9f31e110b481418ed5af3fbc3d0165eb0d84cf57
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include "compat.h"
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "volumes.h"
38 #include "print-tree.h"
39 #include "async-thread.h"
40 #include "locking.h"
41 #include "tree-log.h"
42 #include "free-space-cache.h"
43
44 static struct extent_io_ops btree_extent_io_ops;
45 static void end_workqueue_fn(struct btrfs_work *work);
46 static void free_fs_root(struct btrfs_root *root);
47 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
48 int read_only);
49 static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
50 static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
51 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
52 struct btrfs_root *root);
53 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
54 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
55 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
56 struct extent_io_tree *dirty_pages,
57 int mark);
58 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
59 struct extent_io_tree *pinned_extents);
60 static int btrfs_cleanup_transaction(struct btrfs_root *root);
61
62 /*
63 * end_io_wq structs are used to do processing in task context when an IO is
64 * complete. This is used during reads to verify checksums, and it is used
65 * by writes to insert metadata for new file extents after IO is complete.
66 */
67 struct end_io_wq {
68 struct bio *bio;
69 bio_end_io_t *end_io;
70 void *private;
71 struct btrfs_fs_info *info;
72 int error;
73 int metadata;
74 struct list_head list;
75 struct btrfs_work work;
76 };
77
78 /*
79 * async submit bios are used to offload expensive checksumming
80 * onto the worker threads. They checksum file and metadata bios
81 * just before they are sent down the IO stack.
82 */
83 struct async_submit_bio {
84 struct inode *inode;
85 struct bio *bio;
86 struct list_head list;
87 extent_submit_bio_hook_t *submit_bio_start;
88 extent_submit_bio_hook_t *submit_bio_done;
89 int rw;
90 int mirror_num;
91 unsigned long bio_flags;
92 /*
93 * bio_offset is optional, can be used if the pages in the bio
94 * can't tell us where in the file the bio should go
95 */
96 u64 bio_offset;
97 struct btrfs_work work;
98 };
99
100 /* These are used to set the lockdep class on the extent buffer locks.
101 * The class is set by the readpage_end_io_hook after the buffer has
102 * passed csum validation but before the pages are unlocked.
103 *
104 * The lockdep class is also set by btrfs_init_new_buffer on freshly
105 * allocated blocks.
106 *
107 * The class is based on the level in the tree block, which allows lockdep
108 * to know that lower nodes nest inside the locks of higher nodes.
109 *
110 * We also add a check to make sure the highest level of the tree is
111 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
112 * code needs update as well.
113 */
114 #ifdef CONFIG_DEBUG_LOCK_ALLOC
115 # if BTRFS_MAX_LEVEL != 8
116 # error
117 # endif
118 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
119 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
120 /* leaf */
121 "btrfs-extent-00",
122 "btrfs-extent-01",
123 "btrfs-extent-02",
124 "btrfs-extent-03",
125 "btrfs-extent-04",
126 "btrfs-extent-05",
127 "btrfs-extent-06",
128 "btrfs-extent-07",
129 /* highest possible level */
130 "btrfs-extent-08",
131 };
132 #endif
133
134 /*
135 * extents on the btree inode are pretty simple, there's one extent
136 * that covers the entire device
137 */
138 static struct extent_map *btree_get_extent(struct inode *inode,
139 struct page *page, size_t page_offset, u64 start, u64 len,
140 int create)
141 {
142 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
143 struct extent_map *em;
144 int ret;
145
146 read_lock(&em_tree->lock);
147 em = lookup_extent_mapping(em_tree, start, len);
148 if (em) {
149 em->bdev =
150 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
151 read_unlock(&em_tree->lock);
152 goto out;
153 }
154 read_unlock(&em_tree->lock);
155
156 em = alloc_extent_map(GFP_NOFS);
157 if (!em) {
158 em = ERR_PTR(-ENOMEM);
159 goto out;
160 }
161 em->start = 0;
162 em->len = (u64)-1;
163 em->block_len = (u64)-1;
164 em->block_start = 0;
165 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
166
167 write_lock(&em_tree->lock);
168 ret = add_extent_mapping(em_tree, em);
169 if (ret == -EEXIST) {
170 u64 failed_start = em->start;
171 u64 failed_len = em->len;
172
173 free_extent_map(em);
174 em = lookup_extent_mapping(em_tree, start, len);
175 if (em) {
176 ret = 0;
177 } else {
178 em = lookup_extent_mapping(em_tree, failed_start,
179 failed_len);
180 ret = -EIO;
181 }
182 } else if (ret) {
183 free_extent_map(em);
184 em = NULL;
185 }
186 write_unlock(&em_tree->lock);
187
188 if (ret)
189 em = ERR_PTR(ret);
190 out:
191 return em;
192 }
193
194 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
195 {
196 return crc32c(seed, data, len);
197 }
198
199 void btrfs_csum_final(u32 crc, char *result)
200 {
201 *(__le32 *)result = ~cpu_to_le32(crc);
202 }
203
204 /*
205 * compute the csum for a btree block, and either verify it or write it
206 * into the csum field of the block.
207 */
208 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
209 int verify)
210 {
211 u16 csum_size =
212 btrfs_super_csum_size(&root->fs_info->super_copy);
213 char *result = NULL;
214 unsigned long len;
215 unsigned long cur_len;
216 unsigned long offset = BTRFS_CSUM_SIZE;
217 char *map_token = NULL;
218 char *kaddr;
219 unsigned long map_start;
220 unsigned long map_len;
221 int err;
222 u32 crc = ~(u32)0;
223 unsigned long inline_result;
224
225 len = buf->len - offset;
226 while (len > 0) {
227 err = map_private_extent_buffer(buf, offset, 32,
228 &map_token, &kaddr,
229 &map_start, &map_len, KM_USER0);
230 if (err)
231 return 1;
232 cur_len = min(len, map_len - (offset - map_start));
233 crc = btrfs_csum_data(root, kaddr + offset - map_start,
234 crc, cur_len);
235 len -= cur_len;
236 offset += cur_len;
237 unmap_extent_buffer(buf, map_token, KM_USER0);
238 }
239 if (csum_size > sizeof(inline_result)) {
240 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
241 if (!result)
242 return 1;
243 } else {
244 result = (char *)&inline_result;
245 }
246
247 btrfs_csum_final(crc, result);
248
249 if (verify) {
250 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
251 u32 val;
252 u32 found = 0;
253 memcpy(&found, result, csum_size);
254
255 read_extent_buffer(buf, &val, 0, csum_size);
256 if (printk_ratelimit()) {
257 printk(KERN_INFO "btrfs: %s checksum verify "
258 "failed on %llu wanted %X found %X "
259 "level %d\n",
260 root->fs_info->sb->s_id,
261 (unsigned long long)buf->start, val, found,
262 btrfs_header_level(buf));
263 }
264 if (result != (char *)&inline_result)
265 kfree(result);
266 return 1;
267 }
268 } else {
269 write_extent_buffer(buf, result, 0, csum_size);
270 }
271 if (result != (char *)&inline_result)
272 kfree(result);
273 return 0;
274 }
275
276 /*
277 * we can't consider a given block up to date unless the transid of the
278 * block matches the transid in the parent node's pointer. This is how we
279 * detect blocks that either didn't get written at all or got written
280 * in the wrong place.
281 */
282 static int verify_parent_transid(struct extent_io_tree *io_tree,
283 struct extent_buffer *eb, u64 parent_transid)
284 {
285 struct extent_state *cached_state = NULL;
286 int ret;
287
288 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
289 return 0;
290
291 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
292 0, &cached_state, GFP_NOFS);
293 if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
294 btrfs_header_generation(eb) == parent_transid) {
295 ret = 0;
296 goto out;
297 }
298 if (printk_ratelimit()) {
299 printk("parent transid verify failed on %llu wanted %llu "
300 "found %llu\n",
301 (unsigned long long)eb->start,
302 (unsigned long long)parent_transid,
303 (unsigned long long)btrfs_header_generation(eb));
304 }
305 ret = 1;
306 clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
307 out:
308 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
309 &cached_state, GFP_NOFS);
310 return ret;
311 }
312
313 /*
314 * helper to read a given tree block, doing retries as required when
315 * the checksums don't match and we have alternate mirrors to try.
316 */
317 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
318 struct extent_buffer *eb,
319 u64 start, u64 parent_transid)
320 {
321 struct extent_io_tree *io_tree;
322 int ret;
323 int num_copies = 0;
324 int mirror_num = 0;
325
326 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
327 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
328 while (1) {
329 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
330 btree_get_extent, mirror_num);
331 if (!ret &&
332 !verify_parent_transid(io_tree, eb, parent_transid))
333 return ret;
334
335 /*
336 * This buffer's crc is fine, but its contents are corrupted, so
337 * there is no reason to read the other copies, they won't be
338 * any less wrong.
339 */
340 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
341 return ret;
342
343 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
344 eb->start, eb->len);
345 if (num_copies == 1)
346 return ret;
347
348 mirror_num++;
349 if (mirror_num > num_copies)
350 return ret;
351 }
352 return -EIO;
353 }
354
355 /*
356 * checksum a dirty tree block before IO. This has extra checks to make sure
357 * we only fill in the checksum field in the first page of a multi-page block
358 */
359
360 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
361 {
362 struct extent_io_tree *tree;
363 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
364 u64 found_start;
365 unsigned long len;
366 struct extent_buffer *eb;
367 int ret;
368
369 tree = &BTRFS_I(page->mapping->host)->io_tree;
370
371 if (page->private == EXTENT_PAGE_PRIVATE) {
372 WARN_ON(1);
373 goto out;
374 }
375 if (!page->private) {
376 WARN_ON(1);
377 goto out;
378 }
379 len = page->private >> 2;
380 WARN_ON(len == 0);
381
382 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
383 if (eb == NULL) {
384 WARN_ON(1);
385 goto out;
386 }
387 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
388 btrfs_header_generation(eb));
389 BUG_ON(ret);
390 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
391
392 found_start = btrfs_header_bytenr(eb);
393 if (found_start != start) {
394 WARN_ON(1);
395 goto err;
396 }
397 if (eb->first_page != page) {
398 WARN_ON(1);
399 goto err;
400 }
401 if (!PageUptodate(page)) {
402 WARN_ON(1);
403 goto err;
404 }
405 csum_tree_block(root, eb, 0);
406 err:
407 free_extent_buffer(eb);
408 out:
409 return 0;
410 }
411
412 static int check_tree_block_fsid(struct btrfs_root *root,
413 struct extent_buffer *eb)
414 {
415 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
416 u8 fsid[BTRFS_UUID_SIZE];
417 int ret = 1;
418
419 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
420 BTRFS_FSID_SIZE);
421 while (fs_devices) {
422 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
423 ret = 0;
424 break;
425 }
426 fs_devices = fs_devices->seed;
427 }
428 return ret;
429 }
430
431 #define CORRUPT(reason, eb, root, slot) \
432 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
433 "root=%llu, slot=%d\n", reason, \
434 (unsigned long long)btrfs_header_bytenr(eb), \
435 (unsigned long long)root->objectid, slot)
436
437 static noinline int check_leaf(struct btrfs_root *root,
438 struct extent_buffer *leaf)
439 {
440 struct btrfs_key key;
441 struct btrfs_key leaf_key;
442 u32 nritems = btrfs_header_nritems(leaf);
443 int slot;
444
445 if (nritems == 0)
446 return 0;
447
448 /* Check the 0 item */
449 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
450 BTRFS_LEAF_DATA_SIZE(root)) {
451 CORRUPT("invalid item offset size pair", leaf, root, 0);
452 return -EIO;
453 }
454
455 /*
456 * Check to make sure each items keys are in the correct order and their
457 * offsets make sense. We only have to loop through nritems-1 because
458 * we check the current slot against the next slot, which verifies the
459 * next slot's offset+size makes sense and that the current's slot
460 * offset is correct.
461 */
462 for (slot = 0; slot < nritems - 1; slot++) {
463 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
464 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
465
466 /* Make sure the keys are in the right order */
467 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
468 CORRUPT("bad key order", leaf, root, slot);
469 return -EIO;
470 }
471
472 /*
473 * Make sure the offset and ends are right, remember that the
474 * item data starts at the end of the leaf and grows towards the
475 * front.
476 */
477 if (btrfs_item_offset_nr(leaf, slot) !=
478 btrfs_item_end_nr(leaf, slot + 1)) {
479 CORRUPT("slot offset bad", leaf, root, slot);
480 return -EIO;
481 }
482
483 /*
484 * Check to make sure that we don't point outside of the leaf,
485 * just incase all the items are consistent to eachother, but
486 * all point outside of the leaf.
487 */
488 if (btrfs_item_end_nr(leaf, slot) >
489 BTRFS_LEAF_DATA_SIZE(root)) {
490 CORRUPT("slot end outside of leaf", leaf, root, slot);
491 return -EIO;
492 }
493 }
494
495 return 0;
496 }
497
498 #ifdef CONFIG_DEBUG_LOCK_ALLOC
499 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
500 {
501 lockdep_set_class_and_name(&eb->lock,
502 &btrfs_eb_class[level],
503 btrfs_eb_name[level]);
504 }
505 #endif
506
507 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
508 struct extent_state *state)
509 {
510 struct extent_io_tree *tree;
511 u64 found_start;
512 int found_level;
513 unsigned long len;
514 struct extent_buffer *eb;
515 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
516 int ret = 0;
517
518 tree = &BTRFS_I(page->mapping->host)->io_tree;
519 if (page->private == EXTENT_PAGE_PRIVATE)
520 goto out;
521 if (!page->private)
522 goto out;
523
524 len = page->private >> 2;
525 WARN_ON(len == 0);
526
527 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
528 if (eb == NULL) {
529 ret = -EIO;
530 goto out;
531 }
532
533 found_start = btrfs_header_bytenr(eb);
534 if (found_start != start) {
535 if (printk_ratelimit()) {
536 printk(KERN_INFO "btrfs bad tree block start "
537 "%llu %llu\n",
538 (unsigned long long)found_start,
539 (unsigned long long)eb->start);
540 }
541 ret = -EIO;
542 goto err;
543 }
544 if (eb->first_page != page) {
545 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
546 eb->first_page->index, page->index);
547 WARN_ON(1);
548 ret = -EIO;
549 goto err;
550 }
551 if (check_tree_block_fsid(root, eb)) {
552 if (printk_ratelimit()) {
553 printk(KERN_INFO "btrfs bad fsid on block %llu\n",
554 (unsigned long long)eb->start);
555 }
556 ret = -EIO;
557 goto err;
558 }
559 found_level = btrfs_header_level(eb);
560
561 btrfs_set_buffer_lockdep_class(eb, found_level);
562
563 ret = csum_tree_block(root, eb, 1);
564 if (ret) {
565 ret = -EIO;
566 goto err;
567 }
568
569 /*
570 * If this is a leaf block and it is corrupt, set the corrupt bit so
571 * that we don't try and read the other copies of this block, just
572 * return -EIO.
573 */
574 if (found_level == 0 && check_leaf(root, eb)) {
575 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
576 ret = -EIO;
577 }
578
579 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
580 end = eb->start + end - 1;
581 err:
582 free_extent_buffer(eb);
583 out:
584 return ret;
585 }
586
587 static void end_workqueue_bio(struct bio *bio, int err)
588 {
589 struct end_io_wq *end_io_wq = bio->bi_private;
590 struct btrfs_fs_info *fs_info;
591
592 fs_info = end_io_wq->info;
593 end_io_wq->error = err;
594 end_io_wq->work.func = end_workqueue_fn;
595 end_io_wq->work.flags = 0;
596
597 if (bio->bi_rw & REQ_WRITE) {
598 if (end_io_wq->metadata == 1)
599 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
600 &end_io_wq->work);
601 else if (end_io_wq->metadata == 2)
602 btrfs_queue_worker(&fs_info->endio_freespace_worker,
603 &end_io_wq->work);
604 else
605 btrfs_queue_worker(&fs_info->endio_write_workers,
606 &end_io_wq->work);
607 } else {
608 if (end_io_wq->metadata)
609 btrfs_queue_worker(&fs_info->endio_meta_workers,
610 &end_io_wq->work);
611 else
612 btrfs_queue_worker(&fs_info->endio_workers,
613 &end_io_wq->work);
614 }
615 }
616
617 /*
618 * For the metadata arg you want
619 *
620 * 0 - if data
621 * 1 - if normal metadta
622 * 2 - if writing to the free space cache area
623 */
624 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
625 int metadata)
626 {
627 struct end_io_wq *end_io_wq;
628 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
629 if (!end_io_wq)
630 return -ENOMEM;
631
632 end_io_wq->private = bio->bi_private;
633 end_io_wq->end_io = bio->bi_end_io;
634 end_io_wq->info = info;
635 end_io_wq->error = 0;
636 end_io_wq->bio = bio;
637 end_io_wq->metadata = metadata;
638
639 bio->bi_private = end_io_wq;
640 bio->bi_end_io = end_workqueue_bio;
641 return 0;
642 }
643
644 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
645 {
646 unsigned long limit = min_t(unsigned long,
647 info->workers.max_workers,
648 info->fs_devices->open_devices);
649 return 256 * limit;
650 }
651
652 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
653 {
654 return atomic_read(&info->nr_async_bios) >
655 btrfs_async_submit_limit(info);
656 }
657
658 static void run_one_async_start(struct btrfs_work *work)
659 {
660 struct async_submit_bio *async;
661
662 async = container_of(work, struct async_submit_bio, work);
663 async->submit_bio_start(async->inode, async->rw, async->bio,
664 async->mirror_num, async->bio_flags,
665 async->bio_offset);
666 }
667
668 static void run_one_async_done(struct btrfs_work *work)
669 {
670 struct btrfs_fs_info *fs_info;
671 struct async_submit_bio *async;
672 int limit;
673
674 async = container_of(work, struct async_submit_bio, work);
675 fs_info = BTRFS_I(async->inode)->root->fs_info;
676
677 limit = btrfs_async_submit_limit(fs_info);
678 limit = limit * 2 / 3;
679
680 atomic_dec(&fs_info->nr_async_submits);
681
682 if (atomic_read(&fs_info->nr_async_submits) < limit &&
683 waitqueue_active(&fs_info->async_submit_wait))
684 wake_up(&fs_info->async_submit_wait);
685
686 async->submit_bio_done(async->inode, async->rw, async->bio,
687 async->mirror_num, async->bio_flags,
688 async->bio_offset);
689 }
690
691 static void run_one_async_free(struct btrfs_work *work)
692 {
693 struct async_submit_bio *async;
694
695 async = container_of(work, struct async_submit_bio, work);
696 kfree(async);
697 }
698
699 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
700 int rw, struct bio *bio, int mirror_num,
701 unsigned long bio_flags,
702 u64 bio_offset,
703 extent_submit_bio_hook_t *submit_bio_start,
704 extent_submit_bio_hook_t *submit_bio_done)
705 {
706 struct async_submit_bio *async;
707
708 async = kmalloc(sizeof(*async), GFP_NOFS);
709 if (!async)
710 return -ENOMEM;
711
712 async->inode = inode;
713 async->rw = rw;
714 async->bio = bio;
715 async->mirror_num = mirror_num;
716 async->submit_bio_start = submit_bio_start;
717 async->submit_bio_done = submit_bio_done;
718
719 async->work.func = run_one_async_start;
720 async->work.ordered_func = run_one_async_done;
721 async->work.ordered_free = run_one_async_free;
722
723 async->work.flags = 0;
724 async->bio_flags = bio_flags;
725 async->bio_offset = bio_offset;
726
727 atomic_inc(&fs_info->nr_async_submits);
728
729 if (rw & REQ_SYNC)
730 btrfs_set_work_high_prio(&async->work);
731
732 btrfs_queue_worker(&fs_info->workers, &async->work);
733
734 while (atomic_read(&fs_info->async_submit_draining) &&
735 atomic_read(&fs_info->nr_async_submits)) {
736 wait_event(fs_info->async_submit_wait,
737 (atomic_read(&fs_info->nr_async_submits) == 0));
738 }
739
740 return 0;
741 }
742
743 static int btree_csum_one_bio(struct bio *bio)
744 {
745 struct bio_vec *bvec = bio->bi_io_vec;
746 int bio_index = 0;
747 struct btrfs_root *root;
748
749 WARN_ON(bio->bi_vcnt <= 0);
750 while (bio_index < bio->bi_vcnt) {
751 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
752 csum_dirty_buffer(root, bvec->bv_page);
753 bio_index++;
754 bvec++;
755 }
756 return 0;
757 }
758
759 static int __btree_submit_bio_start(struct inode *inode, int rw,
760 struct bio *bio, int mirror_num,
761 unsigned long bio_flags,
762 u64 bio_offset)
763 {
764 /*
765 * when we're called for a write, we're already in the async
766 * submission context. Just jump into btrfs_map_bio
767 */
768 btree_csum_one_bio(bio);
769 return 0;
770 }
771
772 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
773 int mirror_num, unsigned long bio_flags,
774 u64 bio_offset)
775 {
776 /*
777 * when we're called for a write, we're already in the async
778 * submission context. Just jump into btrfs_map_bio
779 */
780 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
781 }
782
783 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
784 int mirror_num, unsigned long bio_flags,
785 u64 bio_offset)
786 {
787 int ret;
788
789 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
790 bio, 1);
791 BUG_ON(ret);
792
793 if (!(rw & REQ_WRITE)) {
794 /*
795 * called for a read, do the setup so that checksum validation
796 * can happen in the async kernel threads
797 */
798 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
799 mirror_num, 0);
800 }
801
802 /*
803 * kthread helpers are used to submit writes so that checksumming
804 * can happen in parallel across all CPUs
805 */
806 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
807 inode, rw, bio, mirror_num, 0,
808 bio_offset,
809 __btree_submit_bio_start,
810 __btree_submit_bio_done);
811 }
812
813 #ifdef CONFIG_MIGRATION
814 static int btree_migratepage(struct address_space *mapping,
815 struct page *newpage, struct page *page)
816 {
817 /*
818 * we can't safely write a btree page from here,
819 * we haven't done the locking hook
820 */
821 if (PageDirty(page))
822 return -EAGAIN;
823 /*
824 * Buffers may be managed in a filesystem specific way.
825 * We must have no buffers or drop them.
826 */
827 if (page_has_private(page) &&
828 !try_to_release_page(page, GFP_KERNEL))
829 return -EAGAIN;
830 return migrate_page(mapping, newpage, page);
831 }
832 #endif
833
834 static int btree_writepage(struct page *page, struct writeback_control *wbc)
835 {
836 struct extent_io_tree *tree;
837 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
838 struct extent_buffer *eb;
839 int was_dirty;
840
841 tree = &BTRFS_I(page->mapping->host)->io_tree;
842 if (!(current->flags & PF_MEMALLOC)) {
843 return extent_write_full_page(tree, page,
844 btree_get_extent, wbc);
845 }
846
847 redirty_page_for_writepage(wbc, page);
848 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
849 WARN_ON(!eb);
850
851 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
852 if (!was_dirty) {
853 spin_lock(&root->fs_info->delalloc_lock);
854 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
855 spin_unlock(&root->fs_info->delalloc_lock);
856 }
857 free_extent_buffer(eb);
858
859 unlock_page(page);
860 return 0;
861 }
862
863 static int btree_writepages(struct address_space *mapping,
864 struct writeback_control *wbc)
865 {
866 struct extent_io_tree *tree;
867 tree = &BTRFS_I(mapping->host)->io_tree;
868 if (wbc->sync_mode == WB_SYNC_NONE) {
869 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
870 u64 num_dirty;
871 unsigned long thresh = 32 * 1024 * 1024;
872
873 if (wbc->for_kupdate)
874 return 0;
875
876 /* this is a bit racy, but that's ok */
877 num_dirty = root->fs_info->dirty_metadata_bytes;
878 if (num_dirty < thresh)
879 return 0;
880 }
881 return extent_writepages(tree, mapping, btree_get_extent, wbc);
882 }
883
884 static int btree_readpage(struct file *file, struct page *page)
885 {
886 struct extent_io_tree *tree;
887 tree = &BTRFS_I(page->mapping->host)->io_tree;
888 return extent_read_full_page(tree, page, btree_get_extent);
889 }
890
891 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
892 {
893 struct extent_io_tree *tree;
894 struct extent_map_tree *map;
895 int ret;
896
897 if (PageWriteback(page) || PageDirty(page))
898 return 0;
899
900 tree = &BTRFS_I(page->mapping->host)->io_tree;
901 map = &BTRFS_I(page->mapping->host)->extent_tree;
902
903 ret = try_release_extent_state(map, tree, page, gfp_flags);
904 if (!ret)
905 return 0;
906
907 ret = try_release_extent_buffer(tree, page);
908 if (ret == 1) {
909 ClearPagePrivate(page);
910 set_page_private(page, 0);
911 page_cache_release(page);
912 }
913
914 return ret;
915 }
916
917 static void btree_invalidatepage(struct page *page, unsigned long offset)
918 {
919 struct extent_io_tree *tree;
920 tree = &BTRFS_I(page->mapping->host)->io_tree;
921 extent_invalidatepage(tree, page, offset);
922 btree_releasepage(page, GFP_NOFS);
923 if (PagePrivate(page)) {
924 printk(KERN_WARNING "btrfs warning page private not zero "
925 "on page %llu\n", (unsigned long long)page_offset(page));
926 ClearPagePrivate(page);
927 set_page_private(page, 0);
928 page_cache_release(page);
929 }
930 }
931
932 static const struct address_space_operations btree_aops = {
933 .readpage = btree_readpage,
934 .writepage = btree_writepage,
935 .writepages = btree_writepages,
936 .releasepage = btree_releasepage,
937 .invalidatepage = btree_invalidatepage,
938 .sync_page = block_sync_page,
939 #ifdef CONFIG_MIGRATION
940 .migratepage = btree_migratepage,
941 #endif
942 };
943
944 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
945 u64 parent_transid)
946 {
947 struct extent_buffer *buf = NULL;
948 struct inode *btree_inode = root->fs_info->btree_inode;
949 int ret = 0;
950
951 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
952 if (!buf)
953 return 0;
954 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
955 buf, 0, 0, btree_get_extent, 0);
956 free_extent_buffer(buf);
957 return ret;
958 }
959
960 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
961 u64 bytenr, u32 blocksize)
962 {
963 struct inode *btree_inode = root->fs_info->btree_inode;
964 struct extent_buffer *eb;
965 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
966 bytenr, blocksize, GFP_NOFS);
967 return eb;
968 }
969
970 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
971 u64 bytenr, u32 blocksize)
972 {
973 struct inode *btree_inode = root->fs_info->btree_inode;
974 struct extent_buffer *eb;
975
976 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
977 bytenr, blocksize, NULL, GFP_NOFS);
978 return eb;
979 }
980
981
982 int btrfs_write_tree_block(struct extent_buffer *buf)
983 {
984 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
985 buf->start + buf->len - 1);
986 }
987
988 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
989 {
990 return filemap_fdatawait_range(buf->first_page->mapping,
991 buf->start, buf->start + buf->len - 1);
992 }
993
994 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
995 u32 blocksize, u64 parent_transid)
996 {
997 struct extent_buffer *buf = NULL;
998 int ret;
999
1000 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1001 if (!buf)
1002 return NULL;
1003
1004 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1005
1006 if (ret == 0)
1007 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
1008 return buf;
1009
1010 }
1011
1012 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1013 struct extent_buffer *buf)
1014 {
1015 struct inode *btree_inode = root->fs_info->btree_inode;
1016 if (btrfs_header_generation(buf) ==
1017 root->fs_info->running_transaction->transid) {
1018 btrfs_assert_tree_locked(buf);
1019
1020 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1021 spin_lock(&root->fs_info->delalloc_lock);
1022 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1023 root->fs_info->dirty_metadata_bytes -= buf->len;
1024 else
1025 WARN_ON(1);
1026 spin_unlock(&root->fs_info->delalloc_lock);
1027 }
1028
1029 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1030 btrfs_set_lock_blocking(buf);
1031 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
1032 buf);
1033 }
1034 return 0;
1035 }
1036
1037 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1038 u32 stripesize, struct btrfs_root *root,
1039 struct btrfs_fs_info *fs_info,
1040 u64 objectid)
1041 {
1042 root->node = NULL;
1043 root->commit_root = NULL;
1044 root->sectorsize = sectorsize;
1045 root->nodesize = nodesize;
1046 root->leafsize = leafsize;
1047 root->stripesize = stripesize;
1048 root->ref_cows = 0;
1049 root->track_dirty = 0;
1050 root->in_radix = 0;
1051 root->orphan_item_inserted = 0;
1052 root->orphan_cleanup_state = 0;
1053
1054 root->fs_info = fs_info;
1055 root->objectid = objectid;
1056 root->last_trans = 0;
1057 root->highest_objectid = 0;
1058 root->name = NULL;
1059 root->in_sysfs = 0;
1060 root->inode_tree = RB_ROOT;
1061 root->block_rsv = NULL;
1062 root->orphan_block_rsv = NULL;
1063
1064 INIT_LIST_HEAD(&root->dirty_list);
1065 INIT_LIST_HEAD(&root->orphan_list);
1066 INIT_LIST_HEAD(&root->root_list);
1067 spin_lock_init(&root->node_lock);
1068 spin_lock_init(&root->orphan_lock);
1069 spin_lock_init(&root->inode_lock);
1070 spin_lock_init(&root->accounting_lock);
1071 mutex_init(&root->objectid_mutex);
1072 mutex_init(&root->log_mutex);
1073 init_waitqueue_head(&root->log_writer_wait);
1074 init_waitqueue_head(&root->log_commit_wait[0]);
1075 init_waitqueue_head(&root->log_commit_wait[1]);
1076 atomic_set(&root->log_commit[0], 0);
1077 atomic_set(&root->log_commit[1], 0);
1078 atomic_set(&root->log_writers, 0);
1079 root->log_batch = 0;
1080 root->log_transid = 0;
1081 root->last_log_commit = 0;
1082 extent_io_tree_init(&root->dirty_log_pages,
1083 fs_info->btree_inode->i_mapping, GFP_NOFS);
1084
1085 memset(&root->root_key, 0, sizeof(root->root_key));
1086 memset(&root->root_item, 0, sizeof(root->root_item));
1087 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1088 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1089 root->defrag_trans_start = fs_info->generation;
1090 init_completion(&root->kobj_unregister);
1091 root->defrag_running = 0;
1092 root->root_key.objectid = objectid;
1093 root->anon_super.s_root = NULL;
1094 root->anon_super.s_dev = 0;
1095 INIT_LIST_HEAD(&root->anon_super.s_list);
1096 INIT_LIST_HEAD(&root->anon_super.s_instances);
1097 init_rwsem(&root->anon_super.s_umount);
1098
1099 return 0;
1100 }
1101
1102 static int find_and_setup_root(struct btrfs_root *tree_root,
1103 struct btrfs_fs_info *fs_info,
1104 u64 objectid,
1105 struct btrfs_root *root)
1106 {
1107 int ret;
1108 u32 blocksize;
1109 u64 generation;
1110
1111 __setup_root(tree_root->nodesize, tree_root->leafsize,
1112 tree_root->sectorsize, tree_root->stripesize,
1113 root, fs_info, objectid);
1114 ret = btrfs_find_last_root(tree_root, objectid,
1115 &root->root_item, &root->root_key);
1116 if (ret > 0)
1117 return -ENOENT;
1118 BUG_ON(ret);
1119
1120 generation = btrfs_root_generation(&root->root_item);
1121 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1122 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1123 blocksize, generation);
1124 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1125 free_extent_buffer(root->node);
1126 return -EIO;
1127 }
1128 root->commit_root = btrfs_root_node(root);
1129 return 0;
1130 }
1131
1132 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1133 struct btrfs_fs_info *fs_info)
1134 {
1135 struct btrfs_root *root;
1136 struct btrfs_root *tree_root = fs_info->tree_root;
1137 struct extent_buffer *leaf;
1138
1139 root = kzalloc(sizeof(*root), GFP_NOFS);
1140 if (!root)
1141 return ERR_PTR(-ENOMEM);
1142
1143 __setup_root(tree_root->nodesize, tree_root->leafsize,
1144 tree_root->sectorsize, tree_root->stripesize,
1145 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1146
1147 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1148 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1149 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1150 /*
1151 * log trees do not get reference counted because they go away
1152 * before a real commit is actually done. They do store pointers
1153 * to file data extents, and those reference counts still get
1154 * updated (along with back refs to the log tree).
1155 */
1156 root->ref_cows = 0;
1157
1158 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1159 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1160 if (IS_ERR(leaf)) {
1161 kfree(root);
1162 return ERR_CAST(leaf);
1163 }
1164
1165 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1166 btrfs_set_header_bytenr(leaf, leaf->start);
1167 btrfs_set_header_generation(leaf, trans->transid);
1168 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1169 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1170 root->node = leaf;
1171
1172 write_extent_buffer(root->node, root->fs_info->fsid,
1173 (unsigned long)btrfs_header_fsid(root->node),
1174 BTRFS_FSID_SIZE);
1175 btrfs_mark_buffer_dirty(root->node);
1176 btrfs_tree_unlock(root->node);
1177 return root;
1178 }
1179
1180 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1181 struct btrfs_fs_info *fs_info)
1182 {
1183 struct btrfs_root *log_root;
1184
1185 log_root = alloc_log_tree(trans, fs_info);
1186 if (IS_ERR(log_root))
1187 return PTR_ERR(log_root);
1188 WARN_ON(fs_info->log_root_tree);
1189 fs_info->log_root_tree = log_root;
1190 return 0;
1191 }
1192
1193 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1194 struct btrfs_root *root)
1195 {
1196 struct btrfs_root *log_root;
1197 struct btrfs_inode_item *inode_item;
1198
1199 log_root = alloc_log_tree(trans, root->fs_info);
1200 if (IS_ERR(log_root))
1201 return PTR_ERR(log_root);
1202
1203 log_root->last_trans = trans->transid;
1204 log_root->root_key.offset = root->root_key.objectid;
1205
1206 inode_item = &log_root->root_item.inode;
1207 inode_item->generation = cpu_to_le64(1);
1208 inode_item->size = cpu_to_le64(3);
1209 inode_item->nlink = cpu_to_le32(1);
1210 inode_item->nbytes = cpu_to_le64(root->leafsize);
1211 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1212
1213 btrfs_set_root_node(&log_root->root_item, log_root->node);
1214
1215 WARN_ON(root->log_root);
1216 root->log_root = log_root;
1217 root->log_transid = 0;
1218 root->last_log_commit = 0;
1219 return 0;
1220 }
1221
1222 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1223 struct btrfs_key *location)
1224 {
1225 struct btrfs_root *root;
1226 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1227 struct btrfs_path *path;
1228 struct extent_buffer *l;
1229 u64 generation;
1230 u32 blocksize;
1231 int ret = 0;
1232
1233 root = kzalloc(sizeof(*root), GFP_NOFS);
1234 if (!root)
1235 return ERR_PTR(-ENOMEM);
1236 if (location->offset == (u64)-1) {
1237 ret = find_and_setup_root(tree_root, fs_info,
1238 location->objectid, root);
1239 if (ret) {
1240 kfree(root);
1241 return ERR_PTR(ret);
1242 }
1243 goto out;
1244 }
1245
1246 __setup_root(tree_root->nodesize, tree_root->leafsize,
1247 tree_root->sectorsize, tree_root->stripesize,
1248 root, fs_info, location->objectid);
1249
1250 path = btrfs_alloc_path();
1251 BUG_ON(!path);
1252 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1253 if (ret == 0) {
1254 l = path->nodes[0];
1255 read_extent_buffer(l, &root->root_item,
1256 btrfs_item_ptr_offset(l, path->slots[0]),
1257 sizeof(root->root_item));
1258 memcpy(&root->root_key, location, sizeof(*location));
1259 }
1260 btrfs_free_path(path);
1261 if (ret) {
1262 kfree(root);
1263 if (ret > 0)
1264 ret = -ENOENT;
1265 return ERR_PTR(ret);
1266 }
1267
1268 generation = btrfs_root_generation(&root->root_item);
1269 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1270 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1271 blocksize, generation);
1272 root->commit_root = btrfs_root_node(root);
1273 BUG_ON(!root->node);
1274 out:
1275 if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
1276 root->ref_cows = 1;
1277
1278 return root;
1279 }
1280
1281 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1282 u64 root_objectid)
1283 {
1284 struct btrfs_root *root;
1285
1286 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1287 return fs_info->tree_root;
1288 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1289 return fs_info->extent_root;
1290
1291 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1292 (unsigned long)root_objectid);
1293 return root;
1294 }
1295
1296 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1297 struct btrfs_key *location)
1298 {
1299 struct btrfs_root *root;
1300 int ret;
1301
1302 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1303 return fs_info->tree_root;
1304 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1305 return fs_info->extent_root;
1306 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1307 return fs_info->chunk_root;
1308 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1309 return fs_info->dev_root;
1310 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1311 return fs_info->csum_root;
1312 again:
1313 spin_lock(&fs_info->fs_roots_radix_lock);
1314 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1315 (unsigned long)location->objectid);
1316 spin_unlock(&fs_info->fs_roots_radix_lock);
1317 if (root)
1318 return root;
1319
1320 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1321 if (IS_ERR(root))
1322 return root;
1323
1324 set_anon_super(&root->anon_super, NULL);
1325
1326 if (btrfs_root_refs(&root->root_item) == 0) {
1327 ret = -ENOENT;
1328 goto fail;
1329 }
1330
1331 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1332 if (ret < 0)
1333 goto fail;
1334 if (ret == 0)
1335 root->orphan_item_inserted = 1;
1336
1337 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1338 if (ret)
1339 goto fail;
1340
1341 spin_lock(&fs_info->fs_roots_radix_lock);
1342 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1343 (unsigned long)root->root_key.objectid,
1344 root);
1345 if (ret == 0)
1346 root->in_radix = 1;
1347
1348 spin_unlock(&fs_info->fs_roots_radix_lock);
1349 radix_tree_preload_end();
1350 if (ret) {
1351 if (ret == -EEXIST) {
1352 free_fs_root(root);
1353 goto again;
1354 }
1355 goto fail;
1356 }
1357
1358 ret = btrfs_find_dead_roots(fs_info->tree_root,
1359 root->root_key.objectid);
1360 WARN_ON(ret);
1361 return root;
1362 fail:
1363 free_fs_root(root);
1364 return ERR_PTR(ret);
1365 }
1366
1367 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1368 struct btrfs_key *location,
1369 const char *name, int namelen)
1370 {
1371 return btrfs_read_fs_root_no_name(fs_info, location);
1372 #if 0
1373 struct btrfs_root *root;
1374 int ret;
1375
1376 root = btrfs_read_fs_root_no_name(fs_info, location);
1377 if (!root)
1378 return NULL;
1379
1380 if (root->in_sysfs)
1381 return root;
1382
1383 ret = btrfs_set_root_name(root, name, namelen);
1384 if (ret) {
1385 free_extent_buffer(root->node);
1386 kfree(root);
1387 return ERR_PTR(ret);
1388 }
1389
1390 ret = btrfs_sysfs_add_root(root);
1391 if (ret) {
1392 free_extent_buffer(root->node);
1393 kfree(root->name);
1394 kfree(root);
1395 return ERR_PTR(ret);
1396 }
1397 root->in_sysfs = 1;
1398 return root;
1399 #endif
1400 }
1401
1402 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1403 {
1404 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1405 int ret = 0;
1406 struct btrfs_device *device;
1407 struct backing_dev_info *bdi;
1408
1409 list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1410 if (!device->bdev)
1411 continue;
1412 bdi = blk_get_backing_dev_info(device->bdev);
1413 if (bdi && bdi_congested(bdi, bdi_bits)) {
1414 ret = 1;
1415 break;
1416 }
1417 }
1418 return ret;
1419 }
1420
1421 /*
1422 * this unplugs every device on the box, and it is only used when page
1423 * is null
1424 */
1425 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1426 {
1427 struct btrfs_device *device;
1428 struct btrfs_fs_info *info;
1429
1430 info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1431 list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1432 if (!device->bdev)
1433 continue;
1434
1435 bdi = blk_get_backing_dev_info(device->bdev);
1436 if (bdi->unplug_io_fn)
1437 bdi->unplug_io_fn(bdi, page);
1438 }
1439 }
1440
1441 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1442 {
1443 struct inode *inode;
1444 struct extent_map_tree *em_tree;
1445 struct extent_map *em;
1446 struct address_space *mapping;
1447 u64 offset;
1448
1449 /* the generic O_DIRECT read code does this */
1450 if (1 || !page) {
1451 __unplug_io_fn(bdi, page);
1452 return;
1453 }
1454
1455 /*
1456 * page->mapping may change at any time. Get a consistent copy
1457 * and use that for everything below
1458 */
1459 smp_mb();
1460 mapping = page->mapping;
1461 if (!mapping)
1462 return;
1463
1464 inode = mapping->host;
1465
1466 /*
1467 * don't do the expensive searching for a small number of
1468 * devices
1469 */
1470 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1471 __unplug_io_fn(bdi, page);
1472 return;
1473 }
1474
1475 offset = page_offset(page);
1476
1477 em_tree = &BTRFS_I(inode)->extent_tree;
1478 read_lock(&em_tree->lock);
1479 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1480 read_unlock(&em_tree->lock);
1481 if (!em) {
1482 __unplug_io_fn(bdi, page);
1483 return;
1484 }
1485
1486 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1487 free_extent_map(em);
1488 __unplug_io_fn(bdi, page);
1489 return;
1490 }
1491 offset = offset - em->start;
1492 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1493 em->block_start + offset, page);
1494 free_extent_map(em);
1495 }
1496
1497 /*
1498 * If this fails, caller must call bdi_destroy() to get rid of the
1499 * bdi again.
1500 */
1501 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1502 {
1503 int err;
1504
1505 bdi->capabilities = BDI_CAP_MAP_COPY;
1506 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1507 if (err)
1508 return err;
1509
1510 bdi->ra_pages = default_backing_dev_info.ra_pages;
1511 bdi->unplug_io_fn = btrfs_unplug_io_fn;
1512 bdi->unplug_io_data = info;
1513 bdi->congested_fn = btrfs_congested_fn;
1514 bdi->congested_data = info;
1515 return 0;
1516 }
1517
1518 static int bio_ready_for_csum(struct bio *bio)
1519 {
1520 u64 length = 0;
1521 u64 buf_len = 0;
1522 u64 start = 0;
1523 struct page *page;
1524 struct extent_io_tree *io_tree = NULL;
1525 struct bio_vec *bvec;
1526 int i;
1527 int ret;
1528
1529 bio_for_each_segment(bvec, bio, i) {
1530 page = bvec->bv_page;
1531 if (page->private == EXTENT_PAGE_PRIVATE) {
1532 length += bvec->bv_len;
1533 continue;
1534 }
1535 if (!page->private) {
1536 length += bvec->bv_len;
1537 continue;
1538 }
1539 length = bvec->bv_len;
1540 buf_len = page->private >> 2;
1541 start = page_offset(page) + bvec->bv_offset;
1542 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1543 }
1544 /* are we fully contained in this bio? */
1545 if (buf_len <= length)
1546 return 1;
1547
1548 ret = extent_range_uptodate(io_tree, start + length,
1549 start + buf_len - 1);
1550 return ret;
1551 }
1552
1553 /*
1554 * called by the kthread helper functions to finally call the bio end_io
1555 * functions. This is where read checksum verification actually happens
1556 */
1557 static void end_workqueue_fn(struct btrfs_work *work)
1558 {
1559 struct bio *bio;
1560 struct end_io_wq *end_io_wq;
1561 struct btrfs_fs_info *fs_info;
1562 int error;
1563
1564 end_io_wq = container_of(work, struct end_io_wq, work);
1565 bio = end_io_wq->bio;
1566 fs_info = end_io_wq->info;
1567
1568 /* metadata bio reads are special because the whole tree block must
1569 * be checksummed at once. This makes sure the entire block is in
1570 * ram and up to date before trying to verify things. For
1571 * blocksize <= pagesize, it is basically a noop
1572 */
1573 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
1574 !bio_ready_for_csum(bio)) {
1575 btrfs_queue_worker(&fs_info->endio_meta_workers,
1576 &end_io_wq->work);
1577 return;
1578 }
1579 error = end_io_wq->error;
1580 bio->bi_private = end_io_wq->private;
1581 bio->bi_end_io = end_io_wq->end_io;
1582 kfree(end_io_wq);
1583 bio_endio(bio, error);
1584 }
1585
1586 static int cleaner_kthread(void *arg)
1587 {
1588 struct btrfs_root *root = arg;
1589
1590 do {
1591 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1592
1593 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1594 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1595 btrfs_run_delayed_iputs(root);
1596 btrfs_clean_old_snapshots(root);
1597 mutex_unlock(&root->fs_info->cleaner_mutex);
1598 }
1599
1600 if (freezing(current)) {
1601 refrigerator();
1602 } else {
1603 set_current_state(TASK_INTERRUPTIBLE);
1604 if (!kthread_should_stop())
1605 schedule();
1606 __set_current_state(TASK_RUNNING);
1607 }
1608 } while (!kthread_should_stop());
1609 return 0;
1610 }
1611
1612 static int transaction_kthread(void *arg)
1613 {
1614 struct btrfs_root *root = arg;
1615 struct btrfs_trans_handle *trans;
1616 struct btrfs_transaction *cur;
1617 u64 transid;
1618 unsigned long now;
1619 unsigned long delay;
1620 int ret;
1621
1622 do {
1623 delay = HZ * 30;
1624 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1625 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1626
1627 spin_lock(&root->fs_info->new_trans_lock);
1628 cur = root->fs_info->running_transaction;
1629 if (!cur) {
1630 spin_unlock(&root->fs_info->new_trans_lock);
1631 goto sleep;
1632 }
1633
1634 now = get_seconds();
1635 if (!cur->blocked &&
1636 (now < cur->start_time || now - cur->start_time < 30)) {
1637 spin_unlock(&root->fs_info->new_trans_lock);
1638 delay = HZ * 5;
1639 goto sleep;
1640 }
1641 transid = cur->transid;
1642 spin_unlock(&root->fs_info->new_trans_lock);
1643
1644 trans = btrfs_join_transaction(root, 1);
1645 BUG_ON(IS_ERR(trans));
1646 if (transid == trans->transid) {
1647 ret = btrfs_commit_transaction(trans, root);
1648 BUG_ON(ret);
1649 } else {
1650 btrfs_end_transaction(trans, root);
1651 }
1652 sleep:
1653 wake_up_process(root->fs_info->cleaner_kthread);
1654 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1655
1656 if (freezing(current)) {
1657 refrigerator();
1658 } else {
1659 set_current_state(TASK_INTERRUPTIBLE);
1660 if (!kthread_should_stop() &&
1661 !btrfs_transaction_blocked(root->fs_info))
1662 schedule_timeout(delay);
1663 __set_current_state(TASK_RUNNING);
1664 }
1665 } while (!kthread_should_stop());
1666 return 0;
1667 }
1668
1669 struct btrfs_root *open_ctree(struct super_block *sb,
1670 struct btrfs_fs_devices *fs_devices,
1671 char *options)
1672 {
1673 u32 sectorsize;
1674 u32 nodesize;
1675 u32 leafsize;
1676 u32 blocksize;
1677 u32 stripesize;
1678 u64 generation;
1679 u64 features;
1680 struct btrfs_key location;
1681 struct buffer_head *bh;
1682 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1683 GFP_NOFS);
1684 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1685 GFP_NOFS);
1686 struct btrfs_root *tree_root = btrfs_sb(sb);
1687 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1688 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1689 GFP_NOFS);
1690 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1691 GFP_NOFS);
1692 struct btrfs_root *log_tree_root;
1693
1694 int ret;
1695 int err = -EINVAL;
1696
1697 struct btrfs_super_block *disk_super;
1698
1699 if (!extent_root || !tree_root || !fs_info ||
1700 !chunk_root || !dev_root || !csum_root) {
1701 err = -ENOMEM;
1702 goto fail;
1703 }
1704
1705 ret = init_srcu_struct(&fs_info->subvol_srcu);
1706 if (ret) {
1707 err = ret;
1708 goto fail;
1709 }
1710
1711 ret = setup_bdi(fs_info, &fs_info->bdi);
1712 if (ret) {
1713 err = ret;
1714 goto fail_srcu;
1715 }
1716
1717 fs_info->btree_inode = new_inode(sb);
1718 if (!fs_info->btree_inode) {
1719 err = -ENOMEM;
1720 goto fail_bdi;
1721 }
1722
1723 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1724 INIT_LIST_HEAD(&fs_info->trans_list);
1725 INIT_LIST_HEAD(&fs_info->dead_roots);
1726 INIT_LIST_HEAD(&fs_info->delayed_iputs);
1727 INIT_LIST_HEAD(&fs_info->hashers);
1728 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1729 INIT_LIST_HEAD(&fs_info->ordered_operations);
1730 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1731 spin_lock_init(&fs_info->delalloc_lock);
1732 spin_lock_init(&fs_info->new_trans_lock);
1733 spin_lock_init(&fs_info->ref_cache_lock);
1734 spin_lock_init(&fs_info->fs_roots_radix_lock);
1735 spin_lock_init(&fs_info->delayed_iput_lock);
1736
1737 init_completion(&fs_info->kobj_unregister);
1738 fs_info->tree_root = tree_root;
1739 fs_info->extent_root = extent_root;
1740 fs_info->csum_root = csum_root;
1741 fs_info->chunk_root = chunk_root;
1742 fs_info->dev_root = dev_root;
1743 fs_info->fs_devices = fs_devices;
1744 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1745 INIT_LIST_HEAD(&fs_info->space_info);
1746 btrfs_mapping_init(&fs_info->mapping_tree);
1747 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1748 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1749 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1750 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1751 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1752 INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
1753 mutex_init(&fs_info->durable_block_rsv_mutex);
1754 atomic_set(&fs_info->nr_async_submits, 0);
1755 atomic_set(&fs_info->async_delalloc_pages, 0);
1756 atomic_set(&fs_info->async_submit_draining, 0);
1757 atomic_set(&fs_info->nr_async_bios, 0);
1758 fs_info->sb = sb;
1759 fs_info->max_inline = 8192 * 1024;
1760 fs_info->metadata_ratio = 0;
1761
1762 fs_info->thread_pool_size = min_t(unsigned long,
1763 num_online_cpus() + 2, 8);
1764
1765 INIT_LIST_HEAD(&fs_info->ordered_extents);
1766 spin_lock_init(&fs_info->ordered_extent_lock);
1767
1768 sb->s_blocksize = 4096;
1769 sb->s_blocksize_bits = blksize_bits(4096);
1770 sb->s_bdi = &fs_info->bdi;
1771
1772 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1773 fs_info->btree_inode->i_nlink = 1;
1774 /*
1775 * we set the i_size on the btree inode to the max possible int.
1776 * the real end of the address space is determined by all of
1777 * the devices in the system
1778 */
1779 fs_info->btree_inode->i_size = OFFSET_MAX;
1780 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1781 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1782
1783 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1784 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1785 fs_info->btree_inode->i_mapping,
1786 GFP_NOFS);
1787 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1788 GFP_NOFS);
1789
1790 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1791
1792 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1793 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1794 sizeof(struct btrfs_key));
1795 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1796 insert_inode_hash(fs_info->btree_inode);
1797
1798 spin_lock_init(&fs_info->block_group_cache_lock);
1799 fs_info->block_group_cache_tree = RB_ROOT;
1800
1801 extent_io_tree_init(&fs_info->freed_extents[0],
1802 fs_info->btree_inode->i_mapping, GFP_NOFS);
1803 extent_io_tree_init(&fs_info->freed_extents[1],
1804 fs_info->btree_inode->i_mapping, GFP_NOFS);
1805 fs_info->pinned_extents = &fs_info->freed_extents[0];
1806 fs_info->do_barriers = 1;
1807
1808
1809 mutex_init(&fs_info->trans_mutex);
1810 mutex_init(&fs_info->ordered_operations_mutex);
1811 mutex_init(&fs_info->tree_log_mutex);
1812 mutex_init(&fs_info->chunk_mutex);
1813 mutex_init(&fs_info->transaction_kthread_mutex);
1814 mutex_init(&fs_info->cleaner_mutex);
1815 mutex_init(&fs_info->volume_mutex);
1816 init_rwsem(&fs_info->extent_commit_sem);
1817 init_rwsem(&fs_info->cleanup_work_sem);
1818 init_rwsem(&fs_info->subvol_sem);
1819
1820 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1821 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1822
1823 init_waitqueue_head(&fs_info->transaction_throttle);
1824 init_waitqueue_head(&fs_info->transaction_wait);
1825 init_waitqueue_head(&fs_info->transaction_blocked_wait);
1826 init_waitqueue_head(&fs_info->async_submit_wait);
1827
1828 __setup_root(4096, 4096, 4096, 4096, tree_root,
1829 fs_info, BTRFS_ROOT_TREE_OBJECTID);
1830
1831 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1832 if (!bh) {
1833 err = -EINVAL;
1834 goto fail_iput;
1835 }
1836
1837 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1838 memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1839 sizeof(fs_info->super_for_commit));
1840 brelse(bh);
1841
1842 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1843
1844 disk_super = &fs_info->super_copy;
1845 if (!btrfs_super_root(disk_super))
1846 goto fail_iput;
1847
1848 /* check FS state, whether FS is broken. */
1849 fs_info->fs_state |= btrfs_super_flags(disk_super);
1850
1851 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
1852
1853 ret = btrfs_parse_options(tree_root, options);
1854 if (ret) {
1855 err = ret;
1856 goto fail_iput;
1857 }
1858
1859 features = btrfs_super_incompat_flags(disk_super) &
1860 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1861 if (features) {
1862 printk(KERN_ERR "BTRFS: couldn't mount because of "
1863 "unsupported optional features (%Lx).\n",
1864 (unsigned long long)features);
1865 err = -EINVAL;
1866 goto fail_iput;
1867 }
1868
1869 features = btrfs_super_incompat_flags(disk_super);
1870 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1871 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
1872 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1873 btrfs_set_super_incompat_flags(disk_super, features);
1874
1875 features = btrfs_super_compat_ro_flags(disk_super) &
1876 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1877 if (!(sb->s_flags & MS_RDONLY) && features) {
1878 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1879 "unsupported option features (%Lx).\n",
1880 (unsigned long long)features);
1881 err = -EINVAL;
1882 goto fail_iput;
1883 }
1884
1885 btrfs_init_workers(&fs_info->generic_worker,
1886 "genwork", 1, NULL);
1887
1888 btrfs_init_workers(&fs_info->workers, "worker",
1889 fs_info->thread_pool_size,
1890 &fs_info->generic_worker);
1891
1892 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1893 fs_info->thread_pool_size,
1894 &fs_info->generic_worker);
1895
1896 btrfs_init_workers(&fs_info->submit_workers, "submit",
1897 min_t(u64, fs_devices->num_devices,
1898 fs_info->thread_pool_size),
1899 &fs_info->generic_worker);
1900
1901 /* a higher idle thresh on the submit workers makes it much more
1902 * likely that bios will be send down in a sane order to the
1903 * devices
1904 */
1905 fs_info->submit_workers.idle_thresh = 64;
1906
1907 fs_info->workers.idle_thresh = 16;
1908 fs_info->workers.ordered = 1;
1909
1910 fs_info->delalloc_workers.idle_thresh = 2;
1911 fs_info->delalloc_workers.ordered = 1;
1912
1913 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1914 &fs_info->generic_worker);
1915 btrfs_init_workers(&fs_info->endio_workers, "endio",
1916 fs_info->thread_pool_size,
1917 &fs_info->generic_worker);
1918 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1919 fs_info->thread_pool_size,
1920 &fs_info->generic_worker);
1921 btrfs_init_workers(&fs_info->endio_meta_write_workers,
1922 "endio-meta-write", fs_info->thread_pool_size,
1923 &fs_info->generic_worker);
1924 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1925 fs_info->thread_pool_size,
1926 &fs_info->generic_worker);
1927 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
1928 1, &fs_info->generic_worker);
1929
1930 /*
1931 * endios are largely parallel and should have a very
1932 * low idle thresh
1933 */
1934 fs_info->endio_workers.idle_thresh = 4;
1935 fs_info->endio_meta_workers.idle_thresh = 4;
1936
1937 fs_info->endio_write_workers.idle_thresh = 2;
1938 fs_info->endio_meta_write_workers.idle_thresh = 2;
1939
1940 btrfs_start_workers(&fs_info->workers, 1);
1941 btrfs_start_workers(&fs_info->generic_worker, 1);
1942 btrfs_start_workers(&fs_info->submit_workers, 1);
1943 btrfs_start_workers(&fs_info->delalloc_workers, 1);
1944 btrfs_start_workers(&fs_info->fixup_workers, 1);
1945 btrfs_start_workers(&fs_info->endio_workers, 1);
1946 btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1947 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1948 btrfs_start_workers(&fs_info->endio_write_workers, 1);
1949 btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
1950
1951 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1952 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1953 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1954
1955 nodesize = btrfs_super_nodesize(disk_super);
1956 leafsize = btrfs_super_leafsize(disk_super);
1957 sectorsize = btrfs_super_sectorsize(disk_super);
1958 stripesize = btrfs_super_stripesize(disk_super);
1959 tree_root->nodesize = nodesize;
1960 tree_root->leafsize = leafsize;
1961 tree_root->sectorsize = sectorsize;
1962 tree_root->stripesize = stripesize;
1963
1964 sb->s_blocksize = sectorsize;
1965 sb->s_blocksize_bits = blksize_bits(sectorsize);
1966
1967 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1968 sizeof(disk_super->magic))) {
1969 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1970 goto fail_sb_buffer;
1971 }
1972
1973 mutex_lock(&fs_info->chunk_mutex);
1974 ret = btrfs_read_sys_array(tree_root);
1975 mutex_unlock(&fs_info->chunk_mutex);
1976 if (ret) {
1977 printk(KERN_WARNING "btrfs: failed to read the system "
1978 "array on %s\n", sb->s_id);
1979 goto fail_sb_buffer;
1980 }
1981
1982 blocksize = btrfs_level_size(tree_root,
1983 btrfs_super_chunk_root_level(disk_super));
1984 generation = btrfs_super_chunk_root_generation(disk_super);
1985
1986 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1987 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1988
1989 chunk_root->node = read_tree_block(chunk_root,
1990 btrfs_super_chunk_root(disk_super),
1991 blocksize, generation);
1992 BUG_ON(!chunk_root->node);
1993 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1994 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1995 sb->s_id);
1996 goto fail_chunk_root;
1997 }
1998 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1999 chunk_root->commit_root = btrfs_root_node(chunk_root);
2000
2001 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2002 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2003 BTRFS_UUID_SIZE);
2004
2005 mutex_lock(&fs_info->chunk_mutex);
2006 ret = btrfs_read_chunk_tree(chunk_root);
2007 mutex_unlock(&fs_info->chunk_mutex);
2008 if (ret) {
2009 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2010 sb->s_id);
2011 goto fail_chunk_root;
2012 }
2013
2014 btrfs_close_extra_devices(fs_devices);
2015
2016 blocksize = btrfs_level_size(tree_root,
2017 btrfs_super_root_level(disk_super));
2018 generation = btrfs_super_generation(disk_super);
2019
2020 tree_root->node = read_tree_block(tree_root,
2021 btrfs_super_root(disk_super),
2022 blocksize, generation);
2023 if (!tree_root->node)
2024 goto fail_chunk_root;
2025 if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2026 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2027 sb->s_id);
2028 goto fail_tree_root;
2029 }
2030 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2031 tree_root->commit_root = btrfs_root_node(tree_root);
2032
2033 ret = find_and_setup_root(tree_root, fs_info,
2034 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2035 if (ret)
2036 goto fail_tree_root;
2037 extent_root->track_dirty = 1;
2038
2039 ret = find_and_setup_root(tree_root, fs_info,
2040 BTRFS_DEV_TREE_OBJECTID, dev_root);
2041 if (ret)
2042 goto fail_extent_root;
2043 dev_root->track_dirty = 1;
2044
2045 ret = find_and_setup_root(tree_root, fs_info,
2046 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2047 if (ret)
2048 goto fail_dev_root;
2049
2050 csum_root->track_dirty = 1;
2051
2052 fs_info->generation = generation;
2053 fs_info->last_trans_committed = generation;
2054 fs_info->data_alloc_profile = (u64)-1;
2055 fs_info->metadata_alloc_profile = (u64)-1;
2056 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
2057
2058 ret = btrfs_read_block_groups(extent_root);
2059 if (ret) {
2060 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2061 goto fail_block_groups;
2062 }
2063
2064 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2065 "btrfs-cleaner");
2066 if (IS_ERR(fs_info->cleaner_kthread))
2067 goto fail_block_groups;
2068
2069 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2070 tree_root,
2071 "btrfs-transaction");
2072 if (IS_ERR(fs_info->transaction_kthread))
2073 goto fail_cleaner;
2074
2075 if (!btrfs_test_opt(tree_root, SSD) &&
2076 !btrfs_test_opt(tree_root, NOSSD) &&
2077 !fs_info->fs_devices->rotating) {
2078 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2079 "mode\n");
2080 btrfs_set_opt(fs_info->mount_opt, SSD);
2081 }
2082
2083 /* do not make disk changes in broken FS */
2084 if (btrfs_super_log_root(disk_super) != 0 &&
2085 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2086 u64 bytenr = btrfs_super_log_root(disk_super);
2087
2088 if (fs_devices->rw_devices == 0) {
2089 printk(KERN_WARNING "Btrfs log replay required "
2090 "on RO media\n");
2091 err = -EIO;
2092 goto fail_trans_kthread;
2093 }
2094 blocksize =
2095 btrfs_level_size(tree_root,
2096 btrfs_super_log_root_level(disk_super));
2097
2098 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
2099 if (!log_tree_root) {
2100 err = -ENOMEM;
2101 goto fail_trans_kthread;
2102 }
2103
2104 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2105 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2106
2107 log_tree_root->node = read_tree_block(tree_root, bytenr,
2108 blocksize,
2109 generation + 1);
2110 ret = btrfs_recover_log_trees(log_tree_root);
2111 BUG_ON(ret);
2112
2113 if (sb->s_flags & MS_RDONLY) {
2114 ret = btrfs_commit_super(tree_root);
2115 BUG_ON(ret);
2116 }
2117 }
2118
2119 ret = btrfs_find_orphan_roots(tree_root);
2120 BUG_ON(ret);
2121
2122 if (!(sb->s_flags & MS_RDONLY)) {
2123 ret = btrfs_cleanup_fs_roots(fs_info);
2124 BUG_ON(ret);
2125
2126 ret = btrfs_recover_relocation(tree_root);
2127 if (ret < 0) {
2128 printk(KERN_WARNING
2129 "btrfs: failed to recover relocation\n");
2130 err = -EINVAL;
2131 goto fail_trans_kthread;
2132 }
2133 }
2134
2135 location.objectid = BTRFS_FS_TREE_OBJECTID;
2136 location.type = BTRFS_ROOT_ITEM_KEY;
2137 location.offset = (u64)-1;
2138
2139 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2140 if (!fs_info->fs_root)
2141 goto fail_trans_kthread;
2142 if (IS_ERR(fs_info->fs_root)) {
2143 err = PTR_ERR(fs_info->fs_root);
2144 goto fail_trans_kthread;
2145 }
2146
2147 if (!(sb->s_flags & MS_RDONLY)) {
2148 down_read(&fs_info->cleanup_work_sem);
2149 err = btrfs_orphan_cleanup(fs_info->fs_root);
2150 if (!err)
2151 err = btrfs_orphan_cleanup(fs_info->tree_root);
2152 up_read(&fs_info->cleanup_work_sem);
2153 if (err) {
2154 close_ctree(tree_root);
2155 return ERR_PTR(err);
2156 }
2157 }
2158
2159 return tree_root;
2160
2161 fail_trans_kthread:
2162 kthread_stop(fs_info->transaction_kthread);
2163 fail_cleaner:
2164 kthread_stop(fs_info->cleaner_kthread);
2165
2166 /*
2167 * make sure we're done with the btree inode before we stop our
2168 * kthreads
2169 */
2170 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2171 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2172
2173 fail_block_groups:
2174 btrfs_free_block_groups(fs_info);
2175 free_extent_buffer(csum_root->node);
2176 free_extent_buffer(csum_root->commit_root);
2177 fail_dev_root:
2178 free_extent_buffer(dev_root->node);
2179 free_extent_buffer(dev_root->commit_root);
2180 fail_extent_root:
2181 free_extent_buffer(extent_root->node);
2182 free_extent_buffer(extent_root->commit_root);
2183 fail_tree_root:
2184 free_extent_buffer(tree_root->node);
2185 free_extent_buffer(tree_root->commit_root);
2186 fail_chunk_root:
2187 free_extent_buffer(chunk_root->node);
2188 free_extent_buffer(chunk_root->commit_root);
2189 fail_sb_buffer:
2190 btrfs_stop_workers(&fs_info->generic_worker);
2191 btrfs_stop_workers(&fs_info->fixup_workers);
2192 btrfs_stop_workers(&fs_info->delalloc_workers);
2193 btrfs_stop_workers(&fs_info->workers);
2194 btrfs_stop_workers(&fs_info->endio_workers);
2195 btrfs_stop_workers(&fs_info->endio_meta_workers);
2196 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2197 btrfs_stop_workers(&fs_info->endio_write_workers);
2198 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2199 btrfs_stop_workers(&fs_info->submit_workers);
2200 fail_iput:
2201 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2202 iput(fs_info->btree_inode);
2203
2204 btrfs_close_devices(fs_info->fs_devices);
2205 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2206 fail_bdi:
2207 bdi_destroy(&fs_info->bdi);
2208 fail_srcu:
2209 cleanup_srcu_struct(&fs_info->subvol_srcu);
2210 fail:
2211 kfree(extent_root);
2212 kfree(tree_root);
2213 kfree(fs_info);
2214 kfree(chunk_root);
2215 kfree(dev_root);
2216 kfree(csum_root);
2217 return ERR_PTR(err);
2218 }
2219
2220 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2221 {
2222 char b[BDEVNAME_SIZE];
2223
2224 if (uptodate) {
2225 set_buffer_uptodate(bh);
2226 } else {
2227 if (printk_ratelimit()) {
2228 printk(KERN_WARNING "lost page write due to "
2229 "I/O error on %s\n",
2230 bdevname(bh->b_bdev, b));
2231 }
2232 /* note, we dont' set_buffer_write_io_error because we have
2233 * our own ways of dealing with the IO errors
2234 */
2235 clear_buffer_uptodate(bh);
2236 }
2237 unlock_buffer(bh);
2238 put_bh(bh);
2239 }
2240
2241 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2242 {
2243 struct buffer_head *bh;
2244 struct buffer_head *latest = NULL;
2245 struct btrfs_super_block *super;
2246 int i;
2247 u64 transid = 0;
2248 u64 bytenr;
2249
2250 /* we would like to check all the supers, but that would make
2251 * a btrfs mount succeed after a mkfs from a different FS.
2252 * So, we need to add a special mount option to scan for
2253 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2254 */
2255 for (i = 0; i < 1; i++) {
2256 bytenr = btrfs_sb_offset(i);
2257 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2258 break;
2259 bh = __bread(bdev, bytenr / 4096, 4096);
2260 if (!bh)
2261 continue;
2262
2263 super = (struct btrfs_super_block *)bh->b_data;
2264 if (btrfs_super_bytenr(super) != bytenr ||
2265 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2266 sizeof(super->magic))) {
2267 brelse(bh);
2268 continue;
2269 }
2270
2271 if (!latest || btrfs_super_generation(super) > transid) {
2272 brelse(latest);
2273 latest = bh;
2274 transid = btrfs_super_generation(super);
2275 } else {
2276 brelse(bh);
2277 }
2278 }
2279 return latest;
2280 }
2281
2282 /*
2283 * this should be called twice, once with wait == 0 and
2284 * once with wait == 1. When wait == 0 is done, all the buffer heads
2285 * we write are pinned.
2286 *
2287 * They are released when wait == 1 is done.
2288 * max_mirrors must be the same for both runs, and it indicates how
2289 * many supers on this one device should be written.
2290 *
2291 * max_mirrors == 0 means to write them all.
2292 */
2293 static int write_dev_supers(struct btrfs_device *device,
2294 struct btrfs_super_block *sb,
2295 int do_barriers, int wait, int max_mirrors)
2296 {
2297 struct buffer_head *bh;
2298 int i;
2299 int ret;
2300 int errors = 0;
2301 u32 crc;
2302 u64 bytenr;
2303 int last_barrier = 0;
2304
2305 if (max_mirrors == 0)
2306 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2307
2308 /* make sure only the last submit_bh does a barrier */
2309 if (do_barriers) {
2310 for (i = 0; i < max_mirrors; i++) {
2311 bytenr = btrfs_sb_offset(i);
2312 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2313 device->total_bytes)
2314 break;
2315 last_barrier = i;
2316 }
2317 }
2318
2319 for (i = 0; i < max_mirrors; i++) {
2320 bytenr = btrfs_sb_offset(i);
2321 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2322 break;
2323
2324 if (wait) {
2325 bh = __find_get_block(device->bdev, bytenr / 4096,
2326 BTRFS_SUPER_INFO_SIZE);
2327 BUG_ON(!bh);
2328 wait_on_buffer(bh);
2329 if (!buffer_uptodate(bh))
2330 errors++;
2331
2332 /* drop our reference */
2333 brelse(bh);
2334
2335 /* drop the reference from the wait == 0 run */
2336 brelse(bh);
2337 continue;
2338 } else {
2339 btrfs_set_super_bytenr(sb, bytenr);
2340
2341 crc = ~(u32)0;
2342 crc = btrfs_csum_data(NULL, (char *)sb +
2343 BTRFS_CSUM_SIZE, crc,
2344 BTRFS_SUPER_INFO_SIZE -
2345 BTRFS_CSUM_SIZE);
2346 btrfs_csum_final(crc, sb->csum);
2347
2348 /*
2349 * one reference for us, and we leave it for the
2350 * caller
2351 */
2352 bh = __getblk(device->bdev, bytenr / 4096,
2353 BTRFS_SUPER_INFO_SIZE);
2354 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2355
2356 /* one reference for submit_bh */
2357 get_bh(bh);
2358
2359 set_buffer_uptodate(bh);
2360 lock_buffer(bh);
2361 bh->b_end_io = btrfs_end_buffer_write_sync;
2362 }
2363
2364 if (i == last_barrier && do_barriers)
2365 ret = submit_bh(WRITE_FLUSH_FUA, bh);
2366 else
2367 ret = submit_bh(WRITE_SYNC, bh);
2368
2369 if (ret)
2370 errors++;
2371 }
2372 return errors < i ? 0 : -1;
2373 }
2374
2375 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2376 {
2377 struct list_head *head;
2378 struct btrfs_device *dev;
2379 struct btrfs_super_block *sb;
2380 struct btrfs_dev_item *dev_item;
2381 int ret;
2382 int do_barriers;
2383 int max_errors;
2384 int total_errors = 0;
2385 u64 flags;
2386
2387 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2388 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2389
2390 sb = &root->fs_info->super_for_commit;
2391 dev_item = &sb->dev_item;
2392
2393 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2394 head = &root->fs_info->fs_devices->devices;
2395 list_for_each_entry(dev, head, dev_list) {
2396 if (!dev->bdev) {
2397 total_errors++;
2398 continue;
2399 }
2400 if (!dev->in_fs_metadata || !dev->writeable)
2401 continue;
2402
2403 btrfs_set_stack_device_generation(dev_item, 0);
2404 btrfs_set_stack_device_type(dev_item, dev->type);
2405 btrfs_set_stack_device_id(dev_item, dev->devid);
2406 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2407 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2408 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2409 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2410 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2411 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2412 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2413
2414 flags = btrfs_super_flags(sb);
2415 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2416
2417 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2418 if (ret)
2419 total_errors++;
2420 }
2421 if (total_errors > max_errors) {
2422 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2423 total_errors);
2424 BUG();
2425 }
2426
2427 total_errors = 0;
2428 list_for_each_entry(dev, head, dev_list) {
2429 if (!dev->bdev)
2430 continue;
2431 if (!dev->in_fs_metadata || !dev->writeable)
2432 continue;
2433
2434 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2435 if (ret)
2436 total_errors++;
2437 }
2438 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2439 if (total_errors > max_errors) {
2440 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2441 total_errors);
2442 BUG();
2443 }
2444 return 0;
2445 }
2446
2447 int write_ctree_super(struct btrfs_trans_handle *trans,
2448 struct btrfs_root *root, int max_mirrors)
2449 {
2450 int ret;
2451
2452 ret = write_all_supers(root, max_mirrors);
2453 return ret;
2454 }
2455
2456 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2457 {
2458 spin_lock(&fs_info->fs_roots_radix_lock);
2459 radix_tree_delete(&fs_info->fs_roots_radix,
2460 (unsigned long)root->root_key.objectid);
2461 spin_unlock(&fs_info->fs_roots_radix_lock);
2462
2463 if (btrfs_root_refs(&root->root_item) == 0)
2464 synchronize_srcu(&fs_info->subvol_srcu);
2465
2466 free_fs_root(root);
2467 return 0;
2468 }
2469
2470 static void free_fs_root(struct btrfs_root *root)
2471 {
2472 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2473 if (root->anon_super.s_dev) {
2474 down_write(&root->anon_super.s_umount);
2475 kill_anon_super(&root->anon_super);
2476 }
2477 free_extent_buffer(root->node);
2478 free_extent_buffer(root->commit_root);
2479 kfree(root->name);
2480 kfree(root);
2481 }
2482
2483 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2484 {
2485 int ret;
2486 struct btrfs_root *gang[8];
2487 int i;
2488
2489 while (!list_empty(&fs_info->dead_roots)) {
2490 gang[0] = list_entry(fs_info->dead_roots.next,
2491 struct btrfs_root, root_list);
2492 list_del(&gang[0]->root_list);
2493
2494 if (gang[0]->in_radix) {
2495 btrfs_free_fs_root(fs_info, gang[0]);
2496 } else {
2497 free_extent_buffer(gang[0]->node);
2498 free_extent_buffer(gang[0]->commit_root);
2499 kfree(gang[0]);
2500 }
2501 }
2502
2503 while (1) {
2504 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2505 (void **)gang, 0,
2506 ARRAY_SIZE(gang));
2507 if (!ret)
2508 break;
2509 for (i = 0; i < ret; i++)
2510 btrfs_free_fs_root(fs_info, gang[i]);
2511 }
2512 return 0;
2513 }
2514
2515 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2516 {
2517 u64 root_objectid = 0;
2518 struct btrfs_root *gang[8];
2519 int i;
2520 int ret;
2521
2522 while (1) {
2523 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2524 (void **)gang, root_objectid,
2525 ARRAY_SIZE(gang));
2526 if (!ret)
2527 break;
2528
2529 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2530 for (i = 0; i < ret; i++) {
2531 int err;
2532
2533 root_objectid = gang[i]->root_key.objectid;
2534 err = btrfs_orphan_cleanup(gang[i]);
2535 if (err)
2536 return err;
2537 }
2538 root_objectid++;
2539 }
2540 return 0;
2541 }
2542
2543 int btrfs_commit_super(struct btrfs_root *root)
2544 {
2545 struct btrfs_trans_handle *trans;
2546 int ret;
2547
2548 mutex_lock(&root->fs_info->cleaner_mutex);
2549 btrfs_run_delayed_iputs(root);
2550 btrfs_clean_old_snapshots(root);
2551 mutex_unlock(&root->fs_info->cleaner_mutex);
2552
2553 /* wait until ongoing cleanup work done */
2554 down_write(&root->fs_info->cleanup_work_sem);
2555 up_write(&root->fs_info->cleanup_work_sem);
2556
2557 trans = btrfs_join_transaction(root, 1);
2558 if (IS_ERR(trans))
2559 return PTR_ERR(trans);
2560 ret = btrfs_commit_transaction(trans, root);
2561 BUG_ON(ret);
2562 /* run commit again to drop the original snapshot */
2563 trans = btrfs_join_transaction(root, 1);
2564 if (IS_ERR(trans))
2565 return PTR_ERR(trans);
2566 btrfs_commit_transaction(trans, root);
2567 ret = btrfs_write_and_wait_transaction(NULL, root);
2568 BUG_ON(ret);
2569
2570 ret = write_ctree_super(NULL, root, 0);
2571 return ret;
2572 }
2573
2574 int close_ctree(struct btrfs_root *root)
2575 {
2576 struct btrfs_fs_info *fs_info = root->fs_info;
2577 int ret;
2578
2579 fs_info->closing = 1;
2580 smp_mb();
2581
2582 btrfs_put_block_group_cache(fs_info);
2583
2584 /*
2585 * Here come 2 situations when btrfs is broken to flip readonly:
2586 *
2587 * 1. when btrfs flips readonly somewhere else before
2588 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2589 * and btrfs will skip to write sb directly to keep
2590 * ERROR state on disk.
2591 *
2592 * 2. when btrfs flips readonly just in btrfs_commit_super,
2593 * and in such case, btrfs cannnot write sb via btrfs_commit_super,
2594 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2595 * btrfs will cleanup all FS resources first and write sb then.
2596 */
2597 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2598 ret = btrfs_commit_super(root);
2599 if (ret)
2600 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2601 }
2602
2603 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
2604 ret = btrfs_error_commit_super(root);
2605 if (ret)
2606 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2607 }
2608
2609 kthread_stop(root->fs_info->transaction_kthread);
2610 kthread_stop(root->fs_info->cleaner_kthread);
2611
2612 fs_info->closing = 2;
2613 smp_mb();
2614
2615 if (fs_info->delalloc_bytes) {
2616 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2617 (unsigned long long)fs_info->delalloc_bytes);
2618 }
2619 if (fs_info->total_ref_cache_size) {
2620 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2621 (unsigned long long)fs_info->total_ref_cache_size);
2622 }
2623
2624 free_extent_buffer(fs_info->extent_root->node);
2625 free_extent_buffer(fs_info->extent_root->commit_root);
2626 free_extent_buffer(fs_info->tree_root->node);
2627 free_extent_buffer(fs_info->tree_root->commit_root);
2628 free_extent_buffer(root->fs_info->chunk_root->node);
2629 free_extent_buffer(root->fs_info->chunk_root->commit_root);
2630 free_extent_buffer(root->fs_info->dev_root->node);
2631 free_extent_buffer(root->fs_info->dev_root->commit_root);
2632 free_extent_buffer(root->fs_info->csum_root->node);
2633 free_extent_buffer(root->fs_info->csum_root->commit_root);
2634
2635 btrfs_free_block_groups(root->fs_info);
2636
2637 del_fs_roots(fs_info);
2638
2639 iput(fs_info->btree_inode);
2640
2641 btrfs_stop_workers(&fs_info->generic_worker);
2642 btrfs_stop_workers(&fs_info->fixup_workers);
2643 btrfs_stop_workers(&fs_info->delalloc_workers);
2644 btrfs_stop_workers(&fs_info->workers);
2645 btrfs_stop_workers(&fs_info->endio_workers);
2646 btrfs_stop_workers(&fs_info->endio_meta_workers);
2647 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2648 btrfs_stop_workers(&fs_info->endio_write_workers);
2649 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2650 btrfs_stop_workers(&fs_info->submit_workers);
2651
2652 btrfs_close_devices(fs_info->fs_devices);
2653 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2654
2655 bdi_destroy(&fs_info->bdi);
2656 cleanup_srcu_struct(&fs_info->subvol_srcu);
2657
2658 kfree(fs_info->extent_root);
2659 kfree(fs_info->tree_root);
2660 kfree(fs_info->chunk_root);
2661 kfree(fs_info->dev_root);
2662 kfree(fs_info->csum_root);
2663 kfree(fs_info);
2664
2665 return 0;
2666 }
2667
2668 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2669 {
2670 int ret;
2671 struct inode *btree_inode = buf->first_page->mapping->host;
2672
2673 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2674 NULL);
2675 if (!ret)
2676 return ret;
2677
2678 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2679 parent_transid);
2680 return !ret;
2681 }
2682
2683 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2684 {
2685 struct inode *btree_inode = buf->first_page->mapping->host;
2686 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2687 buf);
2688 }
2689
2690 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2691 {
2692 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2693 u64 transid = btrfs_header_generation(buf);
2694 struct inode *btree_inode = root->fs_info->btree_inode;
2695 int was_dirty;
2696
2697 btrfs_assert_tree_locked(buf);
2698 if (transid != root->fs_info->generation) {
2699 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2700 "found %llu running %llu\n",
2701 (unsigned long long)buf->start,
2702 (unsigned long long)transid,
2703 (unsigned long long)root->fs_info->generation);
2704 WARN_ON(1);
2705 }
2706 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2707 buf);
2708 if (!was_dirty) {
2709 spin_lock(&root->fs_info->delalloc_lock);
2710 root->fs_info->dirty_metadata_bytes += buf->len;
2711 spin_unlock(&root->fs_info->delalloc_lock);
2712 }
2713 }
2714
2715 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2716 {
2717 /*
2718 * looks as though older kernels can get into trouble with
2719 * this code, they end up stuck in balance_dirty_pages forever
2720 */
2721 u64 num_dirty;
2722 unsigned long thresh = 32 * 1024 * 1024;
2723
2724 if (current->flags & PF_MEMALLOC)
2725 return;
2726
2727 num_dirty = root->fs_info->dirty_metadata_bytes;
2728
2729 if (num_dirty > thresh) {
2730 balance_dirty_pages_ratelimited_nr(
2731 root->fs_info->btree_inode->i_mapping, 1);
2732 }
2733 return;
2734 }
2735
2736 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2737 {
2738 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2739 int ret;
2740 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2741 if (ret == 0)
2742 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2743 return ret;
2744 }
2745
2746 int btree_lock_page_hook(struct page *page)
2747 {
2748 struct inode *inode = page->mapping->host;
2749 struct btrfs_root *root = BTRFS_I(inode)->root;
2750 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2751 struct extent_buffer *eb;
2752 unsigned long len;
2753 u64 bytenr = page_offset(page);
2754
2755 if (page->private == EXTENT_PAGE_PRIVATE)
2756 goto out;
2757
2758 len = page->private >> 2;
2759 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2760 if (!eb)
2761 goto out;
2762
2763 btrfs_tree_lock(eb);
2764 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2765
2766 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2767 spin_lock(&root->fs_info->delalloc_lock);
2768 if (root->fs_info->dirty_metadata_bytes >= eb->len)
2769 root->fs_info->dirty_metadata_bytes -= eb->len;
2770 else
2771 WARN_ON(1);
2772 spin_unlock(&root->fs_info->delalloc_lock);
2773 }
2774
2775 btrfs_tree_unlock(eb);
2776 free_extent_buffer(eb);
2777 out:
2778 lock_page(page);
2779 return 0;
2780 }
2781
2782 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
2783 int read_only)
2784 {
2785 if (read_only)
2786 return;
2787
2788 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2789 printk(KERN_WARNING "warning: mount fs with errors, "
2790 "running btrfsck is recommended\n");
2791 }
2792
2793 int btrfs_error_commit_super(struct btrfs_root *root)
2794 {
2795 int ret;
2796
2797 mutex_lock(&root->fs_info->cleaner_mutex);
2798 btrfs_run_delayed_iputs(root);
2799 mutex_unlock(&root->fs_info->cleaner_mutex);
2800
2801 down_write(&root->fs_info->cleanup_work_sem);
2802 up_write(&root->fs_info->cleanup_work_sem);
2803
2804 /* cleanup FS via transaction */
2805 btrfs_cleanup_transaction(root);
2806
2807 ret = write_ctree_super(NULL, root, 0);
2808
2809 return ret;
2810 }
2811
2812 static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
2813 {
2814 struct btrfs_inode *btrfs_inode;
2815 struct list_head splice;
2816
2817 INIT_LIST_HEAD(&splice);
2818
2819 mutex_lock(&root->fs_info->ordered_operations_mutex);
2820 spin_lock(&root->fs_info->ordered_extent_lock);
2821
2822 list_splice_init(&root->fs_info->ordered_operations, &splice);
2823 while (!list_empty(&splice)) {
2824 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2825 ordered_operations);
2826
2827 list_del_init(&btrfs_inode->ordered_operations);
2828
2829 btrfs_invalidate_inodes(btrfs_inode->root);
2830 }
2831
2832 spin_unlock(&root->fs_info->ordered_extent_lock);
2833 mutex_unlock(&root->fs_info->ordered_operations_mutex);
2834
2835 return 0;
2836 }
2837
2838 static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
2839 {
2840 struct list_head splice;
2841 struct btrfs_ordered_extent *ordered;
2842 struct inode *inode;
2843
2844 INIT_LIST_HEAD(&splice);
2845
2846 spin_lock(&root->fs_info->ordered_extent_lock);
2847
2848 list_splice_init(&root->fs_info->ordered_extents, &splice);
2849 while (!list_empty(&splice)) {
2850 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
2851 root_extent_list);
2852
2853 list_del_init(&ordered->root_extent_list);
2854 atomic_inc(&ordered->refs);
2855
2856 /* the inode may be getting freed (in sys_unlink path). */
2857 inode = igrab(ordered->inode);
2858
2859 spin_unlock(&root->fs_info->ordered_extent_lock);
2860 if (inode)
2861 iput(inode);
2862
2863 atomic_set(&ordered->refs, 1);
2864 btrfs_put_ordered_extent(ordered);
2865
2866 spin_lock(&root->fs_info->ordered_extent_lock);
2867 }
2868
2869 spin_unlock(&root->fs_info->ordered_extent_lock);
2870
2871 return 0;
2872 }
2873
2874 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2875 struct btrfs_root *root)
2876 {
2877 struct rb_node *node;
2878 struct btrfs_delayed_ref_root *delayed_refs;
2879 struct btrfs_delayed_ref_node *ref;
2880 int ret = 0;
2881
2882 delayed_refs = &trans->delayed_refs;
2883
2884 spin_lock(&delayed_refs->lock);
2885 if (delayed_refs->num_entries == 0) {
2886 printk(KERN_INFO "delayed_refs has NO entry\n");
2887 return ret;
2888 }
2889
2890 node = rb_first(&delayed_refs->root);
2891 while (node) {
2892 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2893 node = rb_next(node);
2894
2895 ref->in_tree = 0;
2896 rb_erase(&ref->rb_node, &delayed_refs->root);
2897 delayed_refs->num_entries--;
2898
2899 atomic_set(&ref->refs, 1);
2900 if (btrfs_delayed_ref_is_head(ref)) {
2901 struct btrfs_delayed_ref_head *head;
2902
2903 head = btrfs_delayed_node_to_head(ref);
2904 mutex_lock(&head->mutex);
2905 kfree(head->extent_op);
2906 delayed_refs->num_heads--;
2907 if (list_empty(&head->cluster))
2908 delayed_refs->num_heads_ready--;
2909 list_del_init(&head->cluster);
2910 mutex_unlock(&head->mutex);
2911 }
2912
2913 spin_unlock(&delayed_refs->lock);
2914 btrfs_put_delayed_ref(ref);
2915
2916 cond_resched();
2917 spin_lock(&delayed_refs->lock);
2918 }
2919
2920 spin_unlock(&delayed_refs->lock);
2921
2922 return ret;
2923 }
2924
2925 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
2926 {
2927 struct btrfs_pending_snapshot *snapshot;
2928 struct list_head splice;
2929
2930 INIT_LIST_HEAD(&splice);
2931
2932 list_splice_init(&t->pending_snapshots, &splice);
2933
2934 while (!list_empty(&splice)) {
2935 snapshot = list_entry(splice.next,
2936 struct btrfs_pending_snapshot,
2937 list);
2938
2939 list_del_init(&snapshot->list);
2940
2941 kfree(snapshot);
2942 }
2943
2944 return 0;
2945 }
2946
2947 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
2948 {
2949 struct btrfs_inode *btrfs_inode;
2950 struct list_head splice;
2951
2952 INIT_LIST_HEAD(&splice);
2953
2954 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
2955
2956 spin_lock(&root->fs_info->delalloc_lock);
2957
2958 while (!list_empty(&splice)) {
2959 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2960 delalloc_inodes);
2961
2962 list_del_init(&btrfs_inode->delalloc_inodes);
2963
2964 btrfs_invalidate_inodes(btrfs_inode->root);
2965 }
2966
2967 spin_unlock(&root->fs_info->delalloc_lock);
2968
2969 return 0;
2970 }
2971
2972 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
2973 struct extent_io_tree *dirty_pages,
2974 int mark)
2975 {
2976 int ret;
2977 struct page *page;
2978 struct inode *btree_inode = root->fs_info->btree_inode;
2979 struct extent_buffer *eb;
2980 u64 start = 0;
2981 u64 end;
2982 u64 offset;
2983 unsigned long index;
2984
2985 while (1) {
2986 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
2987 mark);
2988 if (ret)
2989 break;
2990
2991 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
2992 while (start <= end) {
2993 index = start >> PAGE_CACHE_SHIFT;
2994 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
2995 page = find_get_page(btree_inode->i_mapping, index);
2996 if (!page)
2997 continue;
2998 offset = page_offset(page);
2999
3000 spin_lock(&dirty_pages->buffer_lock);
3001 eb = radix_tree_lookup(
3002 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3003 offset >> PAGE_CACHE_SHIFT);
3004 spin_unlock(&dirty_pages->buffer_lock);
3005 if (eb) {
3006 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3007 &eb->bflags);
3008 atomic_set(&eb->refs, 1);
3009 }
3010 if (PageWriteback(page))
3011 end_page_writeback(page);
3012
3013 lock_page(page);
3014 if (PageDirty(page)) {
3015 clear_page_dirty_for_io(page);
3016 spin_lock_irq(&page->mapping->tree_lock);
3017 radix_tree_tag_clear(&page->mapping->page_tree,
3018 page_index(page),
3019 PAGECACHE_TAG_DIRTY);
3020 spin_unlock_irq(&page->mapping->tree_lock);
3021 }
3022
3023 page->mapping->a_ops->invalidatepage(page, 0);
3024 unlock_page(page);
3025 }
3026 }
3027
3028 return ret;
3029 }
3030
3031 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3032 struct extent_io_tree *pinned_extents)
3033 {
3034 struct extent_io_tree *unpin;
3035 u64 start;
3036 u64 end;
3037 int ret;
3038
3039 unpin = pinned_extents;
3040 while (1) {
3041 ret = find_first_extent_bit(unpin, 0, &start, &end,
3042 EXTENT_DIRTY);
3043 if (ret)
3044 break;
3045
3046 /* opt_discard */
3047 ret = btrfs_error_discard_extent(root, start, end + 1 - start);
3048
3049 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3050 btrfs_error_unpin_extent_range(root, start, end);
3051 cond_resched();
3052 }
3053
3054 return 0;
3055 }
3056
3057 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3058 {
3059 struct btrfs_transaction *t;
3060 LIST_HEAD(list);
3061
3062 WARN_ON(1);
3063
3064 mutex_lock(&root->fs_info->trans_mutex);
3065 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3066
3067 list_splice_init(&root->fs_info->trans_list, &list);
3068 while (!list_empty(&list)) {
3069 t = list_entry(list.next, struct btrfs_transaction, list);
3070 if (!t)
3071 break;
3072
3073 btrfs_destroy_ordered_operations(root);
3074
3075 btrfs_destroy_ordered_extents(root);
3076
3077 btrfs_destroy_delayed_refs(t, root);
3078
3079 btrfs_block_rsv_release(root,
3080 &root->fs_info->trans_block_rsv,
3081 t->dirty_pages.dirty_bytes);
3082
3083 /* FIXME: cleanup wait for commit */
3084 t->in_commit = 1;
3085 t->blocked = 1;
3086 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3087 wake_up(&root->fs_info->transaction_blocked_wait);
3088
3089 t->blocked = 0;
3090 if (waitqueue_active(&root->fs_info->transaction_wait))
3091 wake_up(&root->fs_info->transaction_wait);
3092 mutex_unlock(&root->fs_info->trans_mutex);
3093
3094 mutex_lock(&root->fs_info->trans_mutex);
3095 t->commit_done = 1;
3096 if (waitqueue_active(&t->commit_wait))
3097 wake_up(&t->commit_wait);
3098 mutex_unlock(&root->fs_info->trans_mutex);
3099
3100 mutex_lock(&root->fs_info->trans_mutex);
3101
3102 btrfs_destroy_pending_snapshots(t);
3103
3104 btrfs_destroy_delalloc_inodes(root);
3105
3106 spin_lock(&root->fs_info->new_trans_lock);
3107 root->fs_info->running_transaction = NULL;
3108 spin_unlock(&root->fs_info->new_trans_lock);
3109
3110 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3111 EXTENT_DIRTY);
3112
3113 btrfs_destroy_pinned_extent(root,
3114 root->fs_info->pinned_extents);
3115
3116 t->use_count = 0;
3117 list_del_init(&t->list);
3118 memset(t, 0, sizeof(*t));
3119 kmem_cache_free(btrfs_transaction_cachep, t);
3120 }
3121
3122 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3123 mutex_unlock(&root->fs_info->trans_mutex);
3124
3125 return 0;
3126 }
3127
3128 static struct extent_io_ops btree_extent_io_ops = {
3129 .write_cache_pages_lock_hook = btree_lock_page_hook,
3130 .readpage_end_io_hook = btree_readpage_end_io_hook,
3131 .submit_bio_hook = btree_submit_bio_hook,
3132 /* note we're sharing with inode.c for the merge bio hook */
3133 .merge_bio_hook = btrfs_merge_bio_hook,
3134 };