Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "math.h"
38
39 #undef SCRAMBLE_DELAYED_REFS
40
41 /*
42 * control flags for do_chunk_alloc's force field
43 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
44 * if we really need one.
45 *
46 * CHUNK_ALLOC_LIMITED means to only try and allocate one
47 * if we have very few chunks already allocated. This is
48 * used as part of the clustering code to help make sure
49 * we have a good pool of storage to cluster in, without
50 * filling the FS with empty chunks
51 *
52 * CHUNK_ALLOC_FORCE means it must try to allocate one
53 *
54 */
55 enum {
56 CHUNK_ALLOC_NO_FORCE = 0,
57 CHUNK_ALLOC_LIMITED = 1,
58 CHUNK_ALLOC_FORCE = 2,
59 };
60
61 /*
62 * Control how reservations are dealt with.
63 *
64 * RESERVE_FREE - freeing a reservation.
65 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
66 * ENOSPC accounting
67 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
68 * bytes_may_use as the ENOSPC accounting is done elsewhere
69 */
70 enum {
71 RESERVE_FREE = 0,
72 RESERVE_ALLOC = 1,
73 RESERVE_ALLOC_NO_ACCOUNT = 2,
74 };
75
76 static int update_block_group(struct btrfs_root *root,
77 u64 bytenr, u64 num_bytes, int alloc);
78 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root,
80 u64 bytenr, u64 num_bytes, u64 parent,
81 u64 root_objectid, u64 owner_objectid,
82 u64 owner_offset, int refs_to_drop,
83 struct btrfs_delayed_extent_op *extra_op);
84 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
85 struct extent_buffer *leaf,
86 struct btrfs_extent_item *ei);
87 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
88 struct btrfs_root *root,
89 u64 parent, u64 root_objectid,
90 u64 flags, u64 owner, u64 offset,
91 struct btrfs_key *ins, int ref_mod);
92 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
93 struct btrfs_root *root,
94 u64 parent, u64 root_objectid,
95 u64 flags, struct btrfs_disk_key *key,
96 int level, struct btrfs_key *ins);
97 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
98 struct btrfs_root *extent_root, u64 flags,
99 int force);
100 static int find_next_key(struct btrfs_path *path, int level,
101 struct btrfs_key *key);
102 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
103 int dump_block_groups);
104 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
105 u64 num_bytes, int reserve);
106 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
107 u64 num_bytes);
108
109 static noinline int
110 block_group_cache_done(struct btrfs_block_group_cache *cache)
111 {
112 smp_mb();
113 return cache->cached == BTRFS_CACHE_FINISHED;
114 }
115
116 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
117 {
118 return (cache->flags & bits) == bits;
119 }
120
121 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
122 {
123 atomic_inc(&cache->count);
124 }
125
126 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
127 {
128 if (atomic_dec_and_test(&cache->count)) {
129 WARN_ON(cache->pinned > 0);
130 WARN_ON(cache->reserved > 0);
131 kfree(cache->free_space_ctl);
132 kfree(cache);
133 }
134 }
135
136 /*
137 * this adds the block group to the fs_info rb tree for the block group
138 * cache
139 */
140 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
141 struct btrfs_block_group_cache *block_group)
142 {
143 struct rb_node **p;
144 struct rb_node *parent = NULL;
145 struct btrfs_block_group_cache *cache;
146
147 spin_lock(&info->block_group_cache_lock);
148 p = &info->block_group_cache_tree.rb_node;
149
150 while (*p) {
151 parent = *p;
152 cache = rb_entry(parent, struct btrfs_block_group_cache,
153 cache_node);
154 if (block_group->key.objectid < cache->key.objectid) {
155 p = &(*p)->rb_left;
156 } else if (block_group->key.objectid > cache->key.objectid) {
157 p = &(*p)->rb_right;
158 } else {
159 spin_unlock(&info->block_group_cache_lock);
160 return -EEXIST;
161 }
162 }
163
164 rb_link_node(&block_group->cache_node, parent, p);
165 rb_insert_color(&block_group->cache_node,
166 &info->block_group_cache_tree);
167
168 if (info->first_logical_byte > block_group->key.objectid)
169 info->first_logical_byte = block_group->key.objectid;
170
171 spin_unlock(&info->block_group_cache_lock);
172
173 return 0;
174 }
175
176 /*
177 * This will return the block group at or after bytenr if contains is 0, else
178 * it will return the block group that contains the bytenr
179 */
180 static struct btrfs_block_group_cache *
181 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
182 int contains)
183 {
184 struct btrfs_block_group_cache *cache, *ret = NULL;
185 struct rb_node *n;
186 u64 end, start;
187
188 spin_lock(&info->block_group_cache_lock);
189 n = info->block_group_cache_tree.rb_node;
190
191 while (n) {
192 cache = rb_entry(n, struct btrfs_block_group_cache,
193 cache_node);
194 end = cache->key.objectid + cache->key.offset - 1;
195 start = cache->key.objectid;
196
197 if (bytenr < start) {
198 if (!contains && (!ret || start < ret->key.objectid))
199 ret = cache;
200 n = n->rb_left;
201 } else if (bytenr > start) {
202 if (contains && bytenr <= end) {
203 ret = cache;
204 break;
205 }
206 n = n->rb_right;
207 } else {
208 ret = cache;
209 break;
210 }
211 }
212 if (ret) {
213 btrfs_get_block_group(ret);
214 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
215 info->first_logical_byte = ret->key.objectid;
216 }
217 spin_unlock(&info->block_group_cache_lock);
218
219 return ret;
220 }
221
222 static int add_excluded_extent(struct btrfs_root *root,
223 u64 start, u64 num_bytes)
224 {
225 u64 end = start + num_bytes - 1;
226 set_extent_bits(&root->fs_info->freed_extents[0],
227 start, end, EXTENT_UPTODATE, GFP_NOFS);
228 set_extent_bits(&root->fs_info->freed_extents[1],
229 start, end, EXTENT_UPTODATE, GFP_NOFS);
230 return 0;
231 }
232
233 static void free_excluded_extents(struct btrfs_root *root,
234 struct btrfs_block_group_cache *cache)
235 {
236 u64 start, end;
237
238 start = cache->key.objectid;
239 end = start + cache->key.offset - 1;
240
241 clear_extent_bits(&root->fs_info->freed_extents[0],
242 start, end, EXTENT_UPTODATE, GFP_NOFS);
243 clear_extent_bits(&root->fs_info->freed_extents[1],
244 start, end, EXTENT_UPTODATE, GFP_NOFS);
245 }
246
247 static int exclude_super_stripes(struct btrfs_root *root,
248 struct btrfs_block_group_cache *cache)
249 {
250 u64 bytenr;
251 u64 *logical;
252 int stripe_len;
253 int i, nr, ret;
254
255 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
256 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
257 cache->bytes_super += stripe_len;
258 ret = add_excluded_extent(root, cache->key.objectid,
259 stripe_len);
260 BUG_ON(ret); /* -ENOMEM */
261 }
262
263 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
264 bytenr = btrfs_sb_offset(i);
265 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
266 cache->key.objectid, bytenr,
267 0, &logical, &nr, &stripe_len);
268 BUG_ON(ret); /* -ENOMEM */
269
270 while (nr--) {
271 cache->bytes_super += stripe_len;
272 ret = add_excluded_extent(root, logical[nr],
273 stripe_len);
274 BUG_ON(ret); /* -ENOMEM */
275 }
276
277 kfree(logical);
278 }
279 return 0;
280 }
281
282 static struct btrfs_caching_control *
283 get_caching_control(struct btrfs_block_group_cache *cache)
284 {
285 struct btrfs_caching_control *ctl;
286
287 spin_lock(&cache->lock);
288 if (cache->cached != BTRFS_CACHE_STARTED) {
289 spin_unlock(&cache->lock);
290 return NULL;
291 }
292
293 /* We're loading it the fast way, so we don't have a caching_ctl. */
294 if (!cache->caching_ctl) {
295 spin_unlock(&cache->lock);
296 return NULL;
297 }
298
299 ctl = cache->caching_ctl;
300 atomic_inc(&ctl->count);
301 spin_unlock(&cache->lock);
302 return ctl;
303 }
304
305 static void put_caching_control(struct btrfs_caching_control *ctl)
306 {
307 if (atomic_dec_and_test(&ctl->count))
308 kfree(ctl);
309 }
310
311 /*
312 * this is only called by cache_block_group, since we could have freed extents
313 * we need to check the pinned_extents for any extents that can't be used yet
314 * since their free space will be released as soon as the transaction commits.
315 */
316 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
317 struct btrfs_fs_info *info, u64 start, u64 end)
318 {
319 u64 extent_start, extent_end, size, total_added = 0;
320 int ret;
321
322 while (start < end) {
323 ret = find_first_extent_bit(info->pinned_extents, start,
324 &extent_start, &extent_end,
325 EXTENT_DIRTY | EXTENT_UPTODATE,
326 NULL);
327 if (ret)
328 break;
329
330 if (extent_start <= start) {
331 start = extent_end + 1;
332 } else if (extent_start > start && extent_start < end) {
333 size = extent_start - start;
334 total_added += size;
335 ret = btrfs_add_free_space(block_group, start,
336 size);
337 BUG_ON(ret); /* -ENOMEM or logic error */
338 start = extent_end + 1;
339 } else {
340 break;
341 }
342 }
343
344 if (start < end) {
345 size = end - start;
346 total_added += size;
347 ret = btrfs_add_free_space(block_group, start, size);
348 BUG_ON(ret); /* -ENOMEM or logic error */
349 }
350
351 return total_added;
352 }
353
354 static noinline void caching_thread(struct btrfs_work *work)
355 {
356 struct btrfs_block_group_cache *block_group;
357 struct btrfs_fs_info *fs_info;
358 struct btrfs_caching_control *caching_ctl;
359 struct btrfs_root *extent_root;
360 struct btrfs_path *path;
361 struct extent_buffer *leaf;
362 struct btrfs_key key;
363 u64 total_found = 0;
364 u64 last = 0;
365 u32 nritems;
366 int ret = 0;
367
368 caching_ctl = container_of(work, struct btrfs_caching_control, work);
369 block_group = caching_ctl->block_group;
370 fs_info = block_group->fs_info;
371 extent_root = fs_info->extent_root;
372
373 path = btrfs_alloc_path();
374 if (!path)
375 goto out;
376
377 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
378
379 /*
380 * We don't want to deadlock with somebody trying to allocate a new
381 * extent for the extent root while also trying to search the extent
382 * root to add free space. So we skip locking and search the commit
383 * root, since its read-only
384 */
385 path->skip_locking = 1;
386 path->search_commit_root = 1;
387 path->reada = 1;
388
389 key.objectid = last;
390 key.offset = 0;
391 key.type = BTRFS_EXTENT_ITEM_KEY;
392 again:
393 mutex_lock(&caching_ctl->mutex);
394 /* need to make sure the commit_root doesn't disappear */
395 down_read(&fs_info->extent_commit_sem);
396
397 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
398 if (ret < 0)
399 goto err;
400
401 leaf = path->nodes[0];
402 nritems = btrfs_header_nritems(leaf);
403
404 while (1) {
405 if (btrfs_fs_closing(fs_info) > 1) {
406 last = (u64)-1;
407 break;
408 }
409
410 if (path->slots[0] < nritems) {
411 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
412 } else {
413 ret = find_next_key(path, 0, &key);
414 if (ret)
415 break;
416
417 if (need_resched() ||
418 btrfs_next_leaf(extent_root, path)) {
419 caching_ctl->progress = last;
420 btrfs_release_path(path);
421 up_read(&fs_info->extent_commit_sem);
422 mutex_unlock(&caching_ctl->mutex);
423 cond_resched();
424 goto again;
425 }
426 leaf = path->nodes[0];
427 nritems = btrfs_header_nritems(leaf);
428 continue;
429 }
430
431 if (key.objectid < block_group->key.objectid) {
432 path->slots[0]++;
433 continue;
434 }
435
436 if (key.objectid >= block_group->key.objectid +
437 block_group->key.offset)
438 break;
439
440 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
441 total_found += add_new_free_space(block_group,
442 fs_info, last,
443 key.objectid);
444 last = key.objectid + key.offset;
445
446 if (total_found > (1024 * 1024 * 2)) {
447 total_found = 0;
448 wake_up(&caching_ctl->wait);
449 }
450 }
451 path->slots[0]++;
452 }
453 ret = 0;
454
455 total_found += add_new_free_space(block_group, fs_info, last,
456 block_group->key.objectid +
457 block_group->key.offset);
458 caching_ctl->progress = (u64)-1;
459
460 spin_lock(&block_group->lock);
461 block_group->caching_ctl = NULL;
462 block_group->cached = BTRFS_CACHE_FINISHED;
463 spin_unlock(&block_group->lock);
464
465 err:
466 btrfs_free_path(path);
467 up_read(&fs_info->extent_commit_sem);
468
469 free_excluded_extents(extent_root, block_group);
470
471 mutex_unlock(&caching_ctl->mutex);
472 out:
473 wake_up(&caching_ctl->wait);
474
475 put_caching_control(caching_ctl);
476 btrfs_put_block_group(block_group);
477 }
478
479 static int cache_block_group(struct btrfs_block_group_cache *cache,
480 int load_cache_only)
481 {
482 DEFINE_WAIT(wait);
483 struct btrfs_fs_info *fs_info = cache->fs_info;
484 struct btrfs_caching_control *caching_ctl;
485 int ret = 0;
486
487 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
488 if (!caching_ctl)
489 return -ENOMEM;
490
491 INIT_LIST_HEAD(&caching_ctl->list);
492 mutex_init(&caching_ctl->mutex);
493 init_waitqueue_head(&caching_ctl->wait);
494 caching_ctl->block_group = cache;
495 caching_ctl->progress = cache->key.objectid;
496 atomic_set(&caching_ctl->count, 1);
497 caching_ctl->work.func = caching_thread;
498
499 spin_lock(&cache->lock);
500 /*
501 * This should be a rare occasion, but this could happen I think in the
502 * case where one thread starts to load the space cache info, and then
503 * some other thread starts a transaction commit which tries to do an
504 * allocation while the other thread is still loading the space cache
505 * info. The previous loop should have kept us from choosing this block
506 * group, but if we've moved to the state where we will wait on caching
507 * block groups we need to first check if we're doing a fast load here,
508 * so we can wait for it to finish, otherwise we could end up allocating
509 * from a block group who's cache gets evicted for one reason or
510 * another.
511 */
512 while (cache->cached == BTRFS_CACHE_FAST) {
513 struct btrfs_caching_control *ctl;
514
515 ctl = cache->caching_ctl;
516 atomic_inc(&ctl->count);
517 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
518 spin_unlock(&cache->lock);
519
520 schedule();
521
522 finish_wait(&ctl->wait, &wait);
523 put_caching_control(ctl);
524 spin_lock(&cache->lock);
525 }
526
527 if (cache->cached != BTRFS_CACHE_NO) {
528 spin_unlock(&cache->lock);
529 kfree(caching_ctl);
530 return 0;
531 }
532 WARN_ON(cache->caching_ctl);
533 cache->caching_ctl = caching_ctl;
534 cache->cached = BTRFS_CACHE_FAST;
535 spin_unlock(&cache->lock);
536
537 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
538 ret = load_free_space_cache(fs_info, cache);
539
540 spin_lock(&cache->lock);
541 if (ret == 1) {
542 cache->caching_ctl = NULL;
543 cache->cached = BTRFS_CACHE_FINISHED;
544 cache->last_byte_to_unpin = (u64)-1;
545 } else {
546 if (load_cache_only) {
547 cache->caching_ctl = NULL;
548 cache->cached = BTRFS_CACHE_NO;
549 } else {
550 cache->cached = BTRFS_CACHE_STARTED;
551 }
552 }
553 spin_unlock(&cache->lock);
554 wake_up(&caching_ctl->wait);
555 if (ret == 1) {
556 put_caching_control(caching_ctl);
557 free_excluded_extents(fs_info->extent_root, cache);
558 return 0;
559 }
560 } else {
561 /*
562 * We are not going to do the fast caching, set cached to the
563 * appropriate value and wakeup any waiters.
564 */
565 spin_lock(&cache->lock);
566 if (load_cache_only) {
567 cache->caching_ctl = NULL;
568 cache->cached = BTRFS_CACHE_NO;
569 } else {
570 cache->cached = BTRFS_CACHE_STARTED;
571 }
572 spin_unlock(&cache->lock);
573 wake_up(&caching_ctl->wait);
574 }
575
576 if (load_cache_only) {
577 put_caching_control(caching_ctl);
578 return 0;
579 }
580
581 down_write(&fs_info->extent_commit_sem);
582 atomic_inc(&caching_ctl->count);
583 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
584 up_write(&fs_info->extent_commit_sem);
585
586 btrfs_get_block_group(cache);
587
588 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
589
590 return ret;
591 }
592
593 /*
594 * return the block group that starts at or after bytenr
595 */
596 static struct btrfs_block_group_cache *
597 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
598 {
599 struct btrfs_block_group_cache *cache;
600
601 cache = block_group_cache_tree_search(info, bytenr, 0);
602
603 return cache;
604 }
605
606 /*
607 * return the block group that contains the given bytenr
608 */
609 struct btrfs_block_group_cache *btrfs_lookup_block_group(
610 struct btrfs_fs_info *info,
611 u64 bytenr)
612 {
613 struct btrfs_block_group_cache *cache;
614
615 cache = block_group_cache_tree_search(info, bytenr, 1);
616
617 return cache;
618 }
619
620 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
621 u64 flags)
622 {
623 struct list_head *head = &info->space_info;
624 struct btrfs_space_info *found;
625
626 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
627
628 rcu_read_lock();
629 list_for_each_entry_rcu(found, head, list) {
630 if (found->flags & flags) {
631 rcu_read_unlock();
632 return found;
633 }
634 }
635 rcu_read_unlock();
636 return NULL;
637 }
638
639 /*
640 * after adding space to the filesystem, we need to clear the full flags
641 * on all the space infos.
642 */
643 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
644 {
645 struct list_head *head = &info->space_info;
646 struct btrfs_space_info *found;
647
648 rcu_read_lock();
649 list_for_each_entry_rcu(found, head, list)
650 found->full = 0;
651 rcu_read_unlock();
652 }
653
654 u64 btrfs_find_block_group(struct btrfs_root *root,
655 u64 search_start, u64 search_hint, int owner)
656 {
657 struct btrfs_block_group_cache *cache;
658 u64 used;
659 u64 last = max(search_hint, search_start);
660 u64 group_start = 0;
661 int full_search = 0;
662 int factor = 9;
663 int wrapped = 0;
664 again:
665 while (1) {
666 cache = btrfs_lookup_first_block_group(root->fs_info, last);
667 if (!cache)
668 break;
669
670 spin_lock(&cache->lock);
671 last = cache->key.objectid + cache->key.offset;
672 used = btrfs_block_group_used(&cache->item);
673
674 if ((full_search || !cache->ro) &&
675 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
676 if (used + cache->pinned + cache->reserved <
677 div_factor(cache->key.offset, factor)) {
678 group_start = cache->key.objectid;
679 spin_unlock(&cache->lock);
680 btrfs_put_block_group(cache);
681 goto found;
682 }
683 }
684 spin_unlock(&cache->lock);
685 btrfs_put_block_group(cache);
686 cond_resched();
687 }
688 if (!wrapped) {
689 last = search_start;
690 wrapped = 1;
691 goto again;
692 }
693 if (!full_search && factor < 10) {
694 last = search_start;
695 full_search = 1;
696 factor = 10;
697 goto again;
698 }
699 found:
700 return group_start;
701 }
702
703 /* simple helper to search for an existing extent at a given offset */
704 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
705 {
706 int ret;
707 struct btrfs_key key;
708 struct btrfs_path *path;
709
710 path = btrfs_alloc_path();
711 if (!path)
712 return -ENOMEM;
713
714 key.objectid = start;
715 key.offset = len;
716 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
717 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
718 0, 0);
719 btrfs_free_path(path);
720 return ret;
721 }
722
723 /*
724 * helper function to lookup reference count and flags of extent.
725 *
726 * the head node for delayed ref is used to store the sum of all the
727 * reference count modifications queued up in the rbtree. the head
728 * node may also store the extent flags to set. This way you can check
729 * to see what the reference count and extent flags would be if all of
730 * the delayed refs are not processed.
731 */
732 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
733 struct btrfs_root *root, u64 bytenr,
734 u64 num_bytes, u64 *refs, u64 *flags)
735 {
736 struct btrfs_delayed_ref_head *head;
737 struct btrfs_delayed_ref_root *delayed_refs;
738 struct btrfs_path *path;
739 struct btrfs_extent_item *ei;
740 struct extent_buffer *leaf;
741 struct btrfs_key key;
742 u32 item_size;
743 u64 num_refs;
744 u64 extent_flags;
745 int ret;
746
747 path = btrfs_alloc_path();
748 if (!path)
749 return -ENOMEM;
750
751 key.objectid = bytenr;
752 key.type = BTRFS_EXTENT_ITEM_KEY;
753 key.offset = num_bytes;
754 if (!trans) {
755 path->skip_locking = 1;
756 path->search_commit_root = 1;
757 }
758 again:
759 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
760 &key, path, 0, 0);
761 if (ret < 0)
762 goto out_free;
763
764 if (ret == 0) {
765 leaf = path->nodes[0];
766 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
767 if (item_size >= sizeof(*ei)) {
768 ei = btrfs_item_ptr(leaf, path->slots[0],
769 struct btrfs_extent_item);
770 num_refs = btrfs_extent_refs(leaf, ei);
771 extent_flags = btrfs_extent_flags(leaf, ei);
772 } else {
773 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
774 struct btrfs_extent_item_v0 *ei0;
775 BUG_ON(item_size != sizeof(*ei0));
776 ei0 = btrfs_item_ptr(leaf, path->slots[0],
777 struct btrfs_extent_item_v0);
778 num_refs = btrfs_extent_refs_v0(leaf, ei0);
779 /* FIXME: this isn't correct for data */
780 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
781 #else
782 BUG();
783 #endif
784 }
785 BUG_ON(num_refs == 0);
786 } else {
787 num_refs = 0;
788 extent_flags = 0;
789 ret = 0;
790 }
791
792 if (!trans)
793 goto out;
794
795 delayed_refs = &trans->transaction->delayed_refs;
796 spin_lock(&delayed_refs->lock);
797 head = btrfs_find_delayed_ref_head(trans, bytenr);
798 if (head) {
799 if (!mutex_trylock(&head->mutex)) {
800 atomic_inc(&head->node.refs);
801 spin_unlock(&delayed_refs->lock);
802
803 btrfs_release_path(path);
804
805 /*
806 * Mutex was contended, block until it's released and try
807 * again
808 */
809 mutex_lock(&head->mutex);
810 mutex_unlock(&head->mutex);
811 btrfs_put_delayed_ref(&head->node);
812 goto again;
813 }
814 if (head->extent_op && head->extent_op->update_flags)
815 extent_flags |= head->extent_op->flags_to_set;
816 else
817 BUG_ON(num_refs == 0);
818
819 num_refs += head->node.ref_mod;
820 mutex_unlock(&head->mutex);
821 }
822 spin_unlock(&delayed_refs->lock);
823 out:
824 WARN_ON(num_refs == 0);
825 if (refs)
826 *refs = num_refs;
827 if (flags)
828 *flags = extent_flags;
829 out_free:
830 btrfs_free_path(path);
831 return ret;
832 }
833
834 /*
835 * Back reference rules. Back refs have three main goals:
836 *
837 * 1) differentiate between all holders of references to an extent so that
838 * when a reference is dropped we can make sure it was a valid reference
839 * before freeing the extent.
840 *
841 * 2) Provide enough information to quickly find the holders of an extent
842 * if we notice a given block is corrupted or bad.
843 *
844 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
845 * maintenance. This is actually the same as #2, but with a slightly
846 * different use case.
847 *
848 * There are two kinds of back refs. The implicit back refs is optimized
849 * for pointers in non-shared tree blocks. For a given pointer in a block,
850 * back refs of this kind provide information about the block's owner tree
851 * and the pointer's key. These information allow us to find the block by
852 * b-tree searching. The full back refs is for pointers in tree blocks not
853 * referenced by their owner trees. The location of tree block is recorded
854 * in the back refs. Actually the full back refs is generic, and can be
855 * used in all cases the implicit back refs is used. The major shortcoming
856 * of the full back refs is its overhead. Every time a tree block gets
857 * COWed, we have to update back refs entry for all pointers in it.
858 *
859 * For a newly allocated tree block, we use implicit back refs for
860 * pointers in it. This means most tree related operations only involve
861 * implicit back refs. For a tree block created in old transaction, the
862 * only way to drop a reference to it is COW it. So we can detect the
863 * event that tree block loses its owner tree's reference and do the
864 * back refs conversion.
865 *
866 * When a tree block is COW'd through a tree, there are four cases:
867 *
868 * The reference count of the block is one and the tree is the block's
869 * owner tree. Nothing to do in this case.
870 *
871 * The reference count of the block is one and the tree is not the
872 * block's owner tree. In this case, full back refs is used for pointers
873 * in the block. Remove these full back refs, add implicit back refs for
874 * every pointers in the new block.
875 *
876 * The reference count of the block is greater than one and the tree is
877 * the block's owner tree. In this case, implicit back refs is used for
878 * pointers in the block. Add full back refs for every pointers in the
879 * block, increase lower level extents' reference counts. The original
880 * implicit back refs are entailed to the new block.
881 *
882 * The reference count of the block is greater than one and the tree is
883 * not the block's owner tree. Add implicit back refs for every pointer in
884 * the new block, increase lower level extents' reference count.
885 *
886 * Back Reference Key composing:
887 *
888 * The key objectid corresponds to the first byte in the extent,
889 * The key type is used to differentiate between types of back refs.
890 * There are different meanings of the key offset for different types
891 * of back refs.
892 *
893 * File extents can be referenced by:
894 *
895 * - multiple snapshots, subvolumes, or different generations in one subvol
896 * - different files inside a single subvolume
897 * - different offsets inside a file (bookend extents in file.c)
898 *
899 * The extent ref structure for the implicit back refs has fields for:
900 *
901 * - Objectid of the subvolume root
902 * - objectid of the file holding the reference
903 * - original offset in the file
904 * - how many bookend extents
905 *
906 * The key offset for the implicit back refs is hash of the first
907 * three fields.
908 *
909 * The extent ref structure for the full back refs has field for:
910 *
911 * - number of pointers in the tree leaf
912 *
913 * The key offset for the implicit back refs is the first byte of
914 * the tree leaf
915 *
916 * When a file extent is allocated, The implicit back refs is used.
917 * the fields are filled in:
918 *
919 * (root_key.objectid, inode objectid, offset in file, 1)
920 *
921 * When a file extent is removed file truncation, we find the
922 * corresponding implicit back refs and check the following fields:
923 *
924 * (btrfs_header_owner(leaf), inode objectid, offset in file)
925 *
926 * Btree extents can be referenced by:
927 *
928 * - Different subvolumes
929 *
930 * Both the implicit back refs and the full back refs for tree blocks
931 * only consist of key. The key offset for the implicit back refs is
932 * objectid of block's owner tree. The key offset for the full back refs
933 * is the first byte of parent block.
934 *
935 * When implicit back refs is used, information about the lowest key and
936 * level of the tree block are required. These information are stored in
937 * tree block info structure.
938 */
939
940 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
941 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
942 struct btrfs_root *root,
943 struct btrfs_path *path,
944 u64 owner, u32 extra_size)
945 {
946 struct btrfs_extent_item *item;
947 struct btrfs_extent_item_v0 *ei0;
948 struct btrfs_extent_ref_v0 *ref0;
949 struct btrfs_tree_block_info *bi;
950 struct extent_buffer *leaf;
951 struct btrfs_key key;
952 struct btrfs_key found_key;
953 u32 new_size = sizeof(*item);
954 u64 refs;
955 int ret;
956
957 leaf = path->nodes[0];
958 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
959
960 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
961 ei0 = btrfs_item_ptr(leaf, path->slots[0],
962 struct btrfs_extent_item_v0);
963 refs = btrfs_extent_refs_v0(leaf, ei0);
964
965 if (owner == (u64)-1) {
966 while (1) {
967 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
968 ret = btrfs_next_leaf(root, path);
969 if (ret < 0)
970 return ret;
971 BUG_ON(ret > 0); /* Corruption */
972 leaf = path->nodes[0];
973 }
974 btrfs_item_key_to_cpu(leaf, &found_key,
975 path->slots[0]);
976 BUG_ON(key.objectid != found_key.objectid);
977 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
978 path->slots[0]++;
979 continue;
980 }
981 ref0 = btrfs_item_ptr(leaf, path->slots[0],
982 struct btrfs_extent_ref_v0);
983 owner = btrfs_ref_objectid_v0(leaf, ref0);
984 break;
985 }
986 }
987 btrfs_release_path(path);
988
989 if (owner < BTRFS_FIRST_FREE_OBJECTID)
990 new_size += sizeof(*bi);
991
992 new_size -= sizeof(*ei0);
993 ret = btrfs_search_slot(trans, root, &key, path,
994 new_size + extra_size, 1);
995 if (ret < 0)
996 return ret;
997 BUG_ON(ret); /* Corruption */
998
999 btrfs_extend_item(trans, root, path, new_size);
1000
1001 leaf = path->nodes[0];
1002 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1003 btrfs_set_extent_refs(leaf, item, refs);
1004 /* FIXME: get real generation */
1005 btrfs_set_extent_generation(leaf, item, 0);
1006 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1007 btrfs_set_extent_flags(leaf, item,
1008 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1009 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1010 bi = (struct btrfs_tree_block_info *)(item + 1);
1011 /* FIXME: get first key of the block */
1012 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1013 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1014 } else {
1015 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1016 }
1017 btrfs_mark_buffer_dirty(leaf);
1018 return 0;
1019 }
1020 #endif
1021
1022 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1023 {
1024 u32 high_crc = ~(u32)0;
1025 u32 low_crc = ~(u32)0;
1026 __le64 lenum;
1027
1028 lenum = cpu_to_le64(root_objectid);
1029 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1030 lenum = cpu_to_le64(owner);
1031 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1032 lenum = cpu_to_le64(offset);
1033 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1034
1035 return ((u64)high_crc << 31) ^ (u64)low_crc;
1036 }
1037
1038 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1039 struct btrfs_extent_data_ref *ref)
1040 {
1041 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1042 btrfs_extent_data_ref_objectid(leaf, ref),
1043 btrfs_extent_data_ref_offset(leaf, ref));
1044 }
1045
1046 static int match_extent_data_ref(struct extent_buffer *leaf,
1047 struct btrfs_extent_data_ref *ref,
1048 u64 root_objectid, u64 owner, u64 offset)
1049 {
1050 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1051 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1052 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1053 return 0;
1054 return 1;
1055 }
1056
1057 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1058 struct btrfs_root *root,
1059 struct btrfs_path *path,
1060 u64 bytenr, u64 parent,
1061 u64 root_objectid,
1062 u64 owner, u64 offset)
1063 {
1064 struct btrfs_key key;
1065 struct btrfs_extent_data_ref *ref;
1066 struct extent_buffer *leaf;
1067 u32 nritems;
1068 int ret;
1069 int recow;
1070 int err = -ENOENT;
1071
1072 key.objectid = bytenr;
1073 if (parent) {
1074 key.type = BTRFS_SHARED_DATA_REF_KEY;
1075 key.offset = parent;
1076 } else {
1077 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1078 key.offset = hash_extent_data_ref(root_objectid,
1079 owner, offset);
1080 }
1081 again:
1082 recow = 0;
1083 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1084 if (ret < 0) {
1085 err = ret;
1086 goto fail;
1087 }
1088
1089 if (parent) {
1090 if (!ret)
1091 return 0;
1092 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1093 key.type = BTRFS_EXTENT_REF_V0_KEY;
1094 btrfs_release_path(path);
1095 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1096 if (ret < 0) {
1097 err = ret;
1098 goto fail;
1099 }
1100 if (!ret)
1101 return 0;
1102 #endif
1103 goto fail;
1104 }
1105
1106 leaf = path->nodes[0];
1107 nritems = btrfs_header_nritems(leaf);
1108 while (1) {
1109 if (path->slots[0] >= nritems) {
1110 ret = btrfs_next_leaf(root, path);
1111 if (ret < 0)
1112 err = ret;
1113 if (ret)
1114 goto fail;
1115
1116 leaf = path->nodes[0];
1117 nritems = btrfs_header_nritems(leaf);
1118 recow = 1;
1119 }
1120
1121 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1122 if (key.objectid != bytenr ||
1123 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1124 goto fail;
1125
1126 ref = btrfs_item_ptr(leaf, path->slots[0],
1127 struct btrfs_extent_data_ref);
1128
1129 if (match_extent_data_ref(leaf, ref, root_objectid,
1130 owner, offset)) {
1131 if (recow) {
1132 btrfs_release_path(path);
1133 goto again;
1134 }
1135 err = 0;
1136 break;
1137 }
1138 path->slots[0]++;
1139 }
1140 fail:
1141 return err;
1142 }
1143
1144 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1145 struct btrfs_root *root,
1146 struct btrfs_path *path,
1147 u64 bytenr, u64 parent,
1148 u64 root_objectid, u64 owner,
1149 u64 offset, int refs_to_add)
1150 {
1151 struct btrfs_key key;
1152 struct extent_buffer *leaf;
1153 u32 size;
1154 u32 num_refs;
1155 int ret;
1156
1157 key.objectid = bytenr;
1158 if (parent) {
1159 key.type = BTRFS_SHARED_DATA_REF_KEY;
1160 key.offset = parent;
1161 size = sizeof(struct btrfs_shared_data_ref);
1162 } else {
1163 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1164 key.offset = hash_extent_data_ref(root_objectid,
1165 owner, offset);
1166 size = sizeof(struct btrfs_extent_data_ref);
1167 }
1168
1169 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1170 if (ret && ret != -EEXIST)
1171 goto fail;
1172
1173 leaf = path->nodes[0];
1174 if (parent) {
1175 struct btrfs_shared_data_ref *ref;
1176 ref = btrfs_item_ptr(leaf, path->slots[0],
1177 struct btrfs_shared_data_ref);
1178 if (ret == 0) {
1179 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1180 } else {
1181 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1182 num_refs += refs_to_add;
1183 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1184 }
1185 } else {
1186 struct btrfs_extent_data_ref *ref;
1187 while (ret == -EEXIST) {
1188 ref = btrfs_item_ptr(leaf, path->slots[0],
1189 struct btrfs_extent_data_ref);
1190 if (match_extent_data_ref(leaf, ref, root_objectid,
1191 owner, offset))
1192 break;
1193 btrfs_release_path(path);
1194 key.offset++;
1195 ret = btrfs_insert_empty_item(trans, root, path, &key,
1196 size);
1197 if (ret && ret != -EEXIST)
1198 goto fail;
1199
1200 leaf = path->nodes[0];
1201 }
1202 ref = btrfs_item_ptr(leaf, path->slots[0],
1203 struct btrfs_extent_data_ref);
1204 if (ret == 0) {
1205 btrfs_set_extent_data_ref_root(leaf, ref,
1206 root_objectid);
1207 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1208 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1209 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1210 } else {
1211 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1212 num_refs += refs_to_add;
1213 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1214 }
1215 }
1216 btrfs_mark_buffer_dirty(leaf);
1217 ret = 0;
1218 fail:
1219 btrfs_release_path(path);
1220 return ret;
1221 }
1222
1223 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1224 struct btrfs_root *root,
1225 struct btrfs_path *path,
1226 int refs_to_drop)
1227 {
1228 struct btrfs_key key;
1229 struct btrfs_extent_data_ref *ref1 = NULL;
1230 struct btrfs_shared_data_ref *ref2 = NULL;
1231 struct extent_buffer *leaf;
1232 u32 num_refs = 0;
1233 int ret = 0;
1234
1235 leaf = path->nodes[0];
1236 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1237
1238 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1239 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1240 struct btrfs_extent_data_ref);
1241 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1242 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1243 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1244 struct btrfs_shared_data_ref);
1245 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1246 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1247 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1248 struct btrfs_extent_ref_v0 *ref0;
1249 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1250 struct btrfs_extent_ref_v0);
1251 num_refs = btrfs_ref_count_v0(leaf, ref0);
1252 #endif
1253 } else {
1254 BUG();
1255 }
1256
1257 BUG_ON(num_refs < refs_to_drop);
1258 num_refs -= refs_to_drop;
1259
1260 if (num_refs == 0) {
1261 ret = btrfs_del_item(trans, root, path);
1262 } else {
1263 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1264 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1265 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1266 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1267 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1268 else {
1269 struct btrfs_extent_ref_v0 *ref0;
1270 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1271 struct btrfs_extent_ref_v0);
1272 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1273 }
1274 #endif
1275 btrfs_mark_buffer_dirty(leaf);
1276 }
1277 return ret;
1278 }
1279
1280 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1281 struct btrfs_path *path,
1282 struct btrfs_extent_inline_ref *iref)
1283 {
1284 struct btrfs_key key;
1285 struct extent_buffer *leaf;
1286 struct btrfs_extent_data_ref *ref1;
1287 struct btrfs_shared_data_ref *ref2;
1288 u32 num_refs = 0;
1289
1290 leaf = path->nodes[0];
1291 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1292 if (iref) {
1293 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1294 BTRFS_EXTENT_DATA_REF_KEY) {
1295 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1296 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1297 } else {
1298 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1299 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1300 }
1301 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1302 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1303 struct btrfs_extent_data_ref);
1304 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1305 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1306 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1307 struct btrfs_shared_data_ref);
1308 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1309 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1310 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1311 struct btrfs_extent_ref_v0 *ref0;
1312 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1313 struct btrfs_extent_ref_v0);
1314 num_refs = btrfs_ref_count_v0(leaf, ref0);
1315 #endif
1316 } else {
1317 WARN_ON(1);
1318 }
1319 return num_refs;
1320 }
1321
1322 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1323 struct btrfs_root *root,
1324 struct btrfs_path *path,
1325 u64 bytenr, u64 parent,
1326 u64 root_objectid)
1327 {
1328 struct btrfs_key key;
1329 int ret;
1330
1331 key.objectid = bytenr;
1332 if (parent) {
1333 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1334 key.offset = parent;
1335 } else {
1336 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1337 key.offset = root_objectid;
1338 }
1339
1340 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1341 if (ret > 0)
1342 ret = -ENOENT;
1343 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1344 if (ret == -ENOENT && parent) {
1345 btrfs_release_path(path);
1346 key.type = BTRFS_EXTENT_REF_V0_KEY;
1347 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1348 if (ret > 0)
1349 ret = -ENOENT;
1350 }
1351 #endif
1352 return ret;
1353 }
1354
1355 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1356 struct btrfs_root *root,
1357 struct btrfs_path *path,
1358 u64 bytenr, u64 parent,
1359 u64 root_objectid)
1360 {
1361 struct btrfs_key key;
1362 int ret;
1363
1364 key.objectid = bytenr;
1365 if (parent) {
1366 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1367 key.offset = parent;
1368 } else {
1369 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1370 key.offset = root_objectid;
1371 }
1372
1373 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1374 btrfs_release_path(path);
1375 return ret;
1376 }
1377
1378 static inline int extent_ref_type(u64 parent, u64 owner)
1379 {
1380 int type;
1381 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1382 if (parent > 0)
1383 type = BTRFS_SHARED_BLOCK_REF_KEY;
1384 else
1385 type = BTRFS_TREE_BLOCK_REF_KEY;
1386 } else {
1387 if (parent > 0)
1388 type = BTRFS_SHARED_DATA_REF_KEY;
1389 else
1390 type = BTRFS_EXTENT_DATA_REF_KEY;
1391 }
1392 return type;
1393 }
1394
1395 static int find_next_key(struct btrfs_path *path, int level,
1396 struct btrfs_key *key)
1397
1398 {
1399 for (; level < BTRFS_MAX_LEVEL; level++) {
1400 if (!path->nodes[level])
1401 break;
1402 if (path->slots[level] + 1 >=
1403 btrfs_header_nritems(path->nodes[level]))
1404 continue;
1405 if (level == 0)
1406 btrfs_item_key_to_cpu(path->nodes[level], key,
1407 path->slots[level] + 1);
1408 else
1409 btrfs_node_key_to_cpu(path->nodes[level], key,
1410 path->slots[level] + 1);
1411 return 0;
1412 }
1413 return 1;
1414 }
1415
1416 /*
1417 * look for inline back ref. if back ref is found, *ref_ret is set
1418 * to the address of inline back ref, and 0 is returned.
1419 *
1420 * if back ref isn't found, *ref_ret is set to the address where it
1421 * should be inserted, and -ENOENT is returned.
1422 *
1423 * if insert is true and there are too many inline back refs, the path
1424 * points to the extent item, and -EAGAIN is returned.
1425 *
1426 * NOTE: inline back refs are ordered in the same way that back ref
1427 * items in the tree are ordered.
1428 */
1429 static noinline_for_stack
1430 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1431 struct btrfs_root *root,
1432 struct btrfs_path *path,
1433 struct btrfs_extent_inline_ref **ref_ret,
1434 u64 bytenr, u64 num_bytes,
1435 u64 parent, u64 root_objectid,
1436 u64 owner, u64 offset, int insert)
1437 {
1438 struct btrfs_key key;
1439 struct extent_buffer *leaf;
1440 struct btrfs_extent_item *ei;
1441 struct btrfs_extent_inline_ref *iref;
1442 u64 flags;
1443 u64 item_size;
1444 unsigned long ptr;
1445 unsigned long end;
1446 int extra_size;
1447 int type;
1448 int want;
1449 int ret;
1450 int err = 0;
1451
1452 key.objectid = bytenr;
1453 key.type = BTRFS_EXTENT_ITEM_KEY;
1454 key.offset = num_bytes;
1455
1456 want = extent_ref_type(parent, owner);
1457 if (insert) {
1458 extra_size = btrfs_extent_inline_ref_size(want);
1459 path->keep_locks = 1;
1460 } else
1461 extra_size = -1;
1462 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1463 if (ret < 0) {
1464 err = ret;
1465 goto out;
1466 }
1467 if (ret && !insert) {
1468 err = -ENOENT;
1469 goto out;
1470 } else if (ret) {
1471 err = -EIO;
1472 WARN_ON(1);
1473 goto out;
1474 }
1475
1476 leaf = path->nodes[0];
1477 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1478 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1479 if (item_size < sizeof(*ei)) {
1480 if (!insert) {
1481 err = -ENOENT;
1482 goto out;
1483 }
1484 ret = convert_extent_item_v0(trans, root, path, owner,
1485 extra_size);
1486 if (ret < 0) {
1487 err = ret;
1488 goto out;
1489 }
1490 leaf = path->nodes[0];
1491 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1492 }
1493 #endif
1494 BUG_ON(item_size < sizeof(*ei));
1495
1496 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1497 flags = btrfs_extent_flags(leaf, ei);
1498
1499 ptr = (unsigned long)(ei + 1);
1500 end = (unsigned long)ei + item_size;
1501
1502 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1503 ptr += sizeof(struct btrfs_tree_block_info);
1504 BUG_ON(ptr > end);
1505 } else {
1506 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1507 }
1508
1509 err = -ENOENT;
1510 while (1) {
1511 if (ptr >= end) {
1512 WARN_ON(ptr > end);
1513 break;
1514 }
1515 iref = (struct btrfs_extent_inline_ref *)ptr;
1516 type = btrfs_extent_inline_ref_type(leaf, iref);
1517 if (want < type)
1518 break;
1519 if (want > type) {
1520 ptr += btrfs_extent_inline_ref_size(type);
1521 continue;
1522 }
1523
1524 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1525 struct btrfs_extent_data_ref *dref;
1526 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1527 if (match_extent_data_ref(leaf, dref, root_objectid,
1528 owner, offset)) {
1529 err = 0;
1530 break;
1531 }
1532 if (hash_extent_data_ref_item(leaf, dref) <
1533 hash_extent_data_ref(root_objectid, owner, offset))
1534 break;
1535 } else {
1536 u64 ref_offset;
1537 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1538 if (parent > 0) {
1539 if (parent == ref_offset) {
1540 err = 0;
1541 break;
1542 }
1543 if (ref_offset < parent)
1544 break;
1545 } else {
1546 if (root_objectid == ref_offset) {
1547 err = 0;
1548 break;
1549 }
1550 if (ref_offset < root_objectid)
1551 break;
1552 }
1553 }
1554 ptr += btrfs_extent_inline_ref_size(type);
1555 }
1556 if (err == -ENOENT && insert) {
1557 if (item_size + extra_size >=
1558 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1559 err = -EAGAIN;
1560 goto out;
1561 }
1562 /*
1563 * To add new inline back ref, we have to make sure
1564 * there is no corresponding back ref item.
1565 * For simplicity, we just do not add new inline back
1566 * ref if there is any kind of item for this block
1567 */
1568 if (find_next_key(path, 0, &key) == 0 &&
1569 key.objectid == bytenr &&
1570 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1571 err = -EAGAIN;
1572 goto out;
1573 }
1574 }
1575 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1576 out:
1577 if (insert) {
1578 path->keep_locks = 0;
1579 btrfs_unlock_up_safe(path, 1);
1580 }
1581 return err;
1582 }
1583
1584 /*
1585 * helper to add new inline back ref
1586 */
1587 static noinline_for_stack
1588 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1589 struct btrfs_root *root,
1590 struct btrfs_path *path,
1591 struct btrfs_extent_inline_ref *iref,
1592 u64 parent, u64 root_objectid,
1593 u64 owner, u64 offset, int refs_to_add,
1594 struct btrfs_delayed_extent_op *extent_op)
1595 {
1596 struct extent_buffer *leaf;
1597 struct btrfs_extent_item *ei;
1598 unsigned long ptr;
1599 unsigned long end;
1600 unsigned long item_offset;
1601 u64 refs;
1602 int size;
1603 int type;
1604
1605 leaf = path->nodes[0];
1606 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1607 item_offset = (unsigned long)iref - (unsigned long)ei;
1608
1609 type = extent_ref_type(parent, owner);
1610 size = btrfs_extent_inline_ref_size(type);
1611
1612 btrfs_extend_item(trans, root, path, size);
1613
1614 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1615 refs = btrfs_extent_refs(leaf, ei);
1616 refs += refs_to_add;
1617 btrfs_set_extent_refs(leaf, ei, refs);
1618 if (extent_op)
1619 __run_delayed_extent_op(extent_op, leaf, ei);
1620
1621 ptr = (unsigned long)ei + item_offset;
1622 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1623 if (ptr < end - size)
1624 memmove_extent_buffer(leaf, ptr + size, ptr,
1625 end - size - ptr);
1626
1627 iref = (struct btrfs_extent_inline_ref *)ptr;
1628 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1629 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1630 struct btrfs_extent_data_ref *dref;
1631 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1632 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1633 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1634 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1635 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1636 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1637 struct btrfs_shared_data_ref *sref;
1638 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1639 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1640 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1641 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1642 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1643 } else {
1644 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1645 }
1646 btrfs_mark_buffer_dirty(leaf);
1647 }
1648
1649 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1650 struct btrfs_root *root,
1651 struct btrfs_path *path,
1652 struct btrfs_extent_inline_ref **ref_ret,
1653 u64 bytenr, u64 num_bytes, u64 parent,
1654 u64 root_objectid, u64 owner, u64 offset)
1655 {
1656 int ret;
1657
1658 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1659 bytenr, num_bytes, parent,
1660 root_objectid, owner, offset, 0);
1661 if (ret != -ENOENT)
1662 return ret;
1663
1664 btrfs_release_path(path);
1665 *ref_ret = NULL;
1666
1667 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1668 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1669 root_objectid);
1670 } else {
1671 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1672 root_objectid, owner, offset);
1673 }
1674 return ret;
1675 }
1676
1677 /*
1678 * helper to update/remove inline back ref
1679 */
1680 static noinline_for_stack
1681 void update_inline_extent_backref(struct btrfs_trans_handle *trans,
1682 struct btrfs_root *root,
1683 struct btrfs_path *path,
1684 struct btrfs_extent_inline_ref *iref,
1685 int refs_to_mod,
1686 struct btrfs_delayed_extent_op *extent_op)
1687 {
1688 struct extent_buffer *leaf;
1689 struct btrfs_extent_item *ei;
1690 struct btrfs_extent_data_ref *dref = NULL;
1691 struct btrfs_shared_data_ref *sref = NULL;
1692 unsigned long ptr;
1693 unsigned long end;
1694 u32 item_size;
1695 int size;
1696 int type;
1697 u64 refs;
1698
1699 leaf = path->nodes[0];
1700 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1701 refs = btrfs_extent_refs(leaf, ei);
1702 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1703 refs += refs_to_mod;
1704 btrfs_set_extent_refs(leaf, ei, refs);
1705 if (extent_op)
1706 __run_delayed_extent_op(extent_op, leaf, ei);
1707
1708 type = btrfs_extent_inline_ref_type(leaf, iref);
1709
1710 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1711 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1712 refs = btrfs_extent_data_ref_count(leaf, dref);
1713 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1714 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1715 refs = btrfs_shared_data_ref_count(leaf, sref);
1716 } else {
1717 refs = 1;
1718 BUG_ON(refs_to_mod != -1);
1719 }
1720
1721 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1722 refs += refs_to_mod;
1723
1724 if (refs > 0) {
1725 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1726 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1727 else
1728 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1729 } else {
1730 size = btrfs_extent_inline_ref_size(type);
1731 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1732 ptr = (unsigned long)iref;
1733 end = (unsigned long)ei + item_size;
1734 if (ptr + size < end)
1735 memmove_extent_buffer(leaf, ptr, ptr + size,
1736 end - ptr - size);
1737 item_size -= size;
1738 btrfs_truncate_item(trans, root, path, item_size, 1);
1739 }
1740 btrfs_mark_buffer_dirty(leaf);
1741 }
1742
1743 static noinline_for_stack
1744 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1745 struct btrfs_root *root,
1746 struct btrfs_path *path,
1747 u64 bytenr, u64 num_bytes, u64 parent,
1748 u64 root_objectid, u64 owner,
1749 u64 offset, int refs_to_add,
1750 struct btrfs_delayed_extent_op *extent_op)
1751 {
1752 struct btrfs_extent_inline_ref *iref;
1753 int ret;
1754
1755 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1756 bytenr, num_bytes, parent,
1757 root_objectid, owner, offset, 1);
1758 if (ret == 0) {
1759 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1760 update_inline_extent_backref(trans, root, path, iref,
1761 refs_to_add, extent_op);
1762 } else if (ret == -ENOENT) {
1763 setup_inline_extent_backref(trans, root, path, iref, parent,
1764 root_objectid, owner, offset,
1765 refs_to_add, extent_op);
1766 ret = 0;
1767 }
1768 return ret;
1769 }
1770
1771 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1772 struct btrfs_root *root,
1773 struct btrfs_path *path,
1774 u64 bytenr, u64 parent, u64 root_objectid,
1775 u64 owner, u64 offset, int refs_to_add)
1776 {
1777 int ret;
1778 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1779 BUG_ON(refs_to_add != 1);
1780 ret = insert_tree_block_ref(trans, root, path, bytenr,
1781 parent, root_objectid);
1782 } else {
1783 ret = insert_extent_data_ref(trans, root, path, bytenr,
1784 parent, root_objectid,
1785 owner, offset, refs_to_add);
1786 }
1787 return ret;
1788 }
1789
1790 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1791 struct btrfs_root *root,
1792 struct btrfs_path *path,
1793 struct btrfs_extent_inline_ref *iref,
1794 int refs_to_drop, int is_data)
1795 {
1796 int ret = 0;
1797
1798 BUG_ON(!is_data && refs_to_drop != 1);
1799 if (iref) {
1800 update_inline_extent_backref(trans, root, path, iref,
1801 -refs_to_drop, NULL);
1802 } else if (is_data) {
1803 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1804 } else {
1805 ret = btrfs_del_item(trans, root, path);
1806 }
1807 return ret;
1808 }
1809
1810 static int btrfs_issue_discard(struct block_device *bdev,
1811 u64 start, u64 len)
1812 {
1813 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1814 }
1815
1816 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1817 u64 num_bytes, u64 *actual_bytes)
1818 {
1819 int ret;
1820 u64 discarded_bytes = 0;
1821 struct btrfs_bio *bbio = NULL;
1822
1823
1824 /* Tell the block device(s) that the sectors can be discarded */
1825 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1826 bytenr, &num_bytes, &bbio, 0);
1827 /* Error condition is -ENOMEM */
1828 if (!ret) {
1829 struct btrfs_bio_stripe *stripe = bbio->stripes;
1830 int i;
1831
1832
1833 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1834 if (!stripe->dev->can_discard)
1835 continue;
1836
1837 ret = btrfs_issue_discard(stripe->dev->bdev,
1838 stripe->physical,
1839 stripe->length);
1840 if (!ret)
1841 discarded_bytes += stripe->length;
1842 else if (ret != -EOPNOTSUPP)
1843 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1844
1845 /*
1846 * Just in case we get back EOPNOTSUPP for some reason,
1847 * just ignore the return value so we don't screw up
1848 * people calling discard_extent.
1849 */
1850 ret = 0;
1851 }
1852 kfree(bbio);
1853 }
1854
1855 if (actual_bytes)
1856 *actual_bytes = discarded_bytes;
1857
1858
1859 if (ret == -EOPNOTSUPP)
1860 ret = 0;
1861 return ret;
1862 }
1863
1864 /* Can return -ENOMEM */
1865 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1866 struct btrfs_root *root,
1867 u64 bytenr, u64 num_bytes, u64 parent,
1868 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1869 {
1870 int ret;
1871 struct btrfs_fs_info *fs_info = root->fs_info;
1872
1873 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1874 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1875
1876 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1877 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1878 num_bytes,
1879 parent, root_objectid, (int)owner,
1880 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1881 } else {
1882 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1883 num_bytes,
1884 parent, root_objectid, owner, offset,
1885 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1886 }
1887 return ret;
1888 }
1889
1890 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1891 struct btrfs_root *root,
1892 u64 bytenr, u64 num_bytes,
1893 u64 parent, u64 root_objectid,
1894 u64 owner, u64 offset, int refs_to_add,
1895 struct btrfs_delayed_extent_op *extent_op)
1896 {
1897 struct btrfs_path *path;
1898 struct extent_buffer *leaf;
1899 struct btrfs_extent_item *item;
1900 u64 refs;
1901 int ret;
1902 int err = 0;
1903
1904 path = btrfs_alloc_path();
1905 if (!path)
1906 return -ENOMEM;
1907
1908 path->reada = 1;
1909 path->leave_spinning = 1;
1910 /* this will setup the path even if it fails to insert the back ref */
1911 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1912 path, bytenr, num_bytes, parent,
1913 root_objectid, owner, offset,
1914 refs_to_add, extent_op);
1915 if (ret == 0)
1916 goto out;
1917
1918 if (ret != -EAGAIN) {
1919 err = ret;
1920 goto out;
1921 }
1922
1923 leaf = path->nodes[0];
1924 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1925 refs = btrfs_extent_refs(leaf, item);
1926 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1927 if (extent_op)
1928 __run_delayed_extent_op(extent_op, leaf, item);
1929
1930 btrfs_mark_buffer_dirty(leaf);
1931 btrfs_release_path(path);
1932
1933 path->reada = 1;
1934 path->leave_spinning = 1;
1935
1936 /* now insert the actual backref */
1937 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1938 path, bytenr, parent, root_objectid,
1939 owner, offset, refs_to_add);
1940 if (ret)
1941 btrfs_abort_transaction(trans, root, ret);
1942 out:
1943 btrfs_free_path(path);
1944 return err;
1945 }
1946
1947 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1948 struct btrfs_root *root,
1949 struct btrfs_delayed_ref_node *node,
1950 struct btrfs_delayed_extent_op *extent_op,
1951 int insert_reserved)
1952 {
1953 int ret = 0;
1954 struct btrfs_delayed_data_ref *ref;
1955 struct btrfs_key ins;
1956 u64 parent = 0;
1957 u64 ref_root = 0;
1958 u64 flags = 0;
1959
1960 ins.objectid = node->bytenr;
1961 ins.offset = node->num_bytes;
1962 ins.type = BTRFS_EXTENT_ITEM_KEY;
1963
1964 ref = btrfs_delayed_node_to_data_ref(node);
1965 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1966 parent = ref->parent;
1967 else
1968 ref_root = ref->root;
1969
1970 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1971 if (extent_op) {
1972 BUG_ON(extent_op->update_key);
1973 flags |= extent_op->flags_to_set;
1974 }
1975 ret = alloc_reserved_file_extent(trans, root,
1976 parent, ref_root, flags,
1977 ref->objectid, ref->offset,
1978 &ins, node->ref_mod);
1979 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1980 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1981 node->num_bytes, parent,
1982 ref_root, ref->objectid,
1983 ref->offset, node->ref_mod,
1984 extent_op);
1985 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1986 ret = __btrfs_free_extent(trans, root, node->bytenr,
1987 node->num_bytes, parent,
1988 ref_root, ref->objectid,
1989 ref->offset, node->ref_mod,
1990 extent_op);
1991 } else {
1992 BUG();
1993 }
1994 return ret;
1995 }
1996
1997 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1998 struct extent_buffer *leaf,
1999 struct btrfs_extent_item *ei)
2000 {
2001 u64 flags = btrfs_extent_flags(leaf, ei);
2002 if (extent_op->update_flags) {
2003 flags |= extent_op->flags_to_set;
2004 btrfs_set_extent_flags(leaf, ei, flags);
2005 }
2006
2007 if (extent_op->update_key) {
2008 struct btrfs_tree_block_info *bi;
2009 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2010 bi = (struct btrfs_tree_block_info *)(ei + 1);
2011 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2012 }
2013 }
2014
2015 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2016 struct btrfs_root *root,
2017 struct btrfs_delayed_ref_node *node,
2018 struct btrfs_delayed_extent_op *extent_op)
2019 {
2020 struct btrfs_key key;
2021 struct btrfs_path *path;
2022 struct btrfs_extent_item *ei;
2023 struct extent_buffer *leaf;
2024 u32 item_size;
2025 int ret;
2026 int err = 0;
2027
2028 if (trans->aborted)
2029 return 0;
2030
2031 path = btrfs_alloc_path();
2032 if (!path)
2033 return -ENOMEM;
2034
2035 key.objectid = node->bytenr;
2036 key.type = BTRFS_EXTENT_ITEM_KEY;
2037 key.offset = node->num_bytes;
2038
2039 path->reada = 1;
2040 path->leave_spinning = 1;
2041 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2042 path, 0, 1);
2043 if (ret < 0) {
2044 err = ret;
2045 goto out;
2046 }
2047 if (ret > 0) {
2048 err = -EIO;
2049 goto out;
2050 }
2051
2052 leaf = path->nodes[0];
2053 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2054 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2055 if (item_size < sizeof(*ei)) {
2056 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2057 path, (u64)-1, 0);
2058 if (ret < 0) {
2059 err = ret;
2060 goto out;
2061 }
2062 leaf = path->nodes[0];
2063 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2064 }
2065 #endif
2066 BUG_ON(item_size < sizeof(*ei));
2067 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2068 __run_delayed_extent_op(extent_op, leaf, ei);
2069
2070 btrfs_mark_buffer_dirty(leaf);
2071 out:
2072 btrfs_free_path(path);
2073 return err;
2074 }
2075
2076 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2077 struct btrfs_root *root,
2078 struct btrfs_delayed_ref_node *node,
2079 struct btrfs_delayed_extent_op *extent_op,
2080 int insert_reserved)
2081 {
2082 int ret = 0;
2083 struct btrfs_delayed_tree_ref *ref;
2084 struct btrfs_key ins;
2085 u64 parent = 0;
2086 u64 ref_root = 0;
2087
2088 ins.objectid = node->bytenr;
2089 ins.offset = node->num_bytes;
2090 ins.type = BTRFS_EXTENT_ITEM_KEY;
2091
2092 ref = btrfs_delayed_node_to_tree_ref(node);
2093 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2094 parent = ref->parent;
2095 else
2096 ref_root = ref->root;
2097
2098 BUG_ON(node->ref_mod != 1);
2099 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2100 BUG_ON(!extent_op || !extent_op->update_flags ||
2101 !extent_op->update_key);
2102 ret = alloc_reserved_tree_block(trans, root,
2103 parent, ref_root,
2104 extent_op->flags_to_set,
2105 &extent_op->key,
2106 ref->level, &ins);
2107 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2108 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2109 node->num_bytes, parent, ref_root,
2110 ref->level, 0, 1, extent_op);
2111 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2112 ret = __btrfs_free_extent(trans, root, node->bytenr,
2113 node->num_bytes, parent, ref_root,
2114 ref->level, 0, 1, extent_op);
2115 } else {
2116 BUG();
2117 }
2118 return ret;
2119 }
2120
2121 /* helper function to actually process a single delayed ref entry */
2122 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2123 struct btrfs_root *root,
2124 struct btrfs_delayed_ref_node *node,
2125 struct btrfs_delayed_extent_op *extent_op,
2126 int insert_reserved)
2127 {
2128 int ret = 0;
2129
2130 if (trans->aborted)
2131 return 0;
2132
2133 if (btrfs_delayed_ref_is_head(node)) {
2134 struct btrfs_delayed_ref_head *head;
2135 /*
2136 * we've hit the end of the chain and we were supposed
2137 * to insert this extent into the tree. But, it got
2138 * deleted before we ever needed to insert it, so all
2139 * we have to do is clean up the accounting
2140 */
2141 BUG_ON(extent_op);
2142 head = btrfs_delayed_node_to_head(node);
2143 if (insert_reserved) {
2144 btrfs_pin_extent(root, node->bytenr,
2145 node->num_bytes, 1);
2146 if (head->is_data) {
2147 ret = btrfs_del_csums(trans, root,
2148 node->bytenr,
2149 node->num_bytes);
2150 }
2151 }
2152 return ret;
2153 }
2154
2155 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2156 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2157 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2158 insert_reserved);
2159 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2160 node->type == BTRFS_SHARED_DATA_REF_KEY)
2161 ret = run_delayed_data_ref(trans, root, node, extent_op,
2162 insert_reserved);
2163 else
2164 BUG();
2165 return ret;
2166 }
2167
2168 static noinline struct btrfs_delayed_ref_node *
2169 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2170 {
2171 struct rb_node *node;
2172 struct btrfs_delayed_ref_node *ref;
2173 int action = BTRFS_ADD_DELAYED_REF;
2174 again:
2175 /*
2176 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2177 * this prevents ref count from going down to zero when
2178 * there still are pending delayed ref.
2179 */
2180 node = rb_prev(&head->node.rb_node);
2181 while (1) {
2182 if (!node)
2183 break;
2184 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2185 rb_node);
2186 if (ref->bytenr != head->node.bytenr)
2187 break;
2188 if (ref->action == action)
2189 return ref;
2190 node = rb_prev(node);
2191 }
2192 if (action == BTRFS_ADD_DELAYED_REF) {
2193 action = BTRFS_DROP_DELAYED_REF;
2194 goto again;
2195 }
2196 return NULL;
2197 }
2198
2199 /*
2200 * Returns 0 on success or if called with an already aborted transaction.
2201 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2202 */
2203 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2204 struct btrfs_root *root,
2205 struct list_head *cluster)
2206 {
2207 struct btrfs_delayed_ref_root *delayed_refs;
2208 struct btrfs_delayed_ref_node *ref;
2209 struct btrfs_delayed_ref_head *locked_ref = NULL;
2210 struct btrfs_delayed_extent_op *extent_op;
2211 struct btrfs_fs_info *fs_info = root->fs_info;
2212 int ret;
2213 int count = 0;
2214 int must_insert_reserved = 0;
2215
2216 delayed_refs = &trans->transaction->delayed_refs;
2217 while (1) {
2218 if (!locked_ref) {
2219 /* pick a new head ref from the cluster list */
2220 if (list_empty(cluster))
2221 break;
2222
2223 locked_ref = list_entry(cluster->next,
2224 struct btrfs_delayed_ref_head, cluster);
2225
2226 /* grab the lock that says we are going to process
2227 * all the refs for this head */
2228 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2229
2230 /*
2231 * we may have dropped the spin lock to get the head
2232 * mutex lock, and that might have given someone else
2233 * time to free the head. If that's true, it has been
2234 * removed from our list and we can move on.
2235 */
2236 if (ret == -EAGAIN) {
2237 locked_ref = NULL;
2238 count++;
2239 continue;
2240 }
2241 }
2242
2243 /*
2244 * We need to try and merge add/drops of the same ref since we
2245 * can run into issues with relocate dropping the implicit ref
2246 * and then it being added back again before the drop can
2247 * finish. If we merged anything we need to re-loop so we can
2248 * get a good ref.
2249 */
2250 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2251 locked_ref);
2252
2253 /*
2254 * locked_ref is the head node, so we have to go one
2255 * node back for any delayed ref updates
2256 */
2257 ref = select_delayed_ref(locked_ref);
2258
2259 if (ref && ref->seq &&
2260 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2261 /*
2262 * there are still refs with lower seq numbers in the
2263 * process of being added. Don't run this ref yet.
2264 */
2265 list_del_init(&locked_ref->cluster);
2266 btrfs_delayed_ref_unlock(locked_ref);
2267 locked_ref = NULL;
2268 delayed_refs->num_heads_ready++;
2269 spin_unlock(&delayed_refs->lock);
2270 cond_resched();
2271 spin_lock(&delayed_refs->lock);
2272 continue;
2273 }
2274
2275 /*
2276 * record the must insert reserved flag before we
2277 * drop the spin lock.
2278 */
2279 must_insert_reserved = locked_ref->must_insert_reserved;
2280 locked_ref->must_insert_reserved = 0;
2281
2282 extent_op = locked_ref->extent_op;
2283 locked_ref->extent_op = NULL;
2284
2285 if (!ref) {
2286 /* All delayed refs have been processed, Go ahead
2287 * and send the head node to run_one_delayed_ref,
2288 * so that any accounting fixes can happen
2289 */
2290 ref = &locked_ref->node;
2291
2292 if (extent_op && must_insert_reserved) {
2293 btrfs_free_delayed_extent_op(extent_op);
2294 extent_op = NULL;
2295 }
2296
2297 if (extent_op) {
2298 spin_unlock(&delayed_refs->lock);
2299
2300 ret = run_delayed_extent_op(trans, root,
2301 ref, extent_op);
2302 btrfs_free_delayed_extent_op(extent_op);
2303
2304 if (ret) {
2305 printk(KERN_DEBUG
2306 "btrfs: run_delayed_extent_op "
2307 "returned %d\n", ret);
2308 spin_lock(&delayed_refs->lock);
2309 btrfs_delayed_ref_unlock(locked_ref);
2310 return ret;
2311 }
2312
2313 goto next;
2314 }
2315 }
2316
2317 ref->in_tree = 0;
2318 rb_erase(&ref->rb_node, &delayed_refs->root);
2319 delayed_refs->num_entries--;
2320 if (!btrfs_delayed_ref_is_head(ref)) {
2321 /*
2322 * when we play the delayed ref, also correct the
2323 * ref_mod on head
2324 */
2325 switch (ref->action) {
2326 case BTRFS_ADD_DELAYED_REF:
2327 case BTRFS_ADD_DELAYED_EXTENT:
2328 locked_ref->node.ref_mod -= ref->ref_mod;
2329 break;
2330 case BTRFS_DROP_DELAYED_REF:
2331 locked_ref->node.ref_mod += ref->ref_mod;
2332 break;
2333 default:
2334 WARN_ON(1);
2335 }
2336 }
2337 spin_unlock(&delayed_refs->lock);
2338
2339 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2340 must_insert_reserved);
2341
2342 btrfs_free_delayed_extent_op(extent_op);
2343 if (ret) {
2344 btrfs_delayed_ref_unlock(locked_ref);
2345 btrfs_put_delayed_ref(ref);
2346 printk(KERN_DEBUG
2347 "btrfs: run_one_delayed_ref returned %d\n", ret);
2348 spin_lock(&delayed_refs->lock);
2349 return ret;
2350 }
2351
2352 /*
2353 * If this node is a head, that means all the refs in this head
2354 * have been dealt with, and we will pick the next head to deal
2355 * with, so we must unlock the head and drop it from the cluster
2356 * list before we release it.
2357 */
2358 if (btrfs_delayed_ref_is_head(ref)) {
2359 list_del_init(&locked_ref->cluster);
2360 btrfs_delayed_ref_unlock(locked_ref);
2361 locked_ref = NULL;
2362 }
2363 btrfs_put_delayed_ref(ref);
2364 count++;
2365 next:
2366 cond_resched();
2367 spin_lock(&delayed_refs->lock);
2368 }
2369 return count;
2370 }
2371
2372 #ifdef SCRAMBLE_DELAYED_REFS
2373 /*
2374 * Normally delayed refs get processed in ascending bytenr order. This
2375 * correlates in most cases to the order added. To expose dependencies on this
2376 * order, we start to process the tree in the middle instead of the beginning
2377 */
2378 static u64 find_middle(struct rb_root *root)
2379 {
2380 struct rb_node *n = root->rb_node;
2381 struct btrfs_delayed_ref_node *entry;
2382 int alt = 1;
2383 u64 middle;
2384 u64 first = 0, last = 0;
2385
2386 n = rb_first(root);
2387 if (n) {
2388 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2389 first = entry->bytenr;
2390 }
2391 n = rb_last(root);
2392 if (n) {
2393 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2394 last = entry->bytenr;
2395 }
2396 n = root->rb_node;
2397
2398 while (n) {
2399 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2400 WARN_ON(!entry->in_tree);
2401
2402 middle = entry->bytenr;
2403
2404 if (alt)
2405 n = n->rb_left;
2406 else
2407 n = n->rb_right;
2408
2409 alt = 1 - alt;
2410 }
2411 return middle;
2412 }
2413 #endif
2414
2415 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2416 struct btrfs_fs_info *fs_info)
2417 {
2418 struct qgroup_update *qgroup_update;
2419 int ret = 0;
2420
2421 if (list_empty(&trans->qgroup_ref_list) !=
2422 !trans->delayed_ref_elem.seq) {
2423 /* list without seq or seq without list */
2424 printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n",
2425 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2426 trans->delayed_ref_elem.seq);
2427 BUG();
2428 }
2429
2430 if (!trans->delayed_ref_elem.seq)
2431 return 0;
2432
2433 while (!list_empty(&trans->qgroup_ref_list)) {
2434 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2435 struct qgroup_update, list);
2436 list_del(&qgroup_update->list);
2437 if (!ret)
2438 ret = btrfs_qgroup_account_ref(
2439 trans, fs_info, qgroup_update->node,
2440 qgroup_update->extent_op);
2441 kfree(qgroup_update);
2442 }
2443
2444 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2445
2446 return ret;
2447 }
2448
2449 static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq,
2450 int count)
2451 {
2452 int val = atomic_read(&delayed_refs->ref_seq);
2453
2454 if (val < seq || val >= seq + count)
2455 return 1;
2456 return 0;
2457 }
2458
2459 /*
2460 * this starts processing the delayed reference count updates and
2461 * extent insertions we have queued up so far. count can be
2462 * 0, which means to process everything in the tree at the start
2463 * of the run (but not newly added entries), or it can be some target
2464 * number you'd like to process.
2465 *
2466 * Returns 0 on success or if called with an aborted transaction
2467 * Returns <0 on error and aborts the transaction
2468 */
2469 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2470 struct btrfs_root *root, unsigned long count)
2471 {
2472 struct rb_node *node;
2473 struct btrfs_delayed_ref_root *delayed_refs;
2474 struct btrfs_delayed_ref_node *ref;
2475 struct list_head cluster;
2476 int ret;
2477 u64 delayed_start;
2478 int run_all = count == (unsigned long)-1;
2479 int run_most = 0;
2480 int loops;
2481
2482 /* We'll clean this up in btrfs_cleanup_transaction */
2483 if (trans->aborted)
2484 return 0;
2485
2486 if (root == root->fs_info->extent_root)
2487 root = root->fs_info->tree_root;
2488
2489 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2490
2491 delayed_refs = &trans->transaction->delayed_refs;
2492 INIT_LIST_HEAD(&cluster);
2493 if (count == 0) {
2494 count = delayed_refs->num_entries * 2;
2495 run_most = 1;
2496 }
2497
2498 if (!run_all && !run_most) {
2499 int old;
2500 int seq = atomic_read(&delayed_refs->ref_seq);
2501
2502 progress:
2503 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2504 if (old) {
2505 DEFINE_WAIT(__wait);
2506 if (delayed_refs->num_entries < 16348)
2507 return 0;
2508
2509 prepare_to_wait(&delayed_refs->wait, &__wait,
2510 TASK_UNINTERRUPTIBLE);
2511
2512 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2513 if (old) {
2514 schedule();
2515 finish_wait(&delayed_refs->wait, &__wait);
2516
2517 if (!refs_newer(delayed_refs, seq, 256))
2518 goto progress;
2519 else
2520 return 0;
2521 } else {
2522 finish_wait(&delayed_refs->wait, &__wait);
2523 goto again;
2524 }
2525 }
2526
2527 } else {
2528 atomic_inc(&delayed_refs->procs_running_refs);
2529 }
2530
2531 again:
2532 loops = 0;
2533 spin_lock(&delayed_refs->lock);
2534
2535 #ifdef SCRAMBLE_DELAYED_REFS
2536 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2537 #endif
2538
2539 while (1) {
2540 if (!(run_all || run_most) &&
2541 delayed_refs->num_heads_ready < 64)
2542 break;
2543
2544 /*
2545 * go find something we can process in the rbtree. We start at
2546 * the beginning of the tree, and then build a cluster
2547 * of refs to process starting at the first one we are able to
2548 * lock
2549 */
2550 delayed_start = delayed_refs->run_delayed_start;
2551 ret = btrfs_find_ref_cluster(trans, &cluster,
2552 delayed_refs->run_delayed_start);
2553 if (ret)
2554 break;
2555
2556 ret = run_clustered_refs(trans, root, &cluster);
2557 if (ret < 0) {
2558 btrfs_release_ref_cluster(&cluster);
2559 spin_unlock(&delayed_refs->lock);
2560 btrfs_abort_transaction(trans, root, ret);
2561 atomic_dec(&delayed_refs->procs_running_refs);
2562 return ret;
2563 }
2564
2565 atomic_add(ret, &delayed_refs->ref_seq);
2566
2567 count -= min_t(unsigned long, ret, count);
2568
2569 if (count == 0)
2570 break;
2571
2572 if (delayed_start >= delayed_refs->run_delayed_start) {
2573 if (loops == 0) {
2574 /*
2575 * btrfs_find_ref_cluster looped. let's do one
2576 * more cycle. if we don't run any delayed ref
2577 * during that cycle (because we can't because
2578 * all of them are blocked), bail out.
2579 */
2580 loops = 1;
2581 } else {
2582 /*
2583 * no runnable refs left, stop trying
2584 */
2585 BUG_ON(run_all);
2586 break;
2587 }
2588 }
2589 if (ret) {
2590 /* refs were run, let's reset staleness detection */
2591 loops = 0;
2592 }
2593 }
2594
2595 if (run_all) {
2596 if (!list_empty(&trans->new_bgs)) {
2597 spin_unlock(&delayed_refs->lock);
2598 btrfs_create_pending_block_groups(trans, root);
2599 spin_lock(&delayed_refs->lock);
2600 }
2601
2602 node = rb_first(&delayed_refs->root);
2603 if (!node)
2604 goto out;
2605 count = (unsigned long)-1;
2606
2607 while (node) {
2608 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2609 rb_node);
2610 if (btrfs_delayed_ref_is_head(ref)) {
2611 struct btrfs_delayed_ref_head *head;
2612
2613 head = btrfs_delayed_node_to_head(ref);
2614 atomic_inc(&ref->refs);
2615
2616 spin_unlock(&delayed_refs->lock);
2617 /*
2618 * Mutex was contended, block until it's
2619 * released and try again
2620 */
2621 mutex_lock(&head->mutex);
2622 mutex_unlock(&head->mutex);
2623
2624 btrfs_put_delayed_ref(ref);
2625 cond_resched();
2626 goto again;
2627 }
2628 node = rb_next(node);
2629 }
2630 spin_unlock(&delayed_refs->lock);
2631 schedule_timeout(1);
2632 goto again;
2633 }
2634 out:
2635 atomic_dec(&delayed_refs->procs_running_refs);
2636 smp_mb();
2637 if (waitqueue_active(&delayed_refs->wait))
2638 wake_up(&delayed_refs->wait);
2639
2640 spin_unlock(&delayed_refs->lock);
2641 assert_qgroups_uptodate(trans);
2642 return 0;
2643 }
2644
2645 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2646 struct btrfs_root *root,
2647 u64 bytenr, u64 num_bytes, u64 flags,
2648 int is_data)
2649 {
2650 struct btrfs_delayed_extent_op *extent_op;
2651 int ret;
2652
2653 extent_op = btrfs_alloc_delayed_extent_op();
2654 if (!extent_op)
2655 return -ENOMEM;
2656
2657 extent_op->flags_to_set = flags;
2658 extent_op->update_flags = 1;
2659 extent_op->update_key = 0;
2660 extent_op->is_data = is_data ? 1 : 0;
2661
2662 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2663 num_bytes, extent_op);
2664 if (ret)
2665 btrfs_free_delayed_extent_op(extent_op);
2666 return ret;
2667 }
2668
2669 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2670 struct btrfs_root *root,
2671 struct btrfs_path *path,
2672 u64 objectid, u64 offset, u64 bytenr)
2673 {
2674 struct btrfs_delayed_ref_head *head;
2675 struct btrfs_delayed_ref_node *ref;
2676 struct btrfs_delayed_data_ref *data_ref;
2677 struct btrfs_delayed_ref_root *delayed_refs;
2678 struct rb_node *node;
2679 int ret = 0;
2680
2681 ret = -ENOENT;
2682 delayed_refs = &trans->transaction->delayed_refs;
2683 spin_lock(&delayed_refs->lock);
2684 head = btrfs_find_delayed_ref_head(trans, bytenr);
2685 if (!head)
2686 goto out;
2687
2688 if (!mutex_trylock(&head->mutex)) {
2689 atomic_inc(&head->node.refs);
2690 spin_unlock(&delayed_refs->lock);
2691
2692 btrfs_release_path(path);
2693
2694 /*
2695 * Mutex was contended, block until it's released and let
2696 * caller try again
2697 */
2698 mutex_lock(&head->mutex);
2699 mutex_unlock(&head->mutex);
2700 btrfs_put_delayed_ref(&head->node);
2701 return -EAGAIN;
2702 }
2703
2704 node = rb_prev(&head->node.rb_node);
2705 if (!node)
2706 goto out_unlock;
2707
2708 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2709
2710 if (ref->bytenr != bytenr)
2711 goto out_unlock;
2712
2713 ret = 1;
2714 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2715 goto out_unlock;
2716
2717 data_ref = btrfs_delayed_node_to_data_ref(ref);
2718
2719 node = rb_prev(node);
2720 if (node) {
2721 int seq = ref->seq;
2722
2723 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2724 if (ref->bytenr == bytenr && ref->seq == seq)
2725 goto out_unlock;
2726 }
2727
2728 if (data_ref->root != root->root_key.objectid ||
2729 data_ref->objectid != objectid || data_ref->offset != offset)
2730 goto out_unlock;
2731
2732 ret = 0;
2733 out_unlock:
2734 mutex_unlock(&head->mutex);
2735 out:
2736 spin_unlock(&delayed_refs->lock);
2737 return ret;
2738 }
2739
2740 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2741 struct btrfs_root *root,
2742 struct btrfs_path *path,
2743 u64 objectid, u64 offset, u64 bytenr)
2744 {
2745 struct btrfs_root *extent_root = root->fs_info->extent_root;
2746 struct extent_buffer *leaf;
2747 struct btrfs_extent_data_ref *ref;
2748 struct btrfs_extent_inline_ref *iref;
2749 struct btrfs_extent_item *ei;
2750 struct btrfs_key key;
2751 u32 item_size;
2752 int ret;
2753
2754 key.objectid = bytenr;
2755 key.offset = (u64)-1;
2756 key.type = BTRFS_EXTENT_ITEM_KEY;
2757
2758 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2759 if (ret < 0)
2760 goto out;
2761 BUG_ON(ret == 0); /* Corruption */
2762
2763 ret = -ENOENT;
2764 if (path->slots[0] == 0)
2765 goto out;
2766
2767 path->slots[0]--;
2768 leaf = path->nodes[0];
2769 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2770
2771 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2772 goto out;
2773
2774 ret = 1;
2775 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2776 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2777 if (item_size < sizeof(*ei)) {
2778 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2779 goto out;
2780 }
2781 #endif
2782 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2783
2784 if (item_size != sizeof(*ei) +
2785 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2786 goto out;
2787
2788 if (btrfs_extent_generation(leaf, ei) <=
2789 btrfs_root_last_snapshot(&root->root_item))
2790 goto out;
2791
2792 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2793 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2794 BTRFS_EXTENT_DATA_REF_KEY)
2795 goto out;
2796
2797 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2798 if (btrfs_extent_refs(leaf, ei) !=
2799 btrfs_extent_data_ref_count(leaf, ref) ||
2800 btrfs_extent_data_ref_root(leaf, ref) !=
2801 root->root_key.objectid ||
2802 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2803 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2804 goto out;
2805
2806 ret = 0;
2807 out:
2808 return ret;
2809 }
2810
2811 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2812 struct btrfs_root *root,
2813 u64 objectid, u64 offset, u64 bytenr)
2814 {
2815 struct btrfs_path *path;
2816 int ret;
2817 int ret2;
2818
2819 path = btrfs_alloc_path();
2820 if (!path)
2821 return -ENOENT;
2822
2823 do {
2824 ret = check_committed_ref(trans, root, path, objectid,
2825 offset, bytenr);
2826 if (ret && ret != -ENOENT)
2827 goto out;
2828
2829 ret2 = check_delayed_ref(trans, root, path, objectid,
2830 offset, bytenr);
2831 } while (ret2 == -EAGAIN);
2832
2833 if (ret2 && ret2 != -ENOENT) {
2834 ret = ret2;
2835 goto out;
2836 }
2837
2838 if (ret != -ENOENT || ret2 != -ENOENT)
2839 ret = 0;
2840 out:
2841 btrfs_free_path(path);
2842 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2843 WARN_ON(ret > 0);
2844 return ret;
2845 }
2846
2847 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2848 struct btrfs_root *root,
2849 struct extent_buffer *buf,
2850 int full_backref, int inc, int for_cow)
2851 {
2852 u64 bytenr;
2853 u64 num_bytes;
2854 u64 parent;
2855 u64 ref_root;
2856 u32 nritems;
2857 struct btrfs_key key;
2858 struct btrfs_file_extent_item *fi;
2859 int i;
2860 int level;
2861 int ret = 0;
2862 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2863 u64, u64, u64, u64, u64, u64, int);
2864
2865 ref_root = btrfs_header_owner(buf);
2866 nritems = btrfs_header_nritems(buf);
2867 level = btrfs_header_level(buf);
2868
2869 if (!root->ref_cows && level == 0)
2870 return 0;
2871
2872 if (inc)
2873 process_func = btrfs_inc_extent_ref;
2874 else
2875 process_func = btrfs_free_extent;
2876
2877 if (full_backref)
2878 parent = buf->start;
2879 else
2880 parent = 0;
2881
2882 for (i = 0; i < nritems; i++) {
2883 if (level == 0) {
2884 btrfs_item_key_to_cpu(buf, &key, i);
2885 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2886 continue;
2887 fi = btrfs_item_ptr(buf, i,
2888 struct btrfs_file_extent_item);
2889 if (btrfs_file_extent_type(buf, fi) ==
2890 BTRFS_FILE_EXTENT_INLINE)
2891 continue;
2892 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2893 if (bytenr == 0)
2894 continue;
2895
2896 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2897 key.offset -= btrfs_file_extent_offset(buf, fi);
2898 ret = process_func(trans, root, bytenr, num_bytes,
2899 parent, ref_root, key.objectid,
2900 key.offset, for_cow);
2901 if (ret)
2902 goto fail;
2903 } else {
2904 bytenr = btrfs_node_blockptr(buf, i);
2905 num_bytes = btrfs_level_size(root, level - 1);
2906 ret = process_func(trans, root, bytenr, num_bytes,
2907 parent, ref_root, level - 1, 0,
2908 for_cow);
2909 if (ret)
2910 goto fail;
2911 }
2912 }
2913 return 0;
2914 fail:
2915 return ret;
2916 }
2917
2918 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2919 struct extent_buffer *buf, int full_backref, int for_cow)
2920 {
2921 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2922 }
2923
2924 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2925 struct extent_buffer *buf, int full_backref, int for_cow)
2926 {
2927 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2928 }
2929
2930 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2931 struct btrfs_root *root,
2932 struct btrfs_path *path,
2933 struct btrfs_block_group_cache *cache)
2934 {
2935 int ret;
2936 struct btrfs_root *extent_root = root->fs_info->extent_root;
2937 unsigned long bi;
2938 struct extent_buffer *leaf;
2939
2940 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2941 if (ret < 0)
2942 goto fail;
2943 BUG_ON(ret); /* Corruption */
2944
2945 leaf = path->nodes[0];
2946 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2947 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2948 btrfs_mark_buffer_dirty(leaf);
2949 btrfs_release_path(path);
2950 fail:
2951 if (ret) {
2952 btrfs_abort_transaction(trans, root, ret);
2953 return ret;
2954 }
2955 return 0;
2956
2957 }
2958
2959 static struct btrfs_block_group_cache *
2960 next_block_group(struct btrfs_root *root,
2961 struct btrfs_block_group_cache *cache)
2962 {
2963 struct rb_node *node;
2964 spin_lock(&root->fs_info->block_group_cache_lock);
2965 node = rb_next(&cache->cache_node);
2966 btrfs_put_block_group(cache);
2967 if (node) {
2968 cache = rb_entry(node, struct btrfs_block_group_cache,
2969 cache_node);
2970 btrfs_get_block_group(cache);
2971 } else
2972 cache = NULL;
2973 spin_unlock(&root->fs_info->block_group_cache_lock);
2974 return cache;
2975 }
2976
2977 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2978 struct btrfs_trans_handle *trans,
2979 struct btrfs_path *path)
2980 {
2981 struct btrfs_root *root = block_group->fs_info->tree_root;
2982 struct inode *inode = NULL;
2983 u64 alloc_hint = 0;
2984 int dcs = BTRFS_DC_ERROR;
2985 int num_pages = 0;
2986 int retries = 0;
2987 int ret = 0;
2988
2989 /*
2990 * If this block group is smaller than 100 megs don't bother caching the
2991 * block group.
2992 */
2993 if (block_group->key.offset < (100 * 1024 * 1024)) {
2994 spin_lock(&block_group->lock);
2995 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2996 spin_unlock(&block_group->lock);
2997 return 0;
2998 }
2999
3000 again:
3001 inode = lookup_free_space_inode(root, block_group, path);
3002 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3003 ret = PTR_ERR(inode);
3004 btrfs_release_path(path);
3005 goto out;
3006 }
3007
3008 if (IS_ERR(inode)) {
3009 BUG_ON(retries);
3010 retries++;
3011
3012 if (block_group->ro)
3013 goto out_free;
3014
3015 ret = create_free_space_inode(root, trans, block_group, path);
3016 if (ret)
3017 goto out_free;
3018 goto again;
3019 }
3020
3021 /* We've already setup this transaction, go ahead and exit */
3022 if (block_group->cache_generation == trans->transid &&
3023 i_size_read(inode)) {
3024 dcs = BTRFS_DC_SETUP;
3025 goto out_put;
3026 }
3027
3028 /*
3029 * We want to set the generation to 0, that way if anything goes wrong
3030 * from here on out we know not to trust this cache when we load up next
3031 * time.
3032 */
3033 BTRFS_I(inode)->generation = 0;
3034 ret = btrfs_update_inode(trans, root, inode);
3035 WARN_ON(ret);
3036
3037 if (i_size_read(inode) > 0) {
3038 ret = btrfs_truncate_free_space_cache(root, trans, path,
3039 inode);
3040 if (ret)
3041 goto out_put;
3042 }
3043
3044 spin_lock(&block_group->lock);
3045 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3046 !btrfs_test_opt(root, SPACE_CACHE)) {
3047 /*
3048 * don't bother trying to write stuff out _if_
3049 * a) we're not cached,
3050 * b) we're with nospace_cache mount option.
3051 */
3052 dcs = BTRFS_DC_WRITTEN;
3053 spin_unlock(&block_group->lock);
3054 goto out_put;
3055 }
3056 spin_unlock(&block_group->lock);
3057
3058 /*
3059 * Try to preallocate enough space based on how big the block group is.
3060 * Keep in mind this has to include any pinned space which could end up
3061 * taking up quite a bit since it's not folded into the other space
3062 * cache.
3063 */
3064 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3065 if (!num_pages)
3066 num_pages = 1;
3067
3068 num_pages *= 16;
3069 num_pages *= PAGE_CACHE_SIZE;
3070
3071 ret = btrfs_check_data_free_space(inode, num_pages);
3072 if (ret)
3073 goto out_put;
3074
3075 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3076 num_pages, num_pages,
3077 &alloc_hint);
3078 if (!ret)
3079 dcs = BTRFS_DC_SETUP;
3080 btrfs_free_reserved_data_space(inode, num_pages);
3081
3082 out_put:
3083 iput(inode);
3084 out_free:
3085 btrfs_release_path(path);
3086 out:
3087 spin_lock(&block_group->lock);
3088 if (!ret && dcs == BTRFS_DC_SETUP)
3089 block_group->cache_generation = trans->transid;
3090 block_group->disk_cache_state = dcs;
3091 spin_unlock(&block_group->lock);
3092
3093 return ret;
3094 }
3095
3096 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3097 struct btrfs_root *root)
3098 {
3099 struct btrfs_block_group_cache *cache;
3100 int err = 0;
3101 struct btrfs_path *path;
3102 u64 last = 0;
3103
3104 path = btrfs_alloc_path();
3105 if (!path)
3106 return -ENOMEM;
3107
3108 again:
3109 while (1) {
3110 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3111 while (cache) {
3112 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3113 break;
3114 cache = next_block_group(root, cache);
3115 }
3116 if (!cache) {
3117 if (last == 0)
3118 break;
3119 last = 0;
3120 continue;
3121 }
3122 err = cache_save_setup(cache, trans, path);
3123 last = cache->key.objectid + cache->key.offset;
3124 btrfs_put_block_group(cache);
3125 }
3126
3127 while (1) {
3128 if (last == 0) {
3129 err = btrfs_run_delayed_refs(trans, root,
3130 (unsigned long)-1);
3131 if (err) /* File system offline */
3132 goto out;
3133 }
3134
3135 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3136 while (cache) {
3137 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3138 btrfs_put_block_group(cache);
3139 goto again;
3140 }
3141
3142 if (cache->dirty)
3143 break;
3144 cache = next_block_group(root, cache);
3145 }
3146 if (!cache) {
3147 if (last == 0)
3148 break;
3149 last = 0;
3150 continue;
3151 }
3152
3153 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3154 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3155 cache->dirty = 0;
3156 last = cache->key.objectid + cache->key.offset;
3157
3158 err = write_one_cache_group(trans, root, path, cache);
3159 if (err) /* File system offline */
3160 goto out;
3161
3162 btrfs_put_block_group(cache);
3163 }
3164
3165 while (1) {
3166 /*
3167 * I don't think this is needed since we're just marking our
3168 * preallocated extent as written, but just in case it can't
3169 * hurt.
3170 */
3171 if (last == 0) {
3172 err = btrfs_run_delayed_refs(trans, root,
3173 (unsigned long)-1);
3174 if (err) /* File system offline */
3175 goto out;
3176 }
3177
3178 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3179 while (cache) {
3180 /*
3181 * Really this shouldn't happen, but it could if we
3182 * couldn't write the entire preallocated extent and
3183 * splitting the extent resulted in a new block.
3184 */
3185 if (cache->dirty) {
3186 btrfs_put_block_group(cache);
3187 goto again;
3188 }
3189 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3190 break;
3191 cache = next_block_group(root, cache);
3192 }
3193 if (!cache) {
3194 if (last == 0)
3195 break;
3196 last = 0;
3197 continue;
3198 }
3199
3200 err = btrfs_write_out_cache(root, trans, cache, path);
3201
3202 /*
3203 * If we didn't have an error then the cache state is still
3204 * NEED_WRITE, so we can set it to WRITTEN.
3205 */
3206 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3207 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3208 last = cache->key.objectid + cache->key.offset;
3209 btrfs_put_block_group(cache);
3210 }
3211 out:
3212
3213 btrfs_free_path(path);
3214 return err;
3215 }
3216
3217 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3218 {
3219 struct btrfs_block_group_cache *block_group;
3220 int readonly = 0;
3221
3222 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3223 if (!block_group || block_group->ro)
3224 readonly = 1;
3225 if (block_group)
3226 btrfs_put_block_group(block_group);
3227 return readonly;
3228 }
3229
3230 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3231 u64 total_bytes, u64 bytes_used,
3232 struct btrfs_space_info **space_info)
3233 {
3234 struct btrfs_space_info *found;
3235 int i;
3236 int factor;
3237
3238 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3239 BTRFS_BLOCK_GROUP_RAID10))
3240 factor = 2;
3241 else
3242 factor = 1;
3243
3244 found = __find_space_info(info, flags);
3245 if (found) {
3246 spin_lock(&found->lock);
3247 found->total_bytes += total_bytes;
3248 found->disk_total += total_bytes * factor;
3249 found->bytes_used += bytes_used;
3250 found->disk_used += bytes_used * factor;
3251 found->full = 0;
3252 spin_unlock(&found->lock);
3253 *space_info = found;
3254 return 0;
3255 }
3256 found = kzalloc(sizeof(*found), GFP_NOFS);
3257 if (!found)
3258 return -ENOMEM;
3259
3260 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3261 INIT_LIST_HEAD(&found->block_groups[i]);
3262 init_rwsem(&found->groups_sem);
3263 spin_lock_init(&found->lock);
3264 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3265 found->total_bytes = total_bytes;
3266 found->disk_total = total_bytes * factor;
3267 found->bytes_used = bytes_used;
3268 found->disk_used = bytes_used * factor;
3269 found->bytes_pinned = 0;
3270 found->bytes_reserved = 0;
3271 found->bytes_readonly = 0;
3272 found->bytes_may_use = 0;
3273 found->full = 0;
3274 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3275 found->chunk_alloc = 0;
3276 found->flush = 0;
3277 init_waitqueue_head(&found->wait);
3278 *space_info = found;
3279 list_add_rcu(&found->list, &info->space_info);
3280 if (flags & BTRFS_BLOCK_GROUP_DATA)
3281 info->data_sinfo = found;
3282 return 0;
3283 }
3284
3285 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3286 {
3287 u64 extra_flags = chunk_to_extended(flags) &
3288 BTRFS_EXTENDED_PROFILE_MASK;
3289
3290 write_seqlock(&fs_info->profiles_lock);
3291 if (flags & BTRFS_BLOCK_GROUP_DATA)
3292 fs_info->avail_data_alloc_bits |= extra_flags;
3293 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3294 fs_info->avail_metadata_alloc_bits |= extra_flags;
3295 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3296 fs_info->avail_system_alloc_bits |= extra_flags;
3297 write_sequnlock(&fs_info->profiles_lock);
3298 }
3299
3300 /*
3301 * returns target flags in extended format or 0 if restripe for this
3302 * chunk_type is not in progress
3303 *
3304 * should be called with either volume_mutex or balance_lock held
3305 */
3306 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3307 {
3308 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3309 u64 target = 0;
3310
3311 if (!bctl)
3312 return 0;
3313
3314 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3315 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3316 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3317 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3318 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3319 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3320 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3321 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3322 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3323 }
3324
3325 return target;
3326 }
3327
3328 /*
3329 * @flags: available profiles in extended format (see ctree.h)
3330 *
3331 * Returns reduced profile in chunk format. If profile changing is in
3332 * progress (either running or paused) picks the target profile (if it's
3333 * already available), otherwise falls back to plain reducing.
3334 */
3335 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3336 {
3337 /*
3338 * we add in the count of missing devices because we want
3339 * to make sure that any RAID levels on a degraded FS
3340 * continue to be honored.
3341 */
3342 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3343 root->fs_info->fs_devices->missing_devices;
3344 u64 target;
3345 u64 tmp;
3346
3347 /*
3348 * see if restripe for this chunk_type is in progress, if so
3349 * try to reduce to the target profile
3350 */
3351 spin_lock(&root->fs_info->balance_lock);
3352 target = get_restripe_target(root->fs_info, flags);
3353 if (target) {
3354 /* pick target profile only if it's already available */
3355 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3356 spin_unlock(&root->fs_info->balance_lock);
3357 return extended_to_chunk(target);
3358 }
3359 }
3360 spin_unlock(&root->fs_info->balance_lock);
3361
3362 /* First, mask out the RAID levels which aren't possible */
3363 if (num_devices == 1)
3364 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3365 BTRFS_BLOCK_GROUP_RAID5);
3366 if (num_devices < 3)
3367 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3368 if (num_devices < 4)
3369 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3370
3371 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3372 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3373 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3374 flags &= ~tmp;
3375
3376 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3377 tmp = BTRFS_BLOCK_GROUP_RAID6;
3378 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3379 tmp = BTRFS_BLOCK_GROUP_RAID5;
3380 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3381 tmp = BTRFS_BLOCK_GROUP_RAID10;
3382 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3383 tmp = BTRFS_BLOCK_GROUP_RAID1;
3384 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3385 tmp = BTRFS_BLOCK_GROUP_RAID0;
3386
3387 return extended_to_chunk(flags | tmp);
3388 }
3389
3390 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3391 {
3392 unsigned seq;
3393
3394 do {
3395 seq = read_seqbegin(&root->fs_info->profiles_lock);
3396
3397 if (flags & BTRFS_BLOCK_GROUP_DATA)
3398 flags |= root->fs_info->avail_data_alloc_bits;
3399 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3400 flags |= root->fs_info->avail_system_alloc_bits;
3401 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3402 flags |= root->fs_info->avail_metadata_alloc_bits;
3403 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3404
3405 return btrfs_reduce_alloc_profile(root, flags);
3406 }
3407
3408 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3409 {
3410 u64 flags;
3411 u64 ret;
3412
3413 if (data)
3414 flags = BTRFS_BLOCK_GROUP_DATA;
3415 else if (root == root->fs_info->chunk_root)
3416 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3417 else
3418 flags = BTRFS_BLOCK_GROUP_METADATA;
3419
3420 ret = get_alloc_profile(root, flags);
3421 return ret;
3422 }
3423
3424 /*
3425 * This will check the space that the inode allocates from to make sure we have
3426 * enough space for bytes.
3427 */
3428 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3429 {
3430 struct btrfs_space_info *data_sinfo;
3431 struct btrfs_root *root = BTRFS_I(inode)->root;
3432 struct btrfs_fs_info *fs_info = root->fs_info;
3433 u64 used;
3434 int ret = 0, committed = 0, alloc_chunk = 1;
3435
3436 /* make sure bytes are sectorsize aligned */
3437 bytes = ALIGN(bytes, root->sectorsize);
3438
3439 if (root == root->fs_info->tree_root ||
3440 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3441 alloc_chunk = 0;
3442 committed = 1;
3443 }
3444
3445 data_sinfo = fs_info->data_sinfo;
3446 if (!data_sinfo)
3447 goto alloc;
3448
3449 again:
3450 /* make sure we have enough space to handle the data first */
3451 spin_lock(&data_sinfo->lock);
3452 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3453 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3454 data_sinfo->bytes_may_use;
3455
3456 if (used + bytes > data_sinfo->total_bytes) {
3457 struct btrfs_trans_handle *trans;
3458
3459 /*
3460 * if we don't have enough free bytes in this space then we need
3461 * to alloc a new chunk.
3462 */
3463 if (!data_sinfo->full && alloc_chunk) {
3464 u64 alloc_target;
3465
3466 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3467 spin_unlock(&data_sinfo->lock);
3468 alloc:
3469 alloc_target = btrfs_get_alloc_profile(root, 1);
3470 trans = btrfs_join_transaction(root);
3471 if (IS_ERR(trans))
3472 return PTR_ERR(trans);
3473
3474 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3475 alloc_target,
3476 CHUNK_ALLOC_NO_FORCE);
3477 btrfs_end_transaction(trans, root);
3478 if (ret < 0) {
3479 if (ret != -ENOSPC)
3480 return ret;
3481 else
3482 goto commit_trans;
3483 }
3484
3485 if (!data_sinfo)
3486 data_sinfo = fs_info->data_sinfo;
3487
3488 goto again;
3489 }
3490
3491 /*
3492 * If we have less pinned bytes than we want to allocate then
3493 * don't bother committing the transaction, it won't help us.
3494 */
3495 if (data_sinfo->bytes_pinned < bytes)
3496 committed = 1;
3497 spin_unlock(&data_sinfo->lock);
3498
3499 /* commit the current transaction and try again */
3500 commit_trans:
3501 if (!committed &&
3502 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3503 committed = 1;
3504 trans = btrfs_join_transaction(root);
3505 if (IS_ERR(trans))
3506 return PTR_ERR(trans);
3507 ret = btrfs_commit_transaction(trans, root);
3508 if (ret)
3509 return ret;
3510 goto again;
3511 }
3512
3513 return -ENOSPC;
3514 }
3515 data_sinfo->bytes_may_use += bytes;
3516 trace_btrfs_space_reservation(root->fs_info, "space_info",
3517 data_sinfo->flags, bytes, 1);
3518 spin_unlock(&data_sinfo->lock);
3519
3520 return 0;
3521 }
3522
3523 /*
3524 * Called if we need to clear a data reservation for this inode.
3525 */
3526 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3527 {
3528 struct btrfs_root *root = BTRFS_I(inode)->root;
3529 struct btrfs_space_info *data_sinfo;
3530
3531 /* make sure bytes are sectorsize aligned */
3532 bytes = ALIGN(bytes, root->sectorsize);
3533
3534 data_sinfo = root->fs_info->data_sinfo;
3535 spin_lock(&data_sinfo->lock);
3536 data_sinfo->bytes_may_use -= bytes;
3537 trace_btrfs_space_reservation(root->fs_info, "space_info",
3538 data_sinfo->flags, bytes, 0);
3539 spin_unlock(&data_sinfo->lock);
3540 }
3541
3542 static void force_metadata_allocation(struct btrfs_fs_info *info)
3543 {
3544 struct list_head *head = &info->space_info;
3545 struct btrfs_space_info *found;
3546
3547 rcu_read_lock();
3548 list_for_each_entry_rcu(found, head, list) {
3549 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3550 found->force_alloc = CHUNK_ALLOC_FORCE;
3551 }
3552 rcu_read_unlock();
3553 }
3554
3555 static int should_alloc_chunk(struct btrfs_root *root,
3556 struct btrfs_space_info *sinfo, int force)
3557 {
3558 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3559 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3560 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3561 u64 thresh;
3562
3563 if (force == CHUNK_ALLOC_FORCE)
3564 return 1;
3565
3566 /*
3567 * We need to take into account the global rsv because for all intents
3568 * and purposes it's used space. Don't worry about locking the
3569 * global_rsv, it doesn't change except when the transaction commits.
3570 */
3571 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3572 num_allocated += global_rsv->size;
3573
3574 /*
3575 * in limited mode, we want to have some free space up to
3576 * about 1% of the FS size.
3577 */
3578 if (force == CHUNK_ALLOC_LIMITED) {
3579 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3580 thresh = max_t(u64, 64 * 1024 * 1024,
3581 div_factor_fine(thresh, 1));
3582
3583 if (num_bytes - num_allocated < thresh)
3584 return 1;
3585 }
3586
3587 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3588 return 0;
3589 return 1;
3590 }
3591
3592 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3593 {
3594 u64 num_dev;
3595
3596 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3597 BTRFS_BLOCK_GROUP_RAID0 |
3598 BTRFS_BLOCK_GROUP_RAID5 |
3599 BTRFS_BLOCK_GROUP_RAID6))
3600 num_dev = root->fs_info->fs_devices->rw_devices;
3601 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3602 num_dev = 2;
3603 else
3604 num_dev = 1; /* DUP or single */
3605
3606 /* metadata for updaing devices and chunk tree */
3607 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3608 }
3609
3610 static void check_system_chunk(struct btrfs_trans_handle *trans,
3611 struct btrfs_root *root, u64 type)
3612 {
3613 struct btrfs_space_info *info;
3614 u64 left;
3615 u64 thresh;
3616
3617 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3618 spin_lock(&info->lock);
3619 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3620 info->bytes_reserved - info->bytes_readonly;
3621 spin_unlock(&info->lock);
3622
3623 thresh = get_system_chunk_thresh(root, type);
3624 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3625 printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
3626 left, thresh, type);
3627 dump_space_info(info, 0, 0);
3628 }
3629
3630 if (left < thresh) {
3631 u64 flags;
3632
3633 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3634 btrfs_alloc_chunk(trans, root, flags);
3635 }
3636 }
3637
3638 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3639 struct btrfs_root *extent_root, u64 flags, int force)
3640 {
3641 struct btrfs_space_info *space_info;
3642 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3643 int wait_for_alloc = 0;
3644 int ret = 0;
3645
3646 /* Don't re-enter if we're already allocating a chunk */
3647 if (trans->allocating_chunk)
3648 return -ENOSPC;
3649
3650 space_info = __find_space_info(extent_root->fs_info, flags);
3651 if (!space_info) {
3652 ret = update_space_info(extent_root->fs_info, flags,
3653 0, 0, &space_info);
3654 BUG_ON(ret); /* -ENOMEM */
3655 }
3656 BUG_ON(!space_info); /* Logic error */
3657
3658 again:
3659 spin_lock(&space_info->lock);
3660 if (force < space_info->force_alloc)
3661 force = space_info->force_alloc;
3662 if (space_info->full) {
3663 spin_unlock(&space_info->lock);
3664 return 0;
3665 }
3666
3667 if (!should_alloc_chunk(extent_root, space_info, force)) {
3668 spin_unlock(&space_info->lock);
3669 return 0;
3670 } else if (space_info->chunk_alloc) {
3671 wait_for_alloc = 1;
3672 } else {
3673 space_info->chunk_alloc = 1;
3674 }
3675
3676 spin_unlock(&space_info->lock);
3677
3678 mutex_lock(&fs_info->chunk_mutex);
3679
3680 /*
3681 * The chunk_mutex is held throughout the entirety of a chunk
3682 * allocation, so once we've acquired the chunk_mutex we know that the
3683 * other guy is done and we need to recheck and see if we should
3684 * allocate.
3685 */
3686 if (wait_for_alloc) {
3687 mutex_unlock(&fs_info->chunk_mutex);
3688 wait_for_alloc = 0;
3689 goto again;
3690 }
3691
3692 trans->allocating_chunk = true;
3693
3694 /*
3695 * If we have mixed data/metadata chunks we want to make sure we keep
3696 * allocating mixed chunks instead of individual chunks.
3697 */
3698 if (btrfs_mixed_space_info(space_info))
3699 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3700
3701 /*
3702 * if we're doing a data chunk, go ahead and make sure that
3703 * we keep a reasonable number of metadata chunks allocated in the
3704 * FS as well.
3705 */
3706 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3707 fs_info->data_chunk_allocations++;
3708 if (!(fs_info->data_chunk_allocations %
3709 fs_info->metadata_ratio))
3710 force_metadata_allocation(fs_info);
3711 }
3712
3713 /*
3714 * Check if we have enough space in SYSTEM chunk because we may need
3715 * to update devices.
3716 */
3717 check_system_chunk(trans, extent_root, flags);
3718
3719 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3720 trans->allocating_chunk = false;
3721
3722 spin_lock(&space_info->lock);
3723 if (ret < 0 && ret != -ENOSPC)
3724 goto out;
3725 if (ret)
3726 space_info->full = 1;
3727 else
3728 ret = 1;
3729
3730 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3731 out:
3732 space_info->chunk_alloc = 0;
3733 spin_unlock(&space_info->lock);
3734 mutex_unlock(&fs_info->chunk_mutex);
3735 return ret;
3736 }
3737
3738 static int can_overcommit(struct btrfs_root *root,
3739 struct btrfs_space_info *space_info, u64 bytes,
3740 enum btrfs_reserve_flush_enum flush)
3741 {
3742 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3743 u64 profile = btrfs_get_alloc_profile(root, 0);
3744 u64 rsv_size = 0;
3745 u64 avail;
3746 u64 used;
3747 u64 to_add;
3748
3749 used = space_info->bytes_used + space_info->bytes_reserved +
3750 space_info->bytes_pinned + space_info->bytes_readonly;
3751
3752 spin_lock(&global_rsv->lock);
3753 rsv_size = global_rsv->size;
3754 spin_unlock(&global_rsv->lock);
3755
3756 /*
3757 * We only want to allow over committing if we have lots of actual space
3758 * free, but if we don't have enough space to handle the global reserve
3759 * space then we could end up having a real enospc problem when trying
3760 * to allocate a chunk or some other such important allocation.
3761 */
3762 rsv_size <<= 1;
3763 if (used + rsv_size >= space_info->total_bytes)
3764 return 0;
3765
3766 used += space_info->bytes_may_use;
3767
3768 spin_lock(&root->fs_info->free_chunk_lock);
3769 avail = root->fs_info->free_chunk_space;
3770 spin_unlock(&root->fs_info->free_chunk_lock);
3771
3772 /*
3773 * If we have dup, raid1 or raid10 then only half of the free
3774 * space is actually useable. For raid56, the space info used
3775 * doesn't include the parity drive, so we don't have to
3776 * change the math
3777 */
3778 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3779 BTRFS_BLOCK_GROUP_RAID1 |
3780 BTRFS_BLOCK_GROUP_RAID10))
3781 avail >>= 1;
3782
3783 to_add = space_info->total_bytes;
3784
3785 /*
3786 * If we aren't flushing all things, let us overcommit up to
3787 * 1/2th of the space. If we can flush, don't let us overcommit
3788 * too much, let it overcommit up to 1/8 of the space.
3789 */
3790 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3791 to_add >>= 3;
3792 else
3793 to_add >>= 1;
3794
3795 /*
3796 * Limit the overcommit to the amount of free space we could possibly
3797 * allocate for chunks.
3798 */
3799 to_add = min(avail, to_add);
3800
3801 if (used + bytes < space_info->total_bytes + to_add)
3802 return 1;
3803 return 0;
3804 }
3805
3806 void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3807 unsigned long nr_pages)
3808 {
3809 struct super_block *sb = root->fs_info->sb;
3810 int started;
3811
3812 /* If we can not start writeback, just sync all the delalloc file. */
3813 started = try_to_writeback_inodes_sb_nr(sb, nr_pages,
3814 WB_REASON_FS_FREE_SPACE);
3815 if (!started) {
3816 /*
3817 * We needn't worry the filesystem going from r/w to r/o though
3818 * we don't acquire ->s_umount mutex, because the filesystem
3819 * should guarantee the delalloc inodes list be empty after
3820 * the filesystem is readonly(all dirty pages are written to
3821 * the disk).
3822 */
3823 btrfs_start_delalloc_inodes(root, 0);
3824 btrfs_wait_ordered_extents(root, 0);
3825 }
3826 }
3827
3828 /*
3829 * shrink metadata reservation for delalloc
3830 */
3831 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
3832 bool wait_ordered)
3833 {
3834 struct btrfs_block_rsv *block_rsv;
3835 struct btrfs_space_info *space_info;
3836 struct btrfs_trans_handle *trans;
3837 u64 delalloc_bytes;
3838 u64 max_reclaim;
3839 long time_left;
3840 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3841 int loops = 0;
3842 enum btrfs_reserve_flush_enum flush;
3843
3844 trans = (struct btrfs_trans_handle *)current->journal_info;
3845 block_rsv = &root->fs_info->delalloc_block_rsv;
3846 space_info = block_rsv->space_info;
3847
3848 smp_mb();
3849 delalloc_bytes = percpu_counter_sum_positive(
3850 &root->fs_info->delalloc_bytes);
3851 if (delalloc_bytes == 0) {
3852 if (trans)
3853 return;
3854 btrfs_wait_ordered_extents(root, 0);
3855 return;
3856 }
3857
3858 while (delalloc_bytes && loops < 3) {
3859 max_reclaim = min(delalloc_bytes, to_reclaim);
3860 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
3861 btrfs_writeback_inodes_sb_nr(root, nr_pages);
3862 /*
3863 * We need to wait for the async pages to actually start before
3864 * we do anything.
3865 */
3866 wait_event(root->fs_info->async_submit_wait,
3867 !atomic_read(&root->fs_info->async_delalloc_pages));
3868
3869 if (!trans)
3870 flush = BTRFS_RESERVE_FLUSH_ALL;
3871 else
3872 flush = BTRFS_RESERVE_NO_FLUSH;
3873 spin_lock(&space_info->lock);
3874 if (can_overcommit(root, space_info, orig, flush)) {
3875 spin_unlock(&space_info->lock);
3876 break;
3877 }
3878 spin_unlock(&space_info->lock);
3879
3880 loops++;
3881 if (wait_ordered && !trans) {
3882 btrfs_wait_ordered_extents(root, 0);
3883 } else {
3884 time_left = schedule_timeout_killable(1);
3885 if (time_left)
3886 break;
3887 }
3888 smp_mb();
3889 delalloc_bytes = percpu_counter_sum_positive(
3890 &root->fs_info->delalloc_bytes);
3891 }
3892 }
3893
3894 /**
3895 * maybe_commit_transaction - possibly commit the transaction if its ok to
3896 * @root - the root we're allocating for
3897 * @bytes - the number of bytes we want to reserve
3898 * @force - force the commit
3899 *
3900 * This will check to make sure that committing the transaction will actually
3901 * get us somewhere and then commit the transaction if it does. Otherwise it
3902 * will return -ENOSPC.
3903 */
3904 static int may_commit_transaction(struct btrfs_root *root,
3905 struct btrfs_space_info *space_info,
3906 u64 bytes, int force)
3907 {
3908 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3909 struct btrfs_trans_handle *trans;
3910
3911 trans = (struct btrfs_trans_handle *)current->journal_info;
3912 if (trans)
3913 return -EAGAIN;
3914
3915 if (force)
3916 goto commit;
3917
3918 /* See if there is enough pinned space to make this reservation */
3919 spin_lock(&space_info->lock);
3920 if (space_info->bytes_pinned >= bytes) {
3921 spin_unlock(&space_info->lock);
3922 goto commit;
3923 }
3924 spin_unlock(&space_info->lock);
3925
3926 /*
3927 * See if there is some space in the delayed insertion reservation for
3928 * this reservation.
3929 */
3930 if (space_info != delayed_rsv->space_info)
3931 return -ENOSPC;
3932
3933 spin_lock(&space_info->lock);
3934 spin_lock(&delayed_rsv->lock);
3935 if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3936 spin_unlock(&delayed_rsv->lock);
3937 spin_unlock(&space_info->lock);
3938 return -ENOSPC;
3939 }
3940 spin_unlock(&delayed_rsv->lock);
3941 spin_unlock(&space_info->lock);
3942
3943 commit:
3944 trans = btrfs_join_transaction(root);
3945 if (IS_ERR(trans))
3946 return -ENOSPC;
3947
3948 return btrfs_commit_transaction(trans, root);
3949 }
3950
3951 enum flush_state {
3952 FLUSH_DELAYED_ITEMS_NR = 1,
3953 FLUSH_DELAYED_ITEMS = 2,
3954 FLUSH_DELALLOC = 3,
3955 FLUSH_DELALLOC_WAIT = 4,
3956 ALLOC_CHUNK = 5,
3957 COMMIT_TRANS = 6,
3958 };
3959
3960 static int flush_space(struct btrfs_root *root,
3961 struct btrfs_space_info *space_info, u64 num_bytes,
3962 u64 orig_bytes, int state)
3963 {
3964 struct btrfs_trans_handle *trans;
3965 int nr;
3966 int ret = 0;
3967
3968 switch (state) {
3969 case FLUSH_DELAYED_ITEMS_NR:
3970 case FLUSH_DELAYED_ITEMS:
3971 if (state == FLUSH_DELAYED_ITEMS_NR) {
3972 u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
3973
3974 nr = (int)div64_u64(num_bytes, bytes);
3975 if (!nr)
3976 nr = 1;
3977 nr *= 2;
3978 } else {
3979 nr = -1;
3980 }
3981 trans = btrfs_join_transaction(root);
3982 if (IS_ERR(trans)) {
3983 ret = PTR_ERR(trans);
3984 break;
3985 }
3986 ret = btrfs_run_delayed_items_nr(trans, root, nr);
3987 btrfs_end_transaction(trans, root);
3988 break;
3989 case FLUSH_DELALLOC:
3990 case FLUSH_DELALLOC_WAIT:
3991 shrink_delalloc(root, num_bytes, orig_bytes,
3992 state == FLUSH_DELALLOC_WAIT);
3993 break;
3994 case ALLOC_CHUNK:
3995 trans = btrfs_join_transaction(root);
3996 if (IS_ERR(trans)) {
3997 ret = PTR_ERR(trans);
3998 break;
3999 }
4000 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4001 btrfs_get_alloc_profile(root, 0),
4002 CHUNK_ALLOC_NO_FORCE);
4003 btrfs_end_transaction(trans, root);
4004 if (ret == -ENOSPC)
4005 ret = 0;
4006 break;
4007 case COMMIT_TRANS:
4008 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4009 break;
4010 default:
4011 ret = -ENOSPC;
4012 break;
4013 }
4014
4015 return ret;
4016 }
4017 /**
4018 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4019 * @root - the root we're allocating for
4020 * @block_rsv - the block_rsv we're allocating for
4021 * @orig_bytes - the number of bytes we want
4022 * @flush - whether or not we can flush to make our reservation
4023 *
4024 * This will reserve orgi_bytes number of bytes from the space info associated
4025 * with the block_rsv. If there is not enough space it will make an attempt to
4026 * flush out space to make room. It will do this by flushing delalloc if
4027 * possible or committing the transaction. If flush is 0 then no attempts to
4028 * regain reservations will be made and this will fail if there is not enough
4029 * space already.
4030 */
4031 static int reserve_metadata_bytes(struct btrfs_root *root,
4032 struct btrfs_block_rsv *block_rsv,
4033 u64 orig_bytes,
4034 enum btrfs_reserve_flush_enum flush)
4035 {
4036 struct btrfs_space_info *space_info = block_rsv->space_info;
4037 u64 used;
4038 u64 num_bytes = orig_bytes;
4039 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4040 int ret = 0;
4041 bool flushing = false;
4042
4043 again:
4044 ret = 0;
4045 spin_lock(&space_info->lock);
4046 /*
4047 * We only want to wait if somebody other than us is flushing and we
4048 * are actually allowed to flush all things.
4049 */
4050 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4051 space_info->flush) {
4052 spin_unlock(&space_info->lock);
4053 /*
4054 * If we have a trans handle we can't wait because the flusher
4055 * may have to commit the transaction, which would mean we would
4056 * deadlock since we are waiting for the flusher to finish, but
4057 * hold the current transaction open.
4058 */
4059 if (current->journal_info)
4060 return -EAGAIN;
4061 ret = wait_event_killable(space_info->wait, !space_info->flush);
4062 /* Must have been killed, return */
4063 if (ret)
4064 return -EINTR;
4065
4066 spin_lock(&space_info->lock);
4067 }
4068
4069 ret = -ENOSPC;
4070 used = space_info->bytes_used + space_info->bytes_reserved +
4071 space_info->bytes_pinned + space_info->bytes_readonly +
4072 space_info->bytes_may_use;
4073
4074 /*
4075 * The idea here is that we've not already over-reserved the block group
4076 * then we can go ahead and save our reservation first and then start
4077 * flushing if we need to. Otherwise if we've already overcommitted
4078 * lets start flushing stuff first and then come back and try to make
4079 * our reservation.
4080 */
4081 if (used <= space_info->total_bytes) {
4082 if (used + orig_bytes <= space_info->total_bytes) {
4083 space_info->bytes_may_use += orig_bytes;
4084 trace_btrfs_space_reservation(root->fs_info,
4085 "space_info", space_info->flags, orig_bytes, 1);
4086 ret = 0;
4087 } else {
4088 /*
4089 * Ok set num_bytes to orig_bytes since we aren't
4090 * overocmmitted, this way we only try and reclaim what
4091 * we need.
4092 */
4093 num_bytes = orig_bytes;
4094 }
4095 } else {
4096 /*
4097 * Ok we're over committed, set num_bytes to the overcommitted
4098 * amount plus the amount of bytes that we need for this
4099 * reservation.
4100 */
4101 num_bytes = used - space_info->total_bytes +
4102 (orig_bytes * 2);
4103 }
4104
4105 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4106 space_info->bytes_may_use += orig_bytes;
4107 trace_btrfs_space_reservation(root->fs_info, "space_info",
4108 space_info->flags, orig_bytes,
4109 1);
4110 ret = 0;
4111 }
4112
4113 /*
4114 * Couldn't make our reservation, save our place so while we're trying
4115 * to reclaim space we can actually use it instead of somebody else
4116 * stealing it from us.
4117 *
4118 * We make the other tasks wait for the flush only when we can flush
4119 * all things.
4120 */
4121 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4122 flushing = true;
4123 space_info->flush = 1;
4124 }
4125
4126 spin_unlock(&space_info->lock);
4127
4128 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4129 goto out;
4130
4131 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4132 flush_state);
4133 flush_state++;
4134
4135 /*
4136 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4137 * would happen. So skip delalloc flush.
4138 */
4139 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4140 (flush_state == FLUSH_DELALLOC ||
4141 flush_state == FLUSH_DELALLOC_WAIT))
4142 flush_state = ALLOC_CHUNK;
4143
4144 if (!ret)
4145 goto again;
4146 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4147 flush_state < COMMIT_TRANS)
4148 goto again;
4149 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4150 flush_state <= COMMIT_TRANS)
4151 goto again;
4152
4153 out:
4154 if (ret == -ENOSPC &&
4155 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4156 struct btrfs_block_rsv *global_rsv =
4157 &root->fs_info->global_block_rsv;
4158
4159 if (block_rsv != global_rsv &&
4160 !block_rsv_use_bytes(global_rsv, orig_bytes))
4161 ret = 0;
4162 }
4163 if (flushing) {
4164 spin_lock(&space_info->lock);
4165 space_info->flush = 0;
4166 wake_up_all(&space_info->wait);
4167 spin_unlock(&space_info->lock);
4168 }
4169 return ret;
4170 }
4171
4172 static struct btrfs_block_rsv *get_block_rsv(
4173 const struct btrfs_trans_handle *trans,
4174 const struct btrfs_root *root)
4175 {
4176 struct btrfs_block_rsv *block_rsv = NULL;
4177
4178 if (root->ref_cows)
4179 block_rsv = trans->block_rsv;
4180
4181 if (root == root->fs_info->csum_root && trans->adding_csums)
4182 block_rsv = trans->block_rsv;
4183
4184 if (!block_rsv)
4185 block_rsv = root->block_rsv;
4186
4187 if (!block_rsv)
4188 block_rsv = &root->fs_info->empty_block_rsv;
4189
4190 return block_rsv;
4191 }
4192
4193 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4194 u64 num_bytes)
4195 {
4196 int ret = -ENOSPC;
4197 spin_lock(&block_rsv->lock);
4198 if (block_rsv->reserved >= num_bytes) {
4199 block_rsv->reserved -= num_bytes;
4200 if (block_rsv->reserved < block_rsv->size)
4201 block_rsv->full = 0;
4202 ret = 0;
4203 }
4204 spin_unlock(&block_rsv->lock);
4205 return ret;
4206 }
4207
4208 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4209 u64 num_bytes, int update_size)
4210 {
4211 spin_lock(&block_rsv->lock);
4212 block_rsv->reserved += num_bytes;
4213 if (update_size)
4214 block_rsv->size += num_bytes;
4215 else if (block_rsv->reserved >= block_rsv->size)
4216 block_rsv->full = 1;
4217 spin_unlock(&block_rsv->lock);
4218 }
4219
4220 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4221 struct btrfs_block_rsv *block_rsv,
4222 struct btrfs_block_rsv *dest, u64 num_bytes)
4223 {
4224 struct btrfs_space_info *space_info = block_rsv->space_info;
4225
4226 spin_lock(&block_rsv->lock);
4227 if (num_bytes == (u64)-1)
4228 num_bytes = block_rsv->size;
4229 block_rsv->size -= num_bytes;
4230 if (block_rsv->reserved >= block_rsv->size) {
4231 num_bytes = block_rsv->reserved - block_rsv->size;
4232 block_rsv->reserved = block_rsv->size;
4233 block_rsv->full = 1;
4234 } else {
4235 num_bytes = 0;
4236 }
4237 spin_unlock(&block_rsv->lock);
4238
4239 if (num_bytes > 0) {
4240 if (dest) {
4241 spin_lock(&dest->lock);
4242 if (!dest->full) {
4243 u64 bytes_to_add;
4244
4245 bytes_to_add = dest->size - dest->reserved;
4246 bytes_to_add = min(num_bytes, bytes_to_add);
4247 dest->reserved += bytes_to_add;
4248 if (dest->reserved >= dest->size)
4249 dest->full = 1;
4250 num_bytes -= bytes_to_add;
4251 }
4252 spin_unlock(&dest->lock);
4253 }
4254 if (num_bytes) {
4255 spin_lock(&space_info->lock);
4256 space_info->bytes_may_use -= num_bytes;
4257 trace_btrfs_space_reservation(fs_info, "space_info",
4258 space_info->flags, num_bytes, 0);
4259 space_info->reservation_progress++;
4260 spin_unlock(&space_info->lock);
4261 }
4262 }
4263 }
4264
4265 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4266 struct btrfs_block_rsv *dst, u64 num_bytes)
4267 {
4268 int ret;
4269
4270 ret = block_rsv_use_bytes(src, num_bytes);
4271 if (ret)
4272 return ret;
4273
4274 block_rsv_add_bytes(dst, num_bytes, 1);
4275 return 0;
4276 }
4277
4278 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4279 {
4280 memset(rsv, 0, sizeof(*rsv));
4281 spin_lock_init(&rsv->lock);
4282 rsv->type = type;
4283 }
4284
4285 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4286 unsigned short type)
4287 {
4288 struct btrfs_block_rsv *block_rsv;
4289 struct btrfs_fs_info *fs_info = root->fs_info;
4290
4291 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4292 if (!block_rsv)
4293 return NULL;
4294
4295 btrfs_init_block_rsv(block_rsv, type);
4296 block_rsv->space_info = __find_space_info(fs_info,
4297 BTRFS_BLOCK_GROUP_METADATA);
4298 return block_rsv;
4299 }
4300
4301 void btrfs_free_block_rsv(struct btrfs_root *root,
4302 struct btrfs_block_rsv *rsv)
4303 {
4304 if (!rsv)
4305 return;
4306 btrfs_block_rsv_release(root, rsv, (u64)-1);
4307 kfree(rsv);
4308 }
4309
4310 int btrfs_block_rsv_add(struct btrfs_root *root,
4311 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4312 enum btrfs_reserve_flush_enum flush)
4313 {
4314 int ret;
4315
4316 if (num_bytes == 0)
4317 return 0;
4318
4319 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4320 if (!ret) {
4321 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4322 return 0;
4323 }
4324
4325 return ret;
4326 }
4327
4328 int btrfs_block_rsv_check(struct btrfs_root *root,
4329 struct btrfs_block_rsv *block_rsv, int min_factor)
4330 {
4331 u64 num_bytes = 0;
4332 int ret = -ENOSPC;
4333
4334 if (!block_rsv)
4335 return 0;
4336
4337 spin_lock(&block_rsv->lock);
4338 num_bytes = div_factor(block_rsv->size, min_factor);
4339 if (block_rsv->reserved >= num_bytes)
4340 ret = 0;
4341 spin_unlock(&block_rsv->lock);
4342
4343 return ret;
4344 }
4345
4346 int btrfs_block_rsv_refill(struct btrfs_root *root,
4347 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4348 enum btrfs_reserve_flush_enum flush)
4349 {
4350 u64 num_bytes = 0;
4351 int ret = -ENOSPC;
4352
4353 if (!block_rsv)
4354 return 0;
4355
4356 spin_lock(&block_rsv->lock);
4357 num_bytes = min_reserved;
4358 if (block_rsv->reserved >= num_bytes)
4359 ret = 0;
4360 else
4361 num_bytes -= block_rsv->reserved;
4362 spin_unlock(&block_rsv->lock);
4363
4364 if (!ret)
4365 return 0;
4366
4367 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4368 if (!ret) {
4369 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4370 return 0;
4371 }
4372
4373 return ret;
4374 }
4375
4376 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4377 struct btrfs_block_rsv *dst_rsv,
4378 u64 num_bytes)
4379 {
4380 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4381 }
4382
4383 void btrfs_block_rsv_release(struct btrfs_root *root,
4384 struct btrfs_block_rsv *block_rsv,
4385 u64 num_bytes)
4386 {
4387 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4388 if (global_rsv->full || global_rsv == block_rsv ||
4389 block_rsv->space_info != global_rsv->space_info)
4390 global_rsv = NULL;
4391 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4392 num_bytes);
4393 }
4394
4395 /*
4396 * helper to calculate size of global block reservation.
4397 * the desired value is sum of space used by extent tree,
4398 * checksum tree and root tree
4399 */
4400 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4401 {
4402 struct btrfs_space_info *sinfo;
4403 u64 num_bytes;
4404 u64 meta_used;
4405 u64 data_used;
4406 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4407
4408 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4409 spin_lock(&sinfo->lock);
4410 data_used = sinfo->bytes_used;
4411 spin_unlock(&sinfo->lock);
4412
4413 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4414 spin_lock(&sinfo->lock);
4415 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4416 data_used = 0;
4417 meta_used = sinfo->bytes_used;
4418 spin_unlock(&sinfo->lock);
4419
4420 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4421 csum_size * 2;
4422 num_bytes += div64_u64(data_used + meta_used, 50);
4423
4424 if (num_bytes * 3 > meta_used)
4425 num_bytes = div64_u64(meta_used, 3);
4426
4427 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4428 }
4429
4430 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4431 {
4432 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4433 struct btrfs_space_info *sinfo = block_rsv->space_info;
4434 u64 num_bytes;
4435
4436 num_bytes = calc_global_metadata_size(fs_info);
4437
4438 spin_lock(&sinfo->lock);
4439 spin_lock(&block_rsv->lock);
4440
4441 block_rsv->size = num_bytes;
4442
4443 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4444 sinfo->bytes_reserved + sinfo->bytes_readonly +
4445 sinfo->bytes_may_use;
4446
4447 if (sinfo->total_bytes > num_bytes) {
4448 num_bytes = sinfo->total_bytes - num_bytes;
4449 block_rsv->reserved += num_bytes;
4450 sinfo->bytes_may_use += num_bytes;
4451 trace_btrfs_space_reservation(fs_info, "space_info",
4452 sinfo->flags, num_bytes, 1);
4453 }
4454
4455 if (block_rsv->reserved >= block_rsv->size) {
4456 num_bytes = block_rsv->reserved - block_rsv->size;
4457 sinfo->bytes_may_use -= num_bytes;
4458 trace_btrfs_space_reservation(fs_info, "space_info",
4459 sinfo->flags, num_bytes, 0);
4460 sinfo->reservation_progress++;
4461 block_rsv->reserved = block_rsv->size;
4462 block_rsv->full = 1;
4463 }
4464
4465 spin_unlock(&block_rsv->lock);
4466 spin_unlock(&sinfo->lock);
4467 }
4468
4469 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4470 {
4471 struct btrfs_space_info *space_info;
4472
4473 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4474 fs_info->chunk_block_rsv.space_info = space_info;
4475
4476 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4477 fs_info->global_block_rsv.space_info = space_info;
4478 fs_info->delalloc_block_rsv.space_info = space_info;
4479 fs_info->trans_block_rsv.space_info = space_info;
4480 fs_info->empty_block_rsv.space_info = space_info;
4481 fs_info->delayed_block_rsv.space_info = space_info;
4482
4483 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4484 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4485 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4486 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4487 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4488
4489 update_global_block_rsv(fs_info);
4490 }
4491
4492 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4493 {
4494 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4495 (u64)-1);
4496 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4497 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4498 WARN_ON(fs_info->trans_block_rsv.size > 0);
4499 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4500 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4501 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4502 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4503 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4504 }
4505
4506 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4507 struct btrfs_root *root)
4508 {
4509 if (!trans->block_rsv)
4510 return;
4511
4512 if (!trans->bytes_reserved)
4513 return;
4514
4515 trace_btrfs_space_reservation(root->fs_info, "transaction",
4516 trans->transid, trans->bytes_reserved, 0);
4517 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4518 trans->bytes_reserved = 0;
4519 }
4520
4521 /* Can only return 0 or -ENOSPC */
4522 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4523 struct inode *inode)
4524 {
4525 struct btrfs_root *root = BTRFS_I(inode)->root;
4526 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4527 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4528
4529 /*
4530 * We need to hold space in order to delete our orphan item once we've
4531 * added it, so this takes the reservation so we can release it later
4532 * when we are truly done with the orphan item.
4533 */
4534 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4535 trace_btrfs_space_reservation(root->fs_info, "orphan",
4536 btrfs_ino(inode), num_bytes, 1);
4537 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4538 }
4539
4540 void btrfs_orphan_release_metadata(struct inode *inode)
4541 {
4542 struct btrfs_root *root = BTRFS_I(inode)->root;
4543 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4544 trace_btrfs_space_reservation(root->fs_info, "orphan",
4545 btrfs_ino(inode), num_bytes, 0);
4546 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4547 }
4548
4549 /*
4550 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4551 * root: the root of the parent directory
4552 * rsv: block reservation
4553 * items: the number of items that we need do reservation
4554 * qgroup_reserved: used to return the reserved size in qgroup
4555 *
4556 * This function is used to reserve the space for snapshot/subvolume
4557 * creation and deletion. Those operations are different with the
4558 * common file/directory operations, they change two fs/file trees
4559 * and root tree, the number of items that the qgroup reserves is
4560 * different with the free space reservation. So we can not use
4561 * the space reseravtion mechanism in start_transaction().
4562 */
4563 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4564 struct btrfs_block_rsv *rsv,
4565 int items,
4566 u64 *qgroup_reserved)
4567 {
4568 u64 num_bytes;
4569 int ret;
4570
4571 if (root->fs_info->quota_enabled) {
4572 /* One for parent inode, two for dir entries */
4573 num_bytes = 3 * root->leafsize;
4574 ret = btrfs_qgroup_reserve(root, num_bytes);
4575 if (ret)
4576 return ret;
4577 } else {
4578 num_bytes = 0;
4579 }
4580
4581 *qgroup_reserved = num_bytes;
4582
4583 num_bytes = btrfs_calc_trans_metadata_size(root, items);
4584 rsv->space_info = __find_space_info(root->fs_info,
4585 BTRFS_BLOCK_GROUP_METADATA);
4586 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4587 BTRFS_RESERVE_FLUSH_ALL);
4588 if (ret) {
4589 if (*qgroup_reserved)
4590 btrfs_qgroup_free(root, *qgroup_reserved);
4591 }
4592
4593 return ret;
4594 }
4595
4596 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4597 struct btrfs_block_rsv *rsv,
4598 u64 qgroup_reserved)
4599 {
4600 btrfs_block_rsv_release(root, rsv, (u64)-1);
4601 if (qgroup_reserved)
4602 btrfs_qgroup_free(root, qgroup_reserved);
4603 }
4604
4605 /**
4606 * drop_outstanding_extent - drop an outstanding extent
4607 * @inode: the inode we're dropping the extent for
4608 *
4609 * This is called when we are freeing up an outstanding extent, either called
4610 * after an error or after an extent is written. This will return the number of
4611 * reserved extents that need to be freed. This must be called with
4612 * BTRFS_I(inode)->lock held.
4613 */
4614 static unsigned drop_outstanding_extent(struct inode *inode)
4615 {
4616 unsigned drop_inode_space = 0;
4617 unsigned dropped_extents = 0;
4618
4619 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4620 BTRFS_I(inode)->outstanding_extents--;
4621
4622 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4623 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4624 &BTRFS_I(inode)->runtime_flags))
4625 drop_inode_space = 1;
4626
4627 /*
4628 * If we have more or the same amount of outsanding extents than we have
4629 * reserved then we need to leave the reserved extents count alone.
4630 */
4631 if (BTRFS_I(inode)->outstanding_extents >=
4632 BTRFS_I(inode)->reserved_extents)
4633 return drop_inode_space;
4634
4635 dropped_extents = BTRFS_I(inode)->reserved_extents -
4636 BTRFS_I(inode)->outstanding_extents;
4637 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4638 return dropped_extents + drop_inode_space;
4639 }
4640
4641 /**
4642 * calc_csum_metadata_size - return the amount of metada space that must be
4643 * reserved/free'd for the given bytes.
4644 * @inode: the inode we're manipulating
4645 * @num_bytes: the number of bytes in question
4646 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4647 *
4648 * This adjusts the number of csum_bytes in the inode and then returns the
4649 * correct amount of metadata that must either be reserved or freed. We
4650 * calculate how many checksums we can fit into one leaf and then divide the
4651 * number of bytes that will need to be checksumed by this value to figure out
4652 * how many checksums will be required. If we are adding bytes then the number
4653 * may go up and we will return the number of additional bytes that must be
4654 * reserved. If it is going down we will return the number of bytes that must
4655 * be freed.
4656 *
4657 * This must be called with BTRFS_I(inode)->lock held.
4658 */
4659 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4660 int reserve)
4661 {
4662 struct btrfs_root *root = BTRFS_I(inode)->root;
4663 u64 csum_size;
4664 int num_csums_per_leaf;
4665 int num_csums;
4666 int old_csums;
4667
4668 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4669 BTRFS_I(inode)->csum_bytes == 0)
4670 return 0;
4671
4672 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4673 if (reserve)
4674 BTRFS_I(inode)->csum_bytes += num_bytes;
4675 else
4676 BTRFS_I(inode)->csum_bytes -= num_bytes;
4677 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4678 num_csums_per_leaf = (int)div64_u64(csum_size,
4679 sizeof(struct btrfs_csum_item) +
4680 sizeof(struct btrfs_disk_key));
4681 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4682 num_csums = num_csums + num_csums_per_leaf - 1;
4683 num_csums = num_csums / num_csums_per_leaf;
4684
4685 old_csums = old_csums + num_csums_per_leaf - 1;
4686 old_csums = old_csums / num_csums_per_leaf;
4687
4688 /* No change, no need to reserve more */
4689 if (old_csums == num_csums)
4690 return 0;
4691
4692 if (reserve)
4693 return btrfs_calc_trans_metadata_size(root,
4694 num_csums - old_csums);
4695
4696 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4697 }
4698
4699 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4700 {
4701 struct btrfs_root *root = BTRFS_I(inode)->root;
4702 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4703 u64 to_reserve = 0;
4704 u64 csum_bytes;
4705 unsigned nr_extents = 0;
4706 int extra_reserve = 0;
4707 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4708 int ret = 0;
4709 bool delalloc_lock = true;
4710 u64 to_free = 0;
4711 unsigned dropped;
4712
4713 /* If we are a free space inode we need to not flush since we will be in
4714 * the middle of a transaction commit. We also don't need the delalloc
4715 * mutex since we won't race with anybody. We need this mostly to make
4716 * lockdep shut its filthy mouth.
4717 */
4718 if (btrfs_is_free_space_inode(inode)) {
4719 flush = BTRFS_RESERVE_NO_FLUSH;
4720 delalloc_lock = false;
4721 }
4722
4723 if (flush != BTRFS_RESERVE_NO_FLUSH &&
4724 btrfs_transaction_in_commit(root->fs_info))
4725 schedule_timeout(1);
4726
4727 if (delalloc_lock)
4728 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4729
4730 num_bytes = ALIGN(num_bytes, root->sectorsize);
4731
4732 spin_lock(&BTRFS_I(inode)->lock);
4733 BTRFS_I(inode)->outstanding_extents++;
4734
4735 if (BTRFS_I(inode)->outstanding_extents >
4736 BTRFS_I(inode)->reserved_extents)
4737 nr_extents = BTRFS_I(inode)->outstanding_extents -
4738 BTRFS_I(inode)->reserved_extents;
4739
4740 /*
4741 * Add an item to reserve for updating the inode when we complete the
4742 * delalloc io.
4743 */
4744 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4745 &BTRFS_I(inode)->runtime_flags)) {
4746 nr_extents++;
4747 extra_reserve = 1;
4748 }
4749
4750 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4751 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4752 csum_bytes = BTRFS_I(inode)->csum_bytes;
4753 spin_unlock(&BTRFS_I(inode)->lock);
4754
4755 if (root->fs_info->quota_enabled) {
4756 ret = btrfs_qgroup_reserve(root, num_bytes +
4757 nr_extents * root->leafsize);
4758 if (ret)
4759 goto out_fail;
4760 }
4761
4762 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4763 if (unlikely(ret)) {
4764 if (root->fs_info->quota_enabled)
4765 btrfs_qgroup_free(root, num_bytes +
4766 nr_extents * root->leafsize);
4767 goto out_fail;
4768 }
4769
4770 spin_lock(&BTRFS_I(inode)->lock);
4771 if (extra_reserve) {
4772 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4773 &BTRFS_I(inode)->runtime_flags);
4774 nr_extents--;
4775 }
4776 BTRFS_I(inode)->reserved_extents += nr_extents;
4777 spin_unlock(&BTRFS_I(inode)->lock);
4778
4779 if (delalloc_lock)
4780 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4781
4782 if (to_reserve)
4783 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4784 btrfs_ino(inode), to_reserve, 1);
4785 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4786
4787 return 0;
4788
4789 out_fail:
4790 spin_lock(&BTRFS_I(inode)->lock);
4791 dropped = drop_outstanding_extent(inode);
4792 /*
4793 * If the inodes csum_bytes is the same as the original
4794 * csum_bytes then we know we haven't raced with any free()ers
4795 * so we can just reduce our inodes csum bytes and carry on.
4796 * Otherwise we have to do the normal free thing to account for
4797 * the case that the free side didn't free up its reserve
4798 * because of this outstanding reservation.
4799 */
4800 if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4801 calc_csum_metadata_size(inode, num_bytes, 0);
4802 else
4803 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4804 spin_unlock(&BTRFS_I(inode)->lock);
4805 if (dropped)
4806 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4807
4808 if (to_free) {
4809 btrfs_block_rsv_release(root, block_rsv, to_free);
4810 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4811 btrfs_ino(inode), to_free, 0);
4812 }
4813 if (delalloc_lock)
4814 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4815 return ret;
4816 }
4817
4818 /**
4819 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4820 * @inode: the inode to release the reservation for
4821 * @num_bytes: the number of bytes we're releasing
4822 *
4823 * This will release the metadata reservation for an inode. This can be called
4824 * once we complete IO for a given set of bytes to release their metadata
4825 * reservations.
4826 */
4827 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4828 {
4829 struct btrfs_root *root = BTRFS_I(inode)->root;
4830 u64 to_free = 0;
4831 unsigned dropped;
4832
4833 num_bytes = ALIGN(num_bytes, root->sectorsize);
4834 spin_lock(&BTRFS_I(inode)->lock);
4835 dropped = drop_outstanding_extent(inode);
4836
4837 if (num_bytes)
4838 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4839 spin_unlock(&BTRFS_I(inode)->lock);
4840 if (dropped > 0)
4841 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4842
4843 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4844 btrfs_ino(inode), to_free, 0);
4845 if (root->fs_info->quota_enabled) {
4846 btrfs_qgroup_free(root, num_bytes +
4847 dropped * root->leafsize);
4848 }
4849
4850 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4851 to_free);
4852 }
4853
4854 /**
4855 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4856 * @inode: inode we're writing to
4857 * @num_bytes: the number of bytes we want to allocate
4858 *
4859 * This will do the following things
4860 *
4861 * o reserve space in the data space info for num_bytes
4862 * o reserve space in the metadata space info based on number of outstanding
4863 * extents and how much csums will be needed
4864 * o add to the inodes ->delalloc_bytes
4865 * o add it to the fs_info's delalloc inodes list.
4866 *
4867 * This will return 0 for success and -ENOSPC if there is no space left.
4868 */
4869 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4870 {
4871 int ret;
4872
4873 ret = btrfs_check_data_free_space(inode, num_bytes);
4874 if (ret)
4875 return ret;
4876
4877 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4878 if (ret) {
4879 btrfs_free_reserved_data_space(inode, num_bytes);
4880 return ret;
4881 }
4882
4883 return 0;
4884 }
4885
4886 /**
4887 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4888 * @inode: inode we're releasing space for
4889 * @num_bytes: the number of bytes we want to free up
4890 *
4891 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4892 * called in the case that we don't need the metadata AND data reservations
4893 * anymore. So if there is an error or we insert an inline extent.
4894 *
4895 * This function will release the metadata space that was not used and will
4896 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4897 * list if there are no delalloc bytes left.
4898 */
4899 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4900 {
4901 btrfs_delalloc_release_metadata(inode, num_bytes);
4902 btrfs_free_reserved_data_space(inode, num_bytes);
4903 }
4904
4905 static int update_block_group(struct btrfs_root *root,
4906 u64 bytenr, u64 num_bytes, int alloc)
4907 {
4908 struct btrfs_block_group_cache *cache = NULL;
4909 struct btrfs_fs_info *info = root->fs_info;
4910 u64 total = num_bytes;
4911 u64 old_val;
4912 u64 byte_in_group;
4913 int factor;
4914
4915 /* block accounting for super block */
4916 spin_lock(&info->delalloc_lock);
4917 old_val = btrfs_super_bytes_used(info->super_copy);
4918 if (alloc)
4919 old_val += num_bytes;
4920 else
4921 old_val -= num_bytes;
4922 btrfs_set_super_bytes_used(info->super_copy, old_val);
4923 spin_unlock(&info->delalloc_lock);
4924
4925 while (total) {
4926 cache = btrfs_lookup_block_group(info, bytenr);
4927 if (!cache)
4928 return -ENOENT;
4929 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4930 BTRFS_BLOCK_GROUP_RAID1 |
4931 BTRFS_BLOCK_GROUP_RAID10))
4932 factor = 2;
4933 else
4934 factor = 1;
4935 /*
4936 * If this block group has free space cache written out, we
4937 * need to make sure to load it if we are removing space. This
4938 * is because we need the unpinning stage to actually add the
4939 * space back to the block group, otherwise we will leak space.
4940 */
4941 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4942 cache_block_group(cache, 1);
4943
4944 byte_in_group = bytenr - cache->key.objectid;
4945 WARN_ON(byte_in_group > cache->key.offset);
4946
4947 spin_lock(&cache->space_info->lock);
4948 spin_lock(&cache->lock);
4949
4950 if (btrfs_test_opt(root, SPACE_CACHE) &&
4951 cache->disk_cache_state < BTRFS_DC_CLEAR)
4952 cache->disk_cache_state = BTRFS_DC_CLEAR;
4953
4954 cache->dirty = 1;
4955 old_val = btrfs_block_group_used(&cache->item);
4956 num_bytes = min(total, cache->key.offset - byte_in_group);
4957 if (alloc) {
4958 old_val += num_bytes;
4959 btrfs_set_block_group_used(&cache->item, old_val);
4960 cache->reserved -= num_bytes;
4961 cache->space_info->bytes_reserved -= num_bytes;
4962 cache->space_info->bytes_used += num_bytes;
4963 cache->space_info->disk_used += num_bytes * factor;
4964 spin_unlock(&cache->lock);
4965 spin_unlock(&cache->space_info->lock);
4966 } else {
4967 old_val -= num_bytes;
4968 btrfs_set_block_group_used(&cache->item, old_val);
4969 cache->pinned += num_bytes;
4970 cache->space_info->bytes_pinned += num_bytes;
4971 cache->space_info->bytes_used -= num_bytes;
4972 cache->space_info->disk_used -= num_bytes * factor;
4973 spin_unlock(&cache->lock);
4974 spin_unlock(&cache->space_info->lock);
4975
4976 set_extent_dirty(info->pinned_extents,
4977 bytenr, bytenr + num_bytes - 1,
4978 GFP_NOFS | __GFP_NOFAIL);
4979 }
4980 btrfs_put_block_group(cache);
4981 total -= num_bytes;
4982 bytenr += num_bytes;
4983 }
4984 return 0;
4985 }
4986
4987 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4988 {
4989 struct btrfs_block_group_cache *cache;
4990 u64 bytenr;
4991
4992 spin_lock(&root->fs_info->block_group_cache_lock);
4993 bytenr = root->fs_info->first_logical_byte;
4994 spin_unlock(&root->fs_info->block_group_cache_lock);
4995
4996 if (bytenr < (u64)-1)
4997 return bytenr;
4998
4999 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5000 if (!cache)
5001 return 0;
5002
5003 bytenr = cache->key.objectid;
5004 btrfs_put_block_group(cache);
5005
5006 return bytenr;
5007 }
5008
5009 static int pin_down_extent(struct btrfs_root *root,
5010 struct btrfs_block_group_cache *cache,
5011 u64 bytenr, u64 num_bytes, int reserved)
5012 {
5013 spin_lock(&cache->space_info->lock);
5014 spin_lock(&cache->lock);
5015 cache->pinned += num_bytes;
5016 cache->space_info->bytes_pinned += num_bytes;
5017 if (reserved) {
5018 cache->reserved -= num_bytes;
5019 cache->space_info->bytes_reserved -= num_bytes;
5020 }
5021 spin_unlock(&cache->lock);
5022 spin_unlock(&cache->space_info->lock);
5023
5024 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5025 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5026 return 0;
5027 }
5028
5029 /*
5030 * this function must be called within transaction
5031 */
5032 int btrfs_pin_extent(struct btrfs_root *root,
5033 u64 bytenr, u64 num_bytes, int reserved)
5034 {
5035 struct btrfs_block_group_cache *cache;
5036
5037 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5038 BUG_ON(!cache); /* Logic error */
5039
5040 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5041
5042 btrfs_put_block_group(cache);
5043 return 0;
5044 }
5045
5046 /*
5047 * this function must be called within transaction
5048 */
5049 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5050 u64 bytenr, u64 num_bytes)
5051 {
5052 struct btrfs_block_group_cache *cache;
5053
5054 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5055 BUG_ON(!cache); /* Logic error */
5056
5057 /*
5058 * pull in the free space cache (if any) so that our pin
5059 * removes the free space from the cache. We have load_only set
5060 * to one because the slow code to read in the free extents does check
5061 * the pinned extents.
5062 */
5063 cache_block_group(cache, 1);
5064
5065 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5066
5067 /* remove us from the free space cache (if we're there at all) */
5068 btrfs_remove_free_space(cache, bytenr, num_bytes);
5069 btrfs_put_block_group(cache);
5070 return 0;
5071 }
5072
5073 /**
5074 * btrfs_update_reserved_bytes - update the block_group and space info counters
5075 * @cache: The cache we are manipulating
5076 * @num_bytes: The number of bytes in question
5077 * @reserve: One of the reservation enums
5078 *
5079 * This is called by the allocator when it reserves space, or by somebody who is
5080 * freeing space that was never actually used on disk. For example if you
5081 * reserve some space for a new leaf in transaction A and before transaction A
5082 * commits you free that leaf, you call this with reserve set to 0 in order to
5083 * clear the reservation.
5084 *
5085 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5086 * ENOSPC accounting. For data we handle the reservation through clearing the
5087 * delalloc bits in the io_tree. We have to do this since we could end up
5088 * allocating less disk space for the amount of data we have reserved in the
5089 * case of compression.
5090 *
5091 * If this is a reservation and the block group has become read only we cannot
5092 * make the reservation and return -EAGAIN, otherwise this function always
5093 * succeeds.
5094 */
5095 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5096 u64 num_bytes, int reserve)
5097 {
5098 struct btrfs_space_info *space_info = cache->space_info;
5099 int ret = 0;
5100
5101 spin_lock(&space_info->lock);
5102 spin_lock(&cache->lock);
5103 if (reserve != RESERVE_FREE) {
5104 if (cache->ro) {
5105 ret = -EAGAIN;
5106 } else {
5107 cache->reserved += num_bytes;
5108 space_info->bytes_reserved += num_bytes;
5109 if (reserve == RESERVE_ALLOC) {
5110 trace_btrfs_space_reservation(cache->fs_info,
5111 "space_info", space_info->flags,
5112 num_bytes, 0);
5113 space_info->bytes_may_use -= num_bytes;
5114 }
5115 }
5116 } else {
5117 if (cache->ro)
5118 space_info->bytes_readonly += num_bytes;
5119 cache->reserved -= num_bytes;
5120 space_info->bytes_reserved -= num_bytes;
5121 space_info->reservation_progress++;
5122 }
5123 spin_unlock(&cache->lock);
5124 spin_unlock(&space_info->lock);
5125 return ret;
5126 }
5127
5128 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5129 struct btrfs_root *root)
5130 {
5131 struct btrfs_fs_info *fs_info = root->fs_info;
5132 struct btrfs_caching_control *next;
5133 struct btrfs_caching_control *caching_ctl;
5134 struct btrfs_block_group_cache *cache;
5135
5136 down_write(&fs_info->extent_commit_sem);
5137
5138 list_for_each_entry_safe(caching_ctl, next,
5139 &fs_info->caching_block_groups, list) {
5140 cache = caching_ctl->block_group;
5141 if (block_group_cache_done(cache)) {
5142 cache->last_byte_to_unpin = (u64)-1;
5143 list_del_init(&caching_ctl->list);
5144 put_caching_control(caching_ctl);
5145 } else {
5146 cache->last_byte_to_unpin = caching_ctl->progress;
5147 }
5148 }
5149
5150 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5151 fs_info->pinned_extents = &fs_info->freed_extents[1];
5152 else
5153 fs_info->pinned_extents = &fs_info->freed_extents[0];
5154
5155 up_write(&fs_info->extent_commit_sem);
5156
5157 update_global_block_rsv(fs_info);
5158 }
5159
5160 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5161 {
5162 struct btrfs_fs_info *fs_info = root->fs_info;
5163 struct btrfs_block_group_cache *cache = NULL;
5164 struct btrfs_space_info *space_info;
5165 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5166 u64 len;
5167 bool readonly;
5168
5169 while (start <= end) {
5170 readonly = false;
5171 if (!cache ||
5172 start >= cache->key.objectid + cache->key.offset) {
5173 if (cache)
5174 btrfs_put_block_group(cache);
5175 cache = btrfs_lookup_block_group(fs_info, start);
5176 BUG_ON(!cache); /* Logic error */
5177 }
5178
5179 len = cache->key.objectid + cache->key.offset - start;
5180 len = min(len, end + 1 - start);
5181
5182 if (start < cache->last_byte_to_unpin) {
5183 len = min(len, cache->last_byte_to_unpin - start);
5184 btrfs_add_free_space(cache, start, len);
5185 }
5186
5187 start += len;
5188 space_info = cache->space_info;
5189
5190 spin_lock(&space_info->lock);
5191 spin_lock(&cache->lock);
5192 cache->pinned -= len;
5193 space_info->bytes_pinned -= len;
5194 if (cache->ro) {
5195 space_info->bytes_readonly += len;
5196 readonly = true;
5197 }
5198 spin_unlock(&cache->lock);
5199 if (!readonly && global_rsv->space_info == space_info) {
5200 spin_lock(&global_rsv->lock);
5201 if (!global_rsv->full) {
5202 len = min(len, global_rsv->size -
5203 global_rsv->reserved);
5204 global_rsv->reserved += len;
5205 space_info->bytes_may_use += len;
5206 if (global_rsv->reserved >= global_rsv->size)
5207 global_rsv->full = 1;
5208 }
5209 spin_unlock(&global_rsv->lock);
5210 }
5211 spin_unlock(&space_info->lock);
5212 }
5213
5214 if (cache)
5215 btrfs_put_block_group(cache);
5216 return 0;
5217 }
5218
5219 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5220 struct btrfs_root *root)
5221 {
5222 struct btrfs_fs_info *fs_info = root->fs_info;
5223 struct extent_io_tree *unpin;
5224 u64 start;
5225 u64 end;
5226 int ret;
5227
5228 if (trans->aborted)
5229 return 0;
5230
5231 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5232 unpin = &fs_info->freed_extents[1];
5233 else
5234 unpin = &fs_info->freed_extents[0];
5235
5236 while (1) {
5237 ret = find_first_extent_bit(unpin, 0, &start, &end,
5238 EXTENT_DIRTY, NULL);
5239 if (ret)
5240 break;
5241
5242 if (btrfs_test_opt(root, DISCARD))
5243 ret = btrfs_discard_extent(root, start,
5244 end + 1 - start, NULL);
5245
5246 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5247 unpin_extent_range(root, start, end);
5248 cond_resched();
5249 }
5250
5251 return 0;
5252 }
5253
5254 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5255 struct btrfs_root *root,
5256 u64 bytenr, u64 num_bytes, u64 parent,
5257 u64 root_objectid, u64 owner_objectid,
5258 u64 owner_offset, int refs_to_drop,
5259 struct btrfs_delayed_extent_op *extent_op)
5260 {
5261 struct btrfs_key key;
5262 struct btrfs_path *path;
5263 struct btrfs_fs_info *info = root->fs_info;
5264 struct btrfs_root *extent_root = info->extent_root;
5265 struct extent_buffer *leaf;
5266 struct btrfs_extent_item *ei;
5267 struct btrfs_extent_inline_ref *iref;
5268 int ret;
5269 int is_data;
5270 int extent_slot = 0;
5271 int found_extent = 0;
5272 int num_to_del = 1;
5273 u32 item_size;
5274 u64 refs;
5275
5276 path = btrfs_alloc_path();
5277 if (!path)
5278 return -ENOMEM;
5279
5280 path->reada = 1;
5281 path->leave_spinning = 1;
5282
5283 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5284 BUG_ON(!is_data && refs_to_drop != 1);
5285
5286 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5287 bytenr, num_bytes, parent,
5288 root_objectid, owner_objectid,
5289 owner_offset);
5290 if (ret == 0) {
5291 extent_slot = path->slots[0];
5292 while (extent_slot >= 0) {
5293 btrfs_item_key_to_cpu(path->nodes[0], &key,
5294 extent_slot);
5295 if (key.objectid != bytenr)
5296 break;
5297 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5298 key.offset == num_bytes) {
5299 found_extent = 1;
5300 break;
5301 }
5302 if (path->slots[0] - extent_slot > 5)
5303 break;
5304 extent_slot--;
5305 }
5306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5307 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5308 if (found_extent && item_size < sizeof(*ei))
5309 found_extent = 0;
5310 #endif
5311 if (!found_extent) {
5312 BUG_ON(iref);
5313 ret = remove_extent_backref(trans, extent_root, path,
5314 NULL, refs_to_drop,
5315 is_data);
5316 if (ret) {
5317 btrfs_abort_transaction(trans, extent_root, ret);
5318 goto out;
5319 }
5320 btrfs_release_path(path);
5321 path->leave_spinning = 1;
5322
5323 key.objectid = bytenr;
5324 key.type = BTRFS_EXTENT_ITEM_KEY;
5325 key.offset = num_bytes;
5326
5327 ret = btrfs_search_slot(trans, extent_root,
5328 &key, path, -1, 1);
5329 if (ret) {
5330 printk(KERN_ERR "umm, got %d back from search"
5331 ", was looking for %llu\n", ret,
5332 (unsigned long long)bytenr);
5333 if (ret > 0)
5334 btrfs_print_leaf(extent_root,
5335 path->nodes[0]);
5336 }
5337 if (ret < 0) {
5338 btrfs_abort_transaction(trans, extent_root, ret);
5339 goto out;
5340 }
5341 extent_slot = path->slots[0];
5342 }
5343 } else if (ret == -ENOENT) {
5344 btrfs_print_leaf(extent_root, path->nodes[0]);
5345 WARN_ON(1);
5346 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
5347 "parent %llu root %llu owner %llu offset %llu\n",
5348 (unsigned long long)bytenr,
5349 (unsigned long long)parent,
5350 (unsigned long long)root_objectid,
5351 (unsigned long long)owner_objectid,
5352 (unsigned long long)owner_offset);
5353 } else {
5354 btrfs_abort_transaction(trans, extent_root, ret);
5355 goto out;
5356 }
5357
5358 leaf = path->nodes[0];
5359 item_size = btrfs_item_size_nr(leaf, extent_slot);
5360 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5361 if (item_size < sizeof(*ei)) {
5362 BUG_ON(found_extent || extent_slot != path->slots[0]);
5363 ret = convert_extent_item_v0(trans, extent_root, path,
5364 owner_objectid, 0);
5365 if (ret < 0) {
5366 btrfs_abort_transaction(trans, extent_root, ret);
5367 goto out;
5368 }
5369
5370 btrfs_release_path(path);
5371 path->leave_spinning = 1;
5372
5373 key.objectid = bytenr;
5374 key.type = BTRFS_EXTENT_ITEM_KEY;
5375 key.offset = num_bytes;
5376
5377 ret = btrfs_search_slot(trans, extent_root, &key, path,
5378 -1, 1);
5379 if (ret) {
5380 printk(KERN_ERR "umm, got %d back from search"
5381 ", was looking for %llu\n", ret,
5382 (unsigned long long)bytenr);
5383 btrfs_print_leaf(extent_root, path->nodes[0]);
5384 }
5385 if (ret < 0) {
5386 btrfs_abort_transaction(trans, extent_root, ret);
5387 goto out;
5388 }
5389
5390 extent_slot = path->slots[0];
5391 leaf = path->nodes[0];
5392 item_size = btrfs_item_size_nr(leaf, extent_slot);
5393 }
5394 #endif
5395 BUG_ON(item_size < sizeof(*ei));
5396 ei = btrfs_item_ptr(leaf, extent_slot,
5397 struct btrfs_extent_item);
5398 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5399 struct btrfs_tree_block_info *bi;
5400 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5401 bi = (struct btrfs_tree_block_info *)(ei + 1);
5402 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5403 }
5404
5405 refs = btrfs_extent_refs(leaf, ei);
5406 BUG_ON(refs < refs_to_drop);
5407 refs -= refs_to_drop;
5408
5409 if (refs > 0) {
5410 if (extent_op)
5411 __run_delayed_extent_op(extent_op, leaf, ei);
5412 /*
5413 * In the case of inline back ref, reference count will
5414 * be updated by remove_extent_backref
5415 */
5416 if (iref) {
5417 BUG_ON(!found_extent);
5418 } else {
5419 btrfs_set_extent_refs(leaf, ei, refs);
5420 btrfs_mark_buffer_dirty(leaf);
5421 }
5422 if (found_extent) {
5423 ret = remove_extent_backref(trans, extent_root, path,
5424 iref, refs_to_drop,
5425 is_data);
5426 if (ret) {
5427 btrfs_abort_transaction(trans, extent_root, ret);
5428 goto out;
5429 }
5430 }
5431 } else {
5432 if (found_extent) {
5433 BUG_ON(is_data && refs_to_drop !=
5434 extent_data_ref_count(root, path, iref));
5435 if (iref) {
5436 BUG_ON(path->slots[0] != extent_slot);
5437 } else {
5438 BUG_ON(path->slots[0] != extent_slot + 1);
5439 path->slots[0] = extent_slot;
5440 num_to_del = 2;
5441 }
5442 }
5443
5444 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5445 num_to_del);
5446 if (ret) {
5447 btrfs_abort_transaction(trans, extent_root, ret);
5448 goto out;
5449 }
5450 btrfs_release_path(path);
5451
5452 if (is_data) {
5453 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5454 if (ret) {
5455 btrfs_abort_transaction(trans, extent_root, ret);
5456 goto out;
5457 }
5458 }
5459
5460 ret = update_block_group(root, bytenr, num_bytes, 0);
5461 if (ret) {
5462 btrfs_abort_transaction(trans, extent_root, ret);
5463 goto out;
5464 }
5465 }
5466 out:
5467 btrfs_free_path(path);
5468 return ret;
5469 }
5470
5471 /*
5472 * when we free an block, it is possible (and likely) that we free the last
5473 * delayed ref for that extent as well. This searches the delayed ref tree for
5474 * a given extent, and if there are no other delayed refs to be processed, it
5475 * removes it from the tree.
5476 */
5477 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5478 struct btrfs_root *root, u64 bytenr)
5479 {
5480 struct btrfs_delayed_ref_head *head;
5481 struct btrfs_delayed_ref_root *delayed_refs;
5482 struct btrfs_delayed_ref_node *ref;
5483 struct rb_node *node;
5484 int ret = 0;
5485
5486 delayed_refs = &trans->transaction->delayed_refs;
5487 spin_lock(&delayed_refs->lock);
5488 head = btrfs_find_delayed_ref_head(trans, bytenr);
5489 if (!head)
5490 goto out;
5491
5492 node = rb_prev(&head->node.rb_node);
5493 if (!node)
5494 goto out;
5495
5496 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5497
5498 /* there are still entries for this ref, we can't drop it */
5499 if (ref->bytenr == bytenr)
5500 goto out;
5501
5502 if (head->extent_op) {
5503 if (!head->must_insert_reserved)
5504 goto out;
5505 btrfs_free_delayed_extent_op(head->extent_op);
5506 head->extent_op = NULL;
5507 }
5508
5509 /*
5510 * waiting for the lock here would deadlock. If someone else has it
5511 * locked they are already in the process of dropping it anyway
5512 */
5513 if (!mutex_trylock(&head->mutex))
5514 goto out;
5515
5516 /*
5517 * at this point we have a head with no other entries. Go
5518 * ahead and process it.
5519 */
5520 head->node.in_tree = 0;
5521 rb_erase(&head->node.rb_node, &delayed_refs->root);
5522
5523 delayed_refs->num_entries--;
5524
5525 /*
5526 * we don't take a ref on the node because we're removing it from the
5527 * tree, so we just steal the ref the tree was holding.
5528 */
5529 delayed_refs->num_heads--;
5530 if (list_empty(&head->cluster))
5531 delayed_refs->num_heads_ready--;
5532
5533 list_del_init(&head->cluster);
5534 spin_unlock(&delayed_refs->lock);
5535
5536 BUG_ON(head->extent_op);
5537 if (head->must_insert_reserved)
5538 ret = 1;
5539
5540 mutex_unlock(&head->mutex);
5541 btrfs_put_delayed_ref(&head->node);
5542 return ret;
5543 out:
5544 spin_unlock(&delayed_refs->lock);
5545 return 0;
5546 }
5547
5548 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5549 struct btrfs_root *root,
5550 struct extent_buffer *buf,
5551 u64 parent, int last_ref)
5552 {
5553 struct btrfs_block_group_cache *cache = NULL;
5554 int ret;
5555
5556 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5557 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5558 buf->start, buf->len,
5559 parent, root->root_key.objectid,
5560 btrfs_header_level(buf),
5561 BTRFS_DROP_DELAYED_REF, NULL, 0);
5562 BUG_ON(ret); /* -ENOMEM */
5563 }
5564
5565 if (!last_ref)
5566 return;
5567
5568 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5569
5570 if (btrfs_header_generation(buf) == trans->transid) {
5571 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5572 ret = check_ref_cleanup(trans, root, buf->start);
5573 if (!ret)
5574 goto out;
5575 }
5576
5577 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5578 pin_down_extent(root, cache, buf->start, buf->len, 1);
5579 goto out;
5580 }
5581
5582 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5583
5584 btrfs_add_free_space(cache, buf->start, buf->len);
5585 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5586 }
5587 out:
5588 /*
5589 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5590 * anymore.
5591 */
5592 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5593 btrfs_put_block_group(cache);
5594 }
5595
5596 /* Can return -ENOMEM */
5597 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5598 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5599 u64 owner, u64 offset, int for_cow)
5600 {
5601 int ret;
5602 struct btrfs_fs_info *fs_info = root->fs_info;
5603
5604 /*
5605 * tree log blocks never actually go into the extent allocation
5606 * tree, just update pinning info and exit early.
5607 */
5608 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5609 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5610 /* unlocks the pinned mutex */
5611 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5612 ret = 0;
5613 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5614 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5615 num_bytes,
5616 parent, root_objectid, (int)owner,
5617 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5618 } else {
5619 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5620 num_bytes,
5621 parent, root_objectid, owner,
5622 offset, BTRFS_DROP_DELAYED_REF,
5623 NULL, for_cow);
5624 }
5625 return ret;
5626 }
5627
5628 static u64 stripe_align(struct btrfs_root *root,
5629 struct btrfs_block_group_cache *cache,
5630 u64 val, u64 num_bytes)
5631 {
5632 u64 ret = ALIGN(val, root->stripesize);
5633 return ret;
5634 }
5635
5636 /*
5637 * when we wait for progress in the block group caching, its because
5638 * our allocation attempt failed at least once. So, we must sleep
5639 * and let some progress happen before we try again.
5640 *
5641 * This function will sleep at least once waiting for new free space to
5642 * show up, and then it will check the block group free space numbers
5643 * for our min num_bytes. Another option is to have it go ahead
5644 * and look in the rbtree for a free extent of a given size, but this
5645 * is a good start.
5646 */
5647 static noinline int
5648 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5649 u64 num_bytes)
5650 {
5651 struct btrfs_caching_control *caching_ctl;
5652
5653 caching_ctl = get_caching_control(cache);
5654 if (!caching_ctl)
5655 return 0;
5656
5657 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5658 (cache->free_space_ctl->free_space >= num_bytes));
5659
5660 put_caching_control(caching_ctl);
5661 return 0;
5662 }
5663
5664 static noinline int
5665 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5666 {
5667 struct btrfs_caching_control *caching_ctl;
5668
5669 caching_ctl = get_caching_control(cache);
5670 if (!caching_ctl)
5671 return 0;
5672
5673 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5674
5675 put_caching_control(caching_ctl);
5676 return 0;
5677 }
5678
5679 int __get_raid_index(u64 flags)
5680 {
5681 if (flags & BTRFS_BLOCK_GROUP_RAID10)
5682 return BTRFS_RAID_RAID10;
5683 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
5684 return BTRFS_RAID_RAID1;
5685 else if (flags & BTRFS_BLOCK_GROUP_DUP)
5686 return BTRFS_RAID_DUP;
5687 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
5688 return BTRFS_RAID_RAID0;
5689 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
5690 return BTRFS_RAID_RAID5;
5691 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
5692 return BTRFS_RAID_RAID6;
5693
5694 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
5695 }
5696
5697 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5698 {
5699 return __get_raid_index(cache->flags);
5700 }
5701
5702 enum btrfs_loop_type {
5703 LOOP_CACHING_NOWAIT = 0,
5704 LOOP_CACHING_WAIT = 1,
5705 LOOP_ALLOC_CHUNK = 2,
5706 LOOP_NO_EMPTY_SIZE = 3,
5707 };
5708
5709 /*
5710 * walks the btree of allocated extents and find a hole of a given size.
5711 * The key ins is changed to record the hole:
5712 * ins->objectid == block start
5713 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5714 * ins->offset == number of blocks
5715 * Any available blocks before search_start are skipped.
5716 */
5717 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5718 struct btrfs_root *orig_root,
5719 u64 num_bytes, u64 empty_size,
5720 u64 hint_byte, struct btrfs_key *ins,
5721 u64 data)
5722 {
5723 int ret = 0;
5724 struct btrfs_root *root = orig_root->fs_info->extent_root;
5725 struct btrfs_free_cluster *last_ptr = NULL;
5726 struct btrfs_block_group_cache *block_group = NULL;
5727 struct btrfs_block_group_cache *used_block_group;
5728 u64 search_start = 0;
5729 int empty_cluster = 2 * 1024 * 1024;
5730 struct btrfs_space_info *space_info;
5731 int loop = 0;
5732 int index = __get_raid_index(data);
5733 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5734 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5735 bool found_uncached_bg = false;
5736 bool failed_cluster_refill = false;
5737 bool failed_alloc = false;
5738 bool use_cluster = true;
5739 bool have_caching_bg = false;
5740
5741 WARN_ON(num_bytes < root->sectorsize);
5742 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5743 ins->objectid = 0;
5744 ins->offset = 0;
5745
5746 trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5747
5748 space_info = __find_space_info(root->fs_info, data);
5749 if (!space_info) {
5750 printk(KERN_ERR "No space info for %llu\n", data);
5751 return -ENOSPC;
5752 }
5753
5754 /*
5755 * If the space info is for both data and metadata it means we have a
5756 * small filesystem and we can't use the clustering stuff.
5757 */
5758 if (btrfs_mixed_space_info(space_info))
5759 use_cluster = false;
5760
5761 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5762 last_ptr = &root->fs_info->meta_alloc_cluster;
5763 if (!btrfs_test_opt(root, SSD))
5764 empty_cluster = 64 * 1024;
5765 }
5766
5767 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5768 btrfs_test_opt(root, SSD)) {
5769 last_ptr = &root->fs_info->data_alloc_cluster;
5770 }
5771
5772 if (last_ptr) {
5773 spin_lock(&last_ptr->lock);
5774 if (last_ptr->block_group)
5775 hint_byte = last_ptr->window_start;
5776 spin_unlock(&last_ptr->lock);
5777 }
5778
5779 search_start = max(search_start, first_logical_byte(root, 0));
5780 search_start = max(search_start, hint_byte);
5781
5782 if (!last_ptr)
5783 empty_cluster = 0;
5784
5785 if (search_start == hint_byte) {
5786 block_group = btrfs_lookup_block_group(root->fs_info,
5787 search_start);
5788 used_block_group = block_group;
5789 /*
5790 * we don't want to use the block group if it doesn't match our
5791 * allocation bits, or if its not cached.
5792 *
5793 * However if we are re-searching with an ideal block group
5794 * picked out then we don't care that the block group is cached.
5795 */
5796 if (block_group && block_group_bits(block_group, data) &&
5797 block_group->cached != BTRFS_CACHE_NO) {
5798 down_read(&space_info->groups_sem);
5799 if (list_empty(&block_group->list) ||
5800 block_group->ro) {
5801 /*
5802 * someone is removing this block group,
5803 * we can't jump into the have_block_group
5804 * target because our list pointers are not
5805 * valid
5806 */
5807 btrfs_put_block_group(block_group);
5808 up_read(&space_info->groups_sem);
5809 } else {
5810 index = get_block_group_index(block_group);
5811 goto have_block_group;
5812 }
5813 } else if (block_group) {
5814 btrfs_put_block_group(block_group);
5815 }
5816 }
5817 search:
5818 have_caching_bg = false;
5819 down_read(&space_info->groups_sem);
5820 list_for_each_entry(block_group, &space_info->block_groups[index],
5821 list) {
5822 u64 offset;
5823 int cached;
5824
5825 used_block_group = block_group;
5826 btrfs_get_block_group(block_group);
5827 search_start = block_group->key.objectid;
5828
5829 /*
5830 * this can happen if we end up cycling through all the
5831 * raid types, but we want to make sure we only allocate
5832 * for the proper type.
5833 */
5834 if (!block_group_bits(block_group, data)) {
5835 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5836 BTRFS_BLOCK_GROUP_RAID1 |
5837 BTRFS_BLOCK_GROUP_RAID5 |
5838 BTRFS_BLOCK_GROUP_RAID6 |
5839 BTRFS_BLOCK_GROUP_RAID10;
5840
5841 /*
5842 * if they asked for extra copies and this block group
5843 * doesn't provide them, bail. This does allow us to
5844 * fill raid0 from raid1.
5845 */
5846 if ((data & extra) && !(block_group->flags & extra))
5847 goto loop;
5848 }
5849
5850 have_block_group:
5851 cached = block_group_cache_done(block_group);
5852 if (unlikely(!cached)) {
5853 found_uncached_bg = true;
5854 ret = cache_block_group(block_group, 0);
5855 BUG_ON(ret < 0);
5856 ret = 0;
5857 }
5858
5859 if (unlikely(block_group->ro))
5860 goto loop;
5861
5862 /*
5863 * Ok we want to try and use the cluster allocator, so
5864 * lets look there
5865 */
5866 if (last_ptr) {
5867 unsigned long aligned_cluster;
5868 /*
5869 * the refill lock keeps out other
5870 * people trying to start a new cluster
5871 */
5872 spin_lock(&last_ptr->refill_lock);
5873 used_block_group = last_ptr->block_group;
5874 if (used_block_group != block_group &&
5875 (!used_block_group ||
5876 used_block_group->ro ||
5877 !block_group_bits(used_block_group, data))) {
5878 used_block_group = block_group;
5879 goto refill_cluster;
5880 }
5881
5882 if (used_block_group != block_group)
5883 btrfs_get_block_group(used_block_group);
5884
5885 offset = btrfs_alloc_from_cluster(used_block_group,
5886 last_ptr, num_bytes, used_block_group->key.objectid);
5887 if (offset) {
5888 /* we have a block, we're done */
5889 spin_unlock(&last_ptr->refill_lock);
5890 trace_btrfs_reserve_extent_cluster(root,
5891 block_group, search_start, num_bytes);
5892 goto checks;
5893 }
5894
5895 WARN_ON(last_ptr->block_group != used_block_group);
5896 if (used_block_group != block_group) {
5897 btrfs_put_block_group(used_block_group);
5898 used_block_group = block_group;
5899 }
5900 refill_cluster:
5901 BUG_ON(used_block_group != block_group);
5902 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5903 * set up a new clusters, so lets just skip it
5904 * and let the allocator find whatever block
5905 * it can find. If we reach this point, we
5906 * will have tried the cluster allocator
5907 * plenty of times and not have found
5908 * anything, so we are likely way too
5909 * fragmented for the clustering stuff to find
5910 * anything.
5911 *
5912 * However, if the cluster is taken from the
5913 * current block group, release the cluster
5914 * first, so that we stand a better chance of
5915 * succeeding in the unclustered
5916 * allocation. */
5917 if (loop >= LOOP_NO_EMPTY_SIZE &&
5918 last_ptr->block_group != block_group) {
5919 spin_unlock(&last_ptr->refill_lock);
5920 goto unclustered_alloc;
5921 }
5922
5923 /*
5924 * this cluster didn't work out, free it and
5925 * start over
5926 */
5927 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5928
5929 if (loop >= LOOP_NO_EMPTY_SIZE) {
5930 spin_unlock(&last_ptr->refill_lock);
5931 goto unclustered_alloc;
5932 }
5933
5934 aligned_cluster = max_t(unsigned long,
5935 empty_cluster + empty_size,
5936 block_group->full_stripe_len);
5937
5938 /* allocate a cluster in this block group */
5939 ret = btrfs_find_space_cluster(trans, root,
5940 block_group, last_ptr,
5941 search_start, num_bytes,
5942 aligned_cluster);
5943 if (ret == 0) {
5944 /*
5945 * now pull our allocation out of this
5946 * cluster
5947 */
5948 offset = btrfs_alloc_from_cluster(block_group,
5949 last_ptr, num_bytes,
5950 search_start);
5951 if (offset) {
5952 /* we found one, proceed */
5953 spin_unlock(&last_ptr->refill_lock);
5954 trace_btrfs_reserve_extent_cluster(root,
5955 block_group, search_start,
5956 num_bytes);
5957 goto checks;
5958 }
5959 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5960 && !failed_cluster_refill) {
5961 spin_unlock(&last_ptr->refill_lock);
5962
5963 failed_cluster_refill = true;
5964 wait_block_group_cache_progress(block_group,
5965 num_bytes + empty_cluster + empty_size);
5966 goto have_block_group;
5967 }
5968
5969 /*
5970 * at this point we either didn't find a cluster
5971 * or we weren't able to allocate a block from our
5972 * cluster. Free the cluster we've been trying
5973 * to use, and go to the next block group
5974 */
5975 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5976 spin_unlock(&last_ptr->refill_lock);
5977 goto loop;
5978 }
5979
5980 unclustered_alloc:
5981 spin_lock(&block_group->free_space_ctl->tree_lock);
5982 if (cached &&
5983 block_group->free_space_ctl->free_space <
5984 num_bytes + empty_cluster + empty_size) {
5985 spin_unlock(&block_group->free_space_ctl->tree_lock);
5986 goto loop;
5987 }
5988 spin_unlock(&block_group->free_space_ctl->tree_lock);
5989
5990 offset = btrfs_find_space_for_alloc(block_group, search_start,
5991 num_bytes, empty_size);
5992 /*
5993 * If we didn't find a chunk, and we haven't failed on this
5994 * block group before, and this block group is in the middle of
5995 * caching and we are ok with waiting, then go ahead and wait
5996 * for progress to be made, and set failed_alloc to true.
5997 *
5998 * If failed_alloc is true then we've already waited on this
5999 * block group once and should move on to the next block group.
6000 */
6001 if (!offset && !failed_alloc && !cached &&
6002 loop > LOOP_CACHING_NOWAIT) {
6003 wait_block_group_cache_progress(block_group,
6004 num_bytes + empty_size);
6005 failed_alloc = true;
6006 goto have_block_group;
6007 } else if (!offset) {
6008 if (!cached)
6009 have_caching_bg = true;
6010 goto loop;
6011 }
6012 checks:
6013 search_start = stripe_align(root, used_block_group,
6014 offset, num_bytes);
6015
6016 /* move on to the next group */
6017 if (search_start + num_bytes >
6018 used_block_group->key.objectid + used_block_group->key.offset) {
6019 btrfs_add_free_space(used_block_group, offset, num_bytes);
6020 goto loop;
6021 }
6022
6023 if (offset < search_start)
6024 btrfs_add_free_space(used_block_group, offset,
6025 search_start - offset);
6026 BUG_ON(offset > search_start);
6027
6028 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
6029 alloc_type);
6030 if (ret == -EAGAIN) {
6031 btrfs_add_free_space(used_block_group, offset, num_bytes);
6032 goto loop;
6033 }
6034
6035 /* we are all good, lets return */
6036 ins->objectid = search_start;
6037 ins->offset = num_bytes;
6038
6039 trace_btrfs_reserve_extent(orig_root, block_group,
6040 search_start, num_bytes);
6041 if (used_block_group != block_group)
6042 btrfs_put_block_group(used_block_group);
6043 btrfs_put_block_group(block_group);
6044 break;
6045 loop:
6046 failed_cluster_refill = false;
6047 failed_alloc = false;
6048 BUG_ON(index != get_block_group_index(block_group));
6049 if (used_block_group != block_group)
6050 btrfs_put_block_group(used_block_group);
6051 btrfs_put_block_group(block_group);
6052 }
6053 up_read(&space_info->groups_sem);
6054
6055 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6056 goto search;
6057
6058 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6059 goto search;
6060
6061 /*
6062 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6063 * caching kthreads as we move along
6064 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6065 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6066 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6067 * again
6068 */
6069 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6070 index = 0;
6071 loop++;
6072 if (loop == LOOP_ALLOC_CHUNK) {
6073 ret = do_chunk_alloc(trans, root, data,
6074 CHUNK_ALLOC_FORCE);
6075 /*
6076 * Do not bail out on ENOSPC since we
6077 * can do more things.
6078 */
6079 if (ret < 0 && ret != -ENOSPC) {
6080 btrfs_abort_transaction(trans,
6081 root, ret);
6082 goto out;
6083 }
6084 }
6085
6086 if (loop == LOOP_NO_EMPTY_SIZE) {
6087 empty_size = 0;
6088 empty_cluster = 0;
6089 }
6090
6091 goto search;
6092 } else if (!ins->objectid) {
6093 ret = -ENOSPC;
6094 } else if (ins->objectid) {
6095 ret = 0;
6096 }
6097 out:
6098
6099 return ret;
6100 }
6101
6102 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6103 int dump_block_groups)
6104 {
6105 struct btrfs_block_group_cache *cache;
6106 int index = 0;
6107
6108 spin_lock(&info->lock);
6109 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
6110 (unsigned long long)info->flags,
6111 (unsigned long long)(info->total_bytes - info->bytes_used -
6112 info->bytes_pinned - info->bytes_reserved -
6113 info->bytes_readonly),
6114 (info->full) ? "" : "not ");
6115 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
6116 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6117 (unsigned long long)info->total_bytes,
6118 (unsigned long long)info->bytes_used,
6119 (unsigned long long)info->bytes_pinned,
6120 (unsigned long long)info->bytes_reserved,
6121 (unsigned long long)info->bytes_may_use,
6122 (unsigned long long)info->bytes_readonly);
6123 spin_unlock(&info->lock);
6124
6125 if (!dump_block_groups)
6126 return;
6127
6128 down_read(&info->groups_sem);
6129 again:
6130 list_for_each_entry(cache, &info->block_groups[index], list) {
6131 spin_lock(&cache->lock);
6132 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
6133 (unsigned long long)cache->key.objectid,
6134 (unsigned long long)cache->key.offset,
6135 (unsigned long long)btrfs_block_group_used(&cache->item),
6136 (unsigned long long)cache->pinned,
6137 (unsigned long long)cache->reserved,
6138 cache->ro ? "[readonly]" : "");
6139 btrfs_dump_free_space(cache, bytes);
6140 spin_unlock(&cache->lock);
6141 }
6142 if (++index < BTRFS_NR_RAID_TYPES)
6143 goto again;
6144 up_read(&info->groups_sem);
6145 }
6146
6147 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
6148 struct btrfs_root *root,
6149 u64 num_bytes, u64 min_alloc_size,
6150 u64 empty_size, u64 hint_byte,
6151 struct btrfs_key *ins, u64 data)
6152 {
6153 bool final_tried = false;
6154 int ret;
6155
6156 data = btrfs_get_alloc_profile(root, data);
6157 again:
6158 WARN_ON(num_bytes < root->sectorsize);
6159 ret = find_free_extent(trans, root, num_bytes, empty_size,
6160 hint_byte, ins, data);
6161
6162 if (ret == -ENOSPC) {
6163 if (!final_tried) {
6164 num_bytes = num_bytes >> 1;
6165 num_bytes = round_down(num_bytes, root->sectorsize);
6166 num_bytes = max(num_bytes, min_alloc_size);
6167 if (num_bytes == min_alloc_size)
6168 final_tried = true;
6169 goto again;
6170 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6171 struct btrfs_space_info *sinfo;
6172
6173 sinfo = __find_space_info(root->fs_info, data);
6174 printk(KERN_ERR "btrfs allocation failed flags %llu, "
6175 "wanted %llu\n", (unsigned long long)data,
6176 (unsigned long long)num_bytes);
6177 if (sinfo)
6178 dump_space_info(sinfo, num_bytes, 1);
6179 }
6180 }
6181
6182 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6183
6184 return ret;
6185 }
6186
6187 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6188 u64 start, u64 len, int pin)
6189 {
6190 struct btrfs_block_group_cache *cache;
6191 int ret = 0;
6192
6193 cache = btrfs_lookup_block_group(root->fs_info, start);
6194 if (!cache) {
6195 printk(KERN_ERR "Unable to find block group for %llu\n",
6196 (unsigned long long)start);
6197 return -ENOSPC;
6198 }
6199
6200 if (btrfs_test_opt(root, DISCARD))
6201 ret = btrfs_discard_extent(root, start, len, NULL);
6202
6203 if (pin)
6204 pin_down_extent(root, cache, start, len, 1);
6205 else {
6206 btrfs_add_free_space(cache, start, len);
6207 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6208 }
6209 btrfs_put_block_group(cache);
6210
6211 trace_btrfs_reserved_extent_free(root, start, len);
6212
6213 return ret;
6214 }
6215
6216 int btrfs_free_reserved_extent(struct btrfs_root *root,
6217 u64 start, u64 len)
6218 {
6219 return __btrfs_free_reserved_extent(root, start, len, 0);
6220 }
6221
6222 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6223 u64 start, u64 len)
6224 {
6225 return __btrfs_free_reserved_extent(root, start, len, 1);
6226 }
6227
6228 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6229 struct btrfs_root *root,
6230 u64 parent, u64 root_objectid,
6231 u64 flags, u64 owner, u64 offset,
6232 struct btrfs_key *ins, int ref_mod)
6233 {
6234 int ret;
6235 struct btrfs_fs_info *fs_info = root->fs_info;
6236 struct btrfs_extent_item *extent_item;
6237 struct btrfs_extent_inline_ref *iref;
6238 struct btrfs_path *path;
6239 struct extent_buffer *leaf;
6240 int type;
6241 u32 size;
6242
6243 if (parent > 0)
6244 type = BTRFS_SHARED_DATA_REF_KEY;
6245 else
6246 type = BTRFS_EXTENT_DATA_REF_KEY;
6247
6248 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6249
6250 path = btrfs_alloc_path();
6251 if (!path)
6252 return -ENOMEM;
6253
6254 path->leave_spinning = 1;
6255 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6256 ins, size);
6257 if (ret) {
6258 btrfs_free_path(path);
6259 return ret;
6260 }
6261
6262 leaf = path->nodes[0];
6263 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6264 struct btrfs_extent_item);
6265 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6266 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6267 btrfs_set_extent_flags(leaf, extent_item,
6268 flags | BTRFS_EXTENT_FLAG_DATA);
6269
6270 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6271 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6272 if (parent > 0) {
6273 struct btrfs_shared_data_ref *ref;
6274 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6275 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6276 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6277 } else {
6278 struct btrfs_extent_data_ref *ref;
6279 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6280 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6281 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6282 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6283 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6284 }
6285
6286 btrfs_mark_buffer_dirty(path->nodes[0]);
6287 btrfs_free_path(path);
6288
6289 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6290 if (ret) { /* -ENOENT, logic error */
6291 printk(KERN_ERR "btrfs update block group failed for %llu "
6292 "%llu\n", (unsigned long long)ins->objectid,
6293 (unsigned long long)ins->offset);
6294 BUG();
6295 }
6296 return ret;
6297 }
6298
6299 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6300 struct btrfs_root *root,
6301 u64 parent, u64 root_objectid,
6302 u64 flags, struct btrfs_disk_key *key,
6303 int level, struct btrfs_key *ins)
6304 {
6305 int ret;
6306 struct btrfs_fs_info *fs_info = root->fs_info;
6307 struct btrfs_extent_item *extent_item;
6308 struct btrfs_tree_block_info *block_info;
6309 struct btrfs_extent_inline_ref *iref;
6310 struct btrfs_path *path;
6311 struct extent_buffer *leaf;
6312 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
6313
6314 path = btrfs_alloc_path();
6315 if (!path)
6316 return -ENOMEM;
6317
6318 path->leave_spinning = 1;
6319 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6320 ins, size);
6321 if (ret) {
6322 btrfs_free_path(path);
6323 return ret;
6324 }
6325
6326 leaf = path->nodes[0];
6327 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6328 struct btrfs_extent_item);
6329 btrfs_set_extent_refs(leaf, extent_item, 1);
6330 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6331 btrfs_set_extent_flags(leaf, extent_item,
6332 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6333 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6334
6335 btrfs_set_tree_block_key(leaf, block_info, key);
6336 btrfs_set_tree_block_level(leaf, block_info, level);
6337
6338 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6339 if (parent > 0) {
6340 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6341 btrfs_set_extent_inline_ref_type(leaf, iref,
6342 BTRFS_SHARED_BLOCK_REF_KEY);
6343 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6344 } else {
6345 btrfs_set_extent_inline_ref_type(leaf, iref,
6346 BTRFS_TREE_BLOCK_REF_KEY);
6347 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6348 }
6349
6350 btrfs_mark_buffer_dirty(leaf);
6351 btrfs_free_path(path);
6352
6353 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6354 if (ret) { /* -ENOENT, logic error */
6355 printk(KERN_ERR "btrfs update block group failed for %llu "
6356 "%llu\n", (unsigned long long)ins->objectid,
6357 (unsigned long long)ins->offset);
6358 BUG();
6359 }
6360 return ret;
6361 }
6362
6363 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6364 struct btrfs_root *root,
6365 u64 root_objectid, u64 owner,
6366 u64 offset, struct btrfs_key *ins)
6367 {
6368 int ret;
6369
6370 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6371
6372 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6373 ins->offset, 0,
6374 root_objectid, owner, offset,
6375 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6376 return ret;
6377 }
6378
6379 /*
6380 * this is used by the tree logging recovery code. It records that
6381 * an extent has been allocated and makes sure to clear the free
6382 * space cache bits as well
6383 */
6384 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6385 struct btrfs_root *root,
6386 u64 root_objectid, u64 owner, u64 offset,
6387 struct btrfs_key *ins)
6388 {
6389 int ret;
6390 struct btrfs_block_group_cache *block_group;
6391 struct btrfs_caching_control *caching_ctl;
6392 u64 start = ins->objectid;
6393 u64 num_bytes = ins->offset;
6394
6395 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6396 cache_block_group(block_group, 0);
6397 caching_ctl = get_caching_control(block_group);
6398
6399 if (!caching_ctl) {
6400 BUG_ON(!block_group_cache_done(block_group));
6401 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6402 BUG_ON(ret); /* -ENOMEM */
6403 } else {
6404 mutex_lock(&caching_ctl->mutex);
6405
6406 if (start >= caching_ctl->progress) {
6407 ret = add_excluded_extent(root, start, num_bytes);
6408 BUG_ON(ret); /* -ENOMEM */
6409 } else if (start + num_bytes <= caching_ctl->progress) {
6410 ret = btrfs_remove_free_space(block_group,
6411 start, num_bytes);
6412 BUG_ON(ret); /* -ENOMEM */
6413 } else {
6414 num_bytes = caching_ctl->progress - start;
6415 ret = btrfs_remove_free_space(block_group,
6416 start, num_bytes);
6417 BUG_ON(ret); /* -ENOMEM */
6418
6419 start = caching_ctl->progress;
6420 num_bytes = ins->objectid + ins->offset -
6421 caching_ctl->progress;
6422 ret = add_excluded_extent(root, start, num_bytes);
6423 BUG_ON(ret); /* -ENOMEM */
6424 }
6425
6426 mutex_unlock(&caching_ctl->mutex);
6427 put_caching_control(caching_ctl);
6428 }
6429
6430 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6431 RESERVE_ALLOC_NO_ACCOUNT);
6432 BUG_ON(ret); /* logic error */
6433 btrfs_put_block_group(block_group);
6434 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6435 0, owner, offset, ins, 1);
6436 return ret;
6437 }
6438
6439 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6440 struct btrfs_root *root,
6441 u64 bytenr, u32 blocksize,
6442 int level)
6443 {
6444 struct extent_buffer *buf;
6445
6446 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6447 if (!buf)
6448 return ERR_PTR(-ENOMEM);
6449 btrfs_set_header_generation(buf, trans->transid);
6450 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6451 btrfs_tree_lock(buf);
6452 clean_tree_block(trans, root, buf);
6453 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6454
6455 btrfs_set_lock_blocking(buf);
6456 btrfs_set_buffer_uptodate(buf);
6457
6458 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6459 /*
6460 * we allow two log transactions at a time, use different
6461 * EXENT bit to differentiate dirty pages.
6462 */
6463 if (root->log_transid % 2 == 0)
6464 set_extent_dirty(&root->dirty_log_pages, buf->start,
6465 buf->start + buf->len - 1, GFP_NOFS);
6466 else
6467 set_extent_new(&root->dirty_log_pages, buf->start,
6468 buf->start + buf->len - 1, GFP_NOFS);
6469 } else {
6470 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6471 buf->start + buf->len - 1, GFP_NOFS);
6472 }
6473 trans->blocks_used++;
6474 /* this returns a buffer locked for blocking */
6475 return buf;
6476 }
6477
6478 static struct btrfs_block_rsv *
6479 use_block_rsv(struct btrfs_trans_handle *trans,
6480 struct btrfs_root *root, u32 blocksize)
6481 {
6482 struct btrfs_block_rsv *block_rsv;
6483 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6484 int ret;
6485
6486 block_rsv = get_block_rsv(trans, root);
6487
6488 if (block_rsv->size == 0) {
6489 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6490 BTRFS_RESERVE_NO_FLUSH);
6491 /*
6492 * If we couldn't reserve metadata bytes try and use some from
6493 * the global reserve.
6494 */
6495 if (ret && block_rsv != global_rsv) {
6496 ret = block_rsv_use_bytes(global_rsv, blocksize);
6497 if (!ret)
6498 return global_rsv;
6499 return ERR_PTR(ret);
6500 } else if (ret) {
6501 return ERR_PTR(ret);
6502 }
6503 return block_rsv;
6504 }
6505
6506 ret = block_rsv_use_bytes(block_rsv, blocksize);
6507 if (!ret)
6508 return block_rsv;
6509 if (ret && !block_rsv->failfast) {
6510 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6511 static DEFINE_RATELIMIT_STATE(_rs,
6512 DEFAULT_RATELIMIT_INTERVAL * 10,
6513 /*DEFAULT_RATELIMIT_BURST*/ 1);
6514 if (__ratelimit(&_rs))
6515 WARN(1, KERN_DEBUG
6516 "btrfs: block rsv returned %d\n", ret);
6517 }
6518 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6519 BTRFS_RESERVE_NO_FLUSH);
6520 if (!ret) {
6521 return block_rsv;
6522 } else if (ret && block_rsv != global_rsv) {
6523 ret = block_rsv_use_bytes(global_rsv, blocksize);
6524 if (!ret)
6525 return global_rsv;
6526 }
6527 }
6528
6529 return ERR_PTR(-ENOSPC);
6530 }
6531
6532 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6533 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6534 {
6535 block_rsv_add_bytes(block_rsv, blocksize, 0);
6536 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6537 }
6538
6539 /*
6540 * finds a free extent and does all the dirty work required for allocation
6541 * returns the key for the extent through ins, and a tree buffer for
6542 * the first block of the extent through buf.
6543 *
6544 * returns the tree buffer or NULL.
6545 */
6546 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6547 struct btrfs_root *root, u32 blocksize,
6548 u64 parent, u64 root_objectid,
6549 struct btrfs_disk_key *key, int level,
6550 u64 hint, u64 empty_size)
6551 {
6552 struct btrfs_key ins;
6553 struct btrfs_block_rsv *block_rsv;
6554 struct extent_buffer *buf;
6555 u64 flags = 0;
6556 int ret;
6557
6558
6559 block_rsv = use_block_rsv(trans, root, blocksize);
6560 if (IS_ERR(block_rsv))
6561 return ERR_CAST(block_rsv);
6562
6563 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6564 empty_size, hint, &ins, 0);
6565 if (ret) {
6566 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6567 return ERR_PTR(ret);
6568 }
6569
6570 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6571 blocksize, level);
6572 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6573
6574 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6575 if (parent == 0)
6576 parent = ins.objectid;
6577 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6578 } else
6579 BUG_ON(parent > 0);
6580
6581 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6582 struct btrfs_delayed_extent_op *extent_op;
6583 extent_op = btrfs_alloc_delayed_extent_op();
6584 BUG_ON(!extent_op); /* -ENOMEM */
6585 if (key)
6586 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6587 else
6588 memset(&extent_op->key, 0, sizeof(extent_op->key));
6589 extent_op->flags_to_set = flags;
6590 extent_op->update_key = 1;
6591 extent_op->update_flags = 1;
6592 extent_op->is_data = 0;
6593
6594 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6595 ins.objectid,
6596 ins.offset, parent, root_objectid,
6597 level, BTRFS_ADD_DELAYED_EXTENT,
6598 extent_op, 0);
6599 BUG_ON(ret); /* -ENOMEM */
6600 }
6601 return buf;
6602 }
6603
6604 struct walk_control {
6605 u64 refs[BTRFS_MAX_LEVEL];
6606 u64 flags[BTRFS_MAX_LEVEL];
6607 struct btrfs_key update_progress;
6608 int stage;
6609 int level;
6610 int shared_level;
6611 int update_ref;
6612 int keep_locks;
6613 int reada_slot;
6614 int reada_count;
6615 int for_reloc;
6616 };
6617
6618 #define DROP_REFERENCE 1
6619 #define UPDATE_BACKREF 2
6620
6621 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6622 struct btrfs_root *root,
6623 struct walk_control *wc,
6624 struct btrfs_path *path)
6625 {
6626 u64 bytenr;
6627 u64 generation;
6628 u64 refs;
6629 u64 flags;
6630 u32 nritems;
6631 u32 blocksize;
6632 struct btrfs_key key;
6633 struct extent_buffer *eb;
6634 int ret;
6635 int slot;
6636 int nread = 0;
6637
6638 if (path->slots[wc->level] < wc->reada_slot) {
6639 wc->reada_count = wc->reada_count * 2 / 3;
6640 wc->reada_count = max(wc->reada_count, 2);
6641 } else {
6642 wc->reada_count = wc->reada_count * 3 / 2;
6643 wc->reada_count = min_t(int, wc->reada_count,
6644 BTRFS_NODEPTRS_PER_BLOCK(root));
6645 }
6646
6647 eb = path->nodes[wc->level];
6648 nritems = btrfs_header_nritems(eb);
6649 blocksize = btrfs_level_size(root, wc->level - 1);
6650
6651 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6652 if (nread >= wc->reada_count)
6653 break;
6654
6655 cond_resched();
6656 bytenr = btrfs_node_blockptr(eb, slot);
6657 generation = btrfs_node_ptr_generation(eb, slot);
6658
6659 if (slot == path->slots[wc->level])
6660 goto reada;
6661
6662 if (wc->stage == UPDATE_BACKREF &&
6663 generation <= root->root_key.offset)
6664 continue;
6665
6666 /* We don't lock the tree block, it's OK to be racy here */
6667 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6668 &refs, &flags);
6669 /* We don't care about errors in readahead. */
6670 if (ret < 0)
6671 continue;
6672 BUG_ON(refs == 0);
6673
6674 if (wc->stage == DROP_REFERENCE) {
6675 if (refs == 1)
6676 goto reada;
6677
6678 if (wc->level == 1 &&
6679 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6680 continue;
6681 if (!wc->update_ref ||
6682 generation <= root->root_key.offset)
6683 continue;
6684 btrfs_node_key_to_cpu(eb, &key, slot);
6685 ret = btrfs_comp_cpu_keys(&key,
6686 &wc->update_progress);
6687 if (ret < 0)
6688 continue;
6689 } else {
6690 if (wc->level == 1 &&
6691 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6692 continue;
6693 }
6694 reada:
6695 ret = readahead_tree_block(root, bytenr, blocksize,
6696 generation);
6697 if (ret)
6698 break;
6699 nread++;
6700 }
6701 wc->reada_slot = slot;
6702 }
6703
6704 /*
6705 * helper to process tree block while walking down the tree.
6706 *
6707 * when wc->stage == UPDATE_BACKREF, this function updates
6708 * back refs for pointers in the block.
6709 *
6710 * NOTE: return value 1 means we should stop walking down.
6711 */
6712 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6713 struct btrfs_root *root,
6714 struct btrfs_path *path,
6715 struct walk_control *wc, int lookup_info)
6716 {
6717 int level = wc->level;
6718 struct extent_buffer *eb = path->nodes[level];
6719 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6720 int ret;
6721
6722 if (wc->stage == UPDATE_BACKREF &&
6723 btrfs_header_owner(eb) != root->root_key.objectid)
6724 return 1;
6725
6726 /*
6727 * when reference count of tree block is 1, it won't increase
6728 * again. once full backref flag is set, we never clear it.
6729 */
6730 if (lookup_info &&
6731 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6732 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6733 BUG_ON(!path->locks[level]);
6734 ret = btrfs_lookup_extent_info(trans, root,
6735 eb->start, eb->len,
6736 &wc->refs[level],
6737 &wc->flags[level]);
6738 BUG_ON(ret == -ENOMEM);
6739 if (ret)
6740 return ret;
6741 BUG_ON(wc->refs[level] == 0);
6742 }
6743
6744 if (wc->stage == DROP_REFERENCE) {
6745 if (wc->refs[level] > 1)
6746 return 1;
6747
6748 if (path->locks[level] && !wc->keep_locks) {
6749 btrfs_tree_unlock_rw(eb, path->locks[level]);
6750 path->locks[level] = 0;
6751 }
6752 return 0;
6753 }
6754
6755 /* wc->stage == UPDATE_BACKREF */
6756 if (!(wc->flags[level] & flag)) {
6757 BUG_ON(!path->locks[level]);
6758 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6759 BUG_ON(ret); /* -ENOMEM */
6760 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6761 BUG_ON(ret); /* -ENOMEM */
6762 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6763 eb->len, flag, 0);
6764 BUG_ON(ret); /* -ENOMEM */
6765 wc->flags[level] |= flag;
6766 }
6767
6768 /*
6769 * the block is shared by multiple trees, so it's not good to
6770 * keep the tree lock
6771 */
6772 if (path->locks[level] && level > 0) {
6773 btrfs_tree_unlock_rw(eb, path->locks[level]);
6774 path->locks[level] = 0;
6775 }
6776 return 0;
6777 }
6778
6779 /*
6780 * helper to process tree block pointer.
6781 *
6782 * when wc->stage == DROP_REFERENCE, this function checks
6783 * reference count of the block pointed to. if the block
6784 * is shared and we need update back refs for the subtree
6785 * rooted at the block, this function changes wc->stage to
6786 * UPDATE_BACKREF. if the block is shared and there is no
6787 * need to update back, this function drops the reference
6788 * to the block.
6789 *
6790 * NOTE: return value 1 means we should stop walking down.
6791 */
6792 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6793 struct btrfs_root *root,
6794 struct btrfs_path *path,
6795 struct walk_control *wc, int *lookup_info)
6796 {
6797 u64 bytenr;
6798 u64 generation;
6799 u64 parent;
6800 u32 blocksize;
6801 struct btrfs_key key;
6802 struct extent_buffer *next;
6803 int level = wc->level;
6804 int reada = 0;
6805 int ret = 0;
6806
6807 generation = btrfs_node_ptr_generation(path->nodes[level],
6808 path->slots[level]);
6809 /*
6810 * if the lower level block was created before the snapshot
6811 * was created, we know there is no need to update back refs
6812 * for the subtree
6813 */
6814 if (wc->stage == UPDATE_BACKREF &&
6815 generation <= root->root_key.offset) {
6816 *lookup_info = 1;
6817 return 1;
6818 }
6819
6820 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6821 blocksize = btrfs_level_size(root, level - 1);
6822
6823 next = btrfs_find_tree_block(root, bytenr, blocksize);
6824 if (!next) {
6825 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6826 if (!next)
6827 return -ENOMEM;
6828 reada = 1;
6829 }
6830 btrfs_tree_lock(next);
6831 btrfs_set_lock_blocking(next);
6832
6833 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6834 &wc->refs[level - 1],
6835 &wc->flags[level - 1]);
6836 if (ret < 0) {
6837 btrfs_tree_unlock(next);
6838 return ret;
6839 }
6840
6841 BUG_ON(wc->refs[level - 1] == 0);
6842 *lookup_info = 0;
6843
6844 if (wc->stage == DROP_REFERENCE) {
6845 if (wc->refs[level - 1] > 1) {
6846 if (level == 1 &&
6847 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6848 goto skip;
6849
6850 if (!wc->update_ref ||
6851 generation <= root->root_key.offset)
6852 goto skip;
6853
6854 btrfs_node_key_to_cpu(path->nodes[level], &key,
6855 path->slots[level]);
6856 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6857 if (ret < 0)
6858 goto skip;
6859
6860 wc->stage = UPDATE_BACKREF;
6861 wc->shared_level = level - 1;
6862 }
6863 } else {
6864 if (level == 1 &&
6865 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6866 goto skip;
6867 }
6868
6869 if (!btrfs_buffer_uptodate(next, generation, 0)) {
6870 btrfs_tree_unlock(next);
6871 free_extent_buffer(next);
6872 next = NULL;
6873 *lookup_info = 1;
6874 }
6875
6876 if (!next) {
6877 if (reada && level == 1)
6878 reada_walk_down(trans, root, wc, path);
6879 next = read_tree_block(root, bytenr, blocksize, generation);
6880 if (!next)
6881 return -EIO;
6882 btrfs_tree_lock(next);
6883 btrfs_set_lock_blocking(next);
6884 }
6885
6886 level--;
6887 BUG_ON(level != btrfs_header_level(next));
6888 path->nodes[level] = next;
6889 path->slots[level] = 0;
6890 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6891 wc->level = level;
6892 if (wc->level == 1)
6893 wc->reada_slot = 0;
6894 return 0;
6895 skip:
6896 wc->refs[level - 1] = 0;
6897 wc->flags[level - 1] = 0;
6898 if (wc->stage == DROP_REFERENCE) {
6899 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6900 parent = path->nodes[level]->start;
6901 } else {
6902 BUG_ON(root->root_key.objectid !=
6903 btrfs_header_owner(path->nodes[level]));
6904 parent = 0;
6905 }
6906
6907 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6908 root->root_key.objectid, level - 1, 0, 0);
6909 BUG_ON(ret); /* -ENOMEM */
6910 }
6911 btrfs_tree_unlock(next);
6912 free_extent_buffer(next);
6913 *lookup_info = 1;
6914 return 1;
6915 }
6916
6917 /*
6918 * helper to process tree block while walking up the tree.
6919 *
6920 * when wc->stage == DROP_REFERENCE, this function drops
6921 * reference count on the block.
6922 *
6923 * when wc->stage == UPDATE_BACKREF, this function changes
6924 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6925 * to UPDATE_BACKREF previously while processing the block.
6926 *
6927 * NOTE: return value 1 means we should stop walking up.
6928 */
6929 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6930 struct btrfs_root *root,
6931 struct btrfs_path *path,
6932 struct walk_control *wc)
6933 {
6934 int ret;
6935 int level = wc->level;
6936 struct extent_buffer *eb = path->nodes[level];
6937 u64 parent = 0;
6938
6939 if (wc->stage == UPDATE_BACKREF) {
6940 BUG_ON(wc->shared_level < level);
6941 if (level < wc->shared_level)
6942 goto out;
6943
6944 ret = find_next_key(path, level + 1, &wc->update_progress);
6945 if (ret > 0)
6946 wc->update_ref = 0;
6947
6948 wc->stage = DROP_REFERENCE;
6949 wc->shared_level = -1;
6950 path->slots[level] = 0;
6951
6952 /*
6953 * check reference count again if the block isn't locked.
6954 * we should start walking down the tree again if reference
6955 * count is one.
6956 */
6957 if (!path->locks[level]) {
6958 BUG_ON(level == 0);
6959 btrfs_tree_lock(eb);
6960 btrfs_set_lock_blocking(eb);
6961 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6962
6963 ret = btrfs_lookup_extent_info(trans, root,
6964 eb->start, eb->len,
6965 &wc->refs[level],
6966 &wc->flags[level]);
6967 if (ret < 0) {
6968 btrfs_tree_unlock_rw(eb, path->locks[level]);
6969 path->locks[level] = 0;
6970 return ret;
6971 }
6972 BUG_ON(wc->refs[level] == 0);
6973 if (wc->refs[level] == 1) {
6974 btrfs_tree_unlock_rw(eb, path->locks[level]);
6975 path->locks[level] = 0;
6976 return 1;
6977 }
6978 }
6979 }
6980
6981 /* wc->stage == DROP_REFERENCE */
6982 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6983
6984 if (wc->refs[level] == 1) {
6985 if (level == 0) {
6986 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6987 ret = btrfs_dec_ref(trans, root, eb, 1,
6988 wc->for_reloc);
6989 else
6990 ret = btrfs_dec_ref(trans, root, eb, 0,
6991 wc->for_reloc);
6992 BUG_ON(ret); /* -ENOMEM */
6993 }
6994 /* make block locked assertion in clean_tree_block happy */
6995 if (!path->locks[level] &&
6996 btrfs_header_generation(eb) == trans->transid) {
6997 btrfs_tree_lock(eb);
6998 btrfs_set_lock_blocking(eb);
6999 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7000 }
7001 clean_tree_block(trans, root, eb);
7002 }
7003
7004 if (eb == root->node) {
7005 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7006 parent = eb->start;
7007 else
7008 BUG_ON(root->root_key.objectid !=
7009 btrfs_header_owner(eb));
7010 } else {
7011 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7012 parent = path->nodes[level + 1]->start;
7013 else
7014 BUG_ON(root->root_key.objectid !=
7015 btrfs_header_owner(path->nodes[level + 1]));
7016 }
7017
7018 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7019 out:
7020 wc->refs[level] = 0;
7021 wc->flags[level] = 0;
7022 return 0;
7023 }
7024
7025 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7026 struct btrfs_root *root,
7027 struct btrfs_path *path,
7028 struct walk_control *wc)
7029 {
7030 int level = wc->level;
7031 int lookup_info = 1;
7032 int ret;
7033
7034 while (level >= 0) {
7035 ret = walk_down_proc(trans, root, path, wc, lookup_info);
7036 if (ret > 0)
7037 break;
7038
7039 if (level == 0)
7040 break;
7041
7042 if (path->slots[level] >=
7043 btrfs_header_nritems(path->nodes[level]))
7044 break;
7045
7046 ret = do_walk_down(trans, root, path, wc, &lookup_info);
7047 if (ret > 0) {
7048 path->slots[level]++;
7049 continue;
7050 } else if (ret < 0)
7051 return ret;
7052 level = wc->level;
7053 }
7054 return 0;
7055 }
7056
7057 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7058 struct btrfs_root *root,
7059 struct btrfs_path *path,
7060 struct walk_control *wc, int max_level)
7061 {
7062 int level = wc->level;
7063 int ret;
7064
7065 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7066 while (level < max_level && path->nodes[level]) {
7067 wc->level = level;
7068 if (path->slots[level] + 1 <
7069 btrfs_header_nritems(path->nodes[level])) {
7070 path->slots[level]++;
7071 return 0;
7072 } else {
7073 ret = walk_up_proc(trans, root, path, wc);
7074 if (ret > 0)
7075 return 0;
7076
7077 if (path->locks[level]) {
7078 btrfs_tree_unlock_rw(path->nodes[level],
7079 path->locks[level]);
7080 path->locks[level] = 0;
7081 }
7082 free_extent_buffer(path->nodes[level]);
7083 path->nodes[level] = NULL;
7084 level++;
7085 }
7086 }
7087 return 1;
7088 }
7089
7090 /*
7091 * drop a subvolume tree.
7092 *
7093 * this function traverses the tree freeing any blocks that only
7094 * referenced by the tree.
7095 *
7096 * when a shared tree block is found. this function decreases its
7097 * reference count by one. if update_ref is true, this function
7098 * also make sure backrefs for the shared block and all lower level
7099 * blocks are properly updated.
7100 */
7101 int btrfs_drop_snapshot(struct btrfs_root *root,
7102 struct btrfs_block_rsv *block_rsv, int update_ref,
7103 int for_reloc)
7104 {
7105 struct btrfs_path *path;
7106 struct btrfs_trans_handle *trans;
7107 struct btrfs_root *tree_root = root->fs_info->tree_root;
7108 struct btrfs_root_item *root_item = &root->root_item;
7109 struct walk_control *wc;
7110 struct btrfs_key key;
7111 int err = 0;
7112 int ret;
7113 int level;
7114
7115 path = btrfs_alloc_path();
7116 if (!path) {
7117 err = -ENOMEM;
7118 goto out;
7119 }
7120
7121 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7122 if (!wc) {
7123 btrfs_free_path(path);
7124 err = -ENOMEM;
7125 goto out;
7126 }
7127
7128 trans = btrfs_start_transaction(tree_root, 0);
7129 if (IS_ERR(trans)) {
7130 err = PTR_ERR(trans);
7131 goto out_free;
7132 }
7133
7134 if (block_rsv)
7135 trans->block_rsv = block_rsv;
7136
7137 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7138 level = btrfs_header_level(root->node);
7139 path->nodes[level] = btrfs_lock_root_node(root);
7140 btrfs_set_lock_blocking(path->nodes[level]);
7141 path->slots[level] = 0;
7142 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7143 memset(&wc->update_progress, 0,
7144 sizeof(wc->update_progress));
7145 } else {
7146 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7147 memcpy(&wc->update_progress, &key,
7148 sizeof(wc->update_progress));
7149
7150 level = root_item->drop_level;
7151 BUG_ON(level == 0);
7152 path->lowest_level = level;
7153 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7154 path->lowest_level = 0;
7155 if (ret < 0) {
7156 err = ret;
7157 goto out_end_trans;
7158 }
7159 WARN_ON(ret > 0);
7160
7161 /*
7162 * unlock our path, this is safe because only this
7163 * function is allowed to delete this snapshot
7164 */
7165 btrfs_unlock_up_safe(path, 0);
7166
7167 level = btrfs_header_level(root->node);
7168 while (1) {
7169 btrfs_tree_lock(path->nodes[level]);
7170 btrfs_set_lock_blocking(path->nodes[level]);
7171
7172 ret = btrfs_lookup_extent_info(trans, root,
7173 path->nodes[level]->start,
7174 path->nodes[level]->len,
7175 &wc->refs[level],
7176 &wc->flags[level]);
7177 if (ret < 0) {
7178 err = ret;
7179 goto out_end_trans;
7180 }
7181 BUG_ON(wc->refs[level] == 0);
7182
7183 if (level == root_item->drop_level)
7184 break;
7185
7186 btrfs_tree_unlock(path->nodes[level]);
7187 WARN_ON(wc->refs[level] != 1);
7188 level--;
7189 }
7190 }
7191
7192 wc->level = level;
7193 wc->shared_level = -1;
7194 wc->stage = DROP_REFERENCE;
7195 wc->update_ref = update_ref;
7196 wc->keep_locks = 0;
7197 wc->for_reloc = for_reloc;
7198 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7199
7200 while (1) {
7201 ret = walk_down_tree(trans, root, path, wc);
7202 if (ret < 0) {
7203 err = ret;
7204 break;
7205 }
7206
7207 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7208 if (ret < 0) {
7209 err = ret;
7210 break;
7211 }
7212
7213 if (ret > 0) {
7214 BUG_ON(wc->stage != DROP_REFERENCE);
7215 break;
7216 }
7217
7218 if (wc->stage == DROP_REFERENCE) {
7219 level = wc->level;
7220 btrfs_node_key(path->nodes[level],
7221 &root_item->drop_progress,
7222 path->slots[level]);
7223 root_item->drop_level = level;
7224 }
7225
7226 BUG_ON(wc->level == 0);
7227 if (btrfs_should_end_transaction(trans, tree_root)) {
7228 ret = btrfs_update_root(trans, tree_root,
7229 &root->root_key,
7230 root_item);
7231 if (ret) {
7232 btrfs_abort_transaction(trans, tree_root, ret);
7233 err = ret;
7234 goto out_end_trans;
7235 }
7236
7237 btrfs_end_transaction_throttle(trans, tree_root);
7238 trans = btrfs_start_transaction(tree_root, 0);
7239 if (IS_ERR(trans)) {
7240 err = PTR_ERR(trans);
7241 goto out_free;
7242 }
7243 if (block_rsv)
7244 trans->block_rsv = block_rsv;
7245 }
7246 }
7247 btrfs_release_path(path);
7248 if (err)
7249 goto out_end_trans;
7250
7251 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7252 if (ret) {
7253 btrfs_abort_transaction(trans, tree_root, ret);
7254 goto out_end_trans;
7255 }
7256
7257 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7258 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
7259 NULL, NULL);
7260 if (ret < 0) {
7261 btrfs_abort_transaction(trans, tree_root, ret);
7262 err = ret;
7263 goto out_end_trans;
7264 } else if (ret > 0) {
7265 /* if we fail to delete the orphan item this time
7266 * around, it'll get picked up the next time.
7267 *
7268 * The most common failure here is just -ENOENT.
7269 */
7270 btrfs_del_orphan_item(trans, tree_root,
7271 root->root_key.objectid);
7272 }
7273 }
7274
7275 if (root->in_radix) {
7276 btrfs_free_fs_root(tree_root->fs_info, root);
7277 } else {
7278 free_extent_buffer(root->node);
7279 free_extent_buffer(root->commit_root);
7280 kfree(root);
7281 }
7282 out_end_trans:
7283 btrfs_end_transaction_throttle(trans, tree_root);
7284 out_free:
7285 kfree(wc);
7286 btrfs_free_path(path);
7287 out:
7288 if (err)
7289 btrfs_std_error(root->fs_info, err);
7290 return err;
7291 }
7292
7293 /*
7294 * drop subtree rooted at tree block 'node'.
7295 *
7296 * NOTE: this function will unlock and release tree block 'node'
7297 * only used by relocation code
7298 */
7299 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7300 struct btrfs_root *root,
7301 struct extent_buffer *node,
7302 struct extent_buffer *parent)
7303 {
7304 struct btrfs_path *path;
7305 struct walk_control *wc;
7306 int level;
7307 int parent_level;
7308 int ret = 0;
7309 int wret;
7310
7311 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7312
7313 path = btrfs_alloc_path();
7314 if (!path)
7315 return -ENOMEM;
7316
7317 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7318 if (!wc) {
7319 btrfs_free_path(path);
7320 return -ENOMEM;
7321 }
7322
7323 btrfs_assert_tree_locked(parent);
7324 parent_level = btrfs_header_level(parent);
7325 extent_buffer_get(parent);
7326 path->nodes[parent_level] = parent;
7327 path->slots[parent_level] = btrfs_header_nritems(parent);
7328
7329 btrfs_assert_tree_locked(node);
7330 level = btrfs_header_level(node);
7331 path->nodes[level] = node;
7332 path->slots[level] = 0;
7333 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7334
7335 wc->refs[parent_level] = 1;
7336 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7337 wc->level = level;
7338 wc->shared_level = -1;
7339 wc->stage = DROP_REFERENCE;
7340 wc->update_ref = 0;
7341 wc->keep_locks = 1;
7342 wc->for_reloc = 1;
7343 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7344
7345 while (1) {
7346 wret = walk_down_tree(trans, root, path, wc);
7347 if (wret < 0) {
7348 ret = wret;
7349 break;
7350 }
7351
7352 wret = walk_up_tree(trans, root, path, wc, parent_level);
7353 if (wret < 0)
7354 ret = wret;
7355 if (wret != 0)
7356 break;
7357 }
7358
7359 kfree(wc);
7360 btrfs_free_path(path);
7361 return ret;
7362 }
7363
7364 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7365 {
7366 u64 num_devices;
7367 u64 stripped;
7368
7369 /*
7370 * if restripe for this chunk_type is on pick target profile and
7371 * return, otherwise do the usual balance
7372 */
7373 stripped = get_restripe_target(root->fs_info, flags);
7374 if (stripped)
7375 return extended_to_chunk(stripped);
7376
7377 /*
7378 * we add in the count of missing devices because we want
7379 * to make sure that any RAID levels on a degraded FS
7380 * continue to be honored.
7381 */
7382 num_devices = root->fs_info->fs_devices->rw_devices +
7383 root->fs_info->fs_devices->missing_devices;
7384
7385 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7386 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7387 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7388
7389 if (num_devices == 1) {
7390 stripped |= BTRFS_BLOCK_GROUP_DUP;
7391 stripped = flags & ~stripped;
7392
7393 /* turn raid0 into single device chunks */
7394 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7395 return stripped;
7396
7397 /* turn mirroring into duplication */
7398 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7399 BTRFS_BLOCK_GROUP_RAID10))
7400 return stripped | BTRFS_BLOCK_GROUP_DUP;
7401 } else {
7402 /* they already had raid on here, just return */
7403 if (flags & stripped)
7404 return flags;
7405
7406 stripped |= BTRFS_BLOCK_GROUP_DUP;
7407 stripped = flags & ~stripped;
7408
7409 /* switch duplicated blocks with raid1 */
7410 if (flags & BTRFS_BLOCK_GROUP_DUP)
7411 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7412
7413 /* this is drive concat, leave it alone */
7414 }
7415
7416 return flags;
7417 }
7418
7419 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7420 {
7421 struct btrfs_space_info *sinfo = cache->space_info;
7422 u64 num_bytes;
7423 u64 min_allocable_bytes;
7424 int ret = -ENOSPC;
7425
7426
7427 /*
7428 * We need some metadata space and system metadata space for
7429 * allocating chunks in some corner cases until we force to set
7430 * it to be readonly.
7431 */
7432 if ((sinfo->flags &
7433 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7434 !force)
7435 min_allocable_bytes = 1 * 1024 * 1024;
7436 else
7437 min_allocable_bytes = 0;
7438
7439 spin_lock(&sinfo->lock);
7440 spin_lock(&cache->lock);
7441
7442 if (cache->ro) {
7443 ret = 0;
7444 goto out;
7445 }
7446
7447 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7448 cache->bytes_super - btrfs_block_group_used(&cache->item);
7449
7450 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7451 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7452 min_allocable_bytes <= sinfo->total_bytes) {
7453 sinfo->bytes_readonly += num_bytes;
7454 cache->ro = 1;
7455 ret = 0;
7456 }
7457 out:
7458 spin_unlock(&cache->lock);
7459 spin_unlock(&sinfo->lock);
7460 return ret;
7461 }
7462
7463 int btrfs_set_block_group_ro(struct btrfs_root *root,
7464 struct btrfs_block_group_cache *cache)
7465
7466 {
7467 struct btrfs_trans_handle *trans;
7468 u64 alloc_flags;
7469 int ret;
7470
7471 BUG_ON(cache->ro);
7472
7473 trans = btrfs_join_transaction(root);
7474 if (IS_ERR(trans))
7475 return PTR_ERR(trans);
7476
7477 alloc_flags = update_block_group_flags(root, cache->flags);
7478 if (alloc_flags != cache->flags) {
7479 ret = do_chunk_alloc(trans, root, alloc_flags,
7480 CHUNK_ALLOC_FORCE);
7481 if (ret < 0)
7482 goto out;
7483 }
7484
7485 ret = set_block_group_ro(cache, 0);
7486 if (!ret)
7487 goto out;
7488 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7489 ret = do_chunk_alloc(trans, root, alloc_flags,
7490 CHUNK_ALLOC_FORCE);
7491 if (ret < 0)
7492 goto out;
7493 ret = set_block_group_ro(cache, 0);
7494 out:
7495 btrfs_end_transaction(trans, root);
7496 return ret;
7497 }
7498
7499 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7500 struct btrfs_root *root, u64 type)
7501 {
7502 u64 alloc_flags = get_alloc_profile(root, type);
7503 return do_chunk_alloc(trans, root, alloc_flags,
7504 CHUNK_ALLOC_FORCE);
7505 }
7506
7507 /*
7508 * helper to account the unused space of all the readonly block group in the
7509 * list. takes mirrors into account.
7510 */
7511 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7512 {
7513 struct btrfs_block_group_cache *block_group;
7514 u64 free_bytes = 0;
7515 int factor;
7516
7517 list_for_each_entry(block_group, groups_list, list) {
7518 spin_lock(&block_group->lock);
7519
7520 if (!block_group->ro) {
7521 spin_unlock(&block_group->lock);
7522 continue;
7523 }
7524
7525 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7526 BTRFS_BLOCK_GROUP_RAID10 |
7527 BTRFS_BLOCK_GROUP_DUP))
7528 factor = 2;
7529 else
7530 factor = 1;
7531
7532 free_bytes += (block_group->key.offset -
7533 btrfs_block_group_used(&block_group->item)) *
7534 factor;
7535
7536 spin_unlock(&block_group->lock);
7537 }
7538
7539 return free_bytes;
7540 }
7541
7542 /*
7543 * helper to account the unused space of all the readonly block group in the
7544 * space_info. takes mirrors into account.
7545 */
7546 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7547 {
7548 int i;
7549 u64 free_bytes = 0;
7550
7551 spin_lock(&sinfo->lock);
7552
7553 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7554 if (!list_empty(&sinfo->block_groups[i]))
7555 free_bytes += __btrfs_get_ro_block_group_free_space(
7556 &sinfo->block_groups[i]);
7557
7558 spin_unlock(&sinfo->lock);
7559
7560 return free_bytes;
7561 }
7562
7563 void btrfs_set_block_group_rw(struct btrfs_root *root,
7564 struct btrfs_block_group_cache *cache)
7565 {
7566 struct btrfs_space_info *sinfo = cache->space_info;
7567 u64 num_bytes;
7568
7569 BUG_ON(!cache->ro);
7570
7571 spin_lock(&sinfo->lock);
7572 spin_lock(&cache->lock);
7573 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7574 cache->bytes_super - btrfs_block_group_used(&cache->item);
7575 sinfo->bytes_readonly -= num_bytes;
7576 cache->ro = 0;
7577 spin_unlock(&cache->lock);
7578 spin_unlock(&sinfo->lock);
7579 }
7580
7581 /*
7582 * checks to see if its even possible to relocate this block group.
7583 *
7584 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7585 * ok to go ahead and try.
7586 */
7587 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7588 {
7589 struct btrfs_block_group_cache *block_group;
7590 struct btrfs_space_info *space_info;
7591 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7592 struct btrfs_device *device;
7593 u64 min_free;
7594 u64 dev_min = 1;
7595 u64 dev_nr = 0;
7596 u64 target;
7597 int index;
7598 int full = 0;
7599 int ret = 0;
7600
7601 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7602
7603 /* odd, couldn't find the block group, leave it alone */
7604 if (!block_group)
7605 return -1;
7606
7607 min_free = btrfs_block_group_used(&block_group->item);
7608
7609 /* no bytes used, we're good */
7610 if (!min_free)
7611 goto out;
7612
7613 space_info = block_group->space_info;
7614 spin_lock(&space_info->lock);
7615
7616 full = space_info->full;
7617
7618 /*
7619 * if this is the last block group we have in this space, we can't
7620 * relocate it unless we're able to allocate a new chunk below.
7621 *
7622 * Otherwise, we need to make sure we have room in the space to handle
7623 * all of the extents from this block group. If we can, we're good
7624 */
7625 if ((space_info->total_bytes != block_group->key.offset) &&
7626 (space_info->bytes_used + space_info->bytes_reserved +
7627 space_info->bytes_pinned + space_info->bytes_readonly +
7628 min_free < space_info->total_bytes)) {
7629 spin_unlock(&space_info->lock);
7630 goto out;
7631 }
7632 spin_unlock(&space_info->lock);
7633
7634 /*
7635 * ok we don't have enough space, but maybe we have free space on our
7636 * devices to allocate new chunks for relocation, so loop through our
7637 * alloc devices and guess if we have enough space. if this block
7638 * group is going to be restriped, run checks against the target
7639 * profile instead of the current one.
7640 */
7641 ret = -1;
7642
7643 /*
7644 * index:
7645 * 0: raid10
7646 * 1: raid1
7647 * 2: dup
7648 * 3: raid0
7649 * 4: single
7650 */
7651 target = get_restripe_target(root->fs_info, block_group->flags);
7652 if (target) {
7653 index = __get_raid_index(extended_to_chunk(target));
7654 } else {
7655 /*
7656 * this is just a balance, so if we were marked as full
7657 * we know there is no space for a new chunk
7658 */
7659 if (full)
7660 goto out;
7661
7662 index = get_block_group_index(block_group);
7663 }
7664
7665 if (index == BTRFS_RAID_RAID10) {
7666 dev_min = 4;
7667 /* Divide by 2 */
7668 min_free >>= 1;
7669 } else if (index == BTRFS_RAID_RAID1) {
7670 dev_min = 2;
7671 } else if (index == BTRFS_RAID_DUP) {
7672 /* Multiply by 2 */
7673 min_free <<= 1;
7674 } else if (index == BTRFS_RAID_RAID0) {
7675 dev_min = fs_devices->rw_devices;
7676 do_div(min_free, dev_min);
7677 }
7678
7679 mutex_lock(&root->fs_info->chunk_mutex);
7680 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7681 u64 dev_offset;
7682
7683 /*
7684 * check to make sure we can actually find a chunk with enough
7685 * space to fit our block group in.
7686 */
7687 if (device->total_bytes > device->bytes_used + min_free &&
7688 !device->is_tgtdev_for_dev_replace) {
7689 ret = find_free_dev_extent(device, min_free,
7690 &dev_offset, NULL);
7691 if (!ret)
7692 dev_nr++;
7693
7694 if (dev_nr >= dev_min)
7695 break;
7696
7697 ret = -1;
7698 }
7699 }
7700 mutex_unlock(&root->fs_info->chunk_mutex);
7701 out:
7702 btrfs_put_block_group(block_group);
7703 return ret;
7704 }
7705
7706 static int find_first_block_group(struct btrfs_root *root,
7707 struct btrfs_path *path, struct btrfs_key *key)
7708 {
7709 int ret = 0;
7710 struct btrfs_key found_key;
7711 struct extent_buffer *leaf;
7712 int slot;
7713
7714 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7715 if (ret < 0)
7716 goto out;
7717
7718 while (1) {
7719 slot = path->slots[0];
7720 leaf = path->nodes[0];
7721 if (slot >= btrfs_header_nritems(leaf)) {
7722 ret = btrfs_next_leaf(root, path);
7723 if (ret == 0)
7724 continue;
7725 if (ret < 0)
7726 goto out;
7727 break;
7728 }
7729 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7730
7731 if (found_key.objectid >= key->objectid &&
7732 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7733 ret = 0;
7734 goto out;
7735 }
7736 path->slots[0]++;
7737 }
7738 out:
7739 return ret;
7740 }
7741
7742 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7743 {
7744 struct btrfs_block_group_cache *block_group;
7745 u64 last = 0;
7746
7747 while (1) {
7748 struct inode *inode;
7749
7750 block_group = btrfs_lookup_first_block_group(info, last);
7751 while (block_group) {
7752 spin_lock(&block_group->lock);
7753 if (block_group->iref)
7754 break;
7755 spin_unlock(&block_group->lock);
7756 block_group = next_block_group(info->tree_root,
7757 block_group);
7758 }
7759 if (!block_group) {
7760 if (last == 0)
7761 break;
7762 last = 0;
7763 continue;
7764 }
7765
7766 inode = block_group->inode;
7767 block_group->iref = 0;
7768 block_group->inode = NULL;
7769 spin_unlock(&block_group->lock);
7770 iput(inode);
7771 last = block_group->key.objectid + block_group->key.offset;
7772 btrfs_put_block_group(block_group);
7773 }
7774 }
7775
7776 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7777 {
7778 struct btrfs_block_group_cache *block_group;
7779 struct btrfs_space_info *space_info;
7780 struct btrfs_caching_control *caching_ctl;
7781 struct rb_node *n;
7782
7783 down_write(&info->extent_commit_sem);
7784 while (!list_empty(&info->caching_block_groups)) {
7785 caching_ctl = list_entry(info->caching_block_groups.next,
7786 struct btrfs_caching_control, list);
7787 list_del(&caching_ctl->list);
7788 put_caching_control(caching_ctl);
7789 }
7790 up_write(&info->extent_commit_sem);
7791
7792 spin_lock(&info->block_group_cache_lock);
7793 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7794 block_group = rb_entry(n, struct btrfs_block_group_cache,
7795 cache_node);
7796 rb_erase(&block_group->cache_node,
7797 &info->block_group_cache_tree);
7798 spin_unlock(&info->block_group_cache_lock);
7799
7800 down_write(&block_group->space_info->groups_sem);
7801 list_del(&block_group->list);
7802 up_write(&block_group->space_info->groups_sem);
7803
7804 if (block_group->cached == BTRFS_CACHE_STARTED)
7805 wait_block_group_cache_done(block_group);
7806
7807 /*
7808 * We haven't cached this block group, which means we could
7809 * possibly have excluded extents on this block group.
7810 */
7811 if (block_group->cached == BTRFS_CACHE_NO)
7812 free_excluded_extents(info->extent_root, block_group);
7813
7814 btrfs_remove_free_space_cache(block_group);
7815 btrfs_put_block_group(block_group);
7816
7817 spin_lock(&info->block_group_cache_lock);
7818 }
7819 spin_unlock(&info->block_group_cache_lock);
7820
7821 /* now that all the block groups are freed, go through and
7822 * free all the space_info structs. This is only called during
7823 * the final stages of unmount, and so we know nobody is
7824 * using them. We call synchronize_rcu() once before we start,
7825 * just to be on the safe side.
7826 */
7827 synchronize_rcu();
7828
7829 release_global_block_rsv(info);
7830
7831 while(!list_empty(&info->space_info)) {
7832 space_info = list_entry(info->space_info.next,
7833 struct btrfs_space_info,
7834 list);
7835 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
7836 if (space_info->bytes_pinned > 0 ||
7837 space_info->bytes_reserved > 0 ||
7838 space_info->bytes_may_use > 0) {
7839 WARN_ON(1);
7840 dump_space_info(space_info, 0, 0);
7841 }
7842 }
7843 list_del(&space_info->list);
7844 kfree(space_info);
7845 }
7846 return 0;
7847 }
7848
7849 static void __link_block_group(struct btrfs_space_info *space_info,
7850 struct btrfs_block_group_cache *cache)
7851 {
7852 int index = get_block_group_index(cache);
7853
7854 down_write(&space_info->groups_sem);
7855 list_add_tail(&cache->list, &space_info->block_groups[index]);
7856 up_write(&space_info->groups_sem);
7857 }
7858
7859 int btrfs_read_block_groups(struct btrfs_root *root)
7860 {
7861 struct btrfs_path *path;
7862 int ret;
7863 struct btrfs_block_group_cache *cache;
7864 struct btrfs_fs_info *info = root->fs_info;
7865 struct btrfs_space_info *space_info;
7866 struct btrfs_key key;
7867 struct btrfs_key found_key;
7868 struct extent_buffer *leaf;
7869 int need_clear = 0;
7870 u64 cache_gen;
7871
7872 root = info->extent_root;
7873 key.objectid = 0;
7874 key.offset = 0;
7875 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7876 path = btrfs_alloc_path();
7877 if (!path)
7878 return -ENOMEM;
7879 path->reada = 1;
7880
7881 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7882 if (btrfs_test_opt(root, SPACE_CACHE) &&
7883 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7884 need_clear = 1;
7885 if (btrfs_test_opt(root, CLEAR_CACHE))
7886 need_clear = 1;
7887
7888 while (1) {
7889 ret = find_first_block_group(root, path, &key);
7890 if (ret > 0)
7891 break;
7892 if (ret != 0)
7893 goto error;
7894 leaf = path->nodes[0];
7895 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7896 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7897 if (!cache) {
7898 ret = -ENOMEM;
7899 goto error;
7900 }
7901 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7902 GFP_NOFS);
7903 if (!cache->free_space_ctl) {
7904 kfree(cache);
7905 ret = -ENOMEM;
7906 goto error;
7907 }
7908
7909 atomic_set(&cache->count, 1);
7910 spin_lock_init(&cache->lock);
7911 cache->fs_info = info;
7912 INIT_LIST_HEAD(&cache->list);
7913 INIT_LIST_HEAD(&cache->cluster_list);
7914
7915 if (need_clear) {
7916 /*
7917 * When we mount with old space cache, we need to
7918 * set BTRFS_DC_CLEAR and set dirty flag.
7919 *
7920 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
7921 * truncate the old free space cache inode and
7922 * setup a new one.
7923 * b) Setting 'dirty flag' makes sure that we flush
7924 * the new space cache info onto disk.
7925 */
7926 cache->disk_cache_state = BTRFS_DC_CLEAR;
7927 if (btrfs_test_opt(root, SPACE_CACHE))
7928 cache->dirty = 1;
7929 }
7930
7931 read_extent_buffer(leaf, &cache->item,
7932 btrfs_item_ptr_offset(leaf, path->slots[0]),
7933 sizeof(cache->item));
7934 memcpy(&cache->key, &found_key, sizeof(found_key));
7935
7936 key.objectid = found_key.objectid + found_key.offset;
7937 btrfs_release_path(path);
7938 cache->flags = btrfs_block_group_flags(&cache->item);
7939 cache->sectorsize = root->sectorsize;
7940 cache->full_stripe_len = btrfs_full_stripe_len(root,
7941 &root->fs_info->mapping_tree,
7942 found_key.objectid);
7943 btrfs_init_free_space_ctl(cache);
7944
7945 /*
7946 * We need to exclude the super stripes now so that the space
7947 * info has super bytes accounted for, otherwise we'll think
7948 * we have more space than we actually do.
7949 */
7950 exclude_super_stripes(root, cache);
7951
7952 /*
7953 * check for two cases, either we are full, and therefore
7954 * don't need to bother with the caching work since we won't
7955 * find any space, or we are empty, and we can just add all
7956 * the space in and be done with it. This saves us _alot_ of
7957 * time, particularly in the full case.
7958 */
7959 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7960 cache->last_byte_to_unpin = (u64)-1;
7961 cache->cached = BTRFS_CACHE_FINISHED;
7962 free_excluded_extents(root, cache);
7963 } else if (btrfs_block_group_used(&cache->item) == 0) {
7964 cache->last_byte_to_unpin = (u64)-1;
7965 cache->cached = BTRFS_CACHE_FINISHED;
7966 add_new_free_space(cache, root->fs_info,
7967 found_key.objectid,
7968 found_key.objectid +
7969 found_key.offset);
7970 free_excluded_extents(root, cache);
7971 }
7972
7973 ret = update_space_info(info, cache->flags, found_key.offset,
7974 btrfs_block_group_used(&cache->item),
7975 &space_info);
7976 BUG_ON(ret); /* -ENOMEM */
7977 cache->space_info = space_info;
7978 spin_lock(&cache->space_info->lock);
7979 cache->space_info->bytes_readonly += cache->bytes_super;
7980 spin_unlock(&cache->space_info->lock);
7981
7982 __link_block_group(space_info, cache);
7983
7984 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7985 BUG_ON(ret); /* Logic error */
7986
7987 set_avail_alloc_bits(root->fs_info, cache->flags);
7988 if (btrfs_chunk_readonly(root, cache->key.objectid))
7989 set_block_group_ro(cache, 1);
7990 }
7991
7992 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7993 if (!(get_alloc_profile(root, space_info->flags) &
7994 (BTRFS_BLOCK_GROUP_RAID10 |
7995 BTRFS_BLOCK_GROUP_RAID1 |
7996 BTRFS_BLOCK_GROUP_RAID5 |
7997 BTRFS_BLOCK_GROUP_RAID6 |
7998 BTRFS_BLOCK_GROUP_DUP)))
7999 continue;
8000 /*
8001 * avoid allocating from un-mirrored block group if there are
8002 * mirrored block groups.
8003 */
8004 list_for_each_entry(cache, &space_info->block_groups[3], list)
8005 set_block_group_ro(cache, 1);
8006 list_for_each_entry(cache, &space_info->block_groups[4], list)
8007 set_block_group_ro(cache, 1);
8008 }
8009
8010 init_global_block_rsv(info);
8011 ret = 0;
8012 error:
8013 btrfs_free_path(path);
8014 return ret;
8015 }
8016
8017 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8018 struct btrfs_root *root)
8019 {
8020 struct btrfs_block_group_cache *block_group, *tmp;
8021 struct btrfs_root *extent_root = root->fs_info->extent_root;
8022 struct btrfs_block_group_item item;
8023 struct btrfs_key key;
8024 int ret = 0;
8025
8026 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8027 new_bg_list) {
8028 list_del_init(&block_group->new_bg_list);
8029
8030 if (ret)
8031 continue;
8032
8033 spin_lock(&block_group->lock);
8034 memcpy(&item, &block_group->item, sizeof(item));
8035 memcpy(&key, &block_group->key, sizeof(key));
8036 spin_unlock(&block_group->lock);
8037
8038 ret = btrfs_insert_item(trans, extent_root, &key, &item,
8039 sizeof(item));
8040 if (ret)
8041 btrfs_abort_transaction(trans, extent_root, ret);
8042 }
8043 }
8044
8045 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8046 struct btrfs_root *root, u64 bytes_used,
8047 u64 type, u64 chunk_objectid, u64 chunk_offset,
8048 u64 size)
8049 {
8050 int ret;
8051 struct btrfs_root *extent_root;
8052 struct btrfs_block_group_cache *cache;
8053
8054 extent_root = root->fs_info->extent_root;
8055
8056 root->fs_info->last_trans_log_full_commit = trans->transid;
8057
8058 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8059 if (!cache)
8060 return -ENOMEM;
8061 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8062 GFP_NOFS);
8063 if (!cache->free_space_ctl) {
8064 kfree(cache);
8065 return -ENOMEM;
8066 }
8067
8068 cache->key.objectid = chunk_offset;
8069 cache->key.offset = size;
8070 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8071 cache->sectorsize = root->sectorsize;
8072 cache->fs_info = root->fs_info;
8073 cache->full_stripe_len = btrfs_full_stripe_len(root,
8074 &root->fs_info->mapping_tree,
8075 chunk_offset);
8076
8077 atomic_set(&cache->count, 1);
8078 spin_lock_init(&cache->lock);
8079 INIT_LIST_HEAD(&cache->list);
8080 INIT_LIST_HEAD(&cache->cluster_list);
8081 INIT_LIST_HEAD(&cache->new_bg_list);
8082
8083 btrfs_init_free_space_ctl(cache);
8084
8085 btrfs_set_block_group_used(&cache->item, bytes_used);
8086 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8087 cache->flags = type;
8088 btrfs_set_block_group_flags(&cache->item, type);
8089
8090 cache->last_byte_to_unpin = (u64)-1;
8091 cache->cached = BTRFS_CACHE_FINISHED;
8092 exclude_super_stripes(root, cache);
8093
8094 add_new_free_space(cache, root->fs_info, chunk_offset,
8095 chunk_offset + size);
8096
8097 free_excluded_extents(root, cache);
8098
8099 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8100 &cache->space_info);
8101 BUG_ON(ret); /* -ENOMEM */
8102 update_global_block_rsv(root->fs_info);
8103
8104 spin_lock(&cache->space_info->lock);
8105 cache->space_info->bytes_readonly += cache->bytes_super;
8106 spin_unlock(&cache->space_info->lock);
8107
8108 __link_block_group(cache->space_info, cache);
8109
8110 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8111 BUG_ON(ret); /* Logic error */
8112
8113 list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8114
8115 set_avail_alloc_bits(extent_root->fs_info, type);
8116
8117 return 0;
8118 }
8119
8120 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8121 {
8122 u64 extra_flags = chunk_to_extended(flags) &
8123 BTRFS_EXTENDED_PROFILE_MASK;
8124
8125 write_seqlock(&fs_info->profiles_lock);
8126 if (flags & BTRFS_BLOCK_GROUP_DATA)
8127 fs_info->avail_data_alloc_bits &= ~extra_flags;
8128 if (flags & BTRFS_BLOCK_GROUP_METADATA)
8129 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8130 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8131 fs_info->avail_system_alloc_bits &= ~extra_flags;
8132 write_sequnlock(&fs_info->profiles_lock);
8133 }
8134
8135 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8136 struct btrfs_root *root, u64 group_start)
8137 {
8138 struct btrfs_path *path;
8139 struct btrfs_block_group_cache *block_group;
8140 struct btrfs_free_cluster *cluster;
8141 struct btrfs_root *tree_root = root->fs_info->tree_root;
8142 struct btrfs_key key;
8143 struct inode *inode;
8144 int ret;
8145 int index;
8146 int factor;
8147
8148 root = root->fs_info->extent_root;
8149
8150 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8151 BUG_ON(!block_group);
8152 BUG_ON(!block_group->ro);
8153
8154 /*
8155 * Free the reserved super bytes from this block group before
8156 * remove it.
8157 */
8158 free_excluded_extents(root, block_group);
8159
8160 memcpy(&key, &block_group->key, sizeof(key));
8161 index = get_block_group_index(block_group);
8162 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8163 BTRFS_BLOCK_GROUP_RAID1 |
8164 BTRFS_BLOCK_GROUP_RAID10))
8165 factor = 2;
8166 else
8167 factor = 1;
8168
8169 /* make sure this block group isn't part of an allocation cluster */
8170 cluster = &root->fs_info->data_alloc_cluster;
8171 spin_lock(&cluster->refill_lock);
8172 btrfs_return_cluster_to_free_space(block_group, cluster);
8173 spin_unlock(&cluster->refill_lock);
8174
8175 /*
8176 * make sure this block group isn't part of a metadata
8177 * allocation cluster
8178 */
8179 cluster = &root->fs_info->meta_alloc_cluster;
8180 spin_lock(&cluster->refill_lock);
8181 btrfs_return_cluster_to_free_space(block_group, cluster);
8182 spin_unlock(&cluster->refill_lock);
8183
8184 path = btrfs_alloc_path();
8185 if (!path) {
8186 ret = -ENOMEM;
8187 goto out;
8188 }
8189
8190 inode = lookup_free_space_inode(tree_root, block_group, path);
8191 if (!IS_ERR(inode)) {
8192 ret = btrfs_orphan_add(trans, inode);
8193 if (ret) {
8194 btrfs_add_delayed_iput(inode);
8195 goto out;
8196 }
8197 clear_nlink(inode);
8198 /* One for the block groups ref */
8199 spin_lock(&block_group->lock);
8200 if (block_group->iref) {
8201 block_group->iref = 0;
8202 block_group->inode = NULL;
8203 spin_unlock(&block_group->lock);
8204 iput(inode);
8205 } else {
8206 spin_unlock(&block_group->lock);
8207 }
8208 /* One for our lookup ref */
8209 btrfs_add_delayed_iput(inode);
8210 }
8211
8212 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8213 key.offset = block_group->key.objectid;
8214 key.type = 0;
8215
8216 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8217 if (ret < 0)
8218 goto out;
8219 if (ret > 0)
8220 btrfs_release_path(path);
8221 if (ret == 0) {
8222 ret = btrfs_del_item(trans, tree_root, path);
8223 if (ret)
8224 goto out;
8225 btrfs_release_path(path);
8226 }
8227
8228 spin_lock(&root->fs_info->block_group_cache_lock);
8229 rb_erase(&block_group->cache_node,
8230 &root->fs_info->block_group_cache_tree);
8231
8232 if (root->fs_info->first_logical_byte == block_group->key.objectid)
8233 root->fs_info->first_logical_byte = (u64)-1;
8234 spin_unlock(&root->fs_info->block_group_cache_lock);
8235
8236 down_write(&block_group->space_info->groups_sem);
8237 /*
8238 * we must use list_del_init so people can check to see if they
8239 * are still on the list after taking the semaphore
8240 */
8241 list_del_init(&block_group->list);
8242 if (list_empty(&block_group->space_info->block_groups[index]))
8243 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8244 up_write(&block_group->space_info->groups_sem);
8245
8246 if (block_group->cached == BTRFS_CACHE_STARTED)
8247 wait_block_group_cache_done(block_group);
8248
8249 btrfs_remove_free_space_cache(block_group);
8250
8251 spin_lock(&block_group->space_info->lock);
8252 block_group->space_info->total_bytes -= block_group->key.offset;
8253 block_group->space_info->bytes_readonly -= block_group->key.offset;
8254 block_group->space_info->disk_total -= block_group->key.offset * factor;
8255 spin_unlock(&block_group->space_info->lock);
8256
8257 memcpy(&key, &block_group->key, sizeof(key));
8258
8259 btrfs_clear_space_info_full(root->fs_info);
8260
8261 btrfs_put_block_group(block_group);
8262 btrfs_put_block_group(block_group);
8263
8264 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8265 if (ret > 0)
8266 ret = -EIO;
8267 if (ret < 0)
8268 goto out;
8269
8270 ret = btrfs_del_item(trans, root, path);
8271 out:
8272 btrfs_free_path(path);
8273 return ret;
8274 }
8275
8276 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8277 {
8278 struct btrfs_space_info *space_info;
8279 struct btrfs_super_block *disk_super;
8280 u64 features;
8281 u64 flags;
8282 int mixed = 0;
8283 int ret;
8284
8285 disk_super = fs_info->super_copy;
8286 if (!btrfs_super_root(disk_super))
8287 return 1;
8288
8289 features = btrfs_super_incompat_flags(disk_super);
8290 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8291 mixed = 1;
8292
8293 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8294 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8295 if (ret)
8296 goto out;
8297
8298 if (mixed) {
8299 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8300 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8301 } else {
8302 flags = BTRFS_BLOCK_GROUP_METADATA;
8303 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8304 if (ret)
8305 goto out;
8306
8307 flags = BTRFS_BLOCK_GROUP_DATA;
8308 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8309 }
8310 out:
8311 return ret;
8312 }
8313
8314 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8315 {
8316 return unpin_extent_range(root, start, end);
8317 }
8318
8319 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8320 u64 num_bytes, u64 *actual_bytes)
8321 {
8322 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8323 }
8324
8325 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8326 {
8327 struct btrfs_fs_info *fs_info = root->fs_info;
8328 struct btrfs_block_group_cache *cache = NULL;
8329 u64 group_trimmed;
8330 u64 start;
8331 u64 end;
8332 u64 trimmed = 0;
8333 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8334 int ret = 0;
8335
8336 /*
8337 * try to trim all FS space, our block group may start from non-zero.
8338 */
8339 if (range->len == total_bytes)
8340 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8341 else
8342 cache = btrfs_lookup_block_group(fs_info, range->start);
8343
8344 while (cache) {
8345 if (cache->key.objectid >= (range->start + range->len)) {
8346 btrfs_put_block_group(cache);
8347 break;
8348 }
8349
8350 start = max(range->start, cache->key.objectid);
8351 end = min(range->start + range->len,
8352 cache->key.objectid + cache->key.offset);
8353
8354 if (end - start >= range->minlen) {
8355 if (!block_group_cache_done(cache)) {
8356 ret = cache_block_group(cache, 0);
8357 if (!ret)
8358 wait_block_group_cache_done(cache);
8359 }
8360 ret = btrfs_trim_block_group(cache,
8361 &group_trimmed,
8362 start,
8363 end,
8364 range->minlen);
8365
8366 trimmed += group_trimmed;
8367 if (ret) {
8368 btrfs_put_block_group(cache);
8369 break;
8370 }
8371 }
8372
8373 cache = next_block_group(fs_info->tree_root, cache);
8374 }
8375
8376 range->len = trimmed;
8377 return ret;
8378 }