Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/ide-next-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include "compat.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "volumes.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
38 #include "locking.h"
39 #include "tree-log.h"
40 #include "free-space-cache.h"
41
42 static struct extent_io_ops btree_extent_io_ops;
43 static void end_workqueue_fn(struct btrfs_work *work);
44 static void free_fs_root(struct btrfs_root *root);
45
46 static atomic_t btrfs_bdi_num = ATOMIC_INIT(0);
47
48 /*
49 * end_io_wq structs are used to do processing in task context when an IO is
50 * complete. This is used during reads to verify checksums, and it is used
51 * by writes to insert metadata for new file extents after IO is complete.
52 */
53 struct end_io_wq {
54 struct bio *bio;
55 bio_end_io_t *end_io;
56 void *private;
57 struct btrfs_fs_info *info;
58 int error;
59 int metadata;
60 struct list_head list;
61 struct btrfs_work work;
62 };
63
64 /*
65 * async submit bios are used to offload expensive checksumming
66 * onto the worker threads. They checksum file and metadata bios
67 * just before they are sent down the IO stack.
68 */
69 struct async_submit_bio {
70 struct inode *inode;
71 struct bio *bio;
72 struct list_head list;
73 extent_submit_bio_hook_t *submit_bio_start;
74 extent_submit_bio_hook_t *submit_bio_done;
75 int rw;
76 int mirror_num;
77 unsigned long bio_flags;
78 struct btrfs_work work;
79 };
80
81 /* These are used to set the lockdep class on the extent buffer locks.
82 * The class is set by the readpage_end_io_hook after the buffer has
83 * passed csum validation but before the pages are unlocked.
84 *
85 * The lockdep class is also set by btrfs_init_new_buffer on freshly
86 * allocated blocks.
87 *
88 * The class is based on the level in the tree block, which allows lockdep
89 * to know that lower nodes nest inside the locks of higher nodes.
90 *
91 * We also add a check to make sure the highest level of the tree is
92 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
93 * code needs update as well.
94 */
95 #ifdef CONFIG_DEBUG_LOCK_ALLOC
96 # if BTRFS_MAX_LEVEL != 8
97 # error
98 # endif
99 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
100 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
101 /* leaf */
102 "btrfs-extent-00",
103 "btrfs-extent-01",
104 "btrfs-extent-02",
105 "btrfs-extent-03",
106 "btrfs-extent-04",
107 "btrfs-extent-05",
108 "btrfs-extent-06",
109 "btrfs-extent-07",
110 /* highest possible level */
111 "btrfs-extent-08",
112 };
113 #endif
114
115 /*
116 * extents on the btree inode are pretty simple, there's one extent
117 * that covers the entire device
118 */
119 static struct extent_map *btree_get_extent(struct inode *inode,
120 struct page *page, size_t page_offset, u64 start, u64 len,
121 int create)
122 {
123 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
124 struct extent_map *em;
125 int ret;
126
127 read_lock(&em_tree->lock);
128 em = lookup_extent_mapping(em_tree, start, len);
129 if (em) {
130 em->bdev =
131 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
132 read_unlock(&em_tree->lock);
133 goto out;
134 }
135 read_unlock(&em_tree->lock);
136
137 em = alloc_extent_map(GFP_NOFS);
138 if (!em) {
139 em = ERR_PTR(-ENOMEM);
140 goto out;
141 }
142 em->start = 0;
143 em->len = (u64)-1;
144 em->block_len = (u64)-1;
145 em->block_start = 0;
146 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
147
148 write_lock(&em_tree->lock);
149 ret = add_extent_mapping(em_tree, em);
150 if (ret == -EEXIST) {
151 u64 failed_start = em->start;
152 u64 failed_len = em->len;
153
154 free_extent_map(em);
155 em = lookup_extent_mapping(em_tree, start, len);
156 if (em) {
157 ret = 0;
158 } else {
159 em = lookup_extent_mapping(em_tree, failed_start,
160 failed_len);
161 ret = -EIO;
162 }
163 } else if (ret) {
164 free_extent_map(em);
165 em = NULL;
166 }
167 write_unlock(&em_tree->lock);
168
169 if (ret)
170 em = ERR_PTR(ret);
171 out:
172 return em;
173 }
174
175 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
176 {
177 return crc32c(seed, data, len);
178 }
179
180 void btrfs_csum_final(u32 crc, char *result)
181 {
182 *(__le32 *)result = ~cpu_to_le32(crc);
183 }
184
185 /*
186 * compute the csum for a btree block, and either verify it or write it
187 * into the csum field of the block.
188 */
189 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
190 int verify)
191 {
192 u16 csum_size =
193 btrfs_super_csum_size(&root->fs_info->super_copy);
194 char *result = NULL;
195 unsigned long len;
196 unsigned long cur_len;
197 unsigned long offset = BTRFS_CSUM_SIZE;
198 char *map_token = NULL;
199 char *kaddr;
200 unsigned long map_start;
201 unsigned long map_len;
202 int err;
203 u32 crc = ~(u32)0;
204 unsigned long inline_result;
205
206 len = buf->len - offset;
207 while (len > 0) {
208 err = map_private_extent_buffer(buf, offset, 32,
209 &map_token, &kaddr,
210 &map_start, &map_len, KM_USER0);
211 if (err)
212 return 1;
213 cur_len = min(len, map_len - (offset - map_start));
214 crc = btrfs_csum_data(root, kaddr + offset - map_start,
215 crc, cur_len);
216 len -= cur_len;
217 offset += cur_len;
218 unmap_extent_buffer(buf, map_token, KM_USER0);
219 }
220 if (csum_size > sizeof(inline_result)) {
221 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
222 if (!result)
223 return 1;
224 } else {
225 result = (char *)&inline_result;
226 }
227
228 btrfs_csum_final(crc, result);
229
230 if (verify) {
231 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
232 u32 val;
233 u32 found = 0;
234 memcpy(&found, result, csum_size);
235
236 read_extent_buffer(buf, &val, 0, csum_size);
237 if (printk_ratelimit()) {
238 printk(KERN_INFO "btrfs: %s checksum verify "
239 "failed on %llu wanted %X found %X "
240 "level %d\n",
241 root->fs_info->sb->s_id,
242 (unsigned long long)buf->start, val, found,
243 btrfs_header_level(buf));
244 }
245 if (result != (char *)&inline_result)
246 kfree(result);
247 return 1;
248 }
249 } else {
250 write_extent_buffer(buf, result, 0, csum_size);
251 }
252 if (result != (char *)&inline_result)
253 kfree(result);
254 return 0;
255 }
256
257 /*
258 * we can't consider a given block up to date unless the transid of the
259 * block matches the transid in the parent node's pointer. This is how we
260 * detect blocks that either didn't get written at all or got written
261 * in the wrong place.
262 */
263 static int verify_parent_transid(struct extent_io_tree *io_tree,
264 struct extent_buffer *eb, u64 parent_transid)
265 {
266 int ret;
267
268 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
269 return 0;
270
271 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
272 if (extent_buffer_uptodate(io_tree, eb) &&
273 btrfs_header_generation(eb) == parent_transid) {
274 ret = 0;
275 goto out;
276 }
277 if (printk_ratelimit()) {
278 printk("parent transid verify failed on %llu wanted %llu "
279 "found %llu\n",
280 (unsigned long long)eb->start,
281 (unsigned long long)parent_transid,
282 (unsigned long long)btrfs_header_generation(eb));
283 }
284 ret = 1;
285 clear_extent_buffer_uptodate(io_tree, eb);
286 out:
287 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
288 GFP_NOFS);
289 return ret;
290 }
291
292 /*
293 * helper to read a given tree block, doing retries as required when
294 * the checksums don't match and we have alternate mirrors to try.
295 */
296 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
297 struct extent_buffer *eb,
298 u64 start, u64 parent_transid)
299 {
300 struct extent_io_tree *io_tree;
301 int ret;
302 int num_copies = 0;
303 int mirror_num = 0;
304
305 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
306 while (1) {
307 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
308 btree_get_extent, mirror_num);
309 if (!ret &&
310 !verify_parent_transid(io_tree, eb, parent_transid))
311 return ret;
312
313 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
314 eb->start, eb->len);
315 if (num_copies == 1)
316 return ret;
317
318 mirror_num++;
319 if (mirror_num > num_copies)
320 return ret;
321 }
322 return -EIO;
323 }
324
325 /*
326 * checksum a dirty tree block before IO. This has extra checks to make sure
327 * we only fill in the checksum field in the first page of a multi-page block
328 */
329
330 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
331 {
332 struct extent_io_tree *tree;
333 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
334 u64 found_start;
335 int found_level;
336 unsigned long len;
337 struct extent_buffer *eb;
338 int ret;
339
340 tree = &BTRFS_I(page->mapping->host)->io_tree;
341
342 if (page->private == EXTENT_PAGE_PRIVATE)
343 goto out;
344 if (!page->private)
345 goto out;
346 len = page->private >> 2;
347 WARN_ON(len == 0);
348
349 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
350 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
351 btrfs_header_generation(eb));
352 BUG_ON(ret);
353 found_start = btrfs_header_bytenr(eb);
354 if (found_start != start) {
355 WARN_ON(1);
356 goto err;
357 }
358 if (eb->first_page != page) {
359 WARN_ON(1);
360 goto err;
361 }
362 if (!PageUptodate(page)) {
363 WARN_ON(1);
364 goto err;
365 }
366 found_level = btrfs_header_level(eb);
367
368 csum_tree_block(root, eb, 0);
369 err:
370 free_extent_buffer(eb);
371 out:
372 return 0;
373 }
374
375 static int check_tree_block_fsid(struct btrfs_root *root,
376 struct extent_buffer *eb)
377 {
378 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
379 u8 fsid[BTRFS_UUID_SIZE];
380 int ret = 1;
381
382 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
383 BTRFS_FSID_SIZE);
384 while (fs_devices) {
385 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
386 ret = 0;
387 break;
388 }
389 fs_devices = fs_devices->seed;
390 }
391 return ret;
392 }
393
394 #ifdef CONFIG_DEBUG_LOCK_ALLOC
395 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
396 {
397 lockdep_set_class_and_name(&eb->lock,
398 &btrfs_eb_class[level],
399 btrfs_eb_name[level]);
400 }
401 #endif
402
403 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
404 struct extent_state *state)
405 {
406 struct extent_io_tree *tree;
407 u64 found_start;
408 int found_level;
409 unsigned long len;
410 struct extent_buffer *eb;
411 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
412 int ret = 0;
413
414 tree = &BTRFS_I(page->mapping->host)->io_tree;
415 if (page->private == EXTENT_PAGE_PRIVATE)
416 goto out;
417 if (!page->private)
418 goto out;
419
420 len = page->private >> 2;
421 WARN_ON(len == 0);
422
423 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
424
425 found_start = btrfs_header_bytenr(eb);
426 if (found_start != start) {
427 if (printk_ratelimit()) {
428 printk(KERN_INFO "btrfs bad tree block start "
429 "%llu %llu\n",
430 (unsigned long long)found_start,
431 (unsigned long long)eb->start);
432 }
433 ret = -EIO;
434 goto err;
435 }
436 if (eb->first_page != page) {
437 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
438 eb->first_page->index, page->index);
439 WARN_ON(1);
440 ret = -EIO;
441 goto err;
442 }
443 if (check_tree_block_fsid(root, eb)) {
444 if (printk_ratelimit()) {
445 printk(KERN_INFO "btrfs bad fsid on block %llu\n",
446 (unsigned long long)eb->start);
447 }
448 ret = -EIO;
449 goto err;
450 }
451 found_level = btrfs_header_level(eb);
452
453 btrfs_set_buffer_lockdep_class(eb, found_level);
454
455 ret = csum_tree_block(root, eb, 1);
456 if (ret)
457 ret = -EIO;
458
459 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
460 end = eb->start + end - 1;
461 err:
462 free_extent_buffer(eb);
463 out:
464 return ret;
465 }
466
467 static void end_workqueue_bio(struct bio *bio, int err)
468 {
469 struct end_io_wq *end_io_wq = bio->bi_private;
470 struct btrfs_fs_info *fs_info;
471
472 fs_info = end_io_wq->info;
473 end_io_wq->error = err;
474 end_io_wq->work.func = end_workqueue_fn;
475 end_io_wq->work.flags = 0;
476
477 if (bio->bi_rw & (1 << BIO_RW)) {
478 if (end_io_wq->metadata)
479 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
480 &end_io_wq->work);
481 else
482 btrfs_queue_worker(&fs_info->endio_write_workers,
483 &end_io_wq->work);
484 } else {
485 if (end_io_wq->metadata)
486 btrfs_queue_worker(&fs_info->endio_meta_workers,
487 &end_io_wq->work);
488 else
489 btrfs_queue_worker(&fs_info->endio_workers,
490 &end_io_wq->work);
491 }
492 }
493
494 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
495 int metadata)
496 {
497 struct end_io_wq *end_io_wq;
498 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
499 if (!end_io_wq)
500 return -ENOMEM;
501
502 end_io_wq->private = bio->bi_private;
503 end_io_wq->end_io = bio->bi_end_io;
504 end_io_wq->info = info;
505 end_io_wq->error = 0;
506 end_io_wq->bio = bio;
507 end_io_wq->metadata = metadata;
508
509 bio->bi_private = end_io_wq;
510 bio->bi_end_io = end_workqueue_bio;
511 return 0;
512 }
513
514 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
515 {
516 unsigned long limit = min_t(unsigned long,
517 info->workers.max_workers,
518 info->fs_devices->open_devices);
519 return 256 * limit;
520 }
521
522 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
523 {
524 return atomic_read(&info->nr_async_bios) >
525 btrfs_async_submit_limit(info);
526 }
527
528 static void run_one_async_start(struct btrfs_work *work)
529 {
530 struct btrfs_fs_info *fs_info;
531 struct async_submit_bio *async;
532
533 async = container_of(work, struct async_submit_bio, work);
534 fs_info = BTRFS_I(async->inode)->root->fs_info;
535 async->submit_bio_start(async->inode, async->rw, async->bio,
536 async->mirror_num, async->bio_flags);
537 }
538
539 static void run_one_async_done(struct btrfs_work *work)
540 {
541 struct btrfs_fs_info *fs_info;
542 struct async_submit_bio *async;
543 int limit;
544
545 async = container_of(work, struct async_submit_bio, work);
546 fs_info = BTRFS_I(async->inode)->root->fs_info;
547
548 limit = btrfs_async_submit_limit(fs_info);
549 limit = limit * 2 / 3;
550
551 atomic_dec(&fs_info->nr_async_submits);
552
553 if (atomic_read(&fs_info->nr_async_submits) < limit &&
554 waitqueue_active(&fs_info->async_submit_wait))
555 wake_up(&fs_info->async_submit_wait);
556
557 async->submit_bio_done(async->inode, async->rw, async->bio,
558 async->mirror_num, async->bio_flags);
559 }
560
561 static void run_one_async_free(struct btrfs_work *work)
562 {
563 struct async_submit_bio *async;
564
565 async = container_of(work, struct async_submit_bio, work);
566 kfree(async);
567 }
568
569 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
570 int rw, struct bio *bio, int mirror_num,
571 unsigned long bio_flags,
572 extent_submit_bio_hook_t *submit_bio_start,
573 extent_submit_bio_hook_t *submit_bio_done)
574 {
575 struct async_submit_bio *async;
576
577 async = kmalloc(sizeof(*async), GFP_NOFS);
578 if (!async)
579 return -ENOMEM;
580
581 async->inode = inode;
582 async->rw = rw;
583 async->bio = bio;
584 async->mirror_num = mirror_num;
585 async->submit_bio_start = submit_bio_start;
586 async->submit_bio_done = submit_bio_done;
587
588 async->work.func = run_one_async_start;
589 async->work.ordered_func = run_one_async_done;
590 async->work.ordered_free = run_one_async_free;
591
592 async->work.flags = 0;
593 async->bio_flags = bio_flags;
594
595 atomic_inc(&fs_info->nr_async_submits);
596
597 if (rw & (1 << BIO_RW_SYNCIO))
598 btrfs_set_work_high_prio(&async->work);
599
600 btrfs_queue_worker(&fs_info->workers, &async->work);
601
602 while (atomic_read(&fs_info->async_submit_draining) &&
603 atomic_read(&fs_info->nr_async_submits)) {
604 wait_event(fs_info->async_submit_wait,
605 (atomic_read(&fs_info->nr_async_submits) == 0));
606 }
607
608 return 0;
609 }
610
611 static int btree_csum_one_bio(struct bio *bio)
612 {
613 struct bio_vec *bvec = bio->bi_io_vec;
614 int bio_index = 0;
615 struct btrfs_root *root;
616
617 WARN_ON(bio->bi_vcnt <= 0);
618 while (bio_index < bio->bi_vcnt) {
619 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
620 csum_dirty_buffer(root, bvec->bv_page);
621 bio_index++;
622 bvec++;
623 }
624 return 0;
625 }
626
627 static int __btree_submit_bio_start(struct inode *inode, int rw,
628 struct bio *bio, int mirror_num,
629 unsigned long bio_flags)
630 {
631 /*
632 * when we're called for a write, we're already in the async
633 * submission context. Just jump into btrfs_map_bio
634 */
635 btree_csum_one_bio(bio);
636 return 0;
637 }
638
639 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
640 int mirror_num, unsigned long bio_flags)
641 {
642 /*
643 * when we're called for a write, we're already in the async
644 * submission context. Just jump into btrfs_map_bio
645 */
646 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
647 }
648
649 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
650 int mirror_num, unsigned long bio_flags)
651 {
652 int ret;
653
654 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
655 bio, 1);
656 BUG_ON(ret);
657
658 if (!(rw & (1 << BIO_RW))) {
659 /*
660 * called for a read, do the setup so that checksum validation
661 * can happen in the async kernel threads
662 */
663 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
664 mirror_num, 0);
665 }
666
667 /*
668 * kthread helpers are used to submit writes so that checksumming
669 * can happen in parallel across all CPUs
670 */
671 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
672 inode, rw, bio, mirror_num, 0,
673 __btree_submit_bio_start,
674 __btree_submit_bio_done);
675 }
676
677 static int btree_writepage(struct page *page, struct writeback_control *wbc)
678 {
679 struct extent_io_tree *tree;
680 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
681 struct extent_buffer *eb;
682 int was_dirty;
683
684 tree = &BTRFS_I(page->mapping->host)->io_tree;
685 if (!(current->flags & PF_MEMALLOC)) {
686 return extent_write_full_page(tree, page,
687 btree_get_extent, wbc);
688 }
689
690 redirty_page_for_writepage(wbc, page);
691 eb = btrfs_find_tree_block(root, page_offset(page),
692 PAGE_CACHE_SIZE);
693 WARN_ON(!eb);
694
695 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
696 if (!was_dirty) {
697 spin_lock(&root->fs_info->delalloc_lock);
698 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
699 spin_unlock(&root->fs_info->delalloc_lock);
700 }
701 free_extent_buffer(eb);
702
703 unlock_page(page);
704 return 0;
705 }
706
707 static int btree_writepages(struct address_space *mapping,
708 struct writeback_control *wbc)
709 {
710 struct extent_io_tree *tree;
711 tree = &BTRFS_I(mapping->host)->io_tree;
712 if (wbc->sync_mode == WB_SYNC_NONE) {
713 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
714 u64 num_dirty;
715 unsigned long thresh = 32 * 1024 * 1024;
716
717 if (wbc->for_kupdate)
718 return 0;
719
720 /* this is a bit racy, but that's ok */
721 num_dirty = root->fs_info->dirty_metadata_bytes;
722 if (num_dirty < thresh)
723 return 0;
724 }
725 return extent_writepages(tree, mapping, btree_get_extent, wbc);
726 }
727
728 static int btree_readpage(struct file *file, struct page *page)
729 {
730 struct extent_io_tree *tree;
731 tree = &BTRFS_I(page->mapping->host)->io_tree;
732 return extent_read_full_page(tree, page, btree_get_extent);
733 }
734
735 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
736 {
737 struct extent_io_tree *tree;
738 struct extent_map_tree *map;
739 int ret;
740
741 if (PageWriteback(page) || PageDirty(page))
742 return 0;
743
744 tree = &BTRFS_I(page->mapping->host)->io_tree;
745 map = &BTRFS_I(page->mapping->host)->extent_tree;
746
747 ret = try_release_extent_state(map, tree, page, gfp_flags);
748 if (!ret)
749 return 0;
750
751 ret = try_release_extent_buffer(tree, page);
752 if (ret == 1) {
753 ClearPagePrivate(page);
754 set_page_private(page, 0);
755 page_cache_release(page);
756 }
757
758 return ret;
759 }
760
761 static void btree_invalidatepage(struct page *page, unsigned long offset)
762 {
763 struct extent_io_tree *tree;
764 tree = &BTRFS_I(page->mapping->host)->io_tree;
765 extent_invalidatepage(tree, page, offset);
766 btree_releasepage(page, GFP_NOFS);
767 if (PagePrivate(page)) {
768 printk(KERN_WARNING "btrfs warning page private not zero "
769 "on page %llu\n", (unsigned long long)page_offset(page));
770 ClearPagePrivate(page);
771 set_page_private(page, 0);
772 page_cache_release(page);
773 }
774 }
775
776 static const struct address_space_operations btree_aops = {
777 .readpage = btree_readpage,
778 .writepage = btree_writepage,
779 .writepages = btree_writepages,
780 .releasepage = btree_releasepage,
781 .invalidatepage = btree_invalidatepage,
782 .sync_page = block_sync_page,
783 };
784
785 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
786 u64 parent_transid)
787 {
788 struct extent_buffer *buf = NULL;
789 struct inode *btree_inode = root->fs_info->btree_inode;
790 int ret = 0;
791
792 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
793 if (!buf)
794 return 0;
795 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
796 buf, 0, 0, btree_get_extent, 0);
797 free_extent_buffer(buf);
798 return ret;
799 }
800
801 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
802 u64 bytenr, u32 blocksize)
803 {
804 struct inode *btree_inode = root->fs_info->btree_inode;
805 struct extent_buffer *eb;
806 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
807 bytenr, blocksize, GFP_NOFS);
808 return eb;
809 }
810
811 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
812 u64 bytenr, u32 blocksize)
813 {
814 struct inode *btree_inode = root->fs_info->btree_inode;
815 struct extent_buffer *eb;
816
817 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
818 bytenr, blocksize, NULL, GFP_NOFS);
819 return eb;
820 }
821
822
823 int btrfs_write_tree_block(struct extent_buffer *buf)
824 {
825 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
826 buf->start + buf->len - 1);
827 }
828
829 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
830 {
831 return filemap_fdatawait_range(buf->first_page->mapping,
832 buf->start, buf->start + buf->len - 1);
833 }
834
835 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
836 u32 blocksize, u64 parent_transid)
837 {
838 struct extent_buffer *buf = NULL;
839 struct inode *btree_inode = root->fs_info->btree_inode;
840 struct extent_io_tree *io_tree;
841 int ret;
842
843 io_tree = &BTRFS_I(btree_inode)->io_tree;
844
845 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
846 if (!buf)
847 return NULL;
848
849 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
850
851 if (ret == 0)
852 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
853 return buf;
854
855 }
856
857 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
858 struct extent_buffer *buf)
859 {
860 struct inode *btree_inode = root->fs_info->btree_inode;
861 if (btrfs_header_generation(buf) ==
862 root->fs_info->running_transaction->transid) {
863 btrfs_assert_tree_locked(buf);
864
865 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
866 spin_lock(&root->fs_info->delalloc_lock);
867 if (root->fs_info->dirty_metadata_bytes >= buf->len)
868 root->fs_info->dirty_metadata_bytes -= buf->len;
869 else
870 WARN_ON(1);
871 spin_unlock(&root->fs_info->delalloc_lock);
872 }
873
874 /* ugh, clear_extent_buffer_dirty needs to lock the page */
875 btrfs_set_lock_blocking(buf);
876 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
877 buf);
878 }
879 return 0;
880 }
881
882 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
883 u32 stripesize, struct btrfs_root *root,
884 struct btrfs_fs_info *fs_info,
885 u64 objectid)
886 {
887 root->node = NULL;
888 root->commit_root = NULL;
889 root->sectorsize = sectorsize;
890 root->nodesize = nodesize;
891 root->leafsize = leafsize;
892 root->stripesize = stripesize;
893 root->ref_cows = 0;
894 root->track_dirty = 0;
895 root->in_radix = 0;
896 root->clean_orphans = 0;
897
898 root->fs_info = fs_info;
899 root->objectid = objectid;
900 root->last_trans = 0;
901 root->highest_objectid = 0;
902 root->name = NULL;
903 root->in_sysfs = 0;
904 root->inode_tree.rb_node = NULL;
905
906 INIT_LIST_HEAD(&root->dirty_list);
907 INIT_LIST_HEAD(&root->orphan_list);
908 INIT_LIST_HEAD(&root->root_list);
909 spin_lock_init(&root->node_lock);
910 spin_lock_init(&root->list_lock);
911 spin_lock_init(&root->inode_lock);
912 mutex_init(&root->objectid_mutex);
913 mutex_init(&root->log_mutex);
914 init_waitqueue_head(&root->log_writer_wait);
915 init_waitqueue_head(&root->log_commit_wait[0]);
916 init_waitqueue_head(&root->log_commit_wait[1]);
917 atomic_set(&root->log_commit[0], 0);
918 atomic_set(&root->log_commit[1], 0);
919 atomic_set(&root->log_writers, 0);
920 root->log_batch = 0;
921 root->log_transid = 0;
922 root->last_log_commit = 0;
923 extent_io_tree_init(&root->dirty_log_pages,
924 fs_info->btree_inode->i_mapping, GFP_NOFS);
925
926 memset(&root->root_key, 0, sizeof(root->root_key));
927 memset(&root->root_item, 0, sizeof(root->root_item));
928 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
929 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
930 root->defrag_trans_start = fs_info->generation;
931 init_completion(&root->kobj_unregister);
932 root->defrag_running = 0;
933 root->root_key.objectid = objectid;
934 root->anon_super.s_root = NULL;
935 root->anon_super.s_dev = 0;
936 INIT_LIST_HEAD(&root->anon_super.s_list);
937 INIT_LIST_HEAD(&root->anon_super.s_instances);
938 init_rwsem(&root->anon_super.s_umount);
939
940 return 0;
941 }
942
943 static int find_and_setup_root(struct btrfs_root *tree_root,
944 struct btrfs_fs_info *fs_info,
945 u64 objectid,
946 struct btrfs_root *root)
947 {
948 int ret;
949 u32 blocksize;
950 u64 generation;
951
952 __setup_root(tree_root->nodesize, tree_root->leafsize,
953 tree_root->sectorsize, tree_root->stripesize,
954 root, fs_info, objectid);
955 ret = btrfs_find_last_root(tree_root, objectid,
956 &root->root_item, &root->root_key);
957 if (ret > 0)
958 return -ENOENT;
959 BUG_ON(ret);
960
961 generation = btrfs_root_generation(&root->root_item);
962 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
963 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
964 blocksize, generation);
965 BUG_ON(!root->node);
966 root->commit_root = btrfs_root_node(root);
967 return 0;
968 }
969
970 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
971 struct btrfs_fs_info *fs_info)
972 {
973 struct extent_buffer *eb;
974 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
975 u64 start = 0;
976 u64 end = 0;
977 int ret;
978
979 if (!log_root_tree)
980 return 0;
981
982 while (1) {
983 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
984 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
985 if (ret)
986 break;
987
988 clear_extent_bits(&log_root_tree->dirty_log_pages, start, end,
989 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
990 }
991 eb = fs_info->log_root_tree->node;
992
993 WARN_ON(btrfs_header_level(eb) != 0);
994 WARN_ON(btrfs_header_nritems(eb) != 0);
995
996 ret = btrfs_free_reserved_extent(fs_info->tree_root,
997 eb->start, eb->len);
998 BUG_ON(ret);
999
1000 free_extent_buffer(eb);
1001 kfree(fs_info->log_root_tree);
1002 fs_info->log_root_tree = NULL;
1003 return 0;
1004 }
1005
1006 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1007 struct btrfs_fs_info *fs_info)
1008 {
1009 struct btrfs_root *root;
1010 struct btrfs_root *tree_root = fs_info->tree_root;
1011 struct extent_buffer *leaf;
1012
1013 root = kzalloc(sizeof(*root), GFP_NOFS);
1014 if (!root)
1015 return ERR_PTR(-ENOMEM);
1016
1017 __setup_root(tree_root->nodesize, tree_root->leafsize,
1018 tree_root->sectorsize, tree_root->stripesize,
1019 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1020
1021 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1022 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1023 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1024 /*
1025 * log trees do not get reference counted because they go away
1026 * before a real commit is actually done. They do store pointers
1027 * to file data extents, and those reference counts still get
1028 * updated (along with back refs to the log tree).
1029 */
1030 root->ref_cows = 0;
1031
1032 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1033 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1034 if (IS_ERR(leaf)) {
1035 kfree(root);
1036 return ERR_CAST(leaf);
1037 }
1038
1039 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1040 btrfs_set_header_bytenr(leaf, leaf->start);
1041 btrfs_set_header_generation(leaf, trans->transid);
1042 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1043 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1044 root->node = leaf;
1045
1046 write_extent_buffer(root->node, root->fs_info->fsid,
1047 (unsigned long)btrfs_header_fsid(root->node),
1048 BTRFS_FSID_SIZE);
1049 btrfs_mark_buffer_dirty(root->node);
1050 btrfs_tree_unlock(root->node);
1051 return root;
1052 }
1053
1054 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1055 struct btrfs_fs_info *fs_info)
1056 {
1057 struct btrfs_root *log_root;
1058
1059 log_root = alloc_log_tree(trans, fs_info);
1060 if (IS_ERR(log_root))
1061 return PTR_ERR(log_root);
1062 WARN_ON(fs_info->log_root_tree);
1063 fs_info->log_root_tree = log_root;
1064 return 0;
1065 }
1066
1067 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1068 struct btrfs_root *root)
1069 {
1070 struct btrfs_root *log_root;
1071 struct btrfs_inode_item *inode_item;
1072
1073 log_root = alloc_log_tree(trans, root->fs_info);
1074 if (IS_ERR(log_root))
1075 return PTR_ERR(log_root);
1076
1077 log_root->last_trans = trans->transid;
1078 log_root->root_key.offset = root->root_key.objectid;
1079
1080 inode_item = &log_root->root_item.inode;
1081 inode_item->generation = cpu_to_le64(1);
1082 inode_item->size = cpu_to_le64(3);
1083 inode_item->nlink = cpu_to_le32(1);
1084 inode_item->nbytes = cpu_to_le64(root->leafsize);
1085 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1086
1087 btrfs_set_root_node(&log_root->root_item, log_root->node);
1088
1089 WARN_ON(root->log_root);
1090 root->log_root = log_root;
1091 root->log_transid = 0;
1092 root->last_log_commit = 0;
1093 return 0;
1094 }
1095
1096 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1097 struct btrfs_key *location)
1098 {
1099 struct btrfs_root *root;
1100 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1101 struct btrfs_path *path;
1102 struct extent_buffer *l;
1103 u64 generation;
1104 u32 blocksize;
1105 int ret = 0;
1106
1107 root = kzalloc(sizeof(*root), GFP_NOFS);
1108 if (!root)
1109 return ERR_PTR(-ENOMEM);
1110 if (location->offset == (u64)-1) {
1111 ret = find_and_setup_root(tree_root, fs_info,
1112 location->objectid, root);
1113 if (ret) {
1114 kfree(root);
1115 return ERR_PTR(ret);
1116 }
1117 goto out;
1118 }
1119
1120 __setup_root(tree_root->nodesize, tree_root->leafsize,
1121 tree_root->sectorsize, tree_root->stripesize,
1122 root, fs_info, location->objectid);
1123
1124 path = btrfs_alloc_path();
1125 BUG_ON(!path);
1126 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1127 if (ret == 0) {
1128 l = path->nodes[0];
1129 read_extent_buffer(l, &root->root_item,
1130 btrfs_item_ptr_offset(l, path->slots[0]),
1131 sizeof(root->root_item));
1132 memcpy(&root->root_key, location, sizeof(*location));
1133 }
1134 btrfs_free_path(path);
1135 if (ret) {
1136 if (ret > 0)
1137 ret = -ENOENT;
1138 return ERR_PTR(ret);
1139 }
1140
1141 generation = btrfs_root_generation(&root->root_item);
1142 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1143 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1144 blocksize, generation);
1145 root->commit_root = btrfs_root_node(root);
1146 BUG_ON(!root->node);
1147 out:
1148 if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
1149 root->ref_cows = 1;
1150
1151 return root;
1152 }
1153
1154 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1155 u64 root_objectid)
1156 {
1157 struct btrfs_root *root;
1158
1159 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1160 return fs_info->tree_root;
1161 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1162 return fs_info->extent_root;
1163
1164 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1165 (unsigned long)root_objectid);
1166 return root;
1167 }
1168
1169 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1170 struct btrfs_key *location)
1171 {
1172 struct btrfs_root *root;
1173 int ret;
1174
1175 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1176 return fs_info->tree_root;
1177 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1178 return fs_info->extent_root;
1179 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1180 return fs_info->chunk_root;
1181 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1182 return fs_info->dev_root;
1183 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1184 return fs_info->csum_root;
1185 again:
1186 spin_lock(&fs_info->fs_roots_radix_lock);
1187 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1188 (unsigned long)location->objectid);
1189 spin_unlock(&fs_info->fs_roots_radix_lock);
1190 if (root)
1191 return root;
1192
1193 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1194 if (ret == 0)
1195 ret = -ENOENT;
1196 if (ret < 0)
1197 return ERR_PTR(ret);
1198
1199 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1200 if (IS_ERR(root))
1201 return root;
1202
1203 WARN_ON(btrfs_root_refs(&root->root_item) == 0);
1204 set_anon_super(&root->anon_super, NULL);
1205
1206 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1207 if (ret)
1208 goto fail;
1209
1210 spin_lock(&fs_info->fs_roots_radix_lock);
1211 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1212 (unsigned long)root->root_key.objectid,
1213 root);
1214 if (ret == 0) {
1215 root->in_radix = 1;
1216 root->clean_orphans = 1;
1217 }
1218 spin_unlock(&fs_info->fs_roots_radix_lock);
1219 radix_tree_preload_end();
1220 if (ret) {
1221 if (ret == -EEXIST) {
1222 free_fs_root(root);
1223 goto again;
1224 }
1225 goto fail;
1226 }
1227
1228 ret = btrfs_find_dead_roots(fs_info->tree_root,
1229 root->root_key.objectid);
1230 WARN_ON(ret);
1231 return root;
1232 fail:
1233 free_fs_root(root);
1234 return ERR_PTR(ret);
1235 }
1236
1237 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1238 struct btrfs_key *location,
1239 const char *name, int namelen)
1240 {
1241 return btrfs_read_fs_root_no_name(fs_info, location);
1242 #if 0
1243 struct btrfs_root *root;
1244 int ret;
1245
1246 root = btrfs_read_fs_root_no_name(fs_info, location);
1247 if (!root)
1248 return NULL;
1249
1250 if (root->in_sysfs)
1251 return root;
1252
1253 ret = btrfs_set_root_name(root, name, namelen);
1254 if (ret) {
1255 free_extent_buffer(root->node);
1256 kfree(root);
1257 return ERR_PTR(ret);
1258 }
1259
1260 ret = btrfs_sysfs_add_root(root);
1261 if (ret) {
1262 free_extent_buffer(root->node);
1263 kfree(root->name);
1264 kfree(root);
1265 return ERR_PTR(ret);
1266 }
1267 root->in_sysfs = 1;
1268 return root;
1269 #endif
1270 }
1271
1272 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1273 {
1274 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1275 int ret = 0;
1276 struct btrfs_device *device;
1277 struct backing_dev_info *bdi;
1278
1279 list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1280 if (!device->bdev)
1281 continue;
1282 bdi = blk_get_backing_dev_info(device->bdev);
1283 if (bdi && bdi_congested(bdi, bdi_bits)) {
1284 ret = 1;
1285 break;
1286 }
1287 }
1288 return ret;
1289 }
1290
1291 /*
1292 * this unplugs every device on the box, and it is only used when page
1293 * is null
1294 */
1295 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1296 {
1297 struct btrfs_device *device;
1298 struct btrfs_fs_info *info;
1299
1300 info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1301 list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1302 if (!device->bdev)
1303 continue;
1304
1305 bdi = blk_get_backing_dev_info(device->bdev);
1306 if (bdi->unplug_io_fn)
1307 bdi->unplug_io_fn(bdi, page);
1308 }
1309 }
1310
1311 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1312 {
1313 struct inode *inode;
1314 struct extent_map_tree *em_tree;
1315 struct extent_map *em;
1316 struct address_space *mapping;
1317 u64 offset;
1318
1319 /* the generic O_DIRECT read code does this */
1320 if (1 || !page) {
1321 __unplug_io_fn(bdi, page);
1322 return;
1323 }
1324
1325 /*
1326 * page->mapping may change at any time. Get a consistent copy
1327 * and use that for everything below
1328 */
1329 smp_mb();
1330 mapping = page->mapping;
1331 if (!mapping)
1332 return;
1333
1334 inode = mapping->host;
1335
1336 /*
1337 * don't do the expensive searching for a small number of
1338 * devices
1339 */
1340 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1341 __unplug_io_fn(bdi, page);
1342 return;
1343 }
1344
1345 offset = page_offset(page);
1346
1347 em_tree = &BTRFS_I(inode)->extent_tree;
1348 read_lock(&em_tree->lock);
1349 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1350 read_unlock(&em_tree->lock);
1351 if (!em) {
1352 __unplug_io_fn(bdi, page);
1353 return;
1354 }
1355
1356 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1357 free_extent_map(em);
1358 __unplug_io_fn(bdi, page);
1359 return;
1360 }
1361 offset = offset - em->start;
1362 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1363 em->block_start + offset, page);
1364 free_extent_map(em);
1365 }
1366
1367 /*
1368 * If this fails, caller must call bdi_destroy() to get rid of the
1369 * bdi again.
1370 */
1371 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1372 {
1373 int err;
1374
1375 bdi->name = "btrfs";
1376 bdi->capabilities = BDI_CAP_MAP_COPY;
1377 err = bdi_init(bdi);
1378 if (err)
1379 return err;
1380
1381 err = bdi_register(bdi, NULL, "btrfs-%d",
1382 atomic_inc_return(&btrfs_bdi_num));
1383 if (err) {
1384 bdi_destroy(bdi);
1385 return err;
1386 }
1387
1388 bdi->ra_pages = default_backing_dev_info.ra_pages;
1389 bdi->unplug_io_fn = btrfs_unplug_io_fn;
1390 bdi->unplug_io_data = info;
1391 bdi->congested_fn = btrfs_congested_fn;
1392 bdi->congested_data = info;
1393 return 0;
1394 }
1395
1396 static int bio_ready_for_csum(struct bio *bio)
1397 {
1398 u64 length = 0;
1399 u64 buf_len = 0;
1400 u64 start = 0;
1401 struct page *page;
1402 struct extent_io_tree *io_tree = NULL;
1403 struct btrfs_fs_info *info = NULL;
1404 struct bio_vec *bvec;
1405 int i;
1406 int ret;
1407
1408 bio_for_each_segment(bvec, bio, i) {
1409 page = bvec->bv_page;
1410 if (page->private == EXTENT_PAGE_PRIVATE) {
1411 length += bvec->bv_len;
1412 continue;
1413 }
1414 if (!page->private) {
1415 length += bvec->bv_len;
1416 continue;
1417 }
1418 length = bvec->bv_len;
1419 buf_len = page->private >> 2;
1420 start = page_offset(page) + bvec->bv_offset;
1421 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1422 info = BTRFS_I(page->mapping->host)->root->fs_info;
1423 }
1424 /* are we fully contained in this bio? */
1425 if (buf_len <= length)
1426 return 1;
1427
1428 ret = extent_range_uptodate(io_tree, start + length,
1429 start + buf_len - 1);
1430 return ret;
1431 }
1432
1433 /*
1434 * called by the kthread helper functions to finally call the bio end_io
1435 * functions. This is where read checksum verification actually happens
1436 */
1437 static void end_workqueue_fn(struct btrfs_work *work)
1438 {
1439 struct bio *bio;
1440 struct end_io_wq *end_io_wq;
1441 struct btrfs_fs_info *fs_info;
1442 int error;
1443
1444 end_io_wq = container_of(work, struct end_io_wq, work);
1445 bio = end_io_wq->bio;
1446 fs_info = end_io_wq->info;
1447
1448 /* metadata bio reads are special because the whole tree block must
1449 * be checksummed at once. This makes sure the entire block is in
1450 * ram and up to date before trying to verify things. For
1451 * blocksize <= pagesize, it is basically a noop
1452 */
1453 if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1454 !bio_ready_for_csum(bio)) {
1455 btrfs_queue_worker(&fs_info->endio_meta_workers,
1456 &end_io_wq->work);
1457 return;
1458 }
1459 error = end_io_wq->error;
1460 bio->bi_private = end_io_wq->private;
1461 bio->bi_end_io = end_io_wq->end_io;
1462 kfree(end_io_wq);
1463 bio_endio(bio, error);
1464 }
1465
1466 static int cleaner_kthread(void *arg)
1467 {
1468 struct btrfs_root *root = arg;
1469
1470 do {
1471 smp_mb();
1472 if (root->fs_info->closing)
1473 break;
1474
1475 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1476
1477 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1478 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1479 btrfs_run_delayed_iputs(root);
1480 btrfs_clean_old_snapshots(root);
1481 mutex_unlock(&root->fs_info->cleaner_mutex);
1482 }
1483
1484 if (freezing(current)) {
1485 refrigerator();
1486 } else {
1487 smp_mb();
1488 if (root->fs_info->closing)
1489 break;
1490 set_current_state(TASK_INTERRUPTIBLE);
1491 schedule();
1492 __set_current_state(TASK_RUNNING);
1493 }
1494 } while (!kthread_should_stop());
1495 return 0;
1496 }
1497
1498 static int transaction_kthread(void *arg)
1499 {
1500 struct btrfs_root *root = arg;
1501 struct btrfs_trans_handle *trans;
1502 struct btrfs_transaction *cur;
1503 unsigned long now;
1504 unsigned long delay;
1505 int ret;
1506
1507 do {
1508 smp_mb();
1509 if (root->fs_info->closing)
1510 break;
1511
1512 delay = HZ * 30;
1513 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1514 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1515
1516 mutex_lock(&root->fs_info->trans_mutex);
1517 cur = root->fs_info->running_transaction;
1518 if (!cur) {
1519 mutex_unlock(&root->fs_info->trans_mutex);
1520 goto sleep;
1521 }
1522
1523 now = get_seconds();
1524 if (now < cur->start_time || now - cur->start_time < 30) {
1525 mutex_unlock(&root->fs_info->trans_mutex);
1526 delay = HZ * 5;
1527 goto sleep;
1528 }
1529 mutex_unlock(&root->fs_info->trans_mutex);
1530 trans = btrfs_start_transaction(root, 1);
1531 ret = btrfs_commit_transaction(trans, root);
1532
1533 sleep:
1534 wake_up_process(root->fs_info->cleaner_kthread);
1535 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1536
1537 if (freezing(current)) {
1538 refrigerator();
1539 } else {
1540 if (root->fs_info->closing)
1541 break;
1542 set_current_state(TASK_INTERRUPTIBLE);
1543 schedule_timeout(delay);
1544 __set_current_state(TASK_RUNNING);
1545 }
1546 } while (!kthread_should_stop());
1547 return 0;
1548 }
1549
1550 struct btrfs_root *open_ctree(struct super_block *sb,
1551 struct btrfs_fs_devices *fs_devices,
1552 char *options)
1553 {
1554 u32 sectorsize;
1555 u32 nodesize;
1556 u32 leafsize;
1557 u32 blocksize;
1558 u32 stripesize;
1559 u64 generation;
1560 u64 features;
1561 struct btrfs_key location;
1562 struct buffer_head *bh;
1563 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1564 GFP_NOFS);
1565 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1566 GFP_NOFS);
1567 struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1568 GFP_NOFS);
1569 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1570 GFP_NOFS);
1571 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1572 GFP_NOFS);
1573 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1574 GFP_NOFS);
1575 struct btrfs_root *log_tree_root;
1576
1577 int ret;
1578 int err = -EINVAL;
1579
1580 struct btrfs_super_block *disk_super;
1581
1582 if (!extent_root || !tree_root || !fs_info ||
1583 !chunk_root || !dev_root || !csum_root) {
1584 err = -ENOMEM;
1585 goto fail;
1586 }
1587
1588 ret = init_srcu_struct(&fs_info->subvol_srcu);
1589 if (ret) {
1590 err = ret;
1591 goto fail;
1592 }
1593
1594 ret = setup_bdi(fs_info, &fs_info->bdi);
1595 if (ret) {
1596 err = ret;
1597 goto fail_srcu;
1598 }
1599
1600 fs_info->btree_inode = new_inode(sb);
1601 if (!fs_info->btree_inode) {
1602 err = -ENOMEM;
1603 goto fail_bdi;
1604 }
1605
1606 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1607 INIT_LIST_HEAD(&fs_info->trans_list);
1608 INIT_LIST_HEAD(&fs_info->dead_roots);
1609 INIT_LIST_HEAD(&fs_info->delayed_iputs);
1610 INIT_LIST_HEAD(&fs_info->hashers);
1611 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1612 INIT_LIST_HEAD(&fs_info->ordered_operations);
1613 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1614 spin_lock_init(&fs_info->delalloc_lock);
1615 spin_lock_init(&fs_info->new_trans_lock);
1616 spin_lock_init(&fs_info->ref_cache_lock);
1617 spin_lock_init(&fs_info->fs_roots_radix_lock);
1618 spin_lock_init(&fs_info->delayed_iput_lock);
1619
1620 init_completion(&fs_info->kobj_unregister);
1621 fs_info->tree_root = tree_root;
1622 fs_info->extent_root = extent_root;
1623 fs_info->csum_root = csum_root;
1624 fs_info->chunk_root = chunk_root;
1625 fs_info->dev_root = dev_root;
1626 fs_info->fs_devices = fs_devices;
1627 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1628 INIT_LIST_HEAD(&fs_info->space_info);
1629 btrfs_mapping_init(&fs_info->mapping_tree);
1630 atomic_set(&fs_info->nr_async_submits, 0);
1631 atomic_set(&fs_info->async_delalloc_pages, 0);
1632 atomic_set(&fs_info->async_submit_draining, 0);
1633 atomic_set(&fs_info->nr_async_bios, 0);
1634 fs_info->sb = sb;
1635 fs_info->max_extent = (u64)-1;
1636 fs_info->max_inline = 8192 * 1024;
1637 fs_info->metadata_ratio = 0;
1638
1639 fs_info->thread_pool_size = min_t(unsigned long,
1640 num_online_cpus() + 2, 8);
1641
1642 INIT_LIST_HEAD(&fs_info->ordered_extents);
1643 spin_lock_init(&fs_info->ordered_extent_lock);
1644
1645 sb->s_blocksize = 4096;
1646 sb->s_blocksize_bits = blksize_bits(4096);
1647 sb->s_bdi = &fs_info->bdi;
1648
1649 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1650 fs_info->btree_inode->i_nlink = 1;
1651 /*
1652 * we set the i_size on the btree inode to the max possible int.
1653 * the real end of the address space is determined by all of
1654 * the devices in the system
1655 */
1656 fs_info->btree_inode->i_size = OFFSET_MAX;
1657 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1658 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1659
1660 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1661 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1662 fs_info->btree_inode->i_mapping,
1663 GFP_NOFS);
1664 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1665 GFP_NOFS);
1666
1667 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1668
1669 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1670 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1671 sizeof(struct btrfs_key));
1672 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1673 insert_inode_hash(fs_info->btree_inode);
1674
1675 spin_lock_init(&fs_info->block_group_cache_lock);
1676 fs_info->block_group_cache_tree.rb_node = NULL;
1677
1678 extent_io_tree_init(&fs_info->freed_extents[0],
1679 fs_info->btree_inode->i_mapping, GFP_NOFS);
1680 extent_io_tree_init(&fs_info->freed_extents[1],
1681 fs_info->btree_inode->i_mapping, GFP_NOFS);
1682 fs_info->pinned_extents = &fs_info->freed_extents[0];
1683 fs_info->do_barriers = 1;
1684
1685
1686 mutex_init(&fs_info->trans_mutex);
1687 mutex_init(&fs_info->ordered_operations_mutex);
1688 mutex_init(&fs_info->tree_log_mutex);
1689 mutex_init(&fs_info->chunk_mutex);
1690 mutex_init(&fs_info->transaction_kthread_mutex);
1691 mutex_init(&fs_info->cleaner_mutex);
1692 mutex_init(&fs_info->volume_mutex);
1693 init_rwsem(&fs_info->extent_commit_sem);
1694 init_rwsem(&fs_info->cleanup_work_sem);
1695 init_rwsem(&fs_info->subvol_sem);
1696
1697 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1698 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1699
1700 init_waitqueue_head(&fs_info->transaction_throttle);
1701 init_waitqueue_head(&fs_info->transaction_wait);
1702 init_waitqueue_head(&fs_info->async_submit_wait);
1703
1704 __setup_root(4096, 4096, 4096, 4096, tree_root,
1705 fs_info, BTRFS_ROOT_TREE_OBJECTID);
1706
1707
1708 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1709 if (!bh)
1710 goto fail_iput;
1711
1712 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1713 memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1714 sizeof(fs_info->super_for_commit));
1715 brelse(bh);
1716
1717 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1718
1719 disk_super = &fs_info->super_copy;
1720 if (!btrfs_super_root(disk_super))
1721 goto fail_iput;
1722
1723 ret = btrfs_parse_options(tree_root, options);
1724 if (ret) {
1725 err = ret;
1726 goto fail_iput;
1727 }
1728
1729 features = btrfs_super_incompat_flags(disk_super) &
1730 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1731 if (features) {
1732 printk(KERN_ERR "BTRFS: couldn't mount because of "
1733 "unsupported optional features (%Lx).\n",
1734 (unsigned long long)features);
1735 err = -EINVAL;
1736 goto fail_iput;
1737 }
1738
1739 features = btrfs_super_incompat_flags(disk_super);
1740 if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
1741 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1742 btrfs_set_super_incompat_flags(disk_super, features);
1743 }
1744
1745 features = btrfs_super_compat_ro_flags(disk_super) &
1746 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1747 if (!(sb->s_flags & MS_RDONLY) && features) {
1748 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1749 "unsupported option features (%Lx).\n",
1750 (unsigned long long)features);
1751 err = -EINVAL;
1752 goto fail_iput;
1753 }
1754
1755 btrfs_init_workers(&fs_info->generic_worker,
1756 "genwork", 1, NULL);
1757
1758 btrfs_init_workers(&fs_info->workers, "worker",
1759 fs_info->thread_pool_size,
1760 &fs_info->generic_worker);
1761
1762 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1763 fs_info->thread_pool_size,
1764 &fs_info->generic_worker);
1765
1766 btrfs_init_workers(&fs_info->submit_workers, "submit",
1767 min_t(u64, fs_devices->num_devices,
1768 fs_info->thread_pool_size),
1769 &fs_info->generic_worker);
1770 btrfs_init_workers(&fs_info->enospc_workers, "enospc",
1771 fs_info->thread_pool_size,
1772 &fs_info->generic_worker);
1773
1774 /* a higher idle thresh on the submit workers makes it much more
1775 * likely that bios will be send down in a sane order to the
1776 * devices
1777 */
1778 fs_info->submit_workers.idle_thresh = 64;
1779
1780 fs_info->workers.idle_thresh = 16;
1781 fs_info->workers.ordered = 1;
1782
1783 fs_info->delalloc_workers.idle_thresh = 2;
1784 fs_info->delalloc_workers.ordered = 1;
1785
1786 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1787 &fs_info->generic_worker);
1788 btrfs_init_workers(&fs_info->endio_workers, "endio",
1789 fs_info->thread_pool_size,
1790 &fs_info->generic_worker);
1791 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1792 fs_info->thread_pool_size,
1793 &fs_info->generic_worker);
1794 btrfs_init_workers(&fs_info->endio_meta_write_workers,
1795 "endio-meta-write", fs_info->thread_pool_size,
1796 &fs_info->generic_worker);
1797 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1798 fs_info->thread_pool_size,
1799 &fs_info->generic_worker);
1800
1801 /*
1802 * endios are largely parallel and should have a very
1803 * low idle thresh
1804 */
1805 fs_info->endio_workers.idle_thresh = 4;
1806 fs_info->endio_meta_workers.idle_thresh = 4;
1807
1808 fs_info->endio_write_workers.idle_thresh = 2;
1809 fs_info->endio_meta_write_workers.idle_thresh = 2;
1810
1811 btrfs_start_workers(&fs_info->workers, 1);
1812 btrfs_start_workers(&fs_info->generic_worker, 1);
1813 btrfs_start_workers(&fs_info->submit_workers, 1);
1814 btrfs_start_workers(&fs_info->delalloc_workers, 1);
1815 btrfs_start_workers(&fs_info->fixup_workers, 1);
1816 btrfs_start_workers(&fs_info->endio_workers, 1);
1817 btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1818 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1819 btrfs_start_workers(&fs_info->endio_write_workers, 1);
1820 btrfs_start_workers(&fs_info->enospc_workers, 1);
1821
1822 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1823 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1824 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1825
1826 nodesize = btrfs_super_nodesize(disk_super);
1827 leafsize = btrfs_super_leafsize(disk_super);
1828 sectorsize = btrfs_super_sectorsize(disk_super);
1829 stripesize = btrfs_super_stripesize(disk_super);
1830 tree_root->nodesize = nodesize;
1831 tree_root->leafsize = leafsize;
1832 tree_root->sectorsize = sectorsize;
1833 tree_root->stripesize = stripesize;
1834
1835 sb->s_blocksize = sectorsize;
1836 sb->s_blocksize_bits = blksize_bits(sectorsize);
1837
1838 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1839 sizeof(disk_super->magic))) {
1840 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1841 goto fail_sb_buffer;
1842 }
1843
1844 mutex_lock(&fs_info->chunk_mutex);
1845 ret = btrfs_read_sys_array(tree_root);
1846 mutex_unlock(&fs_info->chunk_mutex);
1847 if (ret) {
1848 printk(KERN_WARNING "btrfs: failed to read the system "
1849 "array on %s\n", sb->s_id);
1850 goto fail_sb_buffer;
1851 }
1852
1853 blocksize = btrfs_level_size(tree_root,
1854 btrfs_super_chunk_root_level(disk_super));
1855 generation = btrfs_super_chunk_root_generation(disk_super);
1856
1857 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1858 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1859
1860 chunk_root->node = read_tree_block(chunk_root,
1861 btrfs_super_chunk_root(disk_super),
1862 blocksize, generation);
1863 BUG_ON(!chunk_root->node);
1864 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1865 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1866 sb->s_id);
1867 goto fail_chunk_root;
1868 }
1869 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1870 chunk_root->commit_root = btrfs_root_node(chunk_root);
1871
1872 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1873 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1874 BTRFS_UUID_SIZE);
1875
1876 mutex_lock(&fs_info->chunk_mutex);
1877 ret = btrfs_read_chunk_tree(chunk_root);
1878 mutex_unlock(&fs_info->chunk_mutex);
1879 if (ret) {
1880 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1881 sb->s_id);
1882 goto fail_chunk_root;
1883 }
1884
1885 btrfs_close_extra_devices(fs_devices);
1886
1887 blocksize = btrfs_level_size(tree_root,
1888 btrfs_super_root_level(disk_super));
1889 generation = btrfs_super_generation(disk_super);
1890
1891 tree_root->node = read_tree_block(tree_root,
1892 btrfs_super_root(disk_super),
1893 blocksize, generation);
1894 if (!tree_root->node)
1895 goto fail_chunk_root;
1896 if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1897 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1898 sb->s_id);
1899 goto fail_tree_root;
1900 }
1901 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1902 tree_root->commit_root = btrfs_root_node(tree_root);
1903
1904 ret = find_and_setup_root(tree_root, fs_info,
1905 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1906 if (ret)
1907 goto fail_tree_root;
1908 extent_root->track_dirty = 1;
1909
1910 ret = find_and_setup_root(tree_root, fs_info,
1911 BTRFS_DEV_TREE_OBJECTID, dev_root);
1912 if (ret)
1913 goto fail_extent_root;
1914 dev_root->track_dirty = 1;
1915
1916 ret = find_and_setup_root(tree_root, fs_info,
1917 BTRFS_CSUM_TREE_OBJECTID, csum_root);
1918 if (ret)
1919 goto fail_dev_root;
1920
1921 csum_root->track_dirty = 1;
1922
1923 btrfs_read_block_groups(extent_root);
1924
1925 fs_info->generation = generation;
1926 fs_info->last_trans_committed = generation;
1927 fs_info->data_alloc_profile = (u64)-1;
1928 fs_info->metadata_alloc_profile = (u64)-1;
1929 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1930 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1931 "btrfs-cleaner");
1932 if (IS_ERR(fs_info->cleaner_kthread))
1933 goto fail_csum_root;
1934
1935 fs_info->transaction_kthread = kthread_run(transaction_kthread,
1936 tree_root,
1937 "btrfs-transaction");
1938 if (IS_ERR(fs_info->transaction_kthread))
1939 goto fail_cleaner;
1940
1941 if (!btrfs_test_opt(tree_root, SSD) &&
1942 !btrfs_test_opt(tree_root, NOSSD) &&
1943 !fs_info->fs_devices->rotating) {
1944 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1945 "mode\n");
1946 btrfs_set_opt(fs_info->mount_opt, SSD);
1947 }
1948
1949 if (btrfs_super_log_root(disk_super) != 0) {
1950 u64 bytenr = btrfs_super_log_root(disk_super);
1951
1952 if (fs_devices->rw_devices == 0) {
1953 printk(KERN_WARNING "Btrfs log replay required "
1954 "on RO media\n");
1955 err = -EIO;
1956 goto fail_trans_kthread;
1957 }
1958 blocksize =
1959 btrfs_level_size(tree_root,
1960 btrfs_super_log_root_level(disk_super));
1961
1962 log_tree_root = kzalloc(sizeof(struct btrfs_root),
1963 GFP_NOFS);
1964
1965 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1966 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1967
1968 log_tree_root->node = read_tree_block(tree_root, bytenr,
1969 blocksize,
1970 generation + 1);
1971 ret = btrfs_recover_log_trees(log_tree_root);
1972 BUG_ON(ret);
1973
1974 if (sb->s_flags & MS_RDONLY) {
1975 ret = btrfs_commit_super(tree_root);
1976 BUG_ON(ret);
1977 }
1978 }
1979
1980 ret = btrfs_find_orphan_roots(tree_root);
1981 BUG_ON(ret);
1982
1983 if (!(sb->s_flags & MS_RDONLY)) {
1984 ret = btrfs_recover_relocation(tree_root);
1985 if (ret < 0) {
1986 printk(KERN_WARNING
1987 "btrfs: failed to recover relocation\n");
1988 err = -EINVAL;
1989 goto fail_trans_kthread;
1990 }
1991 }
1992
1993 location.objectid = BTRFS_FS_TREE_OBJECTID;
1994 location.type = BTRFS_ROOT_ITEM_KEY;
1995 location.offset = (u64)-1;
1996
1997 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1998 if (!fs_info->fs_root)
1999 goto fail_trans_kthread;
2000
2001 if (!(sb->s_flags & MS_RDONLY)) {
2002 down_read(&fs_info->cleanup_work_sem);
2003 btrfs_orphan_cleanup(fs_info->fs_root);
2004 up_read(&fs_info->cleanup_work_sem);
2005 }
2006
2007 return tree_root;
2008
2009 fail_trans_kthread:
2010 kthread_stop(fs_info->transaction_kthread);
2011 fail_cleaner:
2012 kthread_stop(fs_info->cleaner_kthread);
2013
2014 /*
2015 * make sure we're done with the btree inode before we stop our
2016 * kthreads
2017 */
2018 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2019 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2020
2021 fail_csum_root:
2022 free_extent_buffer(csum_root->node);
2023 free_extent_buffer(csum_root->commit_root);
2024 fail_dev_root:
2025 free_extent_buffer(dev_root->node);
2026 free_extent_buffer(dev_root->commit_root);
2027 fail_extent_root:
2028 free_extent_buffer(extent_root->node);
2029 free_extent_buffer(extent_root->commit_root);
2030 fail_tree_root:
2031 free_extent_buffer(tree_root->node);
2032 free_extent_buffer(tree_root->commit_root);
2033 fail_chunk_root:
2034 free_extent_buffer(chunk_root->node);
2035 free_extent_buffer(chunk_root->commit_root);
2036 fail_sb_buffer:
2037 btrfs_stop_workers(&fs_info->generic_worker);
2038 btrfs_stop_workers(&fs_info->fixup_workers);
2039 btrfs_stop_workers(&fs_info->delalloc_workers);
2040 btrfs_stop_workers(&fs_info->workers);
2041 btrfs_stop_workers(&fs_info->endio_workers);
2042 btrfs_stop_workers(&fs_info->endio_meta_workers);
2043 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2044 btrfs_stop_workers(&fs_info->endio_write_workers);
2045 btrfs_stop_workers(&fs_info->submit_workers);
2046 btrfs_stop_workers(&fs_info->enospc_workers);
2047 fail_iput:
2048 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2049 iput(fs_info->btree_inode);
2050
2051 btrfs_close_devices(fs_info->fs_devices);
2052 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2053 fail_bdi:
2054 bdi_destroy(&fs_info->bdi);
2055 fail_srcu:
2056 cleanup_srcu_struct(&fs_info->subvol_srcu);
2057 fail:
2058 kfree(extent_root);
2059 kfree(tree_root);
2060 kfree(fs_info);
2061 kfree(chunk_root);
2062 kfree(dev_root);
2063 kfree(csum_root);
2064 return ERR_PTR(err);
2065 }
2066
2067 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2068 {
2069 char b[BDEVNAME_SIZE];
2070
2071 if (uptodate) {
2072 set_buffer_uptodate(bh);
2073 } else {
2074 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
2075 printk(KERN_WARNING "lost page write due to "
2076 "I/O error on %s\n",
2077 bdevname(bh->b_bdev, b));
2078 }
2079 /* note, we dont' set_buffer_write_io_error because we have
2080 * our own ways of dealing with the IO errors
2081 */
2082 clear_buffer_uptodate(bh);
2083 }
2084 unlock_buffer(bh);
2085 put_bh(bh);
2086 }
2087
2088 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2089 {
2090 struct buffer_head *bh;
2091 struct buffer_head *latest = NULL;
2092 struct btrfs_super_block *super;
2093 int i;
2094 u64 transid = 0;
2095 u64 bytenr;
2096
2097 /* we would like to check all the supers, but that would make
2098 * a btrfs mount succeed after a mkfs from a different FS.
2099 * So, we need to add a special mount option to scan for
2100 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2101 */
2102 for (i = 0; i < 1; i++) {
2103 bytenr = btrfs_sb_offset(i);
2104 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2105 break;
2106 bh = __bread(bdev, bytenr / 4096, 4096);
2107 if (!bh)
2108 continue;
2109
2110 super = (struct btrfs_super_block *)bh->b_data;
2111 if (btrfs_super_bytenr(super) != bytenr ||
2112 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2113 sizeof(super->magic))) {
2114 brelse(bh);
2115 continue;
2116 }
2117
2118 if (!latest || btrfs_super_generation(super) > transid) {
2119 brelse(latest);
2120 latest = bh;
2121 transid = btrfs_super_generation(super);
2122 } else {
2123 brelse(bh);
2124 }
2125 }
2126 return latest;
2127 }
2128
2129 /*
2130 * this should be called twice, once with wait == 0 and
2131 * once with wait == 1. When wait == 0 is done, all the buffer heads
2132 * we write are pinned.
2133 *
2134 * They are released when wait == 1 is done.
2135 * max_mirrors must be the same for both runs, and it indicates how
2136 * many supers on this one device should be written.
2137 *
2138 * max_mirrors == 0 means to write them all.
2139 */
2140 static int write_dev_supers(struct btrfs_device *device,
2141 struct btrfs_super_block *sb,
2142 int do_barriers, int wait, int max_mirrors)
2143 {
2144 struct buffer_head *bh;
2145 int i;
2146 int ret;
2147 int errors = 0;
2148 u32 crc;
2149 u64 bytenr;
2150 int last_barrier = 0;
2151
2152 if (max_mirrors == 0)
2153 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2154
2155 /* make sure only the last submit_bh does a barrier */
2156 if (do_barriers) {
2157 for (i = 0; i < max_mirrors; i++) {
2158 bytenr = btrfs_sb_offset(i);
2159 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2160 device->total_bytes)
2161 break;
2162 last_barrier = i;
2163 }
2164 }
2165
2166 for (i = 0; i < max_mirrors; i++) {
2167 bytenr = btrfs_sb_offset(i);
2168 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2169 break;
2170
2171 if (wait) {
2172 bh = __find_get_block(device->bdev, bytenr / 4096,
2173 BTRFS_SUPER_INFO_SIZE);
2174 BUG_ON(!bh);
2175 wait_on_buffer(bh);
2176 if (!buffer_uptodate(bh))
2177 errors++;
2178
2179 /* drop our reference */
2180 brelse(bh);
2181
2182 /* drop the reference from the wait == 0 run */
2183 brelse(bh);
2184 continue;
2185 } else {
2186 btrfs_set_super_bytenr(sb, bytenr);
2187
2188 crc = ~(u32)0;
2189 crc = btrfs_csum_data(NULL, (char *)sb +
2190 BTRFS_CSUM_SIZE, crc,
2191 BTRFS_SUPER_INFO_SIZE -
2192 BTRFS_CSUM_SIZE);
2193 btrfs_csum_final(crc, sb->csum);
2194
2195 /*
2196 * one reference for us, and we leave it for the
2197 * caller
2198 */
2199 bh = __getblk(device->bdev, bytenr / 4096,
2200 BTRFS_SUPER_INFO_SIZE);
2201 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2202
2203 /* one reference for submit_bh */
2204 get_bh(bh);
2205
2206 set_buffer_uptodate(bh);
2207 lock_buffer(bh);
2208 bh->b_end_io = btrfs_end_buffer_write_sync;
2209 }
2210
2211 if (i == last_barrier && do_barriers && device->barriers) {
2212 ret = submit_bh(WRITE_BARRIER, bh);
2213 if (ret == -EOPNOTSUPP) {
2214 printk("btrfs: disabling barriers on dev %s\n",
2215 device->name);
2216 set_buffer_uptodate(bh);
2217 device->barriers = 0;
2218 /* one reference for submit_bh */
2219 get_bh(bh);
2220 lock_buffer(bh);
2221 ret = submit_bh(WRITE_SYNC, bh);
2222 }
2223 } else {
2224 ret = submit_bh(WRITE_SYNC, bh);
2225 }
2226
2227 if (ret)
2228 errors++;
2229 }
2230 return errors < i ? 0 : -1;
2231 }
2232
2233 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2234 {
2235 struct list_head *head;
2236 struct btrfs_device *dev;
2237 struct btrfs_super_block *sb;
2238 struct btrfs_dev_item *dev_item;
2239 int ret;
2240 int do_barriers;
2241 int max_errors;
2242 int total_errors = 0;
2243 u64 flags;
2244
2245 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2246 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2247
2248 sb = &root->fs_info->super_for_commit;
2249 dev_item = &sb->dev_item;
2250
2251 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2252 head = &root->fs_info->fs_devices->devices;
2253 list_for_each_entry(dev, head, dev_list) {
2254 if (!dev->bdev) {
2255 total_errors++;
2256 continue;
2257 }
2258 if (!dev->in_fs_metadata || !dev->writeable)
2259 continue;
2260
2261 btrfs_set_stack_device_generation(dev_item, 0);
2262 btrfs_set_stack_device_type(dev_item, dev->type);
2263 btrfs_set_stack_device_id(dev_item, dev->devid);
2264 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2265 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2266 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2267 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2268 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2269 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2270 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2271
2272 flags = btrfs_super_flags(sb);
2273 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2274
2275 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2276 if (ret)
2277 total_errors++;
2278 }
2279 if (total_errors > max_errors) {
2280 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2281 total_errors);
2282 BUG();
2283 }
2284
2285 total_errors = 0;
2286 list_for_each_entry(dev, head, dev_list) {
2287 if (!dev->bdev)
2288 continue;
2289 if (!dev->in_fs_metadata || !dev->writeable)
2290 continue;
2291
2292 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2293 if (ret)
2294 total_errors++;
2295 }
2296 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2297 if (total_errors > max_errors) {
2298 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2299 total_errors);
2300 BUG();
2301 }
2302 return 0;
2303 }
2304
2305 int write_ctree_super(struct btrfs_trans_handle *trans,
2306 struct btrfs_root *root, int max_mirrors)
2307 {
2308 int ret;
2309
2310 ret = write_all_supers(root, max_mirrors);
2311 return ret;
2312 }
2313
2314 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2315 {
2316 spin_lock(&fs_info->fs_roots_radix_lock);
2317 radix_tree_delete(&fs_info->fs_roots_radix,
2318 (unsigned long)root->root_key.objectid);
2319 spin_unlock(&fs_info->fs_roots_radix_lock);
2320
2321 if (btrfs_root_refs(&root->root_item) == 0)
2322 synchronize_srcu(&fs_info->subvol_srcu);
2323
2324 free_fs_root(root);
2325 return 0;
2326 }
2327
2328 static void free_fs_root(struct btrfs_root *root)
2329 {
2330 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2331 if (root->anon_super.s_dev) {
2332 down_write(&root->anon_super.s_umount);
2333 kill_anon_super(&root->anon_super);
2334 }
2335 free_extent_buffer(root->node);
2336 free_extent_buffer(root->commit_root);
2337 kfree(root->name);
2338 kfree(root);
2339 }
2340
2341 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2342 {
2343 int ret;
2344 struct btrfs_root *gang[8];
2345 int i;
2346
2347 while (!list_empty(&fs_info->dead_roots)) {
2348 gang[0] = list_entry(fs_info->dead_roots.next,
2349 struct btrfs_root, root_list);
2350 list_del(&gang[0]->root_list);
2351
2352 if (gang[0]->in_radix) {
2353 btrfs_free_fs_root(fs_info, gang[0]);
2354 } else {
2355 free_extent_buffer(gang[0]->node);
2356 free_extent_buffer(gang[0]->commit_root);
2357 kfree(gang[0]);
2358 }
2359 }
2360
2361 while (1) {
2362 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2363 (void **)gang, 0,
2364 ARRAY_SIZE(gang));
2365 if (!ret)
2366 break;
2367 for (i = 0; i < ret; i++)
2368 btrfs_free_fs_root(fs_info, gang[i]);
2369 }
2370 return 0;
2371 }
2372
2373 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2374 {
2375 u64 root_objectid = 0;
2376 struct btrfs_root *gang[8];
2377 int i;
2378 int ret;
2379
2380 while (1) {
2381 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2382 (void **)gang, root_objectid,
2383 ARRAY_SIZE(gang));
2384 if (!ret)
2385 break;
2386
2387 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2388 for (i = 0; i < ret; i++) {
2389 root_objectid = gang[i]->root_key.objectid;
2390 btrfs_orphan_cleanup(gang[i]);
2391 }
2392 root_objectid++;
2393 }
2394 return 0;
2395 }
2396
2397 int btrfs_commit_super(struct btrfs_root *root)
2398 {
2399 struct btrfs_trans_handle *trans;
2400 int ret;
2401
2402 mutex_lock(&root->fs_info->cleaner_mutex);
2403 btrfs_run_delayed_iputs(root);
2404 btrfs_clean_old_snapshots(root);
2405 mutex_unlock(&root->fs_info->cleaner_mutex);
2406
2407 /* wait until ongoing cleanup work done */
2408 down_write(&root->fs_info->cleanup_work_sem);
2409 up_write(&root->fs_info->cleanup_work_sem);
2410
2411 trans = btrfs_start_transaction(root, 1);
2412 ret = btrfs_commit_transaction(trans, root);
2413 BUG_ON(ret);
2414 /* run commit again to drop the original snapshot */
2415 trans = btrfs_start_transaction(root, 1);
2416 btrfs_commit_transaction(trans, root);
2417 ret = btrfs_write_and_wait_transaction(NULL, root);
2418 BUG_ON(ret);
2419
2420 ret = write_ctree_super(NULL, root, 0);
2421 return ret;
2422 }
2423
2424 int close_ctree(struct btrfs_root *root)
2425 {
2426 struct btrfs_fs_info *fs_info = root->fs_info;
2427 int ret;
2428
2429 fs_info->closing = 1;
2430 smp_mb();
2431
2432 kthread_stop(root->fs_info->transaction_kthread);
2433 kthread_stop(root->fs_info->cleaner_kthread);
2434
2435 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2436 ret = btrfs_commit_super(root);
2437 if (ret)
2438 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2439 }
2440
2441 fs_info->closing = 2;
2442 smp_mb();
2443
2444 if (fs_info->delalloc_bytes) {
2445 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2446 (unsigned long long)fs_info->delalloc_bytes);
2447 }
2448 if (fs_info->total_ref_cache_size) {
2449 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2450 (unsigned long long)fs_info->total_ref_cache_size);
2451 }
2452
2453 free_extent_buffer(fs_info->extent_root->node);
2454 free_extent_buffer(fs_info->extent_root->commit_root);
2455 free_extent_buffer(fs_info->tree_root->node);
2456 free_extent_buffer(fs_info->tree_root->commit_root);
2457 free_extent_buffer(root->fs_info->chunk_root->node);
2458 free_extent_buffer(root->fs_info->chunk_root->commit_root);
2459 free_extent_buffer(root->fs_info->dev_root->node);
2460 free_extent_buffer(root->fs_info->dev_root->commit_root);
2461 free_extent_buffer(root->fs_info->csum_root->node);
2462 free_extent_buffer(root->fs_info->csum_root->commit_root);
2463
2464 btrfs_free_block_groups(root->fs_info);
2465
2466 del_fs_roots(fs_info);
2467
2468 iput(fs_info->btree_inode);
2469
2470 btrfs_stop_workers(&fs_info->generic_worker);
2471 btrfs_stop_workers(&fs_info->fixup_workers);
2472 btrfs_stop_workers(&fs_info->delalloc_workers);
2473 btrfs_stop_workers(&fs_info->workers);
2474 btrfs_stop_workers(&fs_info->endio_workers);
2475 btrfs_stop_workers(&fs_info->endio_meta_workers);
2476 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2477 btrfs_stop_workers(&fs_info->endio_write_workers);
2478 btrfs_stop_workers(&fs_info->submit_workers);
2479 btrfs_stop_workers(&fs_info->enospc_workers);
2480
2481 btrfs_close_devices(fs_info->fs_devices);
2482 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2483
2484 bdi_destroy(&fs_info->bdi);
2485 cleanup_srcu_struct(&fs_info->subvol_srcu);
2486
2487 kfree(fs_info->extent_root);
2488 kfree(fs_info->tree_root);
2489 kfree(fs_info->chunk_root);
2490 kfree(fs_info->dev_root);
2491 kfree(fs_info->csum_root);
2492 return 0;
2493 }
2494
2495 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2496 {
2497 int ret;
2498 struct inode *btree_inode = buf->first_page->mapping->host;
2499
2500 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2501 if (!ret)
2502 return ret;
2503
2504 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2505 parent_transid);
2506 return !ret;
2507 }
2508
2509 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2510 {
2511 struct inode *btree_inode = buf->first_page->mapping->host;
2512 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2513 buf);
2514 }
2515
2516 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2517 {
2518 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2519 u64 transid = btrfs_header_generation(buf);
2520 struct inode *btree_inode = root->fs_info->btree_inode;
2521 int was_dirty;
2522
2523 btrfs_assert_tree_locked(buf);
2524 if (transid != root->fs_info->generation) {
2525 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2526 "found %llu running %llu\n",
2527 (unsigned long long)buf->start,
2528 (unsigned long long)transid,
2529 (unsigned long long)root->fs_info->generation);
2530 WARN_ON(1);
2531 }
2532 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2533 buf);
2534 if (!was_dirty) {
2535 spin_lock(&root->fs_info->delalloc_lock);
2536 root->fs_info->dirty_metadata_bytes += buf->len;
2537 spin_unlock(&root->fs_info->delalloc_lock);
2538 }
2539 }
2540
2541 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2542 {
2543 /*
2544 * looks as though older kernels can get into trouble with
2545 * this code, they end up stuck in balance_dirty_pages forever
2546 */
2547 u64 num_dirty;
2548 unsigned long thresh = 32 * 1024 * 1024;
2549
2550 if (current->flags & PF_MEMALLOC)
2551 return;
2552
2553 num_dirty = root->fs_info->dirty_metadata_bytes;
2554
2555 if (num_dirty > thresh) {
2556 balance_dirty_pages_ratelimited_nr(
2557 root->fs_info->btree_inode->i_mapping, 1);
2558 }
2559 return;
2560 }
2561
2562 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2563 {
2564 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2565 int ret;
2566 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2567 if (ret == 0)
2568 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2569 return ret;
2570 }
2571
2572 int btree_lock_page_hook(struct page *page)
2573 {
2574 struct inode *inode = page->mapping->host;
2575 struct btrfs_root *root = BTRFS_I(inode)->root;
2576 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2577 struct extent_buffer *eb;
2578 unsigned long len;
2579 u64 bytenr = page_offset(page);
2580
2581 if (page->private == EXTENT_PAGE_PRIVATE)
2582 goto out;
2583
2584 len = page->private >> 2;
2585 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2586 if (!eb)
2587 goto out;
2588
2589 btrfs_tree_lock(eb);
2590 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2591
2592 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2593 spin_lock(&root->fs_info->delalloc_lock);
2594 if (root->fs_info->dirty_metadata_bytes >= eb->len)
2595 root->fs_info->dirty_metadata_bytes -= eb->len;
2596 else
2597 WARN_ON(1);
2598 spin_unlock(&root->fs_info->delalloc_lock);
2599 }
2600
2601 btrfs_tree_unlock(eb);
2602 free_extent_buffer(eb);
2603 out:
2604 lock_page(page);
2605 return 0;
2606 }
2607
2608 static struct extent_io_ops btree_extent_io_ops = {
2609 .write_cache_pages_lock_hook = btree_lock_page_hook,
2610 .readpage_end_io_hook = btree_readpage_end_io_hook,
2611 .submit_bio_hook = btree_submit_bio_hook,
2612 /* note we're sharing with inode.c for the merge bio hook */
2613 .merge_bio_hook = btrfs_merge_bio_hook,
2614 };