Btrfs: log changed inodes based on the extent map tree
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49
50 #ifdef CONFIG_X86
51 #include <asm/cpufeature.h>
52 #endif
53
54 static struct extent_io_ops btree_extent_io_ops;
55 static void end_workqueue_fn(struct btrfs_work *work);
56 static void free_fs_root(struct btrfs_root *root);
57 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
58 int read_only);
59 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
60 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
61 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
62 struct btrfs_root *root);
63 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
64 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
65 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
66 struct extent_io_tree *dirty_pages,
67 int mark);
68 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
69 struct extent_io_tree *pinned_extents);
70
71 /*
72 * end_io_wq structs are used to do processing in task context when an IO is
73 * complete. This is used during reads to verify checksums, and it is used
74 * by writes to insert metadata for new file extents after IO is complete.
75 */
76 struct end_io_wq {
77 struct bio *bio;
78 bio_end_io_t *end_io;
79 void *private;
80 struct btrfs_fs_info *info;
81 int error;
82 int metadata;
83 struct list_head list;
84 struct btrfs_work work;
85 };
86
87 /*
88 * async submit bios are used to offload expensive checksumming
89 * onto the worker threads. They checksum file and metadata bios
90 * just before they are sent down the IO stack.
91 */
92 struct async_submit_bio {
93 struct inode *inode;
94 struct bio *bio;
95 struct list_head list;
96 extent_submit_bio_hook_t *submit_bio_start;
97 extent_submit_bio_hook_t *submit_bio_done;
98 int rw;
99 int mirror_num;
100 unsigned long bio_flags;
101 /*
102 * bio_offset is optional, can be used if the pages in the bio
103 * can't tell us where in the file the bio should go
104 */
105 u64 bio_offset;
106 struct btrfs_work work;
107 int error;
108 };
109
110 /*
111 * Lockdep class keys for extent_buffer->lock's in this root. For a given
112 * eb, the lockdep key is determined by the btrfs_root it belongs to and
113 * the level the eb occupies in the tree.
114 *
115 * Different roots are used for different purposes and may nest inside each
116 * other and they require separate keysets. As lockdep keys should be
117 * static, assign keysets according to the purpose of the root as indicated
118 * by btrfs_root->objectid. This ensures that all special purpose roots
119 * have separate keysets.
120 *
121 * Lock-nesting across peer nodes is always done with the immediate parent
122 * node locked thus preventing deadlock. As lockdep doesn't know this, use
123 * subclass to avoid triggering lockdep warning in such cases.
124 *
125 * The key is set by the readpage_end_io_hook after the buffer has passed
126 * csum validation but before the pages are unlocked. It is also set by
127 * btrfs_init_new_buffer on freshly allocated blocks.
128 *
129 * We also add a check to make sure the highest level of the tree is the
130 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
131 * needs update as well.
132 */
133 #ifdef CONFIG_DEBUG_LOCK_ALLOC
134 # if BTRFS_MAX_LEVEL != 8
135 # error
136 # endif
137
138 static struct btrfs_lockdep_keyset {
139 u64 id; /* root objectid */
140 const char *name_stem; /* lock name stem */
141 char names[BTRFS_MAX_LEVEL + 1][20];
142 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
143 } btrfs_lockdep_keysets[] = {
144 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
145 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
146 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
147 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
148 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
149 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
150 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
151 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
152 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
153 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
154 { .id = 0, .name_stem = "tree" },
155 };
156
157 void __init btrfs_init_lockdep(void)
158 {
159 int i, j;
160
161 /* initialize lockdep class names */
162 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
163 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
164
165 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
166 snprintf(ks->names[j], sizeof(ks->names[j]),
167 "btrfs-%s-%02d", ks->name_stem, j);
168 }
169 }
170
171 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
172 int level)
173 {
174 struct btrfs_lockdep_keyset *ks;
175
176 BUG_ON(level >= ARRAY_SIZE(ks->keys));
177
178 /* find the matching keyset, id 0 is the default entry */
179 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
180 if (ks->id == objectid)
181 break;
182
183 lockdep_set_class_and_name(&eb->lock,
184 &ks->keys[level], ks->names[level]);
185 }
186
187 #endif
188
189 /*
190 * extents on the btree inode are pretty simple, there's one extent
191 * that covers the entire device
192 */
193 static struct extent_map *btree_get_extent(struct inode *inode,
194 struct page *page, size_t pg_offset, u64 start, u64 len,
195 int create)
196 {
197 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
198 struct extent_map *em;
199 int ret;
200
201 read_lock(&em_tree->lock);
202 em = lookup_extent_mapping(em_tree, start, len);
203 if (em) {
204 em->bdev =
205 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
206 read_unlock(&em_tree->lock);
207 goto out;
208 }
209 read_unlock(&em_tree->lock);
210
211 em = alloc_extent_map();
212 if (!em) {
213 em = ERR_PTR(-ENOMEM);
214 goto out;
215 }
216 em->start = 0;
217 em->len = (u64)-1;
218 em->block_len = (u64)-1;
219 em->block_start = 0;
220 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
221
222 write_lock(&em_tree->lock);
223 ret = add_extent_mapping(em_tree, em);
224 if (ret == -EEXIST) {
225 free_extent_map(em);
226 em = lookup_extent_mapping(em_tree, start, len);
227 if (!em)
228 em = ERR_PTR(-EIO);
229 } else if (ret) {
230 free_extent_map(em);
231 em = ERR_PTR(ret);
232 }
233 write_unlock(&em_tree->lock);
234
235 out:
236 return em;
237 }
238
239 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
240 {
241 return crc32c(seed, data, len);
242 }
243
244 void btrfs_csum_final(u32 crc, char *result)
245 {
246 put_unaligned_le32(~crc, result);
247 }
248
249 /*
250 * compute the csum for a btree block, and either verify it or write it
251 * into the csum field of the block.
252 */
253 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
254 int verify)
255 {
256 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
257 char *result = NULL;
258 unsigned long len;
259 unsigned long cur_len;
260 unsigned long offset = BTRFS_CSUM_SIZE;
261 char *kaddr;
262 unsigned long map_start;
263 unsigned long map_len;
264 int err;
265 u32 crc = ~(u32)0;
266 unsigned long inline_result;
267
268 len = buf->len - offset;
269 while (len > 0) {
270 err = map_private_extent_buffer(buf, offset, 32,
271 &kaddr, &map_start, &map_len);
272 if (err)
273 return 1;
274 cur_len = min(len, map_len - (offset - map_start));
275 crc = btrfs_csum_data(root, kaddr + offset - map_start,
276 crc, cur_len);
277 len -= cur_len;
278 offset += cur_len;
279 }
280 if (csum_size > sizeof(inline_result)) {
281 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
282 if (!result)
283 return 1;
284 } else {
285 result = (char *)&inline_result;
286 }
287
288 btrfs_csum_final(crc, result);
289
290 if (verify) {
291 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
292 u32 val;
293 u32 found = 0;
294 memcpy(&found, result, csum_size);
295
296 read_extent_buffer(buf, &val, 0, csum_size);
297 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
298 "failed on %llu wanted %X found %X "
299 "level %d\n",
300 root->fs_info->sb->s_id,
301 (unsigned long long)buf->start, val, found,
302 btrfs_header_level(buf));
303 if (result != (char *)&inline_result)
304 kfree(result);
305 return 1;
306 }
307 } else {
308 write_extent_buffer(buf, result, 0, csum_size);
309 }
310 if (result != (char *)&inline_result)
311 kfree(result);
312 return 0;
313 }
314
315 /*
316 * we can't consider a given block up to date unless the transid of the
317 * block matches the transid in the parent node's pointer. This is how we
318 * detect blocks that either didn't get written at all or got written
319 * in the wrong place.
320 */
321 static int verify_parent_transid(struct extent_io_tree *io_tree,
322 struct extent_buffer *eb, u64 parent_transid,
323 int atomic)
324 {
325 struct extent_state *cached_state = NULL;
326 int ret;
327
328 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
329 return 0;
330
331 if (atomic)
332 return -EAGAIN;
333
334 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335 0, &cached_state);
336 if (extent_buffer_uptodate(eb) &&
337 btrfs_header_generation(eb) == parent_transid) {
338 ret = 0;
339 goto out;
340 }
341 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
342 "found %llu\n",
343 (unsigned long long)eb->start,
344 (unsigned long long)parent_transid,
345 (unsigned long long)btrfs_header_generation(eb));
346 ret = 1;
347 clear_extent_buffer_uptodate(eb);
348 out:
349 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350 &cached_state, GFP_NOFS);
351 return ret;
352 }
353
354 /*
355 * helper to read a given tree block, doing retries as required when
356 * the checksums don't match and we have alternate mirrors to try.
357 */
358 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359 struct extent_buffer *eb,
360 u64 start, u64 parent_transid)
361 {
362 struct extent_io_tree *io_tree;
363 int failed = 0;
364 int ret;
365 int num_copies = 0;
366 int mirror_num = 0;
367 int failed_mirror = 0;
368
369 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
370 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
371 while (1) {
372 ret = read_extent_buffer_pages(io_tree, eb, start,
373 WAIT_COMPLETE,
374 btree_get_extent, mirror_num);
375 if (!ret) {
376 if (!verify_parent_transid(io_tree, eb,
377 parent_transid, 0))
378 break;
379 else
380 ret = -EIO;
381 }
382
383 /*
384 * This buffer's crc is fine, but its contents are corrupted, so
385 * there is no reason to read the other copies, they won't be
386 * any less wrong.
387 */
388 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
389 break;
390
391 num_copies = btrfs_num_copies(root->fs_info,
392 eb->start, eb->len);
393 if (num_copies == 1)
394 break;
395
396 if (!failed_mirror) {
397 failed = 1;
398 failed_mirror = eb->read_mirror;
399 }
400
401 mirror_num++;
402 if (mirror_num == failed_mirror)
403 mirror_num++;
404
405 if (mirror_num > num_copies)
406 break;
407 }
408
409 if (failed && !ret && failed_mirror)
410 repair_eb_io_failure(root, eb, failed_mirror);
411
412 return ret;
413 }
414
415 /*
416 * checksum a dirty tree block before IO. This has extra checks to make sure
417 * we only fill in the checksum field in the first page of a multi-page block
418 */
419
420 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
421 {
422 struct extent_io_tree *tree;
423 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
424 u64 found_start;
425 struct extent_buffer *eb;
426
427 tree = &BTRFS_I(page->mapping->host)->io_tree;
428
429 eb = (struct extent_buffer *)page->private;
430 if (page != eb->pages[0])
431 return 0;
432 found_start = btrfs_header_bytenr(eb);
433 if (found_start != start) {
434 WARN_ON(1);
435 return 0;
436 }
437 if (!PageUptodate(page)) {
438 WARN_ON(1);
439 return 0;
440 }
441 csum_tree_block(root, eb, 0);
442 return 0;
443 }
444
445 static int check_tree_block_fsid(struct btrfs_root *root,
446 struct extent_buffer *eb)
447 {
448 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
449 u8 fsid[BTRFS_UUID_SIZE];
450 int ret = 1;
451
452 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
453 BTRFS_FSID_SIZE);
454 while (fs_devices) {
455 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
456 ret = 0;
457 break;
458 }
459 fs_devices = fs_devices->seed;
460 }
461 return ret;
462 }
463
464 #define CORRUPT(reason, eb, root, slot) \
465 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
466 "root=%llu, slot=%d\n", reason, \
467 (unsigned long long)btrfs_header_bytenr(eb), \
468 (unsigned long long)root->objectid, slot)
469
470 static noinline int check_leaf(struct btrfs_root *root,
471 struct extent_buffer *leaf)
472 {
473 struct btrfs_key key;
474 struct btrfs_key leaf_key;
475 u32 nritems = btrfs_header_nritems(leaf);
476 int slot;
477
478 if (nritems == 0)
479 return 0;
480
481 /* Check the 0 item */
482 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
483 BTRFS_LEAF_DATA_SIZE(root)) {
484 CORRUPT("invalid item offset size pair", leaf, root, 0);
485 return -EIO;
486 }
487
488 /*
489 * Check to make sure each items keys are in the correct order and their
490 * offsets make sense. We only have to loop through nritems-1 because
491 * we check the current slot against the next slot, which verifies the
492 * next slot's offset+size makes sense and that the current's slot
493 * offset is correct.
494 */
495 for (slot = 0; slot < nritems - 1; slot++) {
496 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
497 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
498
499 /* Make sure the keys are in the right order */
500 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
501 CORRUPT("bad key order", leaf, root, slot);
502 return -EIO;
503 }
504
505 /*
506 * Make sure the offset and ends are right, remember that the
507 * item data starts at the end of the leaf and grows towards the
508 * front.
509 */
510 if (btrfs_item_offset_nr(leaf, slot) !=
511 btrfs_item_end_nr(leaf, slot + 1)) {
512 CORRUPT("slot offset bad", leaf, root, slot);
513 return -EIO;
514 }
515
516 /*
517 * Check to make sure that we don't point outside of the leaf,
518 * just incase all the items are consistent to eachother, but
519 * all point outside of the leaf.
520 */
521 if (btrfs_item_end_nr(leaf, slot) >
522 BTRFS_LEAF_DATA_SIZE(root)) {
523 CORRUPT("slot end outside of leaf", leaf, root, slot);
524 return -EIO;
525 }
526 }
527
528 return 0;
529 }
530
531 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
532 struct page *page, int max_walk)
533 {
534 struct extent_buffer *eb;
535 u64 start = page_offset(page);
536 u64 target = start;
537 u64 min_start;
538
539 if (start < max_walk)
540 min_start = 0;
541 else
542 min_start = start - max_walk;
543
544 while (start >= min_start) {
545 eb = find_extent_buffer(tree, start, 0);
546 if (eb) {
547 /*
548 * we found an extent buffer and it contains our page
549 * horray!
550 */
551 if (eb->start <= target &&
552 eb->start + eb->len > target)
553 return eb;
554
555 /* we found an extent buffer that wasn't for us */
556 free_extent_buffer(eb);
557 return NULL;
558 }
559 if (start == 0)
560 break;
561 start -= PAGE_CACHE_SIZE;
562 }
563 return NULL;
564 }
565
566 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
567 struct extent_state *state, int mirror)
568 {
569 struct extent_io_tree *tree;
570 u64 found_start;
571 int found_level;
572 struct extent_buffer *eb;
573 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
574 int ret = 0;
575 int reads_done;
576
577 if (!page->private)
578 goto out;
579
580 tree = &BTRFS_I(page->mapping->host)->io_tree;
581 eb = (struct extent_buffer *)page->private;
582
583 /* the pending IO might have been the only thing that kept this buffer
584 * in memory. Make sure we have a ref for all this other checks
585 */
586 extent_buffer_get(eb);
587
588 reads_done = atomic_dec_and_test(&eb->io_pages);
589 if (!reads_done)
590 goto err;
591
592 eb->read_mirror = mirror;
593 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
594 ret = -EIO;
595 goto err;
596 }
597
598 found_start = btrfs_header_bytenr(eb);
599 if (found_start != eb->start) {
600 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
601 "%llu %llu\n",
602 (unsigned long long)found_start,
603 (unsigned long long)eb->start);
604 ret = -EIO;
605 goto err;
606 }
607 if (check_tree_block_fsid(root, eb)) {
608 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
609 (unsigned long long)eb->start);
610 ret = -EIO;
611 goto err;
612 }
613 found_level = btrfs_header_level(eb);
614
615 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
616 eb, found_level);
617
618 ret = csum_tree_block(root, eb, 1);
619 if (ret) {
620 ret = -EIO;
621 goto err;
622 }
623
624 /*
625 * If this is a leaf block and it is corrupt, set the corrupt bit so
626 * that we don't try and read the other copies of this block, just
627 * return -EIO.
628 */
629 if (found_level == 0 && check_leaf(root, eb)) {
630 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
631 ret = -EIO;
632 }
633
634 if (!ret)
635 set_extent_buffer_uptodate(eb);
636 err:
637 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
638 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
639 btree_readahead_hook(root, eb, eb->start, ret);
640 }
641
642 if (ret)
643 clear_extent_buffer_uptodate(eb);
644 free_extent_buffer(eb);
645 out:
646 return ret;
647 }
648
649 static int btree_io_failed_hook(struct page *page, int failed_mirror)
650 {
651 struct extent_buffer *eb;
652 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
653
654 eb = (struct extent_buffer *)page->private;
655 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
656 eb->read_mirror = failed_mirror;
657 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
658 btree_readahead_hook(root, eb, eb->start, -EIO);
659 return -EIO; /* we fixed nothing */
660 }
661
662 static void end_workqueue_bio(struct bio *bio, int err)
663 {
664 struct end_io_wq *end_io_wq = bio->bi_private;
665 struct btrfs_fs_info *fs_info;
666
667 fs_info = end_io_wq->info;
668 end_io_wq->error = err;
669 end_io_wq->work.func = end_workqueue_fn;
670 end_io_wq->work.flags = 0;
671
672 if (bio->bi_rw & REQ_WRITE) {
673 if (end_io_wq->metadata == 1)
674 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
675 &end_io_wq->work);
676 else if (end_io_wq->metadata == 2)
677 btrfs_queue_worker(&fs_info->endio_freespace_worker,
678 &end_io_wq->work);
679 else
680 btrfs_queue_worker(&fs_info->endio_write_workers,
681 &end_io_wq->work);
682 } else {
683 if (end_io_wq->metadata)
684 btrfs_queue_worker(&fs_info->endio_meta_workers,
685 &end_io_wq->work);
686 else
687 btrfs_queue_worker(&fs_info->endio_workers,
688 &end_io_wq->work);
689 }
690 }
691
692 /*
693 * For the metadata arg you want
694 *
695 * 0 - if data
696 * 1 - if normal metadta
697 * 2 - if writing to the free space cache area
698 */
699 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
700 int metadata)
701 {
702 struct end_io_wq *end_io_wq;
703 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
704 if (!end_io_wq)
705 return -ENOMEM;
706
707 end_io_wq->private = bio->bi_private;
708 end_io_wq->end_io = bio->bi_end_io;
709 end_io_wq->info = info;
710 end_io_wq->error = 0;
711 end_io_wq->bio = bio;
712 end_io_wq->metadata = metadata;
713
714 bio->bi_private = end_io_wq;
715 bio->bi_end_io = end_workqueue_bio;
716 return 0;
717 }
718
719 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
720 {
721 unsigned long limit = min_t(unsigned long,
722 info->workers.max_workers,
723 info->fs_devices->open_devices);
724 return 256 * limit;
725 }
726
727 static void run_one_async_start(struct btrfs_work *work)
728 {
729 struct async_submit_bio *async;
730 int ret;
731
732 async = container_of(work, struct async_submit_bio, work);
733 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
734 async->mirror_num, async->bio_flags,
735 async->bio_offset);
736 if (ret)
737 async->error = ret;
738 }
739
740 static void run_one_async_done(struct btrfs_work *work)
741 {
742 struct btrfs_fs_info *fs_info;
743 struct async_submit_bio *async;
744 int limit;
745
746 async = container_of(work, struct async_submit_bio, work);
747 fs_info = BTRFS_I(async->inode)->root->fs_info;
748
749 limit = btrfs_async_submit_limit(fs_info);
750 limit = limit * 2 / 3;
751
752 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
753 waitqueue_active(&fs_info->async_submit_wait))
754 wake_up(&fs_info->async_submit_wait);
755
756 /* If an error occured we just want to clean up the bio and move on */
757 if (async->error) {
758 bio_endio(async->bio, async->error);
759 return;
760 }
761
762 async->submit_bio_done(async->inode, async->rw, async->bio,
763 async->mirror_num, async->bio_flags,
764 async->bio_offset);
765 }
766
767 static void run_one_async_free(struct btrfs_work *work)
768 {
769 struct async_submit_bio *async;
770
771 async = container_of(work, struct async_submit_bio, work);
772 kfree(async);
773 }
774
775 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
776 int rw, struct bio *bio, int mirror_num,
777 unsigned long bio_flags,
778 u64 bio_offset,
779 extent_submit_bio_hook_t *submit_bio_start,
780 extent_submit_bio_hook_t *submit_bio_done)
781 {
782 struct async_submit_bio *async;
783
784 async = kmalloc(sizeof(*async), GFP_NOFS);
785 if (!async)
786 return -ENOMEM;
787
788 async->inode = inode;
789 async->rw = rw;
790 async->bio = bio;
791 async->mirror_num = mirror_num;
792 async->submit_bio_start = submit_bio_start;
793 async->submit_bio_done = submit_bio_done;
794
795 async->work.func = run_one_async_start;
796 async->work.ordered_func = run_one_async_done;
797 async->work.ordered_free = run_one_async_free;
798
799 async->work.flags = 0;
800 async->bio_flags = bio_flags;
801 async->bio_offset = bio_offset;
802
803 async->error = 0;
804
805 atomic_inc(&fs_info->nr_async_submits);
806
807 if (rw & REQ_SYNC)
808 btrfs_set_work_high_prio(&async->work);
809
810 btrfs_queue_worker(&fs_info->workers, &async->work);
811
812 while (atomic_read(&fs_info->async_submit_draining) &&
813 atomic_read(&fs_info->nr_async_submits)) {
814 wait_event(fs_info->async_submit_wait,
815 (atomic_read(&fs_info->nr_async_submits) == 0));
816 }
817
818 return 0;
819 }
820
821 static int btree_csum_one_bio(struct bio *bio)
822 {
823 struct bio_vec *bvec = bio->bi_io_vec;
824 int bio_index = 0;
825 struct btrfs_root *root;
826 int ret = 0;
827
828 WARN_ON(bio->bi_vcnt <= 0);
829 while (bio_index < bio->bi_vcnt) {
830 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
831 ret = csum_dirty_buffer(root, bvec->bv_page);
832 if (ret)
833 break;
834 bio_index++;
835 bvec++;
836 }
837 return ret;
838 }
839
840 static int __btree_submit_bio_start(struct inode *inode, int rw,
841 struct bio *bio, int mirror_num,
842 unsigned long bio_flags,
843 u64 bio_offset)
844 {
845 /*
846 * when we're called for a write, we're already in the async
847 * submission context. Just jump into btrfs_map_bio
848 */
849 return btree_csum_one_bio(bio);
850 }
851
852 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
853 int mirror_num, unsigned long bio_flags,
854 u64 bio_offset)
855 {
856 int ret;
857
858 /*
859 * when we're called for a write, we're already in the async
860 * submission context. Just jump into btrfs_map_bio
861 */
862 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
863 if (ret)
864 bio_endio(bio, ret);
865 return ret;
866 }
867
868 static int check_async_write(struct inode *inode, unsigned long bio_flags)
869 {
870 if (bio_flags & EXTENT_BIO_TREE_LOG)
871 return 0;
872 #ifdef CONFIG_X86
873 if (cpu_has_xmm4_2)
874 return 0;
875 #endif
876 return 1;
877 }
878
879 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
880 int mirror_num, unsigned long bio_flags,
881 u64 bio_offset)
882 {
883 int async = check_async_write(inode, bio_flags);
884 int ret;
885
886 if (!(rw & REQ_WRITE)) {
887 /*
888 * called for a read, do the setup so that checksum validation
889 * can happen in the async kernel threads
890 */
891 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
892 bio, 1);
893 if (ret)
894 goto out_w_error;
895 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
896 mirror_num, 0);
897 } else if (!async) {
898 ret = btree_csum_one_bio(bio);
899 if (ret)
900 goto out_w_error;
901 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
902 mirror_num, 0);
903 } else {
904 /*
905 * kthread helpers are used to submit writes so that
906 * checksumming can happen in parallel across all CPUs
907 */
908 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
909 inode, rw, bio, mirror_num, 0,
910 bio_offset,
911 __btree_submit_bio_start,
912 __btree_submit_bio_done);
913 }
914
915 if (ret) {
916 out_w_error:
917 bio_endio(bio, ret);
918 }
919 return ret;
920 }
921
922 #ifdef CONFIG_MIGRATION
923 static int btree_migratepage(struct address_space *mapping,
924 struct page *newpage, struct page *page,
925 enum migrate_mode mode)
926 {
927 /*
928 * we can't safely write a btree page from here,
929 * we haven't done the locking hook
930 */
931 if (PageDirty(page))
932 return -EAGAIN;
933 /*
934 * Buffers may be managed in a filesystem specific way.
935 * We must have no buffers or drop them.
936 */
937 if (page_has_private(page) &&
938 !try_to_release_page(page, GFP_KERNEL))
939 return -EAGAIN;
940 return migrate_page(mapping, newpage, page, mode);
941 }
942 #endif
943
944
945 static int btree_writepages(struct address_space *mapping,
946 struct writeback_control *wbc)
947 {
948 struct extent_io_tree *tree;
949 tree = &BTRFS_I(mapping->host)->io_tree;
950 if (wbc->sync_mode == WB_SYNC_NONE) {
951 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
952 u64 num_dirty;
953 unsigned long thresh = 32 * 1024 * 1024;
954
955 if (wbc->for_kupdate)
956 return 0;
957
958 /* this is a bit racy, but that's ok */
959 num_dirty = root->fs_info->dirty_metadata_bytes;
960 if (num_dirty < thresh)
961 return 0;
962 }
963 return btree_write_cache_pages(mapping, wbc);
964 }
965
966 static int btree_readpage(struct file *file, struct page *page)
967 {
968 struct extent_io_tree *tree;
969 tree = &BTRFS_I(page->mapping->host)->io_tree;
970 return extent_read_full_page(tree, page, btree_get_extent, 0);
971 }
972
973 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
974 {
975 if (PageWriteback(page) || PageDirty(page))
976 return 0;
977 /*
978 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
979 * slab allocation from alloc_extent_state down the callchain where
980 * it'd hit a BUG_ON as those flags are not allowed.
981 */
982 gfp_flags &= ~GFP_SLAB_BUG_MASK;
983
984 return try_release_extent_buffer(page, gfp_flags);
985 }
986
987 static void btree_invalidatepage(struct page *page, unsigned long offset)
988 {
989 struct extent_io_tree *tree;
990 tree = &BTRFS_I(page->mapping->host)->io_tree;
991 extent_invalidatepage(tree, page, offset);
992 btree_releasepage(page, GFP_NOFS);
993 if (PagePrivate(page)) {
994 printk(KERN_WARNING "btrfs warning page private not zero "
995 "on page %llu\n", (unsigned long long)page_offset(page));
996 ClearPagePrivate(page);
997 set_page_private(page, 0);
998 page_cache_release(page);
999 }
1000 }
1001
1002 static int btree_set_page_dirty(struct page *page)
1003 {
1004 struct extent_buffer *eb;
1005
1006 BUG_ON(!PagePrivate(page));
1007 eb = (struct extent_buffer *)page->private;
1008 BUG_ON(!eb);
1009 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1010 BUG_ON(!atomic_read(&eb->refs));
1011 btrfs_assert_tree_locked(eb);
1012 return __set_page_dirty_nobuffers(page);
1013 }
1014
1015 static const struct address_space_operations btree_aops = {
1016 .readpage = btree_readpage,
1017 .writepages = btree_writepages,
1018 .releasepage = btree_releasepage,
1019 .invalidatepage = btree_invalidatepage,
1020 #ifdef CONFIG_MIGRATION
1021 .migratepage = btree_migratepage,
1022 #endif
1023 .set_page_dirty = btree_set_page_dirty,
1024 };
1025
1026 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1027 u64 parent_transid)
1028 {
1029 struct extent_buffer *buf = NULL;
1030 struct inode *btree_inode = root->fs_info->btree_inode;
1031 int ret = 0;
1032
1033 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1034 if (!buf)
1035 return 0;
1036 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1037 buf, 0, WAIT_NONE, btree_get_extent, 0);
1038 free_extent_buffer(buf);
1039 return ret;
1040 }
1041
1042 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1043 int mirror_num, struct extent_buffer **eb)
1044 {
1045 struct extent_buffer *buf = NULL;
1046 struct inode *btree_inode = root->fs_info->btree_inode;
1047 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1048 int ret;
1049
1050 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1051 if (!buf)
1052 return 0;
1053
1054 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1055
1056 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1057 btree_get_extent, mirror_num);
1058 if (ret) {
1059 free_extent_buffer(buf);
1060 return ret;
1061 }
1062
1063 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1064 free_extent_buffer(buf);
1065 return -EIO;
1066 } else if (extent_buffer_uptodate(buf)) {
1067 *eb = buf;
1068 } else {
1069 free_extent_buffer(buf);
1070 }
1071 return 0;
1072 }
1073
1074 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1075 u64 bytenr, u32 blocksize)
1076 {
1077 struct inode *btree_inode = root->fs_info->btree_inode;
1078 struct extent_buffer *eb;
1079 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1080 bytenr, blocksize);
1081 return eb;
1082 }
1083
1084 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1085 u64 bytenr, u32 blocksize)
1086 {
1087 struct inode *btree_inode = root->fs_info->btree_inode;
1088 struct extent_buffer *eb;
1089
1090 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1091 bytenr, blocksize);
1092 return eb;
1093 }
1094
1095
1096 int btrfs_write_tree_block(struct extent_buffer *buf)
1097 {
1098 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1099 buf->start + buf->len - 1);
1100 }
1101
1102 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1103 {
1104 return filemap_fdatawait_range(buf->pages[0]->mapping,
1105 buf->start, buf->start + buf->len - 1);
1106 }
1107
1108 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1109 u32 blocksize, u64 parent_transid)
1110 {
1111 struct extent_buffer *buf = NULL;
1112 int ret;
1113
1114 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1115 if (!buf)
1116 return NULL;
1117
1118 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1119 return buf;
1120
1121 }
1122
1123 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1124 struct extent_buffer *buf)
1125 {
1126 if (btrfs_header_generation(buf) ==
1127 root->fs_info->running_transaction->transid) {
1128 btrfs_assert_tree_locked(buf);
1129
1130 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1131 spin_lock(&root->fs_info->delalloc_lock);
1132 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1133 root->fs_info->dirty_metadata_bytes -= buf->len;
1134 else {
1135 spin_unlock(&root->fs_info->delalloc_lock);
1136 btrfs_panic(root->fs_info, -EOVERFLOW,
1137 "Can't clear %lu bytes from "
1138 " dirty_mdatadata_bytes (%llu)",
1139 buf->len,
1140 root->fs_info->dirty_metadata_bytes);
1141 }
1142 spin_unlock(&root->fs_info->delalloc_lock);
1143 }
1144
1145 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1146 btrfs_set_lock_blocking(buf);
1147 clear_extent_buffer_dirty(buf);
1148 }
1149 }
1150
1151 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1152 u32 stripesize, struct btrfs_root *root,
1153 struct btrfs_fs_info *fs_info,
1154 u64 objectid)
1155 {
1156 root->node = NULL;
1157 root->commit_root = NULL;
1158 root->sectorsize = sectorsize;
1159 root->nodesize = nodesize;
1160 root->leafsize = leafsize;
1161 root->stripesize = stripesize;
1162 root->ref_cows = 0;
1163 root->track_dirty = 0;
1164 root->in_radix = 0;
1165 root->orphan_item_inserted = 0;
1166 root->orphan_cleanup_state = 0;
1167
1168 root->objectid = objectid;
1169 root->last_trans = 0;
1170 root->highest_objectid = 0;
1171 root->name = NULL;
1172 root->inode_tree = RB_ROOT;
1173 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1174 root->block_rsv = NULL;
1175 root->orphan_block_rsv = NULL;
1176
1177 INIT_LIST_HEAD(&root->dirty_list);
1178 INIT_LIST_HEAD(&root->root_list);
1179 spin_lock_init(&root->orphan_lock);
1180 spin_lock_init(&root->inode_lock);
1181 spin_lock_init(&root->accounting_lock);
1182 mutex_init(&root->objectid_mutex);
1183 mutex_init(&root->log_mutex);
1184 init_waitqueue_head(&root->log_writer_wait);
1185 init_waitqueue_head(&root->log_commit_wait[0]);
1186 init_waitqueue_head(&root->log_commit_wait[1]);
1187 atomic_set(&root->log_commit[0], 0);
1188 atomic_set(&root->log_commit[1], 0);
1189 atomic_set(&root->log_writers, 0);
1190 atomic_set(&root->log_batch, 0);
1191 atomic_set(&root->orphan_inodes, 0);
1192 root->log_transid = 0;
1193 root->last_log_commit = 0;
1194 extent_io_tree_init(&root->dirty_log_pages,
1195 fs_info->btree_inode->i_mapping);
1196
1197 memset(&root->root_key, 0, sizeof(root->root_key));
1198 memset(&root->root_item, 0, sizeof(root->root_item));
1199 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1200 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1201 root->defrag_trans_start = fs_info->generation;
1202 init_completion(&root->kobj_unregister);
1203 root->defrag_running = 0;
1204 root->root_key.objectid = objectid;
1205 root->anon_dev = 0;
1206
1207 spin_lock_init(&root->root_item_lock);
1208 }
1209
1210 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1211 struct btrfs_fs_info *fs_info,
1212 u64 objectid,
1213 struct btrfs_root *root)
1214 {
1215 int ret;
1216 u32 blocksize;
1217 u64 generation;
1218
1219 __setup_root(tree_root->nodesize, tree_root->leafsize,
1220 tree_root->sectorsize, tree_root->stripesize,
1221 root, fs_info, objectid);
1222 ret = btrfs_find_last_root(tree_root, objectid,
1223 &root->root_item, &root->root_key);
1224 if (ret > 0)
1225 return -ENOENT;
1226 else if (ret < 0)
1227 return ret;
1228
1229 generation = btrfs_root_generation(&root->root_item);
1230 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1231 root->commit_root = NULL;
1232 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1233 blocksize, generation);
1234 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1235 free_extent_buffer(root->node);
1236 root->node = NULL;
1237 return -EIO;
1238 }
1239 root->commit_root = btrfs_root_node(root);
1240 return 0;
1241 }
1242
1243 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1244 {
1245 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1246 if (root)
1247 root->fs_info = fs_info;
1248 return root;
1249 }
1250
1251 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1252 struct btrfs_fs_info *fs_info,
1253 u64 objectid)
1254 {
1255 struct extent_buffer *leaf;
1256 struct btrfs_root *tree_root = fs_info->tree_root;
1257 struct btrfs_root *root;
1258 struct btrfs_key key;
1259 int ret = 0;
1260 u64 bytenr;
1261
1262 root = btrfs_alloc_root(fs_info);
1263 if (!root)
1264 return ERR_PTR(-ENOMEM);
1265
1266 __setup_root(tree_root->nodesize, tree_root->leafsize,
1267 tree_root->sectorsize, tree_root->stripesize,
1268 root, fs_info, objectid);
1269 root->root_key.objectid = objectid;
1270 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1271 root->root_key.offset = 0;
1272
1273 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1274 0, objectid, NULL, 0, 0, 0);
1275 if (IS_ERR(leaf)) {
1276 ret = PTR_ERR(leaf);
1277 goto fail;
1278 }
1279
1280 bytenr = leaf->start;
1281 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1282 btrfs_set_header_bytenr(leaf, leaf->start);
1283 btrfs_set_header_generation(leaf, trans->transid);
1284 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1285 btrfs_set_header_owner(leaf, objectid);
1286 root->node = leaf;
1287
1288 write_extent_buffer(leaf, fs_info->fsid,
1289 (unsigned long)btrfs_header_fsid(leaf),
1290 BTRFS_FSID_SIZE);
1291 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1292 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1293 BTRFS_UUID_SIZE);
1294 btrfs_mark_buffer_dirty(leaf);
1295
1296 root->commit_root = btrfs_root_node(root);
1297 root->track_dirty = 1;
1298
1299
1300 root->root_item.flags = 0;
1301 root->root_item.byte_limit = 0;
1302 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1303 btrfs_set_root_generation(&root->root_item, trans->transid);
1304 btrfs_set_root_level(&root->root_item, 0);
1305 btrfs_set_root_refs(&root->root_item, 1);
1306 btrfs_set_root_used(&root->root_item, leaf->len);
1307 btrfs_set_root_last_snapshot(&root->root_item, 0);
1308 btrfs_set_root_dirid(&root->root_item, 0);
1309 root->root_item.drop_level = 0;
1310
1311 key.objectid = objectid;
1312 key.type = BTRFS_ROOT_ITEM_KEY;
1313 key.offset = 0;
1314 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1315 if (ret)
1316 goto fail;
1317
1318 btrfs_tree_unlock(leaf);
1319
1320 fail:
1321 if (ret)
1322 return ERR_PTR(ret);
1323
1324 return root;
1325 }
1326
1327 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1328 struct btrfs_fs_info *fs_info)
1329 {
1330 struct btrfs_root *root;
1331 struct btrfs_root *tree_root = fs_info->tree_root;
1332 struct extent_buffer *leaf;
1333
1334 root = btrfs_alloc_root(fs_info);
1335 if (!root)
1336 return ERR_PTR(-ENOMEM);
1337
1338 __setup_root(tree_root->nodesize, tree_root->leafsize,
1339 tree_root->sectorsize, tree_root->stripesize,
1340 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1341
1342 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1343 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1344 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1345 /*
1346 * log trees do not get reference counted because they go away
1347 * before a real commit is actually done. They do store pointers
1348 * to file data extents, and those reference counts still get
1349 * updated (along with back refs to the log tree).
1350 */
1351 root->ref_cows = 0;
1352
1353 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1354 BTRFS_TREE_LOG_OBJECTID, NULL,
1355 0, 0, 0);
1356 if (IS_ERR(leaf)) {
1357 kfree(root);
1358 return ERR_CAST(leaf);
1359 }
1360
1361 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1362 btrfs_set_header_bytenr(leaf, leaf->start);
1363 btrfs_set_header_generation(leaf, trans->transid);
1364 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1365 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1366 root->node = leaf;
1367
1368 write_extent_buffer(root->node, root->fs_info->fsid,
1369 (unsigned long)btrfs_header_fsid(root->node),
1370 BTRFS_FSID_SIZE);
1371 btrfs_mark_buffer_dirty(root->node);
1372 btrfs_tree_unlock(root->node);
1373 return root;
1374 }
1375
1376 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1377 struct btrfs_fs_info *fs_info)
1378 {
1379 struct btrfs_root *log_root;
1380
1381 log_root = alloc_log_tree(trans, fs_info);
1382 if (IS_ERR(log_root))
1383 return PTR_ERR(log_root);
1384 WARN_ON(fs_info->log_root_tree);
1385 fs_info->log_root_tree = log_root;
1386 return 0;
1387 }
1388
1389 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1390 struct btrfs_root *root)
1391 {
1392 struct btrfs_root *log_root;
1393 struct btrfs_inode_item *inode_item;
1394
1395 log_root = alloc_log_tree(trans, root->fs_info);
1396 if (IS_ERR(log_root))
1397 return PTR_ERR(log_root);
1398
1399 log_root->last_trans = trans->transid;
1400 log_root->root_key.offset = root->root_key.objectid;
1401
1402 inode_item = &log_root->root_item.inode;
1403 inode_item->generation = cpu_to_le64(1);
1404 inode_item->size = cpu_to_le64(3);
1405 inode_item->nlink = cpu_to_le32(1);
1406 inode_item->nbytes = cpu_to_le64(root->leafsize);
1407 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1408
1409 btrfs_set_root_node(&log_root->root_item, log_root->node);
1410
1411 WARN_ON(root->log_root);
1412 root->log_root = log_root;
1413 root->log_transid = 0;
1414 root->last_log_commit = 0;
1415 return 0;
1416 }
1417
1418 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1419 struct btrfs_key *location)
1420 {
1421 struct btrfs_root *root;
1422 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1423 struct btrfs_path *path;
1424 struct extent_buffer *l;
1425 u64 generation;
1426 u32 blocksize;
1427 int ret = 0;
1428 int slot;
1429
1430 root = btrfs_alloc_root(fs_info);
1431 if (!root)
1432 return ERR_PTR(-ENOMEM);
1433 if (location->offset == (u64)-1) {
1434 ret = find_and_setup_root(tree_root, fs_info,
1435 location->objectid, root);
1436 if (ret) {
1437 kfree(root);
1438 return ERR_PTR(ret);
1439 }
1440 goto out;
1441 }
1442
1443 __setup_root(tree_root->nodesize, tree_root->leafsize,
1444 tree_root->sectorsize, tree_root->stripesize,
1445 root, fs_info, location->objectid);
1446
1447 path = btrfs_alloc_path();
1448 if (!path) {
1449 kfree(root);
1450 return ERR_PTR(-ENOMEM);
1451 }
1452 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1453 if (ret == 0) {
1454 l = path->nodes[0];
1455 slot = path->slots[0];
1456 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1457 memcpy(&root->root_key, location, sizeof(*location));
1458 }
1459 btrfs_free_path(path);
1460 if (ret) {
1461 kfree(root);
1462 if (ret > 0)
1463 ret = -ENOENT;
1464 return ERR_PTR(ret);
1465 }
1466
1467 generation = btrfs_root_generation(&root->root_item);
1468 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1469 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1470 blocksize, generation);
1471 root->commit_root = btrfs_root_node(root);
1472 BUG_ON(!root->node); /* -ENOMEM */
1473 out:
1474 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1475 root->ref_cows = 1;
1476 btrfs_check_and_init_root_item(&root->root_item);
1477 }
1478
1479 return root;
1480 }
1481
1482 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1483 struct btrfs_key *location)
1484 {
1485 struct btrfs_root *root;
1486 int ret;
1487
1488 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1489 return fs_info->tree_root;
1490 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1491 return fs_info->extent_root;
1492 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1493 return fs_info->chunk_root;
1494 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1495 return fs_info->dev_root;
1496 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1497 return fs_info->csum_root;
1498 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1499 return fs_info->quota_root ? fs_info->quota_root :
1500 ERR_PTR(-ENOENT);
1501 again:
1502 spin_lock(&fs_info->fs_roots_radix_lock);
1503 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1504 (unsigned long)location->objectid);
1505 spin_unlock(&fs_info->fs_roots_radix_lock);
1506 if (root)
1507 return root;
1508
1509 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1510 if (IS_ERR(root))
1511 return root;
1512
1513 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1514 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1515 GFP_NOFS);
1516 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1517 ret = -ENOMEM;
1518 goto fail;
1519 }
1520
1521 btrfs_init_free_ino_ctl(root);
1522 mutex_init(&root->fs_commit_mutex);
1523 spin_lock_init(&root->cache_lock);
1524 init_waitqueue_head(&root->cache_wait);
1525
1526 ret = get_anon_bdev(&root->anon_dev);
1527 if (ret)
1528 goto fail;
1529
1530 if (btrfs_root_refs(&root->root_item) == 0) {
1531 ret = -ENOENT;
1532 goto fail;
1533 }
1534
1535 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1536 if (ret < 0)
1537 goto fail;
1538 if (ret == 0)
1539 root->orphan_item_inserted = 1;
1540
1541 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1542 if (ret)
1543 goto fail;
1544
1545 spin_lock(&fs_info->fs_roots_radix_lock);
1546 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1547 (unsigned long)root->root_key.objectid,
1548 root);
1549 if (ret == 0)
1550 root->in_radix = 1;
1551
1552 spin_unlock(&fs_info->fs_roots_radix_lock);
1553 radix_tree_preload_end();
1554 if (ret) {
1555 if (ret == -EEXIST) {
1556 free_fs_root(root);
1557 goto again;
1558 }
1559 goto fail;
1560 }
1561
1562 ret = btrfs_find_dead_roots(fs_info->tree_root,
1563 root->root_key.objectid);
1564 WARN_ON(ret);
1565 return root;
1566 fail:
1567 free_fs_root(root);
1568 return ERR_PTR(ret);
1569 }
1570
1571 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1572 {
1573 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1574 int ret = 0;
1575 struct btrfs_device *device;
1576 struct backing_dev_info *bdi;
1577
1578 rcu_read_lock();
1579 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1580 if (!device->bdev)
1581 continue;
1582 bdi = blk_get_backing_dev_info(device->bdev);
1583 if (bdi && bdi_congested(bdi, bdi_bits)) {
1584 ret = 1;
1585 break;
1586 }
1587 }
1588 rcu_read_unlock();
1589 return ret;
1590 }
1591
1592 /*
1593 * If this fails, caller must call bdi_destroy() to get rid of the
1594 * bdi again.
1595 */
1596 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1597 {
1598 int err;
1599
1600 bdi->capabilities = BDI_CAP_MAP_COPY;
1601 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1602 if (err)
1603 return err;
1604
1605 bdi->ra_pages = default_backing_dev_info.ra_pages;
1606 bdi->congested_fn = btrfs_congested_fn;
1607 bdi->congested_data = info;
1608 return 0;
1609 }
1610
1611 /*
1612 * called by the kthread helper functions to finally call the bio end_io
1613 * functions. This is where read checksum verification actually happens
1614 */
1615 static void end_workqueue_fn(struct btrfs_work *work)
1616 {
1617 struct bio *bio;
1618 struct end_io_wq *end_io_wq;
1619 struct btrfs_fs_info *fs_info;
1620 int error;
1621
1622 end_io_wq = container_of(work, struct end_io_wq, work);
1623 bio = end_io_wq->bio;
1624 fs_info = end_io_wq->info;
1625
1626 error = end_io_wq->error;
1627 bio->bi_private = end_io_wq->private;
1628 bio->bi_end_io = end_io_wq->end_io;
1629 kfree(end_io_wq);
1630 bio_endio(bio, error);
1631 }
1632
1633 static int cleaner_kthread(void *arg)
1634 {
1635 struct btrfs_root *root = arg;
1636
1637 do {
1638 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1639 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1640 btrfs_run_delayed_iputs(root);
1641 btrfs_clean_old_snapshots(root);
1642 mutex_unlock(&root->fs_info->cleaner_mutex);
1643 btrfs_run_defrag_inodes(root->fs_info);
1644 }
1645
1646 if (!try_to_freeze()) {
1647 set_current_state(TASK_INTERRUPTIBLE);
1648 if (!kthread_should_stop())
1649 schedule();
1650 __set_current_state(TASK_RUNNING);
1651 }
1652 } while (!kthread_should_stop());
1653 return 0;
1654 }
1655
1656 static int transaction_kthread(void *arg)
1657 {
1658 struct btrfs_root *root = arg;
1659 struct btrfs_trans_handle *trans;
1660 struct btrfs_transaction *cur;
1661 u64 transid;
1662 unsigned long now;
1663 unsigned long delay;
1664 bool cannot_commit;
1665
1666 do {
1667 cannot_commit = false;
1668 delay = HZ * 30;
1669 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1670
1671 spin_lock(&root->fs_info->trans_lock);
1672 cur = root->fs_info->running_transaction;
1673 if (!cur) {
1674 spin_unlock(&root->fs_info->trans_lock);
1675 goto sleep;
1676 }
1677
1678 now = get_seconds();
1679 if (!cur->blocked &&
1680 (now < cur->start_time || now - cur->start_time < 30)) {
1681 spin_unlock(&root->fs_info->trans_lock);
1682 delay = HZ * 5;
1683 goto sleep;
1684 }
1685 transid = cur->transid;
1686 spin_unlock(&root->fs_info->trans_lock);
1687
1688 /* If the file system is aborted, this will always fail. */
1689 trans = btrfs_attach_transaction(root);
1690 if (IS_ERR(trans)) {
1691 if (PTR_ERR(trans) != -ENOENT)
1692 cannot_commit = true;
1693 goto sleep;
1694 }
1695 if (transid == trans->transid) {
1696 btrfs_commit_transaction(trans, root);
1697 } else {
1698 btrfs_end_transaction(trans, root);
1699 }
1700 sleep:
1701 wake_up_process(root->fs_info->cleaner_kthread);
1702 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1703
1704 if (!try_to_freeze()) {
1705 set_current_state(TASK_INTERRUPTIBLE);
1706 if (!kthread_should_stop() &&
1707 (!btrfs_transaction_blocked(root->fs_info) ||
1708 cannot_commit))
1709 schedule_timeout(delay);
1710 __set_current_state(TASK_RUNNING);
1711 }
1712 } while (!kthread_should_stop());
1713 return 0;
1714 }
1715
1716 /*
1717 * this will find the highest generation in the array of
1718 * root backups. The index of the highest array is returned,
1719 * or -1 if we can't find anything.
1720 *
1721 * We check to make sure the array is valid by comparing the
1722 * generation of the latest root in the array with the generation
1723 * in the super block. If they don't match we pitch it.
1724 */
1725 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1726 {
1727 u64 cur;
1728 int newest_index = -1;
1729 struct btrfs_root_backup *root_backup;
1730 int i;
1731
1732 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1733 root_backup = info->super_copy->super_roots + i;
1734 cur = btrfs_backup_tree_root_gen(root_backup);
1735 if (cur == newest_gen)
1736 newest_index = i;
1737 }
1738
1739 /* check to see if we actually wrapped around */
1740 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1741 root_backup = info->super_copy->super_roots;
1742 cur = btrfs_backup_tree_root_gen(root_backup);
1743 if (cur == newest_gen)
1744 newest_index = 0;
1745 }
1746 return newest_index;
1747 }
1748
1749
1750 /*
1751 * find the oldest backup so we know where to store new entries
1752 * in the backup array. This will set the backup_root_index
1753 * field in the fs_info struct
1754 */
1755 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1756 u64 newest_gen)
1757 {
1758 int newest_index = -1;
1759
1760 newest_index = find_newest_super_backup(info, newest_gen);
1761 /* if there was garbage in there, just move along */
1762 if (newest_index == -1) {
1763 info->backup_root_index = 0;
1764 } else {
1765 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1766 }
1767 }
1768
1769 /*
1770 * copy all the root pointers into the super backup array.
1771 * this will bump the backup pointer by one when it is
1772 * done
1773 */
1774 static void backup_super_roots(struct btrfs_fs_info *info)
1775 {
1776 int next_backup;
1777 struct btrfs_root_backup *root_backup;
1778 int last_backup;
1779
1780 next_backup = info->backup_root_index;
1781 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1782 BTRFS_NUM_BACKUP_ROOTS;
1783
1784 /*
1785 * just overwrite the last backup if we're at the same generation
1786 * this happens only at umount
1787 */
1788 root_backup = info->super_for_commit->super_roots + last_backup;
1789 if (btrfs_backup_tree_root_gen(root_backup) ==
1790 btrfs_header_generation(info->tree_root->node))
1791 next_backup = last_backup;
1792
1793 root_backup = info->super_for_commit->super_roots + next_backup;
1794
1795 /*
1796 * make sure all of our padding and empty slots get zero filled
1797 * regardless of which ones we use today
1798 */
1799 memset(root_backup, 0, sizeof(*root_backup));
1800
1801 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1802
1803 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1804 btrfs_set_backup_tree_root_gen(root_backup,
1805 btrfs_header_generation(info->tree_root->node));
1806
1807 btrfs_set_backup_tree_root_level(root_backup,
1808 btrfs_header_level(info->tree_root->node));
1809
1810 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1811 btrfs_set_backup_chunk_root_gen(root_backup,
1812 btrfs_header_generation(info->chunk_root->node));
1813 btrfs_set_backup_chunk_root_level(root_backup,
1814 btrfs_header_level(info->chunk_root->node));
1815
1816 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1817 btrfs_set_backup_extent_root_gen(root_backup,
1818 btrfs_header_generation(info->extent_root->node));
1819 btrfs_set_backup_extent_root_level(root_backup,
1820 btrfs_header_level(info->extent_root->node));
1821
1822 /*
1823 * we might commit during log recovery, which happens before we set
1824 * the fs_root. Make sure it is valid before we fill it in.
1825 */
1826 if (info->fs_root && info->fs_root->node) {
1827 btrfs_set_backup_fs_root(root_backup,
1828 info->fs_root->node->start);
1829 btrfs_set_backup_fs_root_gen(root_backup,
1830 btrfs_header_generation(info->fs_root->node));
1831 btrfs_set_backup_fs_root_level(root_backup,
1832 btrfs_header_level(info->fs_root->node));
1833 }
1834
1835 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1836 btrfs_set_backup_dev_root_gen(root_backup,
1837 btrfs_header_generation(info->dev_root->node));
1838 btrfs_set_backup_dev_root_level(root_backup,
1839 btrfs_header_level(info->dev_root->node));
1840
1841 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1842 btrfs_set_backup_csum_root_gen(root_backup,
1843 btrfs_header_generation(info->csum_root->node));
1844 btrfs_set_backup_csum_root_level(root_backup,
1845 btrfs_header_level(info->csum_root->node));
1846
1847 btrfs_set_backup_total_bytes(root_backup,
1848 btrfs_super_total_bytes(info->super_copy));
1849 btrfs_set_backup_bytes_used(root_backup,
1850 btrfs_super_bytes_used(info->super_copy));
1851 btrfs_set_backup_num_devices(root_backup,
1852 btrfs_super_num_devices(info->super_copy));
1853
1854 /*
1855 * if we don't copy this out to the super_copy, it won't get remembered
1856 * for the next commit
1857 */
1858 memcpy(&info->super_copy->super_roots,
1859 &info->super_for_commit->super_roots,
1860 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1861 }
1862
1863 /*
1864 * this copies info out of the root backup array and back into
1865 * the in-memory super block. It is meant to help iterate through
1866 * the array, so you send it the number of backups you've already
1867 * tried and the last backup index you used.
1868 *
1869 * this returns -1 when it has tried all the backups
1870 */
1871 static noinline int next_root_backup(struct btrfs_fs_info *info,
1872 struct btrfs_super_block *super,
1873 int *num_backups_tried, int *backup_index)
1874 {
1875 struct btrfs_root_backup *root_backup;
1876 int newest = *backup_index;
1877
1878 if (*num_backups_tried == 0) {
1879 u64 gen = btrfs_super_generation(super);
1880
1881 newest = find_newest_super_backup(info, gen);
1882 if (newest == -1)
1883 return -1;
1884
1885 *backup_index = newest;
1886 *num_backups_tried = 1;
1887 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1888 /* we've tried all the backups, all done */
1889 return -1;
1890 } else {
1891 /* jump to the next oldest backup */
1892 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1893 BTRFS_NUM_BACKUP_ROOTS;
1894 *backup_index = newest;
1895 *num_backups_tried += 1;
1896 }
1897 root_backup = super->super_roots + newest;
1898
1899 btrfs_set_super_generation(super,
1900 btrfs_backup_tree_root_gen(root_backup));
1901 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1902 btrfs_set_super_root_level(super,
1903 btrfs_backup_tree_root_level(root_backup));
1904 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1905
1906 /*
1907 * fixme: the total bytes and num_devices need to match or we should
1908 * need a fsck
1909 */
1910 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1911 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1912 return 0;
1913 }
1914
1915 /* helper to cleanup tree roots */
1916 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1917 {
1918 free_extent_buffer(info->tree_root->node);
1919 free_extent_buffer(info->tree_root->commit_root);
1920 free_extent_buffer(info->dev_root->node);
1921 free_extent_buffer(info->dev_root->commit_root);
1922 free_extent_buffer(info->extent_root->node);
1923 free_extent_buffer(info->extent_root->commit_root);
1924 free_extent_buffer(info->csum_root->node);
1925 free_extent_buffer(info->csum_root->commit_root);
1926 if (info->quota_root) {
1927 free_extent_buffer(info->quota_root->node);
1928 free_extent_buffer(info->quota_root->commit_root);
1929 }
1930
1931 info->tree_root->node = NULL;
1932 info->tree_root->commit_root = NULL;
1933 info->dev_root->node = NULL;
1934 info->dev_root->commit_root = NULL;
1935 info->extent_root->node = NULL;
1936 info->extent_root->commit_root = NULL;
1937 info->csum_root->node = NULL;
1938 info->csum_root->commit_root = NULL;
1939 if (info->quota_root) {
1940 info->quota_root->node = NULL;
1941 info->quota_root->commit_root = NULL;
1942 }
1943
1944 if (chunk_root) {
1945 free_extent_buffer(info->chunk_root->node);
1946 free_extent_buffer(info->chunk_root->commit_root);
1947 info->chunk_root->node = NULL;
1948 info->chunk_root->commit_root = NULL;
1949 }
1950 }
1951
1952
1953 int open_ctree(struct super_block *sb,
1954 struct btrfs_fs_devices *fs_devices,
1955 char *options)
1956 {
1957 u32 sectorsize;
1958 u32 nodesize;
1959 u32 leafsize;
1960 u32 blocksize;
1961 u32 stripesize;
1962 u64 generation;
1963 u64 features;
1964 struct btrfs_key location;
1965 struct buffer_head *bh;
1966 struct btrfs_super_block *disk_super;
1967 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1968 struct btrfs_root *tree_root;
1969 struct btrfs_root *extent_root;
1970 struct btrfs_root *csum_root;
1971 struct btrfs_root *chunk_root;
1972 struct btrfs_root *dev_root;
1973 struct btrfs_root *quota_root;
1974 struct btrfs_root *log_tree_root;
1975 int ret;
1976 int err = -EINVAL;
1977 int num_backups_tried = 0;
1978 int backup_index = 0;
1979
1980 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1981 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1982 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1983 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1984 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1985 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
1986
1987 if (!tree_root || !extent_root || !csum_root ||
1988 !chunk_root || !dev_root || !quota_root) {
1989 err = -ENOMEM;
1990 goto fail;
1991 }
1992
1993 ret = init_srcu_struct(&fs_info->subvol_srcu);
1994 if (ret) {
1995 err = ret;
1996 goto fail;
1997 }
1998
1999 ret = setup_bdi(fs_info, &fs_info->bdi);
2000 if (ret) {
2001 err = ret;
2002 goto fail_srcu;
2003 }
2004
2005 fs_info->btree_inode = new_inode(sb);
2006 if (!fs_info->btree_inode) {
2007 err = -ENOMEM;
2008 goto fail_bdi;
2009 }
2010
2011 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2012
2013 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2014 INIT_LIST_HEAD(&fs_info->trans_list);
2015 INIT_LIST_HEAD(&fs_info->dead_roots);
2016 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2017 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2018 INIT_LIST_HEAD(&fs_info->ordered_operations);
2019 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2020 spin_lock_init(&fs_info->delalloc_lock);
2021 spin_lock_init(&fs_info->trans_lock);
2022 spin_lock_init(&fs_info->fs_roots_radix_lock);
2023 spin_lock_init(&fs_info->delayed_iput_lock);
2024 spin_lock_init(&fs_info->defrag_inodes_lock);
2025 spin_lock_init(&fs_info->free_chunk_lock);
2026 spin_lock_init(&fs_info->tree_mod_seq_lock);
2027 rwlock_init(&fs_info->tree_mod_log_lock);
2028 mutex_init(&fs_info->reloc_mutex);
2029
2030 init_completion(&fs_info->kobj_unregister);
2031 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2032 INIT_LIST_HEAD(&fs_info->space_info);
2033 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2034 btrfs_mapping_init(&fs_info->mapping_tree);
2035 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2036 BTRFS_BLOCK_RSV_GLOBAL);
2037 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2038 BTRFS_BLOCK_RSV_DELALLOC);
2039 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2040 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2041 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2042 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2043 BTRFS_BLOCK_RSV_DELOPS);
2044 atomic_set(&fs_info->nr_async_submits, 0);
2045 atomic_set(&fs_info->async_delalloc_pages, 0);
2046 atomic_set(&fs_info->async_submit_draining, 0);
2047 atomic_set(&fs_info->nr_async_bios, 0);
2048 atomic_set(&fs_info->defrag_running, 0);
2049 atomic_set(&fs_info->tree_mod_seq, 0);
2050 fs_info->sb = sb;
2051 fs_info->max_inline = 8192 * 1024;
2052 fs_info->metadata_ratio = 0;
2053 fs_info->defrag_inodes = RB_ROOT;
2054 fs_info->trans_no_join = 0;
2055 fs_info->free_chunk_space = 0;
2056 fs_info->tree_mod_log = RB_ROOT;
2057
2058 /* readahead state */
2059 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2060 spin_lock_init(&fs_info->reada_lock);
2061
2062 fs_info->thread_pool_size = min_t(unsigned long,
2063 num_online_cpus() + 2, 8);
2064
2065 INIT_LIST_HEAD(&fs_info->ordered_extents);
2066 spin_lock_init(&fs_info->ordered_extent_lock);
2067 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2068 GFP_NOFS);
2069 if (!fs_info->delayed_root) {
2070 err = -ENOMEM;
2071 goto fail_iput;
2072 }
2073 btrfs_init_delayed_root(fs_info->delayed_root);
2074
2075 mutex_init(&fs_info->scrub_lock);
2076 atomic_set(&fs_info->scrubs_running, 0);
2077 atomic_set(&fs_info->scrub_pause_req, 0);
2078 atomic_set(&fs_info->scrubs_paused, 0);
2079 atomic_set(&fs_info->scrub_cancel_req, 0);
2080 init_waitqueue_head(&fs_info->scrub_pause_wait);
2081 init_rwsem(&fs_info->scrub_super_lock);
2082 fs_info->scrub_workers_refcnt = 0;
2083 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2084 fs_info->check_integrity_print_mask = 0;
2085 #endif
2086
2087 spin_lock_init(&fs_info->balance_lock);
2088 mutex_init(&fs_info->balance_mutex);
2089 atomic_set(&fs_info->balance_running, 0);
2090 atomic_set(&fs_info->balance_pause_req, 0);
2091 atomic_set(&fs_info->balance_cancel_req, 0);
2092 fs_info->balance_ctl = NULL;
2093 init_waitqueue_head(&fs_info->balance_wait_q);
2094
2095 sb->s_blocksize = 4096;
2096 sb->s_blocksize_bits = blksize_bits(4096);
2097 sb->s_bdi = &fs_info->bdi;
2098
2099 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2100 set_nlink(fs_info->btree_inode, 1);
2101 /*
2102 * we set the i_size on the btree inode to the max possible int.
2103 * the real end of the address space is determined by all of
2104 * the devices in the system
2105 */
2106 fs_info->btree_inode->i_size = OFFSET_MAX;
2107 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2108 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2109
2110 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2111 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2112 fs_info->btree_inode->i_mapping);
2113 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2114 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2115
2116 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2117
2118 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2119 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2120 sizeof(struct btrfs_key));
2121 set_bit(BTRFS_INODE_DUMMY,
2122 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2123 insert_inode_hash(fs_info->btree_inode);
2124
2125 spin_lock_init(&fs_info->block_group_cache_lock);
2126 fs_info->block_group_cache_tree = RB_ROOT;
2127
2128 extent_io_tree_init(&fs_info->freed_extents[0],
2129 fs_info->btree_inode->i_mapping);
2130 extent_io_tree_init(&fs_info->freed_extents[1],
2131 fs_info->btree_inode->i_mapping);
2132 fs_info->pinned_extents = &fs_info->freed_extents[0];
2133 fs_info->do_barriers = 1;
2134
2135
2136 mutex_init(&fs_info->ordered_operations_mutex);
2137 mutex_init(&fs_info->tree_log_mutex);
2138 mutex_init(&fs_info->chunk_mutex);
2139 mutex_init(&fs_info->transaction_kthread_mutex);
2140 mutex_init(&fs_info->cleaner_mutex);
2141 mutex_init(&fs_info->volume_mutex);
2142 init_rwsem(&fs_info->extent_commit_sem);
2143 init_rwsem(&fs_info->cleanup_work_sem);
2144 init_rwsem(&fs_info->subvol_sem);
2145 fs_info->dev_replace.lock_owner = 0;
2146 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2147 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2148 mutex_init(&fs_info->dev_replace.lock_management_lock);
2149 mutex_init(&fs_info->dev_replace.lock);
2150
2151 spin_lock_init(&fs_info->qgroup_lock);
2152 fs_info->qgroup_tree = RB_ROOT;
2153 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2154 fs_info->qgroup_seq = 1;
2155 fs_info->quota_enabled = 0;
2156 fs_info->pending_quota_state = 0;
2157
2158 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2159 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2160
2161 init_waitqueue_head(&fs_info->transaction_throttle);
2162 init_waitqueue_head(&fs_info->transaction_wait);
2163 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2164 init_waitqueue_head(&fs_info->async_submit_wait);
2165
2166 __setup_root(4096, 4096, 4096, 4096, tree_root,
2167 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2168
2169 invalidate_bdev(fs_devices->latest_bdev);
2170 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2171 if (!bh) {
2172 err = -EINVAL;
2173 goto fail_alloc;
2174 }
2175
2176 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2177 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2178 sizeof(*fs_info->super_for_commit));
2179 brelse(bh);
2180
2181 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2182
2183 disk_super = fs_info->super_copy;
2184 if (!btrfs_super_root(disk_super))
2185 goto fail_alloc;
2186
2187 /* check FS state, whether FS is broken. */
2188 fs_info->fs_state |= btrfs_super_flags(disk_super);
2189
2190 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2191 if (ret) {
2192 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2193 err = ret;
2194 goto fail_alloc;
2195 }
2196
2197 /*
2198 * run through our array of backup supers and setup
2199 * our ring pointer to the oldest one
2200 */
2201 generation = btrfs_super_generation(disk_super);
2202 find_oldest_super_backup(fs_info, generation);
2203
2204 /*
2205 * In the long term, we'll store the compression type in the super
2206 * block, and it'll be used for per file compression control.
2207 */
2208 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2209
2210 ret = btrfs_parse_options(tree_root, options);
2211 if (ret) {
2212 err = ret;
2213 goto fail_alloc;
2214 }
2215
2216 features = btrfs_super_incompat_flags(disk_super) &
2217 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2218 if (features) {
2219 printk(KERN_ERR "BTRFS: couldn't mount because of "
2220 "unsupported optional features (%Lx).\n",
2221 (unsigned long long)features);
2222 err = -EINVAL;
2223 goto fail_alloc;
2224 }
2225
2226 if (btrfs_super_leafsize(disk_super) !=
2227 btrfs_super_nodesize(disk_super)) {
2228 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2229 "blocksizes don't match. node %d leaf %d\n",
2230 btrfs_super_nodesize(disk_super),
2231 btrfs_super_leafsize(disk_super));
2232 err = -EINVAL;
2233 goto fail_alloc;
2234 }
2235 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2236 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2237 "blocksize (%d) was too large\n",
2238 btrfs_super_leafsize(disk_super));
2239 err = -EINVAL;
2240 goto fail_alloc;
2241 }
2242
2243 features = btrfs_super_incompat_flags(disk_super);
2244 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2245 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2246 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2247
2248 /*
2249 * flag our filesystem as having big metadata blocks if
2250 * they are bigger than the page size
2251 */
2252 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2253 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2254 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2255 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2256 }
2257
2258 nodesize = btrfs_super_nodesize(disk_super);
2259 leafsize = btrfs_super_leafsize(disk_super);
2260 sectorsize = btrfs_super_sectorsize(disk_super);
2261 stripesize = btrfs_super_stripesize(disk_super);
2262
2263 /*
2264 * mixed block groups end up with duplicate but slightly offset
2265 * extent buffers for the same range. It leads to corruptions
2266 */
2267 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2268 (sectorsize != leafsize)) {
2269 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2270 "are not allowed for mixed block groups on %s\n",
2271 sb->s_id);
2272 goto fail_alloc;
2273 }
2274
2275 btrfs_set_super_incompat_flags(disk_super, features);
2276
2277 features = btrfs_super_compat_ro_flags(disk_super) &
2278 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2279 if (!(sb->s_flags & MS_RDONLY) && features) {
2280 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2281 "unsupported option features (%Lx).\n",
2282 (unsigned long long)features);
2283 err = -EINVAL;
2284 goto fail_alloc;
2285 }
2286
2287 btrfs_init_workers(&fs_info->generic_worker,
2288 "genwork", 1, NULL);
2289
2290 btrfs_init_workers(&fs_info->workers, "worker",
2291 fs_info->thread_pool_size,
2292 &fs_info->generic_worker);
2293
2294 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2295 fs_info->thread_pool_size,
2296 &fs_info->generic_worker);
2297
2298 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2299 fs_info->thread_pool_size,
2300 &fs_info->generic_worker);
2301
2302 btrfs_init_workers(&fs_info->submit_workers, "submit",
2303 min_t(u64, fs_devices->num_devices,
2304 fs_info->thread_pool_size),
2305 &fs_info->generic_worker);
2306
2307 btrfs_init_workers(&fs_info->caching_workers, "cache",
2308 2, &fs_info->generic_worker);
2309
2310 /* a higher idle thresh on the submit workers makes it much more
2311 * likely that bios will be send down in a sane order to the
2312 * devices
2313 */
2314 fs_info->submit_workers.idle_thresh = 64;
2315
2316 fs_info->workers.idle_thresh = 16;
2317 fs_info->workers.ordered = 1;
2318
2319 fs_info->delalloc_workers.idle_thresh = 2;
2320 fs_info->delalloc_workers.ordered = 1;
2321
2322 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2323 &fs_info->generic_worker);
2324 btrfs_init_workers(&fs_info->endio_workers, "endio",
2325 fs_info->thread_pool_size,
2326 &fs_info->generic_worker);
2327 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2328 fs_info->thread_pool_size,
2329 &fs_info->generic_worker);
2330 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2331 "endio-meta-write", fs_info->thread_pool_size,
2332 &fs_info->generic_worker);
2333 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2334 fs_info->thread_pool_size,
2335 &fs_info->generic_worker);
2336 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2337 1, &fs_info->generic_worker);
2338 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2339 fs_info->thread_pool_size,
2340 &fs_info->generic_worker);
2341 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2342 fs_info->thread_pool_size,
2343 &fs_info->generic_worker);
2344
2345 /*
2346 * endios are largely parallel and should have a very
2347 * low idle thresh
2348 */
2349 fs_info->endio_workers.idle_thresh = 4;
2350 fs_info->endio_meta_workers.idle_thresh = 4;
2351
2352 fs_info->endio_write_workers.idle_thresh = 2;
2353 fs_info->endio_meta_write_workers.idle_thresh = 2;
2354 fs_info->readahead_workers.idle_thresh = 2;
2355
2356 /*
2357 * btrfs_start_workers can really only fail because of ENOMEM so just
2358 * return -ENOMEM if any of these fail.
2359 */
2360 ret = btrfs_start_workers(&fs_info->workers);
2361 ret |= btrfs_start_workers(&fs_info->generic_worker);
2362 ret |= btrfs_start_workers(&fs_info->submit_workers);
2363 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2364 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2365 ret |= btrfs_start_workers(&fs_info->endio_workers);
2366 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2367 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2368 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2369 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2370 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2371 ret |= btrfs_start_workers(&fs_info->caching_workers);
2372 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2373 ret |= btrfs_start_workers(&fs_info->flush_workers);
2374 if (ret) {
2375 err = -ENOMEM;
2376 goto fail_sb_buffer;
2377 }
2378
2379 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2380 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2381 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2382
2383 tree_root->nodesize = nodesize;
2384 tree_root->leafsize = leafsize;
2385 tree_root->sectorsize = sectorsize;
2386 tree_root->stripesize = stripesize;
2387
2388 sb->s_blocksize = sectorsize;
2389 sb->s_blocksize_bits = blksize_bits(sectorsize);
2390
2391 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2392 sizeof(disk_super->magic))) {
2393 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2394 goto fail_sb_buffer;
2395 }
2396
2397 if (sectorsize != PAGE_SIZE) {
2398 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2399 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2400 goto fail_sb_buffer;
2401 }
2402
2403 mutex_lock(&fs_info->chunk_mutex);
2404 ret = btrfs_read_sys_array(tree_root);
2405 mutex_unlock(&fs_info->chunk_mutex);
2406 if (ret) {
2407 printk(KERN_WARNING "btrfs: failed to read the system "
2408 "array on %s\n", sb->s_id);
2409 goto fail_sb_buffer;
2410 }
2411
2412 blocksize = btrfs_level_size(tree_root,
2413 btrfs_super_chunk_root_level(disk_super));
2414 generation = btrfs_super_chunk_root_generation(disk_super);
2415
2416 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2417 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2418
2419 chunk_root->node = read_tree_block(chunk_root,
2420 btrfs_super_chunk_root(disk_super),
2421 blocksize, generation);
2422 BUG_ON(!chunk_root->node); /* -ENOMEM */
2423 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2424 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2425 sb->s_id);
2426 goto fail_tree_roots;
2427 }
2428 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2429 chunk_root->commit_root = btrfs_root_node(chunk_root);
2430
2431 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2432 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2433 BTRFS_UUID_SIZE);
2434
2435 ret = btrfs_read_chunk_tree(chunk_root);
2436 if (ret) {
2437 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2438 sb->s_id);
2439 goto fail_tree_roots;
2440 }
2441
2442 /*
2443 * keep the device that is marked to be the target device for the
2444 * dev_replace procedure
2445 */
2446 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2447
2448 if (!fs_devices->latest_bdev) {
2449 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2450 sb->s_id);
2451 goto fail_tree_roots;
2452 }
2453
2454 retry_root_backup:
2455 blocksize = btrfs_level_size(tree_root,
2456 btrfs_super_root_level(disk_super));
2457 generation = btrfs_super_generation(disk_super);
2458
2459 tree_root->node = read_tree_block(tree_root,
2460 btrfs_super_root(disk_super),
2461 blocksize, generation);
2462 if (!tree_root->node ||
2463 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2464 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2465 sb->s_id);
2466
2467 goto recovery_tree_root;
2468 }
2469
2470 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2471 tree_root->commit_root = btrfs_root_node(tree_root);
2472
2473 ret = find_and_setup_root(tree_root, fs_info,
2474 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2475 if (ret)
2476 goto recovery_tree_root;
2477 extent_root->track_dirty = 1;
2478
2479 ret = find_and_setup_root(tree_root, fs_info,
2480 BTRFS_DEV_TREE_OBJECTID, dev_root);
2481 if (ret)
2482 goto recovery_tree_root;
2483 dev_root->track_dirty = 1;
2484
2485 ret = find_and_setup_root(tree_root, fs_info,
2486 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2487 if (ret)
2488 goto recovery_tree_root;
2489 csum_root->track_dirty = 1;
2490
2491 ret = find_and_setup_root(tree_root, fs_info,
2492 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2493 if (ret) {
2494 kfree(quota_root);
2495 quota_root = fs_info->quota_root = NULL;
2496 } else {
2497 quota_root->track_dirty = 1;
2498 fs_info->quota_enabled = 1;
2499 fs_info->pending_quota_state = 1;
2500 }
2501
2502 fs_info->generation = generation;
2503 fs_info->last_trans_committed = generation;
2504
2505 ret = btrfs_recover_balance(fs_info);
2506 if (ret) {
2507 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2508 goto fail_block_groups;
2509 }
2510
2511 ret = btrfs_init_dev_stats(fs_info);
2512 if (ret) {
2513 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2514 ret);
2515 goto fail_block_groups;
2516 }
2517
2518 ret = btrfs_init_dev_replace(fs_info);
2519 if (ret) {
2520 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2521 goto fail_block_groups;
2522 }
2523
2524 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2525
2526 ret = btrfs_init_space_info(fs_info);
2527 if (ret) {
2528 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2529 goto fail_block_groups;
2530 }
2531
2532 ret = btrfs_read_block_groups(extent_root);
2533 if (ret) {
2534 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2535 goto fail_block_groups;
2536 }
2537 fs_info->num_tolerated_disk_barrier_failures =
2538 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2539 if (fs_info->fs_devices->missing_devices >
2540 fs_info->num_tolerated_disk_barrier_failures &&
2541 !(sb->s_flags & MS_RDONLY)) {
2542 printk(KERN_WARNING
2543 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2544 goto fail_block_groups;
2545 }
2546
2547 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2548 "btrfs-cleaner");
2549 if (IS_ERR(fs_info->cleaner_kthread))
2550 goto fail_block_groups;
2551
2552 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2553 tree_root,
2554 "btrfs-transaction");
2555 if (IS_ERR(fs_info->transaction_kthread))
2556 goto fail_cleaner;
2557
2558 if (!btrfs_test_opt(tree_root, SSD) &&
2559 !btrfs_test_opt(tree_root, NOSSD) &&
2560 !fs_info->fs_devices->rotating) {
2561 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2562 "mode\n");
2563 btrfs_set_opt(fs_info->mount_opt, SSD);
2564 }
2565
2566 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2567 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2568 ret = btrfsic_mount(tree_root, fs_devices,
2569 btrfs_test_opt(tree_root,
2570 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2571 1 : 0,
2572 fs_info->check_integrity_print_mask);
2573 if (ret)
2574 printk(KERN_WARNING "btrfs: failed to initialize"
2575 " integrity check module %s\n", sb->s_id);
2576 }
2577 #endif
2578 ret = btrfs_read_qgroup_config(fs_info);
2579 if (ret)
2580 goto fail_trans_kthread;
2581
2582 /* do not make disk changes in broken FS */
2583 if (btrfs_super_log_root(disk_super) != 0) {
2584 u64 bytenr = btrfs_super_log_root(disk_super);
2585
2586 if (fs_devices->rw_devices == 0) {
2587 printk(KERN_WARNING "Btrfs log replay required "
2588 "on RO media\n");
2589 err = -EIO;
2590 goto fail_qgroup;
2591 }
2592 blocksize =
2593 btrfs_level_size(tree_root,
2594 btrfs_super_log_root_level(disk_super));
2595
2596 log_tree_root = btrfs_alloc_root(fs_info);
2597 if (!log_tree_root) {
2598 err = -ENOMEM;
2599 goto fail_qgroup;
2600 }
2601
2602 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2603 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2604
2605 log_tree_root->node = read_tree_block(tree_root, bytenr,
2606 blocksize,
2607 generation + 1);
2608 /* returns with log_tree_root freed on success */
2609 ret = btrfs_recover_log_trees(log_tree_root);
2610 if (ret) {
2611 btrfs_error(tree_root->fs_info, ret,
2612 "Failed to recover log tree");
2613 free_extent_buffer(log_tree_root->node);
2614 kfree(log_tree_root);
2615 goto fail_trans_kthread;
2616 }
2617
2618 if (sb->s_flags & MS_RDONLY) {
2619 ret = btrfs_commit_super(tree_root);
2620 if (ret)
2621 goto fail_trans_kthread;
2622 }
2623 }
2624
2625 ret = btrfs_find_orphan_roots(tree_root);
2626 if (ret)
2627 goto fail_trans_kthread;
2628
2629 if (!(sb->s_flags & MS_RDONLY)) {
2630 ret = btrfs_cleanup_fs_roots(fs_info);
2631 if (ret)
2632 goto fail_trans_kthread;
2633
2634 ret = btrfs_recover_relocation(tree_root);
2635 if (ret < 0) {
2636 printk(KERN_WARNING
2637 "btrfs: failed to recover relocation\n");
2638 err = -EINVAL;
2639 goto fail_qgroup;
2640 }
2641 }
2642
2643 location.objectid = BTRFS_FS_TREE_OBJECTID;
2644 location.type = BTRFS_ROOT_ITEM_KEY;
2645 location.offset = (u64)-1;
2646
2647 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2648 if (!fs_info->fs_root)
2649 goto fail_qgroup;
2650 if (IS_ERR(fs_info->fs_root)) {
2651 err = PTR_ERR(fs_info->fs_root);
2652 goto fail_qgroup;
2653 }
2654
2655 if (sb->s_flags & MS_RDONLY)
2656 return 0;
2657
2658 down_read(&fs_info->cleanup_work_sem);
2659 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2660 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2661 up_read(&fs_info->cleanup_work_sem);
2662 close_ctree(tree_root);
2663 return ret;
2664 }
2665 up_read(&fs_info->cleanup_work_sem);
2666
2667 ret = btrfs_resume_balance_async(fs_info);
2668 if (ret) {
2669 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2670 close_ctree(tree_root);
2671 return ret;
2672 }
2673
2674 ret = btrfs_resume_dev_replace_async(fs_info);
2675 if (ret) {
2676 pr_warn("btrfs: failed to resume dev_replace\n");
2677 close_ctree(tree_root);
2678 return ret;
2679 }
2680
2681 return 0;
2682
2683 fail_qgroup:
2684 btrfs_free_qgroup_config(fs_info);
2685 fail_trans_kthread:
2686 kthread_stop(fs_info->transaction_kthread);
2687 fail_cleaner:
2688 kthread_stop(fs_info->cleaner_kthread);
2689
2690 /*
2691 * make sure we're done with the btree inode before we stop our
2692 * kthreads
2693 */
2694 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2695 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2696
2697 fail_block_groups:
2698 btrfs_free_block_groups(fs_info);
2699
2700 fail_tree_roots:
2701 free_root_pointers(fs_info, 1);
2702
2703 fail_sb_buffer:
2704 btrfs_stop_workers(&fs_info->generic_worker);
2705 btrfs_stop_workers(&fs_info->readahead_workers);
2706 btrfs_stop_workers(&fs_info->fixup_workers);
2707 btrfs_stop_workers(&fs_info->delalloc_workers);
2708 btrfs_stop_workers(&fs_info->workers);
2709 btrfs_stop_workers(&fs_info->endio_workers);
2710 btrfs_stop_workers(&fs_info->endio_meta_workers);
2711 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2712 btrfs_stop_workers(&fs_info->endio_write_workers);
2713 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2714 btrfs_stop_workers(&fs_info->submit_workers);
2715 btrfs_stop_workers(&fs_info->delayed_workers);
2716 btrfs_stop_workers(&fs_info->caching_workers);
2717 btrfs_stop_workers(&fs_info->flush_workers);
2718 fail_alloc:
2719 fail_iput:
2720 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2721
2722 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2723 iput(fs_info->btree_inode);
2724 fail_bdi:
2725 bdi_destroy(&fs_info->bdi);
2726 fail_srcu:
2727 cleanup_srcu_struct(&fs_info->subvol_srcu);
2728 fail:
2729 btrfs_close_devices(fs_info->fs_devices);
2730 return err;
2731
2732 recovery_tree_root:
2733 if (!btrfs_test_opt(tree_root, RECOVERY))
2734 goto fail_tree_roots;
2735
2736 free_root_pointers(fs_info, 0);
2737
2738 /* don't use the log in recovery mode, it won't be valid */
2739 btrfs_set_super_log_root(disk_super, 0);
2740
2741 /* we can't trust the free space cache either */
2742 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2743
2744 ret = next_root_backup(fs_info, fs_info->super_copy,
2745 &num_backups_tried, &backup_index);
2746 if (ret == -1)
2747 goto fail_block_groups;
2748 goto retry_root_backup;
2749 }
2750
2751 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2752 {
2753 if (uptodate) {
2754 set_buffer_uptodate(bh);
2755 } else {
2756 struct btrfs_device *device = (struct btrfs_device *)
2757 bh->b_private;
2758
2759 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2760 "I/O error on %s\n",
2761 rcu_str_deref(device->name));
2762 /* note, we dont' set_buffer_write_io_error because we have
2763 * our own ways of dealing with the IO errors
2764 */
2765 clear_buffer_uptodate(bh);
2766 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2767 }
2768 unlock_buffer(bh);
2769 put_bh(bh);
2770 }
2771
2772 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2773 {
2774 struct buffer_head *bh;
2775 struct buffer_head *latest = NULL;
2776 struct btrfs_super_block *super;
2777 int i;
2778 u64 transid = 0;
2779 u64 bytenr;
2780
2781 /* we would like to check all the supers, but that would make
2782 * a btrfs mount succeed after a mkfs from a different FS.
2783 * So, we need to add a special mount option to scan for
2784 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2785 */
2786 for (i = 0; i < 1; i++) {
2787 bytenr = btrfs_sb_offset(i);
2788 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2789 break;
2790 bh = __bread(bdev, bytenr / 4096, 4096);
2791 if (!bh)
2792 continue;
2793
2794 super = (struct btrfs_super_block *)bh->b_data;
2795 if (btrfs_super_bytenr(super) != bytenr ||
2796 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2797 sizeof(super->magic))) {
2798 brelse(bh);
2799 continue;
2800 }
2801
2802 if (!latest || btrfs_super_generation(super) > transid) {
2803 brelse(latest);
2804 latest = bh;
2805 transid = btrfs_super_generation(super);
2806 } else {
2807 brelse(bh);
2808 }
2809 }
2810 return latest;
2811 }
2812
2813 /*
2814 * this should be called twice, once with wait == 0 and
2815 * once with wait == 1. When wait == 0 is done, all the buffer heads
2816 * we write are pinned.
2817 *
2818 * They are released when wait == 1 is done.
2819 * max_mirrors must be the same for both runs, and it indicates how
2820 * many supers on this one device should be written.
2821 *
2822 * max_mirrors == 0 means to write them all.
2823 */
2824 static int write_dev_supers(struct btrfs_device *device,
2825 struct btrfs_super_block *sb,
2826 int do_barriers, int wait, int max_mirrors)
2827 {
2828 struct buffer_head *bh;
2829 int i;
2830 int ret;
2831 int errors = 0;
2832 u32 crc;
2833 u64 bytenr;
2834
2835 if (max_mirrors == 0)
2836 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2837
2838 for (i = 0; i < max_mirrors; i++) {
2839 bytenr = btrfs_sb_offset(i);
2840 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2841 break;
2842
2843 if (wait) {
2844 bh = __find_get_block(device->bdev, bytenr / 4096,
2845 BTRFS_SUPER_INFO_SIZE);
2846 BUG_ON(!bh);
2847 wait_on_buffer(bh);
2848 if (!buffer_uptodate(bh))
2849 errors++;
2850
2851 /* drop our reference */
2852 brelse(bh);
2853
2854 /* drop the reference from the wait == 0 run */
2855 brelse(bh);
2856 continue;
2857 } else {
2858 btrfs_set_super_bytenr(sb, bytenr);
2859
2860 crc = ~(u32)0;
2861 crc = btrfs_csum_data(NULL, (char *)sb +
2862 BTRFS_CSUM_SIZE, crc,
2863 BTRFS_SUPER_INFO_SIZE -
2864 BTRFS_CSUM_SIZE);
2865 btrfs_csum_final(crc, sb->csum);
2866
2867 /*
2868 * one reference for us, and we leave it for the
2869 * caller
2870 */
2871 bh = __getblk(device->bdev, bytenr / 4096,
2872 BTRFS_SUPER_INFO_SIZE);
2873 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2874
2875 /* one reference for submit_bh */
2876 get_bh(bh);
2877
2878 set_buffer_uptodate(bh);
2879 lock_buffer(bh);
2880 bh->b_end_io = btrfs_end_buffer_write_sync;
2881 bh->b_private = device;
2882 }
2883
2884 /*
2885 * we fua the first super. The others we allow
2886 * to go down lazy.
2887 */
2888 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2889 if (ret)
2890 errors++;
2891 }
2892 return errors < i ? 0 : -1;
2893 }
2894
2895 /*
2896 * endio for the write_dev_flush, this will wake anyone waiting
2897 * for the barrier when it is done
2898 */
2899 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2900 {
2901 if (err) {
2902 if (err == -EOPNOTSUPP)
2903 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2904 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2905 }
2906 if (bio->bi_private)
2907 complete(bio->bi_private);
2908 bio_put(bio);
2909 }
2910
2911 /*
2912 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2913 * sent down. With wait == 1, it waits for the previous flush.
2914 *
2915 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2916 * capable
2917 */
2918 static int write_dev_flush(struct btrfs_device *device, int wait)
2919 {
2920 struct bio *bio;
2921 int ret = 0;
2922
2923 if (device->nobarriers)
2924 return 0;
2925
2926 if (wait) {
2927 bio = device->flush_bio;
2928 if (!bio)
2929 return 0;
2930
2931 wait_for_completion(&device->flush_wait);
2932
2933 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2934 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2935 rcu_str_deref(device->name));
2936 device->nobarriers = 1;
2937 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
2938 ret = -EIO;
2939 btrfs_dev_stat_inc_and_print(device,
2940 BTRFS_DEV_STAT_FLUSH_ERRS);
2941 }
2942
2943 /* drop the reference from the wait == 0 run */
2944 bio_put(bio);
2945 device->flush_bio = NULL;
2946
2947 return ret;
2948 }
2949
2950 /*
2951 * one reference for us, and we leave it for the
2952 * caller
2953 */
2954 device->flush_bio = NULL;
2955 bio = bio_alloc(GFP_NOFS, 0);
2956 if (!bio)
2957 return -ENOMEM;
2958
2959 bio->bi_end_io = btrfs_end_empty_barrier;
2960 bio->bi_bdev = device->bdev;
2961 init_completion(&device->flush_wait);
2962 bio->bi_private = &device->flush_wait;
2963 device->flush_bio = bio;
2964
2965 bio_get(bio);
2966 btrfsic_submit_bio(WRITE_FLUSH, bio);
2967
2968 return 0;
2969 }
2970
2971 /*
2972 * send an empty flush down to each device in parallel,
2973 * then wait for them
2974 */
2975 static int barrier_all_devices(struct btrfs_fs_info *info)
2976 {
2977 struct list_head *head;
2978 struct btrfs_device *dev;
2979 int errors_send = 0;
2980 int errors_wait = 0;
2981 int ret;
2982
2983 /* send down all the barriers */
2984 head = &info->fs_devices->devices;
2985 list_for_each_entry_rcu(dev, head, dev_list) {
2986 if (!dev->bdev) {
2987 errors_send++;
2988 continue;
2989 }
2990 if (!dev->in_fs_metadata || !dev->writeable)
2991 continue;
2992
2993 ret = write_dev_flush(dev, 0);
2994 if (ret)
2995 errors_send++;
2996 }
2997
2998 /* wait for all the barriers */
2999 list_for_each_entry_rcu(dev, head, dev_list) {
3000 if (!dev->bdev) {
3001 errors_wait++;
3002 continue;
3003 }
3004 if (!dev->in_fs_metadata || !dev->writeable)
3005 continue;
3006
3007 ret = write_dev_flush(dev, 1);
3008 if (ret)
3009 errors_wait++;
3010 }
3011 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3012 errors_wait > info->num_tolerated_disk_barrier_failures)
3013 return -EIO;
3014 return 0;
3015 }
3016
3017 int btrfs_calc_num_tolerated_disk_barrier_failures(
3018 struct btrfs_fs_info *fs_info)
3019 {
3020 struct btrfs_ioctl_space_info space;
3021 struct btrfs_space_info *sinfo;
3022 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3023 BTRFS_BLOCK_GROUP_SYSTEM,
3024 BTRFS_BLOCK_GROUP_METADATA,
3025 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3026 int num_types = 4;
3027 int i;
3028 int c;
3029 int num_tolerated_disk_barrier_failures =
3030 (int)fs_info->fs_devices->num_devices;
3031
3032 for (i = 0; i < num_types; i++) {
3033 struct btrfs_space_info *tmp;
3034
3035 sinfo = NULL;
3036 rcu_read_lock();
3037 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3038 if (tmp->flags == types[i]) {
3039 sinfo = tmp;
3040 break;
3041 }
3042 }
3043 rcu_read_unlock();
3044
3045 if (!sinfo)
3046 continue;
3047
3048 down_read(&sinfo->groups_sem);
3049 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3050 if (!list_empty(&sinfo->block_groups[c])) {
3051 u64 flags;
3052
3053 btrfs_get_block_group_info(
3054 &sinfo->block_groups[c], &space);
3055 if (space.total_bytes == 0 ||
3056 space.used_bytes == 0)
3057 continue;
3058 flags = space.flags;
3059 /*
3060 * return
3061 * 0: if dup, single or RAID0 is configured for
3062 * any of metadata, system or data, else
3063 * 1: if RAID5 is configured, or if RAID1 or
3064 * RAID10 is configured and only two mirrors
3065 * are used, else
3066 * 2: if RAID6 is configured, else
3067 * num_mirrors - 1: if RAID1 or RAID10 is
3068 * configured and more than
3069 * 2 mirrors are used.
3070 */
3071 if (num_tolerated_disk_barrier_failures > 0 &&
3072 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3073 BTRFS_BLOCK_GROUP_RAID0)) ||
3074 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3075 == 0)))
3076 num_tolerated_disk_barrier_failures = 0;
3077 else if (num_tolerated_disk_barrier_failures > 1
3078 &&
3079 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3080 BTRFS_BLOCK_GROUP_RAID10)))
3081 num_tolerated_disk_barrier_failures = 1;
3082 }
3083 }
3084 up_read(&sinfo->groups_sem);
3085 }
3086
3087 return num_tolerated_disk_barrier_failures;
3088 }
3089
3090 int write_all_supers(struct btrfs_root *root, int max_mirrors)
3091 {
3092 struct list_head *head;
3093 struct btrfs_device *dev;
3094 struct btrfs_super_block *sb;
3095 struct btrfs_dev_item *dev_item;
3096 int ret;
3097 int do_barriers;
3098 int max_errors;
3099 int total_errors = 0;
3100 u64 flags;
3101
3102 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3103 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3104 backup_super_roots(root->fs_info);
3105
3106 sb = root->fs_info->super_for_commit;
3107 dev_item = &sb->dev_item;
3108
3109 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3110 head = &root->fs_info->fs_devices->devices;
3111
3112 if (do_barriers) {
3113 ret = barrier_all_devices(root->fs_info);
3114 if (ret) {
3115 mutex_unlock(
3116 &root->fs_info->fs_devices->device_list_mutex);
3117 btrfs_error(root->fs_info, ret,
3118 "errors while submitting device barriers.");
3119 return ret;
3120 }
3121 }
3122
3123 list_for_each_entry_rcu(dev, head, dev_list) {
3124 if (!dev->bdev) {
3125 total_errors++;
3126 continue;
3127 }
3128 if (!dev->in_fs_metadata || !dev->writeable)
3129 continue;
3130
3131 btrfs_set_stack_device_generation(dev_item, 0);
3132 btrfs_set_stack_device_type(dev_item, dev->type);
3133 btrfs_set_stack_device_id(dev_item, dev->devid);
3134 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3135 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3136 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3137 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3138 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3139 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3140 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3141
3142 flags = btrfs_super_flags(sb);
3143 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3144
3145 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3146 if (ret)
3147 total_errors++;
3148 }
3149 if (total_errors > max_errors) {
3150 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3151 total_errors);
3152
3153 /* This shouldn't happen. FUA is masked off if unsupported */
3154 BUG();
3155 }
3156
3157 total_errors = 0;
3158 list_for_each_entry_rcu(dev, head, dev_list) {
3159 if (!dev->bdev)
3160 continue;
3161 if (!dev->in_fs_metadata || !dev->writeable)
3162 continue;
3163
3164 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3165 if (ret)
3166 total_errors++;
3167 }
3168 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3169 if (total_errors > max_errors) {
3170 btrfs_error(root->fs_info, -EIO,
3171 "%d errors while writing supers", total_errors);
3172 return -EIO;
3173 }
3174 return 0;
3175 }
3176
3177 int write_ctree_super(struct btrfs_trans_handle *trans,
3178 struct btrfs_root *root, int max_mirrors)
3179 {
3180 int ret;
3181
3182 ret = write_all_supers(root, max_mirrors);
3183 return ret;
3184 }
3185
3186 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3187 {
3188 spin_lock(&fs_info->fs_roots_radix_lock);
3189 radix_tree_delete(&fs_info->fs_roots_radix,
3190 (unsigned long)root->root_key.objectid);
3191 spin_unlock(&fs_info->fs_roots_radix_lock);
3192
3193 if (btrfs_root_refs(&root->root_item) == 0)
3194 synchronize_srcu(&fs_info->subvol_srcu);
3195
3196 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3197 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3198 free_fs_root(root);
3199 }
3200
3201 static void free_fs_root(struct btrfs_root *root)
3202 {
3203 iput(root->cache_inode);
3204 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3205 if (root->anon_dev)
3206 free_anon_bdev(root->anon_dev);
3207 free_extent_buffer(root->node);
3208 free_extent_buffer(root->commit_root);
3209 kfree(root->free_ino_ctl);
3210 kfree(root->free_ino_pinned);
3211 kfree(root->name);
3212 kfree(root);
3213 }
3214
3215 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3216 {
3217 int ret;
3218 struct btrfs_root *gang[8];
3219 int i;
3220
3221 while (!list_empty(&fs_info->dead_roots)) {
3222 gang[0] = list_entry(fs_info->dead_roots.next,
3223 struct btrfs_root, root_list);
3224 list_del(&gang[0]->root_list);
3225
3226 if (gang[0]->in_radix) {
3227 btrfs_free_fs_root(fs_info, gang[0]);
3228 } else {
3229 free_extent_buffer(gang[0]->node);
3230 free_extent_buffer(gang[0]->commit_root);
3231 kfree(gang[0]);
3232 }
3233 }
3234
3235 while (1) {
3236 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3237 (void **)gang, 0,
3238 ARRAY_SIZE(gang));
3239 if (!ret)
3240 break;
3241 for (i = 0; i < ret; i++)
3242 btrfs_free_fs_root(fs_info, gang[i]);
3243 }
3244 }
3245
3246 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3247 {
3248 u64 root_objectid = 0;
3249 struct btrfs_root *gang[8];
3250 int i;
3251 int ret;
3252
3253 while (1) {
3254 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3255 (void **)gang, root_objectid,
3256 ARRAY_SIZE(gang));
3257 if (!ret)
3258 break;
3259
3260 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3261 for (i = 0; i < ret; i++) {
3262 int err;
3263
3264 root_objectid = gang[i]->root_key.objectid;
3265 err = btrfs_orphan_cleanup(gang[i]);
3266 if (err)
3267 return err;
3268 }
3269 root_objectid++;
3270 }
3271 return 0;
3272 }
3273
3274 int btrfs_commit_super(struct btrfs_root *root)
3275 {
3276 struct btrfs_trans_handle *trans;
3277 int ret;
3278
3279 mutex_lock(&root->fs_info->cleaner_mutex);
3280 btrfs_run_delayed_iputs(root);
3281 btrfs_clean_old_snapshots(root);
3282 mutex_unlock(&root->fs_info->cleaner_mutex);
3283
3284 /* wait until ongoing cleanup work done */
3285 down_write(&root->fs_info->cleanup_work_sem);
3286 up_write(&root->fs_info->cleanup_work_sem);
3287
3288 trans = btrfs_join_transaction(root);
3289 if (IS_ERR(trans))
3290 return PTR_ERR(trans);
3291 ret = btrfs_commit_transaction(trans, root);
3292 if (ret)
3293 return ret;
3294 /* run commit again to drop the original snapshot */
3295 trans = btrfs_join_transaction(root);
3296 if (IS_ERR(trans))
3297 return PTR_ERR(trans);
3298 ret = btrfs_commit_transaction(trans, root);
3299 if (ret)
3300 return ret;
3301 ret = btrfs_write_and_wait_transaction(NULL, root);
3302 if (ret) {
3303 btrfs_error(root->fs_info, ret,
3304 "Failed to sync btree inode to disk.");
3305 return ret;
3306 }
3307
3308 ret = write_ctree_super(NULL, root, 0);
3309 return ret;
3310 }
3311
3312 int close_ctree(struct btrfs_root *root)
3313 {
3314 struct btrfs_fs_info *fs_info = root->fs_info;
3315 int ret;
3316
3317 fs_info->closing = 1;
3318 smp_mb();
3319
3320 /* pause restriper - we want to resume on mount */
3321 btrfs_pause_balance(fs_info);
3322
3323 btrfs_dev_replace_suspend_for_unmount(fs_info);
3324
3325 btrfs_scrub_cancel(fs_info);
3326
3327 /* wait for any defraggers to finish */
3328 wait_event(fs_info->transaction_wait,
3329 (atomic_read(&fs_info->defrag_running) == 0));
3330
3331 /* clear out the rbtree of defraggable inodes */
3332 btrfs_cleanup_defrag_inodes(fs_info);
3333
3334 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3335 ret = btrfs_commit_super(root);
3336 if (ret)
3337 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3338 }
3339
3340 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3341 btrfs_error_commit_super(root);
3342
3343 btrfs_put_block_group_cache(fs_info);
3344
3345 kthread_stop(fs_info->transaction_kthread);
3346 kthread_stop(fs_info->cleaner_kthread);
3347
3348 fs_info->closing = 2;
3349 smp_mb();
3350
3351 btrfs_free_qgroup_config(root->fs_info);
3352
3353 if (fs_info->delalloc_bytes) {
3354 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3355 (unsigned long long)fs_info->delalloc_bytes);
3356 }
3357
3358 free_extent_buffer(fs_info->extent_root->node);
3359 free_extent_buffer(fs_info->extent_root->commit_root);
3360 free_extent_buffer(fs_info->tree_root->node);
3361 free_extent_buffer(fs_info->tree_root->commit_root);
3362 free_extent_buffer(fs_info->chunk_root->node);
3363 free_extent_buffer(fs_info->chunk_root->commit_root);
3364 free_extent_buffer(fs_info->dev_root->node);
3365 free_extent_buffer(fs_info->dev_root->commit_root);
3366 free_extent_buffer(fs_info->csum_root->node);
3367 free_extent_buffer(fs_info->csum_root->commit_root);
3368 if (fs_info->quota_root) {
3369 free_extent_buffer(fs_info->quota_root->node);
3370 free_extent_buffer(fs_info->quota_root->commit_root);
3371 }
3372
3373 btrfs_free_block_groups(fs_info);
3374
3375 del_fs_roots(fs_info);
3376
3377 iput(fs_info->btree_inode);
3378
3379 btrfs_stop_workers(&fs_info->generic_worker);
3380 btrfs_stop_workers(&fs_info->fixup_workers);
3381 btrfs_stop_workers(&fs_info->delalloc_workers);
3382 btrfs_stop_workers(&fs_info->workers);
3383 btrfs_stop_workers(&fs_info->endio_workers);
3384 btrfs_stop_workers(&fs_info->endio_meta_workers);
3385 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3386 btrfs_stop_workers(&fs_info->endio_write_workers);
3387 btrfs_stop_workers(&fs_info->endio_freespace_worker);
3388 btrfs_stop_workers(&fs_info->submit_workers);
3389 btrfs_stop_workers(&fs_info->delayed_workers);
3390 btrfs_stop_workers(&fs_info->caching_workers);
3391 btrfs_stop_workers(&fs_info->readahead_workers);
3392 btrfs_stop_workers(&fs_info->flush_workers);
3393
3394 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3395 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3396 btrfsic_unmount(root, fs_info->fs_devices);
3397 #endif
3398
3399 btrfs_close_devices(fs_info->fs_devices);
3400 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3401
3402 bdi_destroy(&fs_info->bdi);
3403 cleanup_srcu_struct(&fs_info->subvol_srcu);
3404
3405 return 0;
3406 }
3407
3408 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3409 int atomic)
3410 {
3411 int ret;
3412 struct inode *btree_inode = buf->pages[0]->mapping->host;
3413
3414 ret = extent_buffer_uptodate(buf);
3415 if (!ret)
3416 return ret;
3417
3418 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3419 parent_transid, atomic);
3420 if (ret == -EAGAIN)
3421 return ret;
3422 return !ret;
3423 }
3424
3425 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3426 {
3427 return set_extent_buffer_uptodate(buf);
3428 }
3429
3430 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3431 {
3432 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3433 u64 transid = btrfs_header_generation(buf);
3434 int was_dirty;
3435
3436 btrfs_assert_tree_locked(buf);
3437 if (transid != root->fs_info->generation)
3438 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3439 "found %llu running %llu\n",
3440 (unsigned long long)buf->start,
3441 (unsigned long long)transid,
3442 (unsigned long long)root->fs_info->generation);
3443 was_dirty = set_extent_buffer_dirty(buf);
3444 if (!was_dirty) {
3445 spin_lock(&root->fs_info->delalloc_lock);
3446 root->fs_info->dirty_metadata_bytes += buf->len;
3447 spin_unlock(&root->fs_info->delalloc_lock);
3448 }
3449 }
3450
3451 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3452 int flush_delayed)
3453 {
3454 /*
3455 * looks as though older kernels can get into trouble with
3456 * this code, they end up stuck in balance_dirty_pages forever
3457 */
3458 u64 num_dirty;
3459 unsigned long thresh = 32 * 1024 * 1024;
3460
3461 if (current->flags & PF_MEMALLOC)
3462 return;
3463
3464 if (flush_delayed)
3465 btrfs_balance_delayed_items(root);
3466
3467 num_dirty = root->fs_info->dirty_metadata_bytes;
3468
3469 if (num_dirty > thresh) {
3470 balance_dirty_pages_ratelimited_nr(
3471 root->fs_info->btree_inode->i_mapping, 1);
3472 }
3473 return;
3474 }
3475
3476 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3477 {
3478 __btrfs_btree_balance_dirty(root, 1);
3479 }
3480
3481 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3482 {
3483 __btrfs_btree_balance_dirty(root, 0);
3484 }
3485
3486 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3487 {
3488 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3489 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3490 }
3491
3492 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3493 int read_only)
3494 {
3495 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3496 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3497 return -EINVAL;
3498 }
3499
3500 if (read_only)
3501 return 0;
3502
3503 return 0;
3504 }
3505
3506 void btrfs_error_commit_super(struct btrfs_root *root)
3507 {
3508 mutex_lock(&root->fs_info->cleaner_mutex);
3509 btrfs_run_delayed_iputs(root);
3510 mutex_unlock(&root->fs_info->cleaner_mutex);
3511
3512 down_write(&root->fs_info->cleanup_work_sem);
3513 up_write(&root->fs_info->cleanup_work_sem);
3514
3515 /* cleanup FS via transaction */
3516 btrfs_cleanup_transaction(root);
3517 }
3518
3519 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3520 {
3521 struct btrfs_inode *btrfs_inode;
3522 struct list_head splice;
3523
3524 INIT_LIST_HEAD(&splice);
3525
3526 mutex_lock(&root->fs_info->ordered_operations_mutex);
3527 spin_lock(&root->fs_info->ordered_extent_lock);
3528
3529 list_splice_init(&root->fs_info->ordered_operations, &splice);
3530 while (!list_empty(&splice)) {
3531 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3532 ordered_operations);
3533
3534 list_del_init(&btrfs_inode->ordered_operations);
3535
3536 btrfs_invalidate_inodes(btrfs_inode->root);
3537 }
3538
3539 spin_unlock(&root->fs_info->ordered_extent_lock);
3540 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3541 }
3542
3543 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3544 {
3545 struct list_head splice;
3546 struct btrfs_ordered_extent *ordered;
3547 struct inode *inode;
3548
3549 INIT_LIST_HEAD(&splice);
3550
3551 spin_lock(&root->fs_info->ordered_extent_lock);
3552
3553 list_splice_init(&root->fs_info->ordered_extents, &splice);
3554 while (!list_empty(&splice)) {
3555 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3556 root_extent_list);
3557
3558 list_del_init(&ordered->root_extent_list);
3559 atomic_inc(&ordered->refs);
3560
3561 /* the inode may be getting freed (in sys_unlink path). */
3562 inode = igrab(ordered->inode);
3563
3564 spin_unlock(&root->fs_info->ordered_extent_lock);
3565 if (inode)
3566 iput(inode);
3567
3568 atomic_set(&ordered->refs, 1);
3569 btrfs_put_ordered_extent(ordered);
3570
3571 spin_lock(&root->fs_info->ordered_extent_lock);
3572 }
3573
3574 spin_unlock(&root->fs_info->ordered_extent_lock);
3575 }
3576
3577 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3578 struct btrfs_root *root)
3579 {
3580 struct rb_node *node;
3581 struct btrfs_delayed_ref_root *delayed_refs;
3582 struct btrfs_delayed_ref_node *ref;
3583 int ret = 0;
3584
3585 delayed_refs = &trans->delayed_refs;
3586
3587 spin_lock(&delayed_refs->lock);
3588 if (delayed_refs->num_entries == 0) {
3589 spin_unlock(&delayed_refs->lock);
3590 printk(KERN_INFO "delayed_refs has NO entry\n");
3591 return ret;
3592 }
3593
3594 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3595 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3596
3597 atomic_set(&ref->refs, 1);
3598 if (btrfs_delayed_ref_is_head(ref)) {
3599 struct btrfs_delayed_ref_head *head;
3600
3601 head = btrfs_delayed_node_to_head(ref);
3602 if (!mutex_trylock(&head->mutex)) {
3603 atomic_inc(&ref->refs);
3604 spin_unlock(&delayed_refs->lock);
3605
3606 /* Need to wait for the delayed ref to run */
3607 mutex_lock(&head->mutex);
3608 mutex_unlock(&head->mutex);
3609 btrfs_put_delayed_ref(ref);
3610
3611 spin_lock(&delayed_refs->lock);
3612 continue;
3613 }
3614
3615 kfree(head->extent_op);
3616 delayed_refs->num_heads--;
3617 if (list_empty(&head->cluster))
3618 delayed_refs->num_heads_ready--;
3619 list_del_init(&head->cluster);
3620 }
3621 ref->in_tree = 0;
3622 rb_erase(&ref->rb_node, &delayed_refs->root);
3623 delayed_refs->num_entries--;
3624
3625 spin_unlock(&delayed_refs->lock);
3626 btrfs_put_delayed_ref(ref);
3627
3628 cond_resched();
3629 spin_lock(&delayed_refs->lock);
3630 }
3631
3632 spin_unlock(&delayed_refs->lock);
3633
3634 return ret;
3635 }
3636
3637 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3638 {
3639 struct btrfs_pending_snapshot *snapshot;
3640 struct list_head splice;
3641
3642 INIT_LIST_HEAD(&splice);
3643
3644 list_splice_init(&t->pending_snapshots, &splice);
3645
3646 while (!list_empty(&splice)) {
3647 snapshot = list_entry(splice.next,
3648 struct btrfs_pending_snapshot,
3649 list);
3650
3651 list_del_init(&snapshot->list);
3652
3653 kfree(snapshot);
3654 }
3655 }
3656
3657 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3658 {
3659 struct btrfs_inode *btrfs_inode;
3660 struct list_head splice;
3661
3662 INIT_LIST_HEAD(&splice);
3663
3664 spin_lock(&root->fs_info->delalloc_lock);
3665 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3666
3667 while (!list_empty(&splice)) {
3668 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3669 delalloc_inodes);
3670
3671 list_del_init(&btrfs_inode->delalloc_inodes);
3672
3673 btrfs_invalidate_inodes(btrfs_inode->root);
3674 }
3675
3676 spin_unlock(&root->fs_info->delalloc_lock);
3677 }
3678
3679 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3680 struct extent_io_tree *dirty_pages,
3681 int mark)
3682 {
3683 int ret;
3684 struct page *page;
3685 struct inode *btree_inode = root->fs_info->btree_inode;
3686 struct extent_buffer *eb;
3687 u64 start = 0;
3688 u64 end;
3689 u64 offset;
3690 unsigned long index;
3691
3692 while (1) {
3693 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3694 mark, NULL);
3695 if (ret)
3696 break;
3697
3698 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3699 while (start <= end) {
3700 index = start >> PAGE_CACHE_SHIFT;
3701 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3702 page = find_get_page(btree_inode->i_mapping, index);
3703 if (!page)
3704 continue;
3705 offset = page_offset(page);
3706
3707 spin_lock(&dirty_pages->buffer_lock);
3708 eb = radix_tree_lookup(
3709 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3710 offset >> PAGE_CACHE_SHIFT);
3711 spin_unlock(&dirty_pages->buffer_lock);
3712 if (eb)
3713 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3714 &eb->bflags);
3715 if (PageWriteback(page))
3716 end_page_writeback(page);
3717
3718 lock_page(page);
3719 if (PageDirty(page)) {
3720 clear_page_dirty_for_io(page);
3721 spin_lock_irq(&page->mapping->tree_lock);
3722 radix_tree_tag_clear(&page->mapping->page_tree,
3723 page_index(page),
3724 PAGECACHE_TAG_DIRTY);
3725 spin_unlock_irq(&page->mapping->tree_lock);
3726 }
3727
3728 unlock_page(page);
3729 page_cache_release(page);
3730 }
3731 }
3732
3733 return ret;
3734 }
3735
3736 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3737 struct extent_io_tree *pinned_extents)
3738 {
3739 struct extent_io_tree *unpin;
3740 u64 start;
3741 u64 end;
3742 int ret;
3743 bool loop = true;
3744
3745 unpin = pinned_extents;
3746 again:
3747 while (1) {
3748 ret = find_first_extent_bit(unpin, 0, &start, &end,
3749 EXTENT_DIRTY, NULL);
3750 if (ret)
3751 break;
3752
3753 /* opt_discard */
3754 if (btrfs_test_opt(root, DISCARD))
3755 ret = btrfs_error_discard_extent(root, start,
3756 end + 1 - start,
3757 NULL);
3758
3759 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3760 btrfs_error_unpin_extent_range(root, start, end);
3761 cond_resched();
3762 }
3763
3764 if (loop) {
3765 if (unpin == &root->fs_info->freed_extents[0])
3766 unpin = &root->fs_info->freed_extents[1];
3767 else
3768 unpin = &root->fs_info->freed_extents[0];
3769 loop = false;
3770 goto again;
3771 }
3772
3773 return 0;
3774 }
3775
3776 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3777 struct btrfs_root *root)
3778 {
3779 btrfs_destroy_delayed_refs(cur_trans, root);
3780 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3781 cur_trans->dirty_pages.dirty_bytes);
3782
3783 /* FIXME: cleanup wait for commit */
3784 cur_trans->in_commit = 1;
3785 cur_trans->blocked = 1;
3786 wake_up(&root->fs_info->transaction_blocked_wait);
3787
3788 cur_trans->blocked = 0;
3789 wake_up(&root->fs_info->transaction_wait);
3790
3791 cur_trans->commit_done = 1;
3792 wake_up(&cur_trans->commit_wait);
3793
3794 btrfs_destroy_delayed_inodes(root);
3795 btrfs_assert_delayed_root_empty(root);
3796
3797 btrfs_destroy_pending_snapshots(cur_trans);
3798
3799 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3800 EXTENT_DIRTY);
3801 btrfs_destroy_pinned_extent(root,
3802 root->fs_info->pinned_extents);
3803
3804 /*
3805 memset(cur_trans, 0, sizeof(*cur_trans));
3806 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3807 */
3808 }
3809
3810 int btrfs_cleanup_transaction(struct btrfs_root *root)
3811 {
3812 struct btrfs_transaction *t;
3813 LIST_HEAD(list);
3814
3815 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3816
3817 spin_lock(&root->fs_info->trans_lock);
3818 list_splice_init(&root->fs_info->trans_list, &list);
3819 root->fs_info->trans_no_join = 1;
3820 spin_unlock(&root->fs_info->trans_lock);
3821
3822 while (!list_empty(&list)) {
3823 t = list_entry(list.next, struct btrfs_transaction, list);
3824 if (!t)
3825 break;
3826
3827 btrfs_destroy_ordered_operations(root);
3828
3829 btrfs_destroy_ordered_extents(root);
3830
3831 btrfs_destroy_delayed_refs(t, root);
3832
3833 btrfs_block_rsv_release(root,
3834 &root->fs_info->trans_block_rsv,
3835 t->dirty_pages.dirty_bytes);
3836
3837 /* FIXME: cleanup wait for commit */
3838 t->in_commit = 1;
3839 t->blocked = 1;
3840 smp_mb();
3841 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3842 wake_up(&root->fs_info->transaction_blocked_wait);
3843
3844 t->blocked = 0;
3845 smp_mb();
3846 if (waitqueue_active(&root->fs_info->transaction_wait))
3847 wake_up(&root->fs_info->transaction_wait);
3848
3849 t->commit_done = 1;
3850 smp_mb();
3851 if (waitqueue_active(&t->commit_wait))
3852 wake_up(&t->commit_wait);
3853
3854 btrfs_destroy_delayed_inodes(root);
3855 btrfs_assert_delayed_root_empty(root);
3856
3857 btrfs_destroy_pending_snapshots(t);
3858
3859 btrfs_destroy_delalloc_inodes(root);
3860
3861 spin_lock(&root->fs_info->trans_lock);
3862 root->fs_info->running_transaction = NULL;
3863 spin_unlock(&root->fs_info->trans_lock);
3864
3865 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3866 EXTENT_DIRTY);
3867
3868 btrfs_destroy_pinned_extent(root,
3869 root->fs_info->pinned_extents);
3870
3871 atomic_set(&t->use_count, 0);
3872 list_del_init(&t->list);
3873 memset(t, 0, sizeof(*t));
3874 kmem_cache_free(btrfs_transaction_cachep, t);
3875 }
3876
3877 spin_lock(&root->fs_info->trans_lock);
3878 root->fs_info->trans_no_join = 0;
3879 spin_unlock(&root->fs_info->trans_lock);
3880 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3881
3882 return 0;
3883 }
3884
3885 static struct extent_io_ops btree_extent_io_ops = {
3886 .readpage_end_io_hook = btree_readpage_end_io_hook,
3887 .readpage_io_failed_hook = btree_io_failed_hook,
3888 .submit_bio_hook = btree_submit_bio_hook,
3889 /* note we're sharing with inode.c for the merge bio hook */
3890 .merge_bio_hook = btrfs_merge_bio_hook,
3891 };