Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / delayed-inode.c
1 /*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24
25 #define BTRFS_DELAYED_WRITEBACK 512
26 #define BTRFS_DELAYED_BACKGROUND 128
27 #define BTRFS_DELAYED_BATCH 16
28
29 static struct kmem_cache *delayed_node_cache;
30
31 int __init btrfs_delayed_inode_init(void)
32 {
33 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
34 sizeof(struct btrfs_delayed_node),
35 0,
36 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
37 NULL);
38 if (!delayed_node_cache)
39 return -ENOMEM;
40 return 0;
41 }
42
43 void btrfs_delayed_inode_exit(void)
44 {
45 if (delayed_node_cache)
46 kmem_cache_destroy(delayed_node_cache);
47 }
48
49 static inline void btrfs_init_delayed_node(
50 struct btrfs_delayed_node *delayed_node,
51 struct btrfs_root *root, u64 inode_id)
52 {
53 delayed_node->root = root;
54 delayed_node->inode_id = inode_id;
55 atomic_set(&delayed_node->refs, 0);
56 delayed_node->count = 0;
57 delayed_node->in_list = 0;
58 delayed_node->inode_dirty = 0;
59 delayed_node->ins_root = RB_ROOT;
60 delayed_node->del_root = RB_ROOT;
61 mutex_init(&delayed_node->mutex);
62 delayed_node->index_cnt = 0;
63 INIT_LIST_HEAD(&delayed_node->n_list);
64 INIT_LIST_HEAD(&delayed_node->p_list);
65 delayed_node->bytes_reserved = 0;
66 memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
67 }
68
69 static inline int btrfs_is_continuous_delayed_item(
70 struct btrfs_delayed_item *item1,
71 struct btrfs_delayed_item *item2)
72 {
73 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
74 item1->key.objectid == item2->key.objectid &&
75 item1->key.type == item2->key.type &&
76 item1->key.offset + 1 == item2->key.offset)
77 return 1;
78 return 0;
79 }
80
81 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
82 struct btrfs_root *root)
83 {
84 return root->fs_info->delayed_root;
85 }
86
87 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
88 {
89 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
90 struct btrfs_root *root = btrfs_inode->root;
91 u64 ino = btrfs_ino(inode);
92 struct btrfs_delayed_node *node;
93
94 node = ACCESS_ONCE(btrfs_inode->delayed_node);
95 if (node) {
96 atomic_inc(&node->refs);
97 return node;
98 }
99
100 spin_lock(&root->inode_lock);
101 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
102 if (node) {
103 if (btrfs_inode->delayed_node) {
104 atomic_inc(&node->refs); /* can be accessed */
105 BUG_ON(btrfs_inode->delayed_node != node);
106 spin_unlock(&root->inode_lock);
107 return node;
108 }
109 btrfs_inode->delayed_node = node;
110 atomic_inc(&node->refs); /* can be accessed */
111 atomic_inc(&node->refs); /* cached in the inode */
112 spin_unlock(&root->inode_lock);
113 return node;
114 }
115 spin_unlock(&root->inode_lock);
116
117 return NULL;
118 }
119
120 /* Will return either the node or PTR_ERR(-ENOMEM) */
121 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
122 struct inode *inode)
123 {
124 struct btrfs_delayed_node *node;
125 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
126 struct btrfs_root *root = btrfs_inode->root;
127 u64 ino = btrfs_ino(inode);
128 int ret;
129
130 again:
131 node = btrfs_get_delayed_node(inode);
132 if (node)
133 return node;
134
135 node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
136 if (!node)
137 return ERR_PTR(-ENOMEM);
138 btrfs_init_delayed_node(node, root, ino);
139
140 atomic_inc(&node->refs); /* cached in the btrfs inode */
141 atomic_inc(&node->refs); /* can be accessed */
142
143 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
144 if (ret) {
145 kmem_cache_free(delayed_node_cache, node);
146 return ERR_PTR(ret);
147 }
148
149 spin_lock(&root->inode_lock);
150 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
151 if (ret == -EEXIST) {
152 kmem_cache_free(delayed_node_cache, node);
153 spin_unlock(&root->inode_lock);
154 radix_tree_preload_end();
155 goto again;
156 }
157 btrfs_inode->delayed_node = node;
158 spin_unlock(&root->inode_lock);
159 radix_tree_preload_end();
160
161 return node;
162 }
163
164 /*
165 * Call it when holding delayed_node->mutex
166 *
167 * If mod = 1, add this node into the prepared list.
168 */
169 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
170 struct btrfs_delayed_node *node,
171 int mod)
172 {
173 spin_lock(&root->lock);
174 if (node->in_list) {
175 if (!list_empty(&node->p_list))
176 list_move_tail(&node->p_list, &root->prepare_list);
177 else if (mod)
178 list_add_tail(&node->p_list, &root->prepare_list);
179 } else {
180 list_add_tail(&node->n_list, &root->node_list);
181 list_add_tail(&node->p_list, &root->prepare_list);
182 atomic_inc(&node->refs); /* inserted into list */
183 root->nodes++;
184 node->in_list = 1;
185 }
186 spin_unlock(&root->lock);
187 }
188
189 /* Call it when holding delayed_node->mutex */
190 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
191 struct btrfs_delayed_node *node)
192 {
193 spin_lock(&root->lock);
194 if (node->in_list) {
195 root->nodes--;
196 atomic_dec(&node->refs); /* not in the list */
197 list_del_init(&node->n_list);
198 if (!list_empty(&node->p_list))
199 list_del_init(&node->p_list);
200 node->in_list = 0;
201 }
202 spin_unlock(&root->lock);
203 }
204
205 struct btrfs_delayed_node *btrfs_first_delayed_node(
206 struct btrfs_delayed_root *delayed_root)
207 {
208 struct list_head *p;
209 struct btrfs_delayed_node *node = NULL;
210
211 spin_lock(&delayed_root->lock);
212 if (list_empty(&delayed_root->node_list))
213 goto out;
214
215 p = delayed_root->node_list.next;
216 node = list_entry(p, struct btrfs_delayed_node, n_list);
217 atomic_inc(&node->refs);
218 out:
219 spin_unlock(&delayed_root->lock);
220
221 return node;
222 }
223
224 struct btrfs_delayed_node *btrfs_next_delayed_node(
225 struct btrfs_delayed_node *node)
226 {
227 struct btrfs_delayed_root *delayed_root;
228 struct list_head *p;
229 struct btrfs_delayed_node *next = NULL;
230
231 delayed_root = node->root->fs_info->delayed_root;
232 spin_lock(&delayed_root->lock);
233 if (!node->in_list) { /* not in the list */
234 if (list_empty(&delayed_root->node_list))
235 goto out;
236 p = delayed_root->node_list.next;
237 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
238 goto out;
239 else
240 p = node->n_list.next;
241
242 next = list_entry(p, struct btrfs_delayed_node, n_list);
243 atomic_inc(&next->refs);
244 out:
245 spin_unlock(&delayed_root->lock);
246
247 return next;
248 }
249
250 static void __btrfs_release_delayed_node(
251 struct btrfs_delayed_node *delayed_node,
252 int mod)
253 {
254 struct btrfs_delayed_root *delayed_root;
255
256 if (!delayed_node)
257 return;
258
259 delayed_root = delayed_node->root->fs_info->delayed_root;
260
261 mutex_lock(&delayed_node->mutex);
262 if (delayed_node->count)
263 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
264 else
265 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
266 mutex_unlock(&delayed_node->mutex);
267
268 if (atomic_dec_and_test(&delayed_node->refs)) {
269 struct btrfs_root *root = delayed_node->root;
270 spin_lock(&root->inode_lock);
271 if (atomic_read(&delayed_node->refs) == 0) {
272 radix_tree_delete(&root->delayed_nodes_tree,
273 delayed_node->inode_id);
274 kmem_cache_free(delayed_node_cache, delayed_node);
275 }
276 spin_unlock(&root->inode_lock);
277 }
278 }
279
280 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
281 {
282 __btrfs_release_delayed_node(node, 0);
283 }
284
285 struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
286 struct btrfs_delayed_root *delayed_root)
287 {
288 struct list_head *p;
289 struct btrfs_delayed_node *node = NULL;
290
291 spin_lock(&delayed_root->lock);
292 if (list_empty(&delayed_root->prepare_list))
293 goto out;
294
295 p = delayed_root->prepare_list.next;
296 list_del_init(p);
297 node = list_entry(p, struct btrfs_delayed_node, p_list);
298 atomic_inc(&node->refs);
299 out:
300 spin_unlock(&delayed_root->lock);
301
302 return node;
303 }
304
305 static inline void btrfs_release_prepared_delayed_node(
306 struct btrfs_delayed_node *node)
307 {
308 __btrfs_release_delayed_node(node, 1);
309 }
310
311 struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
312 {
313 struct btrfs_delayed_item *item;
314 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
315 if (item) {
316 item->data_len = data_len;
317 item->ins_or_del = 0;
318 item->bytes_reserved = 0;
319 item->delayed_node = NULL;
320 atomic_set(&item->refs, 1);
321 }
322 return item;
323 }
324
325 /*
326 * __btrfs_lookup_delayed_item - look up the delayed item by key
327 * @delayed_node: pointer to the delayed node
328 * @key: the key to look up
329 * @prev: used to store the prev item if the right item isn't found
330 * @next: used to store the next item if the right item isn't found
331 *
332 * Note: if we don't find the right item, we will return the prev item and
333 * the next item.
334 */
335 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
336 struct rb_root *root,
337 struct btrfs_key *key,
338 struct btrfs_delayed_item **prev,
339 struct btrfs_delayed_item **next)
340 {
341 struct rb_node *node, *prev_node = NULL;
342 struct btrfs_delayed_item *delayed_item = NULL;
343 int ret = 0;
344
345 node = root->rb_node;
346
347 while (node) {
348 delayed_item = rb_entry(node, struct btrfs_delayed_item,
349 rb_node);
350 prev_node = node;
351 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
352 if (ret < 0)
353 node = node->rb_right;
354 else if (ret > 0)
355 node = node->rb_left;
356 else
357 return delayed_item;
358 }
359
360 if (prev) {
361 if (!prev_node)
362 *prev = NULL;
363 else if (ret < 0)
364 *prev = delayed_item;
365 else if ((node = rb_prev(prev_node)) != NULL) {
366 *prev = rb_entry(node, struct btrfs_delayed_item,
367 rb_node);
368 } else
369 *prev = NULL;
370 }
371
372 if (next) {
373 if (!prev_node)
374 *next = NULL;
375 else if (ret > 0)
376 *next = delayed_item;
377 else if ((node = rb_next(prev_node)) != NULL) {
378 *next = rb_entry(node, struct btrfs_delayed_item,
379 rb_node);
380 } else
381 *next = NULL;
382 }
383 return NULL;
384 }
385
386 struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
387 struct btrfs_delayed_node *delayed_node,
388 struct btrfs_key *key)
389 {
390 struct btrfs_delayed_item *item;
391
392 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
393 NULL, NULL);
394 return item;
395 }
396
397 struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
398 struct btrfs_delayed_node *delayed_node,
399 struct btrfs_key *key)
400 {
401 struct btrfs_delayed_item *item;
402
403 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
404 NULL, NULL);
405 return item;
406 }
407
408 struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
409 struct btrfs_delayed_node *delayed_node,
410 struct btrfs_key *key)
411 {
412 struct btrfs_delayed_item *item, *next;
413
414 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
415 NULL, &next);
416 if (!item)
417 item = next;
418
419 return item;
420 }
421
422 struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
423 struct btrfs_delayed_node *delayed_node,
424 struct btrfs_key *key)
425 {
426 struct btrfs_delayed_item *item, *next;
427
428 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
429 NULL, &next);
430 if (!item)
431 item = next;
432
433 return item;
434 }
435
436 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
437 struct btrfs_delayed_item *ins,
438 int action)
439 {
440 struct rb_node **p, *node;
441 struct rb_node *parent_node = NULL;
442 struct rb_root *root;
443 struct btrfs_delayed_item *item;
444 int cmp;
445
446 if (action == BTRFS_DELAYED_INSERTION_ITEM)
447 root = &delayed_node->ins_root;
448 else if (action == BTRFS_DELAYED_DELETION_ITEM)
449 root = &delayed_node->del_root;
450 else
451 BUG();
452 p = &root->rb_node;
453 node = &ins->rb_node;
454
455 while (*p) {
456 parent_node = *p;
457 item = rb_entry(parent_node, struct btrfs_delayed_item,
458 rb_node);
459
460 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
461 if (cmp < 0)
462 p = &(*p)->rb_right;
463 else if (cmp > 0)
464 p = &(*p)->rb_left;
465 else
466 return -EEXIST;
467 }
468
469 rb_link_node(node, parent_node, p);
470 rb_insert_color(node, root);
471 ins->delayed_node = delayed_node;
472 ins->ins_or_del = action;
473
474 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
475 action == BTRFS_DELAYED_INSERTION_ITEM &&
476 ins->key.offset >= delayed_node->index_cnt)
477 delayed_node->index_cnt = ins->key.offset + 1;
478
479 delayed_node->count++;
480 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
481 return 0;
482 }
483
484 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
485 struct btrfs_delayed_item *item)
486 {
487 return __btrfs_add_delayed_item(node, item,
488 BTRFS_DELAYED_INSERTION_ITEM);
489 }
490
491 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
492 struct btrfs_delayed_item *item)
493 {
494 return __btrfs_add_delayed_item(node, item,
495 BTRFS_DELAYED_DELETION_ITEM);
496 }
497
498 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
499 {
500 int seq = atomic_inc_return(&delayed_root->items_seq);
501 if ((atomic_dec_return(&delayed_root->items) <
502 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
503 waitqueue_active(&delayed_root->wait))
504 wake_up(&delayed_root->wait);
505 }
506
507 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
508 {
509 struct rb_root *root;
510 struct btrfs_delayed_root *delayed_root;
511
512 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
513
514 BUG_ON(!delayed_root);
515 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
516 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
517
518 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
519 root = &delayed_item->delayed_node->ins_root;
520 else
521 root = &delayed_item->delayed_node->del_root;
522
523 rb_erase(&delayed_item->rb_node, root);
524 delayed_item->delayed_node->count--;
525
526 finish_one_item(delayed_root);
527 }
528
529 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
530 {
531 if (item) {
532 __btrfs_remove_delayed_item(item);
533 if (atomic_dec_and_test(&item->refs))
534 kfree(item);
535 }
536 }
537
538 struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
539 struct btrfs_delayed_node *delayed_node)
540 {
541 struct rb_node *p;
542 struct btrfs_delayed_item *item = NULL;
543
544 p = rb_first(&delayed_node->ins_root);
545 if (p)
546 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
547
548 return item;
549 }
550
551 struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
552 struct btrfs_delayed_node *delayed_node)
553 {
554 struct rb_node *p;
555 struct btrfs_delayed_item *item = NULL;
556
557 p = rb_first(&delayed_node->del_root);
558 if (p)
559 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
560
561 return item;
562 }
563
564 struct btrfs_delayed_item *__btrfs_next_delayed_item(
565 struct btrfs_delayed_item *item)
566 {
567 struct rb_node *p;
568 struct btrfs_delayed_item *next = NULL;
569
570 p = rb_next(&item->rb_node);
571 if (p)
572 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
573
574 return next;
575 }
576
577 static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
578 u64 root_id)
579 {
580 struct btrfs_key root_key;
581
582 if (root->objectid == root_id)
583 return root;
584
585 root_key.objectid = root_id;
586 root_key.type = BTRFS_ROOT_ITEM_KEY;
587 root_key.offset = (u64)-1;
588 return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
589 }
590
591 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
592 struct btrfs_root *root,
593 struct btrfs_delayed_item *item)
594 {
595 struct btrfs_block_rsv *src_rsv;
596 struct btrfs_block_rsv *dst_rsv;
597 u64 num_bytes;
598 int ret;
599
600 if (!trans->bytes_reserved)
601 return 0;
602
603 src_rsv = trans->block_rsv;
604 dst_rsv = &root->fs_info->delayed_block_rsv;
605
606 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
607 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
608 if (!ret) {
609 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
610 item->key.objectid,
611 num_bytes, 1);
612 item->bytes_reserved = num_bytes;
613 }
614
615 return ret;
616 }
617
618 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
619 struct btrfs_delayed_item *item)
620 {
621 struct btrfs_block_rsv *rsv;
622
623 if (!item->bytes_reserved)
624 return;
625
626 rsv = &root->fs_info->delayed_block_rsv;
627 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
628 item->key.objectid, item->bytes_reserved,
629 0);
630 btrfs_block_rsv_release(root, rsv,
631 item->bytes_reserved);
632 }
633
634 static int btrfs_delayed_inode_reserve_metadata(
635 struct btrfs_trans_handle *trans,
636 struct btrfs_root *root,
637 struct inode *inode,
638 struct btrfs_delayed_node *node)
639 {
640 struct btrfs_block_rsv *src_rsv;
641 struct btrfs_block_rsv *dst_rsv;
642 u64 num_bytes;
643 int ret;
644 bool release = false;
645
646 src_rsv = trans->block_rsv;
647 dst_rsv = &root->fs_info->delayed_block_rsv;
648
649 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
650
651 /*
652 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
653 * which doesn't reserve space for speed. This is a problem since we
654 * still need to reserve space for this update, so try to reserve the
655 * space.
656 *
657 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
658 * we're accounted for.
659 */
660 if (!src_rsv || (!trans->bytes_reserved &&
661 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
662 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
663 BTRFS_RESERVE_NO_FLUSH);
664 /*
665 * Since we're under a transaction reserve_metadata_bytes could
666 * try to commit the transaction which will make it return
667 * EAGAIN to make us stop the transaction we have, so return
668 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
669 */
670 if (ret == -EAGAIN)
671 ret = -ENOSPC;
672 if (!ret) {
673 node->bytes_reserved = num_bytes;
674 trace_btrfs_space_reservation(root->fs_info,
675 "delayed_inode",
676 btrfs_ino(inode),
677 num_bytes, 1);
678 }
679 return ret;
680 } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
681 spin_lock(&BTRFS_I(inode)->lock);
682 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
683 &BTRFS_I(inode)->runtime_flags)) {
684 spin_unlock(&BTRFS_I(inode)->lock);
685 release = true;
686 goto migrate;
687 }
688 spin_unlock(&BTRFS_I(inode)->lock);
689
690 /* Ok we didn't have space pre-reserved. This shouldn't happen
691 * too often but it can happen if we do delalloc to an existing
692 * inode which gets dirtied because of the time update, and then
693 * isn't touched again until after the transaction commits and
694 * then we try to write out the data. First try to be nice and
695 * reserve something strictly for us. If not be a pain and try
696 * to steal from the delalloc block rsv.
697 */
698 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
699 BTRFS_RESERVE_NO_FLUSH);
700 if (!ret)
701 goto out;
702
703 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
704 if (!ret)
705 goto out;
706
707 /*
708 * Ok this is a problem, let's just steal from the global rsv
709 * since this really shouldn't happen that often.
710 */
711 WARN_ON(1);
712 ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
713 dst_rsv, num_bytes);
714 goto out;
715 }
716
717 migrate:
718 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
719
720 out:
721 /*
722 * Migrate only takes a reservation, it doesn't touch the size of the
723 * block_rsv. This is to simplify people who don't normally have things
724 * migrated from their block rsv. If they go to release their
725 * reservation, that will decrease the size as well, so if migrate
726 * reduced size we'd end up with a negative size. But for the
727 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
728 * but we could in fact do this reserve/migrate dance several times
729 * between the time we did the original reservation and we'd clean it
730 * up. So to take care of this, release the space for the meta
731 * reservation here. I think it may be time for a documentation page on
732 * how block rsvs. work.
733 */
734 if (!ret) {
735 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
736 btrfs_ino(inode), num_bytes, 1);
737 node->bytes_reserved = num_bytes;
738 }
739
740 if (release) {
741 trace_btrfs_space_reservation(root->fs_info, "delalloc",
742 btrfs_ino(inode), num_bytes, 0);
743 btrfs_block_rsv_release(root, src_rsv, num_bytes);
744 }
745
746 return ret;
747 }
748
749 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
750 struct btrfs_delayed_node *node)
751 {
752 struct btrfs_block_rsv *rsv;
753
754 if (!node->bytes_reserved)
755 return;
756
757 rsv = &root->fs_info->delayed_block_rsv;
758 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
759 node->inode_id, node->bytes_reserved, 0);
760 btrfs_block_rsv_release(root, rsv,
761 node->bytes_reserved);
762 node->bytes_reserved = 0;
763 }
764
765 /*
766 * This helper will insert some continuous items into the same leaf according
767 * to the free space of the leaf.
768 */
769 static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
770 struct btrfs_root *root,
771 struct btrfs_path *path,
772 struct btrfs_delayed_item *item)
773 {
774 struct btrfs_delayed_item *curr, *next;
775 int free_space;
776 int total_data_size = 0, total_size = 0;
777 struct extent_buffer *leaf;
778 char *data_ptr;
779 struct btrfs_key *keys;
780 u32 *data_size;
781 struct list_head head;
782 int slot;
783 int nitems;
784 int i;
785 int ret = 0;
786
787 BUG_ON(!path->nodes[0]);
788
789 leaf = path->nodes[0];
790 free_space = btrfs_leaf_free_space(root, leaf);
791 INIT_LIST_HEAD(&head);
792
793 next = item;
794 nitems = 0;
795
796 /*
797 * count the number of the continuous items that we can insert in batch
798 */
799 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
800 free_space) {
801 total_data_size += next->data_len;
802 total_size += next->data_len + sizeof(struct btrfs_item);
803 list_add_tail(&next->tree_list, &head);
804 nitems++;
805
806 curr = next;
807 next = __btrfs_next_delayed_item(curr);
808 if (!next)
809 break;
810
811 if (!btrfs_is_continuous_delayed_item(curr, next))
812 break;
813 }
814
815 if (!nitems) {
816 ret = 0;
817 goto out;
818 }
819
820 /*
821 * we need allocate some memory space, but it might cause the task
822 * to sleep, so we set all locked nodes in the path to blocking locks
823 * first.
824 */
825 btrfs_set_path_blocking(path);
826
827 keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
828 if (!keys) {
829 ret = -ENOMEM;
830 goto out;
831 }
832
833 data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
834 if (!data_size) {
835 ret = -ENOMEM;
836 goto error;
837 }
838
839 /* get keys of all the delayed items */
840 i = 0;
841 list_for_each_entry(next, &head, tree_list) {
842 keys[i] = next->key;
843 data_size[i] = next->data_len;
844 i++;
845 }
846
847 /* reset all the locked nodes in the patch to spinning locks. */
848 btrfs_clear_path_blocking(path, NULL, 0);
849
850 /* insert the keys of the items */
851 setup_items_for_insert(trans, root, path, keys, data_size,
852 total_data_size, total_size, nitems);
853
854 /* insert the dir index items */
855 slot = path->slots[0];
856 list_for_each_entry_safe(curr, next, &head, tree_list) {
857 data_ptr = btrfs_item_ptr(leaf, slot, char);
858 write_extent_buffer(leaf, &curr->data,
859 (unsigned long)data_ptr,
860 curr->data_len);
861 slot++;
862
863 btrfs_delayed_item_release_metadata(root, curr);
864
865 list_del(&curr->tree_list);
866 btrfs_release_delayed_item(curr);
867 }
868
869 error:
870 kfree(data_size);
871 kfree(keys);
872 out:
873 return ret;
874 }
875
876 /*
877 * This helper can just do simple insertion that needn't extend item for new
878 * data, such as directory name index insertion, inode insertion.
879 */
880 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
881 struct btrfs_root *root,
882 struct btrfs_path *path,
883 struct btrfs_delayed_item *delayed_item)
884 {
885 struct extent_buffer *leaf;
886 char *ptr;
887 int ret;
888
889 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
890 delayed_item->data_len);
891 if (ret < 0 && ret != -EEXIST)
892 return ret;
893
894 leaf = path->nodes[0];
895
896 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
897
898 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
899 delayed_item->data_len);
900 btrfs_mark_buffer_dirty(leaf);
901
902 btrfs_delayed_item_release_metadata(root, delayed_item);
903 return 0;
904 }
905
906 /*
907 * we insert an item first, then if there are some continuous items, we try
908 * to insert those items into the same leaf.
909 */
910 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
911 struct btrfs_path *path,
912 struct btrfs_root *root,
913 struct btrfs_delayed_node *node)
914 {
915 struct btrfs_delayed_item *curr, *prev;
916 int ret = 0;
917
918 do_again:
919 mutex_lock(&node->mutex);
920 curr = __btrfs_first_delayed_insertion_item(node);
921 if (!curr)
922 goto insert_end;
923
924 ret = btrfs_insert_delayed_item(trans, root, path, curr);
925 if (ret < 0) {
926 btrfs_release_path(path);
927 goto insert_end;
928 }
929
930 prev = curr;
931 curr = __btrfs_next_delayed_item(prev);
932 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
933 /* insert the continuous items into the same leaf */
934 path->slots[0]++;
935 btrfs_batch_insert_items(trans, root, path, curr);
936 }
937 btrfs_release_delayed_item(prev);
938 btrfs_mark_buffer_dirty(path->nodes[0]);
939
940 btrfs_release_path(path);
941 mutex_unlock(&node->mutex);
942 goto do_again;
943
944 insert_end:
945 mutex_unlock(&node->mutex);
946 return ret;
947 }
948
949 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
950 struct btrfs_root *root,
951 struct btrfs_path *path,
952 struct btrfs_delayed_item *item)
953 {
954 struct btrfs_delayed_item *curr, *next;
955 struct extent_buffer *leaf;
956 struct btrfs_key key;
957 struct list_head head;
958 int nitems, i, last_item;
959 int ret = 0;
960
961 BUG_ON(!path->nodes[0]);
962
963 leaf = path->nodes[0];
964
965 i = path->slots[0];
966 last_item = btrfs_header_nritems(leaf) - 1;
967 if (i > last_item)
968 return -ENOENT; /* FIXME: Is errno suitable? */
969
970 next = item;
971 INIT_LIST_HEAD(&head);
972 btrfs_item_key_to_cpu(leaf, &key, i);
973 nitems = 0;
974 /*
975 * count the number of the dir index items that we can delete in batch
976 */
977 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
978 list_add_tail(&next->tree_list, &head);
979 nitems++;
980
981 curr = next;
982 next = __btrfs_next_delayed_item(curr);
983 if (!next)
984 break;
985
986 if (!btrfs_is_continuous_delayed_item(curr, next))
987 break;
988
989 i++;
990 if (i > last_item)
991 break;
992 btrfs_item_key_to_cpu(leaf, &key, i);
993 }
994
995 if (!nitems)
996 return 0;
997
998 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
999 if (ret)
1000 goto out;
1001
1002 list_for_each_entry_safe(curr, next, &head, tree_list) {
1003 btrfs_delayed_item_release_metadata(root, curr);
1004 list_del(&curr->tree_list);
1005 btrfs_release_delayed_item(curr);
1006 }
1007
1008 out:
1009 return ret;
1010 }
1011
1012 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
1013 struct btrfs_path *path,
1014 struct btrfs_root *root,
1015 struct btrfs_delayed_node *node)
1016 {
1017 struct btrfs_delayed_item *curr, *prev;
1018 int ret = 0;
1019
1020 do_again:
1021 mutex_lock(&node->mutex);
1022 curr = __btrfs_first_delayed_deletion_item(node);
1023 if (!curr)
1024 goto delete_fail;
1025
1026 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
1027 if (ret < 0)
1028 goto delete_fail;
1029 else if (ret > 0) {
1030 /*
1031 * can't find the item which the node points to, so this node
1032 * is invalid, just drop it.
1033 */
1034 prev = curr;
1035 curr = __btrfs_next_delayed_item(prev);
1036 btrfs_release_delayed_item(prev);
1037 ret = 0;
1038 btrfs_release_path(path);
1039 if (curr) {
1040 mutex_unlock(&node->mutex);
1041 goto do_again;
1042 } else
1043 goto delete_fail;
1044 }
1045
1046 btrfs_batch_delete_items(trans, root, path, curr);
1047 btrfs_release_path(path);
1048 mutex_unlock(&node->mutex);
1049 goto do_again;
1050
1051 delete_fail:
1052 btrfs_release_path(path);
1053 mutex_unlock(&node->mutex);
1054 return ret;
1055 }
1056
1057 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1058 {
1059 struct btrfs_delayed_root *delayed_root;
1060
1061 if (delayed_node && delayed_node->inode_dirty) {
1062 BUG_ON(!delayed_node->root);
1063 delayed_node->inode_dirty = 0;
1064 delayed_node->count--;
1065
1066 delayed_root = delayed_node->root->fs_info->delayed_root;
1067 finish_one_item(delayed_root);
1068 }
1069 }
1070
1071 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1072 struct btrfs_root *root,
1073 struct btrfs_path *path,
1074 struct btrfs_delayed_node *node)
1075 {
1076 struct btrfs_key key;
1077 struct btrfs_inode_item *inode_item;
1078 struct extent_buffer *leaf;
1079 int ret;
1080
1081 key.objectid = node->inode_id;
1082 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1083 key.offset = 0;
1084
1085 ret = btrfs_lookup_inode(trans, root, path, &key, 1);
1086 if (ret > 0) {
1087 btrfs_release_path(path);
1088 return -ENOENT;
1089 } else if (ret < 0) {
1090 return ret;
1091 }
1092
1093 btrfs_unlock_up_safe(path, 1);
1094 leaf = path->nodes[0];
1095 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1096 struct btrfs_inode_item);
1097 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1098 sizeof(struct btrfs_inode_item));
1099 btrfs_mark_buffer_dirty(leaf);
1100 btrfs_release_path(path);
1101
1102 btrfs_delayed_inode_release_metadata(root, node);
1103 btrfs_release_delayed_inode(node);
1104
1105 return 0;
1106 }
1107
1108 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1109 struct btrfs_root *root,
1110 struct btrfs_path *path,
1111 struct btrfs_delayed_node *node)
1112 {
1113 int ret;
1114
1115 mutex_lock(&node->mutex);
1116 if (!node->inode_dirty) {
1117 mutex_unlock(&node->mutex);
1118 return 0;
1119 }
1120
1121 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1122 mutex_unlock(&node->mutex);
1123 return ret;
1124 }
1125
1126 static inline int
1127 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1128 struct btrfs_path *path,
1129 struct btrfs_delayed_node *node)
1130 {
1131 int ret;
1132
1133 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1134 if (ret)
1135 return ret;
1136
1137 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1138 if (ret)
1139 return ret;
1140
1141 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1142 return ret;
1143 }
1144
1145 /*
1146 * Called when committing the transaction.
1147 * Returns 0 on success.
1148 * Returns < 0 on error and returns with an aborted transaction with any
1149 * outstanding delayed items cleaned up.
1150 */
1151 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1152 struct btrfs_root *root, int nr)
1153 {
1154 struct btrfs_delayed_root *delayed_root;
1155 struct btrfs_delayed_node *curr_node, *prev_node;
1156 struct btrfs_path *path;
1157 struct btrfs_block_rsv *block_rsv;
1158 int ret = 0;
1159 bool count = (nr > 0);
1160
1161 if (trans->aborted)
1162 return -EIO;
1163
1164 path = btrfs_alloc_path();
1165 if (!path)
1166 return -ENOMEM;
1167 path->leave_spinning = 1;
1168
1169 block_rsv = trans->block_rsv;
1170 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1171
1172 delayed_root = btrfs_get_delayed_root(root);
1173
1174 curr_node = btrfs_first_delayed_node(delayed_root);
1175 while (curr_node && (!count || (count && nr--))) {
1176 ret = __btrfs_commit_inode_delayed_items(trans, path,
1177 curr_node);
1178 if (ret) {
1179 btrfs_release_delayed_node(curr_node);
1180 curr_node = NULL;
1181 btrfs_abort_transaction(trans, root, ret);
1182 break;
1183 }
1184
1185 prev_node = curr_node;
1186 curr_node = btrfs_next_delayed_node(curr_node);
1187 btrfs_release_delayed_node(prev_node);
1188 }
1189
1190 if (curr_node)
1191 btrfs_release_delayed_node(curr_node);
1192 btrfs_free_path(path);
1193 trans->block_rsv = block_rsv;
1194
1195 return ret;
1196 }
1197
1198 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1199 struct btrfs_root *root)
1200 {
1201 return __btrfs_run_delayed_items(trans, root, -1);
1202 }
1203
1204 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1205 struct btrfs_root *root, int nr)
1206 {
1207 return __btrfs_run_delayed_items(trans, root, nr);
1208 }
1209
1210 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1211 struct inode *inode)
1212 {
1213 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1214 struct btrfs_path *path;
1215 struct btrfs_block_rsv *block_rsv;
1216 int ret;
1217
1218 if (!delayed_node)
1219 return 0;
1220
1221 mutex_lock(&delayed_node->mutex);
1222 if (!delayed_node->count) {
1223 mutex_unlock(&delayed_node->mutex);
1224 btrfs_release_delayed_node(delayed_node);
1225 return 0;
1226 }
1227 mutex_unlock(&delayed_node->mutex);
1228
1229 path = btrfs_alloc_path();
1230 if (!path)
1231 return -ENOMEM;
1232 path->leave_spinning = 1;
1233
1234 block_rsv = trans->block_rsv;
1235 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1236
1237 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1238
1239 btrfs_release_delayed_node(delayed_node);
1240 btrfs_free_path(path);
1241 trans->block_rsv = block_rsv;
1242
1243 return ret;
1244 }
1245
1246 int btrfs_commit_inode_delayed_inode(struct inode *inode)
1247 {
1248 struct btrfs_trans_handle *trans;
1249 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1250 struct btrfs_path *path;
1251 struct btrfs_block_rsv *block_rsv;
1252 int ret;
1253
1254 if (!delayed_node)
1255 return 0;
1256
1257 mutex_lock(&delayed_node->mutex);
1258 if (!delayed_node->inode_dirty) {
1259 mutex_unlock(&delayed_node->mutex);
1260 btrfs_release_delayed_node(delayed_node);
1261 return 0;
1262 }
1263 mutex_unlock(&delayed_node->mutex);
1264
1265 trans = btrfs_join_transaction(delayed_node->root);
1266 if (IS_ERR(trans)) {
1267 ret = PTR_ERR(trans);
1268 goto out;
1269 }
1270
1271 path = btrfs_alloc_path();
1272 if (!path) {
1273 ret = -ENOMEM;
1274 goto trans_out;
1275 }
1276 path->leave_spinning = 1;
1277
1278 block_rsv = trans->block_rsv;
1279 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1280
1281 mutex_lock(&delayed_node->mutex);
1282 if (delayed_node->inode_dirty)
1283 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1284 path, delayed_node);
1285 else
1286 ret = 0;
1287 mutex_unlock(&delayed_node->mutex);
1288
1289 btrfs_free_path(path);
1290 trans->block_rsv = block_rsv;
1291 trans_out:
1292 btrfs_end_transaction(trans, delayed_node->root);
1293 btrfs_btree_balance_dirty(delayed_node->root);
1294 out:
1295 btrfs_release_delayed_node(delayed_node);
1296
1297 return ret;
1298 }
1299
1300 void btrfs_remove_delayed_node(struct inode *inode)
1301 {
1302 struct btrfs_delayed_node *delayed_node;
1303
1304 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1305 if (!delayed_node)
1306 return;
1307
1308 BTRFS_I(inode)->delayed_node = NULL;
1309 btrfs_release_delayed_node(delayed_node);
1310 }
1311
1312 struct btrfs_async_delayed_work {
1313 struct btrfs_delayed_root *delayed_root;
1314 int nr;
1315 struct btrfs_work work;
1316 };
1317
1318 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1319 {
1320 struct btrfs_async_delayed_work *async_work;
1321 struct btrfs_delayed_root *delayed_root;
1322 struct btrfs_trans_handle *trans;
1323 struct btrfs_path *path;
1324 struct btrfs_delayed_node *delayed_node = NULL;
1325 struct btrfs_root *root;
1326 struct btrfs_block_rsv *block_rsv;
1327 int total_done = 0;
1328
1329 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1330 delayed_root = async_work->delayed_root;
1331
1332 path = btrfs_alloc_path();
1333 if (!path)
1334 goto out;
1335
1336 again:
1337 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1338 goto free_path;
1339
1340 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1341 if (!delayed_node)
1342 goto free_path;
1343
1344 path->leave_spinning = 1;
1345 root = delayed_node->root;
1346
1347 trans = btrfs_join_transaction(root);
1348 if (IS_ERR(trans))
1349 goto release_path;
1350
1351 block_rsv = trans->block_rsv;
1352 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1353
1354 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1355 /*
1356 * Maybe new delayed items have been inserted, so we need requeue
1357 * the work. Besides that, we must dequeue the empty delayed nodes
1358 * to avoid the race between delayed items balance and the worker.
1359 * The race like this:
1360 * Task1 Worker thread
1361 * count == 0, needn't requeue
1362 * also needn't insert the
1363 * delayed node into prepare
1364 * list again.
1365 * add lots of delayed items
1366 * queue the delayed node
1367 * already in the list,
1368 * and not in the prepare
1369 * list, it means the delayed
1370 * node is being dealt with
1371 * by the worker.
1372 * do delayed items balance
1373 * the delayed node is being
1374 * dealt with by the worker
1375 * now, just wait.
1376 * the worker goto idle.
1377 * Task1 will sleep until the transaction is commited.
1378 */
1379 mutex_lock(&delayed_node->mutex);
1380 btrfs_dequeue_delayed_node(root->fs_info->delayed_root, delayed_node);
1381 mutex_unlock(&delayed_node->mutex);
1382
1383 trans->block_rsv = block_rsv;
1384 btrfs_end_transaction_dmeta(trans, root);
1385 btrfs_btree_balance_dirty_nodelay(root);
1386
1387 release_path:
1388 btrfs_release_path(path);
1389 total_done++;
1390
1391 btrfs_release_prepared_delayed_node(delayed_node);
1392 if (async_work->nr == 0 || total_done < async_work->nr)
1393 goto again;
1394
1395 free_path:
1396 btrfs_free_path(path);
1397 out:
1398 wake_up(&delayed_root->wait);
1399 kfree(async_work);
1400 }
1401
1402
1403 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1404 struct btrfs_root *root, int nr)
1405 {
1406 struct btrfs_async_delayed_work *async_work;
1407
1408 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1409 return 0;
1410
1411 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1412 if (!async_work)
1413 return -ENOMEM;
1414
1415 async_work->delayed_root = delayed_root;
1416 async_work->work.func = btrfs_async_run_delayed_root;
1417 async_work->work.flags = 0;
1418 async_work->nr = nr;
1419
1420 btrfs_queue_worker(&root->fs_info->delayed_workers, &async_work->work);
1421 return 0;
1422 }
1423
1424 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1425 {
1426 struct btrfs_delayed_root *delayed_root;
1427 delayed_root = btrfs_get_delayed_root(root);
1428 WARN_ON(btrfs_first_delayed_node(delayed_root));
1429 }
1430
1431 static int refs_newer(struct btrfs_delayed_root *delayed_root,
1432 int seq, int count)
1433 {
1434 int val = atomic_read(&delayed_root->items_seq);
1435
1436 if (val < seq || val >= seq + count)
1437 return 1;
1438 return 0;
1439 }
1440
1441 void btrfs_balance_delayed_items(struct btrfs_root *root)
1442 {
1443 struct btrfs_delayed_root *delayed_root;
1444 int seq;
1445
1446 delayed_root = btrfs_get_delayed_root(root);
1447
1448 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1449 return;
1450
1451 seq = atomic_read(&delayed_root->items_seq);
1452
1453 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1454 int ret;
1455 DEFINE_WAIT(__wait);
1456
1457 ret = btrfs_wq_run_delayed_node(delayed_root, root, 0);
1458 if (ret)
1459 return;
1460
1461 while (1) {
1462 prepare_to_wait(&delayed_root->wait, &__wait,
1463 TASK_INTERRUPTIBLE);
1464
1465 if (refs_newer(delayed_root, seq,
1466 BTRFS_DELAYED_BATCH) ||
1467 atomic_read(&delayed_root->items) <
1468 BTRFS_DELAYED_BACKGROUND) {
1469 break;
1470 }
1471 if (!signal_pending(current))
1472 schedule();
1473 else
1474 break;
1475 }
1476 finish_wait(&delayed_root->wait, &__wait);
1477 }
1478
1479 btrfs_wq_run_delayed_node(delayed_root, root, BTRFS_DELAYED_BATCH);
1480 }
1481
1482 /* Will return 0 or -ENOMEM */
1483 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1484 struct btrfs_root *root, const char *name,
1485 int name_len, struct inode *dir,
1486 struct btrfs_disk_key *disk_key, u8 type,
1487 u64 index)
1488 {
1489 struct btrfs_delayed_node *delayed_node;
1490 struct btrfs_delayed_item *delayed_item;
1491 struct btrfs_dir_item *dir_item;
1492 int ret;
1493
1494 delayed_node = btrfs_get_or_create_delayed_node(dir);
1495 if (IS_ERR(delayed_node))
1496 return PTR_ERR(delayed_node);
1497
1498 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1499 if (!delayed_item) {
1500 ret = -ENOMEM;
1501 goto release_node;
1502 }
1503
1504 delayed_item->key.objectid = btrfs_ino(dir);
1505 btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1506 delayed_item->key.offset = index;
1507
1508 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1509 dir_item->location = *disk_key;
1510 dir_item->transid = cpu_to_le64(trans->transid);
1511 dir_item->data_len = 0;
1512 dir_item->name_len = cpu_to_le16(name_len);
1513 dir_item->type = type;
1514 memcpy((char *)(dir_item + 1), name, name_len);
1515
1516 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1517 /*
1518 * we have reserved enough space when we start a new transaction,
1519 * so reserving metadata failure is impossible
1520 */
1521 BUG_ON(ret);
1522
1523
1524 mutex_lock(&delayed_node->mutex);
1525 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1526 if (unlikely(ret)) {
1527 printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1528 "the insertion tree of the delayed node"
1529 "(root id: %llu, inode id: %llu, errno: %d)\n",
1530 name,
1531 (unsigned long long)delayed_node->root->objectid,
1532 (unsigned long long)delayed_node->inode_id,
1533 ret);
1534 BUG();
1535 }
1536 mutex_unlock(&delayed_node->mutex);
1537
1538 release_node:
1539 btrfs_release_delayed_node(delayed_node);
1540 return ret;
1541 }
1542
1543 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1544 struct btrfs_delayed_node *node,
1545 struct btrfs_key *key)
1546 {
1547 struct btrfs_delayed_item *item;
1548
1549 mutex_lock(&node->mutex);
1550 item = __btrfs_lookup_delayed_insertion_item(node, key);
1551 if (!item) {
1552 mutex_unlock(&node->mutex);
1553 return 1;
1554 }
1555
1556 btrfs_delayed_item_release_metadata(root, item);
1557 btrfs_release_delayed_item(item);
1558 mutex_unlock(&node->mutex);
1559 return 0;
1560 }
1561
1562 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1563 struct btrfs_root *root, struct inode *dir,
1564 u64 index)
1565 {
1566 struct btrfs_delayed_node *node;
1567 struct btrfs_delayed_item *item;
1568 struct btrfs_key item_key;
1569 int ret;
1570
1571 node = btrfs_get_or_create_delayed_node(dir);
1572 if (IS_ERR(node))
1573 return PTR_ERR(node);
1574
1575 item_key.objectid = btrfs_ino(dir);
1576 btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1577 item_key.offset = index;
1578
1579 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1580 if (!ret)
1581 goto end;
1582
1583 item = btrfs_alloc_delayed_item(0);
1584 if (!item) {
1585 ret = -ENOMEM;
1586 goto end;
1587 }
1588
1589 item->key = item_key;
1590
1591 ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1592 /*
1593 * we have reserved enough space when we start a new transaction,
1594 * so reserving metadata failure is impossible.
1595 */
1596 BUG_ON(ret);
1597
1598 mutex_lock(&node->mutex);
1599 ret = __btrfs_add_delayed_deletion_item(node, item);
1600 if (unlikely(ret)) {
1601 printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1602 "into the deletion tree of the delayed node"
1603 "(root id: %llu, inode id: %llu, errno: %d)\n",
1604 (unsigned long long)index,
1605 (unsigned long long)node->root->objectid,
1606 (unsigned long long)node->inode_id,
1607 ret);
1608 BUG();
1609 }
1610 mutex_unlock(&node->mutex);
1611 end:
1612 btrfs_release_delayed_node(node);
1613 return ret;
1614 }
1615
1616 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1617 {
1618 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1619
1620 if (!delayed_node)
1621 return -ENOENT;
1622
1623 /*
1624 * Since we have held i_mutex of this directory, it is impossible that
1625 * a new directory index is added into the delayed node and index_cnt
1626 * is updated now. So we needn't lock the delayed node.
1627 */
1628 if (!delayed_node->index_cnt) {
1629 btrfs_release_delayed_node(delayed_node);
1630 return -EINVAL;
1631 }
1632
1633 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1634 btrfs_release_delayed_node(delayed_node);
1635 return 0;
1636 }
1637
1638 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1639 struct list_head *del_list)
1640 {
1641 struct btrfs_delayed_node *delayed_node;
1642 struct btrfs_delayed_item *item;
1643
1644 delayed_node = btrfs_get_delayed_node(inode);
1645 if (!delayed_node)
1646 return;
1647
1648 mutex_lock(&delayed_node->mutex);
1649 item = __btrfs_first_delayed_insertion_item(delayed_node);
1650 while (item) {
1651 atomic_inc(&item->refs);
1652 list_add_tail(&item->readdir_list, ins_list);
1653 item = __btrfs_next_delayed_item(item);
1654 }
1655
1656 item = __btrfs_first_delayed_deletion_item(delayed_node);
1657 while (item) {
1658 atomic_inc(&item->refs);
1659 list_add_tail(&item->readdir_list, del_list);
1660 item = __btrfs_next_delayed_item(item);
1661 }
1662 mutex_unlock(&delayed_node->mutex);
1663 /*
1664 * This delayed node is still cached in the btrfs inode, so refs
1665 * must be > 1 now, and we needn't check it is going to be freed
1666 * or not.
1667 *
1668 * Besides that, this function is used to read dir, we do not
1669 * insert/delete delayed items in this period. So we also needn't
1670 * requeue or dequeue this delayed node.
1671 */
1672 atomic_dec(&delayed_node->refs);
1673 }
1674
1675 void btrfs_put_delayed_items(struct list_head *ins_list,
1676 struct list_head *del_list)
1677 {
1678 struct btrfs_delayed_item *curr, *next;
1679
1680 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1681 list_del(&curr->readdir_list);
1682 if (atomic_dec_and_test(&curr->refs))
1683 kfree(curr);
1684 }
1685
1686 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1687 list_del(&curr->readdir_list);
1688 if (atomic_dec_and_test(&curr->refs))
1689 kfree(curr);
1690 }
1691 }
1692
1693 int btrfs_should_delete_dir_index(struct list_head *del_list,
1694 u64 index)
1695 {
1696 struct btrfs_delayed_item *curr, *next;
1697 int ret;
1698
1699 if (list_empty(del_list))
1700 return 0;
1701
1702 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1703 if (curr->key.offset > index)
1704 break;
1705
1706 list_del(&curr->readdir_list);
1707 ret = (curr->key.offset == index);
1708
1709 if (atomic_dec_and_test(&curr->refs))
1710 kfree(curr);
1711
1712 if (ret)
1713 return 1;
1714 else
1715 continue;
1716 }
1717 return 0;
1718 }
1719
1720 /*
1721 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1722 *
1723 */
1724 int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1725 filldir_t filldir,
1726 struct list_head *ins_list)
1727 {
1728 struct btrfs_dir_item *di;
1729 struct btrfs_delayed_item *curr, *next;
1730 struct btrfs_key location;
1731 char *name;
1732 int name_len;
1733 int over = 0;
1734 unsigned char d_type;
1735
1736 if (list_empty(ins_list))
1737 return 0;
1738
1739 /*
1740 * Changing the data of the delayed item is impossible. So
1741 * we needn't lock them. And we have held i_mutex of the
1742 * directory, nobody can delete any directory indexes now.
1743 */
1744 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1745 list_del(&curr->readdir_list);
1746
1747 if (curr->key.offset < filp->f_pos) {
1748 if (atomic_dec_and_test(&curr->refs))
1749 kfree(curr);
1750 continue;
1751 }
1752
1753 filp->f_pos = curr->key.offset;
1754
1755 di = (struct btrfs_dir_item *)curr->data;
1756 name = (char *)(di + 1);
1757 name_len = le16_to_cpu(di->name_len);
1758
1759 d_type = btrfs_filetype_table[di->type];
1760 btrfs_disk_key_to_cpu(&location, &di->location);
1761
1762 over = filldir(dirent, name, name_len, curr->key.offset,
1763 location.objectid, d_type);
1764
1765 if (atomic_dec_and_test(&curr->refs))
1766 kfree(curr);
1767
1768 if (over)
1769 return 1;
1770 }
1771 return 0;
1772 }
1773
1774 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1775 generation, 64);
1776 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1777 sequence, 64);
1778 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1779 transid, 64);
1780 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1781 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1782 nbytes, 64);
1783 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1784 block_group, 64);
1785 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1786 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1787 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1788 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1789 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1790 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1791
1792 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1793 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1794
1795 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1796 struct btrfs_inode_item *inode_item,
1797 struct inode *inode)
1798 {
1799 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1800 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1801 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1802 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1803 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1804 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1805 btrfs_set_stack_inode_generation(inode_item,
1806 BTRFS_I(inode)->generation);
1807 btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1808 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1809 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1810 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1811 btrfs_set_stack_inode_block_group(inode_item, 0);
1812
1813 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1814 inode->i_atime.tv_sec);
1815 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1816 inode->i_atime.tv_nsec);
1817
1818 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1819 inode->i_mtime.tv_sec);
1820 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1821 inode->i_mtime.tv_nsec);
1822
1823 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1824 inode->i_ctime.tv_sec);
1825 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1826 inode->i_ctime.tv_nsec);
1827 }
1828
1829 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1830 {
1831 struct btrfs_delayed_node *delayed_node;
1832 struct btrfs_inode_item *inode_item;
1833 struct btrfs_timespec *tspec;
1834
1835 delayed_node = btrfs_get_delayed_node(inode);
1836 if (!delayed_node)
1837 return -ENOENT;
1838
1839 mutex_lock(&delayed_node->mutex);
1840 if (!delayed_node->inode_dirty) {
1841 mutex_unlock(&delayed_node->mutex);
1842 btrfs_release_delayed_node(delayed_node);
1843 return -ENOENT;
1844 }
1845
1846 inode_item = &delayed_node->inode_item;
1847
1848 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1849 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1850 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1851 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1852 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1853 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1854 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1855 inode->i_version = btrfs_stack_inode_sequence(inode_item);
1856 inode->i_rdev = 0;
1857 *rdev = btrfs_stack_inode_rdev(inode_item);
1858 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1859
1860 tspec = btrfs_inode_atime(inode_item);
1861 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1862 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1863
1864 tspec = btrfs_inode_mtime(inode_item);
1865 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1866 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1867
1868 tspec = btrfs_inode_ctime(inode_item);
1869 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1870 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1871
1872 inode->i_generation = BTRFS_I(inode)->generation;
1873 BTRFS_I(inode)->index_cnt = (u64)-1;
1874
1875 mutex_unlock(&delayed_node->mutex);
1876 btrfs_release_delayed_node(delayed_node);
1877 return 0;
1878 }
1879
1880 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1881 struct btrfs_root *root, struct inode *inode)
1882 {
1883 struct btrfs_delayed_node *delayed_node;
1884 int ret = 0;
1885
1886 delayed_node = btrfs_get_or_create_delayed_node(inode);
1887 if (IS_ERR(delayed_node))
1888 return PTR_ERR(delayed_node);
1889
1890 mutex_lock(&delayed_node->mutex);
1891 if (delayed_node->inode_dirty) {
1892 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1893 goto release_node;
1894 }
1895
1896 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1897 delayed_node);
1898 if (ret)
1899 goto release_node;
1900
1901 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1902 delayed_node->inode_dirty = 1;
1903 delayed_node->count++;
1904 atomic_inc(&root->fs_info->delayed_root->items);
1905 release_node:
1906 mutex_unlock(&delayed_node->mutex);
1907 btrfs_release_delayed_node(delayed_node);
1908 return ret;
1909 }
1910
1911 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1912 {
1913 struct btrfs_root *root = delayed_node->root;
1914 struct btrfs_delayed_item *curr_item, *prev_item;
1915
1916 mutex_lock(&delayed_node->mutex);
1917 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1918 while (curr_item) {
1919 btrfs_delayed_item_release_metadata(root, curr_item);
1920 prev_item = curr_item;
1921 curr_item = __btrfs_next_delayed_item(prev_item);
1922 btrfs_release_delayed_item(prev_item);
1923 }
1924
1925 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1926 while (curr_item) {
1927 btrfs_delayed_item_release_metadata(root, curr_item);
1928 prev_item = curr_item;
1929 curr_item = __btrfs_next_delayed_item(prev_item);
1930 btrfs_release_delayed_item(prev_item);
1931 }
1932
1933 if (delayed_node->inode_dirty) {
1934 btrfs_delayed_inode_release_metadata(root, delayed_node);
1935 btrfs_release_delayed_inode(delayed_node);
1936 }
1937 mutex_unlock(&delayed_node->mutex);
1938 }
1939
1940 void btrfs_kill_delayed_inode_items(struct inode *inode)
1941 {
1942 struct btrfs_delayed_node *delayed_node;
1943
1944 delayed_node = btrfs_get_delayed_node(inode);
1945 if (!delayed_node)
1946 return;
1947
1948 __btrfs_kill_delayed_node(delayed_node);
1949 btrfs_release_delayed_node(delayed_node);
1950 }
1951
1952 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1953 {
1954 u64 inode_id = 0;
1955 struct btrfs_delayed_node *delayed_nodes[8];
1956 int i, n;
1957
1958 while (1) {
1959 spin_lock(&root->inode_lock);
1960 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1961 (void **)delayed_nodes, inode_id,
1962 ARRAY_SIZE(delayed_nodes));
1963 if (!n) {
1964 spin_unlock(&root->inode_lock);
1965 break;
1966 }
1967
1968 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1969
1970 for (i = 0; i < n; i++)
1971 atomic_inc(&delayed_nodes[i]->refs);
1972 spin_unlock(&root->inode_lock);
1973
1974 for (i = 0; i < n; i++) {
1975 __btrfs_kill_delayed_node(delayed_nodes[i]);
1976 btrfs_release_delayed_node(delayed_nodes[i]);
1977 }
1978 }
1979 }
1980
1981 void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1982 {
1983 struct btrfs_delayed_root *delayed_root;
1984 struct btrfs_delayed_node *curr_node, *prev_node;
1985
1986 delayed_root = btrfs_get_delayed_root(root);
1987
1988 curr_node = btrfs_first_delayed_node(delayed_root);
1989 while (curr_node) {
1990 __btrfs_kill_delayed_node(curr_node);
1991
1992 prev_node = curr_node;
1993 curr_node = btrfs_next_delayed_node(curr_node);
1994 btrfs_release_delayed_node(prev_node);
1995 }
1996 }
1997