Btrfs: check the root passed to btrfs_end_transaction
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48
49 static struct extent_io_ops btree_extent_io_ops;
50 static void end_workqueue_fn(struct btrfs_work *work);
51 static void free_fs_root(struct btrfs_root *root);
52 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
53 int read_only);
54 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_root *root);
58 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
60 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
61 struct extent_io_tree *dirty_pages,
62 int mark);
63 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
64 struct extent_io_tree *pinned_extents);
65
66 /*
67 * end_io_wq structs are used to do processing in task context when an IO is
68 * complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
71 struct end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 int error;
77 int metadata;
78 struct list_head list;
79 struct btrfs_work work;
80 };
81
82 /*
83 * async submit bios are used to offload expensive checksumming
84 * onto the worker threads. They checksum file and metadata bios
85 * just before they are sent down the IO stack.
86 */
87 struct async_submit_bio {
88 struct inode *inode;
89 struct bio *bio;
90 struct list_head list;
91 extent_submit_bio_hook_t *submit_bio_start;
92 extent_submit_bio_hook_t *submit_bio_done;
93 int rw;
94 int mirror_num;
95 unsigned long bio_flags;
96 /*
97 * bio_offset is optional, can be used if the pages in the bio
98 * can't tell us where in the file the bio should go
99 */
100 u64 bio_offset;
101 struct btrfs_work work;
102 int error;
103 };
104
105 /*
106 * Lockdep class keys for extent_buffer->lock's in this root. For a given
107 * eb, the lockdep key is determined by the btrfs_root it belongs to and
108 * the level the eb occupies in the tree.
109 *
110 * Different roots are used for different purposes and may nest inside each
111 * other and they require separate keysets. As lockdep keys should be
112 * static, assign keysets according to the purpose of the root as indicated
113 * by btrfs_root->objectid. This ensures that all special purpose roots
114 * have separate keysets.
115 *
116 * Lock-nesting across peer nodes is always done with the immediate parent
117 * node locked thus preventing deadlock. As lockdep doesn't know this, use
118 * subclass to avoid triggering lockdep warning in such cases.
119 *
120 * The key is set by the readpage_end_io_hook after the buffer has passed
121 * csum validation but before the pages are unlocked. It is also set by
122 * btrfs_init_new_buffer on freshly allocated blocks.
123 *
124 * We also add a check to make sure the highest level of the tree is the
125 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
126 * needs update as well.
127 */
128 #ifdef CONFIG_DEBUG_LOCK_ALLOC
129 # if BTRFS_MAX_LEVEL != 8
130 # error
131 # endif
132
133 static struct btrfs_lockdep_keyset {
134 u64 id; /* root objectid */
135 const char *name_stem; /* lock name stem */
136 char names[BTRFS_MAX_LEVEL + 1][20];
137 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
138 } btrfs_lockdep_keysets[] = {
139 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
140 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
141 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
142 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
143 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
144 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
145 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
146 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
147 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
148 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
149 { .id = 0, .name_stem = "tree" },
150 };
151
152 void __init btrfs_init_lockdep(void)
153 {
154 int i, j;
155
156 /* initialize lockdep class names */
157 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
158 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
159
160 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
161 snprintf(ks->names[j], sizeof(ks->names[j]),
162 "btrfs-%s-%02d", ks->name_stem, j);
163 }
164 }
165
166 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
167 int level)
168 {
169 struct btrfs_lockdep_keyset *ks;
170
171 BUG_ON(level >= ARRAY_SIZE(ks->keys));
172
173 /* find the matching keyset, id 0 is the default entry */
174 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
175 if (ks->id == objectid)
176 break;
177
178 lockdep_set_class_and_name(&eb->lock,
179 &ks->keys[level], ks->names[level]);
180 }
181
182 #endif
183
184 /*
185 * extents on the btree inode are pretty simple, there's one extent
186 * that covers the entire device
187 */
188 static struct extent_map *btree_get_extent(struct inode *inode,
189 struct page *page, size_t pg_offset, u64 start, u64 len,
190 int create)
191 {
192 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
193 struct extent_map *em;
194 int ret;
195
196 read_lock(&em_tree->lock);
197 em = lookup_extent_mapping(em_tree, start, len);
198 if (em) {
199 em->bdev =
200 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
201 read_unlock(&em_tree->lock);
202 goto out;
203 }
204 read_unlock(&em_tree->lock);
205
206 em = alloc_extent_map();
207 if (!em) {
208 em = ERR_PTR(-ENOMEM);
209 goto out;
210 }
211 em->start = 0;
212 em->len = (u64)-1;
213 em->block_len = (u64)-1;
214 em->block_start = 0;
215 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
216
217 write_lock(&em_tree->lock);
218 ret = add_extent_mapping(em_tree, em);
219 if (ret == -EEXIST) {
220 u64 failed_start = em->start;
221 u64 failed_len = em->len;
222
223 free_extent_map(em);
224 em = lookup_extent_mapping(em_tree, start, len);
225 if (em) {
226 ret = 0;
227 } else {
228 em = lookup_extent_mapping(em_tree, failed_start,
229 failed_len);
230 ret = -EIO;
231 }
232 } else if (ret) {
233 free_extent_map(em);
234 em = NULL;
235 }
236 write_unlock(&em_tree->lock);
237
238 if (ret)
239 em = ERR_PTR(ret);
240 out:
241 return em;
242 }
243
244 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
245 {
246 return crc32c(seed, data, len);
247 }
248
249 void btrfs_csum_final(u32 crc, char *result)
250 {
251 put_unaligned_le32(~crc, result);
252 }
253
254 /*
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
257 */
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 int verify)
260 {
261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262 char *result = NULL;
263 unsigned long len;
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
266 char *kaddr;
267 unsigned long map_start;
268 unsigned long map_len;
269 int err;
270 u32 crc = ~(u32)0;
271 unsigned long inline_result;
272
273 len = buf->len - offset;
274 while (len > 0) {
275 err = map_private_extent_buffer(buf, offset, 32,
276 &kaddr, &map_start, &map_len);
277 if (err)
278 return 1;
279 cur_len = min(len, map_len - (offset - map_start));
280 crc = btrfs_csum_data(root, kaddr + offset - map_start,
281 crc, cur_len);
282 len -= cur_len;
283 offset += cur_len;
284 }
285 if (csum_size > sizeof(inline_result)) {
286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 if (!result)
288 return 1;
289 } else {
290 result = (char *)&inline_result;
291 }
292
293 btrfs_csum_final(crc, result);
294
295 if (verify) {
296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297 u32 val;
298 u32 found = 0;
299 memcpy(&found, result, csum_size);
300
301 read_extent_buffer(buf, &val, 0, csum_size);
302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303 "failed on %llu wanted %X found %X "
304 "level %d\n",
305 root->fs_info->sb->s_id,
306 (unsigned long long)buf->start, val, found,
307 btrfs_header_level(buf));
308 if (result != (char *)&inline_result)
309 kfree(result);
310 return 1;
311 }
312 } else {
313 write_extent_buffer(buf, result, 0, csum_size);
314 }
315 if (result != (char *)&inline_result)
316 kfree(result);
317 return 0;
318 }
319
320 /*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
329 {
330 struct extent_state *cached_state = NULL;
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
336 if (atomic)
337 return -EAGAIN;
338
339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340 0, &cached_state);
341 if (extent_buffer_uptodate(eb) &&
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347 "found %llu\n",
348 (unsigned long long)eb->start,
349 (unsigned long long)parent_transid,
350 (unsigned long long)btrfs_header_generation(eb));
351 ret = 1;
352 clear_extent_buffer_uptodate(eb);
353 out:
354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 &cached_state, GFP_NOFS);
356 return ret;
357 }
358
359 /*
360 * helper to read a given tree block, doing retries as required when
361 * the checksums don't match and we have alternate mirrors to try.
362 */
363 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
364 struct extent_buffer *eb,
365 u64 start, u64 parent_transid)
366 {
367 struct extent_io_tree *io_tree;
368 int failed = 0;
369 int ret;
370 int num_copies = 0;
371 int mirror_num = 0;
372 int failed_mirror = 0;
373
374 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
375 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
376 while (1) {
377 ret = read_extent_buffer_pages(io_tree, eb, start,
378 WAIT_COMPLETE,
379 btree_get_extent, mirror_num);
380 if (!ret && !verify_parent_transid(io_tree, eb,
381 parent_transid, 0))
382 break;
383
384 /*
385 * This buffer's crc is fine, but its contents are corrupted, so
386 * there is no reason to read the other copies, they won't be
387 * any less wrong.
388 */
389 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
390 break;
391
392 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
393 eb->start, eb->len);
394 if (num_copies == 1)
395 break;
396
397 if (!failed_mirror) {
398 failed = 1;
399 failed_mirror = eb->read_mirror;
400 }
401
402 mirror_num++;
403 if (mirror_num == failed_mirror)
404 mirror_num++;
405
406 if (mirror_num > num_copies)
407 break;
408 }
409
410 if (failed && !ret)
411 repair_eb_io_failure(root, eb, failed_mirror);
412
413 return ret;
414 }
415
416 /*
417 * checksum a dirty tree block before IO. This has extra checks to make sure
418 * we only fill in the checksum field in the first page of a multi-page block
419 */
420
421 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
422 {
423 struct extent_io_tree *tree;
424 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
425 u64 found_start;
426 struct extent_buffer *eb;
427
428 tree = &BTRFS_I(page->mapping->host)->io_tree;
429
430 eb = (struct extent_buffer *)page->private;
431 if (page != eb->pages[0])
432 return 0;
433 found_start = btrfs_header_bytenr(eb);
434 if (found_start != start) {
435 WARN_ON(1);
436 return 0;
437 }
438 if (eb->pages[0] != page) {
439 WARN_ON(1);
440 return 0;
441 }
442 if (!PageUptodate(page)) {
443 WARN_ON(1);
444 return 0;
445 }
446 csum_tree_block(root, eb, 0);
447 return 0;
448 }
449
450 static int check_tree_block_fsid(struct btrfs_root *root,
451 struct extent_buffer *eb)
452 {
453 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
454 u8 fsid[BTRFS_UUID_SIZE];
455 int ret = 1;
456
457 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
458 BTRFS_FSID_SIZE);
459 while (fs_devices) {
460 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
461 ret = 0;
462 break;
463 }
464 fs_devices = fs_devices->seed;
465 }
466 return ret;
467 }
468
469 #define CORRUPT(reason, eb, root, slot) \
470 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
471 "root=%llu, slot=%d\n", reason, \
472 (unsigned long long)btrfs_header_bytenr(eb), \
473 (unsigned long long)root->objectid, slot)
474
475 static noinline int check_leaf(struct btrfs_root *root,
476 struct extent_buffer *leaf)
477 {
478 struct btrfs_key key;
479 struct btrfs_key leaf_key;
480 u32 nritems = btrfs_header_nritems(leaf);
481 int slot;
482
483 if (nritems == 0)
484 return 0;
485
486 /* Check the 0 item */
487 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
488 BTRFS_LEAF_DATA_SIZE(root)) {
489 CORRUPT("invalid item offset size pair", leaf, root, 0);
490 return -EIO;
491 }
492
493 /*
494 * Check to make sure each items keys are in the correct order and their
495 * offsets make sense. We only have to loop through nritems-1 because
496 * we check the current slot against the next slot, which verifies the
497 * next slot's offset+size makes sense and that the current's slot
498 * offset is correct.
499 */
500 for (slot = 0; slot < nritems - 1; slot++) {
501 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
502 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
503
504 /* Make sure the keys are in the right order */
505 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
506 CORRUPT("bad key order", leaf, root, slot);
507 return -EIO;
508 }
509
510 /*
511 * Make sure the offset and ends are right, remember that the
512 * item data starts at the end of the leaf and grows towards the
513 * front.
514 */
515 if (btrfs_item_offset_nr(leaf, slot) !=
516 btrfs_item_end_nr(leaf, slot + 1)) {
517 CORRUPT("slot offset bad", leaf, root, slot);
518 return -EIO;
519 }
520
521 /*
522 * Check to make sure that we don't point outside of the leaf,
523 * just incase all the items are consistent to eachother, but
524 * all point outside of the leaf.
525 */
526 if (btrfs_item_end_nr(leaf, slot) >
527 BTRFS_LEAF_DATA_SIZE(root)) {
528 CORRUPT("slot end outside of leaf", leaf, root, slot);
529 return -EIO;
530 }
531 }
532
533 return 0;
534 }
535
536 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
537 struct page *page, int max_walk)
538 {
539 struct extent_buffer *eb;
540 u64 start = page_offset(page);
541 u64 target = start;
542 u64 min_start;
543
544 if (start < max_walk)
545 min_start = 0;
546 else
547 min_start = start - max_walk;
548
549 while (start >= min_start) {
550 eb = find_extent_buffer(tree, start, 0);
551 if (eb) {
552 /*
553 * we found an extent buffer and it contains our page
554 * horray!
555 */
556 if (eb->start <= target &&
557 eb->start + eb->len > target)
558 return eb;
559
560 /* we found an extent buffer that wasn't for us */
561 free_extent_buffer(eb);
562 return NULL;
563 }
564 if (start == 0)
565 break;
566 start -= PAGE_CACHE_SIZE;
567 }
568 return NULL;
569 }
570
571 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
572 struct extent_state *state, int mirror)
573 {
574 struct extent_io_tree *tree;
575 u64 found_start;
576 int found_level;
577 struct extent_buffer *eb;
578 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
579 int ret = 0;
580 int reads_done;
581
582 if (!page->private)
583 goto out;
584
585 tree = &BTRFS_I(page->mapping->host)->io_tree;
586 eb = (struct extent_buffer *)page->private;
587
588 /* the pending IO might have been the only thing that kept this buffer
589 * in memory. Make sure we have a ref for all this other checks
590 */
591 extent_buffer_get(eb);
592
593 reads_done = atomic_dec_and_test(&eb->io_pages);
594 if (!reads_done)
595 goto err;
596
597 eb->read_mirror = mirror;
598 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
599 ret = -EIO;
600 goto err;
601 }
602
603 found_start = btrfs_header_bytenr(eb);
604 if (found_start != eb->start) {
605 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
606 "%llu %llu\n",
607 (unsigned long long)found_start,
608 (unsigned long long)eb->start);
609 ret = -EIO;
610 goto err;
611 }
612 if (check_tree_block_fsid(root, eb)) {
613 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
614 (unsigned long long)eb->start);
615 ret = -EIO;
616 goto err;
617 }
618 found_level = btrfs_header_level(eb);
619
620 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621 eb, found_level);
622
623 ret = csum_tree_block(root, eb, 1);
624 if (ret) {
625 ret = -EIO;
626 goto err;
627 }
628
629 /*
630 * If this is a leaf block and it is corrupt, set the corrupt bit so
631 * that we don't try and read the other copies of this block, just
632 * return -EIO.
633 */
634 if (found_level == 0 && check_leaf(root, eb)) {
635 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636 ret = -EIO;
637 }
638
639 if (!ret)
640 set_extent_buffer_uptodate(eb);
641 err:
642 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
643 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
644 btree_readahead_hook(root, eb, eb->start, ret);
645 }
646
647 if (ret)
648 clear_extent_buffer_uptodate(eb);
649 free_extent_buffer(eb);
650 out:
651 return ret;
652 }
653
654 static int btree_io_failed_hook(struct page *page, int failed_mirror)
655 {
656 struct extent_buffer *eb;
657 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
658
659 eb = (struct extent_buffer *)page->private;
660 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
661 eb->read_mirror = failed_mirror;
662 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
663 btree_readahead_hook(root, eb, eb->start, -EIO);
664 return -EIO; /* we fixed nothing */
665 }
666
667 static void end_workqueue_bio(struct bio *bio, int err)
668 {
669 struct end_io_wq *end_io_wq = bio->bi_private;
670 struct btrfs_fs_info *fs_info;
671
672 fs_info = end_io_wq->info;
673 end_io_wq->error = err;
674 end_io_wq->work.func = end_workqueue_fn;
675 end_io_wq->work.flags = 0;
676
677 if (bio->bi_rw & REQ_WRITE) {
678 if (end_io_wq->metadata == 1)
679 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
680 &end_io_wq->work);
681 else if (end_io_wq->metadata == 2)
682 btrfs_queue_worker(&fs_info->endio_freespace_worker,
683 &end_io_wq->work);
684 else
685 btrfs_queue_worker(&fs_info->endio_write_workers,
686 &end_io_wq->work);
687 } else {
688 if (end_io_wq->metadata)
689 btrfs_queue_worker(&fs_info->endio_meta_workers,
690 &end_io_wq->work);
691 else
692 btrfs_queue_worker(&fs_info->endio_workers,
693 &end_io_wq->work);
694 }
695 }
696
697 /*
698 * For the metadata arg you want
699 *
700 * 0 - if data
701 * 1 - if normal metadta
702 * 2 - if writing to the free space cache area
703 */
704 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
705 int metadata)
706 {
707 struct end_io_wq *end_io_wq;
708 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
709 if (!end_io_wq)
710 return -ENOMEM;
711
712 end_io_wq->private = bio->bi_private;
713 end_io_wq->end_io = bio->bi_end_io;
714 end_io_wq->info = info;
715 end_io_wq->error = 0;
716 end_io_wq->bio = bio;
717 end_io_wq->metadata = metadata;
718
719 bio->bi_private = end_io_wq;
720 bio->bi_end_io = end_workqueue_bio;
721 return 0;
722 }
723
724 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
725 {
726 unsigned long limit = min_t(unsigned long,
727 info->workers.max_workers,
728 info->fs_devices->open_devices);
729 return 256 * limit;
730 }
731
732 static void run_one_async_start(struct btrfs_work *work)
733 {
734 struct async_submit_bio *async;
735 int ret;
736
737 async = container_of(work, struct async_submit_bio, work);
738 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
739 async->mirror_num, async->bio_flags,
740 async->bio_offset);
741 if (ret)
742 async->error = ret;
743 }
744
745 static void run_one_async_done(struct btrfs_work *work)
746 {
747 struct btrfs_fs_info *fs_info;
748 struct async_submit_bio *async;
749 int limit;
750
751 async = container_of(work, struct async_submit_bio, work);
752 fs_info = BTRFS_I(async->inode)->root->fs_info;
753
754 limit = btrfs_async_submit_limit(fs_info);
755 limit = limit * 2 / 3;
756
757 atomic_dec(&fs_info->nr_async_submits);
758
759 if (atomic_read(&fs_info->nr_async_submits) < limit &&
760 waitqueue_active(&fs_info->async_submit_wait))
761 wake_up(&fs_info->async_submit_wait);
762
763 /* If an error occured we just want to clean up the bio and move on */
764 if (async->error) {
765 bio_endio(async->bio, async->error);
766 return;
767 }
768
769 async->submit_bio_done(async->inode, async->rw, async->bio,
770 async->mirror_num, async->bio_flags,
771 async->bio_offset);
772 }
773
774 static void run_one_async_free(struct btrfs_work *work)
775 {
776 struct async_submit_bio *async;
777
778 async = container_of(work, struct async_submit_bio, work);
779 kfree(async);
780 }
781
782 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
783 int rw, struct bio *bio, int mirror_num,
784 unsigned long bio_flags,
785 u64 bio_offset,
786 extent_submit_bio_hook_t *submit_bio_start,
787 extent_submit_bio_hook_t *submit_bio_done)
788 {
789 struct async_submit_bio *async;
790
791 async = kmalloc(sizeof(*async), GFP_NOFS);
792 if (!async)
793 return -ENOMEM;
794
795 async->inode = inode;
796 async->rw = rw;
797 async->bio = bio;
798 async->mirror_num = mirror_num;
799 async->submit_bio_start = submit_bio_start;
800 async->submit_bio_done = submit_bio_done;
801
802 async->work.func = run_one_async_start;
803 async->work.ordered_func = run_one_async_done;
804 async->work.ordered_free = run_one_async_free;
805
806 async->work.flags = 0;
807 async->bio_flags = bio_flags;
808 async->bio_offset = bio_offset;
809
810 async->error = 0;
811
812 atomic_inc(&fs_info->nr_async_submits);
813
814 if (rw & REQ_SYNC)
815 btrfs_set_work_high_prio(&async->work);
816
817 btrfs_queue_worker(&fs_info->workers, &async->work);
818
819 while (atomic_read(&fs_info->async_submit_draining) &&
820 atomic_read(&fs_info->nr_async_submits)) {
821 wait_event(fs_info->async_submit_wait,
822 (atomic_read(&fs_info->nr_async_submits) == 0));
823 }
824
825 return 0;
826 }
827
828 static int btree_csum_one_bio(struct bio *bio)
829 {
830 struct bio_vec *bvec = bio->bi_io_vec;
831 int bio_index = 0;
832 struct btrfs_root *root;
833 int ret = 0;
834
835 WARN_ON(bio->bi_vcnt <= 0);
836 while (bio_index < bio->bi_vcnt) {
837 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
838 ret = csum_dirty_buffer(root, bvec->bv_page);
839 if (ret)
840 break;
841 bio_index++;
842 bvec++;
843 }
844 return ret;
845 }
846
847 static int __btree_submit_bio_start(struct inode *inode, int rw,
848 struct bio *bio, int mirror_num,
849 unsigned long bio_flags,
850 u64 bio_offset)
851 {
852 /*
853 * when we're called for a write, we're already in the async
854 * submission context. Just jump into btrfs_map_bio
855 */
856 return btree_csum_one_bio(bio);
857 }
858
859 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
860 int mirror_num, unsigned long bio_flags,
861 u64 bio_offset)
862 {
863 /*
864 * when we're called for a write, we're already in the async
865 * submission context. Just jump into btrfs_map_bio
866 */
867 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
868 }
869
870 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
871 int mirror_num, unsigned long bio_flags,
872 u64 bio_offset)
873 {
874 int ret;
875
876 if (!(rw & REQ_WRITE)) {
877
878 /*
879 * called for a read, do the setup so that checksum validation
880 * can happen in the async kernel threads
881 */
882 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
883 bio, 1);
884 if (ret)
885 return ret;
886 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
887 mirror_num, 0);
888 }
889
890 /*
891 * kthread helpers are used to submit writes so that checksumming
892 * can happen in parallel across all CPUs
893 */
894 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
895 inode, rw, bio, mirror_num, 0,
896 bio_offset,
897 __btree_submit_bio_start,
898 __btree_submit_bio_done);
899 }
900
901 #ifdef CONFIG_MIGRATION
902 static int btree_migratepage(struct address_space *mapping,
903 struct page *newpage, struct page *page,
904 enum migrate_mode mode)
905 {
906 /*
907 * we can't safely write a btree page from here,
908 * we haven't done the locking hook
909 */
910 if (PageDirty(page))
911 return -EAGAIN;
912 /*
913 * Buffers may be managed in a filesystem specific way.
914 * We must have no buffers or drop them.
915 */
916 if (page_has_private(page) &&
917 !try_to_release_page(page, GFP_KERNEL))
918 return -EAGAIN;
919 return migrate_page(mapping, newpage, page, mode);
920 }
921 #endif
922
923
924 static int btree_writepages(struct address_space *mapping,
925 struct writeback_control *wbc)
926 {
927 struct extent_io_tree *tree;
928 tree = &BTRFS_I(mapping->host)->io_tree;
929 if (wbc->sync_mode == WB_SYNC_NONE) {
930 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
931 u64 num_dirty;
932 unsigned long thresh = 32 * 1024 * 1024;
933
934 if (wbc->for_kupdate)
935 return 0;
936
937 /* this is a bit racy, but that's ok */
938 num_dirty = root->fs_info->dirty_metadata_bytes;
939 if (num_dirty < thresh)
940 return 0;
941 }
942 return btree_write_cache_pages(mapping, wbc);
943 }
944
945 static int btree_readpage(struct file *file, struct page *page)
946 {
947 struct extent_io_tree *tree;
948 tree = &BTRFS_I(page->mapping->host)->io_tree;
949 return extent_read_full_page(tree, page, btree_get_extent, 0);
950 }
951
952 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
953 {
954 if (PageWriteback(page) || PageDirty(page))
955 return 0;
956 /*
957 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
958 * slab allocation from alloc_extent_state down the callchain where
959 * it'd hit a BUG_ON as those flags are not allowed.
960 */
961 gfp_flags &= ~GFP_SLAB_BUG_MASK;
962
963 return try_release_extent_buffer(page, gfp_flags);
964 }
965
966 static void btree_invalidatepage(struct page *page, unsigned long offset)
967 {
968 struct extent_io_tree *tree;
969 tree = &BTRFS_I(page->mapping->host)->io_tree;
970 extent_invalidatepage(tree, page, offset);
971 btree_releasepage(page, GFP_NOFS);
972 if (PagePrivate(page)) {
973 printk(KERN_WARNING "btrfs warning page private not zero "
974 "on page %llu\n", (unsigned long long)page_offset(page));
975 ClearPagePrivate(page);
976 set_page_private(page, 0);
977 page_cache_release(page);
978 }
979 }
980
981 static int btree_set_page_dirty(struct page *page)
982 {
983 struct extent_buffer *eb;
984
985 BUG_ON(!PagePrivate(page));
986 eb = (struct extent_buffer *)page->private;
987 BUG_ON(!eb);
988 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
989 BUG_ON(!atomic_read(&eb->refs));
990 btrfs_assert_tree_locked(eb);
991 return __set_page_dirty_nobuffers(page);
992 }
993
994 static const struct address_space_operations btree_aops = {
995 .readpage = btree_readpage,
996 .writepages = btree_writepages,
997 .releasepage = btree_releasepage,
998 .invalidatepage = btree_invalidatepage,
999 #ifdef CONFIG_MIGRATION
1000 .migratepage = btree_migratepage,
1001 #endif
1002 .set_page_dirty = btree_set_page_dirty,
1003 };
1004
1005 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1006 u64 parent_transid)
1007 {
1008 struct extent_buffer *buf = NULL;
1009 struct inode *btree_inode = root->fs_info->btree_inode;
1010 int ret = 0;
1011
1012 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1013 if (!buf)
1014 return 0;
1015 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1016 buf, 0, WAIT_NONE, btree_get_extent, 0);
1017 free_extent_buffer(buf);
1018 return ret;
1019 }
1020
1021 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1022 int mirror_num, struct extent_buffer **eb)
1023 {
1024 struct extent_buffer *buf = NULL;
1025 struct inode *btree_inode = root->fs_info->btree_inode;
1026 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1027 int ret;
1028
1029 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1030 if (!buf)
1031 return 0;
1032
1033 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1034
1035 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1036 btree_get_extent, mirror_num);
1037 if (ret) {
1038 free_extent_buffer(buf);
1039 return ret;
1040 }
1041
1042 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1043 free_extent_buffer(buf);
1044 return -EIO;
1045 } else if (extent_buffer_uptodate(buf)) {
1046 *eb = buf;
1047 } else {
1048 free_extent_buffer(buf);
1049 }
1050 return 0;
1051 }
1052
1053 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1054 u64 bytenr, u32 blocksize)
1055 {
1056 struct inode *btree_inode = root->fs_info->btree_inode;
1057 struct extent_buffer *eb;
1058 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1059 bytenr, blocksize);
1060 return eb;
1061 }
1062
1063 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1064 u64 bytenr, u32 blocksize)
1065 {
1066 struct inode *btree_inode = root->fs_info->btree_inode;
1067 struct extent_buffer *eb;
1068
1069 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1070 bytenr, blocksize);
1071 return eb;
1072 }
1073
1074
1075 int btrfs_write_tree_block(struct extent_buffer *buf)
1076 {
1077 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1078 buf->start + buf->len - 1);
1079 }
1080
1081 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1082 {
1083 return filemap_fdatawait_range(buf->pages[0]->mapping,
1084 buf->start, buf->start + buf->len - 1);
1085 }
1086
1087 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1088 u32 blocksize, u64 parent_transid)
1089 {
1090 struct extent_buffer *buf = NULL;
1091 int ret;
1092
1093 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1094 if (!buf)
1095 return NULL;
1096
1097 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1098 return buf;
1099
1100 }
1101
1102 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1103 struct extent_buffer *buf)
1104 {
1105 if (btrfs_header_generation(buf) ==
1106 root->fs_info->running_transaction->transid) {
1107 btrfs_assert_tree_locked(buf);
1108
1109 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1110 spin_lock(&root->fs_info->delalloc_lock);
1111 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1112 root->fs_info->dirty_metadata_bytes -= buf->len;
1113 else {
1114 spin_unlock(&root->fs_info->delalloc_lock);
1115 btrfs_panic(root->fs_info, -EOVERFLOW,
1116 "Can't clear %lu bytes from "
1117 " dirty_mdatadata_bytes (%lu)",
1118 buf->len,
1119 root->fs_info->dirty_metadata_bytes);
1120 }
1121 spin_unlock(&root->fs_info->delalloc_lock);
1122 }
1123
1124 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1125 btrfs_set_lock_blocking(buf);
1126 clear_extent_buffer_dirty(buf);
1127 }
1128 }
1129
1130 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1131 u32 stripesize, struct btrfs_root *root,
1132 struct btrfs_fs_info *fs_info,
1133 u64 objectid)
1134 {
1135 root->node = NULL;
1136 root->commit_root = NULL;
1137 root->sectorsize = sectorsize;
1138 root->nodesize = nodesize;
1139 root->leafsize = leafsize;
1140 root->stripesize = stripesize;
1141 root->ref_cows = 0;
1142 root->track_dirty = 0;
1143 root->in_radix = 0;
1144 root->orphan_item_inserted = 0;
1145 root->orphan_cleanup_state = 0;
1146
1147 root->objectid = objectid;
1148 root->last_trans = 0;
1149 root->highest_objectid = 0;
1150 root->name = NULL;
1151 root->inode_tree = RB_ROOT;
1152 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1153 root->block_rsv = NULL;
1154 root->orphan_block_rsv = NULL;
1155
1156 INIT_LIST_HEAD(&root->dirty_list);
1157 INIT_LIST_HEAD(&root->root_list);
1158 spin_lock_init(&root->orphan_lock);
1159 spin_lock_init(&root->inode_lock);
1160 spin_lock_init(&root->accounting_lock);
1161 mutex_init(&root->objectid_mutex);
1162 mutex_init(&root->log_mutex);
1163 init_waitqueue_head(&root->log_writer_wait);
1164 init_waitqueue_head(&root->log_commit_wait[0]);
1165 init_waitqueue_head(&root->log_commit_wait[1]);
1166 atomic_set(&root->log_commit[0], 0);
1167 atomic_set(&root->log_commit[1], 0);
1168 atomic_set(&root->log_writers, 0);
1169 atomic_set(&root->orphan_inodes, 0);
1170 root->log_batch = 0;
1171 root->log_transid = 0;
1172 root->last_log_commit = 0;
1173 extent_io_tree_init(&root->dirty_log_pages,
1174 fs_info->btree_inode->i_mapping);
1175
1176 memset(&root->root_key, 0, sizeof(root->root_key));
1177 memset(&root->root_item, 0, sizeof(root->root_item));
1178 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1179 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1180 root->defrag_trans_start = fs_info->generation;
1181 init_completion(&root->kobj_unregister);
1182 root->defrag_running = 0;
1183 root->root_key.objectid = objectid;
1184 root->anon_dev = 0;
1185 }
1186
1187 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1188 struct btrfs_fs_info *fs_info,
1189 u64 objectid,
1190 struct btrfs_root *root)
1191 {
1192 int ret;
1193 u32 blocksize;
1194 u64 generation;
1195
1196 __setup_root(tree_root->nodesize, tree_root->leafsize,
1197 tree_root->sectorsize, tree_root->stripesize,
1198 root, fs_info, objectid);
1199 ret = btrfs_find_last_root(tree_root, objectid,
1200 &root->root_item, &root->root_key);
1201 if (ret > 0)
1202 return -ENOENT;
1203 else if (ret < 0)
1204 return ret;
1205
1206 generation = btrfs_root_generation(&root->root_item);
1207 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1208 root->commit_root = NULL;
1209 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1210 blocksize, generation);
1211 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1212 free_extent_buffer(root->node);
1213 root->node = NULL;
1214 return -EIO;
1215 }
1216 root->commit_root = btrfs_root_node(root);
1217 return 0;
1218 }
1219
1220 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1221 {
1222 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1223 if (root)
1224 root->fs_info = fs_info;
1225 return root;
1226 }
1227
1228 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1229 struct btrfs_fs_info *fs_info)
1230 {
1231 struct btrfs_root *root;
1232 struct btrfs_root *tree_root = fs_info->tree_root;
1233 struct extent_buffer *leaf;
1234
1235 root = btrfs_alloc_root(fs_info);
1236 if (!root)
1237 return ERR_PTR(-ENOMEM);
1238
1239 __setup_root(tree_root->nodesize, tree_root->leafsize,
1240 tree_root->sectorsize, tree_root->stripesize,
1241 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1242
1243 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1244 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1245 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1246 /*
1247 * log trees do not get reference counted because they go away
1248 * before a real commit is actually done. They do store pointers
1249 * to file data extents, and those reference counts still get
1250 * updated (along with back refs to the log tree).
1251 */
1252 root->ref_cows = 0;
1253
1254 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1255 BTRFS_TREE_LOG_OBJECTID, NULL,
1256 0, 0, 0);
1257 if (IS_ERR(leaf)) {
1258 kfree(root);
1259 return ERR_CAST(leaf);
1260 }
1261
1262 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1263 btrfs_set_header_bytenr(leaf, leaf->start);
1264 btrfs_set_header_generation(leaf, trans->transid);
1265 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1266 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1267 root->node = leaf;
1268
1269 write_extent_buffer(root->node, root->fs_info->fsid,
1270 (unsigned long)btrfs_header_fsid(root->node),
1271 BTRFS_FSID_SIZE);
1272 btrfs_mark_buffer_dirty(root->node);
1273 btrfs_tree_unlock(root->node);
1274 return root;
1275 }
1276
1277 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1278 struct btrfs_fs_info *fs_info)
1279 {
1280 struct btrfs_root *log_root;
1281
1282 log_root = alloc_log_tree(trans, fs_info);
1283 if (IS_ERR(log_root))
1284 return PTR_ERR(log_root);
1285 WARN_ON(fs_info->log_root_tree);
1286 fs_info->log_root_tree = log_root;
1287 return 0;
1288 }
1289
1290 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1291 struct btrfs_root *root)
1292 {
1293 struct btrfs_root *log_root;
1294 struct btrfs_inode_item *inode_item;
1295
1296 log_root = alloc_log_tree(trans, root->fs_info);
1297 if (IS_ERR(log_root))
1298 return PTR_ERR(log_root);
1299
1300 log_root->last_trans = trans->transid;
1301 log_root->root_key.offset = root->root_key.objectid;
1302
1303 inode_item = &log_root->root_item.inode;
1304 inode_item->generation = cpu_to_le64(1);
1305 inode_item->size = cpu_to_le64(3);
1306 inode_item->nlink = cpu_to_le32(1);
1307 inode_item->nbytes = cpu_to_le64(root->leafsize);
1308 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1309
1310 btrfs_set_root_node(&log_root->root_item, log_root->node);
1311
1312 WARN_ON(root->log_root);
1313 root->log_root = log_root;
1314 root->log_transid = 0;
1315 root->last_log_commit = 0;
1316 return 0;
1317 }
1318
1319 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1320 struct btrfs_key *location)
1321 {
1322 struct btrfs_root *root;
1323 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1324 struct btrfs_path *path;
1325 struct extent_buffer *l;
1326 u64 generation;
1327 u32 blocksize;
1328 int ret = 0;
1329
1330 root = btrfs_alloc_root(fs_info);
1331 if (!root)
1332 return ERR_PTR(-ENOMEM);
1333 if (location->offset == (u64)-1) {
1334 ret = find_and_setup_root(tree_root, fs_info,
1335 location->objectid, root);
1336 if (ret) {
1337 kfree(root);
1338 return ERR_PTR(ret);
1339 }
1340 goto out;
1341 }
1342
1343 __setup_root(tree_root->nodesize, tree_root->leafsize,
1344 tree_root->sectorsize, tree_root->stripesize,
1345 root, fs_info, location->objectid);
1346
1347 path = btrfs_alloc_path();
1348 if (!path) {
1349 kfree(root);
1350 return ERR_PTR(-ENOMEM);
1351 }
1352 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1353 if (ret == 0) {
1354 l = path->nodes[0];
1355 read_extent_buffer(l, &root->root_item,
1356 btrfs_item_ptr_offset(l, path->slots[0]),
1357 sizeof(root->root_item));
1358 memcpy(&root->root_key, location, sizeof(*location));
1359 }
1360 btrfs_free_path(path);
1361 if (ret) {
1362 kfree(root);
1363 if (ret > 0)
1364 ret = -ENOENT;
1365 return ERR_PTR(ret);
1366 }
1367
1368 generation = btrfs_root_generation(&root->root_item);
1369 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1370 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1371 blocksize, generation);
1372 root->commit_root = btrfs_root_node(root);
1373 BUG_ON(!root->node); /* -ENOMEM */
1374 out:
1375 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1376 root->ref_cows = 1;
1377 btrfs_check_and_init_root_item(&root->root_item);
1378 }
1379
1380 return root;
1381 }
1382
1383 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1384 struct btrfs_key *location)
1385 {
1386 struct btrfs_root *root;
1387 int ret;
1388
1389 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1390 return fs_info->tree_root;
1391 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1392 return fs_info->extent_root;
1393 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1394 return fs_info->chunk_root;
1395 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1396 return fs_info->dev_root;
1397 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1398 return fs_info->csum_root;
1399 again:
1400 spin_lock(&fs_info->fs_roots_radix_lock);
1401 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1402 (unsigned long)location->objectid);
1403 spin_unlock(&fs_info->fs_roots_radix_lock);
1404 if (root)
1405 return root;
1406
1407 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1408 if (IS_ERR(root))
1409 return root;
1410
1411 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1412 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1413 GFP_NOFS);
1414 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1415 ret = -ENOMEM;
1416 goto fail;
1417 }
1418
1419 btrfs_init_free_ino_ctl(root);
1420 mutex_init(&root->fs_commit_mutex);
1421 spin_lock_init(&root->cache_lock);
1422 init_waitqueue_head(&root->cache_wait);
1423
1424 ret = get_anon_bdev(&root->anon_dev);
1425 if (ret)
1426 goto fail;
1427
1428 if (btrfs_root_refs(&root->root_item) == 0) {
1429 ret = -ENOENT;
1430 goto fail;
1431 }
1432
1433 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1434 if (ret < 0)
1435 goto fail;
1436 if (ret == 0)
1437 root->orphan_item_inserted = 1;
1438
1439 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1440 if (ret)
1441 goto fail;
1442
1443 spin_lock(&fs_info->fs_roots_radix_lock);
1444 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1445 (unsigned long)root->root_key.objectid,
1446 root);
1447 if (ret == 0)
1448 root->in_radix = 1;
1449
1450 spin_unlock(&fs_info->fs_roots_radix_lock);
1451 radix_tree_preload_end();
1452 if (ret) {
1453 if (ret == -EEXIST) {
1454 free_fs_root(root);
1455 goto again;
1456 }
1457 goto fail;
1458 }
1459
1460 ret = btrfs_find_dead_roots(fs_info->tree_root,
1461 root->root_key.objectid);
1462 WARN_ON(ret);
1463 return root;
1464 fail:
1465 free_fs_root(root);
1466 return ERR_PTR(ret);
1467 }
1468
1469 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1470 {
1471 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1472 int ret = 0;
1473 struct btrfs_device *device;
1474 struct backing_dev_info *bdi;
1475
1476 rcu_read_lock();
1477 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1478 if (!device->bdev)
1479 continue;
1480 bdi = blk_get_backing_dev_info(device->bdev);
1481 if (bdi && bdi_congested(bdi, bdi_bits)) {
1482 ret = 1;
1483 break;
1484 }
1485 }
1486 rcu_read_unlock();
1487 return ret;
1488 }
1489
1490 /*
1491 * If this fails, caller must call bdi_destroy() to get rid of the
1492 * bdi again.
1493 */
1494 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1495 {
1496 int err;
1497
1498 bdi->capabilities = BDI_CAP_MAP_COPY;
1499 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1500 if (err)
1501 return err;
1502
1503 bdi->ra_pages = default_backing_dev_info.ra_pages;
1504 bdi->congested_fn = btrfs_congested_fn;
1505 bdi->congested_data = info;
1506 return 0;
1507 }
1508
1509 /*
1510 * called by the kthread helper functions to finally call the bio end_io
1511 * functions. This is where read checksum verification actually happens
1512 */
1513 static void end_workqueue_fn(struct btrfs_work *work)
1514 {
1515 struct bio *bio;
1516 struct end_io_wq *end_io_wq;
1517 struct btrfs_fs_info *fs_info;
1518 int error;
1519
1520 end_io_wq = container_of(work, struct end_io_wq, work);
1521 bio = end_io_wq->bio;
1522 fs_info = end_io_wq->info;
1523
1524 error = end_io_wq->error;
1525 bio->bi_private = end_io_wq->private;
1526 bio->bi_end_io = end_io_wq->end_io;
1527 kfree(end_io_wq);
1528 bio_endio(bio, error);
1529 }
1530
1531 static int cleaner_kthread(void *arg)
1532 {
1533 struct btrfs_root *root = arg;
1534
1535 do {
1536 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1537
1538 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1539 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1540 btrfs_run_delayed_iputs(root);
1541 btrfs_clean_old_snapshots(root);
1542 mutex_unlock(&root->fs_info->cleaner_mutex);
1543 btrfs_run_defrag_inodes(root->fs_info);
1544 }
1545
1546 if (!try_to_freeze()) {
1547 set_current_state(TASK_INTERRUPTIBLE);
1548 if (!kthread_should_stop())
1549 schedule();
1550 __set_current_state(TASK_RUNNING);
1551 }
1552 } while (!kthread_should_stop());
1553 return 0;
1554 }
1555
1556 static int transaction_kthread(void *arg)
1557 {
1558 struct btrfs_root *root = arg;
1559 struct btrfs_trans_handle *trans;
1560 struct btrfs_transaction *cur;
1561 u64 transid;
1562 unsigned long now;
1563 unsigned long delay;
1564 bool cannot_commit;
1565
1566 do {
1567 cannot_commit = false;
1568 delay = HZ * 30;
1569 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1570 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1571
1572 spin_lock(&root->fs_info->trans_lock);
1573 cur = root->fs_info->running_transaction;
1574 if (!cur) {
1575 spin_unlock(&root->fs_info->trans_lock);
1576 goto sleep;
1577 }
1578
1579 now = get_seconds();
1580 if (!cur->blocked &&
1581 (now < cur->start_time || now - cur->start_time < 30)) {
1582 spin_unlock(&root->fs_info->trans_lock);
1583 delay = HZ * 5;
1584 goto sleep;
1585 }
1586 transid = cur->transid;
1587 spin_unlock(&root->fs_info->trans_lock);
1588
1589 /* If the file system is aborted, this will always fail. */
1590 trans = btrfs_join_transaction(root);
1591 if (IS_ERR(trans)) {
1592 cannot_commit = true;
1593 goto sleep;
1594 }
1595 if (transid == trans->transid) {
1596 btrfs_commit_transaction(trans, root);
1597 } else {
1598 btrfs_end_transaction(trans, root);
1599 }
1600 sleep:
1601 wake_up_process(root->fs_info->cleaner_kthread);
1602 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1603
1604 if (!try_to_freeze()) {
1605 set_current_state(TASK_INTERRUPTIBLE);
1606 if (!kthread_should_stop() &&
1607 (!btrfs_transaction_blocked(root->fs_info) ||
1608 cannot_commit))
1609 schedule_timeout(delay);
1610 __set_current_state(TASK_RUNNING);
1611 }
1612 } while (!kthread_should_stop());
1613 return 0;
1614 }
1615
1616 /*
1617 * this will find the highest generation in the array of
1618 * root backups. The index of the highest array is returned,
1619 * or -1 if we can't find anything.
1620 *
1621 * We check to make sure the array is valid by comparing the
1622 * generation of the latest root in the array with the generation
1623 * in the super block. If they don't match we pitch it.
1624 */
1625 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1626 {
1627 u64 cur;
1628 int newest_index = -1;
1629 struct btrfs_root_backup *root_backup;
1630 int i;
1631
1632 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1633 root_backup = info->super_copy->super_roots + i;
1634 cur = btrfs_backup_tree_root_gen(root_backup);
1635 if (cur == newest_gen)
1636 newest_index = i;
1637 }
1638
1639 /* check to see if we actually wrapped around */
1640 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1641 root_backup = info->super_copy->super_roots;
1642 cur = btrfs_backup_tree_root_gen(root_backup);
1643 if (cur == newest_gen)
1644 newest_index = 0;
1645 }
1646 return newest_index;
1647 }
1648
1649
1650 /*
1651 * find the oldest backup so we know where to store new entries
1652 * in the backup array. This will set the backup_root_index
1653 * field in the fs_info struct
1654 */
1655 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1656 u64 newest_gen)
1657 {
1658 int newest_index = -1;
1659
1660 newest_index = find_newest_super_backup(info, newest_gen);
1661 /* if there was garbage in there, just move along */
1662 if (newest_index == -1) {
1663 info->backup_root_index = 0;
1664 } else {
1665 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1666 }
1667 }
1668
1669 /*
1670 * copy all the root pointers into the super backup array.
1671 * this will bump the backup pointer by one when it is
1672 * done
1673 */
1674 static void backup_super_roots(struct btrfs_fs_info *info)
1675 {
1676 int next_backup;
1677 struct btrfs_root_backup *root_backup;
1678 int last_backup;
1679
1680 next_backup = info->backup_root_index;
1681 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1682 BTRFS_NUM_BACKUP_ROOTS;
1683
1684 /*
1685 * just overwrite the last backup if we're at the same generation
1686 * this happens only at umount
1687 */
1688 root_backup = info->super_for_commit->super_roots + last_backup;
1689 if (btrfs_backup_tree_root_gen(root_backup) ==
1690 btrfs_header_generation(info->tree_root->node))
1691 next_backup = last_backup;
1692
1693 root_backup = info->super_for_commit->super_roots + next_backup;
1694
1695 /*
1696 * make sure all of our padding and empty slots get zero filled
1697 * regardless of which ones we use today
1698 */
1699 memset(root_backup, 0, sizeof(*root_backup));
1700
1701 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1702
1703 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1704 btrfs_set_backup_tree_root_gen(root_backup,
1705 btrfs_header_generation(info->tree_root->node));
1706
1707 btrfs_set_backup_tree_root_level(root_backup,
1708 btrfs_header_level(info->tree_root->node));
1709
1710 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1711 btrfs_set_backup_chunk_root_gen(root_backup,
1712 btrfs_header_generation(info->chunk_root->node));
1713 btrfs_set_backup_chunk_root_level(root_backup,
1714 btrfs_header_level(info->chunk_root->node));
1715
1716 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1717 btrfs_set_backup_extent_root_gen(root_backup,
1718 btrfs_header_generation(info->extent_root->node));
1719 btrfs_set_backup_extent_root_level(root_backup,
1720 btrfs_header_level(info->extent_root->node));
1721
1722 /*
1723 * we might commit during log recovery, which happens before we set
1724 * the fs_root. Make sure it is valid before we fill it in.
1725 */
1726 if (info->fs_root && info->fs_root->node) {
1727 btrfs_set_backup_fs_root(root_backup,
1728 info->fs_root->node->start);
1729 btrfs_set_backup_fs_root_gen(root_backup,
1730 btrfs_header_generation(info->fs_root->node));
1731 btrfs_set_backup_fs_root_level(root_backup,
1732 btrfs_header_level(info->fs_root->node));
1733 }
1734
1735 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1736 btrfs_set_backup_dev_root_gen(root_backup,
1737 btrfs_header_generation(info->dev_root->node));
1738 btrfs_set_backup_dev_root_level(root_backup,
1739 btrfs_header_level(info->dev_root->node));
1740
1741 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1742 btrfs_set_backup_csum_root_gen(root_backup,
1743 btrfs_header_generation(info->csum_root->node));
1744 btrfs_set_backup_csum_root_level(root_backup,
1745 btrfs_header_level(info->csum_root->node));
1746
1747 btrfs_set_backup_total_bytes(root_backup,
1748 btrfs_super_total_bytes(info->super_copy));
1749 btrfs_set_backup_bytes_used(root_backup,
1750 btrfs_super_bytes_used(info->super_copy));
1751 btrfs_set_backup_num_devices(root_backup,
1752 btrfs_super_num_devices(info->super_copy));
1753
1754 /*
1755 * if we don't copy this out to the super_copy, it won't get remembered
1756 * for the next commit
1757 */
1758 memcpy(&info->super_copy->super_roots,
1759 &info->super_for_commit->super_roots,
1760 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1761 }
1762
1763 /*
1764 * this copies info out of the root backup array and back into
1765 * the in-memory super block. It is meant to help iterate through
1766 * the array, so you send it the number of backups you've already
1767 * tried and the last backup index you used.
1768 *
1769 * this returns -1 when it has tried all the backups
1770 */
1771 static noinline int next_root_backup(struct btrfs_fs_info *info,
1772 struct btrfs_super_block *super,
1773 int *num_backups_tried, int *backup_index)
1774 {
1775 struct btrfs_root_backup *root_backup;
1776 int newest = *backup_index;
1777
1778 if (*num_backups_tried == 0) {
1779 u64 gen = btrfs_super_generation(super);
1780
1781 newest = find_newest_super_backup(info, gen);
1782 if (newest == -1)
1783 return -1;
1784
1785 *backup_index = newest;
1786 *num_backups_tried = 1;
1787 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1788 /* we've tried all the backups, all done */
1789 return -1;
1790 } else {
1791 /* jump to the next oldest backup */
1792 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1793 BTRFS_NUM_BACKUP_ROOTS;
1794 *backup_index = newest;
1795 *num_backups_tried += 1;
1796 }
1797 root_backup = super->super_roots + newest;
1798
1799 btrfs_set_super_generation(super,
1800 btrfs_backup_tree_root_gen(root_backup));
1801 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1802 btrfs_set_super_root_level(super,
1803 btrfs_backup_tree_root_level(root_backup));
1804 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1805
1806 /*
1807 * fixme: the total bytes and num_devices need to match or we should
1808 * need a fsck
1809 */
1810 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1811 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1812 return 0;
1813 }
1814
1815 /* helper to cleanup tree roots */
1816 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1817 {
1818 free_extent_buffer(info->tree_root->node);
1819 free_extent_buffer(info->tree_root->commit_root);
1820 free_extent_buffer(info->dev_root->node);
1821 free_extent_buffer(info->dev_root->commit_root);
1822 free_extent_buffer(info->extent_root->node);
1823 free_extent_buffer(info->extent_root->commit_root);
1824 free_extent_buffer(info->csum_root->node);
1825 free_extent_buffer(info->csum_root->commit_root);
1826
1827 info->tree_root->node = NULL;
1828 info->tree_root->commit_root = NULL;
1829 info->dev_root->node = NULL;
1830 info->dev_root->commit_root = NULL;
1831 info->extent_root->node = NULL;
1832 info->extent_root->commit_root = NULL;
1833 info->csum_root->node = NULL;
1834 info->csum_root->commit_root = NULL;
1835
1836 if (chunk_root) {
1837 free_extent_buffer(info->chunk_root->node);
1838 free_extent_buffer(info->chunk_root->commit_root);
1839 info->chunk_root->node = NULL;
1840 info->chunk_root->commit_root = NULL;
1841 }
1842 }
1843
1844
1845 int open_ctree(struct super_block *sb,
1846 struct btrfs_fs_devices *fs_devices,
1847 char *options)
1848 {
1849 u32 sectorsize;
1850 u32 nodesize;
1851 u32 leafsize;
1852 u32 blocksize;
1853 u32 stripesize;
1854 u64 generation;
1855 u64 features;
1856 struct btrfs_key location;
1857 struct buffer_head *bh;
1858 struct btrfs_super_block *disk_super;
1859 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1860 struct btrfs_root *tree_root;
1861 struct btrfs_root *extent_root;
1862 struct btrfs_root *csum_root;
1863 struct btrfs_root *chunk_root;
1864 struct btrfs_root *dev_root;
1865 struct btrfs_root *log_tree_root;
1866 int ret;
1867 int err = -EINVAL;
1868 int num_backups_tried = 0;
1869 int backup_index = 0;
1870
1871 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1872 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1873 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1874 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1875 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1876
1877 if (!tree_root || !extent_root || !csum_root ||
1878 !chunk_root || !dev_root) {
1879 err = -ENOMEM;
1880 goto fail;
1881 }
1882
1883 ret = init_srcu_struct(&fs_info->subvol_srcu);
1884 if (ret) {
1885 err = ret;
1886 goto fail;
1887 }
1888
1889 ret = setup_bdi(fs_info, &fs_info->bdi);
1890 if (ret) {
1891 err = ret;
1892 goto fail_srcu;
1893 }
1894
1895 fs_info->btree_inode = new_inode(sb);
1896 if (!fs_info->btree_inode) {
1897 err = -ENOMEM;
1898 goto fail_bdi;
1899 }
1900
1901 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1902
1903 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1904 INIT_LIST_HEAD(&fs_info->trans_list);
1905 INIT_LIST_HEAD(&fs_info->dead_roots);
1906 INIT_LIST_HEAD(&fs_info->delayed_iputs);
1907 INIT_LIST_HEAD(&fs_info->hashers);
1908 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1909 INIT_LIST_HEAD(&fs_info->ordered_operations);
1910 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1911 spin_lock_init(&fs_info->delalloc_lock);
1912 spin_lock_init(&fs_info->trans_lock);
1913 spin_lock_init(&fs_info->ref_cache_lock);
1914 spin_lock_init(&fs_info->fs_roots_radix_lock);
1915 spin_lock_init(&fs_info->delayed_iput_lock);
1916 spin_lock_init(&fs_info->defrag_inodes_lock);
1917 spin_lock_init(&fs_info->free_chunk_lock);
1918 spin_lock_init(&fs_info->tree_mod_seq_lock);
1919 rwlock_init(&fs_info->tree_mod_log_lock);
1920 mutex_init(&fs_info->reloc_mutex);
1921
1922 init_completion(&fs_info->kobj_unregister);
1923 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1924 INIT_LIST_HEAD(&fs_info->space_info);
1925 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
1926 btrfs_mapping_init(&fs_info->mapping_tree);
1927 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1928 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1929 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1930 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1931 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1932 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
1933 atomic_set(&fs_info->nr_async_submits, 0);
1934 atomic_set(&fs_info->async_delalloc_pages, 0);
1935 atomic_set(&fs_info->async_submit_draining, 0);
1936 atomic_set(&fs_info->nr_async_bios, 0);
1937 atomic_set(&fs_info->defrag_running, 0);
1938 atomic_set(&fs_info->tree_mod_seq, 0);
1939 fs_info->sb = sb;
1940 fs_info->max_inline = 8192 * 1024;
1941 fs_info->metadata_ratio = 0;
1942 fs_info->defrag_inodes = RB_ROOT;
1943 fs_info->trans_no_join = 0;
1944 fs_info->free_chunk_space = 0;
1945 fs_info->tree_mod_log = RB_ROOT;
1946
1947 init_waitqueue_head(&fs_info->tree_mod_seq_wait);
1948
1949 /* readahead state */
1950 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1951 spin_lock_init(&fs_info->reada_lock);
1952
1953 fs_info->thread_pool_size = min_t(unsigned long,
1954 num_online_cpus() + 2, 8);
1955
1956 INIT_LIST_HEAD(&fs_info->ordered_extents);
1957 spin_lock_init(&fs_info->ordered_extent_lock);
1958 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1959 GFP_NOFS);
1960 if (!fs_info->delayed_root) {
1961 err = -ENOMEM;
1962 goto fail_iput;
1963 }
1964 btrfs_init_delayed_root(fs_info->delayed_root);
1965
1966 mutex_init(&fs_info->scrub_lock);
1967 atomic_set(&fs_info->scrubs_running, 0);
1968 atomic_set(&fs_info->scrub_pause_req, 0);
1969 atomic_set(&fs_info->scrubs_paused, 0);
1970 atomic_set(&fs_info->scrub_cancel_req, 0);
1971 init_waitqueue_head(&fs_info->scrub_pause_wait);
1972 init_rwsem(&fs_info->scrub_super_lock);
1973 fs_info->scrub_workers_refcnt = 0;
1974 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1975 fs_info->check_integrity_print_mask = 0;
1976 #endif
1977
1978 spin_lock_init(&fs_info->balance_lock);
1979 mutex_init(&fs_info->balance_mutex);
1980 atomic_set(&fs_info->balance_running, 0);
1981 atomic_set(&fs_info->balance_pause_req, 0);
1982 atomic_set(&fs_info->balance_cancel_req, 0);
1983 fs_info->balance_ctl = NULL;
1984 init_waitqueue_head(&fs_info->balance_wait_q);
1985
1986 sb->s_blocksize = 4096;
1987 sb->s_blocksize_bits = blksize_bits(4096);
1988 sb->s_bdi = &fs_info->bdi;
1989
1990 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1991 set_nlink(fs_info->btree_inode, 1);
1992 /*
1993 * we set the i_size on the btree inode to the max possible int.
1994 * the real end of the address space is determined by all of
1995 * the devices in the system
1996 */
1997 fs_info->btree_inode->i_size = OFFSET_MAX;
1998 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1999 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2000
2001 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2002 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2003 fs_info->btree_inode->i_mapping);
2004 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2005 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2006
2007 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2008
2009 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2010 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2011 sizeof(struct btrfs_key));
2012 set_bit(BTRFS_INODE_DUMMY,
2013 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2014 insert_inode_hash(fs_info->btree_inode);
2015
2016 spin_lock_init(&fs_info->block_group_cache_lock);
2017 fs_info->block_group_cache_tree = RB_ROOT;
2018
2019 extent_io_tree_init(&fs_info->freed_extents[0],
2020 fs_info->btree_inode->i_mapping);
2021 extent_io_tree_init(&fs_info->freed_extents[1],
2022 fs_info->btree_inode->i_mapping);
2023 fs_info->pinned_extents = &fs_info->freed_extents[0];
2024 fs_info->do_barriers = 1;
2025
2026
2027 mutex_init(&fs_info->ordered_operations_mutex);
2028 mutex_init(&fs_info->tree_log_mutex);
2029 mutex_init(&fs_info->chunk_mutex);
2030 mutex_init(&fs_info->transaction_kthread_mutex);
2031 mutex_init(&fs_info->cleaner_mutex);
2032 mutex_init(&fs_info->volume_mutex);
2033 init_rwsem(&fs_info->extent_commit_sem);
2034 init_rwsem(&fs_info->cleanup_work_sem);
2035 init_rwsem(&fs_info->subvol_sem);
2036
2037 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2038 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2039
2040 init_waitqueue_head(&fs_info->transaction_throttle);
2041 init_waitqueue_head(&fs_info->transaction_wait);
2042 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2043 init_waitqueue_head(&fs_info->async_submit_wait);
2044
2045 __setup_root(4096, 4096, 4096, 4096, tree_root,
2046 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2047
2048 invalidate_bdev(fs_devices->latest_bdev);
2049 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2050 if (!bh) {
2051 err = -EINVAL;
2052 goto fail_alloc;
2053 }
2054
2055 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2056 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2057 sizeof(*fs_info->super_for_commit));
2058 brelse(bh);
2059
2060 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2061
2062 disk_super = fs_info->super_copy;
2063 if (!btrfs_super_root(disk_super))
2064 goto fail_alloc;
2065
2066 /* check FS state, whether FS is broken. */
2067 fs_info->fs_state |= btrfs_super_flags(disk_super);
2068
2069 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2070 if (ret) {
2071 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2072 err = ret;
2073 goto fail_alloc;
2074 }
2075
2076 /*
2077 * run through our array of backup supers and setup
2078 * our ring pointer to the oldest one
2079 */
2080 generation = btrfs_super_generation(disk_super);
2081 find_oldest_super_backup(fs_info, generation);
2082
2083 /*
2084 * In the long term, we'll store the compression type in the super
2085 * block, and it'll be used for per file compression control.
2086 */
2087 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2088
2089 ret = btrfs_parse_options(tree_root, options);
2090 if (ret) {
2091 err = ret;
2092 goto fail_alloc;
2093 }
2094
2095 features = btrfs_super_incompat_flags(disk_super) &
2096 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2097 if (features) {
2098 printk(KERN_ERR "BTRFS: couldn't mount because of "
2099 "unsupported optional features (%Lx).\n",
2100 (unsigned long long)features);
2101 err = -EINVAL;
2102 goto fail_alloc;
2103 }
2104
2105 if (btrfs_super_leafsize(disk_super) !=
2106 btrfs_super_nodesize(disk_super)) {
2107 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2108 "blocksizes don't match. node %d leaf %d\n",
2109 btrfs_super_nodesize(disk_super),
2110 btrfs_super_leafsize(disk_super));
2111 err = -EINVAL;
2112 goto fail_alloc;
2113 }
2114 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2115 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2116 "blocksize (%d) was too large\n",
2117 btrfs_super_leafsize(disk_super));
2118 err = -EINVAL;
2119 goto fail_alloc;
2120 }
2121
2122 features = btrfs_super_incompat_flags(disk_super);
2123 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2124 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2125 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2126
2127 /*
2128 * flag our filesystem as having big metadata blocks if
2129 * they are bigger than the page size
2130 */
2131 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2132 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2133 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2134 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2135 }
2136
2137 nodesize = btrfs_super_nodesize(disk_super);
2138 leafsize = btrfs_super_leafsize(disk_super);
2139 sectorsize = btrfs_super_sectorsize(disk_super);
2140 stripesize = btrfs_super_stripesize(disk_super);
2141
2142 /*
2143 * mixed block groups end up with duplicate but slightly offset
2144 * extent buffers for the same range. It leads to corruptions
2145 */
2146 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2147 (sectorsize != leafsize)) {
2148 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2149 "are not allowed for mixed block groups on %s\n",
2150 sb->s_id);
2151 goto fail_alloc;
2152 }
2153
2154 btrfs_set_super_incompat_flags(disk_super, features);
2155
2156 features = btrfs_super_compat_ro_flags(disk_super) &
2157 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2158 if (!(sb->s_flags & MS_RDONLY) && features) {
2159 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2160 "unsupported option features (%Lx).\n",
2161 (unsigned long long)features);
2162 err = -EINVAL;
2163 goto fail_alloc;
2164 }
2165
2166 btrfs_init_workers(&fs_info->generic_worker,
2167 "genwork", 1, NULL);
2168
2169 btrfs_init_workers(&fs_info->workers, "worker",
2170 fs_info->thread_pool_size,
2171 &fs_info->generic_worker);
2172
2173 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2174 fs_info->thread_pool_size,
2175 &fs_info->generic_worker);
2176
2177 btrfs_init_workers(&fs_info->submit_workers, "submit",
2178 min_t(u64, fs_devices->num_devices,
2179 fs_info->thread_pool_size),
2180 &fs_info->generic_worker);
2181
2182 btrfs_init_workers(&fs_info->caching_workers, "cache",
2183 2, &fs_info->generic_worker);
2184
2185 /* a higher idle thresh on the submit workers makes it much more
2186 * likely that bios will be send down in a sane order to the
2187 * devices
2188 */
2189 fs_info->submit_workers.idle_thresh = 64;
2190
2191 fs_info->workers.idle_thresh = 16;
2192 fs_info->workers.ordered = 1;
2193
2194 fs_info->delalloc_workers.idle_thresh = 2;
2195 fs_info->delalloc_workers.ordered = 1;
2196
2197 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2198 &fs_info->generic_worker);
2199 btrfs_init_workers(&fs_info->endio_workers, "endio",
2200 fs_info->thread_pool_size,
2201 &fs_info->generic_worker);
2202 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2203 fs_info->thread_pool_size,
2204 &fs_info->generic_worker);
2205 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2206 "endio-meta-write", fs_info->thread_pool_size,
2207 &fs_info->generic_worker);
2208 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2209 fs_info->thread_pool_size,
2210 &fs_info->generic_worker);
2211 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2212 1, &fs_info->generic_worker);
2213 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2214 fs_info->thread_pool_size,
2215 &fs_info->generic_worker);
2216 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2217 fs_info->thread_pool_size,
2218 &fs_info->generic_worker);
2219
2220 /*
2221 * endios are largely parallel and should have a very
2222 * low idle thresh
2223 */
2224 fs_info->endio_workers.idle_thresh = 4;
2225 fs_info->endio_meta_workers.idle_thresh = 4;
2226
2227 fs_info->endio_write_workers.idle_thresh = 2;
2228 fs_info->endio_meta_write_workers.idle_thresh = 2;
2229 fs_info->readahead_workers.idle_thresh = 2;
2230
2231 /*
2232 * btrfs_start_workers can really only fail because of ENOMEM so just
2233 * return -ENOMEM if any of these fail.
2234 */
2235 ret = btrfs_start_workers(&fs_info->workers);
2236 ret |= btrfs_start_workers(&fs_info->generic_worker);
2237 ret |= btrfs_start_workers(&fs_info->submit_workers);
2238 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2239 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2240 ret |= btrfs_start_workers(&fs_info->endio_workers);
2241 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2242 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2243 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2244 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2245 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2246 ret |= btrfs_start_workers(&fs_info->caching_workers);
2247 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2248 if (ret) {
2249 ret = -ENOMEM;
2250 goto fail_sb_buffer;
2251 }
2252
2253 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2254 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2255 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2256
2257 tree_root->nodesize = nodesize;
2258 tree_root->leafsize = leafsize;
2259 tree_root->sectorsize = sectorsize;
2260 tree_root->stripesize = stripesize;
2261
2262 sb->s_blocksize = sectorsize;
2263 sb->s_blocksize_bits = blksize_bits(sectorsize);
2264
2265 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2266 sizeof(disk_super->magic))) {
2267 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2268 goto fail_sb_buffer;
2269 }
2270
2271 if (sectorsize != PAGE_SIZE) {
2272 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2273 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2274 goto fail_sb_buffer;
2275 }
2276
2277 mutex_lock(&fs_info->chunk_mutex);
2278 ret = btrfs_read_sys_array(tree_root);
2279 mutex_unlock(&fs_info->chunk_mutex);
2280 if (ret) {
2281 printk(KERN_WARNING "btrfs: failed to read the system "
2282 "array on %s\n", sb->s_id);
2283 goto fail_sb_buffer;
2284 }
2285
2286 blocksize = btrfs_level_size(tree_root,
2287 btrfs_super_chunk_root_level(disk_super));
2288 generation = btrfs_super_chunk_root_generation(disk_super);
2289
2290 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2291 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2292
2293 chunk_root->node = read_tree_block(chunk_root,
2294 btrfs_super_chunk_root(disk_super),
2295 blocksize, generation);
2296 BUG_ON(!chunk_root->node); /* -ENOMEM */
2297 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2298 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2299 sb->s_id);
2300 goto fail_tree_roots;
2301 }
2302 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2303 chunk_root->commit_root = btrfs_root_node(chunk_root);
2304
2305 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2306 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2307 BTRFS_UUID_SIZE);
2308
2309 ret = btrfs_read_chunk_tree(chunk_root);
2310 if (ret) {
2311 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2312 sb->s_id);
2313 goto fail_tree_roots;
2314 }
2315
2316 btrfs_close_extra_devices(fs_devices);
2317
2318 if (!fs_devices->latest_bdev) {
2319 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2320 sb->s_id);
2321 goto fail_tree_roots;
2322 }
2323
2324 retry_root_backup:
2325 blocksize = btrfs_level_size(tree_root,
2326 btrfs_super_root_level(disk_super));
2327 generation = btrfs_super_generation(disk_super);
2328
2329 tree_root->node = read_tree_block(tree_root,
2330 btrfs_super_root(disk_super),
2331 blocksize, generation);
2332 if (!tree_root->node ||
2333 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2334 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2335 sb->s_id);
2336
2337 goto recovery_tree_root;
2338 }
2339
2340 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2341 tree_root->commit_root = btrfs_root_node(tree_root);
2342
2343 ret = find_and_setup_root(tree_root, fs_info,
2344 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2345 if (ret)
2346 goto recovery_tree_root;
2347 extent_root->track_dirty = 1;
2348
2349 ret = find_and_setup_root(tree_root, fs_info,
2350 BTRFS_DEV_TREE_OBJECTID, dev_root);
2351 if (ret)
2352 goto recovery_tree_root;
2353 dev_root->track_dirty = 1;
2354
2355 ret = find_and_setup_root(tree_root, fs_info,
2356 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2357 if (ret)
2358 goto recovery_tree_root;
2359 csum_root->track_dirty = 1;
2360
2361 fs_info->generation = generation;
2362 fs_info->last_trans_committed = generation;
2363
2364 ret = btrfs_recover_balance(fs_info);
2365 if (ret) {
2366 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2367 goto fail_block_groups;
2368 }
2369
2370 ret = btrfs_init_dev_stats(fs_info);
2371 if (ret) {
2372 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2373 ret);
2374 goto fail_block_groups;
2375 }
2376
2377 ret = btrfs_init_space_info(fs_info);
2378 if (ret) {
2379 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2380 goto fail_block_groups;
2381 }
2382
2383 ret = btrfs_read_block_groups(extent_root);
2384 if (ret) {
2385 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2386 goto fail_block_groups;
2387 }
2388
2389 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2390 "btrfs-cleaner");
2391 if (IS_ERR(fs_info->cleaner_kthread))
2392 goto fail_block_groups;
2393
2394 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2395 tree_root,
2396 "btrfs-transaction");
2397 if (IS_ERR(fs_info->transaction_kthread))
2398 goto fail_cleaner;
2399
2400 if (!btrfs_test_opt(tree_root, SSD) &&
2401 !btrfs_test_opt(tree_root, NOSSD) &&
2402 !fs_info->fs_devices->rotating) {
2403 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2404 "mode\n");
2405 btrfs_set_opt(fs_info->mount_opt, SSD);
2406 }
2407
2408 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2409 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2410 ret = btrfsic_mount(tree_root, fs_devices,
2411 btrfs_test_opt(tree_root,
2412 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2413 1 : 0,
2414 fs_info->check_integrity_print_mask);
2415 if (ret)
2416 printk(KERN_WARNING "btrfs: failed to initialize"
2417 " integrity check module %s\n", sb->s_id);
2418 }
2419 #endif
2420
2421 /* do not make disk changes in broken FS */
2422 if (btrfs_super_log_root(disk_super) != 0 &&
2423 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2424 u64 bytenr = btrfs_super_log_root(disk_super);
2425
2426 if (fs_devices->rw_devices == 0) {
2427 printk(KERN_WARNING "Btrfs log replay required "
2428 "on RO media\n");
2429 err = -EIO;
2430 goto fail_trans_kthread;
2431 }
2432 blocksize =
2433 btrfs_level_size(tree_root,
2434 btrfs_super_log_root_level(disk_super));
2435
2436 log_tree_root = btrfs_alloc_root(fs_info);
2437 if (!log_tree_root) {
2438 err = -ENOMEM;
2439 goto fail_trans_kthread;
2440 }
2441
2442 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2443 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2444
2445 log_tree_root->node = read_tree_block(tree_root, bytenr,
2446 blocksize,
2447 generation + 1);
2448 /* returns with log_tree_root freed on success */
2449 ret = btrfs_recover_log_trees(log_tree_root);
2450 if (ret) {
2451 btrfs_error(tree_root->fs_info, ret,
2452 "Failed to recover log tree");
2453 free_extent_buffer(log_tree_root->node);
2454 kfree(log_tree_root);
2455 goto fail_trans_kthread;
2456 }
2457
2458 if (sb->s_flags & MS_RDONLY) {
2459 ret = btrfs_commit_super(tree_root);
2460 if (ret)
2461 goto fail_trans_kthread;
2462 }
2463 }
2464
2465 ret = btrfs_find_orphan_roots(tree_root);
2466 if (ret)
2467 goto fail_trans_kthread;
2468
2469 if (!(sb->s_flags & MS_RDONLY)) {
2470 ret = btrfs_cleanup_fs_roots(fs_info);
2471 if (ret) {
2472 }
2473
2474 ret = btrfs_recover_relocation(tree_root);
2475 if (ret < 0) {
2476 printk(KERN_WARNING
2477 "btrfs: failed to recover relocation\n");
2478 err = -EINVAL;
2479 goto fail_trans_kthread;
2480 }
2481 }
2482
2483 location.objectid = BTRFS_FS_TREE_OBJECTID;
2484 location.type = BTRFS_ROOT_ITEM_KEY;
2485 location.offset = (u64)-1;
2486
2487 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2488 if (!fs_info->fs_root)
2489 goto fail_trans_kthread;
2490 if (IS_ERR(fs_info->fs_root)) {
2491 err = PTR_ERR(fs_info->fs_root);
2492 goto fail_trans_kthread;
2493 }
2494
2495 if (sb->s_flags & MS_RDONLY)
2496 return 0;
2497
2498 down_read(&fs_info->cleanup_work_sem);
2499 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2500 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2501 up_read(&fs_info->cleanup_work_sem);
2502 close_ctree(tree_root);
2503 return ret;
2504 }
2505 up_read(&fs_info->cleanup_work_sem);
2506
2507 ret = btrfs_resume_balance_async(fs_info);
2508 if (ret) {
2509 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2510 close_ctree(tree_root);
2511 return ret;
2512 }
2513
2514 return 0;
2515
2516 fail_trans_kthread:
2517 kthread_stop(fs_info->transaction_kthread);
2518 fail_cleaner:
2519 kthread_stop(fs_info->cleaner_kthread);
2520
2521 /*
2522 * make sure we're done with the btree inode before we stop our
2523 * kthreads
2524 */
2525 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2526 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2527
2528 fail_block_groups:
2529 btrfs_free_block_groups(fs_info);
2530
2531 fail_tree_roots:
2532 free_root_pointers(fs_info, 1);
2533
2534 fail_sb_buffer:
2535 btrfs_stop_workers(&fs_info->generic_worker);
2536 btrfs_stop_workers(&fs_info->readahead_workers);
2537 btrfs_stop_workers(&fs_info->fixup_workers);
2538 btrfs_stop_workers(&fs_info->delalloc_workers);
2539 btrfs_stop_workers(&fs_info->workers);
2540 btrfs_stop_workers(&fs_info->endio_workers);
2541 btrfs_stop_workers(&fs_info->endio_meta_workers);
2542 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2543 btrfs_stop_workers(&fs_info->endio_write_workers);
2544 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2545 btrfs_stop_workers(&fs_info->submit_workers);
2546 btrfs_stop_workers(&fs_info->delayed_workers);
2547 btrfs_stop_workers(&fs_info->caching_workers);
2548 fail_alloc:
2549 fail_iput:
2550 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2551
2552 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2553 iput(fs_info->btree_inode);
2554 fail_bdi:
2555 bdi_destroy(&fs_info->bdi);
2556 fail_srcu:
2557 cleanup_srcu_struct(&fs_info->subvol_srcu);
2558 fail:
2559 btrfs_close_devices(fs_info->fs_devices);
2560 return err;
2561
2562 recovery_tree_root:
2563 if (!btrfs_test_opt(tree_root, RECOVERY))
2564 goto fail_tree_roots;
2565
2566 free_root_pointers(fs_info, 0);
2567
2568 /* don't use the log in recovery mode, it won't be valid */
2569 btrfs_set_super_log_root(disk_super, 0);
2570
2571 /* we can't trust the free space cache either */
2572 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2573
2574 ret = next_root_backup(fs_info, fs_info->super_copy,
2575 &num_backups_tried, &backup_index);
2576 if (ret == -1)
2577 goto fail_block_groups;
2578 goto retry_root_backup;
2579 }
2580
2581 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2582 {
2583 if (uptodate) {
2584 set_buffer_uptodate(bh);
2585 } else {
2586 struct btrfs_device *device = (struct btrfs_device *)
2587 bh->b_private;
2588
2589 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2590 "I/O error on %s\n",
2591 rcu_str_deref(device->name));
2592 /* note, we dont' set_buffer_write_io_error because we have
2593 * our own ways of dealing with the IO errors
2594 */
2595 clear_buffer_uptodate(bh);
2596 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2597 }
2598 unlock_buffer(bh);
2599 put_bh(bh);
2600 }
2601
2602 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2603 {
2604 struct buffer_head *bh;
2605 struct buffer_head *latest = NULL;
2606 struct btrfs_super_block *super;
2607 int i;
2608 u64 transid = 0;
2609 u64 bytenr;
2610
2611 /* we would like to check all the supers, but that would make
2612 * a btrfs mount succeed after a mkfs from a different FS.
2613 * So, we need to add a special mount option to scan for
2614 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2615 */
2616 for (i = 0; i < 1; i++) {
2617 bytenr = btrfs_sb_offset(i);
2618 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2619 break;
2620 bh = __bread(bdev, bytenr / 4096, 4096);
2621 if (!bh)
2622 continue;
2623
2624 super = (struct btrfs_super_block *)bh->b_data;
2625 if (btrfs_super_bytenr(super) != bytenr ||
2626 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2627 sizeof(super->magic))) {
2628 brelse(bh);
2629 continue;
2630 }
2631
2632 if (!latest || btrfs_super_generation(super) > transid) {
2633 brelse(latest);
2634 latest = bh;
2635 transid = btrfs_super_generation(super);
2636 } else {
2637 brelse(bh);
2638 }
2639 }
2640 return latest;
2641 }
2642
2643 /*
2644 * this should be called twice, once with wait == 0 and
2645 * once with wait == 1. When wait == 0 is done, all the buffer heads
2646 * we write are pinned.
2647 *
2648 * They are released when wait == 1 is done.
2649 * max_mirrors must be the same for both runs, and it indicates how
2650 * many supers on this one device should be written.
2651 *
2652 * max_mirrors == 0 means to write them all.
2653 */
2654 static int write_dev_supers(struct btrfs_device *device,
2655 struct btrfs_super_block *sb,
2656 int do_barriers, int wait, int max_mirrors)
2657 {
2658 struct buffer_head *bh;
2659 int i;
2660 int ret;
2661 int errors = 0;
2662 u32 crc;
2663 u64 bytenr;
2664
2665 if (max_mirrors == 0)
2666 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2667
2668 for (i = 0; i < max_mirrors; i++) {
2669 bytenr = btrfs_sb_offset(i);
2670 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2671 break;
2672
2673 if (wait) {
2674 bh = __find_get_block(device->bdev, bytenr / 4096,
2675 BTRFS_SUPER_INFO_SIZE);
2676 BUG_ON(!bh);
2677 wait_on_buffer(bh);
2678 if (!buffer_uptodate(bh))
2679 errors++;
2680
2681 /* drop our reference */
2682 brelse(bh);
2683
2684 /* drop the reference from the wait == 0 run */
2685 brelse(bh);
2686 continue;
2687 } else {
2688 btrfs_set_super_bytenr(sb, bytenr);
2689
2690 crc = ~(u32)0;
2691 crc = btrfs_csum_data(NULL, (char *)sb +
2692 BTRFS_CSUM_SIZE, crc,
2693 BTRFS_SUPER_INFO_SIZE -
2694 BTRFS_CSUM_SIZE);
2695 btrfs_csum_final(crc, sb->csum);
2696
2697 /*
2698 * one reference for us, and we leave it for the
2699 * caller
2700 */
2701 bh = __getblk(device->bdev, bytenr / 4096,
2702 BTRFS_SUPER_INFO_SIZE);
2703 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2704
2705 /* one reference for submit_bh */
2706 get_bh(bh);
2707
2708 set_buffer_uptodate(bh);
2709 lock_buffer(bh);
2710 bh->b_end_io = btrfs_end_buffer_write_sync;
2711 bh->b_private = device;
2712 }
2713
2714 /*
2715 * we fua the first super. The others we allow
2716 * to go down lazy.
2717 */
2718 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2719 if (ret)
2720 errors++;
2721 }
2722 return errors < i ? 0 : -1;
2723 }
2724
2725 /*
2726 * endio for the write_dev_flush, this will wake anyone waiting
2727 * for the barrier when it is done
2728 */
2729 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2730 {
2731 if (err) {
2732 if (err == -EOPNOTSUPP)
2733 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2734 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2735 }
2736 if (bio->bi_private)
2737 complete(bio->bi_private);
2738 bio_put(bio);
2739 }
2740
2741 /*
2742 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2743 * sent down. With wait == 1, it waits for the previous flush.
2744 *
2745 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2746 * capable
2747 */
2748 static int write_dev_flush(struct btrfs_device *device, int wait)
2749 {
2750 struct bio *bio;
2751 int ret = 0;
2752
2753 if (device->nobarriers)
2754 return 0;
2755
2756 if (wait) {
2757 bio = device->flush_bio;
2758 if (!bio)
2759 return 0;
2760
2761 wait_for_completion(&device->flush_wait);
2762
2763 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2764 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2765 rcu_str_deref(device->name));
2766 device->nobarriers = 1;
2767 }
2768 if (!bio_flagged(bio, BIO_UPTODATE)) {
2769 ret = -EIO;
2770 if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2771 btrfs_dev_stat_inc_and_print(device,
2772 BTRFS_DEV_STAT_FLUSH_ERRS);
2773 }
2774
2775 /* drop the reference from the wait == 0 run */
2776 bio_put(bio);
2777 device->flush_bio = NULL;
2778
2779 return ret;
2780 }
2781
2782 /*
2783 * one reference for us, and we leave it for the
2784 * caller
2785 */
2786 device->flush_bio = NULL;;
2787 bio = bio_alloc(GFP_NOFS, 0);
2788 if (!bio)
2789 return -ENOMEM;
2790
2791 bio->bi_end_io = btrfs_end_empty_barrier;
2792 bio->bi_bdev = device->bdev;
2793 init_completion(&device->flush_wait);
2794 bio->bi_private = &device->flush_wait;
2795 device->flush_bio = bio;
2796
2797 bio_get(bio);
2798 btrfsic_submit_bio(WRITE_FLUSH, bio);
2799
2800 return 0;
2801 }
2802
2803 /*
2804 * send an empty flush down to each device in parallel,
2805 * then wait for them
2806 */
2807 static int barrier_all_devices(struct btrfs_fs_info *info)
2808 {
2809 struct list_head *head;
2810 struct btrfs_device *dev;
2811 int errors = 0;
2812 int ret;
2813
2814 /* send down all the barriers */
2815 head = &info->fs_devices->devices;
2816 list_for_each_entry_rcu(dev, head, dev_list) {
2817 if (!dev->bdev) {
2818 errors++;
2819 continue;
2820 }
2821 if (!dev->in_fs_metadata || !dev->writeable)
2822 continue;
2823
2824 ret = write_dev_flush(dev, 0);
2825 if (ret)
2826 errors++;
2827 }
2828
2829 /* wait for all the barriers */
2830 list_for_each_entry_rcu(dev, head, dev_list) {
2831 if (!dev->bdev) {
2832 errors++;
2833 continue;
2834 }
2835 if (!dev->in_fs_metadata || !dev->writeable)
2836 continue;
2837
2838 ret = write_dev_flush(dev, 1);
2839 if (ret)
2840 errors++;
2841 }
2842 if (errors)
2843 return -EIO;
2844 return 0;
2845 }
2846
2847 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2848 {
2849 struct list_head *head;
2850 struct btrfs_device *dev;
2851 struct btrfs_super_block *sb;
2852 struct btrfs_dev_item *dev_item;
2853 int ret;
2854 int do_barriers;
2855 int max_errors;
2856 int total_errors = 0;
2857 u64 flags;
2858
2859 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2860 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2861 backup_super_roots(root->fs_info);
2862
2863 sb = root->fs_info->super_for_commit;
2864 dev_item = &sb->dev_item;
2865
2866 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2867 head = &root->fs_info->fs_devices->devices;
2868
2869 if (do_barriers)
2870 barrier_all_devices(root->fs_info);
2871
2872 list_for_each_entry_rcu(dev, head, dev_list) {
2873 if (!dev->bdev) {
2874 total_errors++;
2875 continue;
2876 }
2877 if (!dev->in_fs_metadata || !dev->writeable)
2878 continue;
2879
2880 btrfs_set_stack_device_generation(dev_item, 0);
2881 btrfs_set_stack_device_type(dev_item, dev->type);
2882 btrfs_set_stack_device_id(dev_item, dev->devid);
2883 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2884 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2885 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2886 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2887 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2888 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2889 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2890
2891 flags = btrfs_super_flags(sb);
2892 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2893
2894 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2895 if (ret)
2896 total_errors++;
2897 }
2898 if (total_errors > max_errors) {
2899 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2900 total_errors);
2901
2902 /* This shouldn't happen. FUA is masked off if unsupported */
2903 BUG();
2904 }
2905
2906 total_errors = 0;
2907 list_for_each_entry_rcu(dev, head, dev_list) {
2908 if (!dev->bdev)
2909 continue;
2910 if (!dev->in_fs_metadata || !dev->writeable)
2911 continue;
2912
2913 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2914 if (ret)
2915 total_errors++;
2916 }
2917 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2918 if (total_errors > max_errors) {
2919 btrfs_error(root->fs_info, -EIO,
2920 "%d errors while writing supers", total_errors);
2921 return -EIO;
2922 }
2923 return 0;
2924 }
2925
2926 int write_ctree_super(struct btrfs_trans_handle *trans,
2927 struct btrfs_root *root, int max_mirrors)
2928 {
2929 int ret;
2930
2931 ret = write_all_supers(root, max_mirrors);
2932 return ret;
2933 }
2934
2935 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2936 {
2937 spin_lock(&fs_info->fs_roots_radix_lock);
2938 radix_tree_delete(&fs_info->fs_roots_radix,
2939 (unsigned long)root->root_key.objectid);
2940 spin_unlock(&fs_info->fs_roots_radix_lock);
2941
2942 if (btrfs_root_refs(&root->root_item) == 0)
2943 synchronize_srcu(&fs_info->subvol_srcu);
2944
2945 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2946 __btrfs_remove_free_space_cache(root->free_ino_ctl);
2947 free_fs_root(root);
2948 }
2949
2950 static void free_fs_root(struct btrfs_root *root)
2951 {
2952 iput(root->cache_inode);
2953 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2954 if (root->anon_dev)
2955 free_anon_bdev(root->anon_dev);
2956 free_extent_buffer(root->node);
2957 free_extent_buffer(root->commit_root);
2958 kfree(root->free_ino_ctl);
2959 kfree(root->free_ino_pinned);
2960 kfree(root->name);
2961 kfree(root);
2962 }
2963
2964 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2965 {
2966 int ret;
2967 struct btrfs_root *gang[8];
2968 int i;
2969
2970 while (!list_empty(&fs_info->dead_roots)) {
2971 gang[0] = list_entry(fs_info->dead_roots.next,
2972 struct btrfs_root, root_list);
2973 list_del(&gang[0]->root_list);
2974
2975 if (gang[0]->in_radix) {
2976 btrfs_free_fs_root(fs_info, gang[0]);
2977 } else {
2978 free_extent_buffer(gang[0]->node);
2979 free_extent_buffer(gang[0]->commit_root);
2980 kfree(gang[0]);
2981 }
2982 }
2983
2984 while (1) {
2985 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2986 (void **)gang, 0,
2987 ARRAY_SIZE(gang));
2988 if (!ret)
2989 break;
2990 for (i = 0; i < ret; i++)
2991 btrfs_free_fs_root(fs_info, gang[i]);
2992 }
2993 }
2994
2995 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2996 {
2997 u64 root_objectid = 0;
2998 struct btrfs_root *gang[8];
2999 int i;
3000 int ret;
3001
3002 while (1) {
3003 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3004 (void **)gang, root_objectid,
3005 ARRAY_SIZE(gang));
3006 if (!ret)
3007 break;
3008
3009 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3010 for (i = 0; i < ret; i++) {
3011 int err;
3012
3013 root_objectid = gang[i]->root_key.objectid;
3014 err = btrfs_orphan_cleanup(gang[i]);
3015 if (err)
3016 return err;
3017 }
3018 root_objectid++;
3019 }
3020 return 0;
3021 }
3022
3023 int btrfs_commit_super(struct btrfs_root *root)
3024 {
3025 struct btrfs_trans_handle *trans;
3026 int ret;
3027
3028 mutex_lock(&root->fs_info->cleaner_mutex);
3029 btrfs_run_delayed_iputs(root);
3030 btrfs_clean_old_snapshots(root);
3031 mutex_unlock(&root->fs_info->cleaner_mutex);
3032
3033 /* wait until ongoing cleanup work done */
3034 down_write(&root->fs_info->cleanup_work_sem);
3035 up_write(&root->fs_info->cleanup_work_sem);
3036
3037 trans = btrfs_join_transaction(root);
3038 if (IS_ERR(trans))
3039 return PTR_ERR(trans);
3040 ret = btrfs_commit_transaction(trans, root);
3041 if (ret)
3042 return ret;
3043 /* run commit again to drop the original snapshot */
3044 trans = btrfs_join_transaction(root);
3045 if (IS_ERR(trans))
3046 return PTR_ERR(trans);
3047 ret = btrfs_commit_transaction(trans, root);
3048 if (ret)
3049 return ret;
3050 ret = btrfs_write_and_wait_transaction(NULL, root);
3051 if (ret) {
3052 btrfs_error(root->fs_info, ret,
3053 "Failed to sync btree inode to disk.");
3054 return ret;
3055 }
3056
3057 ret = write_ctree_super(NULL, root, 0);
3058 return ret;
3059 }
3060
3061 int close_ctree(struct btrfs_root *root)
3062 {
3063 struct btrfs_fs_info *fs_info = root->fs_info;
3064 int ret;
3065
3066 fs_info->closing = 1;
3067 smp_mb();
3068
3069 /* pause restriper - we want to resume on mount */
3070 btrfs_pause_balance(root->fs_info);
3071
3072 btrfs_scrub_cancel(root);
3073
3074 /* wait for any defraggers to finish */
3075 wait_event(fs_info->transaction_wait,
3076 (atomic_read(&fs_info->defrag_running) == 0));
3077
3078 /* clear out the rbtree of defraggable inodes */
3079 btrfs_run_defrag_inodes(fs_info);
3080
3081 /*
3082 * Here come 2 situations when btrfs is broken to flip readonly:
3083 *
3084 * 1. when btrfs flips readonly somewhere else before
3085 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3086 * and btrfs will skip to write sb directly to keep
3087 * ERROR state on disk.
3088 *
3089 * 2. when btrfs flips readonly just in btrfs_commit_super,
3090 * and in such case, btrfs cannot write sb via btrfs_commit_super,
3091 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3092 * btrfs will cleanup all FS resources first and write sb then.
3093 */
3094 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3095 ret = btrfs_commit_super(root);
3096 if (ret)
3097 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3098 }
3099
3100 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3101 ret = btrfs_error_commit_super(root);
3102 if (ret)
3103 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3104 }
3105
3106 btrfs_put_block_group_cache(fs_info);
3107
3108 kthread_stop(fs_info->transaction_kthread);
3109 kthread_stop(fs_info->cleaner_kthread);
3110
3111 fs_info->closing = 2;
3112 smp_mb();
3113
3114 if (fs_info->delalloc_bytes) {
3115 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3116 (unsigned long long)fs_info->delalloc_bytes);
3117 }
3118 if (fs_info->total_ref_cache_size) {
3119 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3120 (unsigned long long)fs_info->total_ref_cache_size);
3121 }
3122
3123 free_extent_buffer(fs_info->extent_root->node);
3124 free_extent_buffer(fs_info->extent_root->commit_root);
3125 free_extent_buffer(fs_info->tree_root->node);
3126 free_extent_buffer(fs_info->tree_root->commit_root);
3127 free_extent_buffer(fs_info->chunk_root->node);
3128 free_extent_buffer(fs_info->chunk_root->commit_root);
3129 free_extent_buffer(fs_info->dev_root->node);
3130 free_extent_buffer(fs_info->dev_root->commit_root);
3131 free_extent_buffer(fs_info->csum_root->node);
3132 free_extent_buffer(fs_info->csum_root->commit_root);
3133
3134 btrfs_free_block_groups(fs_info);
3135
3136 del_fs_roots(fs_info);
3137
3138 iput(fs_info->btree_inode);
3139
3140 btrfs_stop_workers(&fs_info->generic_worker);
3141 btrfs_stop_workers(&fs_info->fixup_workers);
3142 btrfs_stop_workers(&fs_info->delalloc_workers);
3143 btrfs_stop_workers(&fs_info->workers);
3144 btrfs_stop_workers(&fs_info->endio_workers);
3145 btrfs_stop_workers(&fs_info->endio_meta_workers);
3146 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3147 btrfs_stop_workers(&fs_info->endio_write_workers);
3148 btrfs_stop_workers(&fs_info->endio_freespace_worker);
3149 btrfs_stop_workers(&fs_info->submit_workers);
3150 btrfs_stop_workers(&fs_info->delayed_workers);
3151 btrfs_stop_workers(&fs_info->caching_workers);
3152 btrfs_stop_workers(&fs_info->readahead_workers);
3153
3154 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3155 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3156 btrfsic_unmount(root, fs_info->fs_devices);
3157 #endif
3158
3159 btrfs_close_devices(fs_info->fs_devices);
3160 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3161
3162 bdi_destroy(&fs_info->bdi);
3163 cleanup_srcu_struct(&fs_info->subvol_srcu);
3164
3165 return 0;
3166 }
3167
3168 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3169 int atomic)
3170 {
3171 int ret;
3172 struct inode *btree_inode = buf->pages[0]->mapping->host;
3173
3174 ret = extent_buffer_uptodate(buf);
3175 if (!ret)
3176 return ret;
3177
3178 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3179 parent_transid, atomic);
3180 if (ret == -EAGAIN)
3181 return ret;
3182 return !ret;
3183 }
3184
3185 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3186 {
3187 return set_extent_buffer_uptodate(buf);
3188 }
3189
3190 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3191 {
3192 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3193 u64 transid = btrfs_header_generation(buf);
3194 int was_dirty;
3195
3196 btrfs_assert_tree_locked(buf);
3197 if (transid != root->fs_info->generation) {
3198 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3199 "found %llu running %llu\n",
3200 (unsigned long long)buf->start,
3201 (unsigned long long)transid,
3202 (unsigned long long)root->fs_info->generation);
3203 WARN_ON(1);
3204 }
3205 was_dirty = set_extent_buffer_dirty(buf);
3206 if (!was_dirty) {
3207 spin_lock(&root->fs_info->delalloc_lock);
3208 root->fs_info->dirty_metadata_bytes += buf->len;
3209 spin_unlock(&root->fs_info->delalloc_lock);
3210 }
3211 }
3212
3213 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3214 {
3215 /*
3216 * looks as though older kernels can get into trouble with
3217 * this code, they end up stuck in balance_dirty_pages forever
3218 */
3219 u64 num_dirty;
3220 unsigned long thresh = 32 * 1024 * 1024;
3221
3222 if (current->flags & PF_MEMALLOC)
3223 return;
3224
3225 btrfs_balance_delayed_items(root);
3226
3227 num_dirty = root->fs_info->dirty_metadata_bytes;
3228
3229 if (num_dirty > thresh) {
3230 balance_dirty_pages_ratelimited_nr(
3231 root->fs_info->btree_inode->i_mapping, 1);
3232 }
3233 return;
3234 }
3235
3236 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3237 {
3238 /*
3239 * looks as though older kernels can get into trouble with
3240 * this code, they end up stuck in balance_dirty_pages forever
3241 */
3242 u64 num_dirty;
3243 unsigned long thresh = 32 * 1024 * 1024;
3244
3245 if (current->flags & PF_MEMALLOC)
3246 return;
3247
3248 num_dirty = root->fs_info->dirty_metadata_bytes;
3249
3250 if (num_dirty > thresh) {
3251 balance_dirty_pages_ratelimited_nr(
3252 root->fs_info->btree_inode->i_mapping, 1);
3253 }
3254 return;
3255 }
3256
3257 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3258 {
3259 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3260 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3261 }
3262
3263 static int btree_lock_page_hook(struct page *page, void *data,
3264 void (*flush_fn)(void *))
3265 {
3266 struct inode *inode = page->mapping->host;
3267 struct btrfs_root *root = BTRFS_I(inode)->root;
3268 struct extent_buffer *eb;
3269
3270 /*
3271 * We culled this eb but the page is still hanging out on the mapping,
3272 * carry on.
3273 */
3274 if (!PagePrivate(page))
3275 goto out;
3276
3277 eb = (struct extent_buffer *)page->private;
3278 if (!eb) {
3279 WARN_ON(1);
3280 goto out;
3281 }
3282 if (page != eb->pages[0])
3283 goto out;
3284
3285 if (!btrfs_try_tree_write_lock(eb)) {
3286 flush_fn(data);
3287 btrfs_tree_lock(eb);
3288 }
3289 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3290
3291 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3292 spin_lock(&root->fs_info->delalloc_lock);
3293 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3294 root->fs_info->dirty_metadata_bytes -= eb->len;
3295 else
3296 WARN_ON(1);
3297 spin_unlock(&root->fs_info->delalloc_lock);
3298 }
3299
3300 btrfs_tree_unlock(eb);
3301 out:
3302 if (!trylock_page(page)) {
3303 flush_fn(data);
3304 lock_page(page);
3305 }
3306 return 0;
3307 }
3308
3309 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3310 int read_only)
3311 {
3312 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3313 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3314 return -EINVAL;
3315 }
3316
3317 if (read_only)
3318 return 0;
3319
3320 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3321 printk(KERN_WARNING "warning: mount fs with errors, "
3322 "running btrfsck is recommended\n");
3323 }
3324
3325 return 0;
3326 }
3327
3328 int btrfs_error_commit_super(struct btrfs_root *root)
3329 {
3330 int ret;
3331
3332 mutex_lock(&root->fs_info->cleaner_mutex);
3333 btrfs_run_delayed_iputs(root);
3334 mutex_unlock(&root->fs_info->cleaner_mutex);
3335
3336 down_write(&root->fs_info->cleanup_work_sem);
3337 up_write(&root->fs_info->cleanup_work_sem);
3338
3339 /* cleanup FS via transaction */
3340 btrfs_cleanup_transaction(root);
3341
3342 ret = write_ctree_super(NULL, root, 0);
3343
3344 return ret;
3345 }
3346
3347 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3348 {
3349 struct btrfs_inode *btrfs_inode;
3350 struct list_head splice;
3351
3352 INIT_LIST_HEAD(&splice);
3353
3354 mutex_lock(&root->fs_info->ordered_operations_mutex);
3355 spin_lock(&root->fs_info->ordered_extent_lock);
3356
3357 list_splice_init(&root->fs_info->ordered_operations, &splice);
3358 while (!list_empty(&splice)) {
3359 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3360 ordered_operations);
3361
3362 list_del_init(&btrfs_inode->ordered_operations);
3363
3364 btrfs_invalidate_inodes(btrfs_inode->root);
3365 }
3366
3367 spin_unlock(&root->fs_info->ordered_extent_lock);
3368 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3369 }
3370
3371 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3372 {
3373 struct list_head splice;
3374 struct btrfs_ordered_extent *ordered;
3375 struct inode *inode;
3376
3377 INIT_LIST_HEAD(&splice);
3378
3379 spin_lock(&root->fs_info->ordered_extent_lock);
3380
3381 list_splice_init(&root->fs_info->ordered_extents, &splice);
3382 while (!list_empty(&splice)) {
3383 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3384 root_extent_list);
3385
3386 list_del_init(&ordered->root_extent_list);
3387 atomic_inc(&ordered->refs);
3388
3389 /* the inode may be getting freed (in sys_unlink path). */
3390 inode = igrab(ordered->inode);
3391
3392 spin_unlock(&root->fs_info->ordered_extent_lock);
3393 if (inode)
3394 iput(inode);
3395
3396 atomic_set(&ordered->refs, 1);
3397 btrfs_put_ordered_extent(ordered);
3398
3399 spin_lock(&root->fs_info->ordered_extent_lock);
3400 }
3401
3402 spin_unlock(&root->fs_info->ordered_extent_lock);
3403 }
3404
3405 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3406 struct btrfs_root *root)
3407 {
3408 struct rb_node *node;
3409 struct btrfs_delayed_ref_root *delayed_refs;
3410 struct btrfs_delayed_ref_node *ref;
3411 int ret = 0;
3412
3413 delayed_refs = &trans->delayed_refs;
3414
3415 spin_lock(&delayed_refs->lock);
3416 if (delayed_refs->num_entries == 0) {
3417 spin_unlock(&delayed_refs->lock);
3418 printk(KERN_INFO "delayed_refs has NO entry\n");
3419 return ret;
3420 }
3421
3422 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3423 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3424
3425 atomic_set(&ref->refs, 1);
3426 if (btrfs_delayed_ref_is_head(ref)) {
3427 struct btrfs_delayed_ref_head *head;
3428
3429 head = btrfs_delayed_node_to_head(ref);
3430 if (!mutex_trylock(&head->mutex)) {
3431 atomic_inc(&ref->refs);
3432 spin_unlock(&delayed_refs->lock);
3433
3434 /* Need to wait for the delayed ref to run */
3435 mutex_lock(&head->mutex);
3436 mutex_unlock(&head->mutex);
3437 btrfs_put_delayed_ref(ref);
3438
3439 spin_lock(&delayed_refs->lock);
3440 continue;
3441 }
3442
3443 kfree(head->extent_op);
3444 delayed_refs->num_heads--;
3445 if (list_empty(&head->cluster))
3446 delayed_refs->num_heads_ready--;
3447 list_del_init(&head->cluster);
3448 }
3449 ref->in_tree = 0;
3450 rb_erase(&ref->rb_node, &delayed_refs->root);
3451 delayed_refs->num_entries--;
3452
3453 spin_unlock(&delayed_refs->lock);
3454 btrfs_put_delayed_ref(ref);
3455
3456 cond_resched();
3457 spin_lock(&delayed_refs->lock);
3458 }
3459
3460 spin_unlock(&delayed_refs->lock);
3461
3462 return ret;
3463 }
3464
3465 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3466 {
3467 struct btrfs_pending_snapshot *snapshot;
3468 struct list_head splice;
3469
3470 INIT_LIST_HEAD(&splice);
3471
3472 list_splice_init(&t->pending_snapshots, &splice);
3473
3474 while (!list_empty(&splice)) {
3475 snapshot = list_entry(splice.next,
3476 struct btrfs_pending_snapshot,
3477 list);
3478
3479 list_del_init(&snapshot->list);
3480
3481 kfree(snapshot);
3482 }
3483 }
3484
3485 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3486 {
3487 struct btrfs_inode *btrfs_inode;
3488 struct list_head splice;
3489
3490 INIT_LIST_HEAD(&splice);
3491
3492 spin_lock(&root->fs_info->delalloc_lock);
3493 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3494
3495 while (!list_empty(&splice)) {
3496 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3497 delalloc_inodes);
3498
3499 list_del_init(&btrfs_inode->delalloc_inodes);
3500
3501 btrfs_invalidate_inodes(btrfs_inode->root);
3502 }
3503
3504 spin_unlock(&root->fs_info->delalloc_lock);
3505 }
3506
3507 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3508 struct extent_io_tree *dirty_pages,
3509 int mark)
3510 {
3511 int ret;
3512 struct page *page;
3513 struct inode *btree_inode = root->fs_info->btree_inode;
3514 struct extent_buffer *eb;
3515 u64 start = 0;
3516 u64 end;
3517 u64 offset;
3518 unsigned long index;
3519
3520 while (1) {
3521 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3522 mark);
3523 if (ret)
3524 break;
3525
3526 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3527 while (start <= end) {
3528 index = start >> PAGE_CACHE_SHIFT;
3529 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3530 page = find_get_page(btree_inode->i_mapping, index);
3531 if (!page)
3532 continue;
3533 offset = page_offset(page);
3534
3535 spin_lock(&dirty_pages->buffer_lock);
3536 eb = radix_tree_lookup(
3537 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3538 offset >> PAGE_CACHE_SHIFT);
3539 spin_unlock(&dirty_pages->buffer_lock);
3540 if (eb)
3541 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3542 &eb->bflags);
3543 if (PageWriteback(page))
3544 end_page_writeback(page);
3545
3546 lock_page(page);
3547 if (PageDirty(page)) {
3548 clear_page_dirty_for_io(page);
3549 spin_lock_irq(&page->mapping->tree_lock);
3550 radix_tree_tag_clear(&page->mapping->page_tree,
3551 page_index(page),
3552 PAGECACHE_TAG_DIRTY);
3553 spin_unlock_irq(&page->mapping->tree_lock);
3554 }
3555
3556 unlock_page(page);
3557 page_cache_release(page);
3558 }
3559 }
3560
3561 return ret;
3562 }
3563
3564 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3565 struct extent_io_tree *pinned_extents)
3566 {
3567 struct extent_io_tree *unpin;
3568 u64 start;
3569 u64 end;
3570 int ret;
3571 bool loop = true;
3572
3573 unpin = pinned_extents;
3574 again:
3575 while (1) {
3576 ret = find_first_extent_bit(unpin, 0, &start, &end,
3577 EXTENT_DIRTY);
3578 if (ret)
3579 break;
3580
3581 /* opt_discard */
3582 if (btrfs_test_opt(root, DISCARD))
3583 ret = btrfs_error_discard_extent(root, start,
3584 end + 1 - start,
3585 NULL);
3586
3587 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3588 btrfs_error_unpin_extent_range(root, start, end);
3589 cond_resched();
3590 }
3591
3592 if (loop) {
3593 if (unpin == &root->fs_info->freed_extents[0])
3594 unpin = &root->fs_info->freed_extents[1];
3595 else
3596 unpin = &root->fs_info->freed_extents[0];
3597 loop = false;
3598 goto again;
3599 }
3600
3601 return 0;
3602 }
3603
3604 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3605 struct btrfs_root *root)
3606 {
3607 btrfs_destroy_delayed_refs(cur_trans, root);
3608 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3609 cur_trans->dirty_pages.dirty_bytes);
3610
3611 /* FIXME: cleanup wait for commit */
3612 cur_trans->in_commit = 1;
3613 cur_trans->blocked = 1;
3614 wake_up(&root->fs_info->transaction_blocked_wait);
3615
3616 cur_trans->blocked = 0;
3617 wake_up(&root->fs_info->transaction_wait);
3618
3619 cur_trans->commit_done = 1;
3620 wake_up(&cur_trans->commit_wait);
3621
3622 btrfs_destroy_delayed_inodes(root);
3623 btrfs_assert_delayed_root_empty(root);
3624
3625 btrfs_destroy_pending_snapshots(cur_trans);
3626
3627 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3628 EXTENT_DIRTY);
3629 btrfs_destroy_pinned_extent(root,
3630 root->fs_info->pinned_extents);
3631
3632 /*
3633 memset(cur_trans, 0, sizeof(*cur_trans));
3634 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3635 */
3636 }
3637
3638 int btrfs_cleanup_transaction(struct btrfs_root *root)
3639 {
3640 struct btrfs_transaction *t;
3641 LIST_HEAD(list);
3642
3643 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3644
3645 spin_lock(&root->fs_info->trans_lock);
3646 list_splice_init(&root->fs_info->trans_list, &list);
3647 root->fs_info->trans_no_join = 1;
3648 spin_unlock(&root->fs_info->trans_lock);
3649
3650 while (!list_empty(&list)) {
3651 t = list_entry(list.next, struct btrfs_transaction, list);
3652 if (!t)
3653 break;
3654
3655 btrfs_destroy_ordered_operations(root);
3656
3657 btrfs_destroy_ordered_extents(root);
3658
3659 btrfs_destroy_delayed_refs(t, root);
3660
3661 btrfs_block_rsv_release(root,
3662 &root->fs_info->trans_block_rsv,
3663 t->dirty_pages.dirty_bytes);
3664
3665 /* FIXME: cleanup wait for commit */
3666 t->in_commit = 1;
3667 t->blocked = 1;
3668 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3669 wake_up(&root->fs_info->transaction_blocked_wait);
3670
3671 t->blocked = 0;
3672 if (waitqueue_active(&root->fs_info->transaction_wait))
3673 wake_up(&root->fs_info->transaction_wait);
3674
3675 t->commit_done = 1;
3676 if (waitqueue_active(&t->commit_wait))
3677 wake_up(&t->commit_wait);
3678
3679 btrfs_destroy_delayed_inodes(root);
3680 btrfs_assert_delayed_root_empty(root);
3681
3682 btrfs_destroy_pending_snapshots(t);
3683
3684 btrfs_destroy_delalloc_inodes(root);
3685
3686 spin_lock(&root->fs_info->trans_lock);
3687 root->fs_info->running_transaction = NULL;
3688 spin_unlock(&root->fs_info->trans_lock);
3689
3690 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3691 EXTENT_DIRTY);
3692
3693 btrfs_destroy_pinned_extent(root,
3694 root->fs_info->pinned_extents);
3695
3696 atomic_set(&t->use_count, 0);
3697 list_del_init(&t->list);
3698 memset(t, 0, sizeof(*t));
3699 kmem_cache_free(btrfs_transaction_cachep, t);
3700 }
3701
3702 spin_lock(&root->fs_info->trans_lock);
3703 root->fs_info->trans_no_join = 0;
3704 spin_unlock(&root->fs_info->trans_lock);
3705 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3706
3707 return 0;
3708 }
3709
3710 static struct extent_io_ops btree_extent_io_ops = {
3711 .write_cache_pages_lock_hook = btree_lock_page_hook,
3712 .readpage_end_io_hook = btree_readpage_end_io_hook,
3713 .readpage_io_failed_hook = btree_io_failed_hook,
3714 .submit_bio_hook = btree_submit_bio_hook,
3715 /* note we're sharing with inode.c for the merge bio hook */
3716 .merge_bio_hook = btrfs_merge_bio_hook,
3717 };