mm: change invalidatepage prototype to accept length
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <asm/unaligned.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51
52 #ifdef CONFIG_X86
53 #include <asm/cpufeature.h>
54 #endif
55
56 static struct extent_io_ops btree_extent_io_ops;
57 static void end_workqueue_fn(struct btrfs_work *work);
58 static void free_fs_root(struct btrfs_root *root);
59 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
60 int read_only);
61 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
62 struct btrfs_root *root);
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 struct btrfs_root *root);
66 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
70 int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
80 */
81 struct end_io_wq {
82 struct bio *bio;
83 bio_end_io_t *end_io;
84 void *private;
85 struct btrfs_fs_info *info;
86 int error;
87 int metadata;
88 struct list_head list;
89 struct btrfs_work work;
90 };
91
92 /*
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
96 */
97 struct async_submit_bio {
98 struct inode *inode;
99 struct bio *bio;
100 struct list_head list;
101 extent_submit_bio_hook_t *submit_bio_start;
102 extent_submit_bio_hook_t *submit_bio_done;
103 int rw;
104 int mirror_num;
105 unsigned long bio_flags;
106 /*
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
109 */
110 u64 bio_offset;
111 struct btrfs_work work;
112 int error;
113 };
114
115 /*
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
119 *
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
125 *
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
129 *
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
133 *
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
137 */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 # error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144 u64 id; /* root objectid */
145 const char *name_stem; /* lock name stem */
146 char names[BTRFS_MAX_LEVEL + 1][20];
147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
159 { .id = 0, .name_stem = "tree" },
160 };
161
162 void __init btrfs_init_lockdep(void)
163 {
164 int i, j;
165
166 /* initialize lockdep class names */
167 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
168 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
169
170 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
171 snprintf(ks->names[j], sizeof(ks->names[j]),
172 "btrfs-%s-%02d", ks->name_stem, j);
173 }
174 }
175
176 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
177 int level)
178 {
179 struct btrfs_lockdep_keyset *ks;
180
181 BUG_ON(level >= ARRAY_SIZE(ks->keys));
182
183 /* find the matching keyset, id 0 is the default entry */
184 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
185 if (ks->id == objectid)
186 break;
187
188 lockdep_set_class_and_name(&eb->lock,
189 &ks->keys[level], ks->names[level]);
190 }
191
192 #endif
193
194 /*
195 * extents on the btree inode are pretty simple, there's one extent
196 * that covers the entire device
197 */
198 static struct extent_map *btree_get_extent(struct inode *inode,
199 struct page *page, size_t pg_offset, u64 start, u64 len,
200 int create)
201 {
202 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
203 struct extent_map *em;
204 int ret;
205
206 read_lock(&em_tree->lock);
207 em = lookup_extent_mapping(em_tree, start, len);
208 if (em) {
209 em->bdev =
210 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
211 read_unlock(&em_tree->lock);
212 goto out;
213 }
214 read_unlock(&em_tree->lock);
215
216 em = alloc_extent_map();
217 if (!em) {
218 em = ERR_PTR(-ENOMEM);
219 goto out;
220 }
221 em->start = 0;
222 em->len = (u64)-1;
223 em->block_len = (u64)-1;
224 em->block_start = 0;
225 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
226
227 write_lock(&em_tree->lock);
228 ret = add_extent_mapping(em_tree, em, 0);
229 if (ret == -EEXIST) {
230 free_extent_map(em);
231 em = lookup_extent_mapping(em_tree, start, len);
232 if (!em)
233 em = ERR_PTR(-EIO);
234 } else if (ret) {
235 free_extent_map(em);
236 em = ERR_PTR(ret);
237 }
238 write_unlock(&em_tree->lock);
239
240 out:
241 return em;
242 }
243
244 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
245 {
246 return crc32c(seed, data, len);
247 }
248
249 void btrfs_csum_final(u32 crc, char *result)
250 {
251 put_unaligned_le32(~crc, result);
252 }
253
254 /*
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
257 */
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 int verify)
260 {
261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262 char *result = NULL;
263 unsigned long len;
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
266 char *kaddr;
267 unsigned long map_start;
268 unsigned long map_len;
269 int err;
270 u32 crc = ~(u32)0;
271 unsigned long inline_result;
272
273 len = buf->len - offset;
274 while (len > 0) {
275 err = map_private_extent_buffer(buf, offset, 32,
276 &kaddr, &map_start, &map_len);
277 if (err)
278 return 1;
279 cur_len = min(len, map_len - (offset - map_start));
280 crc = btrfs_csum_data(kaddr + offset - map_start,
281 crc, cur_len);
282 len -= cur_len;
283 offset += cur_len;
284 }
285 if (csum_size > sizeof(inline_result)) {
286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 if (!result)
288 return 1;
289 } else {
290 result = (char *)&inline_result;
291 }
292
293 btrfs_csum_final(crc, result);
294
295 if (verify) {
296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297 u32 val;
298 u32 found = 0;
299 memcpy(&found, result, csum_size);
300
301 read_extent_buffer(buf, &val, 0, csum_size);
302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303 "failed on %llu wanted %X found %X "
304 "level %d\n",
305 root->fs_info->sb->s_id,
306 (unsigned long long)buf->start, val, found,
307 btrfs_header_level(buf));
308 if (result != (char *)&inline_result)
309 kfree(result);
310 return 1;
311 }
312 } else {
313 write_extent_buffer(buf, result, 0, csum_size);
314 }
315 if (result != (char *)&inline_result)
316 kfree(result);
317 return 0;
318 }
319
320 /*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
329 {
330 struct extent_state *cached_state = NULL;
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
336 if (atomic)
337 return -EAGAIN;
338
339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340 0, &cached_state);
341 if (extent_buffer_uptodate(eb) &&
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347 "found %llu\n",
348 (unsigned long long)eb->start,
349 (unsigned long long)parent_transid,
350 (unsigned long long)btrfs_header_generation(eb));
351 ret = 1;
352 clear_extent_buffer_uptodate(eb);
353 out:
354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 &cached_state, GFP_NOFS);
356 return ret;
357 }
358
359 /*
360 * Return 0 if the superblock checksum type matches the checksum value of that
361 * algorithm. Pass the raw disk superblock data.
362 */
363 static int btrfs_check_super_csum(char *raw_disk_sb)
364 {
365 struct btrfs_super_block *disk_sb =
366 (struct btrfs_super_block *)raw_disk_sb;
367 u16 csum_type = btrfs_super_csum_type(disk_sb);
368 int ret = 0;
369
370 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
371 u32 crc = ~(u32)0;
372 const int csum_size = sizeof(crc);
373 char result[csum_size];
374
375 /*
376 * The super_block structure does not span the whole
377 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
378 * is filled with zeros and is included in the checkum.
379 */
380 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
381 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382 btrfs_csum_final(crc, result);
383
384 if (memcmp(raw_disk_sb, result, csum_size))
385 ret = 1;
386
387 if (ret && btrfs_super_generation(disk_sb) < 10) {
388 printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
389 ret = 0;
390 }
391 }
392
393 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
394 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
395 csum_type);
396 ret = 1;
397 }
398
399 return ret;
400 }
401
402 /*
403 * helper to read a given tree block, doing retries as required when
404 * the checksums don't match and we have alternate mirrors to try.
405 */
406 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
407 struct extent_buffer *eb,
408 u64 start, u64 parent_transid)
409 {
410 struct extent_io_tree *io_tree;
411 int failed = 0;
412 int ret;
413 int num_copies = 0;
414 int mirror_num = 0;
415 int failed_mirror = 0;
416
417 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
418 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
419 while (1) {
420 ret = read_extent_buffer_pages(io_tree, eb, start,
421 WAIT_COMPLETE,
422 btree_get_extent, mirror_num);
423 if (!ret) {
424 if (!verify_parent_transid(io_tree, eb,
425 parent_transid, 0))
426 break;
427 else
428 ret = -EIO;
429 }
430
431 /*
432 * This buffer's crc is fine, but its contents are corrupted, so
433 * there is no reason to read the other copies, they won't be
434 * any less wrong.
435 */
436 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
437 break;
438
439 num_copies = btrfs_num_copies(root->fs_info,
440 eb->start, eb->len);
441 if (num_copies == 1)
442 break;
443
444 if (!failed_mirror) {
445 failed = 1;
446 failed_mirror = eb->read_mirror;
447 }
448
449 mirror_num++;
450 if (mirror_num == failed_mirror)
451 mirror_num++;
452
453 if (mirror_num > num_copies)
454 break;
455 }
456
457 if (failed && !ret && failed_mirror)
458 repair_eb_io_failure(root, eb, failed_mirror);
459
460 return ret;
461 }
462
463 /*
464 * checksum a dirty tree block before IO. This has extra checks to make sure
465 * we only fill in the checksum field in the first page of a multi-page block
466 */
467
468 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
469 {
470 struct extent_io_tree *tree;
471 u64 start = page_offset(page);
472 u64 found_start;
473 struct extent_buffer *eb;
474
475 tree = &BTRFS_I(page->mapping->host)->io_tree;
476
477 eb = (struct extent_buffer *)page->private;
478 if (page != eb->pages[0])
479 return 0;
480 found_start = btrfs_header_bytenr(eb);
481 if (found_start != start) {
482 WARN_ON(1);
483 return 0;
484 }
485 if (!PageUptodate(page)) {
486 WARN_ON(1);
487 return 0;
488 }
489 csum_tree_block(root, eb, 0);
490 return 0;
491 }
492
493 static int check_tree_block_fsid(struct btrfs_root *root,
494 struct extent_buffer *eb)
495 {
496 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
497 u8 fsid[BTRFS_UUID_SIZE];
498 int ret = 1;
499
500 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
501 BTRFS_FSID_SIZE);
502 while (fs_devices) {
503 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
504 ret = 0;
505 break;
506 }
507 fs_devices = fs_devices->seed;
508 }
509 return ret;
510 }
511
512 #define CORRUPT(reason, eb, root, slot) \
513 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
514 "root=%llu, slot=%d\n", reason, \
515 (unsigned long long)btrfs_header_bytenr(eb), \
516 (unsigned long long)root->objectid, slot)
517
518 static noinline int check_leaf(struct btrfs_root *root,
519 struct extent_buffer *leaf)
520 {
521 struct btrfs_key key;
522 struct btrfs_key leaf_key;
523 u32 nritems = btrfs_header_nritems(leaf);
524 int slot;
525
526 if (nritems == 0)
527 return 0;
528
529 /* Check the 0 item */
530 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
531 BTRFS_LEAF_DATA_SIZE(root)) {
532 CORRUPT("invalid item offset size pair", leaf, root, 0);
533 return -EIO;
534 }
535
536 /*
537 * Check to make sure each items keys are in the correct order and their
538 * offsets make sense. We only have to loop through nritems-1 because
539 * we check the current slot against the next slot, which verifies the
540 * next slot's offset+size makes sense and that the current's slot
541 * offset is correct.
542 */
543 for (slot = 0; slot < nritems - 1; slot++) {
544 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
545 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
546
547 /* Make sure the keys are in the right order */
548 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
549 CORRUPT("bad key order", leaf, root, slot);
550 return -EIO;
551 }
552
553 /*
554 * Make sure the offset and ends are right, remember that the
555 * item data starts at the end of the leaf and grows towards the
556 * front.
557 */
558 if (btrfs_item_offset_nr(leaf, slot) !=
559 btrfs_item_end_nr(leaf, slot + 1)) {
560 CORRUPT("slot offset bad", leaf, root, slot);
561 return -EIO;
562 }
563
564 /*
565 * Check to make sure that we don't point outside of the leaf,
566 * just incase all the items are consistent to eachother, but
567 * all point outside of the leaf.
568 */
569 if (btrfs_item_end_nr(leaf, slot) >
570 BTRFS_LEAF_DATA_SIZE(root)) {
571 CORRUPT("slot end outside of leaf", leaf, root, slot);
572 return -EIO;
573 }
574 }
575
576 return 0;
577 }
578
579 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
580 struct extent_state *state, int mirror)
581 {
582 struct extent_io_tree *tree;
583 u64 found_start;
584 int found_level;
585 struct extent_buffer *eb;
586 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
587 int ret = 0;
588 int reads_done;
589
590 if (!page->private)
591 goto out;
592
593 tree = &BTRFS_I(page->mapping->host)->io_tree;
594 eb = (struct extent_buffer *)page->private;
595
596 /* the pending IO might have been the only thing that kept this buffer
597 * in memory. Make sure we have a ref for all this other checks
598 */
599 extent_buffer_get(eb);
600
601 reads_done = atomic_dec_and_test(&eb->io_pages);
602 if (!reads_done)
603 goto err;
604
605 eb->read_mirror = mirror;
606 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
607 ret = -EIO;
608 goto err;
609 }
610
611 found_start = btrfs_header_bytenr(eb);
612 if (found_start != eb->start) {
613 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
614 "%llu %llu\n",
615 (unsigned long long)found_start,
616 (unsigned long long)eb->start);
617 ret = -EIO;
618 goto err;
619 }
620 if (check_tree_block_fsid(root, eb)) {
621 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
622 (unsigned long long)eb->start);
623 ret = -EIO;
624 goto err;
625 }
626 found_level = btrfs_header_level(eb);
627 if (found_level >= BTRFS_MAX_LEVEL) {
628 btrfs_info(root->fs_info, "bad tree block level %d\n",
629 (int)btrfs_header_level(eb));
630 ret = -EIO;
631 goto err;
632 }
633
634 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
635 eb, found_level);
636
637 ret = csum_tree_block(root, eb, 1);
638 if (ret) {
639 ret = -EIO;
640 goto err;
641 }
642
643 /*
644 * If this is a leaf block and it is corrupt, set the corrupt bit so
645 * that we don't try and read the other copies of this block, just
646 * return -EIO.
647 */
648 if (found_level == 0 && check_leaf(root, eb)) {
649 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
650 ret = -EIO;
651 }
652
653 if (!ret)
654 set_extent_buffer_uptodate(eb);
655 err:
656 if (reads_done &&
657 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
658 btree_readahead_hook(root, eb, eb->start, ret);
659
660 if (ret) {
661 /*
662 * our io error hook is going to dec the io pages
663 * again, we have to make sure it has something
664 * to decrement
665 */
666 atomic_inc(&eb->io_pages);
667 clear_extent_buffer_uptodate(eb);
668 }
669 free_extent_buffer(eb);
670 out:
671 return ret;
672 }
673
674 static int btree_io_failed_hook(struct page *page, int failed_mirror)
675 {
676 struct extent_buffer *eb;
677 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
678
679 eb = (struct extent_buffer *)page->private;
680 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
681 eb->read_mirror = failed_mirror;
682 atomic_dec(&eb->io_pages);
683 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
684 btree_readahead_hook(root, eb, eb->start, -EIO);
685 return -EIO; /* we fixed nothing */
686 }
687
688 static void end_workqueue_bio(struct bio *bio, int err)
689 {
690 struct end_io_wq *end_io_wq = bio->bi_private;
691 struct btrfs_fs_info *fs_info;
692
693 fs_info = end_io_wq->info;
694 end_io_wq->error = err;
695 end_io_wq->work.func = end_workqueue_fn;
696 end_io_wq->work.flags = 0;
697
698 if (bio->bi_rw & REQ_WRITE) {
699 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
700 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
701 &end_io_wq->work);
702 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
703 btrfs_queue_worker(&fs_info->endio_freespace_worker,
704 &end_io_wq->work);
705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
706 btrfs_queue_worker(&fs_info->endio_raid56_workers,
707 &end_io_wq->work);
708 else
709 btrfs_queue_worker(&fs_info->endio_write_workers,
710 &end_io_wq->work);
711 } else {
712 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
713 btrfs_queue_worker(&fs_info->endio_raid56_workers,
714 &end_io_wq->work);
715 else if (end_io_wq->metadata)
716 btrfs_queue_worker(&fs_info->endio_meta_workers,
717 &end_io_wq->work);
718 else
719 btrfs_queue_worker(&fs_info->endio_workers,
720 &end_io_wq->work);
721 }
722 }
723
724 /*
725 * For the metadata arg you want
726 *
727 * 0 - if data
728 * 1 - if normal metadta
729 * 2 - if writing to the free space cache area
730 * 3 - raid parity work
731 */
732 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
733 int metadata)
734 {
735 struct end_io_wq *end_io_wq;
736 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
737 if (!end_io_wq)
738 return -ENOMEM;
739
740 end_io_wq->private = bio->bi_private;
741 end_io_wq->end_io = bio->bi_end_io;
742 end_io_wq->info = info;
743 end_io_wq->error = 0;
744 end_io_wq->bio = bio;
745 end_io_wq->metadata = metadata;
746
747 bio->bi_private = end_io_wq;
748 bio->bi_end_io = end_workqueue_bio;
749 return 0;
750 }
751
752 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
753 {
754 unsigned long limit = min_t(unsigned long,
755 info->workers.max_workers,
756 info->fs_devices->open_devices);
757 return 256 * limit;
758 }
759
760 static void run_one_async_start(struct btrfs_work *work)
761 {
762 struct async_submit_bio *async;
763 int ret;
764
765 async = container_of(work, struct async_submit_bio, work);
766 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
767 async->mirror_num, async->bio_flags,
768 async->bio_offset);
769 if (ret)
770 async->error = ret;
771 }
772
773 static void run_one_async_done(struct btrfs_work *work)
774 {
775 struct btrfs_fs_info *fs_info;
776 struct async_submit_bio *async;
777 int limit;
778
779 async = container_of(work, struct async_submit_bio, work);
780 fs_info = BTRFS_I(async->inode)->root->fs_info;
781
782 limit = btrfs_async_submit_limit(fs_info);
783 limit = limit * 2 / 3;
784
785 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
786 waitqueue_active(&fs_info->async_submit_wait))
787 wake_up(&fs_info->async_submit_wait);
788
789 /* If an error occured we just want to clean up the bio and move on */
790 if (async->error) {
791 bio_endio(async->bio, async->error);
792 return;
793 }
794
795 async->submit_bio_done(async->inode, async->rw, async->bio,
796 async->mirror_num, async->bio_flags,
797 async->bio_offset);
798 }
799
800 static void run_one_async_free(struct btrfs_work *work)
801 {
802 struct async_submit_bio *async;
803
804 async = container_of(work, struct async_submit_bio, work);
805 kfree(async);
806 }
807
808 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
809 int rw, struct bio *bio, int mirror_num,
810 unsigned long bio_flags,
811 u64 bio_offset,
812 extent_submit_bio_hook_t *submit_bio_start,
813 extent_submit_bio_hook_t *submit_bio_done)
814 {
815 struct async_submit_bio *async;
816
817 async = kmalloc(sizeof(*async), GFP_NOFS);
818 if (!async)
819 return -ENOMEM;
820
821 async->inode = inode;
822 async->rw = rw;
823 async->bio = bio;
824 async->mirror_num = mirror_num;
825 async->submit_bio_start = submit_bio_start;
826 async->submit_bio_done = submit_bio_done;
827
828 async->work.func = run_one_async_start;
829 async->work.ordered_func = run_one_async_done;
830 async->work.ordered_free = run_one_async_free;
831
832 async->work.flags = 0;
833 async->bio_flags = bio_flags;
834 async->bio_offset = bio_offset;
835
836 async->error = 0;
837
838 atomic_inc(&fs_info->nr_async_submits);
839
840 if (rw & REQ_SYNC)
841 btrfs_set_work_high_prio(&async->work);
842
843 btrfs_queue_worker(&fs_info->workers, &async->work);
844
845 while (atomic_read(&fs_info->async_submit_draining) &&
846 atomic_read(&fs_info->nr_async_submits)) {
847 wait_event(fs_info->async_submit_wait,
848 (atomic_read(&fs_info->nr_async_submits) == 0));
849 }
850
851 return 0;
852 }
853
854 static int btree_csum_one_bio(struct bio *bio)
855 {
856 struct bio_vec *bvec = bio->bi_io_vec;
857 int bio_index = 0;
858 struct btrfs_root *root;
859 int ret = 0;
860
861 WARN_ON(bio->bi_vcnt <= 0);
862 while (bio_index < bio->bi_vcnt) {
863 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
864 ret = csum_dirty_buffer(root, bvec->bv_page);
865 if (ret)
866 break;
867 bio_index++;
868 bvec++;
869 }
870 return ret;
871 }
872
873 static int __btree_submit_bio_start(struct inode *inode, int rw,
874 struct bio *bio, int mirror_num,
875 unsigned long bio_flags,
876 u64 bio_offset)
877 {
878 /*
879 * when we're called for a write, we're already in the async
880 * submission context. Just jump into btrfs_map_bio
881 */
882 return btree_csum_one_bio(bio);
883 }
884
885 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
886 int mirror_num, unsigned long bio_flags,
887 u64 bio_offset)
888 {
889 int ret;
890
891 /*
892 * when we're called for a write, we're already in the async
893 * submission context. Just jump into btrfs_map_bio
894 */
895 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
896 if (ret)
897 bio_endio(bio, ret);
898 return ret;
899 }
900
901 static int check_async_write(struct inode *inode, unsigned long bio_flags)
902 {
903 if (bio_flags & EXTENT_BIO_TREE_LOG)
904 return 0;
905 #ifdef CONFIG_X86
906 if (cpu_has_xmm4_2)
907 return 0;
908 #endif
909 return 1;
910 }
911
912 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
913 int mirror_num, unsigned long bio_flags,
914 u64 bio_offset)
915 {
916 int async = check_async_write(inode, bio_flags);
917 int ret;
918
919 if (!(rw & REQ_WRITE)) {
920 /*
921 * called for a read, do the setup so that checksum validation
922 * can happen in the async kernel threads
923 */
924 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
925 bio, 1);
926 if (ret)
927 goto out_w_error;
928 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
929 mirror_num, 0);
930 } else if (!async) {
931 ret = btree_csum_one_bio(bio);
932 if (ret)
933 goto out_w_error;
934 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
935 mirror_num, 0);
936 } else {
937 /*
938 * kthread helpers are used to submit writes so that
939 * checksumming can happen in parallel across all CPUs
940 */
941 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
942 inode, rw, bio, mirror_num, 0,
943 bio_offset,
944 __btree_submit_bio_start,
945 __btree_submit_bio_done);
946 }
947
948 if (ret) {
949 out_w_error:
950 bio_endio(bio, ret);
951 }
952 return ret;
953 }
954
955 #ifdef CONFIG_MIGRATION
956 static int btree_migratepage(struct address_space *mapping,
957 struct page *newpage, struct page *page,
958 enum migrate_mode mode)
959 {
960 /*
961 * we can't safely write a btree page from here,
962 * we haven't done the locking hook
963 */
964 if (PageDirty(page))
965 return -EAGAIN;
966 /*
967 * Buffers may be managed in a filesystem specific way.
968 * We must have no buffers or drop them.
969 */
970 if (page_has_private(page) &&
971 !try_to_release_page(page, GFP_KERNEL))
972 return -EAGAIN;
973 return migrate_page(mapping, newpage, page, mode);
974 }
975 #endif
976
977
978 static int btree_writepages(struct address_space *mapping,
979 struct writeback_control *wbc)
980 {
981 struct extent_io_tree *tree;
982 struct btrfs_fs_info *fs_info;
983 int ret;
984
985 tree = &BTRFS_I(mapping->host)->io_tree;
986 if (wbc->sync_mode == WB_SYNC_NONE) {
987
988 if (wbc->for_kupdate)
989 return 0;
990
991 fs_info = BTRFS_I(mapping->host)->root->fs_info;
992 /* this is a bit racy, but that's ok */
993 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
994 BTRFS_DIRTY_METADATA_THRESH);
995 if (ret < 0)
996 return 0;
997 }
998 return btree_write_cache_pages(mapping, wbc);
999 }
1000
1001 static int btree_readpage(struct file *file, struct page *page)
1002 {
1003 struct extent_io_tree *tree;
1004 tree = &BTRFS_I(page->mapping->host)->io_tree;
1005 return extent_read_full_page(tree, page, btree_get_extent, 0);
1006 }
1007
1008 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1009 {
1010 if (PageWriteback(page) || PageDirty(page))
1011 return 0;
1012
1013 return try_release_extent_buffer(page);
1014 }
1015
1016 static void btree_invalidatepage(struct page *page, unsigned int offset,
1017 unsigned int length)
1018 {
1019 struct extent_io_tree *tree;
1020 tree = &BTRFS_I(page->mapping->host)->io_tree;
1021 extent_invalidatepage(tree, page, offset);
1022 btree_releasepage(page, GFP_NOFS);
1023 if (PagePrivate(page)) {
1024 printk(KERN_WARNING "btrfs warning page private not zero "
1025 "on page %llu\n", (unsigned long long)page_offset(page));
1026 ClearPagePrivate(page);
1027 set_page_private(page, 0);
1028 page_cache_release(page);
1029 }
1030 }
1031
1032 static int btree_set_page_dirty(struct page *page)
1033 {
1034 #ifdef DEBUG
1035 struct extent_buffer *eb;
1036
1037 BUG_ON(!PagePrivate(page));
1038 eb = (struct extent_buffer *)page->private;
1039 BUG_ON(!eb);
1040 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1041 BUG_ON(!atomic_read(&eb->refs));
1042 btrfs_assert_tree_locked(eb);
1043 #endif
1044 return __set_page_dirty_nobuffers(page);
1045 }
1046
1047 static const struct address_space_operations btree_aops = {
1048 .readpage = btree_readpage,
1049 .writepages = btree_writepages,
1050 .releasepage = btree_releasepage,
1051 .invalidatepage = btree_invalidatepage,
1052 #ifdef CONFIG_MIGRATION
1053 .migratepage = btree_migratepage,
1054 #endif
1055 .set_page_dirty = btree_set_page_dirty,
1056 };
1057
1058 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1059 u64 parent_transid)
1060 {
1061 struct extent_buffer *buf = NULL;
1062 struct inode *btree_inode = root->fs_info->btree_inode;
1063 int ret = 0;
1064
1065 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1066 if (!buf)
1067 return 0;
1068 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1069 buf, 0, WAIT_NONE, btree_get_extent, 0);
1070 free_extent_buffer(buf);
1071 return ret;
1072 }
1073
1074 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1075 int mirror_num, struct extent_buffer **eb)
1076 {
1077 struct extent_buffer *buf = NULL;
1078 struct inode *btree_inode = root->fs_info->btree_inode;
1079 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1080 int ret;
1081
1082 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1083 if (!buf)
1084 return 0;
1085
1086 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1087
1088 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1089 btree_get_extent, mirror_num);
1090 if (ret) {
1091 free_extent_buffer(buf);
1092 return ret;
1093 }
1094
1095 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1096 free_extent_buffer(buf);
1097 return -EIO;
1098 } else if (extent_buffer_uptodate(buf)) {
1099 *eb = buf;
1100 } else {
1101 free_extent_buffer(buf);
1102 }
1103 return 0;
1104 }
1105
1106 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1107 u64 bytenr, u32 blocksize)
1108 {
1109 struct inode *btree_inode = root->fs_info->btree_inode;
1110 struct extent_buffer *eb;
1111 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1112 bytenr, blocksize);
1113 return eb;
1114 }
1115
1116 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1117 u64 bytenr, u32 blocksize)
1118 {
1119 struct inode *btree_inode = root->fs_info->btree_inode;
1120 struct extent_buffer *eb;
1121
1122 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1123 bytenr, blocksize);
1124 return eb;
1125 }
1126
1127
1128 int btrfs_write_tree_block(struct extent_buffer *buf)
1129 {
1130 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1131 buf->start + buf->len - 1);
1132 }
1133
1134 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1135 {
1136 return filemap_fdatawait_range(buf->pages[0]->mapping,
1137 buf->start, buf->start + buf->len - 1);
1138 }
1139
1140 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1141 u32 blocksize, u64 parent_transid)
1142 {
1143 struct extent_buffer *buf = NULL;
1144 int ret;
1145
1146 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1147 if (!buf)
1148 return NULL;
1149
1150 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1151 return buf;
1152
1153 }
1154
1155 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1156 struct extent_buffer *buf)
1157 {
1158 struct btrfs_fs_info *fs_info = root->fs_info;
1159
1160 if (btrfs_header_generation(buf) ==
1161 fs_info->running_transaction->transid) {
1162 btrfs_assert_tree_locked(buf);
1163
1164 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1165 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1166 -buf->len,
1167 fs_info->dirty_metadata_batch);
1168 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1169 btrfs_set_lock_blocking(buf);
1170 clear_extent_buffer_dirty(buf);
1171 }
1172 }
1173 }
1174
1175 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1176 u32 stripesize, struct btrfs_root *root,
1177 struct btrfs_fs_info *fs_info,
1178 u64 objectid)
1179 {
1180 root->node = NULL;
1181 root->commit_root = NULL;
1182 root->sectorsize = sectorsize;
1183 root->nodesize = nodesize;
1184 root->leafsize = leafsize;
1185 root->stripesize = stripesize;
1186 root->ref_cows = 0;
1187 root->track_dirty = 0;
1188 root->in_radix = 0;
1189 root->orphan_item_inserted = 0;
1190 root->orphan_cleanup_state = 0;
1191
1192 root->objectid = objectid;
1193 root->last_trans = 0;
1194 root->highest_objectid = 0;
1195 root->name = NULL;
1196 root->inode_tree = RB_ROOT;
1197 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1198 root->block_rsv = NULL;
1199 root->orphan_block_rsv = NULL;
1200
1201 INIT_LIST_HEAD(&root->dirty_list);
1202 INIT_LIST_HEAD(&root->root_list);
1203 INIT_LIST_HEAD(&root->logged_list[0]);
1204 INIT_LIST_HEAD(&root->logged_list[1]);
1205 spin_lock_init(&root->orphan_lock);
1206 spin_lock_init(&root->inode_lock);
1207 spin_lock_init(&root->accounting_lock);
1208 spin_lock_init(&root->log_extents_lock[0]);
1209 spin_lock_init(&root->log_extents_lock[1]);
1210 mutex_init(&root->objectid_mutex);
1211 mutex_init(&root->log_mutex);
1212 init_waitqueue_head(&root->log_writer_wait);
1213 init_waitqueue_head(&root->log_commit_wait[0]);
1214 init_waitqueue_head(&root->log_commit_wait[1]);
1215 atomic_set(&root->log_commit[0], 0);
1216 atomic_set(&root->log_commit[1], 0);
1217 atomic_set(&root->log_writers, 0);
1218 atomic_set(&root->log_batch, 0);
1219 atomic_set(&root->orphan_inodes, 0);
1220 root->log_transid = 0;
1221 root->last_log_commit = 0;
1222 extent_io_tree_init(&root->dirty_log_pages,
1223 fs_info->btree_inode->i_mapping);
1224
1225 memset(&root->root_key, 0, sizeof(root->root_key));
1226 memset(&root->root_item, 0, sizeof(root->root_item));
1227 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1228 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1229 root->defrag_trans_start = fs_info->generation;
1230 init_completion(&root->kobj_unregister);
1231 root->defrag_running = 0;
1232 root->root_key.objectid = objectid;
1233 root->anon_dev = 0;
1234
1235 spin_lock_init(&root->root_item_lock);
1236 }
1237
1238 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1239 struct btrfs_fs_info *fs_info,
1240 u64 objectid,
1241 struct btrfs_root *root)
1242 {
1243 int ret;
1244 u32 blocksize;
1245 u64 generation;
1246
1247 __setup_root(tree_root->nodesize, tree_root->leafsize,
1248 tree_root->sectorsize, tree_root->stripesize,
1249 root, fs_info, objectid);
1250 ret = btrfs_find_last_root(tree_root, objectid,
1251 &root->root_item, &root->root_key);
1252 if (ret > 0)
1253 return -ENOENT;
1254 else if (ret < 0)
1255 return ret;
1256
1257 generation = btrfs_root_generation(&root->root_item);
1258 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1259 root->commit_root = NULL;
1260 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1261 blocksize, generation);
1262 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1263 free_extent_buffer(root->node);
1264 root->node = NULL;
1265 return -EIO;
1266 }
1267 root->commit_root = btrfs_root_node(root);
1268 return 0;
1269 }
1270
1271 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1272 {
1273 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1274 if (root)
1275 root->fs_info = fs_info;
1276 return root;
1277 }
1278
1279 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1280 struct btrfs_fs_info *fs_info,
1281 u64 objectid)
1282 {
1283 struct extent_buffer *leaf;
1284 struct btrfs_root *tree_root = fs_info->tree_root;
1285 struct btrfs_root *root;
1286 struct btrfs_key key;
1287 int ret = 0;
1288 u64 bytenr;
1289 uuid_le uuid;
1290
1291 root = btrfs_alloc_root(fs_info);
1292 if (!root)
1293 return ERR_PTR(-ENOMEM);
1294
1295 __setup_root(tree_root->nodesize, tree_root->leafsize,
1296 tree_root->sectorsize, tree_root->stripesize,
1297 root, fs_info, objectid);
1298 root->root_key.objectid = objectid;
1299 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1300 root->root_key.offset = 0;
1301
1302 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1303 0, objectid, NULL, 0, 0, 0);
1304 if (IS_ERR(leaf)) {
1305 ret = PTR_ERR(leaf);
1306 leaf = NULL;
1307 goto fail;
1308 }
1309
1310 bytenr = leaf->start;
1311 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1312 btrfs_set_header_bytenr(leaf, leaf->start);
1313 btrfs_set_header_generation(leaf, trans->transid);
1314 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1315 btrfs_set_header_owner(leaf, objectid);
1316 root->node = leaf;
1317
1318 write_extent_buffer(leaf, fs_info->fsid,
1319 (unsigned long)btrfs_header_fsid(leaf),
1320 BTRFS_FSID_SIZE);
1321 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1322 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1323 BTRFS_UUID_SIZE);
1324 btrfs_mark_buffer_dirty(leaf);
1325
1326 root->commit_root = btrfs_root_node(root);
1327 root->track_dirty = 1;
1328
1329
1330 root->root_item.flags = 0;
1331 root->root_item.byte_limit = 0;
1332 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1333 btrfs_set_root_generation(&root->root_item, trans->transid);
1334 btrfs_set_root_level(&root->root_item, 0);
1335 btrfs_set_root_refs(&root->root_item, 1);
1336 btrfs_set_root_used(&root->root_item, leaf->len);
1337 btrfs_set_root_last_snapshot(&root->root_item, 0);
1338 btrfs_set_root_dirid(&root->root_item, 0);
1339 uuid_le_gen(&uuid);
1340 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1341 root->root_item.drop_level = 0;
1342
1343 key.objectid = objectid;
1344 key.type = BTRFS_ROOT_ITEM_KEY;
1345 key.offset = 0;
1346 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1347 if (ret)
1348 goto fail;
1349
1350 btrfs_tree_unlock(leaf);
1351
1352 return root;
1353
1354 fail:
1355 if (leaf) {
1356 btrfs_tree_unlock(leaf);
1357 free_extent_buffer(leaf);
1358 }
1359 kfree(root);
1360
1361 return ERR_PTR(ret);
1362 }
1363
1364 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1365 struct btrfs_fs_info *fs_info)
1366 {
1367 struct btrfs_root *root;
1368 struct btrfs_root *tree_root = fs_info->tree_root;
1369 struct extent_buffer *leaf;
1370
1371 root = btrfs_alloc_root(fs_info);
1372 if (!root)
1373 return ERR_PTR(-ENOMEM);
1374
1375 __setup_root(tree_root->nodesize, tree_root->leafsize,
1376 tree_root->sectorsize, tree_root->stripesize,
1377 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1378
1379 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1380 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1381 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1382 /*
1383 * log trees do not get reference counted because they go away
1384 * before a real commit is actually done. They do store pointers
1385 * to file data extents, and those reference counts still get
1386 * updated (along with back refs to the log tree).
1387 */
1388 root->ref_cows = 0;
1389
1390 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1391 BTRFS_TREE_LOG_OBJECTID, NULL,
1392 0, 0, 0);
1393 if (IS_ERR(leaf)) {
1394 kfree(root);
1395 return ERR_CAST(leaf);
1396 }
1397
1398 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1399 btrfs_set_header_bytenr(leaf, leaf->start);
1400 btrfs_set_header_generation(leaf, trans->transid);
1401 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1402 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1403 root->node = leaf;
1404
1405 write_extent_buffer(root->node, root->fs_info->fsid,
1406 (unsigned long)btrfs_header_fsid(root->node),
1407 BTRFS_FSID_SIZE);
1408 btrfs_mark_buffer_dirty(root->node);
1409 btrfs_tree_unlock(root->node);
1410 return root;
1411 }
1412
1413 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1414 struct btrfs_fs_info *fs_info)
1415 {
1416 struct btrfs_root *log_root;
1417
1418 log_root = alloc_log_tree(trans, fs_info);
1419 if (IS_ERR(log_root))
1420 return PTR_ERR(log_root);
1421 WARN_ON(fs_info->log_root_tree);
1422 fs_info->log_root_tree = log_root;
1423 return 0;
1424 }
1425
1426 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1427 struct btrfs_root *root)
1428 {
1429 struct btrfs_root *log_root;
1430 struct btrfs_inode_item *inode_item;
1431
1432 log_root = alloc_log_tree(trans, root->fs_info);
1433 if (IS_ERR(log_root))
1434 return PTR_ERR(log_root);
1435
1436 log_root->last_trans = trans->transid;
1437 log_root->root_key.offset = root->root_key.objectid;
1438
1439 inode_item = &log_root->root_item.inode;
1440 inode_item->generation = cpu_to_le64(1);
1441 inode_item->size = cpu_to_le64(3);
1442 inode_item->nlink = cpu_to_le32(1);
1443 inode_item->nbytes = cpu_to_le64(root->leafsize);
1444 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1445
1446 btrfs_set_root_node(&log_root->root_item, log_root->node);
1447
1448 WARN_ON(root->log_root);
1449 root->log_root = log_root;
1450 root->log_transid = 0;
1451 root->last_log_commit = 0;
1452 return 0;
1453 }
1454
1455 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1456 struct btrfs_key *location)
1457 {
1458 struct btrfs_root *root;
1459 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1460 struct btrfs_path *path;
1461 struct extent_buffer *l;
1462 u64 generation;
1463 u32 blocksize;
1464 int ret = 0;
1465 int slot;
1466
1467 root = btrfs_alloc_root(fs_info);
1468 if (!root)
1469 return ERR_PTR(-ENOMEM);
1470 if (location->offset == (u64)-1) {
1471 ret = find_and_setup_root(tree_root, fs_info,
1472 location->objectid, root);
1473 if (ret) {
1474 kfree(root);
1475 return ERR_PTR(ret);
1476 }
1477 goto out;
1478 }
1479
1480 __setup_root(tree_root->nodesize, tree_root->leafsize,
1481 tree_root->sectorsize, tree_root->stripesize,
1482 root, fs_info, location->objectid);
1483
1484 path = btrfs_alloc_path();
1485 if (!path) {
1486 kfree(root);
1487 return ERR_PTR(-ENOMEM);
1488 }
1489 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1490 if (ret == 0) {
1491 l = path->nodes[0];
1492 slot = path->slots[0];
1493 btrfs_read_root_item(l, slot, &root->root_item);
1494 memcpy(&root->root_key, location, sizeof(*location));
1495 }
1496 btrfs_free_path(path);
1497 if (ret) {
1498 kfree(root);
1499 if (ret > 0)
1500 ret = -ENOENT;
1501 return ERR_PTR(ret);
1502 }
1503
1504 generation = btrfs_root_generation(&root->root_item);
1505 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1506 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1507 blocksize, generation);
1508 if (!root->node || !extent_buffer_uptodate(root->node)) {
1509 ret = (!root->node) ? -ENOMEM : -EIO;
1510
1511 free_extent_buffer(root->node);
1512 kfree(root);
1513 return ERR_PTR(ret);
1514 }
1515
1516 root->commit_root = btrfs_root_node(root);
1517 out:
1518 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1519 root->ref_cows = 1;
1520 btrfs_check_and_init_root_item(&root->root_item);
1521 }
1522
1523 return root;
1524 }
1525
1526 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1527 struct btrfs_key *location)
1528 {
1529 struct btrfs_root *root;
1530 int ret;
1531
1532 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1533 return fs_info->tree_root;
1534 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1535 return fs_info->extent_root;
1536 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1537 return fs_info->chunk_root;
1538 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1539 return fs_info->dev_root;
1540 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1541 return fs_info->csum_root;
1542 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1543 return fs_info->quota_root ? fs_info->quota_root :
1544 ERR_PTR(-ENOENT);
1545 again:
1546 spin_lock(&fs_info->fs_roots_radix_lock);
1547 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1548 (unsigned long)location->objectid);
1549 spin_unlock(&fs_info->fs_roots_radix_lock);
1550 if (root)
1551 return root;
1552
1553 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1554 if (IS_ERR(root))
1555 return root;
1556
1557 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1558 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1559 GFP_NOFS);
1560 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1561 ret = -ENOMEM;
1562 goto fail;
1563 }
1564
1565 btrfs_init_free_ino_ctl(root);
1566 mutex_init(&root->fs_commit_mutex);
1567 spin_lock_init(&root->cache_lock);
1568 init_waitqueue_head(&root->cache_wait);
1569
1570 ret = get_anon_bdev(&root->anon_dev);
1571 if (ret)
1572 goto fail;
1573
1574 if (btrfs_root_refs(&root->root_item) == 0) {
1575 ret = -ENOENT;
1576 goto fail;
1577 }
1578
1579 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1580 if (ret < 0)
1581 goto fail;
1582 if (ret == 0)
1583 root->orphan_item_inserted = 1;
1584
1585 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1586 if (ret)
1587 goto fail;
1588
1589 spin_lock(&fs_info->fs_roots_radix_lock);
1590 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1591 (unsigned long)root->root_key.objectid,
1592 root);
1593 if (ret == 0)
1594 root->in_radix = 1;
1595
1596 spin_unlock(&fs_info->fs_roots_radix_lock);
1597 radix_tree_preload_end();
1598 if (ret) {
1599 if (ret == -EEXIST) {
1600 free_fs_root(root);
1601 goto again;
1602 }
1603 goto fail;
1604 }
1605
1606 ret = btrfs_find_dead_roots(fs_info->tree_root,
1607 root->root_key.objectid);
1608 WARN_ON(ret);
1609 return root;
1610 fail:
1611 free_fs_root(root);
1612 return ERR_PTR(ret);
1613 }
1614
1615 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1616 {
1617 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1618 int ret = 0;
1619 struct btrfs_device *device;
1620 struct backing_dev_info *bdi;
1621
1622 rcu_read_lock();
1623 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1624 if (!device->bdev)
1625 continue;
1626 bdi = blk_get_backing_dev_info(device->bdev);
1627 if (bdi && bdi_congested(bdi, bdi_bits)) {
1628 ret = 1;
1629 break;
1630 }
1631 }
1632 rcu_read_unlock();
1633 return ret;
1634 }
1635
1636 /*
1637 * If this fails, caller must call bdi_destroy() to get rid of the
1638 * bdi again.
1639 */
1640 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1641 {
1642 int err;
1643
1644 bdi->capabilities = BDI_CAP_MAP_COPY;
1645 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1646 if (err)
1647 return err;
1648
1649 bdi->ra_pages = default_backing_dev_info.ra_pages;
1650 bdi->congested_fn = btrfs_congested_fn;
1651 bdi->congested_data = info;
1652 return 0;
1653 }
1654
1655 /*
1656 * called by the kthread helper functions to finally call the bio end_io
1657 * functions. This is where read checksum verification actually happens
1658 */
1659 static void end_workqueue_fn(struct btrfs_work *work)
1660 {
1661 struct bio *bio;
1662 struct end_io_wq *end_io_wq;
1663 struct btrfs_fs_info *fs_info;
1664 int error;
1665
1666 end_io_wq = container_of(work, struct end_io_wq, work);
1667 bio = end_io_wq->bio;
1668 fs_info = end_io_wq->info;
1669
1670 error = end_io_wq->error;
1671 bio->bi_private = end_io_wq->private;
1672 bio->bi_end_io = end_io_wq->end_io;
1673 kfree(end_io_wq);
1674 bio_endio(bio, error);
1675 }
1676
1677 static int cleaner_kthread(void *arg)
1678 {
1679 struct btrfs_root *root = arg;
1680
1681 do {
1682 int again = 0;
1683
1684 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1685 down_read_trylock(&root->fs_info->sb->s_umount)) {
1686 if (mutex_trylock(&root->fs_info->cleaner_mutex)) {
1687 btrfs_run_delayed_iputs(root);
1688 again = btrfs_clean_one_deleted_snapshot(root);
1689 mutex_unlock(&root->fs_info->cleaner_mutex);
1690 }
1691 btrfs_run_defrag_inodes(root->fs_info);
1692 up_read(&root->fs_info->sb->s_umount);
1693 }
1694
1695 if (!try_to_freeze() && !again) {
1696 set_current_state(TASK_INTERRUPTIBLE);
1697 if (!kthread_should_stop())
1698 schedule();
1699 __set_current_state(TASK_RUNNING);
1700 }
1701 } while (!kthread_should_stop());
1702 return 0;
1703 }
1704
1705 static int transaction_kthread(void *arg)
1706 {
1707 struct btrfs_root *root = arg;
1708 struct btrfs_trans_handle *trans;
1709 struct btrfs_transaction *cur;
1710 u64 transid;
1711 unsigned long now;
1712 unsigned long delay;
1713 bool cannot_commit;
1714
1715 do {
1716 cannot_commit = false;
1717 delay = HZ * 30;
1718 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1719
1720 spin_lock(&root->fs_info->trans_lock);
1721 cur = root->fs_info->running_transaction;
1722 if (!cur) {
1723 spin_unlock(&root->fs_info->trans_lock);
1724 goto sleep;
1725 }
1726
1727 now = get_seconds();
1728 if (!cur->blocked &&
1729 (now < cur->start_time || now - cur->start_time < 30)) {
1730 spin_unlock(&root->fs_info->trans_lock);
1731 delay = HZ * 5;
1732 goto sleep;
1733 }
1734 transid = cur->transid;
1735 spin_unlock(&root->fs_info->trans_lock);
1736
1737 /* If the file system is aborted, this will always fail. */
1738 trans = btrfs_attach_transaction(root);
1739 if (IS_ERR(trans)) {
1740 if (PTR_ERR(trans) != -ENOENT)
1741 cannot_commit = true;
1742 goto sleep;
1743 }
1744 if (transid == trans->transid) {
1745 btrfs_commit_transaction(trans, root);
1746 } else {
1747 btrfs_end_transaction(trans, root);
1748 }
1749 sleep:
1750 wake_up_process(root->fs_info->cleaner_kthread);
1751 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1752
1753 if (!try_to_freeze()) {
1754 set_current_state(TASK_INTERRUPTIBLE);
1755 if (!kthread_should_stop() &&
1756 (!btrfs_transaction_blocked(root->fs_info) ||
1757 cannot_commit))
1758 schedule_timeout(delay);
1759 __set_current_state(TASK_RUNNING);
1760 }
1761 } while (!kthread_should_stop());
1762 return 0;
1763 }
1764
1765 /*
1766 * this will find the highest generation in the array of
1767 * root backups. The index of the highest array is returned,
1768 * or -1 if we can't find anything.
1769 *
1770 * We check to make sure the array is valid by comparing the
1771 * generation of the latest root in the array with the generation
1772 * in the super block. If they don't match we pitch it.
1773 */
1774 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1775 {
1776 u64 cur;
1777 int newest_index = -1;
1778 struct btrfs_root_backup *root_backup;
1779 int i;
1780
1781 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1782 root_backup = info->super_copy->super_roots + i;
1783 cur = btrfs_backup_tree_root_gen(root_backup);
1784 if (cur == newest_gen)
1785 newest_index = i;
1786 }
1787
1788 /* check to see if we actually wrapped around */
1789 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1790 root_backup = info->super_copy->super_roots;
1791 cur = btrfs_backup_tree_root_gen(root_backup);
1792 if (cur == newest_gen)
1793 newest_index = 0;
1794 }
1795 return newest_index;
1796 }
1797
1798
1799 /*
1800 * find the oldest backup so we know where to store new entries
1801 * in the backup array. This will set the backup_root_index
1802 * field in the fs_info struct
1803 */
1804 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1805 u64 newest_gen)
1806 {
1807 int newest_index = -1;
1808
1809 newest_index = find_newest_super_backup(info, newest_gen);
1810 /* if there was garbage in there, just move along */
1811 if (newest_index == -1) {
1812 info->backup_root_index = 0;
1813 } else {
1814 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1815 }
1816 }
1817
1818 /*
1819 * copy all the root pointers into the super backup array.
1820 * this will bump the backup pointer by one when it is
1821 * done
1822 */
1823 static void backup_super_roots(struct btrfs_fs_info *info)
1824 {
1825 int next_backup;
1826 struct btrfs_root_backup *root_backup;
1827 int last_backup;
1828
1829 next_backup = info->backup_root_index;
1830 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1831 BTRFS_NUM_BACKUP_ROOTS;
1832
1833 /*
1834 * just overwrite the last backup if we're at the same generation
1835 * this happens only at umount
1836 */
1837 root_backup = info->super_for_commit->super_roots + last_backup;
1838 if (btrfs_backup_tree_root_gen(root_backup) ==
1839 btrfs_header_generation(info->tree_root->node))
1840 next_backup = last_backup;
1841
1842 root_backup = info->super_for_commit->super_roots + next_backup;
1843
1844 /*
1845 * make sure all of our padding and empty slots get zero filled
1846 * regardless of which ones we use today
1847 */
1848 memset(root_backup, 0, sizeof(*root_backup));
1849
1850 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1851
1852 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1853 btrfs_set_backup_tree_root_gen(root_backup,
1854 btrfs_header_generation(info->tree_root->node));
1855
1856 btrfs_set_backup_tree_root_level(root_backup,
1857 btrfs_header_level(info->tree_root->node));
1858
1859 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1860 btrfs_set_backup_chunk_root_gen(root_backup,
1861 btrfs_header_generation(info->chunk_root->node));
1862 btrfs_set_backup_chunk_root_level(root_backup,
1863 btrfs_header_level(info->chunk_root->node));
1864
1865 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1866 btrfs_set_backup_extent_root_gen(root_backup,
1867 btrfs_header_generation(info->extent_root->node));
1868 btrfs_set_backup_extent_root_level(root_backup,
1869 btrfs_header_level(info->extent_root->node));
1870
1871 /*
1872 * we might commit during log recovery, which happens before we set
1873 * the fs_root. Make sure it is valid before we fill it in.
1874 */
1875 if (info->fs_root && info->fs_root->node) {
1876 btrfs_set_backup_fs_root(root_backup,
1877 info->fs_root->node->start);
1878 btrfs_set_backup_fs_root_gen(root_backup,
1879 btrfs_header_generation(info->fs_root->node));
1880 btrfs_set_backup_fs_root_level(root_backup,
1881 btrfs_header_level(info->fs_root->node));
1882 }
1883
1884 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1885 btrfs_set_backup_dev_root_gen(root_backup,
1886 btrfs_header_generation(info->dev_root->node));
1887 btrfs_set_backup_dev_root_level(root_backup,
1888 btrfs_header_level(info->dev_root->node));
1889
1890 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1891 btrfs_set_backup_csum_root_gen(root_backup,
1892 btrfs_header_generation(info->csum_root->node));
1893 btrfs_set_backup_csum_root_level(root_backup,
1894 btrfs_header_level(info->csum_root->node));
1895
1896 btrfs_set_backup_total_bytes(root_backup,
1897 btrfs_super_total_bytes(info->super_copy));
1898 btrfs_set_backup_bytes_used(root_backup,
1899 btrfs_super_bytes_used(info->super_copy));
1900 btrfs_set_backup_num_devices(root_backup,
1901 btrfs_super_num_devices(info->super_copy));
1902
1903 /*
1904 * if we don't copy this out to the super_copy, it won't get remembered
1905 * for the next commit
1906 */
1907 memcpy(&info->super_copy->super_roots,
1908 &info->super_for_commit->super_roots,
1909 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1910 }
1911
1912 /*
1913 * this copies info out of the root backup array and back into
1914 * the in-memory super block. It is meant to help iterate through
1915 * the array, so you send it the number of backups you've already
1916 * tried and the last backup index you used.
1917 *
1918 * this returns -1 when it has tried all the backups
1919 */
1920 static noinline int next_root_backup(struct btrfs_fs_info *info,
1921 struct btrfs_super_block *super,
1922 int *num_backups_tried, int *backup_index)
1923 {
1924 struct btrfs_root_backup *root_backup;
1925 int newest = *backup_index;
1926
1927 if (*num_backups_tried == 0) {
1928 u64 gen = btrfs_super_generation(super);
1929
1930 newest = find_newest_super_backup(info, gen);
1931 if (newest == -1)
1932 return -1;
1933
1934 *backup_index = newest;
1935 *num_backups_tried = 1;
1936 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1937 /* we've tried all the backups, all done */
1938 return -1;
1939 } else {
1940 /* jump to the next oldest backup */
1941 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1942 BTRFS_NUM_BACKUP_ROOTS;
1943 *backup_index = newest;
1944 *num_backups_tried += 1;
1945 }
1946 root_backup = super->super_roots + newest;
1947
1948 btrfs_set_super_generation(super,
1949 btrfs_backup_tree_root_gen(root_backup));
1950 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1951 btrfs_set_super_root_level(super,
1952 btrfs_backup_tree_root_level(root_backup));
1953 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1954
1955 /*
1956 * fixme: the total bytes and num_devices need to match or we should
1957 * need a fsck
1958 */
1959 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1960 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1961 return 0;
1962 }
1963
1964 /* helper to cleanup workers */
1965 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1966 {
1967 btrfs_stop_workers(&fs_info->generic_worker);
1968 btrfs_stop_workers(&fs_info->fixup_workers);
1969 btrfs_stop_workers(&fs_info->delalloc_workers);
1970 btrfs_stop_workers(&fs_info->workers);
1971 btrfs_stop_workers(&fs_info->endio_workers);
1972 btrfs_stop_workers(&fs_info->endio_meta_workers);
1973 btrfs_stop_workers(&fs_info->endio_raid56_workers);
1974 btrfs_stop_workers(&fs_info->rmw_workers);
1975 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1976 btrfs_stop_workers(&fs_info->endio_write_workers);
1977 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1978 btrfs_stop_workers(&fs_info->submit_workers);
1979 btrfs_stop_workers(&fs_info->delayed_workers);
1980 btrfs_stop_workers(&fs_info->caching_workers);
1981 btrfs_stop_workers(&fs_info->readahead_workers);
1982 btrfs_stop_workers(&fs_info->flush_workers);
1983 btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
1984 }
1985
1986 /* helper to cleanup tree roots */
1987 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1988 {
1989 free_extent_buffer(info->tree_root->node);
1990 free_extent_buffer(info->tree_root->commit_root);
1991 info->tree_root->node = NULL;
1992 info->tree_root->commit_root = NULL;
1993
1994 if (info->dev_root) {
1995 free_extent_buffer(info->dev_root->node);
1996 free_extent_buffer(info->dev_root->commit_root);
1997 info->dev_root->node = NULL;
1998 info->dev_root->commit_root = NULL;
1999 }
2000 if (info->extent_root) {
2001 free_extent_buffer(info->extent_root->node);
2002 free_extent_buffer(info->extent_root->commit_root);
2003 info->extent_root->node = NULL;
2004 info->extent_root->commit_root = NULL;
2005 }
2006 if (info->csum_root) {
2007 free_extent_buffer(info->csum_root->node);
2008 free_extent_buffer(info->csum_root->commit_root);
2009 info->csum_root->node = NULL;
2010 info->csum_root->commit_root = NULL;
2011 }
2012 if (info->quota_root) {
2013 free_extent_buffer(info->quota_root->node);
2014 free_extent_buffer(info->quota_root->commit_root);
2015 info->quota_root->node = NULL;
2016 info->quota_root->commit_root = NULL;
2017 }
2018 if (chunk_root) {
2019 free_extent_buffer(info->chunk_root->node);
2020 free_extent_buffer(info->chunk_root->commit_root);
2021 info->chunk_root->node = NULL;
2022 info->chunk_root->commit_root = NULL;
2023 }
2024 }
2025
2026 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2027 {
2028 int ret;
2029 struct btrfs_root *gang[8];
2030 int i;
2031
2032 while (!list_empty(&fs_info->dead_roots)) {
2033 gang[0] = list_entry(fs_info->dead_roots.next,
2034 struct btrfs_root, root_list);
2035 list_del(&gang[0]->root_list);
2036
2037 if (gang[0]->in_radix) {
2038 btrfs_free_fs_root(fs_info, gang[0]);
2039 } else {
2040 free_extent_buffer(gang[0]->node);
2041 free_extent_buffer(gang[0]->commit_root);
2042 kfree(gang[0]);
2043 }
2044 }
2045
2046 while (1) {
2047 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2048 (void **)gang, 0,
2049 ARRAY_SIZE(gang));
2050 if (!ret)
2051 break;
2052 for (i = 0; i < ret; i++)
2053 btrfs_free_fs_root(fs_info, gang[i]);
2054 }
2055 }
2056
2057 int open_ctree(struct super_block *sb,
2058 struct btrfs_fs_devices *fs_devices,
2059 char *options)
2060 {
2061 u32 sectorsize;
2062 u32 nodesize;
2063 u32 leafsize;
2064 u32 blocksize;
2065 u32 stripesize;
2066 u64 generation;
2067 u64 features;
2068 struct btrfs_key location;
2069 struct buffer_head *bh;
2070 struct btrfs_super_block *disk_super;
2071 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2072 struct btrfs_root *tree_root;
2073 struct btrfs_root *extent_root;
2074 struct btrfs_root *csum_root;
2075 struct btrfs_root *chunk_root;
2076 struct btrfs_root *dev_root;
2077 struct btrfs_root *quota_root;
2078 struct btrfs_root *log_tree_root;
2079 int ret;
2080 int err = -EINVAL;
2081 int num_backups_tried = 0;
2082 int backup_index = 0;
2083
2084 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2085 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
2086 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2087 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2088 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
2089 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
2090
2091 if (!tree_root || !extent_root || !csum_root ||
2092 !chunk_root || !dev_root || !quota_root) {
2093 err = -ENOMEM;
2094 goto fail;
2095 }
2096
2097 ret = init_srcu_struct(&fs_info->subvol_srcu);
2098 if (ret) {
2099 err = ret;
2100 goto fail;
2101 }
2102
2103 ret = setup_bdi(fs_info, &fs_info->bdi);
2104 if (ret) {
2105 err = ret;
2106 goto fail_srcu;
2107 }
2108
2109 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2110 if (ret) {
2111 err = ret;
2112 goto fail_bdi;
2113 }
2114 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2115 (1 + ilog2(nr_cpu_ids));
2116
2117 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2118 if (ret) {
2119 err = ret;
2120 goto fail_dirty_metadata_bytes;
2121 }
2122
2123 fs_info->btree_inode = new_inode(sb);
2124 if (!fs_info->btree_inode) {
2125 err = -ENOMEM;
2126 goto fail_delalloc_bytes;
2127 }
2128
2129 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2130
2131 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2132 INIT_LIST_HEAD(&fs_info->trans_list);
2133 INIT_LIST_HEAD(&fs_info->dead_roots);
2134 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2135 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2136 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2137 spin_lock_init(&fs_info->delalloc_lock);
2138 spin_lock_init(&fs_info->trans_lock);
2139 spin_lock_init(&fs_info->fs_roots_radix_lock);
2140 spin_lock_init(&fs_info->delayed_iput_lock);
2141 spin_lock_init(&fs_info->defrag_inodes_lock);
2142 spin_lock_init(&fs_info->free_chunk_lock);
2143 spin_lock_init(&fs_info->tree_mod_seq_lock);
2144 spin_lock_init(&fs_info->super_lock);
2145 rwlock_init(&fs_info->tree_mod_log_lock);
2146 mutex_init(&fs_info->reloc_mutex);
2147 seqlock_init(&fs_info->profiles_lock);
2148
2149 init_completion(&fs_info->kobj_unregister);
2150 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2151 INIT_LIST_HEAD(&fs_info->space_info);
2152 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2153 btrfs_mapping_init(&fs_info->mapping_tree);
2154 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2155 BTRFS_BLOCK_RSV_GLOBAL);
2156 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2157 BTRFS_BLOCK_RSV_DELALLOC);
2158 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2159 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2160 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2161 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2162 BTRFS_BLOCK_RSV_DELOPS);
2163 atomic_set(&fs_info->nr_async_submits, 0);
2164 atomic_set(&fs_info->async_delalloc_pages, 0);
2165 atomic_set(&fs_info->async_submit_draining, 0);
2166 atomic_set(&fs_info->nr_async_bios, 0);
2167 atomic_set(&fs_info->defrag_running, 0);
2168 atomic64_set(&fs_info->tree_mod_seq, 0);
2169 fs_info->sb = sb;
2170 fs_info->max_inline = 8192 * 1024;
2171 fs_info->metadata_ratio = 0;
2172 fs_info->defrag_inodes = RB_ROOT;
2173 fs_info->trans_no_join = 0;
2174 fs_info->free_chunk_space = 0;
2175 fs_info->tree_mod_log = RB_ROOT;
2176
2177 /* readahead state */
2178 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2179 spin_lock_init(&fs_info->reada_lock);
2180
2181 fs_info->thread_pool_size = min_t(unsigned long,
2182 num_online_cpus() + 2, 8);
2183
2184 INIT_LIST_HEAD(&fs_info->ordered_extents);
2185 spin_lock_init(&fs_info->ordered_extent_lock);
2186 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2187 GFP_NOFS);
2188 if (!fs_info->delayed_root) {
2189 err = -ENOMEM;
2190 goto fail_iput;
2191 }
2192 btrfs_init_delayed_root(fs_info->delayed_root);
2193
2194 mutex_init(&fs_info->scrub_lock);
2195 atomic_set(&fs_info->scrubs_running, 0);
2196 atomic_set(&fs_info->scrub_pause_req, 0);
2197 atomic_set(&fs_info->scrubs_paused, 0);
2198 atomic_set(&fs_info->scrub_cancel_req, 0);
2199 init_waitqueue_head(&fs_info->scrub_pause_wait);
2200 init_rwsem(&fs_info->scrub_super_lock);
2201 fs_info->scrub_workers_refcnt = 0;
2202 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2203 fs_info->check_integrity_print_mask = 0;
2204 #endif
2205
2206 spin_lock_init(&fs_info->balance_lock);
2207 mutex_init(&fs_info->balance_mutex);
2208 atomic_set(&fs_info->balance_running, 0);
2209 atomic_set(&fs_info->balance_pause_req, 0);
2210 atomic_set(&fs_info->balance_cancel_req, 0);
2211 fs_info->balance_ctl = NULL;
2212 init_waitqueue_head(&fs_info->balance_wait_q);
2213
2214 sb->s_blocksize = 4096;
2215 sb->s_blocksize_bits = blksize_bits(4096);
2216 sb->s_bdi = &fs_info->bdi;
2217
2218 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2219 set_nlink(fs_info->btree_inode, 1);
2220 /*
2221 * we set the i_size on the btree inode to the max possible int.
2222 * the real end of the address space is determined by all of
2223 * the devices in the system
2224 */
2225 fs_info->btree_inode->i_size = OFFSET_MAX;
2226 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2227 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2228
2229 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2230 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2231 fs_info->btree_inode->i_mapping);
2232 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2233 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2234
2235 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2236
2237 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2238 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2239 sizeof(struct btrfs_key));
2240 set_bit(BTRFS_INODE_DUMMY,
2241 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2242 insert_inode_hash(fs_info->btree_inode);
2243
2244 spin_lock_init(&fs_info->block_group_cache_lock);
2245 fs_info->block_group_cache_tree = RB_ROOT;
2246 fs_info->first_logical_byte = (u64)-1;
2247
2248 extent_io_tree_init(&fs_info->freed_extents[0],
2249 fs_info->btree_inode->i_mapping);
2250 extent_io_tree_init(&fs_info->freed_extents[1],
2251 fs_info->btree_inode->i_mapping);
2252 fs_info->pinned_extents = &fs_info->freed_extents[0];
2253 fs_info->do_barriers = 1;
2254
2255
2256 mutex_init(&fs_info->ordered_operations_mutex);
2257 mutex_init(&fs_info->tree_log_mutex);
2258 mutex_init(&fs_info->chunk_mutex);
2259 mutex_init(&fs_info->transaction_kthread_mutex);
2260 mutex_init(&fs_info->cleaner_mutex);
2261 mutex_init(&fs_info->volume_mutex);
2262 init_rwsem(&fs_info->extent_commit_sem);
2263 init_rwsem(&fs_info->cleanup_work_sem);
2264 init_rwsem(&fs_info->subvol_sem);
2265 fs_info->dev_replace.lock_owner = 0;
2266 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2267 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2268 mutex_init(&fs_info->dev_replace.lock_management_lock);
2269 mutex_init(&fs_info->dev_replace.lock);
2270
2271 spin_lock_init(&fs_info->qgroup_lock);
2272 mutex_init(&fs_info->qgroup_ioctl_lock);
2273 fs_info->qgroup_tree = RB_ROOT;
2274 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2275 fs_info->qgroup_seq = 1;
2276 fs_info->quota_enabled = 0;
2277 fs_info->pending_quota_state = 0;
2278 mutex_init(&fs_info->qgroup_rescan_lock);
2279
2280 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2281 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2282
2283 init_waitqueue_head(&fs_info->transaction_throttle);
2284 init_waitqueue_head(&fs_info->transaction_wait);
2285 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2286 init_waitqueue_head(&fs_info->async_submit_wait);
2287
2288 ret = btrfs_alloc_stripe_hash_table(fs_info);
2289 if (ret) {
2290 err = ret;
2291 goto fail_alloc;
2292 }
2293
2294 __setup_root(4096, 4096, 4096, 4096, tree_root,
2295 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2296
2297 invalidate_bdev(fs_devices->latest_bdev);
2298
2299 /*
2300 * Read super block and check the signature bytes only
2301 */
2302 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2303 if (!bh) {
2304 err = -EINVAL;
2305 goto fail_alloc;
2306 }
2307
2308 /*
2309 * We want to check superblock checksum, the type is stored inside.
2310 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2311 */
2312 if (btrfs_check_super_csum(bh->b_data)) {
2313 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2314 err = -EINVAL;
2315 goto fail_alloc;
2316 }
2317
2318 /*
2319 * super_copy is zeroed at allocation time and we never touch the
2320 * following bytes up to INFO_SIZE, the checksum is calculated from
2321 * the whole block of INFO_SIZE
2322 */
2323 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2324 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2325 sizeof(*fs_info->super_for_commit));
2326 brelse(bh);
2327
2328 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2329
2330 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2331 if (ret) {
2332 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2333 err = -EINVAL;
2334 goto fail_alloc;
2335 }
2336
2337 disk_super = fs_info->super_copy;
2338 if (!btrfs_super_root(disk_super))
2339 goto fail_alloc;
2340
2341 /* check FS state, whether FS is broken. */
2342 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2343 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2344
2345 /*
2346 * run through our array of backup supers and setup
2347 * our ring pointer to the oldest one
2348 */
2349 generation = btrfs_super_generation(disk_super);
2350 find_oldest_super_backup(fs_info, generation);
2351
2352 /*
2353 * In the long term, we'll store the compression type in the super
2354 * block, and it'll be used for per file compression control.
2355 */
2356 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2357
2358 ret = btrfs_parse_options(tree_root, options);
2359 if (ret) {
2360 err = ret;
2361 goto fail_alloc;
2362 }
2363
2364 features = btrfs_super_incompat_flags(disk_super) &
2365 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2366 if (features) {
2367 printk(KERN_ERR "BTRFS: couldn't mount because of "
2368 "unsupported optional features (%Lx).\n",
2369 (unsigned long long)features);
2370 err = -EINVAL;
2371 goto fail_alloc;
2372 }
2373
2374 if (btrfs_super_leafsize(disk_super) !=
2375 btrfs_super_nodesize(disk_super)) {
2376 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2377 "blocksizes don't match. node %d leaf %d\n",
2378 btrfs_super_nodesize(disk_super),
2379 btrfs_super_leafsize(disk_super));
2380 err = -EINVAL;
2381 goto fail_alloc;
2382 }
2383 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2384 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2385 "blocksize (%d) was too large\n",
2386 btrfs_super_leafsize(disk_super));
2387 err = -EINVAL;
2388 goto fail_alloc;
2389 }
2390
2391 features = btrfs_super_incompat_flags(disk_super);
2392 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2393 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2394 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2395
2396 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2397 printk(KERN_ERR "btrfs: has skinny extents\n");
2398
2399 /*
2400 * flag our filesystem as having big metadata blocks if
2401 * they are bigger than the page size
2402 */
2403 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2404 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2405 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2406 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2407 }
2408
2409 nodesize = btrfs_super_nodesize(disk_super);
2410 leafsize = btrfs_super_leafsize(disk_super);
2411 sectorsize = btrfs_super_sectorsize(disk_super);
2412 stripesize = btrfs_super_stripesize(disk_super);
2413 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2414 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2415
2416 /*
2417 * mixed block groups end up with duplicate but slightly offset
2418 * extent buffers for the same range. It leads to corruptions
2419 */
2420 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2421 (sectorsize != leafsize)) {
2422 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2423 "are not allowed for mixed block groups on %s\n",
2424 sb->s_id);
2425 goto fail_alloc;
2426 }
2427
2428 /*
2429 * Needn't use the lock because there is no other task which will
2430 * update the flag.
2431 */
2432 btrfs_set_super_incompat_flags(disk_super, features);
2433
2434 features = btrfs_super_compat_ro_flags(disk_super) &
2435 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2436 if (!(sb->s_flags & MS_RDONLY) && features) {
2437 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2438 "unsupported option features (%Lx).\n",
2439 (unsigned long long)features);
2440 err = -EINVAL;
2441 goto fail_alloc;
2442 }
2443
2444 btrfs_init_workers(&fs_info->generic_worker,
2445 "genwork", 1, NULL);
2446
2447 btrfs_init_workers(&fs_info->workers, "worker",
2448 fs_info->thread_pool_size,
2449 &fs_info->generic_worker);
2450
2451 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2452 fs_info->thread_pool_size,
2453 &fs_info->generic_worker);
2454
2455 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2456 fs_info->thread_pool_size,
2457 &fs_info->generic_worker);
2458
2459 btrfs_init_workers(&fs_info->submit_workers, "submit",
2460 min_t(u64, fs_devices->num_devices,
2461 fs_info->thread_pool_size),
2462 &fs_info->generic_worker);
2463
2464 btrfs_init_workers(&fs_info->caching_workers, "cache",
2465 2, &fs_info->generic_worker);
2466
2467 /* a higher idle thresh on the submit workers makes it much more
2468 * likely that bios will be send down in a sane order to the
2469 * devices
2470 */
2471 fs_info->submit_workers.idle_thresh = 64;
2472
2473 fs_info->workers.idle_thresh = 16;
2474 fs_info->workers.ordered = 1;
2475
2476 fs_info->delalloc_workers.idle_thresh = 2;
2477 fs_info->delalloc_workers.ordered = 1;
2478
2479 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2480 &fs_info->generic_worker);
2481 btrfs_init_workers(&fs_info->endio_workers, "endio",
2482 fs_info->thread_pool_size,
2483 &fs_info->generic_worker);
2484 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2485 fs_info->thread_pool_size,
2486 &fs_info->generic_worker);
2487 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2488 "endio-meta-write", fs_info->thread_pool_size,
2489 &fs_info->generic_worker);
2490 btrfs_init_workers(&fs_info->endio_raid56_workers,
2491 "endio-raid56", fs_info->thread_pool_size,
2492 &fs_info->generic_worker);
2493 btrfs_init_workers(&fs_info->rmw_workers,
2494 "rmw", fs_info->thread_pool_size,
2495 &fs_info->generic_worker);
2496 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2497 fs_info->thread_pool_size,
2498 &fs_info->generic_worker);
2499 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2500 1, &fs_info->generic_worker);
2501 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2502 fs_info->thread_pool_size,
2503 &fs_info->generic_worker);
2504 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2505 fs_info->thread_pool_size,
2506 &fs_info->generic_worker);
2507 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2508 &fs_info->generic_worker);
2509
2510 /*
2511 * endios are largely parallel and should have a very
2512 * low idle thresh
2513 */
2514 fs_info->endio_workers.idle_thresh = 4;
2515 fs_info->endio_meta_workers.idle_thresh = 4;
2516 fs_info->endio_raid56_workers.idle_thresh = 4;
2517 fs_info->rmw_workers.idle_thresh = 2;
2518
2519 fs_info->endio_write_workers.idle_thresh = 2;
2520 fs_info->endio_meta_write_workers.idle_thresh = 2;
2521 fs_info->readahead_workers.idle_thresh = 2;
2522
2523 /*
2524 * btrfs_start_workers can really only fail because of ENOMEM so just
2525 * return -ENOMEM if any of these fail.
2526 */
2527 ret = btrfs_start_workers(&fs_info->workers);
2528 ret |= btrfs_start_workers(&fs_info->generic_worker);
2529 ret |= btrfs_start_workers(&fs_info->submit_workers);
2530 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2531 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2532 ret |= btrfs_start_workers(&fs_info->endio_workers);
2533 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2534 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2535 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2536 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2537 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2538 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2539 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2540 ret |= btrfs_start_workers(&fs_info->caching_workers);
2541 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2542 ret |= btrfs_start_workers(&fs_info->flush_workers);
2543 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2544 if (ret) {
2545 err = -ENOMEM;
2546 goto fail_sb_buffer;
2547 }
2548
2549 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2550 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2551 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2552
2553 tree_root->nodesize = nodesize;
2554 tree_root->leafsize = leafsize;
2555 tree_root->sectorsize = sectorsize;
2556 tree_root->stripesize = stripesize;
2557
2558 sb->s_blocksize = sectorsize;
2559 sb->s_blocksize_bits = blksize_bits(sectorsize);
2560
2561 if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2562 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2563 goto fail_sb_buffer;
2564 }
2565
2566 if (sectorsize != PAGE_SIZE) {
2567 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2568 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2569 goto fail_sb_buffer;
2570 }
2571
2572 mutex_lock(&fs_info->chunk_mutex);
2573 ret = btrfs_read_sys_array(tree_root);
2574 mutex_unlock(&fs_info->chunk_mutex);
2575 if (ret) {
2576 printk(KERN_WARNING "btrfs: failed to read the system "
2577 "array on %s\n", sb->s_id);
2578 goto fail_sb_buffer;
2579 }
2580
2581 blocksize = btrfs_level_size(tree_root,
2582 btrfs_super_chunk_root_level(disk_super));
2583 generation = btrfs_super_chunk_root_generation(disk_super);
2584
2585 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2586 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2587
2588 chunk_root->node = read_tree_block(chunk_root,
2589 btrfs_super_chunk_root(disk_super),
2590 blocksize, generation);
2591 if (!chunk_root->node ||
2592 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2593 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2594 sb->s_id);
2595 goto fail_tree_roots;
2596 }
2597 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2598 chunk_root->commit_root = btrfs_root_node(chunk_root);
2599
2600 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2601 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2602 BTRFS_UUID_SIZE);
2603
2604 ret = btrfs_read_chunk_tree(chunk_root);
2605 if (ret) {
2606 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2607 sb->s_id);
2608 goto fail_tree_roots;
2609 }
2610
2611 /*
2612 * keep the device that is marked to be the target device for the
2613 * dev_replace procedure
2614 */
2615 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2616
2617 if (!fs_devices->latest_bdev) {
2618 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2619 sb->s_id);
2620 goto fail_tree_roots;
2621 }
2622
2623 retry_root_backup:
2624 blocksize = btrfs_level_size(tree_root,
2625 btrfs_super_root_level(disk_super));
2626 generation = btrfs_super_generation(disk_super);
2627
2628 tree_root->node = read_tree_block(tree_root,
2629 btrfs_super_root(disk_super),
2630 blocksize, generation);
2631 if (!tree_root->node ||
2632 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2633 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2634 sb->s_id);
2635
2636 goto recovery_tree_root;
2637 }
2638
2639 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2640 tree_root->commit_root = btrfs_root_node(tree_root);
2641
2642 ret = find_and_setup_root(tree_root, fs_info,
2643 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2644 if (ret)
2645 goto recovery_tree_root;
2646 extent_root->track_dirty = 1;
2647
2648 ret = find_and_setup_root(tree_root, fs_info,
2649 BTRFS_DEV_TREE_OBJECTID, dev_root);
2650 if (ret)
2651 goto recovery_tree_root;
2652 dev_root->track_dirty = 1;
2653
2654 ret = find_and_setup_root(tree_root, fs_info,
2655 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2656 if (ret)
2657 goto recovery_tree_root;
2658 csum_root->track_dirty = 1;
2659
2660 ret = find_and_setup_root(tree_root, fs_info,
2661 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2662 if (ret) {
2663 kfree(quota_root);
2664 quota_root = fs_info->quota_root = NULL;
2665 } else {
2666 quota_root->track_dirty = 1;
2667 fs_info->quota_enabled = 1;
2668 fs_info->pending_quota_state = 1;
2669 }
2670
2671 fs_info->generation = generation;
2672 fs_info->last_trans_committed = generation;
2673
2674 ret = btrfs_recover_balance(fs_info);
2675 if (ret) {
2676 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2677 goto fail_block_groups;
2678 }
2679
2680 ret = btrfs_init_dev_stats(fs_info);
2681 if (ret) {
2682 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2683 ret);
2684 goto fail_block_groups;
2685 }
2686
2687 ret = btrfs_init_dev_replace(fs_info);
2688 if (ret) {
2689 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2690 goto fail_block_groups;
2691 }
2692
2693 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2694
2695 ret = btrfs_init_space_info(fs_info);
2696 if (ret) {
2697 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2698 goto fail_block_groups;
2699 }
2700
2701 ret = btrfs_read_block_groups(extent_root);
2702 if (ret) {
2703 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2704 goto fail_block_groups;
2705 }
2706 fs_info->num_tolerated_disk_barrier_failures =
2707 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2708 if (fs_info->fs_devices->missing_devices >
2709 fs_info->num_tolerated_disk_barrier_failures &&
2710 !(sb->s_flags & MS_RDONLY)) {
2711 printk(KERN_WARNING
2712 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2713 goto fail_block_groups;
2714 }
2715
2716 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2717 "btrfs-cleaner");
2718 if (IS_ERR(fs_info->cleaner_kthread))
2719 goto fail_block_groups;
2720
2721 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2722 tree_root,
2723 "btrfs-transaction");
2724 if (IS_ERR(fs_info->transaction_kthread))
2725 goto fail_cleaner;
2726
2727 if (!btrfs_test_opt(tree_root, SSD) &&
2728 !btrfs_test_opt(tree_root, NOSSD) &&
2729 !fs_info->fs_devices->rotating) {
2730 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2731 "mode\n");
2732 btrfs_set_opt(fs_info->mount_opt, SSD);
2733 }
2734
2735 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2736 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2737 ret = btrfsic_mount(tree_root, fs_devices,
2738 btrfs_test_opt(tree_root,
2739 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2740 1 : 0,
2741 fs_info->check_integrity_print_mask);
2742 if (ret)
2743 printk(KERN_WARNING "btrfs: failed to initialize"
2744 " integrity check module %s\n", sb->s_id);
2745 }
2746 #endif
2747 ret = btrfs_read_qgroup_config(fs_info);
2748 if (ret)
2749 goto fail_trans_kthread;
2750
2751 /* do not make disk changes in broken FS */
2752 if (btrfs_super_log_root(disk_super) != 0) {
2753 u64 bytenr = btrfs_super_log_root(disk_super);
2754
2755 if (fs_devices->rw_devices == 0) {
2756 printk(KERN_WARNING "Btrfs log replay required "
2757 "on RO media\n");
2758 err = -EIO;
2759 goto fail_qgroup;
2760 }
2761 blocksize =
2762 btrfs_level_size(tree_root,
2763 btrfs_super_log_root_level(disk_super));
2764
2765 log_tree_root = btrfs_alloc_root(fs_info);
2766 if (!log_tree_root) {
2767 err = -ENOMEM;
2768 goto fail_qgroup;
2769 }
2770
2771 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2772 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2773
2774 log_tree_root->node = read_tree_block(tree_root, bytenr,
2775 blocksize,
2776 generation + 1);
2777 if (!log_tree_root->node ||
2778 !extent_buffer_uptodate(log_tree_root->node)) {
2779 printk(KERN_ERR "btrfs: failed to read log tree\n");
2780 free_extent_buffer(log_tree_root->node);
2781 kfree(log_tree_root);
2782 goto fail_trans_kthread;
2783 }
2784 /* returns with log_tree_root freed on success */
2785 ret = btrfs_recover_log_trees(log_tree_root);
2786 if (ret) {
2787 btrfs_error(tree_root->fs_info, ret,
2788 "Failed to recover log tree");
2789 free_extent_buffer(log_tree_root->node);
2790 kfree(log_tree_root);
2791 goto fail_trans_kthread;
2792 }
2793
2794 if (sb->s_flags & MS_RDONLY) {
2795 ret = btrfs_commit_super(tree_root);
2796 if (ret)
2797 goto fail_trans_kthread;
2798 }
2799 }
2800
2801 ret = btrfs_find_orphan_roots(tree_root);
2802 if (ret)
2803 goto fail_trans_kthread;
2804
2805 if (!(sb->s_flags & MS_RDONLY)) {
2806 ret = btrfs_cleanup_fs_roots(fs_info);
2807 if (ret)
2808 goto fail_trans_kthread;
2809
2810 ret = btrfs_recover_relocation(tree_root);
2811 if (ret < 0) {
2812 printk(KERN_WARNING
2813 "btrfs: failed to recover relocation\n");
2814 err = -EINVAL;
2815 goto fail_qgroup;
2816 }
2817 }
2818
2819 location.objectid = BTRFS_FS_TREE_OBJECTID;
2820 location.type = BTRFS_ROOT_ITEM_KEY;
2821 location.offset = (u64)-1;
2822
2823 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2824 if (!fs_info->fs_root)
2825 goto fail_qgroup;
2826 if (IS_ERR(fs_info->fs_root)) {
2827 err = PTR_ERR(fs_info->fs_root);
2828 goto fail_qgroup;
2829 }
2830
2831 if (sb->s_flags & MS_RDONLY)
2832 return 0;
2833
2834 down_read(&fs_info->cleanup_work_sem);
2835 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2836 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2837 up_read(&fs_info->cleanup_work_sem);
2838 close_ctree(tree_root);
2839 return ret;
2840 }
2841 up_read(&fs_info->cleanup_work_sem);
2842
2843 ret = btrfs_resume_balance_async(fs_info);
2844 if (ret) {
2845 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2846 close_ctree(tree_root);
2847 return ret;
2848 }
2849
2850 ret = btrfs_resume_dev_replace_async(fs_info);
2851 if (ret) {
2852 pr_warn("btrfs: failed to resume dev_replace\n");
2853 close_ctree(tree_root);
2854 return ret;
2855 }
2856
2857 return 0;
2858
2859 fail_qgroup:
2860 btrfs_free_qgroup_config(fs_info);
2861 fail_trans_kthread:
2862 kthread_stop(fs_info->transaction_kthread);
2863 del_fs_roots(fs_info);
2864 btrfs_cleanup_transaction(fs_info->tree_root);
2865 fail_cleaner:
2866 kthread_stop(fs_info->cleaner_kthread);
2867
2868 /*
2869 * make sure we're done with the btree inode before we stop our
2870 * kthreads
2871 */
2872 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2873
2874 fail_block_groups:
2875 btrfs_put_block_group_cache(fs_info);
2876 btrfs_free_block_groups(fs_info);
2877
2878 fail_tree_roots:
2879 free_root_pointers(fs_info, 1);
2880 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2881
2882 fail_sb_buffer:
2883 btrfs_stop_all_workers(fs_info);
2884 fail_alloc:
2885 fail_iput:
2886 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2887
2888 iput(fs_info->btree_inode);
2889 fail_delalloc_bytes:
2890 percpu_counter_destroy(&fs_info->delalloc_bytes);
2891 fail_dirty_metadata_bytes:
2892 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2893 fail_bdi:
2894 bdi_destroy(&fs_info->bdi);
2895 fail_srcu:
2896 cleanup_srcu_struct(&fs_info->subvol_srcu);
2897 fail:
2898 btrfs_free_stripe_hash_table(fs_info);
2899 btrfs_close_devices(fs_info->fs_devices);
2900 return err;
2901
2902 recovery_tree_root:
2903 if (!btrfs_test_opt(tree_root, RECOVERY))
2904 goto fail_tree_roots;
2905
2906 free_root_pointers(fs_info, 0);
2907
2908 /* don't use the log in recovery mode, it won't be valid */
2909 btrfs_set_super_log_root(disk_super, 0);
2910
2911 /* we can't trust the free space cache either */
2912 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2913
2914 ret = next_root_backup(fs_info, fs_info->super_copy,
2915 &num_backups_tried, &backup_index);
2916 if (ret == -1)
2917 goto fail_block_groups;
2918 goto retry_root_backup;
2919 }
2920
2921 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2922 {
2923 if (uptodate) {
2924 set_buffer_uptodate(bh);
2925 } else {
2926 struct btrfs_device *device = (struct btrfs_device *)
2927 bh->b_private;
2928
2929 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2930 "I/O error on %s\n",
2931 rcu_str_deref(device->name));
2932 /* note, we dont' set_buffer_write_io_error because we have
2933 * our own ways of dealing with the IO errors
2934 */
2935 clear_buffer_uptodate(bh);
2936 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2937 }
2938 unlock_buffer(bh);
2939 put_bh(bh);
2940 }
2941
2942 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2943 {
2944 struct buffer_head *bh;
2945 struct buffer_head *latest = NULL;
2946 struct btrfs_super_block *super;
2947 int i;
2948 u64 transid = 0;
2949 u64 bytenr;
2950
2951 /* we would like to check all the supers, but that would make
2952 * a btrfs mount succeed after a mkfs from a different FS.
2953 * So, we need to add a special mount option to scan for
2954 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2955 */
2956 for (i = 0; i < 1; i++) {
2957 bytenr = btrfs_sb_offset(i);
2958 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2959 break;
2960 bh = __bread(bdev, bytenr / 4096, 4096);
2961 if (!bh)
2962 continue;
2963
2964 super = (struct btrfs_super_block *)bh->b_data;
2965 if (btrfs_super_bytenr(super) != bytenr ||
2966 super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2967 brelse(bh);
2968 continue;
2969 }
2970
2971 if (!latest || btrfs_super_generation(super) > transid) {
2972 brelse(latest);
2973 latest = bh;
2974 transid = btrfs_super_generation(super);
2975 } else {
2976 brelse(bh);
2977 }
2978 }
2979 return latest;
2980 }
2981
2982 /*
2983 * this should be called twice, once with wait == 0 and
2984 * once with wait == 1. When wait == 0 is done, all the buffer heads
2985 * we write are pinned.
2986 *
2987 * They are released when wait == 1 is done.
2988 * max_mirrors must be the same for both runs, and it indicates how
2989 * many supers on this one device should be written.
2990 *
2991 * max_mirrors == 0 means to write them all.
2992 */
2993 static int write_dev_supers(struct btrfs_device *device,
2994 struct btrfs_super_block *sb,
2995 int do_barriers, int wait, int max_mirrors)
2996 {
2997 struct buffer_head *bh;
2998 int i;
2999 int ret;
3000 int errors = 0;
3001 u32 crc;
3002 u64 bytenr;
3003
3004 if (max_mirrors == 0)
3005 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3006
3007 for (i = 0; i < max_mirrors; i++) {
3008 bytenr = btrfs_sb_offset(i);
3009 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3010 break;
3011
3012 if (wait) {
3013 bh = __find_get_block(device->bdev, bytenr / 4096,
3014 BTRFS_SUPER_INFO_SIZE);
3015 if (!bh) {
3016 errors++;
3017 continue;
3018 }
3019 wait_on_buffer(bh);
3020 if (!buffer_uptodate(bh))
3021 errors++;
3022
3023 /* drop our reference */
3024 brelse(bh);
3025
3026 /* drop the reference from the wait == 0 run */
3027 brelse(bh);
3028 continue;
3029 } else {
3030 btrfs_set_super_bytenr(sb, bytenr);
3031
3032 crc = ~(u32)0;
3033 crc = btrfs_csum_data((char *)sb +
3034 BTRFS_CSUM_SIZE, crc,
3035 BTRFS_SUPER_INFO_SIZE -
3036 BTRFS_CSUM_SIZE);
3037 btrfs_csum_final(crc, sb->csum);
3038
3039 /*
3040 * one reference for us, and we leave it for the
3041 * caller
3042 */
3043 bh = __getblk(device->bdev, bytenr / 4096,
3044 BTRFS_SUPER_INFO_SIZE);
3045 if (!bh) {
3046 printk(KERN_ERR "btrfs: couldn't get super "
3047 "buffer head for bytenr %Lu\n", bytenr);
3048 errors++;
3049 continue;
3050 }
3051
3052 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3053
3054 /* one reference for submit_bh */
3055 get_bh(bh);
3056
3057 set_buffer_uptodate(bh);
3058 lock_buffer(bh);
3059 bh->b_end_io = btrfs_end_buffer_write_sync;
3060 bh->b_private = device;
3061 }
3062
3063 /*
3064 * we fua the first super. The others we allow
3065 * to go down lazy.
3066 */
3067 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3068 if (ret)
3069 errors++;
3070 }
3071 return errors < i ? 0 : -1;
3072 }
3073
3074 /*
3075 * endio for the write_dev_flush, this will wake anyone waiting
3076 * for the barrier when it is done
3077 */
3078 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3079 {
3080 if (err) {
3081 if (err == -EOPNOTSUPP)
3082 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3083 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3084 }
3085 if (bio->bi_private)
3086 complete(bio->bi_private);
3087 bio_put(bio);
3088 }
3089
3090 /*
3091 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3092 * sent down. With wait == 1, it waits for the previous flush.
3093 *
3094 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3095 * capable
3096 */
3097 static int write_dev_flush(struct btrfs_device *device, int wait)
3098 {
3099 struct bio *bio;
3100 int ret = 0;
3101
3102 if (device->nobarriers)
3103 return 0;
3104
3105 if (wait) {
3106 bio = device->flush_bio;
3107 if (!bio)
3108 return 0;
3109
3110 wait_for_completion(&device->flush_wait);
3111
3112 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3113 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3114 rcu_str_deref(device->name));
3115 device->nobarriers = 1;
3116 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3117 ret = -EIO;
3118 btrfs_dev_stat_inc_and_print(device,
3119 BTRFS_DEV_STAT_FLUSH_ERRS);
3120 }
3121
3122 /* drop the reference from the wait == 0 run */
3123 bio_put(bio);
3124 device->flush_bio = NULL;
3125
3126 return ret;
3127 }
3128
3129 /*
3130 * one reference for us, and we leave it for the
3131 * caller
3132 */
3133 device->flush_bio = NULL;
3134 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3135 if (!bio)
3136 return -ENOMEM;
3137
3138 bio->bi_end_io = btrfs_end_empty_barrier;
3139 bio->bi_bdev = device->bdev;
3140 init_completion(&device->flush_wait);
3141 bio->bi_private = &device->flush_wait;
3142 device->flush_bio = bio;
3143
3144 bio_get(bio);
3145 btrfsic_submit_bio(WRITE_FLUSH, bio);
3146
3147 return 0;
3148 }
3149
3150 /*
3151 * send an empty flush down to each device in parallel,
3152 * then wait for them
3153 */
3154 static int barrier_all_devices(struct btrfs_fs_info *info)
3155 {
3156 struct list_head *head;
3157 struct btrfs_device *dev;
3158 int errors_send = 0;
3159 int errors_wait = 0;
3160 int ret;
3161
3162 /* send down all the barriers */
3163 head = &info->fs_devices->devices;
3164 list_for_each_entry_rcu(dev, head, dev_list) {
3165 if (!dev->bdev) {
3166 errors_send++;
3167 continue;
3168 }
3169 if (!dev->in_fs_metadata || !dev->writeable)
3170 continue;
3171
3172 ret = write_dev_flush(dev, 0);
3173 if (ret)
3174 errors_send++;
3175 }
3176
3177 /* wait for all the barriers */
3178 list_for_each_entry_rcu(dev, head, dev_list) {
3179 if (!dev->bdev) {
3180 errors_wait++;
3181 continue;
3182 }
3183 if (!dev->in_fs_metadata || !dev->writeable)
3184 continue;
3185
3186 ret = write_dev_flush(dev, 1);
3187 if (ret)
3188 errors_wait++;
3189 }
3190 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3191 errors_wait > info->num_tolerated_disk_barrier_failures)
3192 return -EIO;
3193 return 0;
3194 }
3195
3196 int btrfs_calc_num_tolerated_disk_barrier_failures(
3197 struct btrfs_fs_info *fs_info)
3198 {
3199 struct btrfs_ioctl_space_info space;
3200 struct btrfs_space_info *sinfo;
3201 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3202 BTRFS_BLOCK_GROUP_SYSTEM,
3203 BTRFS_BLOCK_GROUP_METADATA,
3204 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3205 int num_types = 4;
3206 int i;
3207 int c;
3208 int num_tolerated_disk_barrier_failures =
3209 (int)fs_info->fs_devices->num_devices;
3210
3211 for (i = 0; i < num_types; i++) {
3212 struct btrfs_space_info *tmp;
3213
3214 sinfo = NULL;
3215 rcu_read_lock();
3216 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3217 if (tmp->flags == types[i]) {
3218 sinfo = tmp;
3219 break;
3220 }
3221 }
3222 rcu_read_unlock();
3223
3224 if (!sinfo)
3225 continue;
3226
3227 down_read(&sinfo->groups_sem);
3228 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3229 if (!list_empty(&sinfo->block_groups[c])) {
3230 u64 flags;
3231
3232 btrfs_get_block_group_info(
3233 &sinfo->block_groups[c], &space);
3234 if (space.total_bytes == 0 ||
3235 space.used_bytes == 0)
3236 continue;
3237 flags = space.flags;
3238 /*
3239 * return
3240 * 0: if dup, single or RAID0 is configured for
3241 * any of metadata, system or data, else
3242 * 1: if RAID5 is configured, or if RAID1 or
3243 * RAID10 is configured and only two mirrors
3244 * are used, else
3245 * 2: if RAID6 is configured, else
3246 * num_mirrors - 1: if RAID1 or RAID10 is
3247 * configured and more than
3248 * 2 mirrors are used.
3249 */
3250 if (num_tolerated_disk_barrier_failures > 0 &&
3251 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3252 BTRFS_BLOCK_GROUP_RAID0)) ||
3253 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3254 == 0)))
3255 num_tolerated_disk_barrier_failures = 0;
3256 else if (num_tolerated_disk_barrier_failures > 1) {
3257 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3258 BTRFS_BLOCK_GROUP_RAID5 |
3259 BTRFS_BLOCK_GROUP_RAID10)) {
3260 num_tolerated_disk_barrier_failures = 1;
3261 } else if (flags &
3262 BTRFS_BLOCK_GROUP_RAID5) {
3263 num_tolerated_disk_barrier_failures = 2;
3264 }
3265 }
3266 }
3267 }
3268 up_read(&sinfo->groups_sem);
3269 }
3270
3271 return num_tolerated_disk_barrier_failures;
3272 }
3273
3274 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3275 {
3276 struct list_head *head;
3277 struct btrfs_device *dev;
3278 struct btrfs_super_block *sb;
3279 struct btrfs_dev_item *dev_item;
3280 int ret;
3281 int do_barriers;
3282 int max_errors;
3283 int total_errors = 0;
3284 u64 flags;
3285
3286 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3287 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3288 backup_super_roots(root->fs_info);
3289
3290 sb = root->fs_info->super_for_commit;
3291 dev_item = &sb->dev_item;
3292
3293 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3294 head = &root->fs_info->fs_devices->devices;
3295
3296 if (do_barriers) {
3297 ret = barrier_all_devices(root->fs_info);
3298 if (ret) {
3299 mutex_unlock(
3300 &root->fs_info->fs_devices->device_list_mutex);
3301 btrfs_error(root->fs_info, ret,
3302 "errors while submitting device barriers.");
3303 return ret;
3304 }
3305 }
3306
3307 list_for_each_entry_rcu(dev, head, dev_list) {
3308 if (!dev->bdev) {
3309 total_errors++;
3310 continue;
3311 }
3312 if (!dev->in_fs_metadata || !dev->writeable)
3313 continue;
3314
3315 btrfs_set_stack_device_generation(dev_item, 0);
3316 btrfs_set_stack_device_type(dev_item, dev->type);
3317 btrfs_set_stack_device_id(dev_item, dev->devid);
3318 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3319 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3320 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3321 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3322 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3323 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3324 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3325
3326 flags = btrfs_super_flags(sb);
3327 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3328
3329 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3330 if (ret)
3331 total_errors++;
3332 }
3333 if (total_errors > max_errors) {
3334 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3335 total_errors);
3336
3337 /* This shouldn't happen. FUA is masked off if unsupported */
3338 BUG();
3339 }
3340
3341 total_errors = 0;
3342 list_for_each_entry_rcu(dev, head, dev_list) {
3343 if (!dev->bdev)
3344 continue;
3345 if (!dev->in_fs_metadata || !dev->writeable)
3346 continue;
3347
3348 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3349 if (ret)
3350 total_errors++;
3351 }
3352 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3353 if (total_errors > max_errors) {
3354 btrfs_error(root->fs_info, -EIO,
3355 "%d errors while writing supers", total_errors);
3356 return -EIO;
3357 }
3358 return 0;
3359 }
3360
3361 int write_ctree_super(struct btrfs_trans_handle *trans,
3362 struct btrfs_root *root, int max_mirrors)
3363 {
3364 int ret;
3365
3366 ret = write_all_supers(root, max_mirrors);
3367 return ret;
3368 }
3369
3370 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3371 {
3372 spin_lock(&fs_info->fs_roots_radix_lock);
3373 radix_tree_delete(&fs_info->fs_roots_radix,
3374 (unsigned long)root->root_key.objectid);
3375 spin_unlock(&fs_info->fs_roots_radix_lock);
3376
3377 if (btrfs_root_refs(&root->root_item) == 0)
3378 synchronize_srcu(&fs_info->subvol_srcu);
3379
3380 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3381 btrfs_free_log(NULL, root);
3382 btrfs_free_log_root_tree(NULL, fs_info);
3383 }
3384
3385 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3386 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3387 free_fs_root(root);
3388 }
3389
3390 static void free_fs_root(struct btrfs_root *root)
3391 {
3392 iput(root->cache_inode);
3393 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3394 if (root->anon_dev)
3395 free_anon_bdev(root->anon_dev);
3396 free_extent_buffer(root->node);
3397 free_extent_buffer(root->commit_root);
3398 kfree(root->free_ino_ctl);
3399 kfree(root->free_ino_pinned);
3400 kfree(root->name);
3401 kfree(root);
3402 }
3403
3404 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3405 {
3406 u64 root_objectid = 0;
3407 struct btrfs_root *gang[8];
3408 int i;
3409 int ret;
3410
3411 while (1) {
3412 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3413 (void **)gang, root_objectid,
3414 ARRAY_SIZE(gang));
3415 if (!ret)
3416 break;
3417
3418 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3419 for (i = 0; i < ret; i++) {
3420 int err;
3421
3422 root_objectid = gang[i]->root_key.objectid;
3423 err = btrfs_orphan_cleanup(gang[i]);
3424 if (err)
3425 return err;
3426 }
3427 root_objectid++;
3428 }
3429 return 0;
3430 }
3431
3432 int btrfs_commit_super(struct btrfs_root *root)
3433 {
3434 struct btrfs_trans_handle *trans;
3435 int ret;
3436
3437 mutex_lock(&root->fs_info->cleaner_mutex);
3438 btrfs_run_delayed_iputs(root);
3439 mutex_unlock(&root->fs_info->cleaner_mutex);
3440 wake_up_process(root->fs_info->cleaner_kthread);
3441
3442 /* wait until ongoing cleanup work done */
3443 down_write(&root->fs_info->cleanup_work_sem);
3444 up_write(&root->fs_info->cleanup_work_sem);
3445
3446 trans = btrfs_join_transaction(root);
3447 if (IS_ERR(trans))
3448 return PTR_ERR(trans);
3449 ret = btrfs_commit_transaction(trans, root);
3450 if (ret)
3451 return ret;
3452 /* run commit again to drop the original snapshot */
3453 trans = btrfs_join_transaction(root);
3454 if (IS_ERR(trans))
3455 return PTR_ERR(trans);
3456 ret = btrfs_commit_transaction(trans, root);
3457 if (ret)
3458 return ret;
3459 ret = btrfs_write_and_wait_transaction(NULL, root);
3460 if (ret) {
3461 btrfs_error(root->fs_info, ret,
3462 "Failed to sync btree inode to disk.");
3463 return ret;
3464 }
3465
3466 ret = write_ctree_super(NULL, root, 0);
3467 return ret;
3468 }
3469
3470 int close_ctree(struct btrfs_root *root)
3471 {
3472 struct btrfs_fs_info *fs_info = root->fs_info;
3473 int ret;
3474
3475 fs_info->closing = 1;
3476 smp_mb();
3477
3478 /* pause restriper - we want to resume on mount */
3479 btrfs_pause_balance(fs_info);
3480
3481 btrfs_dev_replace_suspend_for_unmount(fs_info);
3482
3483 btrfs_scrub_cancel(fs_info);
3484
3485 /* wait for any defraggers to finish */
3486 wait_event(fs_info->transaction_wait,
3487 (atomic_read(&fs_info->defrag_running) == 0));
3488
3489 /* clear out the rbtree of defraggable inodes */
3490 btrfs_cleanup_defrag_inodes(fs_info);
3491
3492 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3493 ret = btrfs_commit_super(root);
3494 if (ret)
3495 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3496 }
3497
3498 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3499 btrfs_error_commit_super(root);
3500
3501 btrfs_put_block_group_cache(fs_info);
3502
3503 kthread_stop(fs_info->transaction_kthread);
3504 kthread_stop(fs_info->cleaner_kthread);
3505
3506 fs_info->closing = 2;
3507 smp_mb();
3508
3509 btrfs_free_qgroup_config(root->fs_info);
3510
3511 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3512 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3513 percpu_counter_sum(&fs_info->delalloc_bytes));
3514 }
3515
3516 free_root_pointers(fs_info, 1);
3517
3518 btrfs_free_block_groups(fs_info);
3519
3520 del_fs_roots(fs_info);
3521
3522 iput(fs_info->btree_inode);
3523
3524 btrfs_stop_all_workers(fs_info);
3525
3526 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3527 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3528 btrfsic_unmount(root, fs_info->fs_devices);
3529 #endif
3530
3531 btrfs_close_devices(fs_info->fs_devices);
3532 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3533
3534 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3535 percpu_counter_destroy(&fs_info->delalloc_bytes);
3536 bdi_destroy(&fs_info->bdi);
3537 cleanup_srcu_struct(&fs_info->subvol_srcu);
3538
3539 btrfs_free_stripe_hash_table(fs_info);
3540
3541 return 0;
3542 }
3543
3544 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3545 int atomic)
3546 {
3547 int ret;
3548 struct inode *btree_inode = buf->pages[0]->mapping->host;
3549
3550 ret = extent_buffer_uptodate(buf);
3551 if (!ret)
3552 return ret;
3553
3554 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3555 parent_transid, atomic);
3556 if (ret == -EAGAIN)
3557 return ret;
3558 return !ret;
3559 }
3560
3561 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3562 {
3563 return set_extent_buffer_uptodate(buf);
3564 }
3565
3566 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3567 {
3568 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3569 u64 transid = btrfs_header_generation(buf);
3570 int was_dirty;
3571
3572 btrfs_assert_tree_locked(buf);
3573 if (transid != root->fs_info->generation)
3574 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3575 "found %llu running %llu\n",
3576 (unsigned long long)buf->start,
3577 (unsigned long long)transid,
3578 (unsigned long long)root->fs_info->generation);
3579 was_dirty = set_extent_buffer_dirty(buf);
3580 if (!was_dirty)
3581 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3582 buf->len,
3583 root->fs_info->dirty_metadata_batch);
3584 }
3585
3586 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3587 int flush_delayed)
3588 {
3589 /*
3590 * looks as though older kernels can get into trouble with
3591 * this code, they end up stuck in balance_dirty_pages forever
3592 */
3593 int ret;
3594
3595 if (current->flags & PF_MEMALLOC)
3596 return;
3597
3598 if (flush_delayed)
3599 btrfs_balance_delayed_items(root);
3600
3601 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3602 BTRFS_DIRTY_METADATA_THRESH);
3603 if (ret > 0) {
3604 balance_dirty_pages_ratelimited(
3605 root->fs_info->btree_inode->i_mapping);
3606 }
3607 return;
3608 }
3609
3610 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3611 {
3612 __btrfs_btree_balance_dirty(root, 1);
3613 }
3614
3615 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3616 {
3617 __btrfs_btree_balance_dirty(root, 0);
3618 }
3619
3620 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3621 {
3622 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3623 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3624 }
3625
3626 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3627 int read_only)
3628 {
3629 /*
3630 * Placeholder for checks
3631 */
3632 return 0;
3633 }
3634
3635 static void btrfs_error_commit_super(struct btrfs_root *root)
3636 {
3637 mutex_lock(&root->fs_info->cleaner_mutex);
3638 btrfs_run_delayed_iputs(root);
3639 mutex_unlock(&root->fs_info->cleaner_mutex);
3640
3641 down_write(&root->fs_info->cleanup_work_sem);
3642 up_write(&root->fs_info->cleanup_work_sem);
3643
3644 /* cleanup FS via transaction */
3645 btrfs_cleanup_transaction(root);
3646 }
3647
3648 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3649 struct btrfs_root *root)
3650 {
3651 struct btrfs_inode *btrfs_inode;
3652 struct list_head splice;
3653
3654 INIT_LIST_HEAD(&splice);
3655
3656 mutex_lock(&root->fs_info->ordered_operations_mutex);
3657 spin_lock(&root->fs_info->ordered_extent_lock);
3658
3659 list_splice_init(&t->ordered_operations, &splice);
3660 while (!list_empty(&splice)) {
3661 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3662 ordered_operations);
3663
3664 list_del_init(&btrfs_inode->ordered_operations);
3665 spin_unlock(&root->fs_info->ordered_extent_lock);
3666
3667 btrfs_invalidate_inodes(btrfs_inode->root);
3668
3669 spin_lock(&root->fs_info->ordered_extent_lock);
3670 }
3671
3672 spin_unlock(&root->fs_info->ordered_extent_lock);
3673 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3674 }
3675
3676 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3677 {
3678 struct btrfs_ordered_extent *ordered;
3679
3680 spin_lock(&root->fs_info->ordered_extent_lock);
3681 /*
3682 * This will just short circuit the ordered completion stuff which will
3683 * make sure the ordered extent gets properly cleaned up.
3684 */
3685 list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3686 root_extent_list)
3687 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3688 spin_unlock(&root->fs_info->ordered_extent_lock);
3689 }
3690
3691 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3692 struct btrfs_root *root)
3693 {
3694 struct rb_node *node;
3695 struct btrfs_delayed_ref_root *delayed_refs;
3696 struct btrfs_delayed_ref_node *ref;
3697 int ret = 0;
3698
3699 delayed_refs = &trans->delayed_refs;
3700
3701 spin_lock(&delayed_refs->lock);
3702 if (delayed_refs->num_entries == 0) {
3703 spin_unlock(&delayed_refs->lock);
3704 printk(KERN_INFO "delayed_refs has NO entry\n");
3705 return ret;
3706 }
3707
3708 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3709 struct btrfs_delayed_ref_head *head = NULL;
3710
3711 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3712 atomic_set(&ref->refs, 1);
3713 if (btrfs_delayed_ref_is_head(ref)) {
3714
3715 head = btrfs_delayed_node_to_head(ref);
3716 if (!mutex_trylock(&head->mutex)) {
3717 atomic_inc(&ref->refs);
3718 spin_unlock(&delayed_refs->lock);
3719
3720 /* Need to wait for the delayed ref to run */
3721 mutex_lock(&head->mutex);
3722 mutex_unlock(&head->mutex);
3723 btrfs_put_delayed_ref(ref);
3724
3725 spin_lock(&delayed_refs->lock);
3726 continue;
3727 }
3728
3729 if (head->must_insert_reserved)
3730 btrfs_pin_extent(root, ref->bytenr,
3731 ref->num_bytes, 1);
3732 btrfs_free_delayed_extent_op(head->extent_op);
3733 delayed_refs->num_heads--;
3734 if (list_empty(&head->cluster))
3735 delayed_refs->num_heads_ready--;
3736 list_del_init(&head->cluster);
3737 }
3738
3739 ref->in_tree = 0;
3740 rb_erase(&ref->rb_node, &delayed_refs->root);
3741 delayed_refs->num_entries--;
3742 if (head)
3743 mutex_unlock(&head->mutex);
3744 spin_unlock(&delayed_refs->lock);
3745 btrfs_put_delayed_ref(ref);
3746
3747 cond_resched();
3748 spin_lock(&delayed_refs->lock);
3749 }
3750
3751 spin_unlock(&delayed_refs->lock);
3752
3753 return ret;
3754 }
3755
3756 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3757 {
3758 struct btrfs_pending_snapshot *snapshot;
3759 struct list_head splice;
3760
3761 INIT_LIST_HEAD(&splice);
3762
3763 list_splice_init(&t->pending_snapshots, &splice);
3764
3765 while (!list_empty(&splice)) {
3766 snapshot = list_entry(splice.next,
3767 struct btrfs_pending_snapshot,
3768 list);
3769 snapshot->error = -ECANCELED;
3770 list_del_init(&snapshot->list);
3771 }
3772 }
3773
3774 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3775 {
3776 struct btrfs_inode *btrfs_inode;
3777 struct list_head splice;
3778
3779 INIT_LIST_HEAD(&splice);
3780
3781 spin_lock(&root->fs_info->delalloc_lock);
3782 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3783
3784 while (!list_empty(&splice)) {
3785 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3786 delalloc_inodes);
3787
3788 list_del_init(&btrfs_inode->delalloc_inodes);
3789 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3790 &btrfs_inode->runtime_flags);
3791 spin_unlock(&root->fs_info->delalloc_lock);
3792
3793 btrfs_invalidate_inodes(btrfs_inode->root);
3794
3795 spin_lock(&root->fs_info->delalloc_lock);
3796 }
3797
3798 spin_unlock(&root->fs_info->delalloc_lock);
3799 }
3800
3801 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3802 struct extent_io_tree *dirty_pages,
3803 int mark)
3804 {
3805 int ret;
3806 struct extent_buffer *eb;
3807 u64 start = 0;
3808 u64 end;
3809
3810 while (1) {
3811 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3812 mark, NULL);
3813 if (ret)
3814 break;
3815
3816 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3817 while (start <= end) {
3818 eb = btrfs_find_tree_block(root, start,
3819 root->leafsize);
3820 start += root->leafsize;
3821 if (!eb)
3822 continue;
3823 wait_on_extent_buffer_writeback(eb);
3824
3825 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3826 &eb->bflags))
3827 clear_extent_buffer_dirty(eb);
3828 free_extent_buffer_stale(eb);
3829 }
3830 }
3831
3832 return ret;
3833 }
3834
3835 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3836 struct extent_io_tree *pinned_extents)
3837 {
3838 struct extent_io_tree *unpin;
3839 u64 start;
3840 u64 end;
3841 int ret;
3842 bool loop = true;
3843
3844 unpin = pinned_extents;
3845 again:
3846 while (1) {
3847 ret = find_first_extent_bit(unpin, 0, &start, &end,
3848 EXTENT_DIRTY, NULL);
3849 if (ret)
3850 break;
3851
3852 /* opt_discard */
3853 if (btrfs_test_opt(root, DISCARD))
3854 ret = btrfs_error_discard_extent(root, start,
3855 end + 1 - start,
3856 NULL);
3857
3858 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3859 btrfs_error_unpin_extent_range(root, start, end);
3860 cond_resched();
3861 }
3862
3863 if (loop) {
3864 if (unpin == &root->fs_info->freed_extents[0])
3865 unpin = &root->fs_info->freed_extents[1];
3866 else
3867 unpin = &root->fs_info->freed_extents[0];
3868 loop = false;
3869 goto again;
3870 }
3871
3872 return 0;
3873 }
3874
3875 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3876 struct btrfs_root *root)
3877 {
3878 btrfs_destroy_delayed_refs(cur_trans, root);
3879 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3880 cur_trans->dirty_pages.dirty_bytes);
3881
3882 /* FIXME: cleanup wait for commit */
3883 cur_trans->in_commit = 1;
3884 cur_trans->blocked = 1;
3885 wake_up(&root->fs_info->transaction_blocked_wait);
3886
3887 btrfs_evict_pending_snapshots(cur_trans);
3888
3889 cur_trans->blocked = 0;
3890 wake_up(&root->fs_info->transaction_wait);
3891
3892 cur_trans->commit_done = 1;
3893 wake_up(&cur_trans->commit_wait);
3894
3895 btrfs_destroy_delayed_inodes(root);
3896 btrfs_assert_delayed_root_empty(root);
3897
3898 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3899 EXTENT_DIRTY);
3900 btrfs_destroy_pinned_extent(root,
3901 root->fs_info->pinned_extents);
3902
3903 /*
3904 memset(cur_trans, 0, sizeof(*cur_trans));
3905 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3906 */
3907 }
3908
3909 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3910 {
3911 struct btrfs_transaction *t;
3912 LIST_HEAD(list);
3913
3914 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3915
3916 spin_lock(&root->fs_info->trans_lock);
3917 list_splice_init(&root->fs_info->trans_list, &list);
3918 root->fs_info->trans_no_join = 1;
3919 spin_unlock(&root->fs_info->trans_lock);
3920
3921 while (!list_empty(&list)) {
3922 t = list_entry(list.next, struct btrfs_transaction, list);
3923
3924 btrfs_destroy_ordered_operations(t, root);
3925
3926 btrfs_destroy_ordered_extents(root);
3927
3928 btrfs_destroy_delayed_refs(t, root);
3929
3930 /* FIXME: cleanup wait for commit */
3931 t->in_commit = 1;
3932 t->blocked = 1;
3933 smp_mb();
3934 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3935 wake_up(&root->fs_info->transaction_blocked_wait);
3936
3937 btrfs_evict_pending_snapshots(t);
3938
3939 t->blocked = 0;
3940 smp_mb();
3941 if (waitqueue_active(&root->fs_info->transaction_wait))
3942 wake_up(&root->fs_info->transaction_wait);
3943
3944 t->commit_done = 1;
3945 smp_mb();
3946 if (waitqueue_active(&t->commit_wait))
3947 wake_up(&t->commit_wait);
3948
3949 btrfs_destroy_delayed_inodes(root);
3950 btrfs_assert_delayed_root_empty(root);
3951
3952 btrfs_destroy_delalloc_inodes(root);
3953
3954 spin_lock(&root->fs_info->trans_lock);
3955 root->fs_info->running_transaction = NULL;
3956 spin_unlock(&root->fs_info->trans_lock);
3957
3958 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3959 EXTENT_DIRTY);
3960
3961 btrfs_destroy_pinned_extent(root,
3962 root->fs_info->pinned_extents);
3963
3964 atomic_set(&t->use_count, 0);
3965 list_del_init(&t->list);
3966 memset(t, 0, sizeof(*t));
3967 kmem_cache_free(btrfs_transaction_cachep, t);
3968 }
3969
3970 spin_lock(&root->fs_info->trans_lock);
3971 root->fs_info->trans_no_join = 0;
3972 spin_unlock(&root->fs_info->trans_lock);
3973 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3974
3975 return 0;
3976 }
3977
3978 static struct extent_io_ops btree_extent_io_ops = {
3979 .readpage_end_io_hook = btree_readpage_end_io_hook,
3980 .readpage_io_failed_hook = btree_io_failed_hook,
3981 .submit_bio_hook = btree_submit_bio_hook,
3982 /* note we're sharing with inode.c for the merge bio hook */
3983 .merge_bio_hook = btrfs_merge_bio_hook,
3984 };