Staging: udlfb: minor cleanups
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / async-thread.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kthread.h>
20 #include <linux/slab.h>
21 #include <linux/list.h>
22 #include <linux/spinlock.h>
23 #include <linux/freezer.h>
24 #include "async-thread.h"
25
26 #define WORK_QUEUED_BIT 0
27 #define WORK_DONE_BIT 1
28 #define WORK_ORDER_DONE_BIT 2
29 #define WORK_HIGH_PRIO_BIT 3
30
31 /*
32 * container for the kthread task pointer and the list of pending work
33 * One of these is allocated per thread.
34 */
35 struct btrfs_worker_thread {
36 /* pool we belong to */
37 struct btrfs_workers *workers;
38
39 /* list of struct btrfs_work that are waiting for service */
40 struct list_head pending;
41 struct list_head prio_pending;
42
43 /* list of worker threads from struct btrfs_workers */
44 struct list_head worker_list;
45
46 /* kthread */
47 struct task_struct *task;
48
49 /* number of things on the pending list */
50 atomic_t num_pending;
51
52 /* reference counter for this struct */
53 atomic_t refs;
54
55 unsigned long sequence;
56
57 /* protects the pending list. */
58 spinlock_t lock;
59
60 /* set to non-zero when this thread is already awake and kicking */
61 int working;
62
63 /* are we currently idle */
64 int idle;
65 };
66
67 /*
68 * btrfs_start_workers uses kthread_run, which can block waiting for memory
69 * for a very long time. It will actually throttle on page writeback,
70 * and so it may not make progress until after our btrfs worker threads
71 * process all of the pending work structs in their queue
72 *
73 * This means we can't use btrfs_start_workers from inside a btrfs worker
74 * thread that is used as part of cleaning dirty memory, which pretty much
75 * involves all of the worker threads.
76 *
77 * Instead we have a helper queue who never has more than one thread
78 * where we scheduler thread start operations. This worker_start struct
79 * is used to contain the work and hold a pointer to the queue that needs
80 * another worker.
81 */
82 struct worker_start {
83 struct btrfs_work work;
84 struct btrfs_workers *queue;
85 };
86
87 static void start_new_worker_func(struct btrfs_work *work)
88 {
89 struct worker_start *start;
90 start = container_of(work, struct worker_start, work);
91 btrfs_start_workers(start->queue, 1);
92 kfree(start);
93 }
94
95 static int start_new_worker(struct btrfs_workers *queue)
96 {
97 struct worker_start *start;
98 int ret;
99
100 start = kzalloc(sizeof(*start), GFP_NOFS);
101 if (!start)
102 return -ENOMEM;
103
104 start->work.func = start_new_worker_func;
105 start->queue = queue;
106 ret = btrfs_queue_worker(queue->atomic_worker_start, &start->work);
107 if (ret)
108 kfree(start);
109 return ret;
110 }
111
112 /*
113 * helper function to move a thread onto the idle list after it
114 * has finished some requests.
115 */
116 static void check_idle_worker(struct btrfs_worker_thread *worker)
117 {
118 if (!worker->idle && atomic_read(&worker->num_pending) <
119 worker->workers->idle_thresh / 2) {
120 unsigned long flags;
121 spin_lock_irqsave(&worker->workers->lock, flags);
122 worker->idle = 1;
123
124 /* the list may be empty if the worker is just starting */
125 if (!list_empty(&worker->worker_list)) {
126 list_move(&worker->worker_list,
127 &worker->workers->idle_list);
128 }
129 spin_unlock_irqrestore(&worker->workers->lock, flags);
130 }
131 }
132
133 /*
134 * helper function to move a thread off the idle list after new
135 * pending work is added.
136 */
137 static void check_busy_worker(struct btrfs_worker_thread *worker)
138 {
139 if (worker->idle && atomic_read(&worker->num_pending) >=
140 worker->workers->idle_thresh) {
141 unsigned long flags;
142 spin_lock_irqsave(&worker->workers->lock, flags);
143 worker->idle = 0;
144
145 if (!list_empty(&worker->worker_list)) {
146 list_move_tail(&worker->worker_list,
147 &worker->workers->worker_list);
148 }
149 spin_unlock_irqrestore(&worker->workers->lock, flags);
150 }
151 }
152
153 static void check_pending_worker_creates(struct btrfs_worker_thread *worker)
154 {
155 struct btrfs_workers *workers = worker->workers;
156 unsigned long flags;
157
158 rmb();
159 if (!workers->atomic_start_pending)
160 return;
161
162 spin_lock_irqsave(&workers->lock, flags);
163 if (!workers->atomic_start_pending)
164 goto out;
165
166 workers->atomic_start_pending = 0;
167 if (workers->num_workers + workers->num_workers_starting >=
168 workers->max_workers)
169 goto out;
170
171 workers->num_workers_starting += 1;
172 spin_unlock_irqrestore(&workers->lock, flags);
173 start_new_worker(workers);
174 return;
175
176 out:
177 spin_unlock_irqrestore(&workers->lock, flags);
178 }
179
180 static noinline int run_ordered_completions(struct btrfs_workers *workers,
181 struct btrfs_work *work)
182 {
183 if (!workers->ordered)
184 return 0;
185
186 set_bit(WORK_DONE_BIT, &work->flags);
187
188 spin_lock(&workers->order_lock);
189
190 while (1) {
191 if (!list_empty(&workers->prio_order_list)) {
192 work = list_entry(workers->prio_order_list.next,
193 struct btrfs_work, order_list);
194 } else if (!list_empty(&workers->order_list)) {
195 work = list_entry(workers->order_list.next,
196 struct btrfs_work, order_list);
197 } else {
198 break;
199 }
200 if (!test_bit(WORK_DONE_BIT, &work->flags))
201 break;
202
203 /* we are going to call the ordered done function, but
204 * we leave the work item on the list as a barrier so
205 * that later work items that are done don't have their
206 * functions called before this one returns
207 */
208 if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
209 break;
210
211 spin_unlock(&workers->order_lock);
212
213 work->ordered_func(work);
214
215 /* now take the lock again and call the freeing code */
216 spin_lock(&workers->order_lock);
217 list_del(&work->order_list);
218 work->ordered_free(work);
219 }
220
221 spin_unlock(&workers->order_lock);
222 return 0;
223 }
224
225 static void put_worker(struct btrfs_worker_thread *worker)
226 {
227 if (atomic_dec_and_test(&worker->refs))
228 kfree(worker);
229 }
230
231 static int try_worker_shutdown(struct btrfs_worker_thread *worker)
232 {
233 int freeit = 0;
234
235 spin_lock_irq(&worker->lock);
236 spin_lock(&worker->workers->lock);
237 if (worker->workers->num_workers > 1 &&
238 worker->idle &&
239 !worker->working &&
240 !list_empty(&worker->worker_list) &&
241 list_empty(&worker->prio_pending) &&
242 list_empty(&worker->pending) &&
243 atomic_read(&worker->num_pending) == 0) {
244 freeit = 1;
245 list_del_init(&worker->worker_list);
246 worker->workers->num_workers--;
247 }
248 spin_unlock(&worker->workers->lock);
249 spin_unlock_irq(&worker->lock);
250
251 if (freeit)
252 put_worker(worker);
253 return freeit;
254 }
255
256 static struct btrfs_work *get_next_work(struct btrfs_worker_thread *worker,
257 struct list_head *prio_head,
258 struct list_head *head)
259 {
260 struct btrfs_work *work = NULL;
261 struct list_head *cur = NULL;
262
263 if(!list_empty(prio_head))
264 cur = prio_head->next;
265
266 smp_mb();
267 if (!list_empty(&worker->prio_pending))
268 goto refill;
269
270 if (!list_empty(head))
271 cur = head->next;
272
273 if (cur)
274 goto out;
275
276 refill:
277 spin_lock_irq(&worker->lock);
278 list_splice_tail_init(&worker->prio_pending, prio_head);
279 list_splice_tail_init(&worker->pending, head);
280
281 if (!list_empty(prio_head))
282 cur = prio_head->next;
283 else if (!list_empty(head))
284 cur = head->next;
285 spin_unlock_irq(&worker->lock);
286
287 if (!cur)
288 goto out_fail;
289
290 out:
291 work = list_entry(cur, struct btrfs_work, list);
292
293 out_fail:
294 return work;
295 }
296
297 /*
298 * main loop for servicing work items
299 */
300 static int worker_loop(void *arg)
301 {
302 struct btrfs_worker_thread *worker = arg;
303 struct list_head head;
304 struct list_head prio_head;
305 struct btrfs_work *work;
306
307 INIT_LIST_HEAD(&head);
308 INIT_LIST_HEAD(&prio_head);
309
310 do {
311 again:
312 while (1) {
313
314
315 work = get_next_work(worker, &prio_head, &head);
316 if (!work)
317 break;
318
319 list_del(&work->list);
320 clear_bit(WORK_QUEUED_BIT, &work->flags);
321
322 work->worker = worker;
323
324 work->func(work);
325
326 atomic_dec(&worker->num_pending);
327 /*
328 * unless this is an ordered work queue,
329 * 'work' was probably freed by func above.
330 */
331 run_ordered_completions(worker->workers, work);
332
333 check_pending_worker_creates(worker);
334
335 }
336
337 spin_lock_irq(&worker->lock);
338 check_idle_worker(worker);
339
340 if (freezing(current)) {
341 worker->working = 0;
342 spin_unlock_irq(&worker->lock);
343 refrigerator();
344 } else {
345 spin_unlock_irq(&worker->lock);
346 if (!kthread_should_stop()) {
347 cpu_relax();
348 /*
349 * we've dropped the lock, did someone else
350 * jump_in?
351 */
352 smp_mb();
353 if (!list_empty(&worker->pending) ||
354 !list_empty(&worker->prio_pending))
355 continue;
356
357 /*
358 * this short schedule allows more work to
359 * come in without the queue functions
360 * needing to go through wake_up_process()
361 *
362 * worker->working is still 1, so nobody
363 * is going to try and wake us up
364 */
365 schedule_timeout(1);
366 smp_mb();
367 if (!list_empty(&worker->pending) ||
368 !list_empty(&worker->prio_pending))
369 continue;
370
371 if (kthread_should_stop())
372 break;
373
374 /* still no more work?, sleep for real */
375 spin_lock_irq(&worker->lock);
376 set_current_state(TASK_INTERRUPTIBLE);
377 if (!list_empty(&worker->pending) ||
378 !list_empty(&worker->prio_pending)) {
379 spin_unlock_irq(&worker->lock);
380 goto again;
381 }
382
383 /*
384 * this makes sure we get a wakeup when someone
385 * adds something new to the queue
386 */
387 worker->working = 0;
388 spin_unlock_irq(&worker->lock);
389
390 if (!kthread_should_stop()) {
391 schedule_timeout(HZ * 120);
392 if (!worker->working &&
393 try_worker_shutdown(worker)) {
394 return 0;
395 }
396 }
397 }
398 __set_current_state(TASK_RUNNING);
399 }
400 } while (!kthread_should_stop());
401 return 0;
402 }
403
404 /*
405 * this will wait for all the worker threads to shutdown
406 */
407 int btrfs_stop_workers(struct btrfs_workers *workers)
408 {
409 struct list_head *cur;
410 struct btrfs_worker_thread *worker;
411 int can_stop;
412
413 spin_lock_irq(&workers->lock);
414 list_splice_init(&workers->idle_list, &workers->worker_list);
415 while (!list_empty(&workers->worker_list)) {
416 cur = workers->worker_list.next;
417 worker = list_entry(cur, struct btrfs_worker_thread,
418 worker_list);
419
420 atomic_inc(&worker->refs);
421 workers->num_workers -= 1;
422 if (!list_empty(&worker->worker_list)) {
423 list_del_init(&worker->worker_list);
424 put_worker(worker);
425 can_stop = 1;
426 } else
427 can_stop = 0;
428 spin_unlock_irq(&workers->lock);
429 if (can_stop)
430 kthread_stop(worker->task);
431 spin_lock_irq(&workers->lock);
432 put_worker(worker);
433 }
434 spin_unlock_irq(&workers->lock);
435 return 0;
436 }
437
438 /*
439 * simple init on struct btrfs_workers
440 */
441 void btrfs_init_workers(struct btrfs_workers *workers, char *name, int max,
442 struct btrfs_workers *async_helper)
443 {
444 workers->num_workers = 0;
445 workers->num_workers_starting = 0;
446 INIT_LIST_HEAD(&workers->worker_list);
447 INIT_LIST_HEAD(&workers->idle_list);
448 INIT_LIST_HEAD(&workers->order_list);
449 INIT_LIST_HEAD(&workers->prio_order_list);
450 spin_lock_init(&workers->lock);
451 spin_lock_init(&workers->order_lock);
452 workers->max_workers = max;
453 workers->idle_thresh = 32;
454 workers->name = name;
455 workers->ordered = 0;
456 workers->atomic_start_pending = 0;
457 workers->atomic_worker_start = async_helper;
458 }
459
460 /*
461 * starts new worker threads. This does not enforce the max worker
462 * count in case you need to temporarily go past it.
463 */
464 static int __btrfs_start_workers(struct btrfs_workers *workers,
465 int num_workers)
466 {
467 struct btrfs_worker_thread *worker;
468 int ret = 0;
469 int i;
470
471 for (i = 0; i < num_workers; i++) {
472 worker = kzalloc(sizeof(*worker), GFP_NOFS);
473 if (!worker) {
474 ret = -ENOMEM;
475 goto fail;
476 }
477
478 INIT_LIST_HEAD(&worker->pending);
479 INIT_LIST_HEAD(&worker->prio_pending);
480 INIT_LIST_HEAD(&worker->worker_list);
481 spin_lock_init(&worker->lock);
482
483 atomic_set(&worker->num_pending, 0);
484 atomic_set(&worker->refs, 1);
485 worker->workers = workers;
486 worker->task = kthread_run(worker_loop, worker,
487 "btrfs-%s-%d", workers->name,
488 workers->num_workers + i);
489 if (IS_ERR(worker->task)) {
490 ret = PTR_ERR(worker->task);
491 kfree(worker);
492 goto fail;
493 }
494 spin_lock_irq(&workers->lock);
495 list_add_tail(&worker->worker_list, &workers->idle_list);
496 worker->idle = 1;
497 workers->num_workers++;
498 workers->num_workers_starting--;
499 WARN_ON(workers->num_workers_starting < 0);
500 spin_unlock_irq(&workers->lock);
501 }
502 return 0;
503 fail:
504 btrfs_stop_workers(workers);
505 return ret;
506 }
507
508 int btrfs_start_workers(struct btrfs_workers *workers, int num_workers)
509 {
510 spin_lock_irq(&workers->lock);
511 workers->num_workers_starting += num_workers;
512 spin_unlock_irq(&workers->lock);
513 return __btrfs_start_workers(workers, num_workers);
514 }
515
516 /*
517 * run through the list and find a worker thread that doesn't have a lot
518 * to do right now. This can return null if we aren't yet at the thread
519 * count limit and all of the threads are busy.
520 */
521 static struct btrfs_worker_thread *next_worker(struct btrfs_workers *workers)
522 {
523 struct btrfs_worker_thread *worker;
524 struct list_head *next;
525 int enforce_min;
526
527 enforce_min = (workers->num_workers + workers->num_workers_starting) <
528 workers->max_workers;
529
530 /*
531 * if we find an idle thread, don't move it to the end of the
532 * idle list. This improves the chance that the next submission
533 * will reuse the same thread, and maybe catch it while it is still
534 * working
535 */
536 if (!list_empty(&workers->idle_list)) {
537 next = workers->idle_list.next;
538 worker = list_entry(next, struct btrfs_worker_thread,
539 worker_list);
540 return worker;
541 }
542 if (enforce_min || list_empty(&workers->worker_list))
543 return NULL;
544
545 /*
546 * if we pick a busy task, move the task to the end of the list.
547 * hopefully this will keep things somewhat evenly balanced.
548 * Do the move in batches based on the sequence number. This groups
549 * requests submitted at roughly the same time onto the same worker.
550 */
551 next = workers->worker_list.next;
552 worker = list_entry(next, struct btrfs_worker_thread, worker_list);
553 worker->sequence++;
554
555 if (worker->sequence % workers->idle_thresh == 0)
556 list_move_tail(next, &workers->worker_list);
557 return worker;
558 }
559
560 /*
561 * selects a worker thread to take the next job. This will either find
562 * an idle worker, start a new worker up to the max count, or just return
563 * one of the existing busy workers.
564 */
565 static struct btrfs_worker_thread *find_worker(struct btrfs_workers *workers)
566 {
567 struct btrfs_worker_thread *worker;
568 unsigned long flags;
569 struct list_head *fallback;
570
571 again:
572 spin_lock_irqsave(&workers->lock, flags);
573 worker = next_worker(workers);
574
575 if (!worker) {
576 if (workers->num_workers + workers->num_workers_starting >=
577 workers->max_workers) {
578 goto fallback;
579 } else if (workers->atomic_worker_start) {
580 workers->atomic_start_pending = 1;
581 goto fallback;
582 } else {
583 workers->num_workers_starting++;
584 spin_unlock_irqrestore(&workers->lock, flags);
585 /* we're below the limit, start another worker */
586 __btrfs_start_workers(workers, 1);
587 goto again;
588 }
589 }
590 goto found;
591
592 fallback:
593 fallback = NULL;
594 /*
595 * we have failed to find any workers, just
596 * return the first one we can find.
597 */
598 if (!list_empty(&workers->worker_list))
599 fallback = workers->worker_list.next;
600 if (!list_empty(&workers->idle_list))
601 fallback = workers->idle_list.next;
602 BUG_ON(!fallback);
603 worker = list_entry(fallback,
604 struct btrfs_worker_thread, worker_list);
605 found:
606 /*
607 * this makes sure the worker doesn't exit before it is placed
608 * onto a busy/idle list
609 */
610 atomic_inc(&worker->num_pending);
611 spin_unlock_irqrestore(&workers->lock, flags);
612 return worker;
613 }
614
615 /*
616 * btrfs_requeue_work just puts the work item back on the tail of the list
617 * it was taken from. It is intended for use with long running work functions
618 * that make some progress and want to give the cpu up for others.
619 */
620 int btrfs_requeue_work(struct btrfs_work *work)
621 {
622 struct btrfs_worker_thread *worker = work->worker;
623 unsigned long flags;
624 int wake = 0;
625
626 if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags))
627 goto out;
628
629 spin_lock_irqsave(&worker->lock, flags);
630 if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags))
631 list_add_tail(&work->list, &worker->prio_pending);
632 else
633 list_add_tail(&work->list, &worker->pending);
634 atomic_inc(&worker->num_pending);
635
636 /* by definition we're busy, take ourselves off the idle
637 * list
638 */
639 if (worker->idle) {
640 spin_lock(&worker->workers->lock);
641 worker->idle = 0;
642 list_move_tail(&worker->worker_list,
643 &worker->workers->worker_list);
644 spin_unlock(&worker->workers->lock);
645 }
646 if (!worker->working) {
647 wake = 1;
648 worker->working = 1;
649 }
650
651 if (wake)
652 wake_up_process(worker->task);
653 spin_unlock_irqrestore(&worker->lock, flags);
654 out:
655
656 return 0;
657 }
658
659 void btrfs_set_work_high_prio(struct btrfs_work *work)
660 {
661 set_bit(WORK_HIGH_PRIO_BIT, &work->flags);
662 }
663
664 /*
665 * places a struct btrfs_work into the pending queue of one of the kthreads
666 */
667 int btrfs_queue_worker(struct btrfs_workers *workers, struct btrfs_work *work)
668 {
669 struct btrfs_worker_thread *worker;
670 unsigned long flags;
671 int wake = 0;
672
673 /* don't requeue something already on a list */
674 if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags))
675 goto out;
676
677 worker = find_worker(workers);
678 if (workers->ordered) {
679 /*
680 * you're not allowed to do ordered queues from an
681 * interrupt handler
682 */
683 spin_lock(&workers->order_lock);
684 if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags)) {
685 list_add_tail(&work->order_list,
686 &workers->prio_order_list);
687 } else {
688 list_add_tail(&work->order_list, &workers->order_list);
689 }
690 spin_unlock(&workers->order_lock);
691 } else {
692 INIT_LIST_HEAD(&work->order_list);
693 }
694
695 spin_lock_irqsave(&worker->lock, flags);
696
697 if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags))
698 list_add_tail(&work->list, &worker->prio_pending);
699 else
700 list_add_tail(&work->list, &worker->pending);
701 check_busy_worker(worker);
702
703 /*
704 * avoid calling into wake_up_process if this thread has already
705 * been kicked
706 */
707 if (!worker->working)
708 wake = 1;
709 worker->working = 1;
710
711 if (wake)
712 wake_up_process(worker->task);
713 spin_unlock_irqrestore(&worker->lock, flags);
714
715 out:
716 return 0;
717 }