS_ADD_DELAYED_REF, NULL);
1820 } else {
1821 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1822 parent, root_objectid, owner, offset,
1823 BTRFS_ADD_DELAYED_REF, NULL);
1824 }
1825 return ret;
1826 }
1827
1828 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1829 struct btrfs_root *root,
1830 u64 bytenr, u64 num_bytes,
1831 u64 parent, u64 root_objectid,
1832 u64 owner, u64 offset, int refs_to_add,
1833 struct btrfs_delayed_extent_op *extent_op)
1834 {
1835 struct btrfs_path *path;
1836 struct extent_buffer *leaf;
1837 struct btrfs_extent_item *item;
1838 u64 refs;
1839 int ret;
1840 int err = 0;
1841
1842 path = btrfs_alloc_path();
1843 if (!path)
1844 return -ENOMEM;
1845
1846 path->reada = 1;
1847 path->leave_spinning = 1;
1848 /* this will setup the path even if it fails to insert the back ref */
1849 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1850 path, bytenr, num_bytes, parent,
1851 root_objectid, owner, offset,
1852 refs_to_add, extent_op);
1853 if (ret == 0)
1854 goto out;
1855
1856 if (ret != -EAGAIN) {
1857 err = ret;
1858 goto out;
1859 }
1860
1861 leaf = path->nodes[0];
1862 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1863 refs = btrfs_extent_refs(leaf, item);
1864 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1865 if (extent_op)
1866 __run_delayed_extent_op(extent_op, leaf, item);
1867
1868 btrfs_mark_buffer_dirty(leaf);
1869 btrfs_release_path(path);
1870
1871 path->reada = 1;
1872 path->leave_spinning = 1;
1873
1874 /* now insert the actual backref */
1875 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1876 path, bytenr, parent, root_objectid,
1877 owner, offset, refs_to_add);
1878 BUG_ON(ret);
1879 out:
1880 btrfs_free_path(path);
1881 return err;
1882 }
1883
1884 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1885 struct btrfs_root *root,
1886 struct btrfs_delayed_ref_node *node,
1887 struct btrfs_delayed_extent_op *extent_op,
1888 int insert_reserved)
1889 {
1890 int ret = 0;
1891 struct btrfs_delayed_data_ref *ref;
1892 struct btrfs_key ins;
1893 u64 parent = 0;
1894 u64 ref_root = 0;
1895 u64 flags = 0;
1896
1897 ins.objectid = node->bytenr;
1898 ins.offset = node->num_bytes;
1899 ins.type = BTRFS_EXTENT_ITEM_KEY;
1900
1901 ref = btrfs_delayed_node_to_data_ref(node);
1902 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1903 parent = ref->parent;
1904 else
1905 ref_root = ref->root;
1906
1907 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1908 if (extent_op) {
1909 BUG_ON(extent_op->update_key);
1910 flags |= extent_op->flags_to_set;
1911 }
1912 ret = alloc_reserved_file_extent(trans, root,
1913 parent, ref_root, flags,
1914 ref->objectid, ref->offset,
1915 &ins, node->ref_mod);
1916 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1917 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1918 node->num_bytes, parent,
1919 ref_root, ref->objectid,
1920 ref->offset, node->ref_mod,
1921 extent_op);
1922 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1923 ret = __btrfs_free_extent(trans, root, node->bytenr,
1924 node->num_bytes, parent,
1925 ref_root, ref->objectid,
1926 ref->offset, node->ref_mod,
1927 extent_op);
1928 } else {
1929 BUG();
1930 }
1931 return ret;
1932 }
1933
1934 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1935 struct extent_buffer *leaf,
1936 struct btrfs_extent_item *ei)
1937 {
1938 u64 flags = btrfs_extent_flags(leaf, ei);
1939 if (extent_op->update_flags) {
1940 flags |= extent_op->flags_to_set;
1941 btrfs_set_extent_flags(leaf, ei, flags);
1942 }
1943
1944 if (extent_op->update_key) {
1945 struct btrfs_tree_block_info *bi;
1946 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1947 bi = (struct btrfs_tree_block_info *)(ei + 1);
1948 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1949 }
1950 }
1951
1952 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1953 struct btrfs_root *root,
1954 struct btrfs_delayed_ref_node *node,
1955 struct btrfs_delayed_extent_op *extent_op)
1956 {
1957 struct btrfs_key key;
1958 struct btrfs_path *path;
1959 struct btrfs_extent_item *ei;
1960 struct extent_buffer *leaf;
1961 u32 item_size;
1962 int ret;
1963 int err = 0;
1964
1965 path = btrfs_alloc_path();
1966 if (!path)
1967 return -ENOMEM;
1968
1969 key.objectid = node->bytenr;
1970 key.type = BTRFS_EXTENT_ITEM_KEY;
1971 key.offset = node->num_bytes;
1972
1973 path->reada = 1;
1974 path->leave_spinning = 1;
1975 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1976 path, 0, 1);
1977 if (ret < 0) {
1978 err = ret;
1979 goto out;
1980 }
1981 if (ret > 0) {
1982 err = -EIO;
1983 goto out;
1984 }
1985
1986 leaf = path->nodes[0];
1987 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1988 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1989 if (item_size < sizeof(*ei)) {
1990 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
1991 path, (u64)-1, 0);
1992 if (ret < 0) {
1993 err = ret;
1994 goto out;
1995 }
1996 leaf = path->nodes[0];
1997 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1998 }
1999 #endif
2000 BUG_ON(item_size < sizeof(*ei));
2001 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2002 __run_delayed_extent_op(extent_op, leaf, ei);
2003
2004 btrfs_mark_buffer_dirty(leaf);
2005 out:
2006 btrfs_free_path(path);
2007 return err;
2008 }
2009
2010 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2011 struct btrfs_root *root,
2012 struct btrfs_delayed_ref_node *node,
2013 struct btrfs_delayed_extent_op *extent_op,
2014 int insert_reserved)
2015 {
2016 int ret = 0;
2017 struct btrfs_delayed_tree_ref *ref;
2018 struct btrfs_key ins;
2019 u64 parent = 0;
2020 u64 ref_root = 0;
2021
2022 ins.objectid = node->bytenr;
2023 ins.offset = node->num_bytes;
2024 ins.type = BTRFS_EXTENT_ITEM_KEY;
2025
2026 ref = btrfs_delayed_node_to_tree_ref(node);
2027 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2028 parent = ref->parent;
2029 else
2030 ref_root = ref->root;
2031
2032 BUG_ON(node->ref_mod != 1);
2033 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2034 BUG_ON(!extent_op || !extent_op->update_flags ||
2035 !extent_op->update_key);
2036 ret = alloc_reserved_tree_block(trans, root,
2037 parent, ref_root,
2038 extent_op->flags_to_set,
2039 &extent_op->key,
2040 ref->level, &ins);
2041 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2042 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2043 node->num_bytes, parent, ref_root,
2044 ref->level, 0, 1, extent_op);
2045 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2046 ret = __btrfs_free_extent(trans, root, node->bytenr,
2047 node->num_bytes, parent, ref_root,
2048 ref->level, 0, 1, extent_op);
2049 } else {
2050 BUG();
2051 }
2052 return ret;
2053 }
2054
2055 /* helper function to actually process a single delayed ref entry */
2056 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2057 struct btrfs_root *root,
2058 struct btrfs_delayed_ref_node *node,
2059 struct btrfs_delayed_extent_op *extent_op,
2060 int insert_reserved)
2061 {
2062 int ret;
2063 if (btrfs_delayed_ref_is_head(node)) {
2064 struct btrfs_delayed_ref_head *head;
2065 /*
2066 * we've hit the end of the chain and we were supposed
2067 * to insert this extent into the tree. But, it got
2068 * deleted before we ever needed to insert it, so all
2069 * we have to do is clean up the accounting
2070 */
2071 BUG_ON(extent_op);
2072 head = btrfs_delayed_node_to_head(node);
2073 if (insert_reserved) {
2074 btrfs_pin_extent(root, node->bytenr,
2075 node->num_bytes, 1);
2076 if (head->is_data) {
2077 ret = btrfs_del_csums(trans, root,
2078 node->bytenr,
2079 node->num_bytes);
2080 BUG_ON(ret);
2081 }
2082 }
2083 mutex_unlock(&head->mutex);
2084 return 0;
2085 }
2086
2087 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2088 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2089 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2090 insert_reserved);
2091 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2092 node->type == BTRFS_SHARED_DATA_REF_KEY)
2093 ret = run_delayed_data_ref(trans, root, node, extent_op,
2094 insert_reserved);
2095 else
2096 BUG();
2097 return ret;
2098 }
2099
2100 static noinline struct btrfs_delayed_ref_node *
2101 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2102 {
2103 struct rb_node *node;
2104 struct btrfs_delayed_ref_node *ref;
2105 int action = BTRFS_ADD_DELAYED_REF;
2106 again:
2107 /*
2108 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2109 * this prevents ref count from going down to zero when
2110 * there still are pending delayed ref.
2111 */
2112 node = rb_prev(&head->node.rb_node);
2113 while (1) {
2114 if (!node)
2115 break;
2116 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2117 rb_node);
2118 if (ref->bytenr != head->node.bytenr)
2119 break;
2120 if (ref->action == action)
2121 return ref;
2122 node = rb_prev(node);
2123 }
2124 if (action == BTRFS_ADD_DELAYED_REF) {
2125 action = BTRFS_DROP_DELAYED_REF;
2126 goto again;
2127 }
2128 return NULL;
2129 }
2130
2131 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2132 struct btrfs_root *root,
2133 struct list_head *cluster)
2134 {
2135 struct btrfs_delayed_ref_root *delayed_refs;
2136 struct btrfs_delayed_ref_node *ref;
2137 struct btrfs_delayed_ref_head *locked_ref = NULL;
2138 struct btrfs_delayed_extent_op *extent_op;
2139 int ret;
2140 int count = 0;
2141 int must_insert_reserved = 0;
2142
2143 delayed_refs = &trans->transaction->delayed_refs;
2144 while (1) {
2145 if (!locked_ref) {
2146 /* pick a new head ref from the cluster list */
2147 if (list_empty(cluster))
2148 break;
2149
2150 locked_ref = list_entry(cluster->next,
2151 struct btrfs_delayed_ref_head, cluster);
2152
2153 /* grab the lock that says we are going to process
2154 * all the refs for this head */
2155 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2156
2157 /*
2158 * we may have dropped the spin lock to get the head
2159 * mutex lock, and that might have given someone else
2160 * time to free the head. If that's true, it has been
2161 * removed from our list and we can move on.
2162 */
2163 if (ret == -EAGAIN) {
2164 locked_ref = NULL;
2165 count++;
2166 continue;
2167 }
2168 }
2169
2170 /*
2171 * record the must insert reserved flag before we
2172 * drop the spin lock.
2173 */
2174 must_insert_reserved = locked_ref->must_insert_reserved;
2175 locked_ref->must_insert_reserved = 0;
2176
2177 extent_op = locked_ref->extent_op;
2178 locked_ref->extent_op = NULL;
2179
2180 /*
2181 * locked_ref is the head node, so we have to go one
2182 * node back for any delayed ref updates
2183 */
2184 ref = select_delayed_ref(locked_ref);
2185 if (!ref) {
2186 /* All delayed refs have been processed, Go ahead
2187 * and send the head node to run_one_delayed_ref,
2188 * so that any accounting fixes can happen
2189 */
2190 ref = &locked_ref->node;
2191
2192 if (extent_op && must_insert_reserved) {
2193 kfree(extent_op);
2194 extent_op = NULL;
2195 }
2196
2197 if (extent_op) {
2198 spin_unlock(&delayed_refs->lock);
2199
2200 ret = run_delayed_extent_op(trans, root,
2201 ref, extent_op);
2202 BUG_ON(ret);
2203 kfree(extent_op);
2204
2205 cond_resched();
2206 spin_lock(&delayed_refs->lock);
2207 continue;
2208 }
2209
2210 list_del_init(&locked_ref->cluster);
2211 locked_ref = NULL;
2212 }
2213
2214 ref->in_tree = 0;
2215 rb_erase(&ref->rb_node, &delayed_refs->root);
2216 delayed_refs->num_entries--;
2217
2218 spin_unlock(&delayed_refs->lock);
2219
2220 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2221 must_insert_reserved);
2222 BUG_ON(ret);
2223
2224 btrfs_put_delayed_ref(ref);
2225 kfree(extent_op);
2226 count++;
2227
2228 cond_resched();
2229 spin_lock(&delayed_refs->lock);
2230 }
2231 return count;
2232 }
2233
2234 /*
2235 * this starts processing the delayed reference count updates and
2236 * extent insertions we have queued up so far. count can be
2237 * 0, which means to process everything in the tree at the start
2238 * of the run (but not newly added entries), or it can be some target
2239 * number you'd like to process.
2240 */
2241 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2242 struct btrfs_root *root, unsigned long count)
2243 {
2244 struct rb_node *node;
2245 struct btrfs_delayed_ref_root *delayed_refs;
2246 struct btrfs_delayed_ref_node *ref;
2247 struct list_head cluster;
2248 int ret;
2249 int run_all = count == (unsigned long)-1;
2250 int run_most = 0;
2251
2252 if (root == root->fs_info->extent_root)
2253 root = root->fs_info->tree_root;
2254
2255 delayed_refs = &trans->transaction->delayed_refs;
2256 INIT_LIST_HEAD(&cluster);
2257 again:
2258 spin_lock(&delayed_refs->lock);
2259 if (count == 0) {
2260 count = delayed_refs->num_entries * 2;
2261 run_most = 1;
2262 }
2263 while (1) {
2264 if (!(run_all || run_most) &&
2265 delayed_refs->num_heads_ready < 64)
2266 break;
2267
2268 /*
2269 * go find something we can process in the rbtree. We start at
2270 * the beginning of the tree, and then build a cluster
2271 * of refs to process starting at the first one we are able to
2272 * lock
2273 */
2274 ret = btrfs_find_ref_cluster(trans, &cluster,
2275 delayed_refs->run_delayed_start);
2276 if (ret)
2277 break;
2278
2279 ret = run_clustered_refs(trans, root, &cluster);
2280 BUG_ON(ret < 0);
2281
2282 count -= min_t(unsigned long, ret, count);
2283
2284 if (count == 0)
2285 break;
2286 }
2287
2288 if (run_all) {
2289 node = rb_first(&delayed_refs->root);
2290 if (!node)
2291 goto out;
2292 count = (unsigned long)-1;
2293
2294 while (node) {
2295 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2296 rb_node);
2297 if (btrfs_delayed_ref_is_head(ref)) {
2298 struct btrfs_delayed_ref_head *head;
2299
2300 head = btrfs_delayed_node_to_head(ref);
2301 atomic_inc(&ref->refs);
2302
2303 spin_unlock(&delayed_refs->lock);
2304 /*
2305 * Mutex was contended, block until it's
2306 * released and try again
2307 */
2308 mutex_lock(&head->mutex);
2309 mutex_unlock(&head->mutex);
2310
2311 btrfs_put_delayed_ref(ref);
2312 cond_resched();
2313 goto again;
2314 }
2315 node = rb_next(node);
2316 }
2317 spin_unlock(&delayed_refs->lock);
2318 schedule_timeout(1);
2319 goto again;
2320 }
2321 out:
2322 spin_unlock(&delayed_refs->lock);
2323 return 0;
2324 }
2325
2326 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2327 struct btrfs_root *root,
2328 u64 bytenr, u64 num_bytes, u64 flags,
2329 int is_data)
2330 {
2331 struct btrfs_delayed_extent_op *extent_op;
2332 int ret;
2333
2334 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2335 if (!extent_op)
2336 return -ENOMEM;
2337
2338 extent_op->flags_to_set = flags;
2339 extent_op->update_flags = 1;
2340 extent_op->update_key = 0;
2341 extent_op->is_data = is_data ? 1 : 0;
2342
2343 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2344 if (ret)
2345 kfree(extent_op);
2346 return ret;
2347 }
2348
2349 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2350 struct btrfs_root *root,
2351 struct btrfs_path *path,
2352 u64 objectid, u64 offset, u64 bytenr)
2353 {
2354 struct btrfs_delayed_ref_head *head;
2355 struct btrfs_delayed_ref_node *ref;
2356 struct btrfs_delayed_data_ref *data_ref;
2357 struct btrfs_delayed_ref_root *delayed_refs;
2358 struct rb_node *node;
2359 int ret = 0;
2360
2361 ret = -ENOENT;
2362 delayed_refs = &trans->transaction->delayed_refs;
2363 spin_lock(&delayed_refs->lock);
2364 head = btrfs_find_delayed_ref_head(trans, bytenr);
2365 if (!head)
2366 goto out;
2367
2368 if (!mutex_trylock(&head->mutex)) {
2369 atomic_inc(&head->node.refs);
2370 spin_unlock(&delayed_refs->lock);
2371
2372 btrfs_release_path(path);
2373
2374 /*
2375 * Mutex was contended, block until it's released and let
2376 * caller try again
2377 */
2378 mutex_lock(&head->mutex);
2379 mutex_unlock(&head->mutex);
2380 btrfs_put_delayed_ref(&head->node);
2381 return -EAGAIN;
2382 }
2383
2384 node = rb_prev(&head->node.rb_node);
2385 if (!node)
2386 goto out_unlock;
2387
2388 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2389
2390 if (ref->bytenr != bytenr)
2391 goto out_unlock;
2392
2393 ret = 1;
2394 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2395 goto out_unlock;
2396
2397 data_ref = btrfs_delayed_node_to_data_ref(ref);
2398
2399 node = rb_prev(node);
2400 if (node) {
2401 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2402 if (ref->bytenr == bytenr)
2403 goto out_unlock;
2404 }
2405
2406 if (data_ref->root != root->root_key.objectid ||
2407 data_ref->objectid != objectid || data_ref->offset != offset)
2408 goto out_unlock;
2409
2410 ret = 0;
2411 out_unlock:
2412 mutex_unlock(&head->mutex);
2413 out:
2414 spin_unlock(&delayed_refs->lock);
2415 return ret;
2416 }
2417
2418 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2419 struct btrfs_root *root,
2420 struct btrfs_path *path,
2421 u64 objectid, u64 offset, u64 bytenr)
2422 {
2423 struct btrfs_root *extent_root = root->fs_info->extent_root;
2424 struct extent_buffer *leaf;
2425 struct btrfs_extent_data_ref *ref;
2426 struct btrfs_extent_inline_ref *iref;
2427 struct btrfs_extent_item *ei;
2428 struct btrfs_key key;
2429 u32 item_size;
2430 int ret;
2431
2432 key.objectid = bytenr;
2433 key.offset = (u64)-1;
2434 key.type = BTRFS_EXTENT_ITEM_KEY;
2435
2436 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2437 if (ret < 0)
2438 goto out;
2439 BUG_ON(ret == 0);
2440
2441 ret = -ENOENT;
2442 if (path->slots[0] == 0)
2443 goto out;
2444
2445 path->slots[0]--;
2446 leaf = path->nodes[0];
2447 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2448
2449 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2450 goto out;
2451
2452 ret = 1;
2453 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2454 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2455 if (item_size < sizeof(*ei)) {
2456 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2457 goto out;
2458 }
2459 #endif
2460 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2461
2462 if (item_size != sizeof(*ei) +
2463 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2464 goto out;
2465
2466 if (btrfs_extent_generation(leaf, ei) <=
2467 btrfs_root_last_snapshot(&root->root_item))
2468 goto out;
2469
2470 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2471 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2472 BTRFS_EXTENT_DATA_REF_KEY)
2473 goto out;
2474
2475 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2476 if (btrfs_extent_refs(leaf, ei) !=
2477 btrfs_extent_data_ref_count(leaf, ref) ||
2478 btrfs_extent_data_ref_root(leaf, ref) !=
2479 root->root_key.objectid ||
2480 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2481 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2482 goto out;
2483
2484 ret = 0;
2485 out:
2486 return ret;
2487 }
2488
2489 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2490 struct btrfs_root *root,
2491 u64 objectid, u64 offset, u64 bytenr)
2492 {
2493 struct btrfs_path *path;
2494 int ret;
2495 int ret2;
2496
2497 path = btrfs_alloc_path();
2498 if (!path)
2499 return -ENOENT;
2500
2501 do {
2502 ret = check_committed_ref(trans, root, path, objectid,
2503 offset, bytenr);
2504 if (ret && ret != -ENOENT)
2505 goto out;
2506
2507 ret2 = check_delayed_ref(trans, root, path, objectid,
2508 offset, bytenr);
2509 } while (ret2 == -EAGAIN);
2510
2511 if (ret2 && ret2 != -ENOENT) {
2512 ret = ret2;
2513 goto out;
2514 }
2515
2516 if (ret != -ENOENT || ret2 != -ENOENT)
2517 ret = 0;
2518 out:
2519 btrfs_free_path(path);
2520 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2521 WARN_ON(ret > 0);
2522 return ret;
2523 }
2524
2525 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2526 struct btrfs_root *root,
2527 struct extent_buffer *buf,
2528 int full_backref, int inc)
2529 {
2530 u64 bytenr;
2531 u64 num_bytes;
2532 u64 parent;
2533 u64 ref_root;
2534 u32 nritems;
2535 struct btrfs_key key;
2536 struct btrfs_file_extent_item *fi;
2537 int i;
2538 int level;
2539 int ret = 0;
2540 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2541 u64, u64, u64, u64, u64, u64);
2542
2543 ref_root = btrfs_header_owner(buf);
2544 nritems = btrfs_header_nritems(buf);
2545 level = btrfs_header_level(buf);
2546
2547 if (!root->ref_cows && level == 0)
2548 return 0;
2549
2550 if (inc)
2551 process_func = btrfs_inc_extent_ref;
2552 else
2553 process_func = btrfs_free_extent;
2554
2555 if (full_backref)
2556 parent = buf->start;
2557 else
2558 parent = 0;
2559
2560 for (i = 0; i < nritems; i++) {
2561 if (level == 0) {
2562 btrfs_item_key_to_cpu(buf, &key, i);
2563 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2564 continue;
2565 fi = btrfs_item_ptr(buf, i,
2566 struct btrfs_file_extent_item);
2567 if (btrfs_file_extent_type(buf, fi) ==
2568 BTRFS_FILE_EXTENT_INLINE)
2569 continue;
2570 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2571 if (bytenr == 0)
2572 continue;
2573
2574 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2575 key.offset -= btrfs_file_extent_offset(buf, fi);
2576 ret = process_func(trans, root, bytenr, num_bytes,
2577 parent, ref_root, key.objectid,
2578 key.offset);
2579 if (ret)
2580 goto fail;
2581 } else {
2582 bytenr = btrfs_node_blockptr(buf, i);
2583 num_bytes = btrfs_level_size(root, level - 1);
2584 ret = process_func(trans, root, bytenr, num_bytes,
2585 parent, ref_root, level - 1, 0);
2586 if (ret)
2587 goto fail;
2588 }
2589 }
2590 return 0;
2591 fail:
2592 BUG();
2593 return ret;
2594 }
2595
2596 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2597 struct extent_buffer *buf, int full_backref)
2598 {
2599 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2600 }
2601
2602 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2603 struct extent_buffer *buf, int full_backref)
2604 {
2605 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2606 }
2607
2608 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2609 struct btrfs_root *root,
2610 struct btrfs_path *path,
2611 struct btrfs_block_group_cache *cache)
2612 {
2613 int ret;
2614 struct btrfs_root *extent_root = root->fs_info->extent_root;
2615 unsigned long bi;
2616 struct extent_buffer *leaf;
2617
2618 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2619 if (ret < 0)
2620 goto fail;
2621 BUG_ON(ret);
2622
2623 leaf = path->nodes[0];
2624 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2625 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2626 btrfs_mark_buffer_dirty(leaf);
2627 btrfs_release_path(path);
2628 fail:
2629 if (ret)
2630 return ret;
2631 return 0;
2632
2633 }
2634
2635 static struct btrfs_block_group_cache *
2636 next_block_group(struct btrfs_root *root,
2637 struct btrfs_block_group_cache *cache)
2638 {
2639 struct rb_node *node;
2640 spin_lock(&root->fs_info->block_group_cache_lock);
2641 node = rb_next(&cache->cache_node);
2642 btrfs_put_block_group(cache);
2643 if (node) {
2644 cache = rb_entry(node, struct btrfs_block_group_cache,
2645 cache_node);
2646 btrfs_get_block_group(cache);
2647 } else
2648 cache = NULL;
2649 spin_unlock(&root->fs_info->block_group_cache_lock);
2650 return cache;
2651 }
2652
2653 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2654 struct btrfs_trans_handle *trans,
2655 struct btrfs_path *path)
2656 {
2657 struct btrfs_root *root = block_group->fs_info->tree_root;
2658 struct inode *inode = NULL;
2659 u64 alloc_hint = 0;
2660 int dcs = BTRFS_DC_ERROR;
2661 int num_pages = 0;
2662 int retries = 0;
2663 int ret = 0;
2664
2665 /*
2666 * If this block group is smaller than 100 megs don't bother caching the
2667 * block group.
2668 */
2669 if (block_group->key.offset < (100 * 1024 * 1024)) {
2670 spin_lock(&block_group->lock);
2671 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2672 spin_unlock(&block_group->lock);
2673 return 0;
2674 }
2675
2676 again:
2677 inode = lookup_free_space_inode(root, block_group, path);
2678 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2679 ret = PTR_ERR(inode);
2680 btrfs_release_path(path);
2681 goto out;
2682 }
2683
2684 if (IS_ERR(inode)) {
2685 BUG_ON(retries);
2686 retries++;
2687
2688 if (block_group->ro)
2689 goto out_free;
2690
2691 ret = create_free_space_inode(root, trans, block_group, path);
2692 if (ret)
2693 goto out_free;
2694 goto again;
2695 }
2696
2697 /*
2698 * We want to set the generation to 0, that way if anything goes wrong
2699 * from here on out we know not to trust this cache when we load up next
2700 * time.
2701 */
2702 BTRFS_I(inode)->generation = 0;
2703 ret = btrfs_update_inode(trans, root, inode);
2704 WARN_ON(ret);
2705
2706 if (i_size_read(inode) > 0) {
2707 ret = btrfs_truncate_free_space_cache(root, trans, path,
2708 inode);
2709 if (ret)
2710 goto out_put;
2711 }
2712
2713 spin_lock(&block_group->lock);
2714 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2715 /* We're not cached, don't bother trying to write stuff out */
2716 dcs = BTRFS_DC_WRITTEN;
2717 spin_unlock(&block_group->lock);
2718 goto out_put;
2719 }
2720 spin_unlock(&block_group->lock);
2721
2722 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2723 if (!num_pages)
2724 num_pages = 1;
2725
2726 /*
2727 * Just to make absolutely sure we have enough space, we're going to
2728 * preallocate 12 pages worth of space for each block group. In
2729 * practice we ought to use at most 8, but we need extra space so we can
2730 * add our header and have a terminator between the extents and the
2731 * bitmaps.
2732 */
2733 num_pages *= 16;
2734 num_pages *= PAGE_CACHE_SIZE;
2735
2736 ret = btrfs_check_data_free_space(inode, num_pages);
2737 if (ret)
2738 goto out_put;
2739
2740 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2741 num_pages, num_pages,
2742 &alloc_hint);
2743 if (!ret)
2744 dcs = BTRFS_DC_SETUP;
2745 btrfs_free_reserved_data_space(inode, num_pages);
2746 out_put:
2747 iput(inode);
2748 out_free:
2749 btrfs_release_path(path);
2750 out:
2751 spin_lock(&block_group->lock);
2752 block_group->disk_cache_state = dcs;
2753 spin_unlock(&block_group->lock);
2754
2755 return ret;
2756 }
2757
2758 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2759 struct btrfs_root *root)
2760 {
2761 struct btrfs_block_group_cache *cache;
2762 int err = 0;
2763 struct btrfs_path *path;
2764 u64 last = 0;
2765
2766 path = btrfs_alloc_path();
2767 if (!path)
2768 return -ENOMEM;
2769
2770 again:
2771 while (1) {
2772 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2773 while (cache) {
2774 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2775 break;
2776 cache = next_block_group(root, cache);
2777 }
2778 if (!cache) {
2779 if (last == 0)
2780 break;
2781 last = 0;
2782 continue;
2783 }
2784 err = cache_save_setup(cache, trans, path);
2785 last = cache->key.objectid + cache->key.offset;
2786 btrfs_put_block_group(cache);
2787 }
2788
2789 while (1) {
2790 if (last == 0) {
2791 err = btrfs_run_delayed_refs(trans, root,
2792 (unsigned long)-1);
2793 BUG_ON(err);
2794 }
2795
2796 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2797 while (cache) {
2798 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2799 btrfs_put_block_group(cache);
2800 goto again;
2801 }
2802
2803 if (cache->dirty)
2804 break;
2805 cache = next_block_group(root, cache);
2806 }
2807 if (!cache) {
2808 if (last == 0)
2809 break;
2810 last = 0;
2811 continue;
2812 }
2813
2814 if (cache->disk_cache_state == BTRFS_DC_SETUP)
2815 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2816 cache->dirty = 0;
2817 last = cache->key.objectid + cache->key.offset;
2818
2819 err = write_one_cache_group(trans, root, path, cache);
2820 BUG_ON(err);
2821 btrfs_put_block_group(cache);
2822 }
2823
2824 while (1) {
2825 /*
2826 * I don't think this is needed since we're just marking our
2827 * preallocated extent as written, but just in case it can't
2828 * hurt.
2829 */
2830 if (last == 0) {
2831 err = btrfs_run_delayed_refs(trans, root,
2832 (unsigned long)-1);
2833 BUG_ON(err);
2834 }
2835
2836 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2837 while (cache) {
2838 /*
2839 * Really this shouldn't happen, but it could if we
2840 * couldn't write the entire preallocated extent and
2841 * splitting the extent resulted in a new block.
2842 */
2843 if (cache->dirty) {
2844 btrfs_put_block_group(cache);
2845 goto again;
2846 }
2847 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2848 break;
2849 cache = next_block_group(root, cache);
2850 }
2851 if (!cache) {
2852 if (last == 0)
2853 break;
2854 last = 0;
2855 continue;
2856 }
2857
2858 btrfs_write_out_cache(root, trans, cache, path);
2859
2860 /*
2861 * If we didn't have an error then the cache state is still
2862 * NEED_WRITE, so we can set it to WRITTEN.
2863 */
2864 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2865 cache->disk_cache_state = BTRFS_DC_WRITTEN;
2866 last = cache->key.objectid + cache->key.offset;
2867 btrfs_put_block_group(cache);
2868 }
2869
2870 btrfs_free_path(path);
2871 return 0;
2872 }
2873
2874 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2875 {
2876 struct btrfs_block_group_cache *block_group;
2877 int readonly = 0;
2878
2879 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2880 if (!block_group || block_group->ro)
2881 readonly = 1;
2882 if (block_group)
2883 btrfs_put_block_group(block_group);
2884 return readonly;
2885 }
2886
2887 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2888 u64 total_bytes, u64 bytes_used,
2889 struct btrfs_space_info **space_info)
2890 {
2891 struct btrfs_space_info *found;
2892 int i;
2893 int factor;
2894
2895 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2896 BTRFS_BLOCK_GROUP_RAID10))
2897 factor = 2;
2898 else
2899 factor = 1;
2900
2901 found = __find_space_info(info, flags);
2902 if (found) {
2903 spin_lock(&found->lock);
2904 found->total_bytes += total_bytes;
2905 found->disk_total += total_bytes * factor;
2906 found->bytes_used += bytes_used;
2907 found->disk_used += bytes_used * factor;
2908 found->full = 0;
2909 spin_unlock(&found->lock);
2910 *space_info = found;
2911 return 0;
2912 }
2913 found = kzalloc(sizeof(*found), GFP_NOFS);
2914 if (!found)
2915 return -ENOMEM;
2916
2917 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
2918 INIT_LIST_HEAD(&found->block_groups[i]);
2919 init_rwsem(&found->groups_sem);
2920 spin_lock_init(&found->lock);
2921 found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
2922 BTRFS_BLOCK_GROUP_SYSTEM |
2923 BTRFS_BLOCK_GROUP_METADATA);
2924 found->total_bytes = total_bytes;
2925 found->disk_total = total_bytes * factor;
2926 found->bytes_used = bytes_used;
2927 found->disk_used = bytes_used * factor;
2928 found->bytes_pinned = 0;
2929 found->bytes_reserved = 0;
2930 found->bytes_readonly = 0;
2931 found->bytes_may_use = 0;
2932 found->full = 0;
2933 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
2934 found->chunk_alloc = 0;
2935 *space_info = found;
2936 list_add_rcu(&found->list, &info->space_info);
2937 atomic_set(&found->caching_threads, 0);
2938 return 0;
2939 }
2940
2941 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2942 {
2943 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
2944 BTRFS_BLOCK_GROUP_RAID1 |
2945 BTRFS_BLOCK_GROUP_RAID10 |
2946 BTRFS_BLOCK_GROUP_DUP);
2947 if (extra_flags) {
2948 if (flags & BTRFS_BLOCK_GROUP_DATA)
2949 fs_info->avail_data_alloc_bits |= extra_flags;
2950 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2951 fs_info->avail_metadata_alloc_bits |= extra_flags;
2952 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2953 fs_info->avail_system_alloc_bits |= extra_flags;
2954 }
2955 }
2956
2957 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
2958 {
2959 /*
2960 * we add in the count of missing devices because we want
2961 * to make sure that any RAID levels on a degraded FS
2962 * continue to be honored.
2963 */
2964 u64 num_devices = root->fs_info->fs_devices->rw_devices +
2965 root->fs_info->fs_devices->missing_devices;
2966
2967 if (num_devices == 1)
2968 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
2969 if (num_devices < 4)
2970 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
2971
2972 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
2973 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
2974 BTRFS_BLOCK_GROUP_RAID10))) {
2975 flags &= ~BTRFS_BLOCK_GROUP_DUP;
2976 }
2977
2978 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
2979 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
2980 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
2981 }
2982
2983 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
2984 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
2985 (flags & BTRFS_BLOCK_GROUP_RAID10) |
2986 (flags & BTRFS_BLOCK_GROUP_DUP)))
2987 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
2988 return flags;
2989 }
2990
2991 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
2992 {
2993 if (flags & BTRFS_BLOCK_GROUP_DATA)
2994 flags |= root->fs_info->avail_data_alloc_bits &
2995 root->fs_info->data_alloc_profile;
2996 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2997 flags |= root->fs_info->avail_system_alloc_bits &
2998 root->fs_info->system_alloc_profile;
2999 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3000 flags |= root->fs_info->avail_metadata_alloc_bits &
3001 root->fs_info->metadata_alloc_profile;
3002 return btrfs_reduce_alloc_profile(root, flags);
3003 }
3004
3005 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3006 {
3007 u64 flags;
3008
3009 if (data)
3010 flags = BTRFS_BLOCK_GROUP_DATA;
3011 else if (root == root->fs_info->chunk_root)
3012 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3013 else
3014 flags = BTRFS_BLOCK_GROUP_METADATA;
3015
3016 return get_alloc_profile(root, flags);
3017 }
3018
3019 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3020 {
3021 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3022 BTRFS_BLOCK_GROUP_DATA);
3023 }
3024
3025 /*
3026 * This will check the space that the inode allocates from to make sure we have
3027 * enough space for bytes.
3028 */
3029 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3030 {
3031 struct btrfs_space_info *data_sinfo;
3032 struct btrfs_root *root = BTRFS_I(inode)->root;
3033 u64 used;
3034 int ret = 0, committed = 0, alloc_chunk = 1;
3035
3036 /* make sure bytes are sectorsize aligned */
3037 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3038
3039 if (root == root->fs_info->tree_root ||
3040 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3041 alloc_chunk = 0;
3042 committed = 1;
3043 }
3044
3045 data_sinfo = BTRFS_I(inode)->space_info;
3046 if (!data_sinfo)
3047 goto alloc;
3048
3049 again:
3050 /* make sure we have enough space to handle the data first */
3051 spin_lock(&data_sinfo->lock);
3052 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3053 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3054 data_sinfo->bytes_may_use;
3055
3056 if (used + bytes > data_sinfo->total_bytes) {
3057 struct btrfs_trans_handle *trans;
3058
3059 /*
3060 * if we don't have enough free bytes in this space then we need
3061 * to alloc a new chunk.
3062 */
3063 if (!data_sinfo->full && alloc_chunk) {
3064 u64 alloc_target;
3065
3066 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3067 spin_unlock(&data_sinfo->lock);
3068 alloc:
3069 alloc_target = btrfs_get_alloc_profile(root, 1);
3070 trans = btrfs_join_transaction(root);
3071 if (IS_ERR(trans))
3072 return PTR_ERR(trans);
3073
3074 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3075 bytes + 2 * 1024 * 1024,
3076 alloc_target,
3077 CHUNK_ALLOC_NO_FORCE);
3078 btrfs_end_transaction(trans, root);
3079 if (ret < 0) {
3080 if (ret != -ENOSPC)
3081 return ret;
3082 else
3083 goto commit_trans;
3084 }
3085
3086 if (!data_sinfo) {
3087 btrfs_set_inode_space_info(root, inode);
3088 data_sinfo = BTRFS_I(inode)->space_info;
3089 }
3090 goto again;
3091 }
3092 spin_unlock(&data_sinfo->lock);
3093
3094 /* commit the current transaction and try again */
3095 commit_trans:
3096 if (!committed &&
3097 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3098 committed = 1;
3099 trans = btrfs_join_transaction(root);
3100 if (IS_ERR(trans))
3101 return PTR_ERR(trans);
3102 ret = btrfs_commit_transaction(trans, root);
3103 if (ret)
3104 return ret;
3105 goto again;
3106 }
3107
3108 return -ENOSPC;
3109 }
3110 data_sinfo->bytes_may_use += bytes;
3111 BTRFS_I(inode)->reserved_bytes += bytes;
3112 spin_unlock(&data_sinfo->lock);
3113
3114 return 0;
3115 }
3116
3117 /*
3118 * called when we are clearing an delalloc extent from the
3119 * inode's io_tree or there was an error for whatever reason
3120 * after calling btrfs_check_data_free_space
3121 */
3122 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3123 {
3124 struct btrfs_root *root = BTRFS_I(inode)->root;
3125 struct btrfs_space_info *data_sinfo;
3126
3127 /* make sure bytes are sectorsize aligned */
3128 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3129
3130 data_sinfo = BTRFS_I(inode)->space_info;
3131 spin_lock(&data_sinfo->lock);
3132 data_sinfo->bytes_may_use -= bytes;
3133 BTRFS_I(inode)->reserved_bytes -= bytes;
3134 spin_unlock(&data_sinfo->lock);
3135 }
3136
3137 static void force_metadata_allocation(struct btrfs_fs_info *info)
3138 {
3139 struct list_head *head = &info->space_info;
3140 struct btrfs_space_info *found;
3141
3142 rcu_read_lock();
3143 list_for_each_entry_rcu(found, head, list) {
3144 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3145 found->force_alloc = CHUNK_ALLOC_FORCE;
3146 }
3147 rcu_read_unlock();
3148 }
3149
3150 static int should_alloc_chunk(struct btrfs_root *root,
3151 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3152 int force)
3153 {
3154 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3155 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3156 u64 thresh;
3157
3158 if (force == CHUNK_ALLOC_FORCE)
3159 return 1;
3160
3161 /*
3162 * in limited mode, we want to have some free space up to
3163 * about 1% of the FS size.
3164 */
3165 if (force == CHUNK_ALLOC_LIMITED) {
3166 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3167 thresh = max_t(u64, 64 * 1024 * 1024,
3168 div_factor_fine(thresh, 1));
3169
3170 if (num_bytes - num_allocated < thresh)
3171 return 1;
3172 }
3173
3174 /*
3175 * we have two similar checks here, one based on percentage
3176 * and once based on a hard number of 256MB. The idea
3177 * is that if we have a good amount of free
3178 * room, don't allocate a chunk. A good mount is
3179 * less than 80% utilized of the chunks we have allocated,
3180 * or more than 256MB free
3181 */
3182 if (num_allocated + alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3183 return 0;
3184
3185 if (num_allocated + alloc_bytes < div_factor(num_bytes, 8))
3186 return 0;
3187
3188 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3189
3190 /* 256MB or 5% of the FS */
3191 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
3192
3193 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
3194 return 0;
3195 return 1;
3196 }
3197
3198 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3199 struct btrfs_root *extent_root, u64 alloc_bytes,
3200 u64 flags, int force)
3201 {
3202 struct btrfs_space_info *space_info;
3203 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3204 int wait_for_alloc = 0;
3205 int ret = 0;
3206
3207 flags = btrfs_reduce_alloc_profile(extent_root, flags);
3208
3209 space_info = __find_space_info(extent_root->fs_info, flags);
3210 if (!space_info) {
3211 ret = update_space_info(extent_root->fs_info, flags,
3212 0, 0, &space_info);
3213 BUG_ON(ret);
3214 }
3215 BUG_ON(!space_info);
3216
3217 again:
3218 spin_lock(&space_info->lock);
3219 if (space_info->force_alloc)
3220 force = space_info->force_alloc;
3221 if (space_info->full) {
3222 spin_unlock(&space_info->lock);
3223 return 0;
3224 }
3225
3226 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3227 spin_unlock(&space_info->lock);
3228 return 0;
3229 } else if (space_info->chunk_alloc) {
3230 wait_for_alloc = 1;
3231 } else {
3232 space_info->chunk_alloc = 1;
3233 }
3234
3235 spin_unlock(&space_info->lock);
3236
3237 mutex_lock(&fs_info->chunk_mutex);
3238
3239 /*
3240 * The chunk_mutex is held throughout the entirety of a chunk
3241 * allocation, so once we've acquired the chunk_mutex we know that the
3242 * other guy is done and we need to recheck and see if we should
3243 * allocate.
3244 */
3245 if (wait_for_alloc) {
3246 mutex_unlock(&fs_info->chunk_mutex);
3247 wait_for_alloc = 0;
3248 goto again;
3249 }
3250
3251 /*
3252 * If we have mixed data/metadata chunks we want to make sure we keep
3253 * allocating mixed chunks instead of individual chunks.
3254 */
3255 if (btrfs_mixed_space_info(space_info))
3256 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3257
3258 /*
3259 * if we're doing a data chunk, go ahead and make sure that
3260 * we keep a reasonable number of metadata chunks allocated in the
3261 * FS as well.
3262 */
3263 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3264 fs_info->data_chunk_allocations++;
3265 if (!(fs_info->data_chunk_allocations %
3266 fs_info->metadata_ratio))
3267 force_metadata_allocation(fs_info);
3268 }
3269
3270 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3271 spin_lock(&space_info->lock);
3272 if (ret)
3273 space_info->full = 1;
3274 else
3275 ret = 1;
3276
3277 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3278 space_info->chunk_alloc = 0;
3279 spin_unlock(&space_info->lock);
3280 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3281 return ret;
3282 }
3283
3284 /*
3285 * shrink metadata reservation for delalloc
3286 */
3287 static int shrink_delalloc(struct btrfs_trans_handle *trans,
3288 struct btrfs_root *root, u64 to_reclaim, int sync)
3289 {
3290 struct btrfs_block_rsv *block_rsv;
3291 struct btrfs_space_info *space_info;
3292 u64 reserved;
3293 u64 max_reclaim;
3294 u64 reclaimed = 0;
3295 long time_left;
3296 int nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3297 int loops = 0;
3298 unsigned long progress;
3299
3300 block_rsv = &root->fs_info->delalloc_block_rsv;
3301 space_info = block_rsv->space_info;
3302
3303 smp_mb();
3304 reserved = space_info->bytes_reserved;
3305 progress = space_info->reservation_progress;
3306
3307 if (reserved == 0)
3308 return 0;
3309
3310 /* nothing to shrink - nothing to reclaim */
3311 if (root->fs_info->delalloc_bytes == 0)
3312 return 0;
3313
3314 max_reclaim = min(reserved, to_reclaim);
3315
3316 while (loops < 1024) {
3317 /* have the flusher threads jump in and do some IO */
3318 smp_mb();
3319 nr_pages = min_t(unsigned long, nr_pages,
3320 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3321 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages);
3322
3323 spin_lock(&space_info->lock);
3324 if (reserved > space_info->bytes_reserved)
3325 reclaimed += reserved - space_info->bytes_reserved;
3326 reserved = space_info->bytes_reserved;
3327 spin_unlock(&space_info->lock);
3328
3329 loops++;
3330
3331 if (reserved == 0 || reclaimed >= max_reclaim)
3332 break;
3333
3334 if (trans && trans->transaction->blocked)
3335 return -EAGAIN;
3336
3337 time_left = schedule_timeout_interruptible(1);
3338
3339 /* We were interrupted, exit */
3340 if (time_left)
3341 break;
3342
3343 /* we've kicked the IO a few times, if anything has been freed,
3344 * exit. There is no sense in looping here for a long time
3345 * when we really need to commit the transaction, or there are
3346 * just too many writers without enough free space
3347 */
3348
3349 if (loops > 3) {
3350 smp_mb();
3351 if (progress != space_info->reservation_progress)
3352 break;
3353 }
3354
3355 }
3356 return reclaimed >= to_reclaim;
3357 }
3358
3359 /*
3360 * Retries tells us how many times we've called reserve_metadata_bytes. The
3361 * idea is if this is the first call (retries == 0) then we will add to our
3362 * reserved count if we can't make the allocation in order to hold our place
3363 * while we go and try and free up space. That way for retries > 1 we don't try
3364 * and add space, we just check to see if the amount of unused space is >= the
3365 * total space, meaning that our reservation is valid.
3366 *
3367 * However if we don't intend to retry this reservation, pass -1 as retries so
3368 * that it short circuits this logic.
3369 */
3370 static int reserve_metadata_bytes(struct btrfs_trans_handle *trans,
3371 struct btrfs_root *root,
3372 struct btrfs_block_rsv *block_rsv,
3373 u64 orig_bytes, int flush)
3374 {
3375 struct btrfs_space_info *space_info = block_rsv->space_info;
3376 u64 unused;
3377 u64 num_bytes = orig_bytes;
3378 int retries = 0;
3379 int ret = 0;
3380 bool reserved = false;
3381 bool committed = false;
3382
3383 again:
3384 ret = -ENOSPC;
3385 if (reserved)
3386 num_bytes = 0;
3387
3388 spin_lock(&space_info->lock);
3389 unused = space_info->bytes_used + space_info->bytes_reserved +
3390 space_info->bytes_pinned + space_info->bytes_readonly +
3391 space_info->bytes_may_use;
3392
3393 /*
3394 * The idea here is that we've not already over-reserved the block group
3395 * then we can go ahead and save our reservation first and then start
3396 * flushing if we need to. Otherwise if we've already overcommitted
3397 * lets start flushing stuff first and then come back and try to make
3398 * our reservation.
3399 */
3400 if (unused <= space_info->total_bytes) {
3401 unused = space_info->total_bytes - unused;
3402 if (unused >= num_bytes) {
3403 if (!reserved)
3404 space_info->bytes_reserved += orig_bytes;
3405 ret = 0;
3406 } else {
3407 /*
3408 * Ok set num_bytes to orig_bytes since we aren't
3409 * overocmmitted, this way we only try and reclaim what
3410 * we need.
3411 */
3412 num_bytes = orig_bytes;
3413 }
3414 } else {
3415 /*
3416 * Ok we're over committed, set num_bytes to the overcommitted
3417 * amount plus the amount of bytes that we need for this
3418 * reservation.
3419 */
3420 num_bytes = unused - space_info->total_bytes +
3421 (orig_bytes * (retries + 1));
3422 }
3423
3424 /*
3425 * Couldn't make our reservation, save our place so while we're trying
3426 * to reclaim space we can actually use it instead of somebody else
3427 * stealing it from us.
3428 */
3429 if (ret && !reserved) {
3430 space_info->bytes_reserved += orig_bytes;
3431 reserved = true;
3432 }
3433
3434 spin_unlock(&space_info->lock);
3435
3436 if (!ret)
3437 return 0;
3438
3439 if (!flush)
3440 goto out;
3441
3442 /*
3443 * We do synchronous shrinking since we don't actually unreserve
3444 * metadata until after the IO is completed.
3445 */
3446 ret = shrink_delalloc(trans, root, num_bytes, 1);
3447 if (ret > 0)
3448 return 0;
3449 else if (ret < 0)
3450 goto out;
3451
3452 /*
3453 * So if we were overcommitted it's possible that somebody else flushed
3454 * out enough space and we simply didn't have enough space to reclaim,
3455 * so go back around and try again.
3456 */
3457 if (retries < 2) {
3458 retries++;
3459 goto again;
3460 }
3461
3462 spin_lock(&space_info->lock);
3463 /*
3464 * Not enough space to be reclaimed, don't bother committing the
3465 * transaction.
3466 */
3467 if (space_info->bytes_pinned < orig_bytes)
3468 ret = -ENOSPC;
3469 spin_unlock(&space_info->lock);
3470 if (ret)
3471 goto out;
3472
3473 ret = -EAGAIN;
3474 if (trans || committed)
3475 goto out;
3476
3477 ret = -ENOSPC;
3478 trans = btrfs_join_transaction(root);
3479 if (IS_ERR(trans))
3480 goto out;
3481 ret = btrfs_commit_transaction(trans, root);
3482 if (!ret) {
3483 trans = NULL;
3484 committed = true;
3485 goto again;
3486 }
3487
3488 out:
3489 if (reserved) {
3490 spin_lock(&space_info->lock);
3491 space_info->bytes_reserved -= orig_bytes;
3492 spin_unlock(&space_info->lock);
3493 }
3494
3495 return ret;
3496 }
3497
3498 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3499 struct btrfs_root *root)
3500 {
3501 struct btrfs_block_rsv *block_rsv;
3502 if (root->ref_cows)
3503 block_rsv = trans->block_rsv;
3504 else
3505 block_rsv = root->block_rsv;
3506
3507 if (!block_rsv)
3508 block_rsv = &root->fs_info->empty_block_rsv;
3509
3510 return block_rsv;
3511 }
3512
3513 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3514 u64 num_bytes)
3515 {
3516 int ret = -ENOSPC;
3517 spin_lock(&block_rsv->lock);
3518 if (block_rsv->reserved >= num_bytes) {
3519 block_rsv->reserved -= num_bytes;
3520 if (block_rsv->reserved < block_rsv->size)
3521 block_rsv->full = 0;
3522 ret = 0;
3523 }
3524 spin_unlock(&block_rsv->lock);
3525 return ret;
3526 }
3527
3528 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3529 u64 num_bytes, int update_size)
3530 {
3531 spin_lock(&block_rsv->lock);
3532 block_rsv->reserved += num_bytes;
3533 if (update_size)
3534 block_rsv->size += num_bytes;
3535 else if (block_rsv->reserved >= block_rsv->size)
3536 block_rsv->full = 1;
3537 spin_unlock(&block_rsv->lock);
3538 }
3539
3540 static void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3541 struct btrfs_block_rsv *dest, u64 num_bytes)
3542 {
3543 struct btrfs_space_info *space_info = block_rsv->space_info;
3544
3545 spin_lock(&block_rsv->lock);
3546 if (num_bytes == (u64)-1)
3547 num_bytes = block_rsv->size;
3548 block_rsv->size -= num_bytes;
3549 if (block_rsv->reserved >= block_rsv->size) {
3550 num_bytes = block_rsv->reserved - block_rsv->size;
3551 block_rsv->reserved = block_rsv->size;
3552 block_rsv->full = 1;
3553 } else {
3554 num_bytes = 0;
3555 }
3556 spin_unlock(&block_rsv->lock);
3557
3558 if (num_bytes > 0) {
3559 if (dest) {
3560 spin_lock(&dest->lock);
3561 if (!dest->full) {
3562 u64 bytes_to_add;
3563
3564 bytes_to_add = dest->size - dest->reserved;
3565 bytes_to_add = min(num_bytes, bytes_to_add);
3566 dest->reserved += bytes_to_add;
3567 if (dest->reserved >= dest->size)
3568 dest->full = 1;
3569 num_bytes -= bytes_to_add;
3570 }
3571 spin_unlock(&dest->lock);
3572 }
3573 if (num_bytes) {
3574 spin_lock(&space_info->lock);
3575 space_info->bytes_reserved -= num_bytes;
3576 space_info->reservation_progress++;
3577 spin_unlock(&space_info->lock);
3578 }
3579 }
3580 }
3581
3582 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3583 struct btrfs_block_rsv *dst, u64 num_bytes)
3584 {
3585 int ret;
3586
3587 ret = block_rsv_use_bytes(src, num_bytes);
3588 if (ret)
3589 return ret;
3590
3591 block_rsv_add_bytes(dst, num_bytes, 1);
3592 return 0;
3593 }
3594
3595 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3596 {
3597 memset(rsv, 0, sizeof(*rsv));
3598 spin_lock_init(&rsv->lock);
3599 atomic_set(&rsv->usage, 1);
3600 rsv->priority = 6;
3601 INIT_LIST_HEAD(&rsv->list);
3602 }
3603
3604 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3605 {
3606 struct btrfs_block_rsv *block_rsv;
3607 struct btrfs_fs_info *fs_info = root->fs_info;
3608
3609 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3610 if (!block_rsv)
3611 return NULL;
3612
3613 btrfs_init_block_rsv(block_rsv);
3614 block_rsv->space_info = __find_space_info(fs_info,
3615 BTRFS_BLOCK_GROUP_METADATA);
3616 return block_rsv;
3617 }
3618
3619 void btrfs_free_block_rsv(struct btrfs_root *root,
3620 struct btrfs_block_rsv *rsv)
3621 {
3622 if (rsv && atomic_dec_and_test(&rsv->usage)) {
3623 btrfs_block_rsv_release(root, rsv, (u64)-1);
3624 if (!rsv->durable)
3625 kfree(rsv);
3626 }
3627 }
3628
3629 /*
3630 * make the block_rsv struct be able to capture freed space.
3631 * the captured space will re-add to the the block_rsv struct
3632 * after transaction commit
3633 */
3634 void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info,
3635 struct btrfs_block_rsv *block_rsv)
3636 {
3637 block_rsv->durable = 1;
3638 mutex_lock(&fs_info->durable_block_rsv_mutex);
3639 list_add_tail(&block_rsv->list, &fs_info->durable_block_rsv_list);
3640 mutex_unlock(&fs_info->durable_block_rsv_mutex);
3641 }
3642
3643 int btrfs_block_rsv_add(struct btrfs_trans_handle *trans,
3644 struct btrfs_root *root,
3645 struct btrfs_block_rsv *block_rsv,
3646 u64 num_bytes)
3647 {
3648 int ret;
3649
3650 if (num_bytes == 0)
3651 return 0;
3652
3653 ret = reserve_metadata_bytes(trans, root, block_rsv, num_bytes, 1);
3654 if (!ret) {
3655 block_rsv_add_bytes(block_rsv, num_bytes, 1);
3656 return 0;
3657 }
3658
3659 return ret;
3660 }
3661
3662 int btrfs_block_rsv_check(struct btrfs_trans_handle *trans,
3663 struct btrfs_root *root,
3664 struct btrfs_block_rsv *block_rsv,
3665 u64 min_reserved, int min_factor)
3666 {
3667 u64 num_bytes = 0;
3668 int commit_trans = 0;
3669 int ret = -ENOSPC;
3670
3671 if (!block_rsv)
3672 return 0;
3673
3674 spin_lock(&block_rsv->lock);
3675 if (min_factor > 0)
3676 num_bytes = div_factor(block_rsv->size, min_factor);
3677 if (min_reserved > num_bytes)
3678 num_bytes = min_reserved;
3679
3680 if (block_rsv->reserved >= num_bytes) {
3681 ret = 0;
3682 } else {
3683 num_bytes -= block_rsv->reserved;
3684 if (block_rsv->durable &&
3685 block_rsv->freed[0] + block_rsv->freed[1] >= num_bytes)
3686 commit_trans = 1;
3687 }
3688 spin_unlock(&block_rsv->lock);
3689 if (!ret)
3690 return 0;
3691
3692 if (block_rsv->refill_used) {
3693 ret = reserve_metadata_bytes(trans, root, block_rsv,
3694 num_bytes, 0);
3695 if (!ret) {
3696 block_rsv_add_bytes(block_rsv, num_bytes, 0);
3697 return 0;
3698 }
3699 }
3700
3701 if (commit_trans) {
3702 if (trans)
3703 return -EAGAIN;
3704
3705 trans = btrfs_join_transaction(root);
3706 BUG_ON(IS_ERR(trans));
3707 ret = btrfs_commit_transaction(trans, root);
3708 return 0;
3709 }
3710
3711 return -ENOSPC;
3712 }
3713
3714 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3715 struct btrfs_block_rsv *dst_rsv,
3716 u64 num_bytes)
3717 {
3718 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3719 }
3720
3721 void btrfs_block_rsv_release(struct btrfs_root *root,
3722 struct btrfs_block_rsv *block_rsv,
3723 u64 num_bytes)
3724 {
3725 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3726 if (global_rsv->full || global_rsv == block_rsv ||
3727 block_rsv->space_info != global_rsv->space_info)
3728 global_rsv = NULL;
3729 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3730 }
3731
3732 /*
3733 * helper to calculate size of global block reservation.
3734 * the desired value is sum of space used by extent tree,
3735 * checksum tree and root tree
3736 */
3737 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3738 {
3739 struct btrfs_space_info *sinfo;
3740 u64 num_bytes;
3741 u64 meta_used;
3742 u64 data_used;
3743 int csum_size = btrfs_super_csum_size(&fs_info->super_copy);
3744
3745 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3746 spin_lock(&sinfo->lock);
3747 data_used = sinfo->bytes_used;
3748 spin_unlock(&sinfo->lock);
3749
3750 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3751 spin_lock(&sinfo->lock);
3752 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
3753 data_used = 0;
3754 meta_used = sinfo->bytes_used;
3755 spin_unlock(&sinfo->lock);
3756
3757 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3758 csum_size * 2;
3759 num_bytes += div64_u64(data_used + meta_used, 50);
3760
3761 if (num_bytes * 3 > meta_used)
3762 num_bytes = div64_u64(meta_used, 3);
3763
3764 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3765 }
3766
3767 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3768 {
3769 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3770 struct btrfs_space_info *sinfo = block_rsv->space_info;
3771 u64 num_bytes;
3772
3773 num_bytes = calc_global_metadata_size(fs_info);
3774
3775 spin_lock(&block_rsv->lock);
3776 spin_lock(&sinfo->lock);
3777
3778 block_rsv->size = num_bytes;
3779
3780 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
3781 sinfo->bytes_reserved + sinfo->bytes_readonly +
3782 sinfo->bytes_may_use;
3783
3784 if (sinfo->total_bytes > num_bytes) {
3785 num_bytes = sinfo->total_bytes - num_bytes;
3786 block_rsv->reserved += num_bytes;
3787 sinfo->bytes_reserved += num_bytes;
3788 }
3789
3790 if (block_rsv->reserved >= block_rsv->size) {
3791 num_bytes = block_rsv->reserved - block_rsv->size;
3792 sinfo->bytes_reserved -= num_bytes;
3793 sinfo->reservation_progress++;
3794 block_rsv->reserved = block_rsv->size;
3795 block_rsv->full = 1;
3796 }
3797
3798 spin_unlock(&sinfo->lock);
3799 spin_unlock(&block_rsv->lock);
3800 }
3801
3802 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
3803 {
3804 struct btrfs_space_info *space_info;
3805
3806 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3807 fs_info->chunk_block_rsv.space_info = space_info;
3808 fs_info->chunk_block_rsv.priority = 10;
3809
3810 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3811 fs_info->global_block_rsv.space_info = space_info;
3812 fs_info->global_block_rsv.priority = 10;
3813 fs_info->global_block_rsv.refill_used = 1;
3814 fs_info->delalloc_block_rsv.space_info = space_info;
3815 fs_info->trans_block_rsv.space_info = space_info;
3816 fs_info->empty_block_rsv.space_info = space_info;
3817 fs_info->empty_block_rsv.priority = 10;
3818
3819 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
3820 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
3821 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
3822 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3823 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
3824
3825 btrfs_add_durable_block_rsv(fs_info, &fs_info->global_block_rsv);
3826
3827 btrfs_add_durable_block_rsv(fs_info, &fs_info->delalloc_block_rsv);
3828
3829 update_global_block_rsv(fs_info);
3830 }
3831
3832 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
3833 {
3834 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
3835 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
3836 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
3837 WARN_ON(fs_info->trans_block_rsv.size > 0);
3838 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
3839 WARN_ON(fs_info->chunk_block_rsv.size > 0);
3840 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
3841 }
3842
3843 int btrfs_truncate_reserve_metadata(struct btrfs_trans_handle *trans,
3844 struct btrfs_root *root,
3845 struct btrfs_block_rsv *rsv)
3846 {
3847 struct btrfs_block_rsv *trans_rsv = &root->fs_info->trans_block_rsv;
3848 u64 num_bytes;
3849 int ret;
3850
3851 /*
3852 * Truncate should be freeing data, but give us 2 items just in case it
3853 * needs to use some space. We may want to be smarter about this in the
3854 * future.
3855 */
3856 num_bytes = btrfs_calc_trans_metadata_size(root, 2);
3857
3858 /* We already have enough bytes, just return */
3859 if (rsv->reserved >= num_bytes)
3860 return 0;
3861
3862 num_bytes -= rsv->reserved;
3863
3864 /*
3865 * You should have reserved enough space before hand to do this, so this
3866 * should not fail.
3867 */
3868 ret = block_rsv_migrate_bytes(trans_rsv, rsv, num_bytes);
3869 BUG_ON(ret);
3870
3871 return 0;
3872 }
3873
3874 int btrfs_trans_reserve_metadata(struct btrfs_trans_handle *trans,
3875 struct btrfs_root *root,
3876 int num_items)
3877 {
3878 u64 num_bytes;
3879 int ret;
3880
3881 if (num_items == 0 || root->fs_info->chunk_root == root)
3882 return 0;
3883
3884 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
3885 ret = btrfs_block_rsv_add(trans, root, &root->fs_info->trans_block_rsv,
3886 num_bytes);
3887 if (!ret) {
3888 trans->bytes_reserved += num_bytes;
3889 trans->block_rsv = &root->fs_info->trans_block_rsv;
3890 }
3891 return ret;
3892 }
3893
3894 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3895 struct btrfs_root *root)
3896 {
3897 if (!trans->bytes_reserved)
3898 return;
3899
3900 BUG_ON(trans->block_rsv != &root->fs_info->trans_block_rsv);
3901 btrfs_block_rsv_release(root, trans->block_rsv,
3902 trans->bytes_reserved);
3903 trans->bytes_reserved = 0;
3904 }
3905
3906 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3907 struct inode *inode)
3908 {
3909 struct btrfs_root *root = BTRFS_I(inode)->root;
3910 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3911 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
3912
3913 /*
3914 * We need to hold space in order to delete our orphan item once we've
3915 * added it, so this takes the reservation so we can release it later
3916 * when we are truly done with the orphan item.
3917 */
3918 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
3919 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3920 }
3921
3922 void btrfs_orphan_release_metadata(struct inode *inode)
3923 {
3924 struct btrfs_root *root = BTRFS_I(inode)->root;
3925 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
3926 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
3927 }
3928
3929 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
3930 struct btrfs_pending_snapshot *pending)
3931 {
3932 struct btrfs_root *root = pending->root;
3933 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3934 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
3935 /*
3936 * two for root back/forward refs, two for directory entries
3937 * and one for root of the snapshot.
3938 */
3939 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3940 dst_rsv->space_info = src_rsv->space_info;
3941 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3942 }
3943
3944 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes)
3945 {
3946 return num_bytes >>= 3;
3947 }
3948
3949 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
3950 {
3951 struct btrfs_root *root = BTRFS_I(inode)->root;
3952 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
3953 u64 to_reserve;
3954 int nr_extents;
3955 int reserved_extents;
3956 int ret;
3957
3958 if (btrfs_transaction_in_commit(root->fs_info))
3959 schedule_timeout(1);
3960
3961 num_bytes = ALIGN(num_bytes, root->sectorsize);
3962
3963 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents) + 1;
3964 reserved_extents = atomic_read(&BTRFS_I(inode)->reserved_extents);
3965
3966 if (nr_extents > reserved_extents) {
3967 nr_extents -= reserved_extents;
3968 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
3969 } else {
3970 nr_extents = 0;
3971 to_reserve = 0;
3972 }
3973
3974 to_reserve += calc_csum_metadata_size(inode, num_bytes);
3975 ret = reserve_metadata_bytes(NULL, root, block_rsv, to_reserve, 1);
3976 if (ret)
3977 return ret;
3978
3979 atomic_add(nr_extents, &BTRFS_I(inode)->reserved_extents);
3980 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
3981
3982 block_rsv_add_bytes(block_rsv, to_reserve, 1);
3983
3984 if (block_rsv->size > 512 * 1024 * 1024)
3985 shrink_delalloc(NULL, root, to_reserve, 0);
3986
3987 return 0;
3988 }
3989
3990 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
3991 {
3992 struct btrfs_root *root = BTRFS_I(inode)->root;
3993 u64 to_free;
3994 int nr_extents;
3995 int reserved_extents;
3996
3997 num_bytes = ALIGN(num_bytes, root->sectorsize);
3998 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
3999 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents) < 0);
4000
4001 reserved_extents = atomic_read(&BTRFS_I(inode)->reserved_extents);
4002 do {
4003 int old, new;
4004
4005 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents);
4006 if (nr_extents >= reserved_extents) {
4007 nr_extents = 0;
4008 break;
4009 }
4010 old = reserved_extents;
4011 nr_extents = reserved_extents - nr_extents;
4012 new = reserved_extents - nr_extents;
4013 old = atomic_cmpxchg(&BTRFS_I(inode)->reserved_extents,
4014 reserved_extents, new);
4015 if (likely(old == reserved_extents))
4016 break;
4017 reserved_extents = old;
4018 } while (1);
4019
4020 to_free = calc_csum_metadata_size(inode, num_bytes);
4021 if (nr_extents > 0)
4022 to_free += btrfs_calc_trans_metadata_size(root, nr_extents);
4023
4024 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4025 to_free);
4026 }
4027
4028 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4029 {
4030 int ret;
4031
4032 ret = btrfs_check_data_free_space(inode, num_bytes);
4033 if (ret)
4034 return ret;
4035
4036 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4037 if (ret) {
4038 btrfs_free_reserved_data_space(inode, num_bytes);
4039 return ret;
4040 }
4041
4042 return 0;
4043 }
4044
4045 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4046 {
4047 btrfs_delalloc_release_metadata(inode, num_bytes);
4048 btrfs_free_reserved_data_space(inode, num_bytes);
4049 }
4050
4051 static int update_block_group(struct btrfs_trans_handle *trans,
4052 struct btrfs_root *root,
4053 u64 bytenr, u64 num_bytes, int alloc)
4054 {
4055 struct btrfs_block_group_cache *cache = NULL;
4056 struct btrfs_fs_info *info = root->fs_info;
4057 u64 total = num_bytes;
4058 u64 old_val;
4059 u64 byte_in_group;
4060 int factor;
4061
4062 /* block accounting for super block */
4063 spin_lock(&info->delalloc_lock);
4064 old_val = btrfs_super_bytes_used(&info->super_copy);
4065 if (alloc)
4066 old_val += num_bytes;
4067 else
4068 old_val -= num_bytes;
4069 btrfs_set_super_bytes_used(&info->super_copy, old_val);
4070 spin_unlock(&info->delalloc_lock);
4071
4072 while (total) {
4073 cache = btrfs_lookup_block_group(info, bytenr);
4074 if (!cache)
4075 return -1;
4076 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4077 BTRFS_BLOCK_GROUP_RAID1 |
4078 BTRFS_BLOCK_GROUP_RAID10))
4079 factor = 2;
4080 else
4081 factor = 1;
4082 /*
4083 * If this block group has free space cache written out, we
4084 * need to make sure to load it if we are removing space. This
4085 * is because we need the unpinning stage to actually add the
4086 * space back to the block group, otherwise we will leak space.
4087 */
4088 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4089 cache_block_group(cache, trans, NULL, 1);
4090
4091 byte_in_group = bytenr - cache->key.objectid;
4092 WARN_ON(byte_in_group > cache->key.offset);
4093
4094 spin_lock(&cache->space_info->lock);
4095 spin_lock(&cache->lock);
4096
4097 if (btrfs_super_cache_generation(&info->super_copy) != 0 &&
4098 cache->disk_cache_state < BTRFS_DC_CLEAR)
4099 cache->disk_cache_state = BTRFS_DC_CLEAR;
4100
4101 cache->dirty = 1;
4102 old_val = btrfs_block_group_used(&cache->item);
4103 num_bytes = min(total, cache->key.offset - byte_in_group);
4104 if (alloc) {
4105 old_val += num_bytes;
4106 btrfs_set_block_group_used(&cache->item, old_val);
4107 cache->reserved -= num_bytes;
4108 cache->space_info->bytes_reserved -= num_bytes;
4109 cache->space_info->reservation_progress++;
4110 cache->space_info->bytes_used += num_bytes;
4111 cache->space_info->disk_used += num_bytes * factor;
4112 spin_unlock(&cache->lock);
4113 spin_unlock(&cache->space_info->lock);
4114 } else {
4115 old_val -= num_bytes;
4116 btrfs_set_block_group_used(&cache->item, old_val);
4117 cache->pinned += num_bytes;
4118 cache->space_info->bytes_pinned += num_bytes;
4119 cache->space_info->bytes_used -= num_bytes;
4120 cache->space_info->disk_used -= num_bytes * factor;
4121 spin_unlock(&cache->lock);
4122 spin_unlock(&cache->space_info->lock);
4123
4124 set_extent_dirty(info->pinned_extents,
4125 bytenr, bytenr + num_bytes - 1,
4126 GFP_NOFS | __GFP_NOFAIL);
4127 }
4128 btrfs_put_block_group(cache);
4129 total -= num_bytes;
4130 bytenr += num_bytes;
4131 }
4132 return 0;
4133 }
4134
4135 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4136 {
4137 struct btrfs_block_group_cache *cache;
4138 u64 bytenr;
4139
4140 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4141 if (!cache)
4142 return 0;
4143
4144 bytenr = cache->key.objectid;
4145 btrfs_put_block_group(cache);
4146
4147 return bytenr;
4148 }
4149
4150 static int pin_down_extent(struct btrfs_root *root,
4151 struct btrfs_block_group_cache *cache,
4152 u64 bytenr, u64 num_bytes, int reserved)
4153 {
4154 spin_lock(&cache->space_info->lock);
4155 spin_lock(&cache->lock);
4156 cache->pinned += num_bytes;
4157 cache->space_info->bytes_pinned += num_bytes;
4158 if (reserved) {
4159 cache->reserved -= num_bytes;
4160 cache->space_info->bytes_reserved -= num_bytes;
4161 cache->space_info->reservation_progress++;
4162 }
4163 spin_unlock(&cache->lock);
4164 spin_unlock(&cache->space_info->lock);
4165
4166 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4167 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4168 return 0;
4169 }
4170
4171 /*
4172 * this function must be called within transaction
4173 */
4174 int btrfs_pin_extent(struct btrfs_root *root,
4175 u64 bytenr, u64 num_bytes, int reserved)
4176 {
4177 struct btrfs_block_group_cache *cache;
4178
4179 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4180 BUG_ON(!cache);
4181
4182 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4183
4184 btrfs_put_block_group(cache);
4185 return 0;
4186 }
4187
4188 /*
4189 * update size of reserved extents. this function may return -EAGAIN
4190 * if 'reserve' is true or 'sinfo' is false.
4191 */
4192 int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4193 u64 num_bytes, int reserve, int sinfo)
4194 {
4195 int ret = 0;
4196 if (sinfo) {
4197 struct btrfs_space_info *space_info = cache->space_info;
4198 spin_lock(&space_info->lock);
4199 spin_lock(&cache->lock);
4200 if (reserve) {
4201 if (cache->ro) {
4202 ret = -EAGAIN;
4203 } else {
4204 cache->reserved += num_bytes;
4205 space_info->bytes_reserved += num_bytes;
4206 }
4207 } else {
4208 if (cache->ro)
4209 space_info->bytes_readonly += num_bytes;
4210 cache->reserved -= num_bytes;
4211 space_info->bytes_reserved -= num_bytes;
4212 space_info->reservation_progress++;
4213 }
4214 spin_unlock(&cache->lock);
4215 spin_unlock(&space_info->lock);
4216 } else {
4217 spin_lock(&cache->lock);
4218 if (cache->ro) {
4219 ret = -EAGAIN;
4220 } else {
4221 if (reserve)
4222 cache->reserved += num_bytes;
4223 else
4224 cache->reserved -= num_bytes;
4225 }
4226 spin_unlock(&cache->lock);
4227 }
4228 return ret;
4229 }
4230
4231 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4232 struct btrfs_root *root)
4233 {
4234 struct btrfs_fs_info *fs_info = root->fs_info;
4235 struct btrfs_caching_control *next;
4236 struct btrfs_caching_control *caching_ctl;
4237 struct btrfs_block_group_cache *cache;
4238
4239 down_write(&fs_info->extent_commit_sem);
4240
4241 list_for_each_entry_safe(caching_ctl, next,
4242 &fs_info->caching_block_groups, list) {
4243 cache = caching_ctl->block_group;
4244 if (block_group_cache_done(cache)) {
4245 cache->last_byte_to_unpin = (u64)-1;
4246 list_del_init(&caching_ctl->list);
4247 put_caching_control(caching_ctl);
4248 } else {
4249 cache->last_byte_to_unpin = caching_ctl->progress;
4250 }
4251 }
4252
4253 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4254 fs_info->pinned_extents = &fs_info->freed_extents[1];
4255 else
4256 fs_info->pinned_extents = &fs_info->freed_extents[0];
4257
4258 up_write(&fs_info->extent_commit_sem);
4259
4260 update_global_block_rsv(fs_info);
4261 return 0;
4262 }
4263
4264 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4265 {
4266 struct btrfs_fs_info *fs_info = root->fs_info;
4267 struct btrfs_block_group_cache *cache = NULL;
4268 u64 len;
4269
4270 while (start <= end) {
4271 if (!cache ||
4272 start >= cache->key.objectid + cache->key.offset) {
4273 if (cache)
4274 btrfs_put_block_group(cache);
4275 cache = btrfs_lookup_block_group(fs_info, start);
4276 BUG_ON(!cache);
4277 }
4278
4279 len = cache->key.objectid + cache->key.offset - start;
4280 len = min(len, end + 1 - start);
4281
4282 if (start < cache->last_byte_to_unpin) {
4283 len = min(len, cache->last_byte_to_unpin - start);
4284 btrfs_add_free_space(cache, start, len);
4285 }
4286
4287 start += len;
4288
4289 spin_lock(&cache->space_info->lock);
4290 spin_lock(&cache->lock);
4291 cache->pinned -= len;
4292 cache->space_info->bytes_pinned -= len;
4293 if (cache->ro) {
4294 cache->space_info->bytes_readonly += len;
4295 } else if (cache->reserved_pinned > 0) {
4296 len = min(len, cache->reserved_pinned);
4297 cache->reserved_pinned -= len;
4298 cache->space_info->bytes_reserved += len;
4299 }
4300 spin_unlock(&cache->lock);
4301 spin_unlock(&cache->space_info->lock);
4302 }
4303
4304 if (cache)
4305 btrfs_put_block_group(cache);
4306 return 0;
4307 }
4308
4309 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4310 struct btrfs_root *root)
4311 {
4312 struct btrfs_fs_info *fs_info = root->fs_info;
4313 struct extent_io_tree *unpin;
4314 struct btrfs_block_rsv *block_rsv;
4315 struct btrfs_block_rsv *next_rsv;
4316 u64 start;
4317 u64 end;
4318 int idx;
4319 int ret;
4320
4321 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4322 unpin = &fs_info->freed_extents[1];
4323 else
4324 unpin = &fs_info->freed_extents[0];
4325
4326 while (1) {
4327 ret = find_first_extent_bit(unpin, 0, &start, &end,
4328 EXTENT_DIRTY);
4329 if (ret)
4330 break;
4331
4332 if (btrfs_test_opt(root, DISCARD))
4333 ret = btrfs_discard_extent(root, start,
4334 end + 1 - start, NULL);
4335
4336 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4337 unpin_extent_range(root, start, end);
4338 cond_resched();
4339 }
4340
4341 mutex_lock(&fs_info->durable_block_rsv_mutex);
4342 list_for_each_entry_safe(block_rsv, next_rsv,
4343 &fs_info->durable_block_rsv_list, list) {
4344
4345 idx = trans->transid & 0x1;
4346 if (block_rsv->freed[idx] > 0) {
4347 block_rsv_add_bytes(block_rsv,
4348 block_rsv->freed[idx], 0);
4349 block_rsv->freed[idx] = 0;
4350 }
4351 if (atomic_read(&block_rsv->usage) == 0) {
4352 btrfs_block_rsv_release(root, block_rsv, (u64)-1);
4353
4354 if (block_rsv->freed[0] == 0 &&
4355 block_rsv->freed[1] == 0) {
4356 list_del_init(&block_rsv->list);
4357 kfree(block_rsv);
4358 }
4359 } else {
4360 btrfs_block_rsv_release(root, block_rsv, 0);
4361 }
4362 }
4363 mutex_unlock(&fs_info->durable_block_rsv_mutex);
4364
4365 return 0;
4366 }
4367
4368 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4369 struct btrfs_root *root,
4370 u64 bytenr, u64 num_bytes, u64 parent,
4371 u64 root_objectid, u64 owner_objectid,
4372 u64 owner_offset, int refs_to_drop,
4373 struct btrfs_delayed_extent_op *extent_op)
4374 {
4375 struct btrfs_key key;
4376 struct btrfs_path *path;
4377 struct btrfs_fs_info *info = root->fs_info;
4378 struct btrfs_root *extent_root = info->extent_root;
4379 struct extent_buffer *leaf;
4380 struct btrfs_extent_item *ei;
4381 struct btrfs_extent_inline_ref *iref;
4382 int ret;
4383 int is_data;
4384 int extent_slot = 0;
4385 int found_extent = 0;
4386 int num_to_del = 1;
4387 u32 item_size;
4388 u64 refs;
4389
4390 path = btrfs_alloc_path();
4391 if (!path)
4392 return -ENOMEM;
4393
4394 path->reada = 1;
4395 path->leave_spinning = 1;
4396
4397 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4398 BUG_ON(!is_data && refs_to_drop != 1);
4399
4400 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4401 bytenr, num_bytes, parent,
4402 root_objectid, owner_objectid,
4403 owner_offset);
4404 if (ret == 0) {
4405 extent_slot = path->slots[0];
4406 while (extent_slot >= 0) {
4407 btrfs_item_key_to_cpu(path->nodes[0], &key,
4408 extent_slot);
4409 if (key.objectid != bytenr)
4410 break;
4411 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4412 key.offset == num_bytes) {
4413 found_extent = 1;
4414 break;
4415 }
4416 if (path->slots[0] - extent_slot > 5)
4417 break;
4418 extent_slot--;
4419 }
4420 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4421 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4422 if (found_extent && item_size < sizeof(*ei))
4423 found_extent = 0;
4424 #endif
4425 if (!found_extent) {
4426 BUG_ON(iref);
4427 ret = remove_extent_backref(trans, extent_root, path,
4428 NULL, refs_to_drop,
4429 is_data);
4430 BUG_ON(ret);
4431 btrfs_release_path(path);
4432 path->leave_spinning = 1;
4433
4434 key.objectid = bytenr;
4435 key.type = BTRFS_EXTENT_ITEM_KEY;
4436 key.offset = num_bytes;
4437
4438 ret = btrfs_search_slot(trans, extent_root,
4439 &key, path, -1, 1);
4440 if (ret) {
4441 printk(KERN_ERR "umm, got %d back from search"
4442 ", was looking for %llu\n", ret,
4443 (unsigned long long)bytenr);
4444 btrfs_print_leaf(extent_root, path->nodes[0]);
4445 }
4446 BUG_ON(ret);
4447 extent_slot = path->slots[0];
4448 }
4449 } else {
4450 btrfs_print_leaf(extent_root, path->nodes[0]);
4451 WARN_ON(1);
4452 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4453 "parent %llu root %llu owner %llu offset %llu\n",
4454 (unsigned long long)bytenr,
4455 (unsigned long long)parent,
4456 (unsigned long long)root_objectid,
4457 (unsigned long long)owner_objectid,
4458 (unsigned long long)owner_offset);
4459 }
4460
4461 leaf = path->nodes[0];
4462 item_size = btrfs_item_size_nr(leaf, extent_slot);
4463 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4464 if (item_size < sizeof(*ei)) {
4465 BUG_ON(found_extent || extent_slot != path->slots[0]);
4466 ret = convert_extent_item_v0(trans, extent_root, path,
4467 owner_objectid, 0);
4468 BUG_ON(ret < 0);
4469
4470 btrfs_release_path(path);
4471 path->leave_spinning = 1;
4472
4473 key.objectid = bytenr;
4474 key.type = BTRFS_EXTENT_ITEM_KEY;
4475 key.offset = num_bytes;
4476
4477 ret = btrfs_search_slot(trans, extent_root, &key, path,
4478 -1, 1);
4479 if (ret) {
4480 printk(KERN_ERR "umm, got %d back from search"
4481 ", was looking for %llu\n", ret,
4482 (unsigned long long)bytenr);
4483 btrfs_print_leaf(extent_root, path->nodes[0]);
4484 }
4485 BUG_ON(ret);
4486 extent_slot = path->slots[0];
4487 leaf = path->nodes[0];
4488 item_size = btrfs_item_size_nr(leaf, extent_slot);
4489 }
4490 #endif
4491 BUG_ON(item_size < sizeof(*ei));
4492 ei = btrfs_item_ptr(leaf, extent_slot,
4493 struct btrfs_extent_item);
4494 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4495 struct btrfs_tree_block_info *bi;
4496 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4497 bi = (struct btrfs_tree_block_info *)(ei + 1);
4498 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4499 }
4500
4501 refs = btrfs_extent_refs(leaf, ei);
4502 BUG_ON(refs < refs_to_drop);
4503 refs -= refs_to_drop;
4504
4505 if (refs > 0) {
4506 if (extent_op)
4507 __run_delayed_extent_op(extent_op, leaf, ei);
4508 /*
4509 * In the case of inline back ref, reference count will
4510 * be updated by remove_extent_backref
4511 */
4512 if (iref) {
4513 BUG_ON(!found_extent);
4514 } else {
4515 btrfs_set_extent_refs(leaf, ei, refs);
4516 btrfs_mark_buffer_dirty(leaf);
4517 }
4518 if (found_extent) {
4519 ret = remove_extent_backref(trans, extent_root, path,
4520 iref, refs_to_drop,
4521 is_data);
4522 BUG_ON(ret);
4523 }
4524 } else {
4525 if (found_extent) {
4526 BUG_ON(is_data && refs_to_drop !=
4527 extent_data_ref_count(root, path, iref));
4528 if (iref) {
4529 BUG_ON(path->slots[0] != extent_slot);
4530 } else {
4531 BUG_ON(path->slots[0] != extent_slot + 1);
4532 path->slots[0] = extent_slot;
4533 num_to_del = 2;
4534 }
4535 }
4536
4537 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4538 num_to_del);
4539 BUG_ON(ret);
4540 btrfs_release_path(path);
4541
4542 if (is_data) {
4543 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4544 BUG_ON(ret);
4545 } else {
4546 invalidate_mapping_pages(info->btree_inode->i_mapping,
4547 bytenr >> PAGE_CACHE_SHIFT,
4548 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4549 }
4550
4551 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4552 BUG_ON(ret);
4553 }
4554 btrfs_free_path(path);
4555 return ret;
4556 }
4557
4558 /*
4559 * when we free an block, it is possible (and likely) that we free the last
4560 * delayed ref for that extent as well. This searches the delayed ref tree for
4561 * a given extent, and if there are no other delayed refs to be processed, it
4562 * removes it from the tree.
4563 */
4564 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4565 struct btrfs_root *root, u64 bytenr)
4566 {
4567 struct btrfs_delayed_ref_head *head;
4568 struct btrfs_delayed_ref_root *delayed_refs;
4569 struct btrfs_delayed_ref_node *ref;
4570 struct rb_node *node;
4571 int ret = 0;
4572
4573 delayed_refs = &trans->transaction->delayed_refs;
4574 spin_lock(&delayed_refs->lock);
4575 head = btrfs_find_delayed_ref_head(trans, bytenr);
4576 if (!head)
4577 goto out;
4578
4579 node = rb_prev(&head->node.rb_node);
4580 if (!node)
4581 goto out;
4582
4583 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4584
4585 /* there are still entries for this ref, we can't drop it */
4586 if (ref->bytenr == bytenr)
4587 goto out;
4588
4589 if (head->extent_op) {
4590 if (!head->must_insert_reserved)
4591 goto out;
4592 kfree(head->extent_op);
4593 head->extent_op = NULL;
4594 }
4595
4596 /*
4597 * waiting for the lock here would deadlock. If someone else has it
4598 * locked they are already in the process of dropping it anyway
4599 */
4600 if (!mutex_trylock(&head->mutex))
4601 goto out;
4602
4603 /*
4604 * at this point we have a head with no other entries. Go
4605 * ahead and process it.
4606 */
4607 head->node.in_tree = 0;
4608 rb_erase(&head->node.rb_node, &delayed_refs->root);
4609
4610 delayed_refs->num_entries--;
4611
4612 /*
4613 * we don't take a ref on the node because we're removing it from the
4614 * tree, so we just steal the ref the tree was holding.
4615 */
4616 delayed_refs->num_heads--;
4617 if (list_empty(&head->cluster))
4618 delayed_refs->num_heads_ready--;
4619
4620 list_del_init(&head->cluster);
4621 spin_unlock(&delayed_refs->lock);
4622
4623 BUG_ON(head->extent_op);
4624 if (head->must_insert_reserved)
4625 ret = 1;
4626
4627 mutex_unlock(&head->mutex);
4628 btrfs_put_delayed_ref(&head->node);
4629 return ret;
4630 out:
4631 spin_unlock(&delayed_refs->lock);
4632 return 0;
4633 }
4634
4635 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4636 struct btrfs_root *root,
4637 struct extent_buffer *buf,
4638 u64 parent, int last_ref)
4639 {
4640 struct btrfs_block_rsv *block_rsv;
4641 struct btrfs_block_group_cache *cache = NULL;
4642 int ret;
4643
4644 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4645 ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4646 parent, root->root_key.objectid,
4647 btrfs_header_level(buf),
4648 BTRFS_DROP_DELAYED_REF, NULL);
4649 BUG_ON(ret);
4650 }
4651
4652 if (!last_ref)
4653 return;
4654
4655 block_rsv = get_block_rsv(trans, root);
4656 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4657 if (block_rsv->space_info != cache->space_info)
4658 goto out;
4659
4660 if (btrfs_header_generation(buf) == trans->transid) {
4661 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4662 ret = check_ref_cleanup(trans, root, buf->start);
4663 if (!ret)
4664 goto pin;
4665 }
4666
4667 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4668 pin_down_extent(root, cache, buf->start, buf->len, 1);
4669 goto pin;
4670 }
4671
4672 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4673
4674 btrfs_add_free_space(cache, buf->start, buf->len);
4675 ret = btrfs_update_reserved_bytes(cache, buf->len, 0, 0);
4676 if (ret == -EAGAIN) {
4677 /* block group became read-only */
4678 btrfs_update_reserved_bytes(cache, buf->len, 0, 1);
4679 goto out;
4680 }
4681
4682 ret = 1;
4683 spin_lock(&block_rsv->lock);
4684 if (block_rsv->reserved < block_rsv->size) {
4685 block_rsv->reserved += buf->len;
4686 ret = 0;
4687 }
4688 spin_unlock(&block_rsv->lock);
4689
4690 if (ret) {
4691 spin_lock(&cache->space_info->lock);
4692 cache->space_info->bytes_reserved -= buf->len;
4693 cache->space_info->reservation_progress++;
4694 spin_unlock(&cache->space_info->lock);
4695 }
4696 goto out;
4697 }
4698 pin:
4699 if (block_rsv->durable && !cache->ro) {
4700 ret = 0;
4701 spin_lock(&cache->lock);
4702 if (!cache->ro) {
4703 cache->reserved_pinned += buf->len;
4704 ret = 1;
4705 }
4706 spin_unlock(&cache->lock);
4707
4708 if (ret) {
4709 spin_lock(&block_rsv->lock);
4710 block_rsv->freed[trans->transid & 0x1] += buf->len;
4711 spin_unlock(&block_rsv->lock);
4712 }
4713 }
4714 out:
4715 /*
4716 * Deleting the buffer, clear the corrupt flag since it doesn't matter
4717 * anymore.
4718 */
4719 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
4720 btrfs_put_block_group(cache);
4721 }
4722
4723 int btrfs_free_extent(struct btrfs_trans_handle *trans,
4724 struct btrfs_root *root,
4725 u64 bytenr, u64 num_bytes, u64 parent,
4726 u64 root_objectid, u64 owner, u64 offset)
4727 {
4728 int ret;
4729
4730 /*
4731 * tree log blocks never actually go into the extent allocation
4732 * tree, just update pinning info and exit early.
4733 */
4734 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4735 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4736 /* unlocks the pinned mutex */
4737 btrfs_pin_extent(root, bytenr, num_bytes, 1);
4738 ret = 0;
4739 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4740 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4741 parent, root_objectid, (int)owner,
4742 BTRFS_DROP_DELAYED_REF, NULL);
4743 BUG_ON(ret);
4744 } else {
4745 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4746 parent, root_objectid, owner,
4747 offset, BTRFS_DROP_DELAYED_REF, NULL);
4748 BUG_ON(ret);
4749 }
4750 return ret;
4751 }
4752
4753 static u64 stripe_align(struct btrfs_root *root, u64 val)
4754 {
4755 u64 mask = ((u64)root->stripesize - 1);
4756 u64 ret = (val + mask) & ~mask;
4757 return ret;
4758 }
4759
4760 /*
4761 * when we wait for progress in the block group caching, its because
4762 * our allocation attempt failed at least once. So, we must sleep
4763 * and let some progress happen before we try again.
4764 *
4765 * This function will sleep at least once waiting for new free space to
4766 * show up, and then it will check the block group free space numbers
4767 * for our min num_bytes. Another option is to have it go ahead
4768 * and look in the rbtree for a free extent of a given size, but this
4769 * is a good start.
4770 */
4771 static noinline int
4772 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4773 u64 num_bytes)
4774 {
4775 struct btrfs_caching_control *caching_ctl;
4776 DEFINE_WAIT(wait);
4777
4778 caching_ctl = get_caching_control(cache);
4779 if (!caching_ctl)
4780 return 0;
4781
4782 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4783 (cache->free_space_ctl->free_space >= num_bytes));
4784
4785 put_caching_control(caching_ctl);
4786 return 0;
4787 }
4788
4789 static noinline int
4790 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4791 {
4792 struct btrfs_caching_control *caching_ctl;
4793 DEFINE_WAIT(wait);
4794
4795 caching_ctl = get_caching_control(cache);
4796 if (!caching_ctl)
4797 return 0;
4798
4799 wait_event(caching_ctl->wait, block_group_cache_done(cache));
4800
4801 put_caching_control(caching_ctl);
4802 return 0;
4803 }
4804
4805 static int get_block_group_index(struct btrfs_block_group_cache *cache)
4806 {
4807 int index;
4808 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
4809 index = 0;
4810 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
4811 index = 1;
4812 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
4813 index = 2;
4814 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
4815 index = 3;
4816 else
4817 index = 4;
4818 return index;
4819 }
4820
4821 enum btrfs_loop_type {
4822 LOOP_FIND_IDEAL = 0,
4823 LOOP_CACHING_NOWAIT = 1,
4824 LOOP_CACHING_WAIT = 2,
4825 LOOP_ALLOC_CHUNK = 3,
4826 LOOP_NO_EMPTY_SIZE = 4,
4827 };
4828
4829 /*
4830 * walks the btree of allocated extents and find a hole of a given size.
4831 * The key ins is changed to record the hole:
4832 * ins->objectid == block start
4833 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4834 * ins->offset == number of blocks
4835 * Any available blocks before search_start are skipped.
4836 */
4837 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
4838 struct btrfs_root *orig_root,
4839 u64 num_bytes, u64 empty_size,
4840 u64 search_start, u64 search_end,
4841 u64 hint_byte, struct btrfs_key *ins,
4842 int data)
4843 {
4844 int ret = 0;
4845 struct btrfs_root *root = orig_root->fs_info->extent_root;
4846 struct btrfs_free_cluster *last_ptr = NULL;
4847 struct btrfs_block_group_cache *block_group = NULL;
4848 int empty_cluster = 2 * 1024 * 1024;
4849 int allowed_chunk_alloc = 0;
4850 int done_chunk_alloc = 0;
4851 struct btrfs_space_info *space_info;
4852 int last_ptr_loop = 0;
4853 int loop = 0;
4854 int index = 0;
4855 bool found_uncached_bg = false;
4856 bool failed_cluster_refill = false;
4857 bool failed_alloc = false;
4858 bool use_cluster = true;
4859 u64 ideal_cache_percent = 0;
4860 u64 ideal_cache_offset = 0;
4861
4862 WARN_ON(num_bytes < root->sectorsize);
4863 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
4864 ins->objectid = 0;
4865 ins->offset = 0;
4866
4867 space_info = __find_space_info(root->fs_info, data);
4868 if (!space_info) {
4869 printk(KERN_ERR "No space info for %d\n", data);
4870 return -ENOSPC;
4871 }
4872
4873 /*
4874 * If the space info is for both data and metadata it means we have a
4875 * small filesystem and we can't use the clustering stuff.
4876 */
4877 if (btrfs_mixed_space_info(space_info))
4878 use_cluster = false;
4879
4880 if (orig_root->ref_cows || empty_size)
4881 allowed_chunk_alloc = 1;
4882
4883 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
4884 last_ptr = &root->fs_info->meta_alloc_cluster;
4885 if (!btrfs_test_opt(root, SSD))
4886 empty_cluster = 64 * 1024;
4887 }
4888
4889 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
4890 btrfs_test_opt(root, SSD)) {
4891 last_ptr = &root->fs_info->data_alloc_cluster;
4892 }
4893
4894 if (last_ptr) {
4895 spin_lock(&last_ptr->lock);
4896 if (last_ptr->block_group)
4897 hint_byte = last_ptr->window_start;
4898 spin_unlock(&last_ptr->lock);
4899 }
4900
4901 search_start = max(search_start, first_logical_byte(root, 0));
4902 search_start = max(search_start, hint_byte);
4903
4904 if (!last_ptr)
4905 empty_cluster = 0;
4906
4907 if (search_start == hint_byte) {
4908 ideal_cache:
4909 block_group = btrfs_lookup_block_group(root->fs_info,
4910 search_start);
4911 /*
4912 * we don't want to use the block group if it doesn't match our
4913 * allocation bits, or if its not cached.
4914 *
4915 * However if we are re-searching with an ideal block group
4916 * picked out then we don't care that the block group is cached.
4917 */
4918 if (block_group && block_group_bits(block_group, data) &&
4919 (block_group->cached != BTRFS_CACHE_NO ||
4920 search_start == ideal_cache_offset)) {
4921 down_read(&space_info->groups_sem);
4922 if (list_empty(&block_group->list) ||
4923 block_group->ro) {
4924 /*
4925 * someone is removing this block group,
4926 * we can't jump into the have_block_group
4927 * target because our list pointers are not
4928 * valid
4929 */
4930 btrfs_put_block_group(block_group);
4931 up_read(&space_info->groups_sem);
4932 } else {
4933 index = get_block_group_index(block_group);
4934 goto have_block_group;
4935 }
4936 } else if (block_group) {
4937 btrfs_put_block_group(block_group);
4938 }
4939 }
4940 search:
4941 down_read(&space_info->groups_sem);
4942 list_for_each_entry(block_group, &space_info->block_groups[index],
4943 list) {
4944 u64 offset;
4945 int cached;
4946
4947 btrfs_get_block_group(block_group);
4948 search_start = block_group->key.objectid;
4949
4950 /*
4951 * this can happen if we end up cycling through all the
4952 * raid types, but we want to make sure we only allocate
4953 * for the proper type.
4954 */
4955 if (!block_group_bits(block_group, data)) {
4956 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4957 BTRFS_BLOCK_GROUP_RAID1 |
4958 BTRFS_BLOCK_GROUP_RAID10;
4959
4960 /*
4961 * if they asked for extra copies and this block group
4962 * doesn't provide them, bail. This does allow us to
4963 * fill raid0 from raid1.
4964 */
4965 if ((data & extra) && !(block_group->flags & extra))
4966 goto loop;
4967 }
4968
4969 have_block_group:
4970 if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
4971 u64 free_percent;
4972
4973 ret = cache_block_group(block_group, trans,
4974 orig_root, 1);
4975 if (block_group->cached == BTRFS_CACHE_FINISHED)
4976 goto have_block_group;
4977
4978 free_percent = btrfs_block_group_used(&block_group->item);
4979 free_percent *= 100;
4980 free_percent = div64_u64(free_percent,
4981 block_group->key.offset);
4982 free_percent = 100 - free_percent;
4983 if (free_percent > ideal_cache_percent &&
4984 likely(!block_group->ro)) {
4985 ideal_cache_offset = block_group->key.objectid;
4986 ideal_cache_percent = free_percent;
4987 }
4988
4989 /*
4990 * We only want to start kthread caching if we are at
4991 * the point where we will wait for caching to make
4992 * progress, or if our ideal search is over and we've
4993 * found somebody to start caching.
4994 */
4995 if (loop > LOOP_CACHING_NOWAIT ||
4996 (loop > LOOP_FIND_IDEAL &&
4997 atomic_read(&space_info->caching_threads) < 2)) {
4998 ret = cache_block_group(block_group, trans,
4999 orig_root, 0);
5000 BUG_ON(ret);
5001 }
5002 found_uncached_bg = true;
5003
5004 /*
5005 * If loop is set for cached only, try the next block
5006 * group.
5007 */
5008 if (loop == LOOP_FIND_IDEAL)
5009 goto loop;
5010 }
5011
5012 cached = block_group_cache_done(block_group);
5013 if (unlikely(!cached))
5014 found_uncached_bg = true;
5015
5016 if (unlikely(block_group->ro))
5017 goto loop;
5018
5019 spin_lock(&block_group->free_space_ctl->tree_lock);
5020 if (cached &&
5021 block_group->free_space_ctl->free_space <
5022 num_bytes + empty_size) {
5023 spin_unlock(&block_group->free_space_ctl->tree_lock);
5024 goto loop;
5025 }
5026 spin_unlock(&block_group->free_space_ctl->tree_lock);
5027
5028 /*
5029 * Ok we want to try and use the cluster allocator, so lets look
5030 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
5031 * have tried the cluster allocator plenty of times at this
5032 * point and not have found anything, so we are likely way too
5033 * fragmented for the clustering stuff to find anything, so lets
5034 * just skip it and let the allocator find whatever block it can
5035 * find
5036 */
5037 if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
5038 /*
5039 * the refill lock keeps out other
5040 * people trying to start a new cluster
5041 */
5042 spin_lock(&last_ptr->refill_lock);
5043 if (last_ptr->block_group &&
5044 (last_ptr->block_group->ro ||
5045 !block_group_bits(last_ptr->block_group, data))) {
5046 offset = 0;
5047 goto refill_cluster;
5048 }
5049
5050 offset = btrfs_alloc_from_cluster(block_group, last_ptr,
5051 num_bytes, search_start);
5052 if (offset) {
5053 /* we have a block, we're done */
5054 spin_unlock(&last_ptr->refill_lock);
5055 goto checks;
5056 }
5057
5058 spin_lock(&last_ptr->lock);
5059 /*
5060 * whoops, this cluster doesn't actually point to
5061 * this block group. Get a ref on the block
5062 * group is does point to and try again
5063 */
5064 if (!last_ptr_loop && last_ptr->block_group &&
5065 last_ptr->block_group != block_group) {
5066
5067 btrfs_put_block_group(block_group);
5068 block_group = last_ptr->block_group;
5069 btrfs_get_block_group(block_group);
5070 spin_unlock(&last_ptr->lock);
5071 spin_unlock(&last_ptr->refill_lock);
5072
5073 last_ptr_loop = 1;
5074 search_start = block_group->key.objectid;
5075 /*
5076 * we know this block group is properly
5077 * in the list because
5078 * btrfs_remove_block_group, drops the
5079 * cluster before it removes the block
5080 * group from the list
5081 */
5082 goto have_block_group;
5083 }
5084 spin_unlock(&last_ptr->lock);
5085 refill_cluster:
5086 /*
5087 * this cluster didn't work out, free it and
5088 * start over
5089 */
5090 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5091
5092 last_ptr_loop = 0;
5093
5094 /* allocate a cluster in this block group */
5095 ret = btrfs_find_space_cluster(trans, root,
5096 block_group, last_ptr,
5097 offset, num_bytes,
5098 empty_cluster + empty_size);
5099 if (ret == 0) {
5100 /*
5101 * now pull our allocation out of this
5102 * cluster
5103 */
5104 offset = btrfs_alloc_from_cluster(block_group,
5105 last_ptr, num_bytes,
5106 search_start);
5107 if (offset) {
5108 /* we found one, proceed */
5109 spin_unlock(&last_ptr->refill_lock);
5110 goto checks;
5111 }
5112 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5113 && !failed_cluster_refill) {
5114 spin_unlock(&last_ptr->refill_lock);
5115
5116 failed_cluster_refill = true;
5117 wait_block_group_cache_progress(block_group,
5118 num_bytes + empty_cluster + empty_size);
5119 goto have_block_group;
5120 }
5121
5122 /*
5123 * at this point we either didn't find a cluster
5124 * or we weren't able to allocate a block from our
5125 * cluster. Free the cluster we've been trying
5126 * to use, and go to the next block group
5127 */
5128 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5129 spin_unlock(&last_ptr->refill_lock);
5130 goto loop;
5131 }
5132
5133 offset = btrfs_find_space_for_alloc(block_group, search_start,
5134 num_bytes, empty_size);
5135 /*
5136 * If we didn't find a chunk, and we haven't failed on this
5137 * block group before, and this block group is in the middle of
5138 * caching and we are ok with waiting, then go ahead and wait
5139 * for progress to be made, and set failed_alloc to true.
5140 *
5141 * If failed_alloc is true then we've already waited on this
5142 * block group once and should move on to the next block group.
5143 */
5144 if (!offset && !failed_alloc && !cached &&
5145 loop > LOOP_CACHING_NOWAIT) {
5146 wait_block_group_cache_progress(block_group,
5147 num_bytes + empty_size);
5148 failed_alloc = true;
5149 goto have_block_group;
5150 } else if (!offset) {
5151 goto loop;
5152 }
5153 checks:
5154 search_start = stripe_align(root, offset);
5155 /* move on to the next group */
5156 if (search_start + num_bytes >= search_end) {
5157 btrfs_add_free_space(block_group, offset, num_bytes);
5158 goto loop;
5159 }
5160
5161 /* move on to the next group */
5162 if (search_start + num_bytes >
5163 block_group->key.objectid + block_group->key.offset) {
5164 btrfs_add_free_space(block_group, offset, num_bytes);
5165 goto loop;
5166 }
5167
5168 ins->objectid = search_start;
5169 ins->offset = num_bytes;
5170
5171 if (offset < search_start)
5172 btrfs_add_free_space(block_group, offset,
5173 search_start - offset);
5174 BUG_ON(offset > search_start);
5175
5176 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 1,
5177 (data & BTRFS_BLOCK_GROUP_DATA));
5178 if (ret == -EAGAIN) {
5179 btrfs_add_free_space(block_group, offset, num_bytes);
5180 goto loop;
5181 }
5182
5183 /* we are all good, lets return */
5184 ins->objectid = search_start;
5185 ins->offset = num_bytes;
5186
5187 if (offset < search_start)
5188 btrfs_add_free_space(block_group, offset,
5189 search_start - offset);
5190 BUG_ON(offset > search_start);
5191 btrfs_put_block_group(block_group);
5192 break;
5193 loop:
5194 failed_cluster_refill = false;
5195 failed_alloc = false;
5196 BUG_ON(index != get_block_group_index(block_group));
5197 btrfs_put_block_group(block_group);
5198 }
5199 up_read(&space_info->groups_sem);
5200
5201 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5202 goto search;
5203
5204 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5205 * for them to make caching progress. Also
5206 * determine the best possible bg to cache
5207 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5208 * caching kthreads as we move along
5209 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5210 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5211 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5212 * again
5213 */
5214 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE &&
5215 (found_uncached_bg || empty_size || empty_cluster ||
5216 allowed_chunk_alloc)) {
5217 index = 0;
5218 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5219 found_uncached_bg = false;
5220 loop++;
5221 if (!ideal_cache_percent &&
5222 atomic_read(&space_info->caching_threads))
5223 goto search;
5224
5225 /*
5226 * 1 of the following 2 things have happened so far
5227 *
5228 * 1) We found an ideal block group for caching that
5229 * is mostly full and will cache quickly, so we might
5230 * as well wait for it.
5231 *
5232 * 2) We searched for cached only and we didn't find
5233 * anything, and we didn't start any caching kthreads
5234 * either, so chances are we will loop through and
5235 * start a couple caching kthreads, and then come back
5236 * around and just wait for them. This will be slower
5237 * because we will have 2 caching kthreads reading at
5238 * the same time when we could have just started one
5239 * and waited for it to get far enough to give us an
5240 * allocation, so go ahead and go to the wait caching
5241 * loop.
5242 */
5243 loop = LOOP_CACHING_WAIT;
5244 search_start = ideal_cache_offset;
5245 ideal_cache_percent = 0;
5246 goto ideal_cache;
5247 } else if (loop == LOOP_FIND_IDEAL) {
5248 /*
5249 * Didn't find a uncached bg, wait on anything we find
5250 * next.
5251 */
5252 loop = LOOP_CACHING_WAIT;
5253 goto search;
5254 }
5255
5256 if (loop < LOOP_CACHING_WAIT) {
5257 loop++;
5258 goto search;
5259 }
5260
5261 if (loop == LOOP_ALLOC_CHUNK) {
5262 empty_size = 0;
5263 empty_cluster = 0;
5264 }
5265
5266 if (allowed_chunk_alloc) {
5267 ret = do_chunk_alloc(trans, root, num_bytes +
5268 2 * 1024 * 1024, data,
5269 CHUNK_ALLOC_LIMITED);
5270 allowed_chunk_alloc = 0;
5271 done_chunk_alloc = 1;
5272 } else if (!done_chunk_alloc &&
5273 space_info->force_alloc == CHUNK_ALLOC_NO_FORCE) {
5274 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5275 }
5276
5277 if (loop < LOOP_NO_EMPTY_SIZE) {
5278 loop++;
5279 goto search;
5280 }
5281 ret = -ENOSPC;
5282 } else if (!ins->objectid) {
5283 ret = -ENOSPC;
5284 } else if (ins->objectid) {
5285 ret = 0;
5286 }
5287
5288 return ret;
5289 }
5290
5291 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5292 int dump_block_groups)
5293 {
5294 struct btrfs_block_group_cache *cache;
5295 int index = 0;
5296
5297 spin_lock(&info->lock);
5298 printk(KERN_INFO "space_info has %llu free, is %sfull\n",
5299 (unsigned long long)(info->total_bytes - info->bytes_used -
5300 info->bytes_pinned - info->bytes_reserved -
5301 info->bytes_readonly),
5302 (info->full) ? "" : "not ");
5303 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5304 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5305 (unsigned long long)info->total_bytes,
5306 (unsigned long long)info->bytes_used,
5307 (unsigned long long)info->bytes_pinned,
5308 (unsigned long long)info->bytes_reserved,
5309 (unsigned long long)info->bytes_may_use,
5310 (unsigned long long)info->bytes_readonly);
5311 spin_unlock(&info->lock);
5312
5313 if (!dump_block_groups)
5314 return;
5315
5316 down_read(&info->groups_sem);
5317 again:
5318 list_for_each_entry(cache, &info->block_groups[index], list) {
5319 spin_lock(&cache->lock);
5320 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5321 "%llu pinned %llu reserved\n",
5322 (unsigned long long)cache->key.objectid,
5323 (unsigned long long)cache->key.offset,
5324 (unsigned long long)btrfs_block_group_used(&cache->item),
5325 (unsigned long long)cache->pinned,
5326 (unsigned long long)cache->reserved);
5327 btrfs_dump_free_space(cache, bytes);
5328 spin_unlock(&cache->lock);
5329 }
5330 if (++index < BTRFS_NR_RAID_TYPES)
5331 goto again;
5332 up_read(&info->groups_sem);
5333 }
5334
5335 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5336 struct btrfs_root *root,
5337 u64 num_bytes, u64 min_alloc_size,
5338 u64 empty_size, u64 hint_byte,
5339 u64 search_end, struct btrfs_key *ins,
5340 u64 data)
5341 {
5342 int ret;
5343 u64 search_start = 0;
5344
5345 data = btrfs_get_alloc_profile(root, data);
5346 again:
5347 /*
5348 * the only place that sets empty_size is btrfs_realloc_node, which
5349 * is not called recursively on allocations
5350 */
5351 if (empty_size || root->ref_cows)
5352 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5353 num_bytes + 2 * 1024 * 1024, data,
5354 CHUNK_ALLOC_NO_FORCE);
5355
5356 WARN_ON(num_bytes < root->sectorsize);
5357 ret = find_free_extent(trans, root, num_bytes, empty_size,
5358 search_start, search_end, hint_byte,
5359 ins, data);
5360
5361 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5362 num_bytes = num_bytes >> 1;
5363 num_bytes = num_bytes & ~(root->sectorsize - 1);
5364 num_bytes = max(num_bytes, min_alloc_size);
5365 do_chunk_alloc(trans, root->fs_info->extent_root,
5366 num_bytes, data, CHUNK_ALLOC_FORCE);
5367 goto again;
5368 }
5369 if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
5370 struct btrfs_space_info *sinfo;
5371
5372 sinfo = __find_space_info(root->fs_info, data);
5373 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5374 "wanted %llu\n", (unsigned long long)data,
5375 (unsigned long long)num_bytes);
5376 dump_space_info(sinfo, num_bytes, 1);
5377 }
5378
5379 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5380
5381 return ret;
5382 }
5383
5384 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
5385 {
5386 struct btrfs_block_group_cache *cache;
5387 int ret = 0;
5388
5389 cache = btrfs_lookup_block_group(root->fs_info, start);
5390 if (!cache) {
5391 printk(KERN_ERR "Unable to find block group for %llu\n",
5392 (unsigned long long)start);
5393 return -ENOSPC;
5394 }
5395
5396 if (btrfs_test_opt(root, DISCARD))
5397 ret = btrfs_discard_extent(root, start, len, NULL);
5398
5399 btrfs_add_free_space(cache, start, len);
5400 btrfs_update_reserved_bytes(cache, len, 0, 1);
5401 btrfs_put_block_group(cache);
5402
5403 trace_btrfs_reserved_extent_free(root, start, len);
5404
5405 return ret;
5406 }
5407
5408 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5409 struct btrfs_root *root,
5410 u64 parent, u64 root_objectid,
5411 u64 flags, u64 owner, u64 offset,
5412 struct btrfs_key *ins, int ref_mod)
5413 {
5414 int ret;
5415 struct btrfs_fs_info *fs_info = root->fs_info;
5416 struct btrfs_extent_item *extent_item;
5417 struct btrfs_extent_inline_ref *iref;
5418 struct btrfs_path *path;
5419 struct extent_buffer *leaf;
5420 int type;
5421 u32 size;
5422
5423 if (parent > 0)
5424 type = BTRFS_SHARED_DATA_REF_KEY;
5425 else
5426 type = BTRFS_EXTENT_DATA_REF_KEY;
5427
5428 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5429
5430 path = btrfs_alloc_path();
5431 if (!path)
5432 return -ENOMEM;
5433
5434 path->leave_spinning = 1;
5435 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5436 ins, size);
5437 BUG_ON(ret);
5438
5439 leaf = path->nodes[0];
5440 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5441 struct btrfs_extent_item);
5442 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5443 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5444 btrfs_set_extent_flags(leaf, extent_item,
5445 flags | BTRFS_EXTENT_FLAG_DATA);
5446
5447 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5448 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5449 if (parent > 0) {
5450 struct btrfs_shared_data_ref *ref;
5451 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5452 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5453 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5454 } else {
5455 struct btrfs_extent_data_ref *ref;
5456 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5457 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5458 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5459 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5460 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5461 }
5462
5463 btrfs_mark_buffer_dirty(path->nodes[0]);
5464 btrfs_free_path(path);
5465
5466 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5467 if (ret) {
5468 printk(KERN_ERR "btrfs update block group failed for %llu "
5469 "%llu\n", (unsigned long long)ins->objectid,
5470 (unsigned long long)ins->offset);
5471 BUG();
5472 }
5473 return ret;
5474 }
5475
5476 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5477 struct btrfs_root *root,
5478 u64 parent, u64 root_objectid,
5479 u64 flags, struct btrfs_disk_key *key,
5480 int level, struct btrfs_key *ins)
5481 {
5482 int ret;
5483 struct btrfs_fs_info *fs_info = root->fs_info;
5484 struct btrfs_extent_item *extent_item;
5485 struct btrfs_tree_block_info *block_info;
5486 struct btrfs_extent_inline_ref *iref;
5487 struct btrfs_path *path;
5488 struct extent_buffer *leaf;
5489 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5490
5491 path = btrfs_alloc_path();
5492 BUG_ON(!path);
5493
5494 path->leave_spinning = 1;
5495 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5496 ins, size);
5497 BUG_ON(ret);
5498
5499 leaf = path->nodes[0];
5500 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5501 struct btrfs_extent_item);
5502 btrfs_set_extent_refs(leaf, extent_item, 1);
5503 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5504 btrfs_set_extent_flags(leaf, extent_item,
5505 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5506 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5507
5508 btrfs_set_tree_block_key(leaf, block_info, key);
5509 btrfs_set_tree_block_level(leaf, block_info, level);
5510
5511 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5512 if (parent > 0) {
5513 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5514 btrfs_set_extent_inline_ref_type(leaf, iref,
5515 BTRFS_SHARED_BLOCK_REF_KEY);
5516 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5517 } else {
5518 btrfs_set_extent_inline_ref_type(leaf, iref,
5519 BTRFS_TREE_BLOCK_REF_KEY);
5520 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5521 }
5522
5523 btrfs_mark_buffer_dirty(leaf);
5524 btrfs_free_path(path);
5525
5526 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5527 if (ret) {
5528 printk(KERN_ERR "btrfs update block group failed for %llu "
5529 "%llu\n", (unsigned long long)ins->objectid,
5530 (unsigned long long)ins->offset);
5531 BUG();
5532 }
5533 return ret;
5534 }
5535
5536 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5537 struct btrfs_root *root,
5538 u64 root_objectid, u64 owner,
5539 u64 offset, struct btrfs_key *ins)
5540 {
5541 int ret;
5542
5543 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5544
5545 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5546 0, root_objectid, owner, offset,
5547 BTRFS_ADD_DELAYED_EXTENT, NULL);
5548 return ret;
5549 }
5550
5551 /*
5552 * this is used by the tree logging recovery code. It records that
5553 * an extent has been allocated and makes sure to clear the free
5554 * space cache bits as well
5555 */
5556 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5557 struct btrfs_root *root,
5558 u64 root_objectid, u64 owner, u64 offset,
5559 struct btrfs_key *ins)
5560 {
5561 int ret;
5562 struct btrfs_block_group_cache *block_group;
5563 struct btrfs_caching_control *caching_ctl;
5564 u64 start = ins->objectid;
5565 u64 num_bytes = ins->offset;
5566
5567 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5568 cache_block_group(block_group, trans, NULL, 0);
5569 caching_ctl = get_caching_control(block_group);
5570
5571 if (!caching_ctl) {
5572 BUG_ON(!block_group_cache_done(block_group));
5573 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5574 BUG_ON(ret);
5575 } else {
5576 mutex_lock(&caching_ctl->mutex);
5577
5578 if (start >= caching_ctl->progress) {
5579 ret = add_excluded_extent(root, start, num_bytes);
5580 BUG_ON(ret);
5581 } else if (start + num_bytes <= caching_ctl->progress) {
5582 ret = btrfs_remove_free_space(block_group,
5583 start, num_bytes);
5584 BUG_ON(ret);
5585 } else {
5586 num_bytes = caching_ctl->progress - start;
5587 ret = btrfs_remove_free_space(block_group,
5588 start, num_bytes);
5589 BUG_ON(ret);
5590
5591 start = caching_ctl->progress;
5592 num_bytes = ins->objectid + ins->offset -
5593 caching_ctl->progress;
5594 ret = add_excluded_extent(root, start, num_bytes);
5595 BUG_ON(ret);
5596 }
5597
5598 mutex_unlock(&caching_ctl->mutex);
5599 put_caching_control(caching_ctl);
5600 }
5601
5602 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 1, 1);
5603 BUG_ON(ret);
5604 btrfs_put_block_group(block_group);
5605 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5606 0, owner, offset, ins, 1);
5607 return ret;
5608 }
5609
5610 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5611 struct btrfs_root *root,
5612 u64 bytenr, u32 blocksize,
5613 int level)
5614 {
5615 struct extent_buffer *buf;
5616
5617 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5618 if (!buf)
5619 return ERR_PTR(-ENOMEM);
5620 btrfs_set_header_generation(buf, trans->transid);
5621 btrfs_set_buffer_lockdep_class(buf, level);
5622 btrfs_tree_lock(buf);
5623 clean_tree_block(trans, root, buf);
5624
5625 btrfs_set_lock_blocking(buf);
5626 btrfs_set_buffer_uptodate(buf);
5627
5628 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5629 /*
5630 * we allow two log transactions at a time, use different
5631 * EXENT bit to differentiate dirty pages.
5632 */
5633 if (root->log_transid % 2 == 0)
5634 set_extent_dirty(&root->dirty_log_pages, buf->start,
5635 buf->start + buf->len - 1, GFP_NOFS);
5636 else
5637 set_extent_new(&root->dirty_log_pages, buf->start,
5638 buf->start + buf->len - 1, GFP_NOFS);
5639 } else {
5640 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5641 buf->start + buf->len - 1, GFP_NOFS);
5642 }
5643 trans->blocks_used++;
5644 /* this returns a buffer locked for blocking */
5645 return buf;
5646 }
5647
5648 static struct btrfs_block_rsv *
5649 use_block_rsv(struct btrfs_trans_handle *trans,
5650 struct btrfs_root *root, u32 blocksize)
5651 {
5652 struct btrfs_block_rsv *block_rsv;
5653 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5654 int ret;
5655
5656 block_rsv = get_block_rsv(trans, root);
5657
5658 if (block_rsv->size == 0) {
5659 ret = reserve_metadata_bytes(trans, root, block_rsv,
5660 blocksize, 0);
5661 /*
5662 * If we couldn't reserve metadata bytes try and use some from
5663 * the global reserve.
5664 */
5665 if (ret && block_rsv != global_rsv) {
5666 ret = block_rsv_use_bytes(global_rsv, blocksize);
5667 if (!ret)
5668 return global_rsv;
5669 return ERR_PTR(ret);
5670 } else if (ret) {
5671 return ERR_PTR(ret);
5672 }
5673 return block_rsv;
5674 }
5675
5676 ret = block_rsv_use_bytes(block_rsv, blocksize);
5677 if (!ret)
5678 return block_rsv;
5679 if (ret) {
5680 WARN_ON(1);
5681 ret = reserve_metadata_bytes(trans, root, block_rsv, blocksize,
5682 0);
5683 if (!ret) {
5684 spin_lock(&block_rsv->lock);
5685 block_rsv->size += blocksize;
5686 spin_unlock(&block_rsv->lock);
5687 return block_rsv;
5688 } else if (ret && block_rsv != global_rsv) {
5689 ret = block_rsv_use_bytes(global_rsv, blocksize);
5690 if (!ret)
5691 return global_rsv;
5692 }
5693 }
5694
5695 return ERR_PTR(-ENOSPC);
5696 }
5697
5698 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
5699 {
5700 block_rsv_add_bytes(block_rsv, blocksize, 0);
5701 block_rsv_release_bytes(block_rsv, NULL, 0);
5702 }
5703
5704 /*
5705 * finds a free extent and does all the dirty work required for allocation
5706 * returns the key for the extent through ins, and a tree buffer for
5707 * the first block of the extent through buf.
5708 *
5709 * returns the tree buffer or NULL.
5710 */
5711 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
5712 struct btrfs_root *root, u32 blocksize,
5713 u64 parent, u64 root_objectid,
5714 struct btrfs_disk_key *key, int level,
5715 u64 hint, u64 empty_size)
5716 {
5717 struct btrfs_key ins;
5718 struct btrfs_block_rsv *block_rsv;
5719 struct extent_buffer *buf;
5720 u64 flags = 0;
5721 int ret;
5722
5723
5724 block_rsv = use_block_rsv(trans, root, blocksize);
5725 if (IS_ERR(block_rsv))
5726 return ERR_CAST(block_rsv);
5727
5728 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
5729 empty_size, hint, (u64)-1, &ins, 0);
5730 if (ret) {
5731 unuse_block_rsv(block_rsv, blocksize);
5732 return ERR_PTR(ret);
5733 }
5734
5735 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
5736 blocksize, level);
5737 BUG_ON(IS_ERR(buf));
5738
5739 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5740 if (parent == 0)
5741 parent = ins.objectid;
5742 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5743 } else
5744 BUG_ON(parent > 0);
5745
5746 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5747 struct btrfs_delayed_extent_op *extent_op;
5748 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
5749 BUG_ON(!extent_op);
5750 if (key)
5751 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5752 else
5753 memset(&extent_op->key, 0, sizeof(extent_op->key));
5754 extent_op->flags_to_set = flags;
5755 extent_op->update_key = 1;
5756 extent_op->update_flags = 1;
5757 extent_op->is_data = 0;
5758
5759 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
5760 ins.offset, parent, root_objectid,
5761 level, BTRFS_ADD_DELAYED_EXTENT,
5762 extent_op);
5763 BUG_ON(ret);
5764 }
5765 return buf;
5766 }
5767
5768 struct walk_control {
5769 u64 refs[BTRFS_MAX_LEVEL];
5770 u64 flags[BTRFS_MAX_LEVEL];
5771 struct btrfs_key update_progress;
5772 int stage;
5773 int level;
5774 int shared_level;
5775 int update_ref;
5776 int keep_locks;
5777 int reada_slot;
5778 int reada_count;
5779 };
5780
5781 #define DROP_REFERENCE 1
5782 #define UPDATE_BACKREF 2
5783
5784 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5785 struct btrfs_root *root,
5786 struct walk_control *wc,
5787 struct btrfs_path *path)
5788 {
5789 u64 bytenr;
5790 u64 generation;
5791 u64 refs;
5792 u64 flags;
5793 u32 nritems;
5794 u32 blocksize;
5795 struct btrfs_key key;
5796 struct extent_buffer *eb;
5797 int ret;
5798 int slot;
5799 int nread = 0;
5800
5801 if (path->slots[wc->level] < wc->reada_slot) {
5802 wc->reada_count = wc->reada_count * 2 / 3;
5803 wc->reada_count = max(wc->reada_count, 2);
5804 } else {
5805 wc->reada_count = wc->reada_count * 3 / 2;
5806 wc->reada_count = min_t(int, wc->reada_count,
5807 BTRFS_NODEPTRS_PER_BLOCK(root));
5808 }
5809
5810 eb = path->nodes[wc->level];
5811 nritems = btrfs_header_nritems(eb);
5812 blocksize = btrfs_level_size(root, wc->level - 1);
5813
5814 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5815 if (nread >= wc->reada_count)
5816 break;
5817
5818 cond_resched();
5819 bytenr = btrfs_node_blockptr(eb, slot);
5820 generation = btrfs_node_ptr_generation(eb, slot);
5821
5822 if (slot == path->slots[wc->level])
5823 goto reada;
5824
5825 if (wc->stage == UPDATE_BACKREF &&
5826 generation <= root->root_key.offset)
5827 continue;
5828
5829 /* We don't lock the tree block, it's OK to be racy here */
5830 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5831 &refs, &flags);
5832 BUG_ON(ret);
5833 BUG_ON(refs == 0);
5834
5835 if (wc->stage == DROP_REFERENCE) {
5836 if (refs == 1)
5837 goto reada;
5838
5839 if (wc->level == 1 &&
5840 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5841 continue;
5842 if (!wc->update_ref ||
5843 generation <= root->root_key.offset)
5844 continue;
5845 btrfs_node_key_to_cpu(eb, &key, slot);
5846 ret = btrfs_comp_cpu_keys(&key,
5847 &wc->update_progress);
5848 if (ret < 0)
5849 continue;
5850 } else {
5851 if (wc->level == 1 &&
5852 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5853 continue;
5854 }
5855 reada:
5856 ret = readahead_tree_block(root, bytenr, blocksize,
5857 generation);
5858 if (ret)
5859 break;
5860 nread++;
5861 }
5862 wc->reada_slot = slot;
5863 }
5864
5865 /*
5866 * hepler to process tree block while walking down the tree.
5867 *
5868 * when wc->stage == UPDATE_BACKREF, this function updates
5869 * back refs for pointers in the block.
5870 *
5871 * NOTE: return value 1 means we should stop walking down.
5872 */
5873 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5874 struct btrfs_root *root,
5875 struct btrfs_path *path,
5876 struct walk_control *wc, int lookup_info)
5877 {
5878 int level = wc->level;
5879 struct extent_buffer *eb = path->nodes[level];
5880 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5881 int ret;
5882
5883 if (wc->stage == UPDATE_BACKREF &&
5884 btrfs_header_owner(eb) != root->root_key.objectid)
5885 return 1;
5886
5887 /*
5888 * when reference count of tree block is 1, it won't increase
5889 * again. once full backref flag is set, we never clear it.
5890 */
5891 if (lookup_info &&
5892 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5893 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5894 BUG_ON(!path->locks[level]);
5895 ret = btrfs_lookup_extent_info(trans, root,
5896 eb->start, eb->len,
5897 &wc->refs[level],
5898 &wc->flags[level]);
5899 BUG_ON(ret);
5900 BUG_ON(wc->refs[level] == 0);
5901 }
5902
5903 if (wc->stage == DROP_REFERENCE) {
5904 if (wc->refs[level] > 1)
5905 return 1;
5906
5907 if (path->locks[level] && !wc->keep_locks) {
5908 btrfs_tree_unlock(eb);
5909 path->locks[level] = 0;
5910 }
5911 return 0;
5912 }
5913
5914 /* wc->stage == UPDATE_BACKREF */
5915 if (!(wc->flags[level] & flag)) {
5916 BUG_ON(!path->locks[level]);
5917 ret = btrfs_inc_ref(trans, root, eb, 1);
5918 BUG_ON(ret);
5919 ret = btrfs_dec_ref(trans, root, eb, 0);
5920 BUG_ON(ret);
5921 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
5922 eb->len, flag, 0);
5923 BUG_ON(ret);
5924 wc->flags[level] |= flag;
5925 }
5926
5927 /*
5928 * the block is shared by multiple trees, so it's not good to
5929 * keep the tree lock
5930 */
5931 if (path->locks[level] && level > 0) {
5932 btrfs_tree_unlock(eb);
5933 path->locks[level] = 0;
5934 }
5935 return 0;
5936 }
5937
5938 /*
5939 * hepler to process tree block pointer.
5940 *
5941 * when wc->stage == DROP_REFERENCE, this function checks
5942 * reference count of the block pointed to. if the block
5943 * is shared and we need update back refs for the subtree
5944 * rooted at the block, this function changes wc->stage to
5945 * UPDATE_BACKREF. if the block is shared and there is no
5946 * need to update back, this function drops the reference
5947 * to the block.
5948 *
5949 * NOTE: return value 1 means we should stop walking down.
5950 */
5951 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5952 struct btrfs_root *root,
5953 struct btrfs_path *path,
5954 struct walk_control *wc, int *lookup_info)
5955 {
5956 u64 bytenr;
5957 u64 generation;
5958 u64 parent;
5959 u32 blocksize;
5960 struct btrfs_key key;
5961 struct extent_buffer *next;
5962 int level = wc->level;
5963 int reada = 0;
5964 int ret = 0;
5965
5966 generation = btrfs_node_ptr_generation(path->nodes[level],
5967 path->slots[level]);
5968 /*
5969 * if the lower level block was created before the snapshot
5970 * was created, we know there is no need to update back refs
5971 * for the subtree
5972 */
5973 if (wc->stage == UPDATE_BACKREF &&
5974 generation <= root->root_key.offset) {
5975 *lookup_info = 1;
5976 return 1;
5977 }
5978
5979 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5980 blocksize = btrfs_level_size(root, level - 1);
5981
5982 next = btrfs_find_tree_block(root, bytenr, blocksize);
5983 if (!next) {
5984 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
5985 if (!next)
5986 return -ENOMEM;
5987 reada = 1;
5988 }
5989 btrfs_tree_lock(next);
5990 btrfs_set_lock_blocking(next);
5991
5992 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5993 &wc->refs[level - 1],
5994 &wc->flags[level - 1]);
5995 BUG_ON(ret);
5996 BUG_ON(wc->refs[level - 1] == 0);
5997 *lookup_info = 0;
5998
5999 if (wc->stage == DROP_REFERENCE) {
6000 if (wc->refs[level - 1] > 1) {
6001 if (level == 1 &&
6002 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6003 goto skip;
6004
6005 if (!wc->update_ref ||
6006 generation <= root->root_key.offset)
6007 goto skip;
6008
6009 btrfs_node_key_to_cpu(path->nodes[level], &key,
6010 path->slots[level]);
6011 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6012 if (ret < 0)
6013 goto skip;
6014
6015 wc->stage = UPDATE_BACKREF;
6016 wc->shared_level = level - 1;
6017 }
6018 } else {
6019 if (level == 1 &&
6020 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6021 goto skip;
6022 }
6023
6024 if (!btrfs_buffer_uptodate(next, generation)) {
6025 btrfs_tree_unlock(next);
6026 free_extent_buffer(next);
6027 next = NULL;
6028 *lookup_info = 1;
6029 }
6030
6031 if (!next) {
6032 if (reada && level == 1)
6033 reada_walk_down(trans, root, wc, path);
6034 next = read_tree_block(root, bytenr, blocksize, generation);
6035 if (!next)
6036 return -EIO;
6037 btrfs_tree_lock(next);
6038 btrfs_set_lock_blocking(next);
6039 }
6040
6041 level--;
6042 BUG_ON(level != btrfs_header_level(next));
6043 path->nodes[level] = next;
6044 path->slots[level] = 0;
6045 path->locks[level] = 1;
6046 wc->level = level;
6047 if (wc->level == 1)
6048 wc->reada_slot = 0;
6049 return 0;
6050 skip:
6051 wc->refs[level - 1] = 0;
6052 wc->flags[level - 1] = 0;
6053 if (wc->stage == DROP_REFERENCE) {
6054 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6055 parent = path->nodes[level]->start;
6056 } else {
6057 BUG_ON(root->root_key.objectid !=
6058 btrfs_header_owner(path->nodes[level]));
6059 parent = 0;
6060 }
6061
6062 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6063 root->root_key.objectid, level - 1, 0);
6064 BUG_ON(ret);
6065 }
6066 btrfs_tree_unlock(next);
6067 free_extent_buffer(next);
6068 *lookup_info = 1;
6069 return 1;
6070 }
6071
6072 /*
6073 * hepler to process tree block while walking up the tree.
6074 *
6075 * when wc->stage == DROP_REFERENCE, this function drops
6076 * reference count on the block.
6077 *
6078 * when wc->stage == UPDATE_BACKREF, this function changes
6079 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6080 * to UPDATE_BACKREF previously while processing the block.
6081 *
6082 * NOTE: return value 1 means we should stop walking up.
6083 */
6084 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6085 struct btrfs_root *root,
6086 struct btrfs_path *path,
6087 struct walk_control *wc)
6088 {
6089 int ret;
6090 int level = wc->level;
6091 struct extent_buffer *eb = path->nodes[level];
6092 u64 parent = 0;
6093
6094 if (wc->stage == UPDATE_BACKREF) {
6095 BUG_ON(wc->shared_level < level);
6096 if (level < wc->shared_level)
6097 goto out;
6098
6099 ret = find_next_key(path, level + 1, &wc->update_progress);
6100 if (ret > 0)
6101 wc->update_ref = 0;
6102
6103 wc->stage = DROP_REFERENCE;
6104 wc->shared_level = -1;
6105 path->slots[level] = 0;
6106
6107 /*
6108 * check reference count again if the block isn't locked.
6109 * we should start walking down the tree again if reference
6110 * count is one.
6111 */
6112 if (!path->locks[level]) {
6113 BUG_ON(level == 0);
6114 btrfs_tree_lock(eb);
6115 btrfs_set_lock_blocking(eb);
6116 path->locks[level] = 1;
6117
6118 ret = btrfs_lookup_extent_info(trans, root,
6119 eb->start, eb->len,
6120 &wc->refs[level],
6121 &wc->flags[level]);
6122 BUG_ON(ret);
6123 BUG_ON(wc->refs[level] == 0);
6124 if (wc->refs[level] == 1) {
6125 btrfs_tree_unlock(eb);
6126 path->locks[level] = 0;
6127 return 1;
6128 }
6129 }
6130 }
6131
6132 /* wc->stage == DROP_REFERENCE */
6133 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6134
6135 if (wc->refs[level] == 1) {
6136 if (level == 0) {
6137 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6138 ret = btrfs_dec_ref(trans, root, eb, 1);
6139 else
6140 ret = btrfs_dec_ref(trans, root, eb, 0);
6141 BUG_ON(ret);
6142 }
6143 /* make block locked assertion in clean_tree_block happy */
6144 if (!path->locks[level] &&
6145 btrfs_header_generation(eb) == trans->transid) {
6146 btrfs_tree_lock(eb);
6147 btrfs_set_lock_blocking(eb);
6148 path->locks[level] = 1;
6149 }
6150 clean_tree_block(trans, root, eb);
6151 }
6152
6153 if (eb == root->node) {
6154 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6155 parent = eb->start;
6156 else
6157 BUG_ON(root->root_key.objectid !=
6158 btrfs_header_owner(eb));
6159 } else {
6160 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6161 parent = path->nodes[level + 1]->start;
6162 else
6163 BUG_ON(root->root_key.objectid !=
6164 btrfs_header_owner(path->nodes[level + 1]));
6165 }
6166
6167 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6168 out:
6169 wc->refs[level] = 0;
6170 wc->flags[level] = 0;
6171 return 0;
6172 }
6173
6174 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6175 struct btrfs_root *root,
6176 struct btrfs_path *path,
6177 struct walk_control *wc)
6178 {
6179 int level = wc->level;
6180 int lookup_info = 1;
6181 int ret;
6182
6183 while (level >= 0) {
6184 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6185 if (ret > 0)
6186 break;
6187
6188 if (level == 0)
6189 break;
6190
6191 if (path->slots[level] >=
6192 btrfs_header_nritems(path->nodes[level]))
6193 break;
6194
6195 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6196 if (ret > 0) {
6197 path->slots[level]++;
6198 continue;
6199 } else if (ret < 0)
6200 return ret;
6201 level = wc->level;
6202 }
6203 return 0;
6204 }
6205
6206 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6207 struct btrfs_root *root,
6208 struct btrfs_path *path,
6209 struct walk_control *wc, int max_level)
6210 {
6211 int level = wc->level;
6212 int ret;
6213
6214 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6215 while (level < max_level && path->nodes[level]) {
6216 wc->level = level;
6217 if (path->slots[level] + 1 <
6218 btrfs_header_nritems(path->nodes[level])) {
6219 path->slots[level]++;
6220 return 0;
6221 } else {
6222 ret = walk_up_proc(trans, root, path, wc);
6223 if (ret > 0)
6224 return 0;
6225
6226 if (path->locks[level]) {
6227 btrfs_tree_unlock(path->nodes[level]);
6228 path->locks[level] = 0;
6229 }
6230 free_extent_buffer(path->nodes[level]);
6231 path->nodes[level] = NULL;
6232 level++;
6233 }
6234 }
6235 return 1;
6236 }
6237
6238 /*
6239 * drop a subvolume tree.
6240 *
6241 * this function traverses the tree freeing any blocks that only
6242 * referenced by the tree.
6243 *
6244 * when a shared tree block is found. this function decreases its
6245 * reference count by one. if update_ref is true, this function
6246 * also make sure backrefs for the shared block and all lower level
6247 * blocks are properly updated.
6248 */
6249 int btrfs_drop_snapshot(struct btrfs_root *root,
6250 struct btrfs_block_rsv *block_rsv, int update_ref)
6251 {
6252 struct btrfs_path *path;
6253 struct btrfs_trans_handle *trans;
6254 struct btrfs_root *tree_root = root->fs_info->tree_root;
6255 struct btrfs_root_item *root_item = &root->root_item;
6256 struct walk_control *wc;
6257 struct btrfs_key key;
6258 int err = 0;
6259 int ret;
6260 int level;
6261
6262 path = btrfs_alloc_path();
6263 BUG_ON(!path);
6264
6265 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6266 BUG_ON(!wc);
6267
6268 trans = btrfs_start_transaction(tree_root, 0);
6269 BUG_ON(IS_ERR(trans));
6270
6271 if (block_rsv)
6272 trans->block_rsv = block_rsv;
6273
6274 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6275 level = btrfs_header_level(root->node);
6276 path->nodes[level] = btrfs_lock_root_node(root);
6277 btrfs_set_lock_blocking(path->nodes[level]);
6278 path->slots[level] = 0;
6279 path->locks[level] = 1;
6280 memset(&wc->update_progress, 0,
6281 sizeof(wc->update_progress));
6282 } else {
6283 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6284 memcpy(&wc->update_progress, &key,
6285 sizeof(wc->update_progress));
6286
6287 level = root_item->drop_level;
6288 BUG_ON(level == 0);
6289 path->lowest_level = level;
6290 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6291 path->lowest_level = 0;
6292 if (ret < 0) {
6293 err = ret;
6294 goto out;
6295 }
6296 WARN_ON(ret > 0);
6297
6298 /*
6299 * unlock our path, this is safe because only this
6300 * function is allowed to delete this snapshot
6301 */
6302 btrfs_unlock_up_safe(path, 0);
6303
6304 level = btrfs_header_level(root->node);
6305 while (1) {
6306 btrfs_tree_lock(path->nodes[level]);
6307 btrfs_set_lock_blocking(path->nodes[level]);
6308
6309 ret = btrfs_lookup_extent_info(trans, root,
6310 path->nodes[level]->start,
6311 path->nodes[level]->len,
6312 &wc->refs[level],
6313 &wc->flags[level]);
6314 BUG_ON(ret);
6315 BUG_ON(wc->refs[level] == 0);
6316
6317 if (level == root_item->drop_level)
6318 break;
6319
6320 btrfs_tree_unlock(path->nodes[level]);
6321 WARN_ON(wc->refs[level] != 1);
6322 level--;
6323 }
6324 }
6325
6326 wc->level = level;
6327 wc->shared_level = -1;
6328 wc->stage = DROP_REFERENCE;
6329 wc->update_ref = update_ref;
6330 wc->keep_locks = 0;
6331 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6332
6333 while (1) {
6334 ret = walk_down_tree(trans, root, path, wc);
6335 if (ret < 0) {
6336 err = ret;
6337 break;
6338 }
6339
6340 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6341 if (ret < 0) {
6342 err = ret;
6343 break;
6344 }
6345
6346 if (ret > 0) {
6347 BUG_ON(wc->stage != DROP_REFERENCE);
6348 break;
6349 }
6350
6351 if (wc->stage == DROP_REFERENCE) {
6352 level = wc->level;
6353 btrfs_node_key(path->nodes[level],
6354 &root_item->drop_progress,
6355 path->slots[level]);
6356 root_item->drop_level = level;
6357 }
6358
6359 BUG_ON(wc->level == 0);
6360 if (btrfs_should_end_transaction(trans, tree_root)) {
6361 ret = btrfs_update_root(trans, tree_root,
6362 &root->root_key,
6363 root_item);
6364 BUG_ON(ret);
6365
6366 btrfs_end_transaction_throttle(trans, tree_root);
6367 trans = btrfs_start_transaction(tree_root, 0);
6368 BUG_ON(IS_ERR(trans));
6369 if (block_rsv)
6370 trans->block_rsv = block_rsv;
6371 }
6372 }
6373 btrfs_release_path(path);
6374 BUG_ON(err);
6375
6376 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6377 BUG_ON(ret);
6378
6379 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6380 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6381 NULL, NULL);
6382 BUG_ON(ret < 0);
6383 if (ret > 0) {
6384 /* if we fail to delete the orphan item this time
6385 * around, it'll get picked up the next time.
6386 *
6387 * The most common failure here is just -ENOENT.
6388 */
6389 btrfs_del_orphan_item(trans, tree_root,
6390 root->root_key.objectid);
6391 }
6392 }
6393
6394 if (root->in_radix) {
6395 btrfs_free_fs_root(tree_root->fs_info, root);
6396 } else {
6397 free_extent_buffer(root->node);
6398 free_extent_buffer(root->commit_root);
6399 kfree(root);
6400 }
6401 out:
6402 btrfs_end_transaction_throttle(trans, tree_root);
6403 kfree(wc);
6404 btrfs_free_path(path);
6405 return err;
6406 }
6407
6408 /*
6409 * drop subtree rooted at tree block 'node'.
6410 *
6411 * NOTE: this function will unlock and release tree block 'node'
6412 */
6413 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6414 struct btrfs_root *root,
6415 struct extent_buffer *node,
6416 struct extent_buffer *parent)
6417 {
6418 struct btrfs_path *path;
6419 struct walk_control *wc;
6420 int level;
6421 int parent_level;
6422 int ret = 0;
6423 int wret;
6424
6425 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6426
6427 path = btrfs_alloc_path();
6428 if (!path)
6429 return -ENOMEM;
6430
6431 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6432 if (!wc) {
6433 btrfs_free_path(path);
6434 return -ENOMEM;
6435 }
6436
6437 btrfs_assert_tree_locked(parent);
6438 parent_level = btrfs_header_level(parent);
6439 extent_buffer_get(parent);
6440 path->nodes[parent_level] = parent;
6441 path->slots[parent_level] = btrfs_header_nritems(parent);
6442
6443 btrfs_assert_tree_locked(node);
6444 level = btrfs_header_level(node);
6445 path->nodes[level] = node;
6446 path->slots[level] = 0;
6447 path->locks[level] = 1;
6448
6449 wc->refs[parent_level] = 1;
6450 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6451 wc->level = level;
6452 wc->shared_level = -1;
6453 wc->stage = DROP_REFERENCE;
6454 wc->update_ref = 0;
6455 wc->keep_locks = 1;
6456 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6457
6458 while (1) {
6459 wret = walk_down_tree(trans, root, path, wc);
6460 if (wret < 0) {
6461 ret = wret;
6462 break;
6463 }
6464
6465 wret = walk_up_tree(trans, root, path, wc, parent_level);
6466 if (wret < 0)
6467 ret = wret;
6468 if (wret != 0)
6469 break;
6470 }
6471
6472 kfree(wc);
6473 btrfs_free_path(path);
6474 return ret;
6475 }
6476
6477 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
6478 {
6479 u64 num_devices;
6480 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6481 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6482
6483 /*
6484 * we add in the count of missing devices because we want
6485 * to make sure that any RAID levels on a degraded FS
6486 * continue to be honored.
6487 */
6488 num_devices = root->fs_info->fs_devices->rw_devices +
6489 root->fs_info->fs_devices->missing_devices;
6490
6491 if (num_devices == 1) {
6492 stripped |= BTRFS_BLOCK_GROUP_DUP;
6493 stripped = flags & ~stripped;
6494
6495 /* turn raid0 into single device chunks */
6496 if (flags & BTRFS_BLOCK_GROUP_RAID0)
6497 return stripped;
6498
6499 /* turn mirroring into duplication */
6500 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
6501 BTRFS_BLOCK_GROUP_RAID10))
6502 return stripped | BTRFS_BLOCK_GROUP_DUP;
6503 return flags;
6504 } else {
6505 /* they already had raid on here, just return */
6506 if (flags & stripped)
6507 return flags;
6508
6509 stripped |= BTRFS_BLOCK_GROUP_DUP;
6510 stripped = flags & ~stripped;
6511
6512 /* switch duplicated blocks with raid1 */
6513 if (flags & BTRFS_BLOCK_GROUP_DUP)
6514 return stripped | BTRFS_BLOCK_GROUP_RAID1;
6515
6516 /* turn single device chunks into raid0 */
6517 return stripped | BTRFS_BLOCK_GROUP_RAID0;
6518 }
6519 return flags;
6520 }
6521
6522 static int set_block_group_ro(struct btrfs_block_group_cache *cache)
6523 {
6524 struct btrfs_space_info *sinfo = cache->space_info;
6525 u64 num_bytes;
6526 int ret = -ENOSPC;
6527
6528 if (cache->ro)
6529 return 0;
6530
6531 spin_lock(&sinfo->lock);
6532 spin_lock(&cache->lock);
6533 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6534 cache->bytes_super - btrfs_block_group_used(&cache->item);
6535
6536 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
6537 sinfo->bytes_may_use + sinfo->bytes_readonly +
6538 cache->reserved_pinned + num_bytes <= sinfo->total_bytes) {
6539 sinfo->bytes_readonly += num_bytes;
6540 sinfo->bytes_reserved += cache->reserved_pinned;
6541 cache->reserved_pinned = 0;
6542 cache->ro = 1;
6543 ret = 0;
6544 }
6545
6546 spin_unlock(&cache->lock);
6547 spin_unlock(&sinfo->lock);
6548 return ret;
6549 }
6550
6551 int btrfs_set_block_group_ro(struct btrfs_root *root,
6552 struct btrfs_block_group_cache *cache)
6553
6554 {
6555 struct btrfs_trans_handle *trans;
6556 u64 alloc_flags;
6557 int ret;
6558
6559 BUG_ON(cache->ro);
6560
6561 trans = btrfs_join_transaction(root);
6562 BUG_ON(IS_ERR(trans));
6563
6564 alloc_flags = update_block_group_flags(root, cache->flags);
6565 if (alloc_flags != cache->flags)
6566 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6567 CHUNK_ALLOC_FORCE);
6568
6569 ret = set_block_group_ro(cache);
6570 if (!ret)
6571 goto out;
6572 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
6573 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6574 CHUNK_ALLOC_FORCE);
6575 if (ret < 0)
6576 goto out;
6577 ret = set_block_group_ro(cache);
6578 out:
6579 btrfs_end_transaction(trans, root);
6580 return ret;
6581 }
6582
6583 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
6584 struct btrfs_root *root, u64 type)
6585 {
6586 u64 alloc_flags = get_alloc_profile(root, type);
6587 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6588 CHUNK_ALLOC_FORCE);
6589 }
6590
6591 /*
6592 * helper to account the unused space of all the readonly block group in the
6593 * list. takes mirrors into account.
6594 */
6595 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
6596 {
6597 struct btrfs_block_group_cache *block_group;
6598 u64 free_bytes = 0;
6599 int factor;
6600
6601 list_for_each_entry(block_group, groups_list, list) {
6602 spin_lock(&block_group->lock);
6603
6604 if (!block_group->ro) {
6605 spin_unlock(&block_group->lock);
6606 continue;
6607 }
6608
6609 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
6610 BTRFS_BLOCK_GROUP_RAID10 |
6611 BTRFS_BLOCK_GROUP_DUP))
6612 factor = 2;
6613 else
6614 factor = 1;
6615
6616 free_bytes += (block_group->key.offset -
6617 btrfs_block_group_used(&block_group->item)) *
6618 factor;
6619
6620 spin_unlock(&block_group->lock);
6621 }
6622
6623 return free_bytes;
6624 }
6625
6626 /*
6627 * helper to account the unused space of all the readonly block group in the
6628 * space_info. takes mirrors into account.
6629 */
6630 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6631 {
6632 int i;
6633 u64 free_bytes = 0;
6634
6635 spin_lock(&sinfo->lock);
6636
6637 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
6638 if (!list_empty(&sinfo->block_groups[i]))
6639 free_bytes += __btrfs_get_ro_block_group_free_space(
6640 &sinfo->block_groups[i]);
6641
6642 spin_unlock(&sinfo->lock);
6643
6644 return free_bytes;
6645 }
6646
6647 int btrfs_set_block_group_rw(struct btrfs_root *root,
6648 struct btrfs_block_group_cache *cache)
6649 {
6650 struct btrfs_space_info *sinfo = cache->space_info;
6651 u64 num_bytes;
6652
6653 BUG_ON(!cache->ro);
6654
6655 spin_lock(&sinfo->lock);
6656 spin_lock(&cache->lock);
6657 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6658 cache->bytes_super - btrfs_block_group_used(&cache->item);
6659 sinfo->bytes_readonly -= num_bytes;
6660 cache->ro = 0;
6661 spin_unlock(&cache->lock);
6662 spin_unlock(&sinfo->lock);
6663 return 0;
6664 }
6665
6666 /*
6667 * checks to see if its even possible to relocate this block group.
6668 *
6669 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
6670 * ok to go ahead and try.
6671 */
6672 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
6673 {
6674 struct btrfs_block_group_cache *block_group;
6675 struct btrfs_space_info *space_info;
6676 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6677 struct btrfs_device *device;
6678 int full = 0;
6679 int ret = 0;
6680
6681 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
6682
6683 /* odd, couldn't find the block group, leave it alone */
6684 if (!block_group)
6685 return -1;
6686
6687 /* no bytes used, we're good */
6688 if (!btrfs_block_group_used(&block_group->item))
6689 goto out;
6690
6691 space_info = block_group->space_info;
6692 spin_lock(&space_info->lock);
6693
6694 full = space_info->full;
6695
6696 /*
6697 * if this is the last block group we have in this space, we can't
6698 * relocate it unless we're able to allocate a new chunk below.
6699 *
6700 * Otherwise, we need to make sure we have room in the space to handle
6701 * all of the extents from this block group. If we can, we're good
6702 */
6703 if ((space_info->total_bytes != block_group->key.offset) &&
6704 (space_info->bytes_used + space_info->bytes_reserved +
6705 space_info->bytes_pinned + space_info->bytes_readonly +
6706 btrfs_block_group_used(&block_group->item) <
6707 space_info->total_bytes)) {
6708 spin_unlock(&space_info->lock);
6709 goto out;
6710 }
6711 spin_unlock(&space_info->lock);
6712
6713 /*
6714 * ok we don't have enough space, but maybe we have free space on our
6715 * devices to allocate new chunks for relocation, so loop through our
6716 * alloc devices and guess if we have enough space. However, if we
6717 * were marked as full, then we know there aren't enough chunks, and we
6718 * can just return.
6719 */
6720 ret = -1;
6721 if (full)
6722 goto out;
6723
6724 mutex_lock(&root->fs_info->chunk_mutex);
6725 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
6726 u64 min_free = btrfs_block_group_used(&block_group->item);
6727 u64 dev_offset;
6728
6729 /*
6730 * check to make sure we can actually find a chunk with enough
6731 * space to fit our block group in.
6732 */
6733 if (device->total_bytes > device->bytes_used + min_free) {
6734 ret = find_free_dev_extent(NULL, device, min_free,
6735 &dev_offset, NULL);
6736 if (!ret)
6737 break;
6738 ret = -1;
6739 }
6740 }
6741 mutex_unlock(&root->fs_info->chunk_mutex);
6742 out:
6743 btrfs_put_block_group(block_group);
6744 return ret;
6745 }
6746
6747 static int find_first_block_group(struct btrfs_root *root,
6748 struct btrfs_path *path, struct btrfs_key *key)
6749 {
6750 int ret = 0;
6751 struct btrfs_key found_key;
6752 struct extent_buffer *leaf;
6753 int slot;
6754
6755 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
6756 if (ret < 0)
6757 goto out;
6758
6759 while (1) {
6760 slot = path->slots[0];
6761 leaf = path->nodes[0];
6762 if (slot >= btrfs_header_nritems(leaf)) {
6763 ret = btrfs_next_leaf(root, path);
6764 if (ret == 0)
6765 continue;
6766 if (ret < 0)
6767 goto out;
6768 break;
6769 }
6770 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6771
6772 if (found_key.objectid >= key->objectid &&
6773 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6774 ret = 0;
6775 goto out;
6776 }
6777 path->slots[0]++;
6778 }
6779 out:
6780 return ret;
6781 }
6782
6783 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
6784 {
6785 struct btrfs_block_group_cache *block_group;
6786 u64 last = 0;
6787
6788 while (1) {
6789 struct inode *inode;
6790
6791 block_group = btrfs_lookup_first_block_group(info, last);
6792 while (block_group) {
6793 spin_lock(&block_group->lock);
6794 if (block_group->iref)
6795 break;
6796 spin_unlock(&block_group->lock);
6797 block_group = next_block_group(info->tree_root,
6798 block_group);
6799 }
6800 if (!block_group) {
6801 if (last == 0)
6802 break;
6803 last = 0;
6804 continue;
6805 }
6806
6807 inode = block_group->inode;
6808 block_group->iref = 0;
6809 block_group->inode = NULL;
6810 spin_unlock(&block_group->lock);
6811 iput(inode);
6812 last = block_group->key.objectid + block_group->key.offset;
6813 btrfs_put_block_group(block_group);
6814 }
6815 }
6816
6817 int btrfs_free_block_groups(struct btrfs_fs_info *info)
6818 {
6819 struct btrfs_block_group_cache *block_group;
6820 struct btrfs_space_info *space_info;
6821 struct btrfs_caching_control *caching_ctl;
6822 struct rb_node *n;
6823
6824 down_write(&info->extent_commit_sem);
6825 while (!list_empty(&info->caching_block_groups)) {
6826 caching_ctl = list_entry(info->caching_block_groups.next,
6827 struct btrfs_caching_control, list);
6828 list_del(&caching_ctl->list);
6829 put_caching_control(caching_ctl);
6830 }
6831 up_write(&info->extent_commit_sem);
6832
6833 spin_lock(&info->block_group_cache_lock);
6834 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
6835 block_group = rb_entry(n, struct btrfs_block_group_cache,
6836 cache_node);
6837 rb_erase(&block_group->cache_node,
6838 &info->block_group_cache_tree);
6839 spin_unlock(&info->block_group_cache_lock);
6840
6841 down_write(&block_group->space_info->groups_sem);
6842 list_del(&block_group->list);
6843 up_write(&block_group->space_info->groups_sem);
6844
6845 if (block_group->cached == BTRFS_CACHE_STARTED)
6846 wait_block_group_cache_done(block_group);
6847
6848 /*
6849 * We haven't cached this block group, which means we could
6850 * possibly have excluded extents on this block group.
6851 */
6852 if (block_group->cached == BTRFS_CACHE_NO)
6853 free_excluded_extents(info->extent_root, block_group);
6854
6855 btrfs_remove_free_space_cache(block_group);
6856 btrfs_put_block_group(block_group);
6857
6858 spin_lock(&info->block_group_cache_lock);
6859 }
6860 spin_unlock(&info->block_group_cache_lock);
6861
6862 /* now that all the block groups are freed, go through and
6863 * free all the space_info structs. This is only called during
6864 * the final stages of unmount, and so we know nobody is
6865 * using them. We call synchronize_rcu() once before we start,
6866 * just to be on the safe side.
6867 */
6868 synchronize_rcu();
6869
6870 release_global_block_rsv(info);
6871
6872 while(!list_empty(&info->space_info)) {
6873 space_info = list_entry(info->space_info.next,
6874 struct btrfs_space_info,
6875 list);
6876 if (space_info->bytes_pinned > 0 ||
6877 space_info->bytes_reserved > 0) {
6878 WARN_ON(1);
6879 dump_space_info(space_info, 0, 0);
6880 }
6881 list_del(&space_info->list);
6882 kfree(space_info);
6883 }
6884 return 0;
6885 }
6886
6887 static void __link_block_group(struct btrfs_space_info *space_info,
6888 struct btrfs_block_group_cache *cache)
6889 {
6890 int index = get_block_group_index(cache);
6891
6892 down_write(&space_info->groups_sem);
6893 list_add_tail(&cache->list, &space_info->block_groups[index]);
6894 up_write(&space_info->groups_sem);
6895 }
6896
6897 int btrfs_read_block_groups(struct btrfs_root *root)
6898 {
6899 struct btrfs_path *path;
6900 int ret;
6901 struct btrfs_block_group_cache *cache;
6902 struct btrfs_fs_info *info = root->fs_info;
6903 struct btrfs_space_info *space_info;
6904 struct btrfs_key key;
6905 struct btrfs_key found_key;
6906 struct extent_buffer *leaf;
6907 int need_clear = 0;
6908 u64 cache_gen;
6909
6910 root = info->extent_root;
6911 key.objectid = 0;
6912 key.offset = 0;
6913 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
6914 path = btrfs_alloc_path();
6915 if (!path)
6916 return -ENOMEM;
6917 path->reada = 1;
6918
6919 cache_gen = btrfs_super_cache_generation(&root->fs_info->super_copy);
6920 if (cache_gen != 0 &&
6921 btrfs_super_generation(&root->fs_info->super_copy) != cache_gen)
6922 need_clear = 1;
6923 if (btrfs_test_opt(root, CLEAR_CACHE))
6924 need_clear = 1;
6925 if (!btrfs_test_opt(root, SPACE_CACHE) && cache_gen)
6926 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
6927
6928 while (1) {
6929 ret = find_first_block_group(root, path, &key);
6930 if (ret > 0)
6931 break;
6932 if (ret != 0)
6933 goto error;
6934 leaf = path->nodes[0];
6935 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6936 cache = kzalloc(sizeof(*cache), GFP_NOFS);
6937 if (!cache) {
6938 ret = -ENOMEM;
6939 goto error;
6940 }
6941 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
6942 GFP_NOFS);
6943 if (!cache->free_space_ctl) {
6944 kfree(cache);
6945 ret = -ENOMEM;
6946 goto error;
6947 }
6948
6949 atomic_set(&cache->count, 1);
6950 spin_lock_init(&cache->lock);
6951 cache->fs_info = info;
6952 INIT_LIST_HEAD(&cache->list);
6953 INIT_LIST_HEAD(&cache->cluster_list);
6954
6955 if (need_clear)
6956 cache->disk_cache_state = BTRFS_DC_CLEAR;
6957
6958 read_extent_buffer(leaf, &cache->item,
6959 btrfs_item_ptr_offset(leaf, path->slots[0]),
6960 sizeof(cache->item));
6961 memcpy(&cache->key, &found_key, sizeof(found_key));
6962
6963 key.objectid = found_key.objectid + found_key.offset;
6964 btrfs_release_path(path);
6965 cache->flags = btrfs_block_group_flags(&cache->item);
6966 cache->sectorsize = root->sectorsize;
6967
6968 btrfs_init_free_space_ctl(cache);
6969
6970 /*
6971 * We need to exclude the super stripes now so that the space
6972 * info has super bytes accounted for, otherwise we'll think
6973 * we have more space than we actually do.
6974 */
6975 exclude_super_stripes(root, cache);
6976
6977 /*
6978 * check for two cases, either we are full, and therefore
6979 * don't need to bother with the caching work since we won't
6980 * find any space, or we are empty, and we can just add all
6981 * the space in and be done with it. This saves us _alot_ of
6982 * time, particularly in the full case.
6983 */
6984 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
6985 cache->last_byte_to_unpin = (u64)-1;
6986 cache->cached = BTRFS_CACHE_FINISHED;
6987 free_excluded_extents(root, cache);
6988 } else if (btrfs_block_group_used(&cache->item) == 0) {
6989 cache->last_byte_to_unpin = (u64)-1;
6990 cache->cached = BTRFS_CACHE_FINISHED;
6991 add_new_free_space(cache, root->fs_info,
6992 found_key.objectid,
6993 found_key.objectid +
6994 found_key.offset);
6995 free_excluded_extents(root, cache);
6996 }
6997
6998 ret = update_space_info(info, cache->flags, found_key.offset,
6999 btrfs_block_group_used(&cache->item),
7000 &space_info);
7001 BUG_ON(ret);
7002 cache->space_info = space_info;
7003 spin_lock(&cache->space_info->lock);
7004 cache->space_info->bytes_readonly += cache->bytes_super;
7005 spin_unlock(&cache->space_info->lock);
7006
7007 __link_block_group(space_info, cache);
7008
7009 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7010 BUG_ON(ret);
7011
7012 set_avail_alloc_bits(root->fs_info, cache->flags);
7013 if (btrfs_chunk_readonly(root, cache->key.objectid))
7014 set_block_group_ro(cache);
7015 }
7016
7017 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7018 if (!(get_alloc_profile(root, space_info->flags) &
7019 (BTRFS_BLOCK_GROUP_RAID10 |
7020 BTRFS_BLOCK_GROUP_RAID1 |
7021 BTRFS_BLOCK_GROUP_DUP)))
7022 continue;
7023 /*
7024 * avoid allocating from un-mirrored block group if there are
7025 * mirrored block groups.
7026 */
7027 list_for_each_entry(cache, &space_info->block_groups[3], list)
7028 set_block_group_ro(cache);
7029 list_for_each_entry(cache, &space_info->block_groups[4], list)
7030 set_block_group_ro(cache);
7031 }
7032
7033 init_global_block_rsv(info);
7034 ret = 0;
7035 error:
7036 btrfs_free_path(path);
7037 return ret;
7038 }
7039
7040 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7041 struct btrfs_root *root, u64 bytes_used,
7042 u64 type, u64 chunk_objectid, u64 chunk_offset,
7043 u64 size)
7044 {
7045 int ret;
7046 struct btrfs_root *extent_root;
7047 struct btrfs_block_group_cache *cache;
7048
7049 extent_root = root->fs_info->extent_root;
7050
7051 root->fs_info->last_trans_log_full_commit = trans->transid;
7052
7053 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7054 if (!cache)
7055 return -ENOMEM;
7056 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7057 GFP_NOFS);
7058 if (!cache->free_space_ctl) {
7059 kfree(cache);
7060 return -ENOMEM;
7061 }
7062
7063 cache->key.objectid = chunk_offset;
7064 cache->key.offset = size;
7065 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7066 cache->sectorsize = root->sectorsize;
7067 cache->fs_info = root->fs_info;
7068
7069 atomic_set(&cache->count, 1);
7070 spin_lock_init(&cache->lock);
7071 INIT_LIST_HEAD(&cache->list);
7072 INIT_LIST_HEAD(&cache->cluster_list);
7073
7074 btrfs_init_free_space_ctl(cache);
7075
7076 btrfs_set_block_group_used(&cache->item, bytes_used);
7077 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7078 cache->flags = type;
7079 btrfs_set_block_group_flags(&cache->item, type);
7080
7081 cache->last_byte_to_unpin = (u64)-1;
7082 cache->cached = BTRFS_CACHE_FINISHED;
7083 exclude_super_stripes(root, cache);
7084
7085 add_new_free_space(cache, root->fs_info, chunk_offset,
7086 chunk_offset + size);
7087
7088 free_excluded_extents(root, cache);
7089
7090 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7091 &cache->space_info);
7092 BUG_ON(ret);
7093
7094 spin_lock(&cache->space_info->lock);
7095 cache->space_info->bytes_readonly += cache->bytes_super;
7096 spin_unlock(&cache->space_info->lock);
7097
7098 __link_block_group(cache->space_info, cache);
7099
7100 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7101 BUG_ON(ret);
7102
7103 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7104 sizeof(cache->item));
7105 BUG_ON(ret);
7106
7107 set_avail_alloc_bits(extent_root->fs_info, type);
7108
7109 return 0;
7110 }
7111
7112 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7113 struct btrfs_root *root, u64 group_start)
7114 {
7115 struct btrfs_path *path;
7116 struct btrfs_block_group_cache *block_group;
7117 struct btrfs_free_cluster *cluster;
7118 struct btrfs_root *tree_root = root->fs_info->tree_root;
7119 struct btrfs_key key;
7120 struct inode *inode;
7121 int ret;
7122 int factor;
7123
7124 root = root->fs_info->extent_root;
7125
7126 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7127 BUG_ON(!block_group);
7128 BUG_ON(!block_group->ro);
7129
7130 /*
7131 * Free the reserved super bytes from this block group before
7132 * remove it.
7133 */
7134 free_excluded_extents(root, block_group);
7135
7136 memcpy(&key, &block_group->key, sizeof(key));
7137 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7138 BTRFS_BLOCK_GROUP_RAID1 |
7139 BTRFS_BLOCK_GROUP_RAID10))
7140 factor = 2;
7141 else
7142 factor = 1;
7143
7144 /* make sure this block group isn't part of an allocation cluster */
7145 cluster = &root->fs_info->data_alloc_cluster;
7146 spin_lock(&cluster->refill_lock);
7147 btrfs_return_cluster_to_free_space(block_group, cluster);
7148 spin_unlock(&cluster->refill_lock);
7149
7150 /*
7151 * make sure this block group isn't part of a metadata
7152 * allocation cluster
7153 */
7154 cluster = &root->fs_info->meta_alloc_cluster;
7155 spin_lock(&cluster->refill_lock);
7156 btrfs_return_cluster_to_free_space(block_group, cluster);
7157 spin_unlock(&cluster->refill_lock);
7158
7159 path = btrfs_alloc_path();
7160 BUG_ON(!path);
7161
7162 inode = lookup_free_space_inode(root, block_group, path);
7163 if (!IS_ERR(inode)) {
7164 btrfs_orphan_add(trans, inode);
7165 clear_nlink(inode);
7166 /* One for the block groups ref */
7167 spin_lock(&block_group->lock);
7168 if (block_group->iref) {
7169 block_group->iref = 0;
7170 block_group->inode = NULL;
7171 spin_unlock(&block_group->lock);
7172 iput(inode);
7173 } else {
7174 spin_unlock(&block_group->lock);
7175 }
7176 /* One for our lookup ref */
7177 iput(inode);
7178 }
7179
7180 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7181 key.offset = block_group->key.objectid;
7182 key.type = 0;
7183
7184 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7185 if (ret < 0)
7186 goto out;
7187 if (ret > 0)
7188 btrfs_release_path(path);
7189 if (ret == 0) {
7190 ret = btrfs_del_item(trans, tree_root, path);
7191 if (ret)
7192 goto out;
7193 btrfs_release_path(path);
7194 }
7195
7196 spin_lock(&root->fs_info->block_group_cache_lock);
7197 rb_erase(&block_group->cache_node,
7198 &root->fs_info->block_group_cache_tree);
7199 spin_unlock(&root->fs_info->block_group_cache_lock);
7200
7201 down_write(&block_group->space_info->groups_sem);
7202 /*
7203 * we must use list_del_init so people can check to see if they
7204 * are still on the list after taking the semaphore
7205 */
7206 list_del_init(&block_group->list);
7207 up_write(&block_group->space_info->groups_sem);
7208
7209 if (block_group->cached == BTRFS_CACHE_STARTED)
7210 wait_block_group_cache_done(block_group);
7211
7212 btrfs_remove_free_space_cache(block_group);
7213
7214 spin_lock(&block_group->space_info->lock);
7215 block_group->space_info->total_bytes -= block_group->key.offset;
7216 block_group->space_info->bytes_readonly -= block_group->key.offset;
7217 block_group->space_info->disk_total -= block_group->key.offset * factor;
7218 spin_unlock(&block_group->space_info->lock);
7219
7220 memcpy(&key, &block_group->key, sizeof(key));
7221
7222 btrfs_clear_space_info_full(root->fs_info);
7223
7224 btrfs_put_block_group(block_group);
7225 btrfs_put_block_group(block_group);
7226
7227 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7228 if (ret > 0)
7229 ret = -EIO;
7230 if (ret < 0)
7231 goto out;
7232
7233 ret = btrfs_del_item(trans, root, path);
7234 out:
7235 btrfs_free_path(path);
7236 return ret;
7237 }
7238
7239 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7240 {
7241 struct btrfs_space_info *space_info;
7242 struct btrfs_super_block *disk_super;
7243 u64 features;
7244 u64 flags;
7245 int mixed = 0;
7246 int ret;
7247
7248 disk_super = &fs_info->super_copy;
7249 if (!btrfs_super_root(disk_super))
7250 return 1;
7251
7252 features = btrfs_super_incompat_flags(disk_super);
7253 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7254 mixed = 1;
7255
7256 flags = BTRFS_BLOCK_GROUP_SYSTEM;
7257 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7258 if (ret)
7259 goto out;
7260
7261 if (mixed) {
7262 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7263 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7264 } else {
7265 flags = BTRFS_BLOCK_GROUP_METADATA;
7266 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7267 if (ret)
7268 goto out;
7269
7270 flags = BTRFS_BLOCK_GROUP_DATA;
7271 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7272 }
7273 out:
7274 return ret;
7275 }
7276
7277 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7278 {
7279 return unpin_extent_range(root, start, end);
7280 }
7281
7282 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7283 u64 num_bytes, u64 *actual_bytes)
7284 {
7285 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7286 }
7287
7288 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7289 {
7290 struct btrfs_fs_info *fs_info = root->fs_info;
7291 struct btrfs_block_group_cache *cache = NULL;
7292 u64 group_trimmed;
7293 u64 start;
7294 u64 end;
7295 u64 trimmed = 0;
7296 int ret = 0;
7297
7298 cache = btrfs_lookup_block_group(fs_info, range->start);
7299
7300 while (cache) {
7301 if (cache->key.objectid >= (range->start + range->len)) {
7302 btrfs_put_block_group(cache);
7303 break;
7304 }
7305
7306 start = max(range->start, cache->key.objectid);
7307 end = min(range->start + range->len,
7308 cache->key.objectid + cache->key.offset);
7309
7310 if (end - start >= range->minlen) {
7311 if (!block_group_cache_done(cache)) {
7312 ret = cache_block_group(cache, NULL, root, 0);
7313 if (!ret)
7314 wait_block_group_cache_done(cache);
7315 }
7316 ret = btrfs_trim_block_group(cache,
7317 &group_trimmed,
7318 start,
7319 end,
7320 range->minlen);
7321
7322 trimmed += group_trimmed;
7323 if (ret) {
7324 btrfs_put_block_group(cache);
7325 break;
7326 }
7327 }
7328
7329 cache = next_block_group(fs_info->tree_root, cache);
7330 }
7331
7332 range->len = trimmed;
7333 return ret;
7334 }