Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include "compat.h"
30 #include "crc32c.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "volumes.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
38 #include "locking.h"
39 #include "ref-cache.h"
40 #include "tree-log.h"
41
42 static struct extent_io_ops btree_extent_io_ops;
43 static void end_workqueue_fn(struct btrfs_work *work);
44
45 /*
46 * end_io_wq structs are used to do processing in task context when an IO is
47 * complete. This is used during reads to verify checksums, and it is used
48 * by writes to insert metadata for new file extents after IO is complete.
49 */
50 struct end_io_wq {
51 struct bio *bio;
52 bio_end_io_t *end_io;
53 void *private;
54 struct btrfs_fs_info *info;
55 int error;
56 int metadata;
57 struct list_head list;
58 struct btrfs_work work;
59 };
60
61 /*
62 * async submit bios are used to offload expensive checksumming
63 * onto the worker threads. They checksum file and metadata bios
64 * just before they are sent down the IO stack.
65 */
66 struct async_submit_bio {
67 struct inode *inode;
68 struct bio *bio;
69 struct list_head list;
70 extent_submit_bio_hook_t *submit_bio_start;
71 extent_submit_bio_hook_t *submit_bio_done;
72 int rw;
73 int mirror_num;
74 unsigned long bio_flags;
75 struct btrfs_work work;
76 };
77
78 /*
79 * extents on the btree inode are pretty simple, there's one extent
80 * that covers the entire device
81 */
82 static struct extent_map *btree_get_extent(struct inode *inode,
83 struct page *page, size_t page_offset, u64 start, u64 len,
84 int create)
85 {
86 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
87 struct extent_map *em;
88 int ret;
89
90 spin_lock(&em_tree->lock);
91 em = lookup_extent_mapping(em_tree, start, len);
92 if (em) {
93 em->bdev =
94 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
95 spin_unlock(&em_tree->lock);
96 goto out;
97 }
98 spin_unlock(&em_tree->lock);
99
100 em = alloc_extent_map(GFP_NOFS);
101 if (!em) {
102 em = ERR_PTR(-ENOMEM);
103 goto out;
104 }
105 em->start = 0;
106 em->len = (u64)-1;
107 em->block_len = (u64)-1;
108 em->block_start = 0;
109 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
110
111 spin_lock(&em_tree->lock);
112 ret = add_extent_mapping(em_tree, em);
113 if (ret == -EEXIST) {
114 u64 failed_start = em->start;
115 u64 failed_len = em->len;
116
117 free_extent_map(em);
118 em = lookup_extent_mapping(em_tree, start, len);
119 if (em) {
120 ret = 0;
121 } else {
122 em = lookup_extent_mapping(em_tree, failed_start,
123 failed_len);
124 ret = -EIO;
125 }
126 } else if (ret) {
127 free_extent_map(em);
128 em = NULL;
129 }
130 spin_unlock(&em_tree->lock);
131
132 if (ret)
133 em = ERR_PTR(ret);
134 out:
135 return em;
136 }
137
138 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
139 {
140 return btrfs_crc32c(seed, data, len);
141 }
142
143 void btrfs_csum_final(u32 crc, char *result)
144 {
145 *(__le32 *)result = ~cpu_to_le32(crc);
146 }
147
148 /*
149 * compute the csum for a btree block, and either verify it or write it
150 * into the csum field of the block.
151 */
152 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
153 int verify)
154 {
155 u16 csum_size =
156 btrfs_super_csum_size(&root->fs_info->super_copy);
157 char *result = NULL;
158 unsigned long len;
159 unsigned long cur_len;
160 unsigned long offset = BTRFS_CSUM_SIZE;
161 char *map_token = NULL;
162 char *kaddr;
163 unsigned long map_start;
164 unsigned long map_len;
165 int err;
166 u32 crc = ~(u32)0;
167 unsigned long inline_result;
168
169 len = buf->len - offset;
170 while (len > 0) {
171 err = map_private_extent_buffer(buf, offset, 32,
172 &map_token, &kaddr,
173 &map_start, &map_len, KM_USER0);
174 if (err)
175 return 1;
176 cur_len = min(len, map_len - (offset - map_start));
177 crc = btrfs_csum_data(root, kaddr + offset - map_start,
178 crc, cur_len);
179 len -= cur_len;
180 offset += cur_len;
181 unmap_extent_buffer(buf, map_token, KM_USER0);
182 }
183 if (csum_size > sizeof(inline_result)) {
184 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
185 if (!result)
186 return 1;
187 } else {
188 result = (char *)&inline_result;
189 }
190
191 btrfs_csum_final(crc, result);
192
193 if (verify) {
194 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
195 u32 val;
196 u32 found = 0;
197 memcpy(&found, result, csum_size);
198
199 read_extent_buffer(buf, &val, 0, csum_size);
200 printk(KERN_INFO "btrfs: %s checksum verify failed "
201 "on %llu wanted %X found %X level %d\n",
202 root->fs_info->sb->s_id,
203 buf->start, val, found, btrfs_header_level(buf));
204 if (result != (char *)&inline_result)
205 kfree(result);
206 return 1;
207 }
208 } else {
209 write_extent_buffer(buf, result, 0, csum_size);
210 }
211 if (result != (char *)&inline_result)
212 kfree(result);
213 return 0;
214 }
215
216 /*
217 * we can't consider a given block up to date unless the transid of the
218 * block matches the transid in the parent node's pointer. This is how we
219 * detect blocks that either didn't get written at all or got written
220 * in the wrong place.
221 */
222 static int verify_parent_transid(struct extent_io_tree *io_tree,
223 struct extent_buffer *eb, u64 parent_transid)
224 {
225 int ret;
226
227 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
228 return 0;
229
230 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
231 if (extent_buffer_uptodate(io_tree, eb) &&
232 btrfs_header_generation(eb) == parent_transid) {
233 ret = 0;
234 goto out;
235 }
236 printk("parent transid verify failed on %llu wanted %llu found %llu\n",
237 (unsigned long long)eb->start,
238 (unsigned long long)parent_transid,
239 (unsigned long long)btrfs_header_generation(eb));
240 ret = 1;
241 clear_extent_buffer_uptodate(io_tree, eb);
242 out:
243 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
244 GFP_NOFS);
245 return ret;
246 }
247
248 /*
249 * helper to read a given tree block, doing retries as required when
250 * the checksums don't match and we have alternate mirrors to try.
251 */
252 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
253 struct extent_buffer *eb,
254 u64 start, u64 parent_transid)
255 {
256 struct extent_io_tree *io_tree;
257 int ret;
258 int num_copies = 0;
259 int mirror_num = 0;
260
261 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
262 while (1) {
263 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
264 btree_get_extent, mirror_num);
265 if (!ret &&
266 !verify_parent_transid(io_tree, eb, parent_transid))
267 return ret;
268
269 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
270 eb->start, eb->len);
271 if (num_copies == 1)
272 return ret;
273
274 mirror_num++;
275 if (mirror_num > num_copies)
276 return ret;
277 }
278 return -EIO;
279 }
280
281 /*
282 * checksum a dirty tree block before IO. This has extra checks to make sure
283 * we only fill in the checksum field in the first page of a multi-page block
284 */
285
286 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
287 {
288 struct extent_io_tree *tree;
289 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
290 u64 found_start;
291 int found_level;
292 unsigned long len;
293 struct extent_buffer *eb;
294 int ret;
295
296 tree = &BTRFS_I(page->mapping->host)->io_tree;
297
298 if (page->private == EXTENT_PAGE_PRIVATE)
299 goto out;
300 if (!page->private)
301 goto out;
302 len = page->private >> 2;
303 WARN_ON(len == 0);
304
305 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
306 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
307 btrfs_header_generation(eb));
308 BUG_ON(ret);
309 found_start = btrfs_header_bytenr(eb);
310 if (found_start != start) {
311 WARN_ON(1);
312 goto err;
313 }
314 if (eb->first_page != page) {
315 WARN_ON(1);
316 goto err;
317 }
318 if (!PageUptodate(page)) {
319 WARN_ON(1);
320 goto err;
321 }
322 found_level = btrfs_header_level(eb);
323
324 csum_tree_block(root, eb, 0);
325 err:
326 free_extent_buffer(eb);
327 out:
328 return 0;
329 }
330
331 static int check_tree_block_fsid(struct btrfs_root *root,
332 struct extent_buffer *eb)
333 {
334 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
335 u8 fsid[BTRFS_UUID_SIZE];
336 int ret = 1;
337
338 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
339 BTRFS_FSID_SIZE);
340 while (fs_devices) {
341 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
342 ret = 0;
343 break;
344 }
345 fs_devices = fs_devices->seed;
346 }
347 return ret;
348 }
349
350 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
351 struct extent_state *state)
352 {
353 struct extent_io_tree *tree;
354 u64 found_start;
355 int found_level;
356 unsigned long len;
357 struct extent_buffer *eb;
358 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
359 int ret = 0;
360
361 tree = &BTRFS_I(page->mapping->host)->io_tree;
362 if (page->private == EXTENT_PAGE_PRIVATE)
363 goto out;
364 if (!page->private)
365 goto out;
366
367 len = page->private >> 2;
368 WARN_ON(len == 0);
369
370 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
371
372 found_start = btrfs_header_bytenr(eb);
373 if (found_start != start) {
374 printk(KERN_INFO "btrfs bad tree block start %llu %llu\n",
375 (unsigned long long)found_start,
376 (unsigned long long)eb->start);
377 ret = -EIO;
378 goto err;
379 }
380 if (eb->first_page != page) {
381 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
382 eb->first_page->index, page->index);
383 WARN_ON(1);
384 ret = -EIO;
385 goto err;
386 }
387 if (check_tree_block_fsid(root, eb)) {
388 printk(KERN_INFO "btrfs bad fsid on block %llu\n",
389 (unsigned long long)eb->start);
390 ret = -EIO;
391 goto err;
392 }
393 found_level = btrfs_header_level(eb);
394
395 ret = csum_tree_block(root, eb, 1);
396 if (ret)
397 ret = -EIO;
398
399 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
400 end = eb->start + end - 1;
401 err:
402 free_extent_buffer(eb);
403 out:
404 return ret;
405 }
406
407 static void end_workqueue_bio(struct bio *bio, int err)
408 {
409 struct end_io_wq *end_io_wq = bio->bi_private;
410 struct btrfs_fs_info *fs_info;
411
412 fs_info = end_io_wq->info;
413 end_io_wq->error = err;
414 end_io_wq->work.func = end_workqueue_fn;
415 end_io_wq->work.flags = 0;
416
417 if (bio->bi_rw & (1 << BIO_RW)) {
418 if (end_io_wq->metadata)
419 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
420 &end_io_wq->work);
421 else
422 btrfs_queue_worker(&fs_info->endio_write_workers,
423 &end_io_wq->work);
424 } else {
425 if (end_io_wq->metadata)
426 btrfs_queue_worker(&fs_info->endio_meta_workers,
427 &end_io_wq->work);
428 else
429 btrfs_queue_worker(&fs_info->endio_workers,
430 &end_io_wq->work);
431 }
432 }
433
434 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
435 int metadata)
436 {
437 struct end_io_wq *end_io_wq;
438 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
439 if (!end_io_wq)
440 return -ENOMEM;
441
442 end_io_wq->private = bio->bi_private;
443 end_io_wq->end_io = bio->bi_end_io;
444 end_io_wq->info = info;
445 end_io_wq->error = 0;
446 end_io_wq->bio = bio;
447 end_io_wq->metadata = metadata;
448
449 bio->bi_private = end_io_wq;
450 bio->bi_end_io = end_workqueue_bio;
451 return 0;
452 }
453
454 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
455 {
456 unsigned long limit = min_t(unsigned long,
457 info->workers.max_workers,
458 info->fs_devices->open_devices);
459 return 256 * limit;
460 }
461
462 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
463 {
464 return atomic_read(&info->nr_async_bios) >
465 btrfs_async_submit_limit(info);
466 }
467
468 static void run_one_async_start(struct btrfs_work *work)
469 {
470 struct btrfs_fs_info *fs_info;
471 struct async_submit_bio *async;
472
473 async = container_of(work, struct async_submit_bio, work);
474 fs_info = BTRFS_I(async->inode)->root->fs_info;
475 async->submit_bio_start(async->inode, async->rw, async->bio,
476 async->mirror_num, async->bio_flags);
477 }
478
479 static void run_one_async_done(struct btrfs_work *work)
480 {
481 struct btrfs_fs_info *fs_info;
482 struct async_submit_bio *async;
483 int limit;
484
485 async = container_of(work, struct async_submit_bio, work);
486 fs_info = BTRFS_I(async->inode)->root->fs_info;
487
488 limit = btrfs_async_submit_limit(fs_info);
489 limit = limit * 2 / 3;
490
491 atomic_dec(&fs_info->nr_async_submits);
492
493 if (atomic_read(&fs_info->nr_async_submits) < limit &&
494 waitqueue_active(&fs_info->async_submit_wait))
495 wake_up(&fs_info->async_submit_wait);
496
497 async->submit_bio_done(async->inode, async->rw, async->bio,
498 async->mirror_num, async->bio_flags);
499 }
500
501 static void run_one_async_free(struct btrfs_work *work)
502 {
503 struct async_submit_bio *async;
504
505 async = container_of(work, struct async_submit_bio, work);
506 kfree(async);
507 }
508
509 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
510 int rw, struct bio *bio, int mirror_num,
511 unsigned long bio_flags,
512 extent_submit_bio_hook_t *submit_bio_start,
513 extent_submit_bio_hook_t *submit_bio_done)
514 {
515 struct async_submit_bio *async;
516
517 async = kmalloc(sizeof(*async), GFP_NOFS);
518 if (!async)
519 return -ENOMEM;
520
521 async->inode = inode;
522 async->rw = rw;
523 async->bio = bio;
524 async->mirror_num = mirror_num;
525 async->submit_bio_start = submit_bio_start;
526 async->submit_bio_done = submit_bio_done;
527
528 async->work.func = run_one_async_start;
529 async->work.ordered_func = run_one_async_done;
530 async->work.ordered_free = run_one_async_free;
531
532 async->work.flags = 0;
533 async->bio_flags = bio_flags;
534
535 atomic_inc(&fs_info->nr_async_submits);
536 btrfs_queue_worker(&fs_info->workers, &async->work);
537 #if 0
538 int limit = btrfs_async_submit_limit(fs_info);
539 if (atomic_read(&fs_info->nr_async_submits) > limit) {
540 wait_event_timeout(fs_info->async_submit_wait,
541 (atomic_read(&fs_info->nr_async_submits) < limit),
542 HZ/10);
543
544 wait_event_timeout(fs_info->async_submit_wait,
545 (atomic_read(&fs_info->nr_async_bios) < limit),
546 HZ/10);
547 }
548 #endif
549 while (atomic_read(&fs_info->async_submit_draining) &&
550 atomic_read(&fs_info->nr_async_submits)) {
551 wait_event(fs_info->async_submit_wait,
552 (atomic_read(&fs_info->nr_async_submits) == 0));
553 }
554
555 return 0;
556 }
557
558 static int btree_csum_one_bio(struct bio *bio)
559 {
560 struct bio_vec *bvec = bio->bi_io_vec;
561 int bio_index = 0;
562 struct btrfs_root *root;
563
564 WARN_ON(bio->bi_vcnt <= 0);
565 while (bio_index < bio->bi_vcnt) {
566 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
567 csum_dirty_buffer(root, bvec->bv_page);
568 bio_index++;
569 bvec++;
570 }
571 return 0;
572 }
573
574 static int __btree_submit_bio_start(struct inode *inode, int rw,
575 struct bio *bio, int mirror_num,
576 unsigned long bio_flags)
577 {
578 /*
579 * when we're called for a write, we're already in the async
580 * submission context. Just jump into btrfs_map_bio
581 */
582 btree_csum_one_bio(bio);
583 return 0;
584 }
585
586 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
587 int mirror_num, unsigned long bio_flags)
588 {
589 /*
590 * when we're called for a write, we're already in the async
591 * submission context. Just jump into btrfs_map_bio
592 */
593 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
594 }
595
596 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
597 int mirror_num, unsigned long bio_flags)
598 {
599 int ret;
600
601 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
602 bio, 1);
603 BUG_ON(ret);
604
605 if (!(rw & (1 << BIO_RW))) {
606 /*
607 * called for a read, do the setup so that checksum validation
608 * can happen in the async kernel threads
609 */
610 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
611 mirror_num, 0);
612 }
613 /*
614 * kthread helpers are used to submit writes so that checksumming
615 * can happen in parallel across all CPUs
616 */
617 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
618 inode, rw, bio, mirror_num, 0,
619 __btree_submit_bio_start,
620 __btree_submit_bio_done);
621 }
622
623 static int btree_writepage(struct page *page, struct writeback_control *wbc)
624 {
625 struct extent_io_tree *tree;
626 tree = &BTRFS_I(page->mapping->host)->io_tree;
627
628 if (current->flags & PF_MEMALLOC) {
629 redirty_page_for_writepage(wbc, page);
630 unlock_page(page);
631 return 0;
632 }
633 return extent_write_full_page(tree, page, btree_get_extent, wbc);
634 }
635
636 static int btree_writepages(struct address_space *mapping,
637 struct writeback_control *wbc)
638 {
639 struct extent_io_tree *tree;
640 tree = &BTRFS_I(mapping->host)->io_tree;
641 if (wbc->sync_mode == WB_SYNC_NONE) {
642 u64 num_dirty;
643 u64 start = 0;
644 unsigned long thresh = 32 * 1024 * 1024;
645
646 if (wbc->for_kupdate)
647 return 0;
648
649 num_dirty = count_range_bits(tree, &start, (u64)-1,
650 thresh, EXTENT_DIRTY);
651 if (num_dirty < thresh)
652 return 0;
653 }
654 return extent_writepages(tree, mapping, btree_get_extent, wbc);
655 }
656
657 static int btree_readpage(struct file *file, struct page *page)
658 {
659 struct extent_io_tree *tree;
660 tree = &BTRFS_I(page->mapping->host)->io_tree;
661 return extent_read_full_page(tree, page, btree_get_extent);
662 }
663
664 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
665 {
666 struct extent_io_tree *tree;
667 struct extent_map_tree *map;
668 int ret;
669
670 if (PageWriteback(page) || PageDirty(page))
671 return 0;
672
673 tree = &BTRFS_I(page->mapping->host)->io_tree;
674 map = &BTRFS_I(page->mapping->host)->extent_tree;
675
676 ret = try_release_extent_state(map, tree, page, gfp_flags);
677 if (!ret)
678 return 0;
679
680 ret = try_release_extent_buffer(tree, page);
681 if (ret == 1) {
682 ClearPagePrivate(page);
683 set_page_private(page, 0);
684 page_cache_release(page);
685 }
686
687 return ret;
688 }
689
690 static void btree_invalidatepage(struct page *page, unsigned long offset)
691 {
692 struct extent_io_tree *tree;
693 tree = &BTRFS_I(page->mapping->host)->io_tree;
694 extent_invalidatepage(tree, page, offset);
695 btree_releasepage(page, GFP_NOFS);
696 if (PagePrivate(page)) {
697 printk(KERN_WARNING "btrfs warning page private not zero "
698 "on page %llu\n", (unsigned long long)page_offset(page));
699 ClearPagePrivate(page);
700 set_page_private(page, 0);
701 page_cache_release(page);
702 }
703 }
704
705 #if 0
706 static int btree_writepage(struct page *page, struct writeback_control *wbc)
707 {
708 struct buffer_head *bh;
709 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
710 struct buffer_head *head;
711 if (!page_has_buffers(page)) {
712 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
713 (1 << BH_Dirty)|(1 << BH_Uptodate));
714 }
715 head = page_buffers(page);
716 bh = head;
717 do {
718 if (buffer_dirty(bh))
719 csum_tree_block(root, bh, 0);
720 bh = bh->b_this_page;
721 } while (bh != head);
722 return block_write_full_page(page, btree_get_block, wbc);
723 }
724 #endif
725
726 static struct address_space_operations btree_aops = {
727 .readpage = btree_readpage,
728 .writepage = btree_writepage,
729 .writepages = btree_writepages,
730 .releasepage = btree_releasepage,
731 .invalidatepage = btree_invalidatepage,
732 .sync_page = block_sync_page,
733 };
734
735 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
736 u64 parent_transid)
737 {
738 struct extent_buffer *buf = NULL;
739 struct inode *btree_inode = root->fs_info->btree_inode;
740 int ret = 0;
741
742 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
743 if (!buf)
744 return 0;
745 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
746 buf, 0, 0, btree_get_extent, 0);
747 free_extent_buffer(buf);
748 return ret;
749 }
750
751 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
752 u64 bytenr, u32 blocksize)
753 {
754 struct inode *btree_inode = root->fs_info->btree_inode;
755 struct extent_buffer *eb;
756 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
757 bytenr, blocksize, GFP_NOFS);
758 return eb;
759 }
760
761 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
762 u64 bytenr, u32 blocksize)
763 {
764 struct inode *btree_inode = root->fs_info->btree_inode;
765 struct extent_buffer *eb;
766
767 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
768 bytenr, blocksize, NULL, GFP_NOFS);
769 return eb;
770 }
771
772
773 int btrfs_write_tree_block(struct extent_buffer *buf)
774 {
775 return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
776 buf->start + buf->len - 1, WB_SYNC_ALL);
777 }
778
779 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
780 {
781 return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
782 buf->start, buf->start + buf->len - 1);
783 }
784
785 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
786 u32 blocksize, u64 parent_transid)
787 {
788 struct extent_buffer *buf = NULL;
789 struct inode *btree_inode = root->fs_info->btree_inode;
790 struct extent_io_tree *io_tree;
791 int ret;
792
793 io_tree = &BTRFS_I(btree_inode)->io_tree;
794
795 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
796 if (!buf)
797 return NULL;
798
799 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
800
801 if (ret == 0)
802 buf->flags |= EXTENT_UPTODATE;
803 else
804 WARN_ON(1);
805 return buf;
806
807 }
808
809 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
810 struct extent_buffer *buf)
811 {
812 struct inode *btree_inode = root->fs_info->btree_inode;
813 if (btrfs_header_generation(buf) ==
814 root->fs_info->running_transaction->transid) {
815 WARN_ON(!btrfs_tree_locked(buf));
816 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
817 buf);
818 }
819 return 0;
820 }
821
822 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
823 u32 stripesize, struct btrfs_root *root,
824 struct btrfs_fs_info *fs_info,
825 u64 objectid)
826 {
827 root->node = NULL;
828 root->commit_root = NULL;
829 root->ref_tree = NULL;
830 root->sectorsize = sectorsize;
831 root->nodesize = nodesize;
832 root->leafsize = leafsize;
833 root->stripesize = stripesize;
834 root->ref_cows = 0;
835 root->track_dirty = 0;
836
837 root->fs_info = fs_info;
838 root->objectid = objectid;
839 root->last_trans = 0;
840 root->highest_inode = 0;
841 root->last_inode_alloc = 0;
842 root->name = NULL;
843 root->in_sysfs = 0;
844
845 INIT_LIST_HEAD(&root->dirty_list);
846 INIT_LIST_HEAD(&root->orphan_list);
847 INIT_LIST_HEAD(&root->dead_list);
848 spin_lock_init(&root->node_lock);
849 spin_lock_init(&root->list_lock);
850 mutex_init(&root->objectid_mutex);
851 mutex_init(&root->log_mutex);
852 init_waitqueue_head(&root->log_writer_wait);
853 init_waitqueue_head(&root->log_commit_wait[0]);
854 init_waitqueue_head(&root->log_commit_wait[1]);
855 atomic_set(&root->log_commit[0], 0);
856 atomic_set(&root->log_commit[1], 0);
857 atomic_set(&root->log_writers, 0);
858 root->log_batch = 0;
859 root->log_transid = 0;
860 extent_io_tree_init(&root->dirty_log_pages,
861 fs_info->btree_inode->i_mapping, GFP_NOFS);
862
863 btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
864 root->ref_tree = &root->ref_tree_struct;
865
866 memset(&root->root_key, 0, sizeof(root->root_key));
867 memset(&root->root_item, 0, sizeof(root->root_item));
868 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
869 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
870 root->defrag_trans_start = fs_info->generation;
871 init_completion(&root->kobj_unregister);
872 root->defrag_running = 0;
873 root->defrag_level = 0;
874 root->root_key.objectid = objectid;
875 root->anon_super.s_root = NULL;
876 root->anon_super.s_dev = 0;
877 INIT_LIST_HEAD(&root->anon_super.s_list);
878 INIT_LIST_HEAD(&root->anon_super.s_instances);
879 init_rwsem(&root->anon_super.s_umount);
880
881 return 0;
882 }
883
884 static int find_and_setup_root(struct btrfs_root *tree_root,
885 struct btrfs_fs_info *fs_info,
886 u64 objectid,
887 struct btrfs_root *root)
888 {
889 int ret;
890 u32 blocksize;
891 u64 generation;
892
893 __setup_root(tree_root->nodesize, tree_root->leafsize,
894 tree_root->sectorsize, tree_root->stripesize,
895 root, fs_info, objectid);
896 ret = btrfs_find_last_root(tree_root, objectid,
897 &root->root_item, &root->root_key);
898 BUG_ON(ret);
899
900 generation = btrfs_root_generation(&root->root_item);
901 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
902 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
903 blocksize, generation);
904 BUG_ON(!root->node);
905 return 0;
906 }
907
908 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
909 struct btrfs_fs_info *fs_info)
910 {
911 struct extent_buffer *eb;
912 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
913 u64 start = 0;
914 u64 end = 0;
915 int ret;
916
917 if (!log_root_tree)
918 return 0;
919
920 while (1) {
921 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
922 0, &start, &end, EXTENT_DIRTY);
923 if (ret)
924 break;
925
926 clear_extent_dirty(&log_root_tree->dirty_log_pages,
927 start, end, GFP_NOFS);
928 }
929 eb = fs_info->log_root_tree->node;
930
931 WARN_ON(btrfs_header_level(eb) != 0);
932 WARN_ON(btrfs_header_nritems(eb) != 0);
933
934 ret = btrfs_free_reserved_extent(fs_info->tree_root,
935 eb->start, eb->len);
936 BUG_ON(ret);
937
938 free_extent_buffer(eb);
939 kfree(fs_info->log_root_tree);
940 fs_info->log_root_tree = NULL;
941 return 0;
942 }
943
944 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
945 struct btrfs_fs_info *fs_info)
946 {
947 struct btrfs_root *root;
948 struct btrfs_root *tree_root = fs_info->tree_root;
949 struct extent_buffer *leaf;
950
951 root = kzalloc(sizeof(*root), GFP_NOFS);
952 if (!root)
953 return ERR_PTR(-ENOMEM);
954
955 __setup_root(tree_root->nodesize, tree_root->leafsize,
956 tree_root->sectorsize, tree_root->stripesize,
957 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
958
959 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
960 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
961 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
962 /*
963 * log trees do not get reference counted because they go away
964 * before a real commit is actually done. They do store pointers
965 * to file data extents, and those reference counts still get
966 * updated (along with back refs to the log tree).
967 */
968 root->ref_cows = 0;
969
970 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
971 0, BTRFS_TREE_LOG_OBJECTID,
972 trans->transid, 0, 0, 0);
973 if (IS_ERR(leaf)) {
974 kfree(root);
975 return ERR_CAST(leaf);
976 }
977
978 root->node = leaf;
979 btrfs_set_header_nritems(root->node, 0);
980 btrfs_set_header_level(root->node, 0);
981 btrfs_set_header_bytenr(root->node, root->node->start);
982 btrfs_set_header_generation(root->node, trans->transid);
983 btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID);
984
985 write_extent_buffer(root->node, root->fs_info->fsid,
986 (unsigned long)btrfs_header_fsid(root->node),
987 BTRFS_FSID_SIZE);
988 btrfs_mark_buffer_dirty(root->node);
989 btrfs_tree_unlock(root->node);
990 return root;
991 }
992
993 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
994 struct btrfs_fs_info *fs_info)
995 {
996 struct btrfs_root *log_root;
997
998 log_root = alloc_log_tree(trans, fs_info);
999 if (IS_ERR(log_root))
1000 return PTR_ERR(log_root);
1001 WARN_ON(fs_info->log_root_tree);
1002 fs_info->log_root_tree = log_root;
1003 return 0;
1004 }
1005
1006 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1007 struct btrfs_root *root)
1008 {
1009 struct btrfs_root *log_root;
1010 struct btrfs_inode_item *inode_item;
1011
1012 log_root = alloc_log_tree(trans, root->fs_info);
1013 if (IS_ERR(log_root))
1014 return PTR_ERR(log_root);
1015
1016 log_root->last_trans = trans->transid;
1017 log_root->root_key.offset = root->root_key.objectid;
1018
1019 inode_item = &log_root->root_item.inode;
1020 inode_item->generation = cpu_to_le64(1);
1021 inode_item->size = cpu_to_le64(3);
1022 inode_item->nlink = cpu_to_le32(1);
1023 inode_item->nbytes = cpu_to_le64(root->leafsize);
1024 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1025
1026 btrfs_set_root_bytenr(&log_root->root_item, log_root->node->start);
1027 btrfs_set_root_generation(&log_root->root_item, trans->transid);
1028
1029 WARN_ON(root->log_root);
1030 root->log_root = log_root;
1031 root->log_transid = 0;
1032 return 0;
1033 }
1034
1035 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1036 struct btrfs_key *location)
1037 {
1038 struct btrfs_root *root;
1039 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1040 struct btrfs_path *path;
1041 struct extent_buffer *l;
1042 u64 highest_inode;
1043 u64 generation;
1044 u32 blocksize;
1045 int ret = 0;
1046
1047 root = kzalloc(sizeof(*root), GFP_NOFS);
1048 if (!root)
1049 return ERR_PTR(-ENOMEM);
1050 if (location->offset == (u64)-1) {
1051 ret = find_and_setup_root(tree_root, fs_info,
1052 location->objectid, root);
1053 if (ret) {
1054 kfree(root);
1055 return ERR_PTR(ret);
1056 }
1057 goto insert;
1058 }
1059
1060 __setup_root(tree_root->nodesize, tree_root->leafsize,
1061 tree_root->sectorsize, tree_root->stripesize,
1062 root, fs_info, location->objectid);
1063
1064 path = btrfs_alloc_path();
1065 BUG_ON(!path);
1066 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1067 if (ret != 0) {
1068 if (ret > 0)
1069 ret = -ENOENT;
1070 goto out;
1071 }
1072 l = path->nodes[0];
1073 read_extent_buffer(l, &root->root_item,
1074 btrfs_item_ptr_offset(l, path->slots[0]),
1075 sizeof(root->root_item));
1076 memcpy(&root->root_key, location, sizeof(*location));
1077 ret = 0;
1078 out:
1079 btrfs_release_path(root, path);
1080 btrfs_free_path(path);
1081 if (ret) {
1082 kfree(root);
1083 return ERR_PTR(ret);
1084 }
1085 generation = btrfs_root_generation(&root->root_item);
1086 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1087 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1088 blocksize, generation);
1089 BUG_ON(!root->node);
1090 insert:
1091 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1092 root->ref_cows = 1;
1093 ret = btrfs_find_highest_inode(root, &highest_inode);
1094 if (ret == 0) {
1095 root->highest_inode = highest_inode;
1096 root->last_inode_alloc = highest_inode;
1097 }
1098 }
1099 return root;
1100 }
1101
1102 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1103 u64 root_objectid)
1104 {
1105 struct btrfs_root *root;
1106
1107 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1108 return fs_info->tree_root;
1109 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1110 return fs_info->extent_root;
1111
1112 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1113 (unsigned long)root_objectid);
1114 return root;
1115 }
1116
1117 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1118 struct btrfs_key *location)
1119 {
1120 struct btrfs_root *root;
1121 int ret;
1122
1123 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1124 return fs_info->tree_root;
1125 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1126 return fs_info->extent_root;
1127 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1128 return fs_info->chunk_root;
1129 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1130 return fs_info->dev_root;
1131 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1132 return fs_info->csum_root;
1133
1134 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1135 (unsigned long)location->objectid);
1136 if (root)
1137 return root;
1138
1139 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1140 if (IS_ERR(root))
1141 return root;
1142
1143 set_anon_super(&root->anon_super, NULL);
1144
1145 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1146 (unsigned long)root->root_key.objectid,
1147 root);
1148 if (ret) {
1149 free_extent_buffer(root->node);
1150 kfree(root);
1151 return ERR_PTR(ret);
1152 }
1153 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
1154 ret = btrfs_find_dead_roots(fs_info->tree_root,
1155 root->root_key.objectid, root);
1156 BUG_ON(ret);
1157 btrfs_orphan_cleanup(root);
1158 }
1159 return root;
1160 }
1161
1162 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1163 struct btrfs_key *location,
1164 const char *name, int namelen)
1165 {
1166 struct btrfs_root *root;
1167 int ret;
1168
1169 root = btrfs_read_fs_root_no_name(fs_info, location);
1170 if (!root)
1171 return NULL;
1172
1173 if (root->in_sysfs)
1174 return root;
1175
1176 ret = btrfs_set_root_name(root, name, namelen);
1177 if (ret) {
1178 free_extent_buffer(root->node);
1179 kfree(root);
1180 return ERR_PTR(ret);
1181 }
1182 #if 0
1183 ret = btrfs_sysfs_add_root(root);
1184 if (ret) {
1185 free_extent_buffer(root->node);
1186 kfree(root->name);
1187 kfree(root);
1188 return ERR_PTR(ret);
1189 }
1190 #endif
1191 root->in_sysfs = 1;
1192 return root;
1193 }
1194
1195 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1196 {
1197 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1198 int ret = 0;
1199 struct btrfs_device *device;
1200 struct backing_dev_info *bdi;
1201 #if 0
1202 if ((bdi_bits & (1 << BDI_write_congested)) &&
1203 btrfs_congested_async(info, 0))
1204 return 1;
1205 #endif
1206 list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1207 if (!device->bdev)
1208 continue;
1209 bdi = blk_get_backing_dev_info(device->bdev);
1210 if (bdi && bdi_congested(bdi, bdi_bits)) {
1211 ret = 1;
1212 break;
1213 }
1214 }
1215 return ret;
1216 }
1217
1218 /*
1219 * this unplugs every device on the box, and it is only used when page
1220 * is null
1221 */
1222 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1223 {
1224 struct btrfs_device *device;
1225 struct btrfs_fs_info *info;
1226
1227 info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1228 list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1229 if (!device->bdev)
1230 continue;
1231
1232 bdi = blk_get_backing_dev_info(device->bdev);
1233 if (bdi->unplug_io_fn)
1234 bdi->unplug_io_fn(bdi, page);
1235 }
1236 }
1237
1238 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1239 {
1240 struct inode *inode;
1241 struct extent_map_tree *em_tree;
1242 struct extent_map *em;
1243 struct address_space *mapping;
1244 u64 offset;
1245
1246 /* the generic O_DIRECT read code does this */
1247 if (1 || !page) {
1248 __unplug_io_fn(bdi, page);
1249 return;
1250 }
1251
1252 /*
1253 * page->mapping may change at any time. Get a consistent copy
1254 * and use that for everything below
1255 */
1256 smp_mb();
1257 mapping = page->mapping;
1258 if (!mapping)
1259 return;
1260
1261 inode = mapping->host;
1262
1263 /*
1264 * don't do the expensive searching for a small number of
1265 * devices
1266 */
1267 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1268 __unplug_io_fn(bdi, page);
1269 return;
1270 }
1271
1272 offset = page_offset(page);
1273
1274 em_tree = &BTRFS_I(inode)->extent_tree;
1275 spin_lock(&em_tree->lock);
1276 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1277 spin_unlock(&em_tree->lock);
1278 if (!em) {
1279 __unplug_io_fn(bdi, page);
1280 return;
1281 }
1282
1283 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1284 free_extent_map(em);
1285 __unplug_io_fn(bdi, page);
1286 return;
1287 }
1288 offset = offset - em->start;
1289 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1290 em->block_start + offset, page);
1291 free_extent_map(em);
1292 }
1293
1294 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1295 {
1296 bdi_init(bdi);
1297 bdi->ra_pages = default_backing_dev_info.ra_pages;
1298 bdi->state = 0;
1299 bdi->capabilities = default_backing_dev_info.capabilities;
1300 bdi->unplug_io_fn = btrfs_unplug_io_fn;
1301 bdi->unplug_io_data = info;
1302 bdi->congested_fn = btrfs_congested_fn;
1303 bdi->congested_data = info;
1304 return 0;
1305 }
1306
1307 static int bio_ready_for_csum(struct bio *bio)
1308 {
1309 u64 length = 0;
1310 u64 buf_len = 0;
1311 u64 start = 0;
1312 struct page *page;
1313 struct extent_io_tree *io_tree = NULL;
1314 struct btrfs_fs_info *info = NULL;
1315 struct bio_vec *bvec;
1316 int i;
1317 int ret;
1318
1319 bio_for_each_segment(bvec, bio, i) {
1320 page = bvec->bv_page;
1321 if (page->private == EXTENT_PAGE_PRIVATE) {
1322 length += bvec->bv_len;
1323 continue;
1324 }
1325 if (!page->private) {
1326 length += bvec->bv_len;
1327 continue;
1328 }
1329 length = bvec->bv_len;
1330 buf_len = page->private >> 2;
1331 start = page_offset(page) + bvec->bv_offset;
1332 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1333 info = BTRFS_I(page->mapping->host)->root->fs_info;
1334 }
1335 /* are we fully contained in this bio? */
1336 if (buf_len <= length)
1337 return 1;
1338
1339 ret = extent_range_uptodate(io_tree, start + length,
1340 start + buf_len - 1);
1341 if (ret == 1)
1342 return ret;
1343 return ret;
1344 }
1345
1346 /*
1347 * called by the kthread helper functions to finally call the bio end_io
1348 * functions. This is where read checksum verification actually happens
1349 */
1350 static void end_workqueue_fn(struct btrfs_work *work)
1351 {
1352 struct bio *bio;
1353 struct end_io_wq *end_io_wq;
1354 struct btrfs_fs_info *fs_info;
1355 int error;
1356
1357 end_io_wq = container_of(work, struct end_io_wq, work);
1358 bio = end_io_wq->bio;
1359 fs_info = end_io_wq->info;
1360
1361 /* metadata bio reads are special because the whole tree block must
1362 * be checksummed at once. This makes sure the entire block is in
1363 * ram and up to date before trying to verify things. For
1364 * blocksize <= pagesize, it is basically a noop
1365 */
1366 if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1367 !bio_ready_for_csum(bio)) {
1368 btrfs_queue_worker(&fs_info->endio_meta_workers,
1369 &end_io_wq->work);
1370 return;
1371 }
1372 error = end_io_wq->error;
1373 bio->bi_private = end_io_wq->private;
1374 bio->bi_end_io = end_io_wq->end_io;
1375 kfree(end_io_wq);
1376 bio_endio(bio, error);
1377 }
1378
1379 static int cleaner_kthread(void *arg)
1380 {
1381 struct btrfs_root *root = arg;
1382
1383 do {
1384 smp_mb();
1385 if (root->fs_info->closing)
1386 break;
1387
1388 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1389 mutex_lock(&root->fs_info->cleaner_mutex);
1390 btrfs_clean_old_snapshots(root);
1391 mutex_unlock(&root->fs_info->cleaner_mutex);
1392
1393 if (freezing(current)) {
1394 refrigerator();
1395 } else {
1396 smp_mb();
1397 if (root->fs_info->closing)
1398 break;
1399 set_current_state(TASK_INTERRUPTIBLE);
1400 schedule();
1401 __set_current_state(TASK_RUNNING);
1402 }
1403 } while (!kthread_should_stop());
1404 return 0;
1405 }
1406
1407 static int transaction_kthread(void *arg)
1408 {
1409 struct btrfs_root *root = arg;
1410 struct btrfs_trans_handle *trans;
1411 struct btrfs_transaction *cur;
1412 unsigned long now;
1413 unsigned long delay;
1414 int ret;
1415
1416 do {
1417 smp_mb();
1418 if (root->fs_info->closing)
1419 break;
1420
1421 delay = HZ * 30;
1422 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1423 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1424
1425 if (root->fs_info->total_ref_cache_size > 20 * 1024 * 1024) {
1426 printk(KERN_INFO "btrfs: total reference cache "
1427 "size %llu\n",
1428 root->fs_info->total_ref_cache_size);
1429 }
1430
1431 mutex_lock(&root->fs_info->trans_mutex);
1432 cur = root->fs_info->running_transaction;
1433 if (!cur) {
1434 mutex_unlock(&root->fs_info->trans_mutex);
1435 goto sleep;
1436 }
1437
1438 now = get_seconds();
1439 if (now < cur->start_time || now - cur->start_time < 30) {
1440 mutex_unlock(&root->fs_info->trans_mutex);
1441 delay = HZ * 5;
1442 goto sleep;
1443 }
1444 mutex_unlock(&root->fs_info->trans_mutex);
1445 trans = btrfs_start_transaction(root, 1);
1446 ret = btrfs_commit_transaction(trans, root);
1447 sleep:
1448 wake_up_process(root->fs_info->cleaner_kthread);
1449 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1450
1451 if (freezing(current)) {
1452 refrigerator();
1453 } else {
1454 if (root->fs_info->closing)
1455 break;
1456 set_current_state(TASK_INTERRUPTIBLE);
1457 schedule_timeout(delay);
1458 __set_current_state(TASK_RUNNING);
1459 }
1460 } while (!kthread_should_stop());
1461 return 0;
1462 }
1463
1464 struct btrfs_root *open_ctree(struct super_block *sb,
1465 struct btrfs_fs_devices *fs_devices,
1466 char *options)
1467 {
1468 u32 sectorsize;
1469 u32 nodesize;
1470 u32 leafsize;
1471 u32 blocksize;
1472 u32 stripesize;
1473 u64 generation;
1474 u64 features;
1475 struct btrfs_key location;
1476 struct buffer_head *bh;
1477 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1478 GFP_NOFS);
1479 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1480 GFP_NOFS);
1481 struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1482 GFP_NOFS);
1483 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1484 GFP_NOFS);
1485 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1486 GFP_NOFS);
1487 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1488 GFP_NOFS);
1489 struct btrfs_root *log_tree_root;
1490
1491 int ret;
1492 int err = -EINVAL;
1493
1494 struct btrfs_super_block *disk_super;
1495
1496 if (!extent_root || !tree_root || !fs_info ||
1497 !chunk_root || !dev_root || !csum_root) {
1498 err = -ENOMEM;
1499 goto fail;
1500 }
1501 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1502 INIT_LIST_HEAD(&fs_info->trans_list);
1503 INIT_LIST_HEAD(&fs_info->dead_roots);
1504 INIT_LIST_HEAD(&fs_info->hashers);
1505 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1506 spin_lock_init(&fs_info->hash_lock);
1507 spin_lock_init(&fs_info->delalloc_lock);
1508 spin_lock_init(&fs_info->new_trans_lock);
1509 spin_lock_init(&fs_info->ref_cache_lock);
1510
1511 init_completion(&fs_info->kobj_unregister);
1512 fs_info->tree_root = tree_root;
1513 fs_info->extent_root = extent_root;
1514 fs_info->csum_root = csum_root;
1515 fs_info->chunk_root = chunk_root;
1516 fs_info->dev_root = dev_root;
1517 fs_info->fs_devices = fs_devices;
1518 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1519 INIT_LIST_HEAD(&fs_info->space_info);
1520 btrfs_mapping_init(&fs_info->mapping_tree);
1521 atomic_set(&fs_info->nr_async_submits, 0);
1522 atomic_set(&fs_info->async_delalloc_pages, 0);
1523 atomic_set(&fs_info->async_submit_draining, 0);
1524 atomic_set(&fs_info->nr_async_bios, 0);
1525 atomic_set(&fs_info->throttles, 0);
1526 atomic_set(&fs_info->throttle_gen, 0);
1527 fs_info->sb = sb;
1528 fs_info->max_extent = (u64)-1;
1529 fs_info->max_inline = 8192 * 1024;
1530 setup_bdi(fs_info, &fs_info->bdi);
1531 fs_info->btree_inode = new_inode(sb);
1532 fs_info->btree_inode->i_ino = 1;
1533 fs_info->btree_inode->i_nlink = 1;
1534
1535 fs_info->thread_pool_size = min_t(unsigned long,
1536 num_online_cpus() + 2, 8);
1537
1538 INIT_LIST_HEAD(&fs_info->ordered_extents);
1539 spin_lock_init(&fs_info->ordered_extent_lock);
1540
1541 sb->s_blocksize = 4096;
1542 sb->s_blocksize_bits = blksize_bits(4096);
1543
1544 /*
1545 * we set the i_size on the btree inode to the max possible int.
1546 * the real end of the address space is determined by all of
1547 * the devices in the system
1548 */
1549 fs_info->btree_inode->i_size = OFFSET_MAX;
1550 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1551 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1552
1553 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1554 fs_info->btree_inode->i_mapping,
1555 GFP_NOFS);
1556 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1557 GFP_NOFS);
1558
1559 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1560
1561 spin_lock_init(&fs_info->block_group_cache_lock);
1562 fs_info->block_group_cache_tree.rb_node = NULL;
1563
1564 extent_io_tree_init(&fs_info->pinned_extents,
1565 fs_info->btree_inode->i_mapping, GFP_NOFS);
1566 extent_io_tree_init(&fs_info->pending_del,
1567 fs_info->btree_inode->i_mapping, GFP_NOFS);
1568 extent_io_tree_init(&fs_info->extent_ins,
1569 fs_info->btree_inode->i_mapping, GFP_NOFS);
1570 fs_info->do_barriers = 1;
1571
1572 INIT_LIST_HEAD(&fs_info->dead_reloc_roots);
1573 btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree);
1574 btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree);
1575
1576 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1577 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1578 sizeof(struct btrfs_key));
1579 insert_inode_hash(fs_info->btree_inode);
1580
1581 mutex_init(&fs_info->trans_mutex);
1582 mutex_init(&fs_info->tree_log_mutex);
1583 mutex_init(&fs_info->drop_mutex);
1584 mutex_init(&fs_info->extent_ins_mutex);
1585 mutex_init(&fs_info->pinned_mutex);
1586 mutex_init(&fs_info->chunk_mutex);
1587 mutex_init(&fs_info->transaction_kthread_mutex);
1588 mutex_init(&fs_info->cleaner_mutex);
1589 mutex_init(&fs_info->volume_mutex);
1590 mutex_init(&fs_info->tree_reloc_mutex);
1591 init_waitqueue_head(&fs_info->transaction_throttle);
1592 init_waitqueue_head(&fs_info->transaction_wait);
1593 init_waitqueue_head(&fs_info->async_submit_wait);
1594
1595 __setup_root(4096, 4096, 4096, 4096, tree_root,
1596 fs_info, BTRFS_ROOT_TREE_OBJECTID);
1597
1598
1599 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1600 if (!bh)
1601 goto fail_iput;
1602
1603 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1604 memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1605 sizeof(fs_info->super_for_commit));
1606 brelse(bh);
1607
1608 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1609
1610 disk_super = &fs_info->super_copy;
1611 if (!btrfs_super_root(disk_super))
1612 goto fail_iput;
1613
1614 ret = btrfs_parse_options(tree_root, options);
1615 if (ret) {
1616 err = ret;
1617 goto fail_iput;
1618 }
1619
1620 features = btrfs_super_incompat_flags(disk_super) &
1621 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1622 if (features) {
1623 printk(KERN_ERR "BTRFS: couldn't mount because of "
1624 "unsupported optional features (%Lx).\n",
1625 features);
1626 err = -EINVAL;
1627 goto fail_iput;
1628 }
1629
1630 features = btrfs_super_compat_ro_flags(disk_super) &
1631 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1632 if (!(sb->s_flags & MS_RDONLY) && features) {
1633 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1634 "unsupported option features (%Lx).\n",
1635 features);
1636 err = -EINVAL;
1637 goto fail_iput;
1638 }
1639
1640 /*
1641 * we need to start all the end_io workers up front because the
1642 * queue work function gets called at interrupt time, and so it
1643 * cannot dynamically grow.
1644 */
1645 btrfs_init_workers(&fs_info->workers, "worker",
1646 fs_info->thread_pool_size);
1647
1648 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1649 fs_info->thread_pool_size);
1650
1651 btrfs_init_workers(&fs_info->submit_workers, "submit",
1652 min_t(u64, fs_devices->num_devices,
1653 fs_info->thread_pool_size));
1654
1655 /* a higher idle thresh on the submit workers makes it much more
1656 * likely that bios will be send down in a sane order to the
1657 * devices
1658 */
1659 fs_info->submit_workers.idle_thresh = 64;
1660
1661 fs_info->workers.idle_thresh = 16;
1662 fs_info->workers.ordered = 1;
1663
1664 fs_info->delalloc_workers.idle_thresh = 2;
1665 fs_info->delalloc_workers.ordered = 1;
1666
1667 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
1668 btrfs_init_workers(&fs_info->endio_workers, "endio",
1669 fs_info->thread_pool_size);
1670 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1671 fs_info->thread_pool_size);
1672 btrfs_init_workers(&fs_info->endio_meta_write_workers,
1673 "endio-meta-write", fs_info->thread_pool_size);
1674 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1675 fs_info->thread_pool_size);
1676
1677 /*
1678 * endios are largely parallel and should have a very
1679 * low idle thresh
1680 */
1681 fs_info->endio_workers.idle_thresh = 4;
1682 fs_info->endio_write_workers.idle_thresh = 64;
1683 fs_info->endio_meta_write_workers.idle_thresh = 64;
1684
1685 btrfs_start_workers(&fs_info->workers, 1);
1686 btrfs_start_workers(&fs_info->submit_workers, 1);
1687 btrfs_start_workers(&fs_info->delalloc_workers, 1);
1688 btrfs_start_workers(&fs_info->fixup_workers, 1);
1689 btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1690 btrfs_start_workers(&fs_info->endio_meta_workers,
1691 fs_info->thread_pool_size);
1692 btrfs_start_workers(&fs_info->endio_meta_write_workers,
1693 fs_info->thread_pool_size);
1694 btrfs_start_workers(&fs_info->endio_write_workers,
1695 fs_info->thread_pool_size);
1696
1697 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1698 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1699 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1700
1701 nodesize = btrfs_super_nodesize(disk_super);
1702 leafsize = btrfs_super_leafsize(disk_super);
1703 sectorsize = btrfs_super_sectorsize(disk_super);
1704 stripesize = btrfs_super_stripesize(disk_super);
1705 tree_root->nodesize = nodesize;
1706 tree_root->leafsize = leafsize;
1707 tree_root->sectorsize = sectorsize;
1708 tree_root->stripesize = stripesize;
1709
1710 sb->s_blocksize = sectorsize;
1711 sb->s_blocksize_bits = blksize_bits(sectorsize);
1712
1713 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1714 sizeof(disk_super->magic))) {
1715 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1716 goto fail_sb_buffer;
1717 }
1718
1719 mutex_lock(&fs_info->chunk_mutex);
1720 ret = btrfs_read_sys_array(tree_root);
1721 mutex_unlock(&fs_info->chunk_mutex);
1722 if (ret) {
1723 printk(KERN_WARNING "btrfs: failed to read the system "
1724 "array on %s\n", sb->s_id);
1725 goto fail_sys_array;
1726 }
1727
1728 blocksize = btrfs_level_size(tree_root,
1729 btrfs_super_chunk_root_level(disk_super));
1730 generation = btrfs_super_chunk_root_generation(disk_super);
1731
1732 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1733 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1734
1735 chunk_root->node = read_tree_block(chunk_root,
1736 btrfs_super_chunk_root(disk_super),
1737 blocksize, generation);
1738 BUG_ON(!chunk_root->node);
1739
1740 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1741 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1742 BTRFS_UUID_SIZE);
1743
1744 mutex_lock(&fs_info->chunk_mutex);
1745 ret = btrfs_read_chunk_tree(chunk_root);
1746 mutex_unlock(&fs_info->chunk_mutex);
1747 if (ret) {
1748 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1749 sb->s_id);
1750 goto fail_chunk_root;
1751 }
1752
1753 btrfs_close_extra_devices(fs_devices);
1754
1755 blocksize = btrfs_level_size(tree_root,
1756 btrfs_super_root_level(disk_super));
1757 generation = btrfs_super_generation(disk_super);
1758
1759 tree_root->node = read_tree_block(tree_root,
1760 btrfs_super_root(disk_super),
1761 blocksize, generation);
1762 if (!tree_root->node)
1763 goto fail_chunk_root;
1764
1765
1766 ret = find_and_setup_root(tree_root, fs_info,
1767 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1768 if (ret)
1769 goto fail_tree_root;
1770 extent_root->track_dirty = 1;
1771
1772 ret = find_and_setup_root(tree_root, fs_info,
1773 BTRFS_DEV_TREE_OBJECTID, dev_root);
1774 dev_root->track_dirty = 1;
1775
1776 if (ret)
1777 goto fail_extent_root;
1778
1779 ret = find_and_setup_root(tree_root, fs_info,
1780 BTRFS_CSUM_TREE_OBJECTID, csum_root);
1781 if (ret)
1782 goto fail_extent_root;
1783
1784 csum_root->track_dirty = 1;
1785
1786 btrfs_read_block_groups(extent_root);
1787
1788 fs_info->generation = generation;
1789 fs_info->last_trans_committed = generation;
1790 fs_info->data_alloc_profile = (u64)-1;
1791 fs_info->metadata_alloc_profile = (u64)-1;
1792 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1793 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1794 "btrfs-cleaner");
1795 if (IS_ERR(fs_info->cleaner_kthread))
1796 goto fail_csum_root;
1797
1798 fs_info->transaction_kthread = kthread_run(transaction_kthread,
1799 tree_root,
1800 "btrfs-transaction");
1801 if (IS_ERR(fs_info->transaction_kthread))
1802 goto fail_cleaner;
1803
1804 if (btrfs_super_log_root(disk_super) != 0) {
1805 u64 bytenr = btrfs_super_log_root(disk_super);
1806
1807 if (fs_devices->rw_devices == 0) {
1808 printk(KERN_WARNING "Btrfs log replay required "
1809 "on RO media\n");
1810 err = -EIO;
1811 goto fail_trans_kthread;
1812 }
1813 blocksize =
1814 btrfs_level_size(tree_root,
1815 btrfs_super_log_root_level(disk_super));
1816
1817 log_tree_root = kzalloc(sizeof(struct btrfs_root),
1818 GFP_NOFS);
1819
1820 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1821 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1822
1823 log_tree_root->node = read_tree_block(tree_root, bytenr,
1824 blocksize,
1825 generation + 1);
1826 ret = btrfs_recover_log_trees(log_tree_root);
1827 BUG_ON(ret);
1828
1829 if (sb->s_flags & MS_RDONLY) {
1830 ret = btrfs_commit_super(tree_root);
1831 BUG_ON(ret);
1832 }
1833 }
1834
1835 if (!(sb->s_flags & MS_RDONLY)) {
1836 ret = btrfs_cleanup_reloc_trees(tree_root);
1837 BUG_ON(ret);
1838 }
1839
1840 location.objectid = BTRFS_FS_TREE_OBJECTID;
1841 location.type = BTRFS_ROOT_ITEM_KEY;
1842 location.offset = (u64)-1;
1843
1844 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1845 if (!fs_info->fs_root)
1846 goto fail_trans_kthread;
1847 return tree_root;
1848
1849 fail_trans_kthread:
1850 kthread_stop(fs_info->transaction_kthread);
1851 fail_cleaner:
1852 kthread_stop(fs_info->cleaner_kthread);
1853
1854 /*
1855 * make sure we're done with the btree inode before we stop our
1856 * kthreads
1857 */
1858 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1859 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1860
1861 fail_csum_root:
1862 free_extent_buffer(csum_root->node);
1863 fail_extent_root:
1864 free_extent_buffer(extent_root->node);
1865 fail_tree_root:
1866 free_extent_buffer(tree_root->node);
1867 fail_chunk_root:
1868 free_extent_buffer(chunk_root->node);
1869 fail_sys_array:
1870 free_extent_buffer(dev_root->node);
1871 fail_sb_buffer:
1872 btrfs_stop_workers(&fs_info->fixup_workers);
1873 btrfs_stop_workers(&fs_info->delalloc_workers);
1874 btrfs_stop_workers(&fs_info->workers);
1875 btrfs_stop_workers(&fs_info->endio_workers);
1876 btrfs_stop_workers(&fs_info->endio_meta_workers);
1877 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1878 btrfs_stop_workers(&fs_info->endio_write_workers);
1879 btrfs_stop_workers(&fs_info->submit_workers);
1880 fail_iput:
1881 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1882 iput(fs_info->btree_inode);
1883
1884 btrfs_close_devices(fs_info->fs_devices);
1885 btrfs_mapping_tree_free(&fs_info->mapping_tree);
1886 bdi_destroy(&fs_info->bdi);
1887
1888 fail:
1889 kfree(extent_root);
1890 kfree(tree_root);
1891 kfree(fs_info);
1892 kfree(chunk_root);
1893 kfree(dev_root);
1894 kfree(csum_root);
1895 return ERR_PTR(err);
1896 }
1897
1898 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1899 {
1900 char b[BDEVNAME_SIZE];
1901
1902 if (uptodate) {
1903 set_buffer_uptodate(bh);
1904 } else {
1905 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1906 printk(KERN_WARNING "lost page write due to "
1907 "I/O error on %s\n",
1908 bdevname(bh->b_bdev, b));
1909 }
1910 /* note, we dont' set_buffer_write_io_error because we have
1911 * our own ways of dealing with the IO errors
1912 */
1913 clear_buffer_uptodate(bh);
1914 }
1915 unlock_buffer(bh);
1916 put_bh(bh);
1917 }
1918
1919 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
1920 {
1921 struct buffer_head *bh;
1922 struct buffer_head *latest = NULL;
1923 struct btrfs_super_block *super;
1924 int i;
1925 u64 transid = 0;
1926 u64 bytenr;
1927
1928 /* we would like to check all the supers, but that would make
1929 * a btrfs mount succeed after a mkfs from a different FS.
1930 * So, we need to add a special mount option to scan for
1931 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1932 */
1933 for (i = 0; i < 1; i++) {
1934 bytenr = btrfs_sb_offset(i);
1935 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
1936 break;
1937 bh = __bread(bdev, bytenr / 4096, 4096);
1938 if (!bh)
1939 continue;
1940
1941 super = (struct btrfs_super_block *)bh->b_data;
1942 if (btrfs_super_bytenr(super) != bytenr ||
1943 strncmp((char *)(&super->magic), BTRFS_MAGIC,
1944 sizeof(super->magic))) {
1945 brelse(bh);
1946 continue;
1947 }
1948
1949 if (!latest || btrfs_super_generation(super) > transid) {
1950 brelse(latest);
1951 latest = bh;
1952 transid = btrfs_super_generation(super);
1953 } else {
1954 brelse(bh);
1955 }
1956 }
1957 return latest;
1958 }
1959
1960 static int write_dev_supers(struct btrfs_device *device,
1961 struct btrfs_super_block *sb,
1962 int do_barriers, int wait, int max_mirrors)
1963 {
1964 struct buffer_head *bh;
1965 int i;
1966 int ret;
1967 int errors = 0;
1968 u32 crc;
1969 u64 bytenr;
1970 int last_barrier = 0;
1971
1972 if (max_mirrors == 0)
1973 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
1974
1975 /* make sure only the last submit_bh does a barrier */
1976 if (do_barriers) {
1977 for (i = 0; i < max_mirrors; i++) {
1978 bytenr = btrfs_sb_offset(i);
1979 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1980 device->total_bytes)
1981 break;
1982 last_barrier = i;
1983 }
1984 }
1985
1986 for (i = 0; i < max_mirrors; i++) {
1987 bytenr = btrfs_sb_offset(i);
1988 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
1989 break;
1990
1991 if (wait) {
1992 bh = __find_get_block(device->bdev, bytenr / 4096,
1993 BTRFS_SUPER_INFO_SIZE);
1994 BUG_ON(!bh);
1995 brelse(bh);
1996 wait_on_buffer(bh);
1997 if (buffer_uptodate(bh)) {
1998 brelse(bh);
1999 continue;
2000 }
2001 } else {
2002 btrfs_set_super_bytenr(sb, bytenr);
2003
2004 crc = ~(u32)0;
2005 crc = btrfs_csum_data(NULL, (char *)sb +
2006 BTRFS_CSUM_SIZE, crc,
2007 BTRFS_SUPER_INFO_SIZE -
2008 BTRFS_CSUM_SIZE);
2009 btrfs_csum_final(crc, sb->csum);
2010
2011 bh = __getblk(device->bdev, bytenr / 4096,
2012 BTRFS_SUPER_INFO_SIZE);
2013 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2014
2015 set_buffer_uptodate(bh);
2016 get_bh(bh);
2017 lock_buffer(bh);
2018 bh->b_end_io = btrfs_end_buffer_write_sync;
2019 }
2020
2021 if (i == last_barrier && do_barriers && device->barriers) {
2022 ret = submit_bh(WRITE_BARRIER, bh);
2023 if (ret == -EOPNOTSUPP) {
2024 printk("btrfs: disabling barriers on dev %s\n",
2025 device->name);
2026 set_buffer_uptodate(bh);
2027 device->barriers = 0;
2028 get_bh(bh);
2029 lock_buffer(bh);
2030 ret = submit_bh(WRITE, bh);
2031 }
2032 } else {
2033 ret = submit_bh(WRITE, bh);
2034 }
2035
2036 if (!ret && wait) {
2037 wait_on_buffer(bh);
2038 if (!buffer_uptodate(bh))
2039 errors++;
2040 } else if (ret) {
2041 errors++;
2042 }
2043 if (wait)
2044 brelse(bh);
2045 }
2046 return errors < i ? 0 : -1;
2047 }
2048
2049 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2050 {
2051 struct list_head *head = &root->fs_info->fs_devices->devices;
2052 struct btrfs_device *dev;
2053 struct btrfs_super_block *sb;
2054 struct btrfs_dev_item *dev_item;
2055 int ret;
2056 int do_barriers;
2057 int max_errors;
2058 int total_errors = 0;
2059 u64 flags;
2060
2061 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2062 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2063
2064 sb = &root->fs_info->super_for_commit;
2065 dev_item = &sb->dev_item;
2066 list_for_each_entry(dev, head, dev_list) {
2067 if (!dev->bdev) {
2068 total_errors++;
2069 continue;
2070 }
2071 if (!dev->in_fs_metadata || !dev->writeable)
2072 continue;
2073
2074 btrfs_set_stack_device_generation(dev_item, 0);
2075 btrfs_set_stack_device_type(dev_item, dev->type);
2076 btrfs_set_stack_device_id(dev_item, dev->devid);
2077 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2078 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2079 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2080 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2081 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2082 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2083 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2084
2085 flags = btrfs_super_flags(sb);
2086 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2087
2088 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2089 if (ret)
2090 total_errors++;
2091 }
2092 if (total_errors > max_errors) {
2093 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2094 total_errors);
2095 BUG();
2096 }
2097
2098 total_errors = 0;
2099 list_for_each_entry(dev, head, dev_list) {
2100 if (!dev->bdev)
2101 continue;
2102 if (!dev->in_fs_metadata || !dev->writeable)
2103 continue;
2104
2105 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2106 if (ret)
2107 total_errors++;
2108 }
2109 if (total_errors > max_errors) {
2110 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2111 total_errors);
2112 BUG();
2113 }
2114 return 0;
2115 }
2116
2117 int write_ctree_super(struct btrfs_trans_handle *trans,
2118 struct btrfs_root *root, int max_mirrors)
2119 {
2120 int ret;
2121
2122 ret = write_all_supers(root, max_mirrors);
2123 return ret;
2124 }
2125
2126 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2127 {
2128 radix_tree_delete(&fs_info->fs_roots_radix,
2129 (unsigned long)root->root_key.objectid);
2130 if (root->anon_super.s_dev) {
2131 down_write(&root->anon_super.s_umount);
2132 kill_anon_super(&root->anon_super);
2133 }
2134 if (root->node)
2135 free_extent_buffer(root->node);
2136 if (root->commit_root)
2137 free_extent_buffer(root->commit_root);
2138 kfree(root->name);
2139 kfree(root);
2140 return 0;
2141 }
2142
2143 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2144 {
2145 int ret;
2146 struct btrfs_root *gang[8];
2147 int i;
2148
2149 while (1) {
2150 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2151 (void **)gang, 0,
2152 ARRAY_SIZE(gang));
2153 if (!ret)
2154 break;
2155 for (i = 0; i < ret; i++)
2156 btrfs_free_fs_root(fs_info, gang[i]);
2157 }
2158 return 0;
2159 }
2160
2161 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2162 {
2163 u64 root_objectid = 0;
2164 struct btrfs_root *gang[8];
2165 int i;
2166 int ret;
2167
2168 while (1) {
2169 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2170 (void **)gang, root_objectid,
2171 ARRAY_SIZE(gang));
2172 if (!ret)
2173 break;
2174 for (i = 0; i < ret; i++) {
2175 root_objectid = gang[i]->root_key.objectid;
2176 ret = btrfs_find_dead_roots(fs_info->tree_root,
2177 root_objectid, gang[i]);
2178 BUG_ON(ret);
2179 btrfs_orphan_cleanup(gang[i]);
2180 }
2181 root_objectid++;
2182 }
2183 return 0;
2184 }
2185
2186 int btrfs_commit_super(struct btrfs_root *root)
2187 {
2188 struct btrfs_trans_handle *trans;
2189 int ret;
2190
2191 mutex_lock(&root->fs_info->cleaner_mutex);
2192 btrfs_clean_old_snapshots(root);
2193 mutex_unlock(&root->fs_info->cleaner_mutex);
2194 trans = btrfs_start_transaction(root, 1);
2195 ret = btrfs_commit_transaction(trans, root);
2196 BUG_ON(ret);
2197 /* run commit again to drop the original snapshot */
2198 trans = btrfs_start_transaction(root, 1);
2199 btrfs_commit_transaction(trans, root);
2200 ret = btrfs_write_and_wait_transaction(NULL, root);
2201 BUG_ON(ret);
2202
2203 ret = write_ctree_super(NULL, root, 0);
2204 return ret;
2205 }
2206
2207 int close_ctree(struct btrfs_root *root)
2208 {
2209 struct btrfs_fs_info *fs_info = root->fs_info;
2210 int ret;
2211
2212 fs_info->closing = 1;
2213 smp_mb();
2214
2215 kthread_stop(root->fs_info->transaction_kthread);
2216 kthread_stop(root->fs_info->cleaner_kthread);
2217
2218 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2219 ret = btrfs_commit_super(root);
2220 if (ret)
2221 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2222 }
2223
2224 if (fs_info->delalloc_bytes) {
2225 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2226 fs_info->delalloc_bytes);
2227 }
2228 if (fs_info->total_ref_cache_size) {
2229 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2230 (unsigned long long)fs_info->total_ref_cache_size);
2231 }
2232
2233 if (fs_info->extent_root->node)
2234 free_extent_buffer(fs_info->extent_root->node);
2235
2236 if (fs_info->tree_root->node)
2237 free_extent_buffer(fs_info->tree_root->node);
2238
2239 if (root->fs_info->chunk_root->node)
2240 free_extent_buffer(root->fs_info->chunk_root->node);
2241
2242 if (root->fs_info->dev_root->node)
2243 free_extent_buffer(root->fs_info->dev_root->node);
2244
2245 if (root->fs_info->csum_root->node)
2246 free_extent_buffer(root->fs_info->csum_root->node);
2247
2248 btrfs_free_block_groups(root->fs_info);
2249
2250 del_fs_roots(fs_info);
2251
2252 iput(fs_info->btree_inode);
2253
2254 btrfs_stop_workers(&fs_info->fixup_workers);
2255 btrfs_stop_workers(&fs_info->delalloc_workers);
2256 btrfs_stop_workers(&fs_info->workers);
2257 btrfs_stop_workers(&fs_info->endio_workers);
2258 btrfs_stop_workers(&fs_info->endio_meta_workers);
2259 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2260 btrfs_stop_workers(&fs_info->endio_write_workers);
2261 btrfs_stop_workers(&fs_info->submit_workers);
2262
2263 #if 0
2264 while (!list_empty(&fs_info->hashers)) {
2265 struct btrfs_hasher *hasher;
2266 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
2267 hashers);
2268 list_del(&hasher->hashers);
2269 crypto_free_hash(&fs_info->hash_tfm);
2270 kfree(hasher);
2271 }
2272 #endif
2273 btrfs_close_devices(fs_info->fs_devices);
2274 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2275
2276 bdi_destroy(&fs_info->bdi);
2277
2278 kfree(fs_info->extent_root);
2279 kfree(fs_info->tree_root);
2280 kfree(fs_info->chunk_root);
2281 kfree(fs_info->dev_root);
2282 kfree(fs_info->csum_root);
2283 return 0;
2284 }
2285
2286 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2287 {
2288 int ret;
2289 struct inode *btree_inode = buf->first_page->mapping->host;
2290
2291 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2292 if (!ret)
2293 return ret;
2294
2295 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2296 parent_transid);
2297 return !ret;
2298 }
2299
2300 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2301 {
2302 struct inode *btree_inode = buf->first_page->mapping->host;
2303 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2304 buf);
2305 }
2306
2307 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2308 {
2309 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2310 u64 transid = btrfs_header_generation(buf);
2311 struct inode *btree_inode = root->fs_info->btree_inode;
2312
2313 WARN_ON(!btrfs_tree_locked(buf));
2314 if (transid != root->fs_info->generation) {
2315 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2316 "found %llu running %llu\n",
2317 (unsigned long long)buf->start,
2318 (unsigned long long)transid,
2319 (unsigned long long)root->fs_info->generation);
2320 WARN_ON(1);
2321 }
2322 set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
2323 }
2324
2325 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2326 {
2327 /*
2328 * looks as though older kernels can get into trouble with
2329 * this code, they end up stuck in balance_dirty_pages forever
2330 */
2331 struct extent_io_tree *tree;
2332 u64 num_dirty;
2333 u64 start = 0;
2334 unsigned long thresh = 32 * 1024 * 1024;
2335 tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
2336
2337 if (current_is_pdflush() || current->flags & PF_MEMALLOC)
2338 return;
2339
2340 num_dirty = count_range_bits(tree, &start, (u64)-1,
2341 thresh, EXTENT_DIRTY);
2342 if (num_dirty > thresh) {
2343 balance_dirty_pages_ratelimited_nr(
2344 root->fs_info->btree_inode->i_mapping, 1);
2345 }
2346 return;
2347 }
2348
2349 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2350 {
2351 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2352 int ret;
2353 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2354 if (ret == 0)
2355 buf->flags |= EXTENT_UPTODATE;
2356 return ret;
2357 }
2358
2359 int btree_lock_page_hook(struct page *page)
2360 {
2361 struct inode *inode = page->mapping->host;
2362 struct btrfs_root *root = BTRFS_I(inode)->root;
2363 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2364 struct extent_buffer *eb;
2365 unsigned long len;
2366 u64 bytenr = page_offset(page);
2367
2368 if (page->private == EXTENT_PAGE_PRIVATE)
2369 goto out;
2370
2371 len = page->private >> 2;
2372 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2373 if (!eb)
2374 goto out;
2375
2376 btrfs_tree_lock(eb);
2377 spin_lock(&root->fs_info->hash_lock);
2378 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2379 spin_unlock(&root->fs_info->hash_lock);
2380 btrfs_tree_unlock(eb);
2381 free_extent_buffer(eb);
2382 out:
2383 lock_page(page);
2384 return 0;
2385 }
2386
2387 static struct extent_io_ops btree_extent_io_ops = {
2388 .write_cache_pages_lock_hook = btree_lock_page_hook,
2389 .readpage_end_io_hook = btree_readpage_end_io_hook,
2390 .submit_bio_hook = btree_submit_bio_hook,
2391 /* note we're sharing with inode.c for the merge bio hook */
2392 .merge_bio_hook = btrfs_merge_bio_hook,
2393 };