Merge branch 'for-chris' of git://github.com/sensille/linux into integration
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46
47 static struct extent_io_ops btree_extent_io_ops;
48 static void end_workqueue_fn(struct btrfs_work *work);
49 static void free_fs_root(struct btrfs_root *root);
50 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
51 int read_only);
52 static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
53 static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
54 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
55 struct btrfs_root *root);
56 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
57 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
59 struct extent_io_tree *dirty_pages,
60 int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
62 struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_root *root);
64
65 /*
66 * end_io_wq structs are used to do processing in task context when an IO is
67 * complete. This is used during reads to verify checksums, and it is used
68 * by writes to insert metadata for new file extents after IO is complete.
69 */
70 struct end_io_wq {
71 struct bio *bio;
72 bio_end_io_t *end_io;
73 void *private;
74 struct btrfs_fs_info *info;
75 int error;
76 int metadata;
77 struct list_head list;
78 struct btrfs_work work;
79 };
80
81 /*
82 * async submit bios are used to offload expensive checksumming
83 * onto the worker threads. They checksum file and metadata bios
84 * just before they are sent down the IO stack.
85 */
86 struct async_submit_bio {
87 struct inode *inode;
88 struct bio *bio;
89 struct list_head list;
90 extent_submit_bio_hook_t *submit_bio_start;
91 extent_submit_bio_hook_t *submit_bio_done;
92 int rw;
93 int mirror_num;
94 unsigned long bio_flags;
95 /*
96 * bio_offset is optional, can be used if the pages in the bio
97 * can't tell us where in the file the bio should go
98 */
99 u64 bio_offset;
100 struct btrfs_work work;
101 };
102
103 /*
104 * Lockdep class keys for extent_buffer->lock's in this root. For a given
105 * eb, the lockdep key is determined by the btrfs_root it belongs to and
106 * the level the eb occupies in the tree.
107 *
108 * Different roots are used for different purposes and may nest inside each
109 * other and they require separate keysets. As lockdep keys should be
110 * static, assign keysets according to the purpose of the root as indicated
111 * by btrfs_root->objectid. This ensures that all special purpose roots
112 * have separate keysets.
113 *
114 * Lock-nesting across peer nodes is always done with the immediate parent
115 * node locked thus preventing deadlock. As lockdep doesn't know this, use
116 * subclass to avoid triggering lockdep warning in such cases.
117 *
118 * The key is set by the readpage_end_io_hook after the buffer has passed
119 * csum validation but before the pages are unlocked. It is also set by
120 * btrfs_init_new_buffer on freshly allocated blocks.
121 *
122 * We also add a check to make sure the highest level of the tree is the
123 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
124 * needs update as well.
125 */
126 #ifdef CONFIG_DEBUG_LOCK_ALLOC
127 # if BTRFS_MAX_LEVEL != 8
128 # error
129 # endif
130
131 static struct btrfs_lockdep_keyset {
132 u64 id; /* root objectid */
133 const char *name_stem; /* lock name stem */
134 char names[BTRFS_MAX_LEVEL + 1][20];
135 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
136 } btrfs_lockdep_keysets[] = {
137 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
138 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
139 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
140 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
141 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
142 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
143 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
144 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
145 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
146 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
147 { .id = 0, .name_stem = "tree" },
148 };
149
150 void __init btrfs_init_lockdep(void)
151 {
152 int i, j;
153
154 /* initialize lockdep class names */
155 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
156 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
157
158 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
159 snprintf(ks->names[j], sizeof(ks->names[j]),
160 "btrfs-%s-%02d", ks->name_stem, j);
161 }
162 }
163
164 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
165 int level)
166 {
167 struct btrfs_lockdep_keyset *ks;
168
169 BUG_ON(level >= ARRAY_SIZE(ks->keys));
170
171 /* find the matching keyset, id 0 is the default entry */
172 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
173 if (ks->id == objectid)
174 break;
175
176 lockdep_set_class_and_name(&eb->lock,
177 &ks->keys[level], ks->names[level]);
178 }
179
180 #endif
181
182 /*
183 * extents on the btree inode are pretty simple, there's one extent
184 * that covers the entire device
185 */
186 static struct extent_map *btree_get_extent(struct inode *inode,
187 struct page *page, size_t pg_offset, u64 start, u64 len,
188 int create)
189 {
190 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
191 struct extent_map *em;
192 int ret;
193
194 read_lock(&em_tree->lock);
195 em = lookup_extent_mapping(em_tree, start, len);
196 if (em) {
197 em->bdev =
198 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
199 read_unlock(&em_tree->lock);
200 goto out;
201 }
202 read_unlock(&em_tree->lock);
203
204 em = alloc_extent_map();
205 if (!em) {
206 em = ERR_PTR(-ENOMEM);
207 goto out;
208 }
209 em->start = 0;
210 em->len = (u64)-1;
211 em->block_len = (u64)-1;
212 em->block_start = 0;
213 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
214
215 write_lock(&em_tree->lock);
216 ret = add_extent_mapping(em_tree, em);
217 if (ret == -EEXIST) {
218 u64 failed_start = em->start;
219 u64 failed_len = em->len;
220
221 free_extent_map(em);
222 em = lookup_extent_mapping(em_tree, start, len);
223 if (em) {
224 ret = 0;
225 } else {
226 em = lookup_extent_mapping(em_tree, failed_start,
227 failed_len);
228 ret = -EIO;
229 }
230 } else if (ret) {
231 free_extent_map(em);
232 em = NULL;
233 }
234 write_unlock(&em_tree->lock);
235
236 if (ret)
237 em = ERR_PTR(ret);
238 out:
239 return em;
240 }
241
242 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
243 {
244 return crc32c(seed, data, len);
245 }
246
247 void btrfs_csum_final(u32 crc, char *result)
248 {
249 put_unaligned_le32(~crc, result);
250 }
251
252 /*
253 * compute the csum for a btree block, and either verify it or write it
254 * into the csum field of the block.
255 */
256 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
257 int verify)
258 {
259 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
260 char *result = NULL;
261 unsigned long len;
262 unsigned long cur_len;
263 unsigned long offset = BTRFS_CSUM_SIZE;
264 char *kaddr;
265 unsigned long map_start;
266 unsigned long map_len;
267 int err;
268 u32 crc = ~(u32)0;
269 unsigned long inline_result;
270
271 len = buf->len - offset;
272 while (len > 0) {
273 err = map_private_extent_buffer(buf, offset, 32,
274 &kaddr, &map_start, &map_len);
275 if (err)
276 return 1;
277 cur_len = min(len, map_len - (offset - map_start));
278 crc = btrfs_csum_data(root, kaddr + offset - map_start,
279 crc, cur_len);
280 len -= cur_len;
281 offset += cur_len;
282 }
283 if (csum_size > sizeof(inline_result)) {
284 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
285 if (!result)
286 return 1;
287 } else {
288 result = (char *)&inline_result;
289 }
290
291 btrfs_csum_final(crc, result);
292
293 if (verify) {
294 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
295 u32 val;
296 u32 found = 0;
297 memcpy(&found, result, csum_size);
298
299 read_extent_buffer(buf, &val, 0, csum_size);
300 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
301 "failed on %llu wanted %X found %X "
302 "level %d\n",
303 root->fs_info->sb->s_id,
304 (unsigned long long)buf->start, val, found,
305 btrfs_header_level(buf));
306 if (result != (char *)&inline_result)
307 kfree(result);
308 return 1;
309 }
310 } else {
311 write_extent_buffer(buf, result, 0, csum_size);
312 }
313 if (result != (char *)&inline_result)
314 kfree(result);
315 return 0;
316 }
317
318 /*
319 * we can't consider a given block up to date unless the transid of the
320 * block matches the transid in the parent node's pointer. This is how we
321 * detect blocks that either didn't get written at all or got written
322 * in the wrong place.
323 */
324 static int verify_parent_transid(struct extent_io_tree *io_tree,
325 struct extent_buffer *eb, u64 parent_transid)
326 {
327 struct extent_state *cached_state = NULL;
328 int ret;
329
330 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331 return 0;
332
333 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
334 0, &cached_state, GFP_NOFS);
335 if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
336 btrfs_header_generation(eb) == parent_transid) {
337 ret = 0;
338 goto out;
339 }
340 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
341 "found %llu\n",
342 (unsigned long long)eb->start,
343 (unsigned long long)parent_transid,
344 (unsigned long long)btrfs_header_generation(eb));
345 ret = 1;
346 clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
347 out:
348 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
349 &cached_state, GFP_NOFS);
350 return ret;
351 }
352
353 /*
354 * helper to read a given tree block, doing retries as required when
355 * the checksums don't match and we have alternate mirrors to try.
356 */
357 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
358 struct extent_buffer *eb,
359 u64 start, u64 parent_transid)
360 {
361 struct extent_io_tree *io_tree;
362 int ret;
363 int num_copies = 0;
364 int mirror_num = 0;
365
366 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
367 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
368 while (1) {
369 ret = read_extent_buffer_pages(io_tree, eb, start,
370 WAIT_COMPLETE,
371 btree_get_extent, mirror_num);
372 if (!ret &&
373 !verify_parent_transid(io_tree, eb, parent_transid))
374 return ret;
375
376 /*
377 * This buffer's crc is fine, but its contents are corrupted, so
378 * there is no reason to read the other copies, they won't be
379 * any less wrong.
380 */
381 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
382 return ret;
383
384 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
385 eb->start, eb->len);
386 if (num_copies == 1)
387 return ret;
388
389 mirror_num++;
390 if (mirror_num > num_copies)
391 return ret;
392 }
393 return -EIO;
394 }
395
396 /*
397 * checksum a dirty tree block before IO. This has extra checks to make sure
398 * we only fill in the checksum field in the first page of a multi-page block
399 */
400
401 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
402 {
403 struct extent_io_tree *tree;
404 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
405 u64 found_start;
406 unsigned long len;
407 struct extent_buffer *eb;
408 int ret;
409
410 tree = &BTRFS_I(page->mapping->host)->io_tree;
411
412 if (page->private == EXTENT_PAGE_PRIVATE) {
413 WARN_ON(1);
414 goto out;
415 }
416 if (!page->private) {
417 WARN_ON(1);
418 goto out;
419 }
420 len = page->private >> 2;
421 WARN_ON(len == 0);
422
423 eb = alloc_extent_buffer(tree, start, len, page);
424 if (eb == NULL) {
425 WARN_ON(1);
426 goto out;
427 }
428 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
429 btrfs_header_generation(eb));
430 BUG_ON(ret);
431 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
432
433 found_start = btrfs_header_bytenr(eb);
434 if (found_start != start) {
435 WARN_ON(1);
436 goto err;
437 }
438 if (eb->first_page != page) {
439 WARN_ON(1);
440 goto err;
441 }
442 if (!PageUptodate(page)) {
443 WARN_ON(1);
444 goto err;
445 }
446 csum_tree_block(root, eb, 0);
447 err:
448 free_extent_buffer(eb);
449 out:
450 return 0;
451 }
452
453 static int check_tree_block_fsid(struct btrfs_root *root,
454 struct extent_buffer *eb)
455 {
456 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
457 u8 fsid[BTRFS_UUID_SIZE];
458 int ret = 1;
459
460 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
461 BTRFS_FSID_SIZE);
462 while (fs_devices) {
463 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
464 ret = 0;
465 break;
466 }
467 fs_devices = fs_devices->seed;
468 }
469 return ret;
470 }
471
472 #define CORRUPT(reason, eb, root, slot) \
473 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
474 "root=%llu, slot=%d\n", reason, \
475 (unsigned long long)btrfs_header_bytenr(eb), \
476 (unsigned long long)root->objectid, slot)
477
478 static noinline int check_leaf(struct btrfs_root *root,
479 struct extent_buffer *leaf)
480 {
481 struct btrfs_key key;
482 struct btrfs_key leaf_key;
483 u32 nritems = btrfs_header_nritems(leaf);
484 int slot;
485
486 if (nritems == 0)
487 return 0;
488
489 /* Check the 0 item */
490 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
491 BTRFS_LEAF_DATA_SIZE(root)) {
492 CORRUPT("invalid item offset size pair", leaf, root, 0);
493 return -EIO;
494 }
495
496 /*
497 * Check to make sure each items keys are in the correct order and their
498 * offsets make sense. We only have to loop through nritems-1 because
499 * we check the current slot against the next slot, which verifies the
500 * next slot's offset+size makes sense and that the current's slot
501 * offset is correct.
502 */
503 for (slot = 0; slot < nritems - 1; slot++) {
504 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
505 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
506
507 /* Make sure the keys are in the right order */
508 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
509 CORRUPT("bad key order", leaf, root, slot);
510 return -EIO;
511 }
512
513 /*
514 * Make sure the offset and ends are right, remember that the
515 * item data starts at the end of the leaf and grows towards the
516 * front.
517 */
518 if (btrfs_item_offset_nr(leaf, slot) !=
519 btrfs_item_end_nr(leaf, slot + 1)) {
520 CORRUPT("slot offset bad", leaf, root, slot);
521 return -EIO;
522 }
523
524 /*
525 * Check to make sure that we don't point outside of the leaf,
526 * just incase all the items are consistent to eachother, but
527 * all point outside of the leaf.
528 */
529 if (btrfs_item_end_nr(leaf, slot) >
530 BTRFS_LEAF_DATA_SIZE(root)) {
531 CORRUPT("slot end outside of leaf", leaf, root, slot);
532 return -EIO;
533 }
534 }
535
536 return 0;
537 }
538
539 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
540 struct extent_state *state)
541 {
542 struct extent_io_tree *tree;
543 u64 found_start;
544 int found_level;
545 unsigned long len;
546 struct extent_buffer *eb;
547 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
548 int ret = 0;
549
550 tree = &BTRFS_I(page->mapping->host)->io_tree;
551 if (page->private == EXTENT_PAGE_PRIVATE)
552 goto out;
553 if (!page->private)
554 goto out;
555
556 len = page->private >> 2;
557 WARN_ON(len == 0);
558
559 eb = alloc_extent_buffer(tree, start, len, page);
560 if (eb == NULL) {
561 ret = -EIO;
562 goto out;
563 }
564
565 found_start = btrfs_header_bytenr(eb);
566 if (found_start != start) {
567 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
568 "%llu %llu\n",
569 (unsigned long long)found_start,
570 (unsigned long long)eb->start);
571 ret = -EIO;
572 goto err;
573 }
574 if (eb->first_page != page) {
575 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
576 eb->first_page->index, page->index);
577 WARN_ON(1);
578 ret = -EIO;
579 goto err;
580 }
581 if (check_tree_block_fsid(root, eb)) {
582 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
583 (unsigned long long)eb->start);
584 ret = -EIO;
585 goto err;
586 }
587 found_level = btrfs_header_level(eb);
588
589 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
590 eb, found_level);
591
592 ret = csum_tree_block(root, eb, 1);
593 if (ret) {
594 ret = -EIO;
595 goto err;
596 }
597
598 /*
599 * If this is a leaf block and it is corrupt, set the corrupt bit so
600 * that we don't try and read the other copies of this block, just
601 * return -EIO.
602 */
603 if (found_level == 0 && check_leaf(root, eb)) {
604 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
605 ret = -EIO;
606 }
607
608 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
609 end = eb->start + end - 1;
610 err:
611 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
612 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
613 btree_readahead_hook(root, eb, eb->start, ret);
614 }
615
616 free_extent_buffer(eb);
617 out:
618 return ret;
619 }
620
621 static int btree_io_failed_hook(struct bio *failed_bio,
622 struct page *page, u64 start, u64 end,
623 struct extent_state *state)
624 {
625 struct extent_io_tree *tree;
626 unsigned long len;
627 struct extent_buffer *eb;
628 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
629
630 tree = &BTRFS_I(page->mapping->host)->io_tree;
631 if (page->private == EXTENT_PAGE_PRIVATE)
632 goto out;
633 if (!page->private)
634 goto out;
635
636 len = page->private >> 2;
637 WARN_ON(len == 0);
638
639 eb = alloc_extent_buffer(tree, start, len, page);
640 if (eb == NULL)
641 goto out;
642
643 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
644 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
645 btree_readahead_hook(root, eb, eb->start, -EIO);
646 }
647
648 out:
649 return -EIO; /* we fixed nothing */
650 }
651
652 static void end_workqueue_bio(struct bio *bio, int err)
653 {
654 struct end_io_wq *end_io_wq = bio->bi_private;
655 struct btrfs_fs_info *fs_info;
656
657 fs_info = end_io_wq->info;
658 end_io_wq->error = err;
659 end_io_wq->work.func = end_workqueue_fn;
660 end_io_wq->work.flags = 0;
661
662 if (bio->bi_rw & REQ_WRITE) {
663 if (end_io_wq->metadata == 1)
664 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
665 &end_io_wq->work);
666 else if (end_io_wq->metadata == 2)
667 btrfs_queue_worker(&fs_info->endio_freespace_worker,
668 &end_io_wq->work);
669 else
670 btrfs_queue_worker(&fs_info->endio_write_workers,
671 &end_io_wq->work);
672 } else {
673 if (end_io_wq->metadata)
674 btrfs_queue_worker(&fs_info->endio_meta_workers,
675 &end_io_wq->work);
676 else
677 btrfs_queue_worker(&fs_info->endio_workers,
678 &end_io_wq->work);
679 }
680 }
681
682 /*
683 * For the metadata arg you want
684 *
685 * 0 - if data
686 * 1 - if normal metadta
687 * 2 - if writing to the free space cache area
688 */
689 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
690 int metadata)
691 {
692 struct end_io_wq *end_io_wq;
693 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
694 if (!end_io_wq)
695 return -ENOMEM;
696
697 end_io_wq->private = bio->bi_private;
698 end_io_wq->end_io = bio->bi_end_io;
699 end_io_wq->info = info;
700 end_io_wq->error = 0;
701 end_io_wq->bio = bio;
702 end_io_wq->metadata = metadata;
703
704 bio->bi_private = end_io_wq;
705 bio->bi_end_io = end_workqueue_bio;
706 return 0;
707 }
708
709 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
710 {
711 unsigned long limit = min_t(unsigned long,
712 info->workers.max_workers,
713 info->fs_devices->open_devices);
714 return 256 * limit;
715 }
716
717 static void run_one_async_start(struct btrfs_work *work)
718 {
719 struct async_submit_bio *async;
720
721 async = container_of(work, struct async_submit_bio, work);
722 async->submit_bio_start(async->inode, async->rw, async->bio,
723 async->mirror_num, async->bio_flags,
724 async->bio_offset);
725 }
726
727 static void run_one_async_done(struct btrfs_work *work)
728 {
729 struct btrfs_fs_info *fs_info;
730 struct async_submit_bio *async;
731 int limit;
732
733 async = container_of(work, struct async_submit_bio, work);
734 fs_info = BTRFS_I(async->inode)->root->fs_info;
735
736 limit = btrfs_async_submit_limit(fs_info);
737 limit = limit * 2 / 3;
738
739 atomic_dec(&fs_info->nr_async_submits);
740
741 if (atomic_read(&fs_info->nr_async_submits) < limit &&
742 waitqueue_active(&fs_info->async_submit_wait))
743 wake_up(&fs_info->async_submit_wait);
744
745 async->submit_bio_done(async->inode, async->rw, async->bio,
746 async->mirror_num, async->bio_flags,
747 async->bio_offset);
748 }
749
750 static void run_one_async_free(struct btrfs_work *work)
751 {
752 struct async_submit_bio *async;
753
754 async = container_of(work, struct async_submit_bio, work);
755 kfree(async);
756 }
757
758 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
759 int rw, struct bio *bio, int mirror_num,
760 unsigned long bio_flags,
761 u64 bio_offset,
762 extent_submit_bio_hook_t *submit_bio_start,
763 extent_submit_bio_hook_t *submit_bio_done)
764 {
765 struct async_submit_bio *async;
766
767 async = kmalloc(sizeof(*async), GFP_NOFS);
768 if (!async)
769 return -ENOMEM;
770
771 async->inode = inode;
772 async->rw = rw;
773 async->bio = bio;
774 async->mirror_num = mirror_num;
775 async->submit_bio_start = submit_bio_start;
776 async->submit_bio_done = submit_bio_done;
777
778 async->work.func = run_one_async_start;
779 async->work.ordered_func = run_one_async_done;
780 async->work.ordered_free = run_one_async_free;
781
782 async->work.flags = 0;
783 async->bio_flags = bio_flags;
784 async->bio_offset = bio_offset;
785
786 atomic_inc(&fs_info->nr_async_submits);
787
788 if (rw & REQ_SYNC)
789 btrfs_set_work_high_prio(&async->work);
790
791 btrfs_queue_worker(&fs_info->workers, &async->work);
792
793 while (atomic_read(&fs_info->async_submit_draining) &&
794 atomic_read(&fs_info->nr_async_submits)) {
795 wait_event(fs_info->async_submit_wait,
796 (atomic_read(&fs_info->nr_async_submits) == 0));
797 }
798
799 return 0;
800 }
801
802 static int btree_csum_one_bio(struct bio *bio)
803 {
804 struct bio_vec *bvec = bio->bi_io_vec;
805 int bio_index = 0;
806 struct btrfs_root *root;
807
808 WARN_ON(bio->bi_vcnt <= 0);
809 while (bio_index < bio->bi_vcnt) {
810 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
811 csum_dirty_buffer(root, bvec->bv_page);
812 bio_index++;
813 bvec++;
814 }
815 return 0;
816 }
817
818 static int __btree_submit_bio_start(struct inode *inode, int rw,
819 struct bio *bio, int mirror_num,
820 unsigned long bio_flags,
821 u64 bio_offset)
822 {
823 /*
824 * when we're called for a write, we're already in the async
825 * submission context. Just jump into btrfs_map_bio
826 */
827 btree_csum_one_bio(bio);
828 return 0;
829 }
830
831 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
832 int mirror_num, unsigned long bio_flags,
833 u64 bio_offset)
834 {
835 /*
836 * when we're called for a write, we're already in the async
837 * submission context. Just jump into btrfs_map_bio
838 */
839 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
840 }
841
842 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
843 int mirror_num, unsigned long bio_flags,
844 u64 bio_offset)
845 {
846 int ret;
847
848 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
849 bio, 1);
850 BUG_ON(ret);
851
852 if (!(rw & REQ_WRITE)) {
853 /*
854 * called for a read, do the setup so that checksum validation
855 * can happen in the async kernel threads
856 */
857 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
858 mirror_num, 0);
859 }
860
861 /*
862 * kthread helpers are used to submit writes so that checksumming
863 * can happen in parallel across all CPUs
864 */
865 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
866 inode, rw, bio, mirror_num, 0,
867 bio_offset,
868 __btree_submit_bio_start,
869 __btree_submit_bio_done);
870 }
871
872 #ifdef CONFIG_MIGRATION
873 static int btree_migratepage(struct address_space *mapping,
874 struct page *newpage, struct page *page)
875 {
876 /*
877 * we can't safely write a btree page from here,
878 * we haven't done the locking hook
879 */
880 if (PageDirty(page))
881 return -EAGAIN;
882 /*
883 * Buffers may be managed in a filesystem specific way.
884 * We must have no buffers or drop them.
885 */
886 if (page_has_private(page) &&
887 !try_to_release_page(page, GFP_KERNEL))
888 return -EAGAIN;
889 return migrate_page(mapping, newpage, page);
890 }
891 #endif
892
893 static int btree_writepage(struct page *page, struct writeback_control *wbc)
894 {
895 struct extent_io_tree *tree;
896 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
897 struct extent_buffer *eb;
898 int was_dirty;
899
900 tree = &BTRFS_I(page->mapping->host)->io_tree;
901 if (!(current->flags & PF_MEMALLOC)) {
902 return extent_write_full_page(tree, page,
903 btree_get_extent, wbc);
904 }
905
906 redirty_page_for_writepage(wbc, page);
907 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
908 WARN_ON(!eb);
909
910 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
911 if (!was_dirty) {
912 spin_lock(&root->fs_info->delalloc_lock);
913 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
914 spin_unlock(&root->fs_info->delalloc_lock);
915 }
916 free_extent_buffer(eb);
917
918 unlock_page(page);
919 return 0;
920 }
921
922 static int btree_writepages(struct address_space *mapping,
923 struct writeback_control *wbc)
924 {
925 struct extent_io_tree *tree;
926 tree = &BTRFS_I(mapping->host)->io_tree;
927 if (wbc->sync_mode == WB_SYNC_NONE) {
928 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
929 u64 num_dirty;
930 unsigned long thresh = 32 * 1024 * 1024;
931
932 if (wbc->for_kupdate)
933 return 0;
934
935 /* this is a bit racy, but that's ok */
936 num_dirty = root->fs_info->dirty_metadata_bytes;
937 if (num_dirty < thresh)
938 return 0;
939 }
940 return extent_writepages(tree, mapping, btree_get_extent, wbc);
941 }
942
943 static int btree_readpage(struct file *file, struct page *page)
944 {
945 struct extent_io_tree *tree;
946 tree = &BTRFS_I(page->mapping->host)->io_tree;
947 return extent_read_full_page(tree, page, btree_get_extent);
948 }
949
950 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
951 {
952 struct extent_io_tree *tree;
953 struct extent_map_tree *map;
954 int ret;
955
956 if (PageWriteback(page) || PageDirty(page))
957 return 0;
958
959 tree = &BTRFS_I(page->mapping->host)->io_tree;
960 map = &BTRFS_I(page->mapping->host)->extent_tree;
961
962 ret = try_release_extent_state(map, tree, page, gfp_flags);
963 if (!ret)
964 return 0;
965
966 ret = try_release_extent_buffer(tree, page);
967 if (ret == 1) {
968 ClearPagePrivate(page);
969 set_page_private(page, 0);
970 page_cache_release(page);
971 }
972
973 return ret;
974 }
975
976 static void btree_invalidatepage(struct page *page, unsigned long offset)
977 {
978 struct extent_io_tree *tree;
979 tree = &BTRFS_I(page->mapping->host)->io_tree;
980 extent_invalidatepage(tree, page, offset);
981 btree_releasepage(page, GFP_NOFS);
982 if (PagePrivate(page)) {
983 printk(KERN_WARNING "btrfs warning page private not zero "
984 "on page %llu\n", (unsigned long long)page_offset(page));
985 ClearPagePrivate(page);
986 set_page_private(page, 0);
987 page_cache_release(page);
988 }
989 }
990
991 static const struct address_space_operations btree_aops = {
992 .readpage = btree_readpage,
993 .writepage = btree_writepage,
994 .writepages = btree_writepages,
995 .releasepage = btree_releasepage,
996 .invalidatepage = btree_invalidatepage,
997 #ifdef CONFIG_MIGRATION
998 .migratepage = btree_migratepage,
999 #endif
1000 };
1001
1002 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1003 u64 parent_transid)
1004 {
1005 struct extent_buffer *buf = NULL;
1006 struct inode *btree_inode = root->fs_info->btree_inode;
1007 int ret = 0;
1008
1009 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1010 if (!buf)
1011 return 0;
1012 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1013 buf, 0, WAIT_NONE, btree_get_extent, 0);
1014 free_extent_buffer(buf);
1015 return ret;
1016 }
1017
1018 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1019 int mirror_num, struct extent_buffer **eb)
1020 {
1021 struct extent_buffer *buf = NULL;
1022 struct inode *btree_inode = root->fs_info->btree_inode;
1023 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1024 int ret;
1025
1026 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1027 if (!buf)
1028 return 0;
1029
1030 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1031
1032 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1033 btree_get_extent, mirror_num);
1034 if (ret) {
1035 free_extent_buffer(buf);
1036 return ret;
1037 }
1038
1039 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1040 free_extent_buffer(buf);
1041 return -EIO;
1042 } else if (extent_buffer_uptodate(io_tree, buf, NULL)) {
1043 *eb = buf;
1044 } else {
1045 free_extent_buffer(buf);
1046 }
1047 return 0;
1048 }
1049
1050 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1051 u64 bytenr, u32 blocksize)
1052 {
1053 struct inode *btree_inode = root->fs_info->btree_inode;
1054 struct extent_buffer *eb;
1055 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1056 bytenr, blocksize);
1057 return eb;
1058 }
1059
1060 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1061 u64 bytenr, u32 blocksize)
1062 {
1063 struct inode *btree_inode = root->fs_info->btree_inode;
1064 struct extent_buffer *eb;
1065
1066 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1067 bytenr, blocksize, NULL);
1068 return eb;
1069 }
1070
1071
1072 int btrfs_write_tree_block(struct extent_buffer *buf)
1073 {
1074 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
1075 buf->start + buf->len - 1);
1076 }
1077
1078 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1079 {
1080 return filemap_fdatawait_range(buf->first_page->mapping,
1081 buf->start, buf->start + buf->len - 1);
1082 }
1083
1084 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1085 u32 blocksize, u64 parent_transid)
1086 {
1087 struct extent_buffer *buf = NULL;
1088 int ret;
1089
1090 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1091 if (!buf)
1092 return NULL;
1093
1094 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1095
1096 if (ret == 0)
1097 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
1098 return buf;
1099
1100 }
1101
1102 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1103 struct extent_buffer *buf)
1104 {
1105 struct inode *btree_inode = root->fs_info->btree_inode;
1106 if (btrfs_header_generation(buf) ==
1107 root->fs_info->running_transaction->transid) {
1108 btrfs_assert_tree_locked(buf);
1109
1110 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1111 spin_lock(&root->fs_info->delalloc_lock);
1112 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1113 root->fs_info->dirty_metadata_bytes -= buf->len;
1114 else
1115 WARN_ON(1);
1116 spin_unlock(&root->fs_info->delalloc_lock);
1117 }
1118
1119 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1120 btrfs_set_lock_blocking(buf);
1121 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
1122 buf);
1123 }
1124 return 0;
1125 }
1126
1127 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1128 u32 stripesize, struct btrfs_root *root,
1129 struct btrfs_fs_info *fs_info,
1130 u64 objectid)
1131 {
1132 root->node = NULL;
1133 root->commit_root = NULL;
1134 root->sectorsize = sectorsize;
1135 root->nodesize = nodesize;
1136 root->leafsize = leafsize;
1137 root->stripesize = stripesize;
1138 root->ref_cows = 0;
1139 root->track_dirty = 0;
1140 root->in_radix = 0;
1141 root->orphan_item_inserted = 0;
1142 root->orphan_cleanup_state = 0;
1143
1144 root->fs_info = fs_info;
1145 root->objectid = objectid;
1146 root->last_trans = 0;
1147 root->highest_objectid = 0;
1148 root->name = NULL;
1149 root->inode_tree = RB_ROOT;
1150 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1151 root->block_rsv = NULL;
1152 root->orphan_block_rsv = NULL;
1153
1154 INIT_LIST_HEAD(&root->dirty_list);
1155 INIT_LIST_HEAD(&root->orphan_list);
1156 INIT_LIST_HEAD(&root->root_list);
1157 spin_lock_init(&root->orphan_lock);
1158 spin_lock_init(&root->inode_lock);
1159 spin_lock_init(&root->accounting_lock);
1160 mutex_init(&root->objectid_mutex);
1161 mutex_init(&root->log_mutex);
1162 init_waitqueue_head(&root->log_writer_wait);
1163 init_waitqueue_head(&root->log_commit_wait[0]);
1164 init_waitqueue_head(&root->log_commit_wait[1]);
1165 atomic_set(&root->log_commit[0], 0);
1166 atomic_set(&root->log_commit[1], 0);
1167 atomic_set(&root->log_writers, 0);
1168 root->log_batch = 0;
1169 root->log_transid = 0;
1170 root->last_log_commit = 0;
1171 extent_io_tree_init(&root->dirty_log_pages,
1172 fs_info->btree_inode->i_mapping);
1173
1174 memset(&root->root_key, 0, sizeof(root->root_key));
1175 memset(&root->root_item, 0, sizeof(root->root_item));
1176 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1177 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1178 root->defrag_trans_start = fs_info->generation;
1179 init_completion(&root->kobj_unregister);
1180 root->defrag_running = 0;
1181 root->root_key.objectid = objectid;
1182 root->anon_dev = 0;
1183 return 0;
1184 }
1185
1186 static int find_and_setup_root(struct btrfs_root *tree_root,
1187 struct btrfs_fs_info *fs_info,
1188 u64 objectid,
1189 struct btrfs_root *root)
1190 {
1191 int ret;
1192 u32 blocksize;
1193 u64 generation;
1194
1195 __setup_root(tree_root->nodesize, tree_root->leafsize,
1196 tree_root->sectorsize, tree_root->stripesize,
1197 root, fs_info, objectid);
1198 ret = btrfs_find_last_root(tree_root, objectid,
1199 &root->root_item, &root->root_key);
1200 if (ret > 0)
1201 return -ENOENT;
1202 BUG_ON(ret);
1203
1204 generation = btrfs_root_generation(&root->root_item);
1205 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1206 root->commit_root = NULL;
1207 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1208 blocksize, generation);
1209 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1210 free_extent_buffer(root->node);
1211 root->node = NULL;
1212 return -EIO;
1213 }
1214 root->commit_root = btrfs_root_node(root);
1215 return 0;
1216 }
1217
1218 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1219 struct btrfs_fs_info *fs_info)
1220 {
1221 struct btrfs_root *root;
1222 struct btrfs_root *tree_root = fs_info->tree_root;
1223 struct extent_buffer *leaf;
1224
1225 root = kzalloc(sizeof(*root), GFP_NOFS);
1226 if (!root)
1227 return ERR_PTR(-ENOMEM);
1228
1229 __setup_root(tree_root->nodesize, tree_root->leafsize,
1230 tree_root->sectorsize, tree_root->stripesize,
1231 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1232
1233 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1234 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1235 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1236 /*
1237 * log trees do not get reference counted because they go away
1238 * before a real commit is actually done. They do store pointers
1239 * to file data extents, and those reference counts still get
1240 * updated (along with back refs to the log tree).
1241 */
1242 root->ref_cows = 0;
1243
1244 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1245 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1246 if (IS_ERR(leaf)) {
1247 kfree(root);
1248 return ERR_CAST(leaf);
1249 }
1250
1251 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1252 btrfs_set_header_bytenr(leaf, leaf->start);
1253 btrfs_set_header_generation(leaf, trans->transid);
1254 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1255 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1256 root->node = leaf;
1257
1258 write_extent_buffer(root->node, root->fs_info->fsid,
1259 (unsigned long)btrfs_header_fsid(root->node),
1260 BTRFS_FSID_SIZE);
1261 btrfs_mark_buffer_dirty(root->node);
1262 btrfs_tree_unlock(root->node);
1263 return root;
1264 }
1265
1266 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1267 struct btrfs_fs_info *fs_info)
1268 {
1269 struct btrfs_root *log_root;
1270
1271 log_root = alloc_log_tree(trans, fs_info);
1272 if (IS_ERR(log_root))
1273 return PTR_ERR(log_root);
1274 WARN_ON(fs_info->log_root_tree);
1275 fs_info->log_root_tree = log_root;
1276 return 0;
1277 }
1278
1279 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1280 struct btrfs_root *root)
1281 {
1282 struct btrfs_root *log_root;
1283 struct btrfs_inode_item *inode_item;
1284
1285 log_root = alloc_log_tree(trans, root->fs_info);
1286 if (IS_ERR(log_root))
1287 return PTR_ERR(log_root);
1288
1289 log_root->last_trans = trans->transid;
1290 log_root->root_key.offset = root->root_key.objectid;
1291
1292 inode_item = &log_root->root_item.inode;
1293 inode_item->generation = cpu_to_le64(1);
1294 inode_item->size = cpu_to_le64(3);
1295 inode_item->nlink = cpu_to_le32(1);
1296 inode_item->nbytes = cpu_to_le64(root->leafsize);
1297 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1298
1299 btrfs_set_root_node(&log_root->root_item, log_root->node);
1300
1301 WARN_ON(root->log_root);
1302 root->log_root = log_root;
1303 root->log_transid = 0;
1304 root->last_log_commit = 0;
1305 return 0;
1306 }
1307
1308 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1309 struct btrfs_key *location)
1310 {
1311 struct btrfs_root *root;
1312 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1313 struct btrfs_path *path;
1314 struct extent_buffer *l;
1315 u64 generation;
1316 u32 blocksize;
1317 int ret = 0;
1318
1319 root = kzalloc(sizeof(*root), GFP_NOFS);
1320 if (!root)
1321 return ERR_PTR(-ENOMEM);
1322 if (location->offset == (u64)-1) {
1323 ret = find_and_setup_root(tree_root, fs_info,
1324 location->objectid, root);
1325 if (ret) {
1326 kfree(root);
1327 return ERR_PTR(ret);
1328 }
1329 goto out;
1330 }
1331
1332 __setup_root(tree_root->nodesize, tree_root->leafsize,
1333 tree_root->sectorsize, tree_root->stripesize,
1334 root, fs_info, location->objectid);
1335
1336 path = btrfs_alloc_path();
1337 if (!path) {
1338 kfree(root);
1339 return ERR_PTR(-ENOMEM);
1340 }
1341 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1342 if (ret == 0) {
1343 l = path->nodes[0];
1344 read_extent_buffer(l, &root->root_item,
1345 btrfs_item_ptr_offset(l, path->slots[0]),
1346 sizeof(root->root_item));
1347 memcpy(&root->root_key, location, sizeof(*location));
1348 }
1349 btrfs_free_path(path);
1350 if (ret) {
1351 kfree(root);
1352 if (ret > 0)
1353 ret = -ENOENT;
1354 return ERR_PTR(ret);
1355 }
1356
1357 generation = btrfs_root_generation(&root->root_item);
1358 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1359 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1360 blocksize, generation);
1361 root->commit_root = btrfs_root_node(root);
1362 BUG_ON(!root->node);
1363 out:
1364 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1365 root->ref_cows = 1;
1366 btrfs_check_and_init_root_item(&root->root_item);
1367 }
1368
1369 return root;
1370 }
1371
1372 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1373 struct btrfs_key *location)
1374 {
1375 struct btrfs_root *root;
1376 int ret;
1377
1378 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1379 return fs_info->tree_root;
1380 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1381 return fs_info->extent_root;
1382 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1383 return fs_info->chunk_root;
1384 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1385 return fs_info->dev_root;
1386 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1387 return fs_info->csum_root;
1388 again:
1389 spin_lock(&fs_info->fs_roots_radix_lock);
1390 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1391 (unsigned long)location->objectid);
1392 spin_unlock(&fs_info->fs_roots_radix_lock);
1393 if (root)
1394 return root;
1395
1396 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1397 if (IS_ERR(root))
1398 return root;
1399
1400 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1401 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1402 GFP_NOFS);
1403 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1404 ret = -ENOMEM;
1405 goto fail;
1406 }
1407
1408 btrfs_init_free_ino_ctl(root);
1409 mutex_init(&root->fs_commit_mutex);
1410 spin_lock_init(&root->cache_lock);
1411 init_waitqueue_head(&root->cache_wait);
1412
1413 ret = get_anon_bdev(&root->anon_dev);
1414 if (ret)
1415 goto fail;
1416
1417 if (btrfs_root_refs(&root->root_item) == 0) {
1418 ret = -ENOENT;
1419 goto fail;
1420 }
1421
1422 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1423 if (ret < 0)
1424 goto fail;
1425 if (ret == 0)
1426 root->orphan_item_inserted = 1;
1427
1428 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1429 if (ret)
1430 goto fail;
1431
1432 spin_lock(&fs_info->fs_roots_radix_lock);
1433 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1434 (unsigned long)root->root_key.objectid,
1435 root);
1436 if (ret == 0)
1437 root->in_radix = 1;
1438
1439 spin_unlock(&fs_info->fs_roots_radix_lock);
1440 radix_tree_preload_end();
1441 if (ret) {
1442 if (ret == -EEXIST) {
1443 free_fs_root(root);
1444 goto again;
1445 }
1446 goto fail;
1447 }
1448
1449 ret = btrfs_find_dead_roots(fs_info->tree_root,
1450 root->root_key.objectid);
1451 WARN_ON(ret);
1452 return root;
1453 fail:
1454 free_fs_root(root);
1455 return ERR_PTR(ret);
1456 }
1457
1458 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1459 {
1460 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1461 int ret = 0;
1462 struct btrfs_device *device;
1463 struct backing_dev_info *bdi;
1464
1465 rcu_read_lock();
1466 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1467 if (!device->bdev)
1468 continue;
1469 bdi = blk_get_backing_dev_info(device->bdev);
1470 if (bdi && bdi_congested(bdi, bdi_bits)) {
1471 ret = 1;
1472 break;
1473 }
1474 }
1475 rcu_read_unlock();
1476 return ret;
1477 }
1478
1479 /*
1480 * If this fails, caller must call bdi_destroy() to get rid of the
1481 * bdi again.
1482 */
1483 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1484 {
1485 int err;
1486
1487 bdi->capabilities = BDI_CAP_MAP_COPY;
1488 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1489 if (err)
1490 return err;
1491
1492 bdi->ra_pages = default_backing_dev_info.ra_pages;
1493 bdi->congested_fn = btrfs_congested_fn;
1494 bdi->congested_data = info;
1495 return 0;
1496 }
1497
1498 static int bio_ready_for_csum(struct bio *bio)
1499 {
1500 u64 length = 0;
1501 u64 buf_len = 0;
1502 u64 start = 0;
1503 struct page *page;
1504 struct extent_io_tree *io_tree = NULL;
1505 struct bio_vec *bvec;
1506 int i;
1507 int ret;
1508
1509 bio_for_each_segment(bvec, bio, i) {
1510 page = bvec->bv_page;
1511 if (page->private == EXTENT_PAGE_PRIVATE) {
1512 length += bvec->bv_len;
1513 continue;
1514 }
1515 if (!page->private) {
1516 length += bvec->bv_len;
1517 continue;
1518 }
1519 length = bvec->bv_len;
1520 buf_len = page->private >> 2;
1521 start = page_offset(page) + bvec->bv_offset;
1522 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1523 }
1524 /* are we fully contained in this bio? */
1525 if (buf_len <= length)
1526 return 1;
1527
1528 ret = extent_range_uptodate(io_tree, start + length,
1529 start + buf_len - 1);
1530 return ret;
1531 }
1532
1533 /*
1534 * called by the kthread helper functions to finally call the bio end_io
1535 * functions. This is where read checksum verification actually happens
1536 */
1537 static void end_workqueue_fn(struct btrfs_work *work)
1538 {
1539 struct bio *bio;
1540 struct end_io_wq *end_io_wq;
1541 struct btrfs_fs_info *fs_info;
1542 int error;
1543
1544 end_io_wq = container_of(work, struct end_io_wq, work);
1545 bio = end_io_wq->bio;
1546 fs_info = end_io_wq->info;
1547
1548 /* metadata bio reads are special because the whole tree block must
1549 * be checksummed at once. This makes sure the entire block is in
1550 * ram and up to date before trying to verify things. For
1551 * blocksize <= pagesize, it is basically a noop
1552 */
1553 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
1554 !bio_ready_for_csum(bio)) {
1555 btrfs_queue_worker(&fs_info->endio_meta_workers,
1556 &end_io_wq->work);
1557 return;
1558 }
1559 error = end_io_wq->error;
1560 bio->bi_private = end_io_wq->private;
1561 bio->bi_end_io = end_io_wq->end_io;
1562 kfree(end_io_wq);
1563 bio_endio(bio, error);
1564 }
1565
1566 static int cleaner_kthread(void *arg)
1567 {
1568 struct btrfs_root *root = arg;
1569
1570 do {
1571 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1572
1573 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1574 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1575 btrfs_run_delayed_iputs(root);
1576 btrfs_clean_old_snapshots(root);
1577 mutex_unlock(&root->fs_info->cleaner_mutex);
1578 btrfs_run_defrag_inodes(root->fs_info);
1579 }
1580
1581 if (freezing(current)) {
1582 refrigerator();
1583 } else {
1584 set_current_state(TASK_INTERRUPTIBLE);
1585 if (!kthread_should_stop())
1586 schedule();
1587 __set_current_state(TASK_RUNNING);
1588 }
1589 } while (!kthread_should_stop());
1590 return 0;
1591 }
1592
1593 static int transaction_kthread(void *arg)
1594 {
1595 struct btrfs_root *root = arg;
1596 struct btrfs_trans_handle *trans;
1597 struct btrfs_transaction *cur;
1598 u64 transid;
1599 unsigned long now;
1600 unsigned long delay;
1601 int ret;
1602
1603 do {
1604 delay = HZ * 30;
1605 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1606 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1607
1608 spin_lock(&root->fs_info->trans_lock);
1609 cur = root->fs_info->running_transaction;
1610 if (!cur) {
1611 spin_unlock(&root->fs_info->trans_lock);
1612 goto sleep;
1613 }
1614
1615 now = get_seconds();
1616 if (!cur->blocked &&
1617 (now < cur->start_time || now - cur->start_time < 30)) {
1618 spin_unlock(&root->fs_info->trans_lock);
1619 delay = HZ * 5;
1620 goto sleep;
1621 }
1622 transid = cur->transid;
1623 spin_unlock(&root->fs_info->trans_lock);
1624
1625 trans = btrfs_join_transaction(root);
1626 BUG_ON(IS_ERR(trans));
1627 if (transid == trans->transid) {
1628 ret = btrfs_commit_transaction(trans, root);
1629 BUG_ON(ret);
1630 } else {
1631 btrfs_end_transaction(trans, root);
1632 }
1633 sleep:
1634 wake_up_process(root->fs_info->cleaner_kthread);
1635 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1636
1637 if (freezing(current)) {
1638 refrigerator();
1639 } else {
1640 set_current_state(TASK_INTERRUPTIBLE);
1641 if (!kthread_should_stop() &&
1642 !btrfs_transaction_blocked(root->fs_info))
1643 schedule_timeout(delay);
1644 __set_current_state(TASK_RUNNING);
1645 }
1646 } while (!kthread_should_stop());
1647 return 0;
1648 }
1649
1650 /*
1651 * this will find the highest generation in the array of
1652 * root backups. The index of the highest array is returned,
1653 * or -1 if we can't find anything.
1654 *
1655 * We check to make sure the array is valid by comparing the
1656 * generation of the latest root in the array with the generation
1657 * in the super block. If they don't match we pitch it.
1658 */
1659 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1660 {
1661 u64 cur;
1662 int newest_index = -1;
1663 struct btrfs_root_backup *root_backup;
1664 int i;
1665
1666 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1667 root_backup = info->super_copy->super_roots + i;
1668 cur = btrfs_backup_tree_root_gen(root_backup);
1669 if (cur == newest_gen)
1670 newest_index = i;
1671 }
1672
1673 /* check to see if we actually wrapped around */
1674 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1675 root_backup = info->super_copy->super_roots;
1676 cur = btrfs_backup_tree_root_gen(root_backup);
1677 if (cur == newest_gen)
1678 newest_index = 0;
1679 }
1680 return newest_index;
1681 }
1682
1683
1684 /*
1685 * find the oldest backup so we know where to store new entries
1686 * in the backup array. This will set the backup_root_index
1687 * field in the fs_info struct
1688 */
1689 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1690 u64 newest_gen)
1691 {
1692 int newest_index = -1;
1693
1694 newest_index = find_newest_super_backup(info, newest_gen);
1695 /* if there was garbage in there, just move along */
1696 if (newest_index == -1) {
1697 info->backup_root_index = 0;
1698 } else {
1699 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1700 }
1701 }
1702
1703 /*
1704 * copy all the root pointers into the super backup array.
1705 * this will bump the backup pointer by one when it is
1706 * done
1707 */
1708 static void backup_super_roots(struct btrfs_fs_info *info)
1709 {
1710 int next_backup;
1711 struct btrfs_root_backup *root_backup;
1712 int last_backup;
1713
1714 next_backup = info->backup_root_index;
1715 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1716 BTRFS_NUM_BACKUP_ROOTS;
1717
1718 /*
1719 * just overwrite the last backup if we're at the same generation
1720 * this happens only at umount
1721 */
1722 root_backup = info->super_for_commit->super_roots + last_backup;
1723 if (btrfs_backup_tree_root_gen(root_backup) ==
1724 btrfs_header_generation(info->tree_root->node))
1725 next_backup = last_backup;
1726
1727 root_backup = info->super_for_commit->super_roots + next_backup;
1728
1729 /*
1730 * make sure all of our padding and empty slots get zero filled
1731 * regardless of which ones we use today
1732 */
1733 memset(root_backup, 0, sizeof(*root_backup));
1734
1735 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1736
1737 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1738 btrfs_set_backup_tree_root_gen(root_backup,
1739 btrfs_header_generation(info->tree_root->node));
1740
1741 btrfs_set_backup_tree_root_level(root_backup,
1742 btrfs_header_level(info->tree_root->node));
1743
1744 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1745 btrfs_set_backup_chunk_root_gen(root_backup,
1746 btrfs_header_generation(info->chunk_root->node));
1747 btrfs_set_backup_chunk_root_level(root_backup,
1748 btrfs_header_level(info->chunk_root->node));
1749
1750 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1751 btrfs_set_backup_extent_root_gen(root_backup,
1752 btrfs_header_generation(info->extent_root->node));
1753 btrfs_set_backup_extent_root_level(root_backup,
1754 btrfs_header_level(info->extent_root->node));
1755
1756 btrfs_set_backup_fs_root(root_backup, info->fs_root->node->start);
1757 btrfs_set_backup_fs_root_gen(root_backup,
1758 btrfs_header_generation(info->fs_root->node));
1759 btrfs_set_backup_fs_root_level(root_backup,
1760 btrfs_header_level(info->fs_root->node));
1761
1762 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1763 btrfs_set_backup_dev_root_gen(root_backup,
1764 btrfs_header_generation(info->dev_root->node));
1765 btrfs_set_backup_dev_root_level(root_backup,
1766 btrfs_header_level(info->dev_root->node));
1767
1768 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1769 btrfs_set_backup_csum_root_gen(root_backup,
1770 btrfs_header_generation(info->csum_root->node));
1771 btrfs_set_backup_csum_root_level(root_backup,
1772 btrfs_header_level(info->csum_root->node));
1773
1774 btrfs_set_backup_total_bytes(root_backup,
1775 btrfs_super_total_bytes(info->super_copy));
1776 btrfs_set_backup_bytes_used(root_backup,
1777 btrfs_super_bytes_used(info->super_copy));
1778 btrfs_set_backup_num_devices(root_backup,
1779 btrfs_super_num_devices(info->super_copy));
1780
1781 /*
1782 * if we don't copy this out to the super_copy, it won't get remembered
1783 * for the next commit
1784 */
1785 memcpy(&info->super_copy->super_roots,
1786 &info->super_for_commit->super_roots,
1787 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1788 }
1789
1790 /*
1791 * this copies info out of the root backup array and back into
1792 * the in-memory super block. It is meant to help iterate through
1793 * the array, so you send it the number of backups you've already
1794 * tried and the last backup index you used.
1795 *
1796 * this returns -1 when it has tried all the backups
1797 */
1798 static noinline int next_root_backup(struct btrfs_fs_info *info,
1799 struct btrfs_super_block *super,
1800 int *num_backups_tried, int *backup_index)
1801 {
1802 struct btrfs_root_backup *root_backup;
1803 int newest = *backup_index;
1804
1805 if (*num_backups_tried == 0) {
1806 u64 gen = btrfs_super_generation(super);
1807
1808 newest = find_newest_super_backup(info, gen);
1809 if (newest == -1)
1810 return -1;
1811
1812 *backup_index = newest;
1813 *num_backups_tried = 1;
1814 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1815 /* we've tried all the backups, all done */
1816 return -1;
1817 } else {
1818 /* jump to the next oldest backup */
1819 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1820 BTRFS_NUM_BACKUP_ROOTS;
1821 *backup_index = newest;
1822 *num_backups_tried += 1;
1823 }
1824 root_backup = super->super_roots + newest;
1825
1826 btrfs_set_super_generation(super,
1827 btrfs_backup_tree_root_gen(root_backup));
1828 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1829 btrfs_set_super_root_level(super,
1830 btrfs_backup_tree_root_level(root_backup));
1831 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1832
1833 /*
1834 * fixme: the total bytes and num_devices need to match or we should
1835 * need a fsck
1836 */
1837 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1838 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1839 return 0;
1840 }
1841
1842 /* helper to cleanup tree roots */
1843 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1844 {
1845 free_extent_buffer(info->tree_root->node);
1846 free_extent_buffer(info->tree_root->commit_root);
1847 free_extent_buffer(info->dev_root->node);
1848 free_extent_buffer(info->dev_root->commit_root);
1849 free_extent_buffer(info->extent_root->node);
1850 free_extent_buffer(info->extent_root->commit_root);
1851 free_extent_buffer(info->csum_root->node);
1852 free_extent_buffer(info->csum_root->commit_root);
1853
1854 info->tree_root->node = NULL;
1855 info->tree_root->commit_root = NULL;
1856 info->dev_root->node = NULL;
1857 info->dev_root->commit_root = NULL;
1858 info->extent_root->node = NULL;
1859 info->extent_root->commit_root = NULL;
1860 info->csum_root->node = NULL;
1861 info->csum_root->commit_root = NULL;
1862
1863 if (chunk_root) {
1864 free_extent_buffer(info->chunk_root->node);
1865 free_extent_buffer(info->chunk_root->commit_root);
1866 info->chunk_root->node = NULL;
1867 info->chunk_root->commit_root = NULL;
1868 }
1869 }
1870
1871
1872 struct btrfs_root *open_ctree(struct super_block *sb,
1873 struct btrfs_fs_devices *fs_devices,
1874 char *options)
1875 {
1876 u32 sectorsize;
1877 u32 nodesize;
1878 u32 leafsize;
1879 u32 blocksize;
1880 u32 stripesize;
1881 u64 generation;
1882 u64 features;
1883 struct btrfs_key location;
1884 struct buffer_head *bh;
1885 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1886 GFP_NOFS);
1887 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1888 GFP_NOFS);
1889 struct btrfs_root *tree_root = btrfs_sb(sb);
1890 struct btrfs_fs_info *fs_info = NULL;
1891 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1892 GFP_NOFS);
1893 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1894 GFP_NOFS);
1895 struct btrfs_root *log_tree_root;
1896
1897 int ret;
1898 int err = -EINVAL;
1899 int num_backups_tried = 0;
1900 int backup_index = 0;
1901
1902 struct btrfs_super_block *disk_super;
1903
1904 if (!extent_root || !tree_root || !tree_root->fs_info ||
1905 !chunk_root || !dev_root || !csum_root) {
1906 err = -ENOMEM;
1907 goto fail;
1908 }
1909 fs_info = tree_root->fs_info;
1910
1911 ret = init_srcu_struct(&fs_info->subvol_srcu);
1912 if (ret) {
1913 err = ret;
1914 goto fail;
1915 }
1916
1917 ret = setup_bdi(fs_info, &fs_info->bdi);
1918 if (ret) {
1919 err = ret;
1920 goto fail_srcu;
1921 }
1922
1923 fs_info->btree_inode = new_inode(sb);
1924 if (!fs_info->btree_inode) {
1925 err = -ENOMEM;
1926 goto fail_bdi;
1927 }
1928
1929 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1930
1931 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1932 INIT_LIST_HEAD(&fs_info->trans_list);
1933 INIT_LIST_HEAD(&fs_info->dead_roots);
1934 INIT_LIST_HEAD(&fs_info->delayed_iputs);
1935 INIT_LIST_HEAD(&fs_info->hashers);
1936 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1937 INIT_LIST_HEAD(&fs_info->ordered_operations);
1938 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1939 spin_lock_init(&fs_info->delalloc_lock);
1940 spin_lock_init(&fs_info->trans_lock);
1941 spin_lock_init(&fs_info->ref_cache_lock);
1942 spin_lock_init(&fs_info->fs_roots_radix_lock);
1943 spin_lock_init(&fs_info->delayed_iput_lock);
1944 spin_lock_init(&fs_info->defrag_inodes_lock);
1945 spin_lock_init(&fs_info->free_chunk_lock);
1946 mutex_init(&fs_info->reloc_mutex);
1947
1948 init_completion(&fs_info->kobj_unregister);
1949 fs_info->tree_root = tree_root;
1950 fs_info->extent_root = extent_root;
1951 fs_info->csum_root = csum_root;
1952 fs_info->chunk_root = chunk_root;
1953 fs_info->dev_root = dev_root;
1954 fs_info->fs_devices = fs_devices;
1955 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1956 INIT_LIST_HEAD(&fs_info->space_info);
1957 btrfs_mapping_init(&fs_info->mapping_tree);
1958 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1959 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1960 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1961 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1962 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1963 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
1964 atomic_set(&fs_info->nr_async_submits, 0);
1965 atomic_set(&fs_info->async_delalloc_pages, 0);
1966 atomic_set(&fs_info->async_submit_draining, 0);
1967 atomic_set(&fs_info->nr_async_bios, 0);
1968 atomic_set(&fs_info->defrag_running, 0);
1969 fs_info->sb = sb;
1970 fs_info->max_inline = 8192 * 1024;
1971 fs_info->metadata_ratio = 0;
1972 fs_info->defrag_inodes = RB_ROOT;
1973 fs_info->trans_no_join = 0;
1974 fs_info->free_chunk_space = 0;
1975
1976 /* readahead state */
1977 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1978 spin_lock_init(&fs_info->reada_lock);
1979
1980 fs_info->thread_pool_size = min_t(unsigned long,
1981 num_online_cpus() + 2, 8);
1982
1983 INIT_LIST_HEAD(&fs_info->ordered_extents);
1984 spin_lock_init(&fs_info->ordered_extent_lock);
1985 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1986 GFP_NOFS);
1987 if (!fs_info->delayed_root) {
1988 err = -ENOMEM;
1989 goto fail_iput;
1990 }
1991 btrfs_init_delayed_root(fs_info->delayed_root);
1992
1993 mutex_init(&fs_info->scrub_lock);
1994 atomic_set(&fs_info->scrubs_running, 0);
1995 atomic_set(&fs_info->scrub_pause_req, 0);
1996 atomic_set(&fs_info->scrubs_paused, 0);
1997 atomic_set(&fs_info->scrub_cancel_req, 0);
1998 init_waitqueue_head(&fs_info->scrub_pause_wait);
1999 init_rwsem(&fs_info->scrub_super_lock);
2000 fs_info->scrub_workers_refcnt = 0;
2001
2002 sb->s_blocksize = 4096;
2003 sb->s_blocksize_bits = blksize_bits(4096);
2004 sb->s_bdi = &fs_info->bdi;
2005
2006 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2007 fs_info->btree_inode->i_nlink = 1;
2008 /*
2009 * we set the i_size on the btree inode to the max possible int.
2010 * the real end of the address space is determined by all of
2011 * the devices in the system
2012 */
2013 fs_info->btree_inode->i_size = OFFSET_MAX;
2014 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2015 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2016
2017 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2018 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2019 fs_info->btree_inode->i_mapping);
2020 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2021
2022 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2023
2024 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2025 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2026 sizeof(struct btrfs_key));
2027 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
2028 insert_inode_hash(fs_info->btree_inode);
2029
2030 spin_lock_init(&fs_info->block_group_cache_lock);
2031 fs_info->block_group_cache_tree = RB_ROOT;
2032
2033 extent_io_tree_init(&fs_info->freed_extents[0],
2034 fs_info->btree_inode->i_mapping);
2035 extent_io_tree_init(&fs_info->freed_extents[1],
2036 fs_info->btree_inode->i_mapping);
2037 fs_info->pinned_extents = &fs_info->freed_extents[0];
2038 fs_info->do_barriers = 1;
2039
2040
2041 mutex_init(&fs_info->ordered_operations_mutex);
2042 mutex_init(&fs_info->tree_log_mutex);
2043 mutex_init(&fs_info->chunk_mutex);
2044 mutex_init(&fs_info->transaction_kthread_mutex);
2045 mutex_init(&fs_info->cleaner_mutex);
2046 mutex_init(&fs_info->volume_mutex);
2047 init_rwsem(&fs_info->extent_commit_sem);
2048 init_rwsem(&fs_info->cleanup_work_sem);
2049 init_rwsem(&fs_info->subvol_sem);
2050
2051 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2052 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2053
2054 init_waitqueue_head(&fs_info->transaction_throttle);
2055 init_waitqueue_head(&fs_info->transaction_wait);
2056 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2057 init_waitqueue_head(&fs_info->async_submit_wait);
2058
2059 __setup_root(4096, 4096, 4096, 4096, tree_root,
2060 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2061
2062 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2063 if (!bh) {
2064 err = -EINVAL;
2065 goto fail_alloc;
2066 }
2067
2068 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2069 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2070 sizeof(*fs_info->super_for_commit));
2071 brelse(bh);
2072
2073 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2074
2075 disk_super = fs_info->super_copy;
2076 if (!btrfs_super_root(disk_super))
2077 goto fail_alloc;
2078
2079 /* check FS state, whether FS is broken. */
2080 fs_info->fs_state |= btrfs_super_flags(disk_super);
2081
2082 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2083
2084 /*
2085 * run through our array of backup supers and setup
2086 * our ring pointer to the oldest one
2087 */
2088 generation = btrfs_super_generation(disk_super);
2089 find_oldest_super_backup(fs_info, generation);
2090
2091 /*
2092 * In the long term, we'll store the compression type in the super
2093 * block, and it'll be used for per file compression control.
2094 */
2095 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2096
2097 ret = btrfs_parse_options(tree_root, options);
2098 if (ret) {
2099 err = ret;
2100 goto fail_alloc;
2101 }
2102
2103 features = btrfs_super_incompat_flags(disk_super) &
2104 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2105 if (features) {
2106 printk(KERN_ERR "BTRFS: couldn't mount because of "
2107 "unsupported optional features (%Lx).\n",
2108 (unsigned long long)features);
2109 err = -EINVAL;
2110 goto fail_alloc;
2111 }
2112
2113 features = btrfs_super_incompat_flags(disk_super);
2114 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2115 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2116 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2117 btrfs_set_super_incompat_flags(disk_super, features);
2118
2119 features = btrfs_super_compat_ro_flags(disk_super) &
2120 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2121 if (!(sb->s_flags & MS_RDONLY) && features) {
2122 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2123 "unsupported option features (%Lx).\n",
2124 (unsigned long long)features);
2125 err = -EINVAL;
2126 goto fail_alloc;
2127 }
2128
2129 btrfs_init_workers(&fs_info->generic_worker,
2130 "genwork", 1, NULL);
2131
2132 btrfs_init_workers(&fs_info->workers, "worker",
2133 fs_info->thread_pool_size,
2134 &fs_info->generic_worker);
2135
2136 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2137 fs_info->thread_pool_size,
2138 &fs_info->generic_worker);
2139
2140 btrfs_init_workers(&fs_info->submit_workers, "submit",
2141 min_t(u64, fs_devices->num_devices,
2142 fs_info->thread_pool_size),
2143 &fs_info->generic_worker);
2144
2145 btrfs_init_workers(&fs_info->caching_workers, "cache",
2146 2, &fs_info->generic_worker);
2147
2148 /* a higher idle thresh on the submit workers makes it much more
2149 * likely that bios will be send down in a sane order to the
2150 * devices
2151 */
2152 fs_info->submit_workers.idle_thresh = 64;
2153
2154 fs_info->workers.idle_thresh = 16;
2155 fs_info->workers.ordered = 1;
2156
2157 fs_info->delalloc_workers.idle_thresh = 2;
2158 fs_info->delalloc_workers.ordered = 1;
2159
2160 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2161 &fs_info->generic_worker);
2162 btrfs_init_workers(&fs_info->endio_workers, "endio",
2163 fs_info->thread_pool_size,
2164 &fs_info->generic_worker);
2165 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2166 fs_info->thread_pool_size,
2167 &fs_info->generic_worker);
2168 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2169 "endio-meta-write", fs_info->thread_pool_size,
2170 &fs_info->generic_worker);
2171 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2172 fs_info->thread_pool_size,
2173 &fs_info->generic_worker);
2174 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2175 1, &fs_info->generic_worker);
2176 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2177 fs_info->thread_pool_size,
2178 &fs_info->generic_worker);
2179 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2180 fs_info->thread_pool_size,
2181 &fs_info->generic_worker);
2182
2183 /*
2184 * endios are largely parallel and should have a very
2185 * low idle thresh
2186 */
2187 fs_info->endio_workers.idle_thresh = 4;
2188 fs_info->endio_meta_workers.idle_thresh = 4;
2189
2190 fs_info->endio_write_workers.idle_thresh = 2;
2191 fs_info->endio_meta_write_workers.idle_thresh = 2;
2192 fs_info->readahead_workers.idle_thresh = 2;
2193
2194 btrfs_start_workers(&fs_info->workers, 1);
2195 btrfs_start_workers(&fs_info->generic_worker, 1);
2196 btrfs_start_workers(&fs_info->submit_workers, 1);
2197 btrfs_start_workers(&fs_info->delalloc_workers, 1);
2198 btrfs_start_workers(&fs_info->fixup_workers, 1);
2199 btrfs_start_workers(&fs_info->endio_workers, 1);
2200 btrfs_start_workers(&fs_info->endio_meta_workers, 1);
2201 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
2202 btrfs_start_workers(&fs_info->endio_write_workers, 1);
2203 btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
2204 btrfs_start_workers(&fs_info->delayed_workers, 1);
2205 btrfs_start_workers(&fs_info->caching_workers, 1);
2206 btrfs_start_workers(&fs_info->readahead_workers, 1);
2207
2208 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2209 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2210 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2211
2212 nodesize = btrfs_super_nodesize(disk_super);
2213 leafsize = btrfs_super_leafsize(disk_super);
2214 sectorsize = btrfs_super_sectorsize(disk_super);
2215 stripesize = btrfs_super_stripesize(disk_super);
2216 tree_root->nodesize = nodesize;
2217 tree_root->leafsize = leafsize;
2218 tree_root->sectorsize = sectorsize;
2219 tree_root->stripesize = stripesize;
2220
2221 sb->s_blocksize = sectorsize;
2222 sb->s_blocksize_bits = blksize_bits(sectorsize);
2223
2224 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2225 sizeof(disk_super->magic))) {
2226 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2227 goto fail_sb_buffer;
2228 }
2229
2230 mutex_lock(&fs_info->chunk_mutex);
2231 ret = btrfs_read_sys_array(tree_root);
2232 mutex_unlock(&fs_info->chunk_mutex);
2233 if (ret) {
2234 printk(KERN_WARNING "btrfs: failed to read the system "
2235 "array on %s\n", sb->s_id);
2236 goto fail_sb_buffer;
2237 }
2238
2239 blocksize = btrfs_level_size(tree_root,
2240 btrfs_super_chunk_root_level(disk_super));
2241 generation = btrfs_super_chunk_root_generation(disk_super);
2242
2243 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2244 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2245
2246 chunk_root->node = read_tree_block(chunk_root,
2247 btrfs_super_chunk_root(disk_super),
2248 blocksize, generation);
2249 BUG_ON(!chunk_root->node);
2250 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2251 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2252 sb->s_id);
2253 goto fail_tree_roots;
2254 }
2255 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2256 chunk_root->commit_root = btrfs_root_node(chunk_root);
2257
2258 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2259 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2260 BTRFS_UUID_SIZE);
2261
2262 mutex_lock(&fs_info->chunk_mutex);
2263 ret = btrfs_read_chunk_tree(chunk_root);
2264 mutex_unlock(&fs_info->chunk_mutex);
2265 if (ret) {
2266 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2267 sb->s_id);
2268 goto fail_tree_roots;
2269 }
2270
2271 btrfs_close_extra_devices(fs_devices);
2272
2273 retry_root_backup:
2274 blocksize = btrfs_level_size(tree_root,
2275 btrfs_super_root_level(disk_super));
2276 generation = btrfs_super_generation(disk_super);
2277
2278 tree_root->node = read_tree_block(tree_root,
2279 btrfs_super_root(disk_super),
2280 blocksize, generation);
2281 if (!tree_root->node ||
2282 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2283 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2284 sb->s_id);
2285
2286 goto recovery_tree_root;
2287 }
2288
2289 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2290 tree_root->commit_root = btrfs_root_node(tree_root);
2291
2292 ret = find_and_setup_root(tree_root, fs_info,
2293 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2294 if (ret)
2295 goto recovery_tree_root;
2296 extent_root->track_dirty = 1;
2297
2298 ret = find_and_setup_root(tree_root, fs_info,
2299 BTRFS_DEV_TREE_OBJECTID, dev_root);
2300 if (ret)
2301 goto recovery_tree_root;
2302 dev_root->track_dirty = 1;
2303
2304 ret = find_and_setup_root(tree_root, fs_info,
2305 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2306 if (ret)
2307 goto recovery_tree_root;
2308
2309 csum_root->track_dirty = 1;
2310
2311 fs_info->generation = generation;
2312 fs_info->last_trans_committed = generation;
2313 fs_info->data_alloc_profile = (u64)-1;
2314 fs_info->metadata_alloc_profile = (u64)-1;
2315 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
2316
2317 ret = btrfs_init_space_info(fs_info);
2318 if (ret) {
2319 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2320 goto fail_block_groups;
2321 }
2322
2323 ret = btrfs_read_block_groups(extent_root);
2324 if (ret) {
2325 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2326 goto fail_block_groups;
2327 }
2328
2329 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2330 "btrfs-cleaner");
2331 if (IS_ERR(fs_info->cleaner_kthread))
2332 goto fail_block_groups;
2333
2334 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2335 tree_root,
2336 "btrfs-transaction");
2337 if (IS_ERR(fs_info->transaction_kthread))
2338 goto fail_cleaner;
2339
2340 if (!btrfs_test_opt(tree_root, SSD) &&
2341 !btrfs_test_opt(tree_root, NOSSD) &&
2342 !fs_info->fs_devices->rotating) {
2343 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2344 "mode\n");
2345 btrfs_set_opt(fs_info->mount_opt, SSD);
2346 }
2347
2348 /* do not make disk changes in broken FS */
2349 if (btrfs_super_log_root(disk_super) != 0 &&
2350 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2351 u64 bytenr = btrfs_super_log_root(disk_super);
2352
2353 if (fs_devices->rw_devices == 0) {
2354 printk(KERN_WARNING "Btrfs log replay required "
2355 "on RO media\n");
2356 err = -EIO;
2357 goto fail_trans_kthread;
2358 }
2359 blocksize =
2360 btrfs_level_size(tree_root,
2361 btrfs_super_log_root_level(disk_super));
2362
2363 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
2364 if (!log_tree_root) {
2365 err = -ENOMEM;
2366 goto fail_trans_kthread;
2367 }
2368
2369 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2370 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2371
2372 log_tree_root->node = read_tree_block(tree_root, bytenr,
2373 blocksize,
2374 generation + 1);
2375 ret = btrfs_recover_log_trees(log_tree_root);
2376 BUG_ON(ret);
2377
2378 if (sb->s_flags & MS_RDONLY) {
2379 ret = btrfs_commit_super(tree_root);
2380 BUG_ON(ret);
2381 }
2382 }
2383
2384 ret = btrfs_find_orphan_roots(tree_root);
2385 BUG_ON(ret);
2386
2387 if (!(sb->s_flags & MS_RDONLY)) {
2388 ret = btrfs_cleanup_fs_roots(fs_info);
2389 BUG_ON(ret);
2390
2391 ret = btrfs_recover_relocation(tree_root);
2392 if (ret < 0) {
2393 printk(KERN_WARNING
2394 "btrfs: failed to recover relocation\n");
2395 err = -EINVAL;
2396 goto fail_trans_kthread;
2397 }
2398 }
2399
2400 location.objectid = BTRFS_FS_TREE_OBJECTID;
2401 location.type = BTRFS_ROOT_ITEM_KEY;
2402 location.offset = (u64)-1;
2403
2404 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2405 if (!fs_info->fs_root)
2406 goto fail_trans_kthread;
2407 if (IS_ERR(fs_info->fs_root)) {
2408 err = PTR_ERR(fs_info->fs_root);
2409 goto fail_trans_kthread;
2410 }
2411
2412 if (!(sb->s_flags & MS_RDONLY)) {
2413 down_read(&fs_info->cleanup_work_sem);
2414 err = btrfs_orphan_cleanup(fs_info->fs_root);
2415 if (!err)
2416 err = btrfs_orphan_cleanup(fs_info->tree_root);
2417 up_read(&fs_info->cleanup_work_sem);
2418 if (err) {
2419 close_ctree(tree_root);
2420 return ERR_PTR(err);
2421 }
2422 }
2423
2424 return tree_root;
2425
2426 fail_trans_kthread:
2427 kthread_stop(fs_info->transaction_kthread);
2428 fail_cleaner:
2429 kthread_stop(fs_info->cleaner_kthread);
2430
2431 /*
2432 * make sure we're done with the btree inode before we stop our
2433 * kthreads
2434 */
2435 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2436 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2437
2438 fail_block_groups:
2439 btrfs_free_block_groups(fs_info);
2440
2441 fail_tree_roots:
2442 free_root_pointers(fs_info, 1);
2443
2444 fail_sb_buffer:
2445 btrfs_stop_workers(&fs_info->generic_worker);
2446 btrfs_stop_workers(&fs_info->fixup_workers);
2447 btrfs_stop_workers(&fs_info->delalloc_workers);
2448 btrfs_stop_workers(&fs_info->workers);
2449 btrfs_stop_workers(&fs_info->endio_workers);
2450 btrfs_stop_workers(&fs_info->endio_meta_workers);
2451 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2452 btrfs_stop_workers(&fs_info->endio_write_workers);
2453 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2454 btrfs_stop_workers(&fs_info->submit_workers);
2455 btrfs_stop_workers(&fs_info->delayed_workers);
2456 btrfs_stop_workers(&fs_info->caching_workers);
2457 fail_alloc:
2458 fail_iput:
2459 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2460 iput(fs_info->btree_inode);
2461
2462 btrfs_close_devices(fs_info->fs_devices);
2463 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2464 fail_bdi:
2465 bdi_destroy(&fs_info->bdi);
2466 fail_srcu:
2467 cleanup_srcu_struct(&fs_info->subvol_srcu);
2468 fail:
2469 free_fs_info(fs_info);
2470 return ERR_PTR(err);
2471
2472 recovery_tree_root:
2473
2474 if (!btrfs_test_opt(tree_root, RECOVERY))
2475 goto fail_tree_roots;
2476
2477 free_root_pointers(fs_info, 0);
2478
2479 /* don't use the log in recovery mode, it won't be valid */
2480 btrfs_set_super_log_root(disk_super, 0);
2481
2482 /* we can't trust the free space cache either */
2483 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2484
2485 ret = next_root_backup(fs_info, fs_info->super_copy,
2486 &num_backups_tried, &backup_index);
2487 if (ret == -1)
2488 goto fail_block_groups;
2489 goto retry_root_backup;
2490 }
2491
2492 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2493 {
2494 char b[BDEVNAME_SIZE];
2495
2496 if (uptodate) {
2497 set_buffer_uptodate(bh);
2498 } else {
2499 printk_ratelimited(KERN_WARNING "lost page write due to "
2500 "I/O error on %s\n",
2501 bdevname(bh->b_bdev, b));
2502 /* note, we dont' set_buffer_write_io_error because we have
2503 * our own ways of dealing with the IO errors
2504 */
2505 clear_buffer_uptodate(bh);
2506 }
2507 unlock_buffer(bh);
2508 put_bh(bh);
2509 }
2510
2511 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2512 {
2513 struct buffer_head *bh;
2514 struct buffer_head *latest = NULL;
2515 struct btrfs_super_block *super;
2516 int i;
2517 u64 transid = 0;
2518 u64 bytenr;
2519
2520 /* we would like to check all the supers, but that would make
2521 * a btrfs mount succeed after a mkfs from a different FS.
2522 * So, we need to add a special mount option to scan for
2523 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2524 */
2525 for (i = 0; i < 1; i++) {
2526 bytenr = btrfs_sb_offset(i);
2527 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2528 break;
2529 bh = __bread(bdev, bytenr / 4096, 4096);
2530 if (!bh)
2531 continue;
2532
2533 super = (struct btrfs_super_block *)bh->b_data;
2534 if (btrfs_super_bytenr(super) != bytenr ||
2535 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2536 sizeof(super->magic))) {
2537 brelse(bh);
2538 continue;
2539 }
2540
2541 if (!latest || btrfs_super_generation(super) > transid) {
2542 brelse(latest);
2543 latest = bh;
2544 transid = btrfs_super_generation(super);
2545 } else {
2546 brelse(bh);
2547 }
2548 }
2549 return latest;
2550 }
2551
2552 /*
2553 * this should be called twice, once with wait == 0 and
2554 * once with wait == 1. When wait == 0 is done, all the buffer heads
2555 * we write are pinned.
2556 *
2557 * They are released when wait == 1 is done.
2558 * max_mirrors must be the same for both runs, and it indicates how
2559 * many supers on this one device should be written.
2560 *
2561 * max_mirrors == 0 means to write them all.
2562 */
2563 static int write_dev_supers(struct btrfs_device *device,
2564 struct btrfs_super_block *sb,
2565 int do_barriers, int wait, int max_mirrors)
2566 {
2567 struct buffer_head *bh;
2568 int i;
2569 int ret;
2570 int errors = 0;
2571 u32 crc;
2572 u64 bytenr;
2573 int last_barrier = 0;
2574
2575 if (max_mirrors == 0)
2576 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2577
2578 /* make sure only the last submit_bh does a barrier */
2579 if (do_barriers) {
2580 for (i = 0; i < max_mirrors; i++) {
2581 bytenr = btrfs_sb_offset(i);
2582 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2583 device->total_bytes)
2584 break;
2585 last_barrier = i;
2586 }
2587 }
2588
2589 for (i = 0; i < max_mirrors; i++) {
2590 bytenr = btrfs_sb_offset(i);
2591 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2592 break;
2593
2594 if (wait) {
2595 bh = __find_get_block(device->bdev, bytenr / 4096,
2596 BTRFS_SUPER_INFO_SIZE);
2597 BUG_ON(!bh);
2598 wait_on_buffer(bh);
2599 if (!buffer_uptodate(bh))
2600 errors++;
2601
2602 /* drop our reference */
2603 brelse(bh);
2604
2605 /* drop the reference from the wait == 0 run */
2606 brelse(bh);
2607 continue;
2608 } else {
2609 btrfs_set_super_bytenr(sb, bytenr);
2610
2611 crc = ~(u32)0;
2612 crc = btrfs_csum_data(NULL, (char *)sb +
2613 BTRFS_CSUM_SIZE, crc,
2614 BTRFS_SUPER_INFO_SIZE -
2615 BTRFS_CSUM_SIZE);
2616 btrfs_csum_final(crc, sb->csum);
2617
2618 /*
2619 * one reference for us, and we leave it for the
2620 * caller
2621 */
2622 bh = __getblk(device->bdev, bytenr / 4096,
2623 BTRFS_SUPER_INFO_SIZE);
2624 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2625
2626 /* one reference for submit_bh */
2627 get_bh(bh);
2628
2629 set_buffer_uptodate(bh);
2630 lock_buffer(bh);
2631 bh->b_end_io = btrfs_end_buffer_write_sync;
2632 }
2633
2634 if (i == last_barrier && do_barriers)
2635 ret = submit_bh(WRITE_FLUSH_FUA, bh);
2636 else
2637 ret = submit_bh(WRITE_SYNC, bh);
2638
2639 if (ret)
2640 errors++;
2641 }
2642 return errors < i ? 0 : -1;
2643 }
2644
2645 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2646 {
2647 struct list_head *head;
2648 struct btrfs_device *dev;
2649 struct btrfs_super_block *sb;
2650 struct btrfs_dev_item *dev_item;
2651 int ret;
2652 int do_barriers;
2653 int max_errors;
2654 int total_errors = 0;
2655 u64 flags;
2656
2657 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2658 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2659 backup_super_roots(root->fs_info);
2660
2661 sb = root->fs_info->super_for_commit;
2662 dev_item = &sb->dev_item;
2663
2664 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2665 head = &root->fs_info->fs_devices->devices;
2666 list_for_each_entry_rcu(dev, head, dev_list) {
2667 if (!dev->bdev) {
2668 total_errors++;
2669 continue;
2670 }
2671 if (!dev->in_fs_metadata || !dev->writeable)
2672 continue;
2673
2674 btrfs_set_stack_device_generation(dev_item, 0);
2675 btrfs_set_stack_device_type(dev_item, dev->type);
2676 btrfs_set_stack_device_id(dev_item, dev->devid);
2677 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2678 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2679 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2680 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2681 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2682 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2683 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2684
2685 flags = btrfs_super_flags(sb);
2686 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2687
2688 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2689 if (ret)
2690 total_errors++;
2691 }
2692 if (total_errors > max_errors) {
2693 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2694 total_errors);
2695 BUG();
2696 }
2697
2698 total_errors = 0;
2699 list_for_each_entry_rcu(dev, head, dev_list) {
2700 if (!dev->bdev)
2701 continue;
2702 if (!dev->in_fs_metadata || !dev->writeable)
2703 continue;
2704
2705 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2706 if (ret)
2707 total_errors++;
2708 }
2709 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2710 if (total_errors > max_errors) {
2711 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2712 total_errors);
2713 BUG();
2714 }
2715 return 0;
2716 }
2717
2718 int write_ctree_super(struct btrfs_trans_handle *trans,
2719 struct btrfs_root *root, int max_mirrors)
2720 {
2721 int ret;
2722
2723 ret = write_all_supers(root, max_mirrors);
2724 return ret;
2725 }
2726
2727 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2728 {
2729 spin_lock(&fs_info->fs_roots_radix_lock);
2730 radix_tree_delete(&fs_info->fs_roots_radix,
2731 (unsigned long)root->root_key.objectid);
2732 spin_unlock(&fs_info->fs_roots_radix_lock);
2733
2734 if (btrfs_root_refs(&root->root_item) == 0)
2735 synchronize_srcu(&fs_info->subvol_srcu);
2736
2737 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2738 __btrfs_remove_free_space_cache(root->free_ino_ctl);
2739 free_fs_root(root);
2740 return 0;
2741 }
2742
2743 static void free_fs_root(struct btrfs_root *root)
2744 {
2745 iput(root->cache_inode);
2746 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2747 if (root->anon_dev)
2748 free_anon_bdev(root->anon_dev);
2749 free_extent_buffer(root->node);
2750 free_extent_buffer(root->commit_root);
2751 kfree(root->free_ino_ctl);
2752 kfree(root->free_ino_pinned);
2753 kfree(root->name);
2754 kfree(root);
2755 }
2756
2757 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2758 {
2759 int ret;
2760 struct btrfs_root *gang[8];
2761 int i;
2762
2763 while (!list_empty(&fs_info->dead_roots)) {
2764 gang[0] = list_entry(fs_info->dead_roots.next,
2765 struct btrfs_root, root_list);
2766 list_del(&gang[0]->root_list);
2767
2768 if (gang[0]->in_radix) {
2769 btrfs_free_fs_root(fs_info, gang[0]);
2770 } else {
2771 free_extent_buffer(gang[0]->node);
2772 free_extent_buffer(gang[0]->commit_root);
2773 kfree(gang[0]);
2774 }
2775 }
2776
2777 while (1) {
2778 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2779 (void **)gang, 0,
2780 ARRAY_SIZE(gang));
2781 if (!ret)
2782 break;
2783 for (i = 0; i < ret; i++)
2784 btrfs_free_fs_root(fs_info, gang[i]);
2785 }
2786 return 0;
2787 }
2788
2789 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2790 {
2791 u64 root_objectid = 0;
2792 struct btrfs_root *gang[8];
2793 int i;
2794 int ret;
2795
2796 while (1) {
2797 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2798 (void **)gang, root_objectid,
2799 ARRAY_SIZE(gang));
2800 if (!ret)
2801 break;
2802
2803 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2804 for (i = 0; i < ret; i++) {
2805 int err;
2806
2807 root_objectid = gang[i]->root_key.objectid;
2808 err = btrfs_orphan_cleanup(gang[i]);
2809 if (err)
2810 return err;
2811 }
2812 root_objectid++;
2813 }
2814 return 0;
2815 }
2816
2817 int btrfs_commit_super(struct btrfs_root *root)
2818 {
2819 struct btrfs_trans_handle *trans;
2820 int ret;
2821
2822 mutex_lock(&root->fs_info->cleaner_mutex);
2823 btrfs_run_delayed_iputs(root);
2824 btrfs_clean_old_snapshots(root);
2825 mutex_unlock(&root->fs_info->cleaner_mutex);
2826
2827 /* wait until ongoing cleanup work done */
2828 down_write(&root->fs_info->cleanup_work_sem);
2829 up_write(&root->fs_info->cleanup_work_sem);
2830
2831 trans = btrfs_join_transaction(root);
2832 if (IS_ERR(trans))
2833 return PTR_ERR(trans);
2834 ret = btrfs_commit_transaction(trans, root);
2835 BUG_ON(ret);
2836 /* run commit again to drop the original snapshot */
2837 trans = btrfs_join_transaction(root);
2838 if (IS_ERR(trans))
2839 return PTR_ERR(trans);
2840 btrfs_commit_transaction(trans, root);
2841 ret = btrfs_write_and_wait_transaction(NULL, root);
2842 BUG_ON(ret);
2843
2844 ret = write_ctree_super(NULL, root, 0);
2845 return ret;
2846 }
2847
2848 int close_ctree(struct btrfs_root *root)
2849 {
2850 struct btrfs_fs_info *fs_info = root->fs_info;
2851 int ret;
2852
2853 fs_info->closing = 1;
2854 smp_mb();
2855
2856 btrfs_scrub_cancel(root);
2857
2858 /* wait for any defraggers to finish */
2859 wait_event(fs_info->transaction_wait,
2860 (atomic_read(&fs_info->defrag_running) == 0));
2861
2862 /* clear out the rbtree of defraggable inodes */
2863 btrfs_run_defrag_inodes(root->fs_info);
2864
2865 /*
2866 * Here come 2 situations when btrfs is broken to flip readonly:
2867 *
2868 * 1. when btrfs flips readonly somewhere else before
2869 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2870 * and btrfs will skip to write sb directly to keep
2871 * ERROR state on disk.
2872 *
2873 * 2. when btrfs flips readonly just in btrfs_commit_super,
2874 * and in such case, btrfs cannot write sb via btrfs_commit_super,
2875 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2876 * btrfs will cleanup all FS resources first and write sb then.
2877 */
2878 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2879 ret = btrfs_commit_super(root);
2880 if (ret)
2881 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2882 }
2883
2884 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
2885 ret = btrfs_error_commit_super(root);
2886 if (ret)
2887 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2888 }
2889
2890 btrfs_put_block_group_cache(fs_info);
2891
2892 kthread_stop(root->fs_info->transaction_kthread);
2893 kthread_stop(root->fs_info->cleaner_kthread);
2894
2895 fs_info->closing = 2;
2896 smp_mb();
2897
2898 if (fs_info->delalloc_bytes) {
2899 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2900 (unsigned long long)fs_info->delalloc_bytes);
2901 }
2902 if (fs_info->total_ref_cache_size) {
2903 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2904 (unsigned long long)fs_info->total_ref_cache_size);
2905 }
2906
2907 free_extent_buffer(fs_info->extent_root->node);
2908 free_extent_buffer(fs_info->extent_root->commit_root);
2909 free_extent_buffer(fs_info->tree_root->node);
2910 free_extent_buffer(fs_info->tree_root->commit_root);
2911 free_extent_buffer(root->fs_info->chunk_root->node);
2912 free_extent_buffer(root->fs_info->chunk_root->commit_root);
2913 free_extent_buffer(root->fs_info->dev_root->node);
2914 free_extent_buffer(root->fs_info->dev_root->commit_root);
2915 free_extent_buffer(root->fs_info->csum_root->node);
2916 free_extent_buffer(root->fs_info->csum_root->commit_root);
2917
2918 btrfs_free_block_groups(root->fs_info);
2919
2920 del_fs_roots(fs_info);
2921
2922 iput(fs_info->btree_inode);
2923
2924 btrfs_stop_workers(&fs_info->generic_worker);
2925 btrfs_stop_workers(&fs_info->fixup_workers);
2926 btrfs_stop_workers(&fs_info->delalloc_workers);
2927 btrfs_stop_workers(&fs_info->workers);
2928 btrfs_stop_workers(&fs_info->endio_workers);
2929 btrfs_stop_workers(&fs_info->endio_meta_workers);
2930 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2931 btrfs_stop_workers(&fs_info->endio_write_workers);
2932 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2933 btrfs_stop_workers(&fs_info->submit_workers);
2934 btrfs_stop_workers(&fs_info->delayed_workers);
2935 btrfs_stop_workers(&fs_info->caching_workers);
2936 btrfs_stop_workers(&fs_info->readahead_workers);
2937
2938 btrfs_close_devices(fs_info->fs_devices);
2939 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2940
2941 bdi_destroy(&fs_info->bdi);
2942 cleanup_srcu_struct(&fs_info->subvol_srcu);
2943
2944 free_fs_info(fs_info);
2945
2946 return 0;
2947 }
2948
2949 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2950 {
2951 int ret;
2952 struct inode *btree_inode = buf->first_page->mapping->host;
2953
2954 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2955 NULL);
2956 if (!ret)
2957 return ret;
2958
2959 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2960 parent_transid);
2961 return !ret;
2962 }
2963
2964 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2965 {
2966 struct inode *btree_inode = buf->first_page->mapping->host;
2967 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2968 buf);
2969 }
2970
2971 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2972 {
2973 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2974 u64 transid = btrfs_header_generation(buf);
2975 struct inode *btree_inode = root->fs_info->btree_inode;
2976 int was_dirty;
2977
2978 btrfs_assert_tree_locked(buf);
2979 if (transid != root->fs_info->generation) {
2980 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2981 "found %llu running %llu\n",
2982 (unsigned long long)buf->start,
2983 (unsigned long long)transid,
2984 (unsigned long long)root->fs_info->generation);
2985 WARN_ON(1);
2986 }
2987 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2988 buf);
2989 if (!was_dirty) {
2990 spin_lock(&root->fs_info->delalloc_lock);
2991 root->fs_info->dirty_metadata_bytes += buf->len;
2992 spin_unlock(&root->fs_info->delalloc_lock);
2993 }
2994 }
2995
2996 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2997 {
2998 /*
2999 * looks as though older kernels can get into trouble with
3000 * this code, they end up stuck in balance_dirty_pages forever
3001 */
3002 u64 num_dirty;
3003 unsigned long thresh = 32 * 1024 * 1024;
3004
3005 if (current->flags & PF_MEMALLOC)
3006 return;
3007
3008 btrfs_balance_delayed_items(root);
3009
3010 num_dirty = root->fs_info->dirty_metadata_bytes;
3011
3012 if (num_dirty > thresh) {
3013 balance_dirty_pages_ratelimited_nr(
3014 root->fs_info->btree_inode->i_mapping, 1);
3015 }
3016 return;
3017 }
3018
3019 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3020 {
3021 /*
3022 * looks as though older kernels can get into trouble with
3023 * this code, they end up stuck in balance_dirty_pages forever
3024 */
3025 u64 num_dirty;
3026 unsigned long thresh = 32 * 1024 * 1024;
3027
3028 if (current->flags & PF_MEMALLOC)
3029 return;
3030
3031 num_dirty = root->fs_info->dirty_metadata_bytes;
3032
3033 if (num_dirty > thresh) {
3034 balance_dirty_pages_ratelimited_nr(
3035 root->fs_info->btree_inode->i_mapping, 1);
3036 }
3037 return;
3038 }
3039
3040 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3041 {
3042 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
3043 int ret;
3044 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3045 if (ret == 0)
3046 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
3047 return ret;
3048 }
3049
3050 static int btree_lock_page_hook(struct page *page, void *data,
3051 void (*flush_fn)(void *))
3052 {
3053 struct inode *inode = page->mapping->host;
3054 struct btrfs_root *root = BTRFS_I(inode)->root;
3055 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3056 struct extent_buffer *eb;
3057 unsigned long len;
3058 u64 bytenr = page_offset(page);
3059
3060 if (page->private == EXTENT_PAGE_PRIVATE)
3061 goto out;
3062
3063 len = page->private >> 2;
3064 eb = find_extent_buffer(io_tree, bytenr, len);
3065 if (!eb)
3066 goto out;
3067
3068 if (!btrfs_try_tree_write_lock(eb)) {
3069 flush_fn(data);
3070 btrfs_tree_lock(eb);
3071 }
3072 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3073
3074 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3075 spin_lock(&root->fs_info->delalloc_lock);
3076 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3077 root->fs_info->dirty_metadata_bytes -= eb->len;
3078 else
3079 WARN_ON(1);
3080 spin_unlock(&root->fs_info->delalloc_lock);
3081 }
3082
3083 btrfs_tree_unlock(eb);
3084 free_extent_buffer(eb);
3085 out:
3086 if (!trylock_page(page)) {
3087 flush_fn(data);
3088 lock_page(page);
3089 }
3090 return 0;
3091 }
3092
3093 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3094 int read_only)
3095 {
3096 if (read_only)
3097 return;
3098
3099 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3100 printk(KERN_WARNING "warning: mount fs with errors, "
3101 "running btrfsck is recommended\n");
3102 }
3103
3104 int btrfs_error_commit_super(struct btrfs_root *root)
3105 {
3106 int ret;
3107
3108 mutex_lock(&root->fs_info->cleaner_mutex);
3109 btrfs_run_delayed_iputs(root);
3110 mutex_unlock(&root->fs_info->cleaner_mutex);
3111
3112 down_write(&root->fs_info->cleanup_work_sem);
3113 up_write(&root->fs_info->cleanup_work_sem);
3114
3115 /* cleanup FS via transaction */
3116 btrfs_cleanup_transaction(root);
3117
3118 ret = write_ctree_super(NULL, root, 0);
3119
3120 return ret;
3121 }
3122
3123 static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
3124 {
3125 struct btrfs_inode *btrfs_inode;
3126 struct list_head splice;
3127
3128 INIT_LIST_HEAD(&splice);
3129
3130 mutex_lock(&root->fs_info->ordered_operations_mutex);
3131 spin_lock(&root->fs_info->ordered_extent_lock);
3132
3133 list_splice_init(&root->fs_info->ordered_operations, &splice);
3134 while (!list_empty(&splice)) {
3135 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3136 ordered_operations);
3137
3138 list_del_init(&btrfs_inode->ordered_operations);
3139
3140 btrfs_invalidate_inodes(btrfs_inode->root);
3141 }
3142
3143 spin_unlock(&root->fs_info->ordered_extent_lock);
3144 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3145
3146 return 0;
3147 }
3148
3149 static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
3150 {
3151 struct list_head splice;
3152 struct btrfs_ordered_extent *ordered;
3153 struct inode *inode;
3154
3155 INIT_LIST_HEAD(&splice);
3156
3157 spin_lock(&root->fs_info->ordered_extent_lock);
3158
3159 list_splice_init(&root->fs_info->ordered_extents, &splice);
3160 while (!list_empty(&splice)) {
3161 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3162 root_extent_list);
3163
3164 list_del_init(&ordered->root_extent_list);
3165 atomic_inc(&ordered->refs);
3166
3167 /* the inode may be getting freed (in sys_unlink path). */
3168 inode = igrab(ordered->inode);
3169
3170 spin_unlock(&root->fs_info->ordered_extent_lock);
3171 if (inode)
3172 iput(inode);
3173
3174 atomic_set(&ordered->refs, 1);
3175 btrfs_put_ordered_extent(ordered);
3176
3177 spin_lock(&root->fs_info->ordered_extent_lock);
3178 }
3179
3180 spin_unlock(&root->fs_info->ordered_extent_lock);
3181
3182 return 0;
3183 }
3184
3185 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3186 struct btrfs_root *root)
3187 {
3188 struct rb_node *node;
3189 struct btrfs_delayed_ref_root *delayed_refs;
3190 struct btrfs_delayed_ref_node *ref;
3191 int ret = 0;
3192
3193 delayed_refs = &trans->delayed_refs;
3194
3195 spin_lock(&delayed_refs->lock);
3196 if (delayed_refs->num_entries == 0) {
3197 spin_unlock(&delayed_refs->lock);
3198 printk(KERN_INFO "delayed_refs has NO entry\n");
3199 return ret;
3200 }
3201
3202 node = rb_first(&delayed_refs->root);
3203 while (node) {
3204 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3205 node = rb_next(node);
3206
3207 ref->in_tree = 0;
3208 rb_erase(&ref->rb_node, &delayed_refs->root);
3209 delayed_refs->num_entries--;
3210
3211 atomic_set(&ref->refs, 1);
3212 if (btrfs_delayed_ref_is_head(ref)) {
3213 struct btrfs_delayed_ref_head *head;
3214
3215 head = btrfs_delayed_node_to_head(ref);
3216 mutex_lock(&head->mutex);
3217 kfree(head->extent_op);
3218 delayed_refs->num_heads--;
3219 if (list_empty(&head->cluster))
3220 delayed_refs->num_heads_ready--;
3221 list_del_init(&head->cluster);
3222 mutex_unlock(&head->mutex);
3223 }
3224
3225 spin_unlock(&delayed_refs->lock);
3226 btrfs_put_delayed_ref(ref);
3227
3228 cond_resched();
3229 spin_lock(&delayed_refs->lock);
3230 }
3231
3232 spin_unlock(&delayed_refs->lock);
3233
3234 return ret;
3235 }
3236
3237 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3238 {
3239 struct btrfs_pending_snapshot *snapshot;
3240 struct list_head splice;
3241
3242 INIT_LIST_HEAD(&splice);
3243
3244 list_splice_init(&t->pending_snapshots, &splice);
3245
3246 while (!list_empty(&splice)) {
3247 snapshot = list_entry(splice.next,
3248 struct btrfs_pending_snapshot,
3249 list);
3250
3251 list_del_init(&snapshot->list);
3252
3253 kfree(snapshot);
3254 }
3255
3256 return 0;
3257 }
3258
3259 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3260 {
3261 struct btrfs_inode *btrfs_inode;
3262 struct list_head splice;
3263
3264 INIT_LIST_HEAD(&splice);
3265
3266 spin_lock(&root->fs_info->delalloc_lock);
3267 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3268
3269 while (!list_empty(&splice)) {
3270 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3271 delalloc_inodes);
3272
3273 list_del_init(&btrfs_inode->delalloc_inodes);
3274
3275 btrfs_invalidate_inodes(btrfs_inode->root);
3276 }
3277
3278 spin_unlock(&root->fs_info->delalloc_lock);
3279
3280 return 0;
3281 }
3282
3283 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3284 struct extent_io_tree *dirty_pages,
3285 int mark)
3286 {
3287 int ret;
3288 struct page *page;
3289 struct inode *btree_inode = root->fs_info->btree_inode;
3290 struct extent_buffer *eb;
3291 u64 start = 0;
3292 u64 end;
3293 u64 offset;
3294 unsigned long index;
3295
3296 while (1) {
3297 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3298 mark);
3299 if (ret)
3300 break;
3301
3302 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3303 while (start <= end) {
3304 index = start >> PAGE_CACHE_SHIFT;
3305 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3306 page = find_get_page(btree_inode->i_mapping, index);
3307 if (!page)
3308 continue;
3309 offset = page_offset(page);
3310
3311 spin_lock(&dirty_pages->buffer_lock);
3312 eb = radix_tree_lookup(
3313 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3314 offset >> PAGE_CACHE_SHIFT);
3315 spin_unlock(&dirty_pages->buffer_lock);
3316 if (eb) {
3317 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3318 &eb->bflags);
3319 atomic_set(&eb->refs, 1);
3320 }
3321 if (PageWriteback(page))
3322 end_page_writeback(page);
3323
3324 lock_page(page);
3325 if (PageDirty(page)) {
3326 clear_page_dirty_for_io(page);
3327 spin_lock_irq(&page->mapping->tree_lock);
3328 radix_tree_tag_clear(&page->mapping->page_tree,
3329 page_index(page),
3330 PAGECACHE_TAG_DIRTY);
3331 spin_unlock_irq(&page->mapping->tree_lock);
3332 }
3333
3334 page->mapping->a_ops->invalidatepage(page, 0);
3335 unlock_page(page);
3336 }
3337 }
3338
3339 return ret;
3340 }
3341
3342 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3343 struct extent_io_tree *pinned_extents)
3344 {
3345 struct extent_io_tree *unpin;
3346 u64 start;
3347 u64 end;
3348 int ret;
3349
3350 unpin = pinned_extents;
3351 while (1) {
3352 ret = find_first_extent_bit(unpin, 0, &start, &end,
3353 EXTENT_DIRTY);
3354 if (ret)
3355 break;
3356
3357 /* opt_discard */
3358 if (btrfs_test_opt(root, DISCARD))
3359 ret = btrfs_error_discard_extent(root, start,
3360 end + 1 - start,
3361 NULL);
3362
3363 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3364 btrfs_error_unpin_extent_range(root, start, end);
3365 cond_resched();
3366 }
3367
3368 return 0;
3369 }
3370
3371 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3372 {
3373 struct btrfs_transaction *t;
3374 LIST_HEAD(list);
3375
3376 WARN_ON(1);
3377
3378 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3379
3380 spin_lock(&root->fs_info->trans_lock);
3381 list_splice_init(&root->fs_info->trans_list, &list);
3382 root->fs_info->trans_no_join = 1;
3383 spin_unlock(&root->fs_info->trans_lock);
3384
3385 while (!list_empty(&list)) {
3386 t = list_entry(list.next, struct btrfs_transaction, list);
3387 if (!t)
3388 break;
3389
3390 btrfs_destroy_ordered_operations(root);
3391
3392 btrfs_destroy_ordered_extents(root);
3393
3394 btrfs_destroy_delayed_refs(t, root);
3395
3396 btrfs_block_rsv_release(root,
3397 &root->fs_info->trans_block_rsv,
3398 t->dirty_pages.dirty_bytes);
3399
3400 /* FIXME: cleanup wait for commit */
3401 t->in_commit = 1;
3402 t->blocked = 1;
3403 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3404 wake_up(&root->fs_info->transaction_blocked_wait);
3405
3406 t->blocked = 0;
3407 if (waitqueue_active(&root->fs_info->transaction_wait))
3408 wake_up(&root->fs_info->transaction_wait);
3409
3410 t->commit_done = 1;
3411 if (waitqueue_active(&t->commit_wait))
3412 wake_up(&t->commit_wait);
3413
3414 btrfs_destroy_pending_snapshots(t);
3415
3416 btrfs_destroy_delalloc_inodes(root);
3417
3418 spin_lock(&root->fs_info->trans_lock);
3419 root->fs_info->running_transaction = NULL;
3420 spin_unlock(&root->fs_info->trans_lock);
3421
3422 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3423 EXTENT_DIRTY);
3424
3425 btrfs_destroy_pinned_extent(root,
3426 root->fs_info->pinned_extents);
3427
3428 atomic_set(&t->use_count, 0);
3429 list_del_init(&t->list);
3430 memset(t, 0, sizeof(*t));
3431 kmem_cache_free(btrfs_transaction_cachep, t);
3432 }
3433
3434 spin_lock(&root->fs_info->trans_lock);
3435 root->fs_info->trans_no_join = 0;
3436 spin_unlock(&root->fs_info->trans_lock);
3437 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3438
3439 return 0;
3440 }
3441
3442 static struct extent_io_ops btree_extent_io_ops = {
3443 .write_cache_pages_lock_hook = btree_lock_page_hook,
3444 .readpage_end_io_hook = btree_readpage_end_io_hook,
3445 .readpage_io_failed_hook = btree_io_failed_hook,
3446 .submit_bio_hook = btree_submit_bio_hook,
3447 /* note we're sharing with inode.c for the merge bio hook */
3448 .merge_bio_hook = btrfs_merge_bio_hook,
3449 };