Merge branch 'master' of ssh://master.kernel.org/pub/scm/linux/kernel/git/rusty/linux...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / async-thread.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kthread.h>
20 #include <linux/list.h>
21 #include <linux/spinlock.h>
22 #include <linux/freezer.h>
23 #include "async-thread.h"
24
25 #define WORK_QUEUED_BIT 0
26 #define WORK_DONE_BIT 1
27 #define WORK_ORDER_DONE_BIT 2
28 #define WORK_HIGH_PRIO_BIT 3
29
30 /*
31 * container for the kthread task pointer and the list of pending work
32 * One of these is allocated per thread.
33 */
34 struct btrfs_worker_thread {
35 /* pool we belong to */
36 struct btrfs_workers *workers;
37
38 /* list of struct btrfs_work that are waiting for service */
39 struct list_head pending;
40 struct list_head prio_pending;
41
42 /* list of worker threads from struct btrfs_workers */
43 struct list_head worker_list;
44
45 /* kthread */
46 struct task_struct *task;
47
48 /* number of things on the pending list */
49 atomic_t num_pending;
50
51 /* reference counter for this struct */
52 atomic_t refs;
53
54 unsigned long sequence;
55
56 /* protects the pending list. */
57 spinlock_t lock;
58
59 /* set to non-zero when this thread is already awake and kicking */
60 int working;
61
62 /* are we currently idle */
63 int idle;
64 };
65
66 /*
67 * helper function to move a thread onto the idle list after it
68 * has finished some requests.
69 */
70 static void check_idle_worker(struct btrfs_worker_thread *worker)
71 {
72 if (!worker->idle && atomic_read(&worker->num_pending) <
73 worker->workers->idle_thresh / 2) {
74 unsigned long flags;
75 spin_lock_irqsave(&worker->workers->lock, flags);
76 worker->idle = 1;
77
78 /* the list may be empty if the worker is just starting */
79 if (!list_empty(&worker->worker_list)) {
80 list_move(&worker->worker_list,
81 &worker->workers->idle_list);
82 }
83 spin_unlock_irqrestore(&worker->workers->lock, flags);
84 }
85 }
86
87 /*
88 * helper function to move a thread off the idle list after new
89 * pending work is added.
90 */
91 static void check_busy_worker(struct btrfs_worker_thread *worker)
92 {
93 if (worker->idle && atomic_read(&worker->num_pending) >=
94 worker->workers->idle_thresh) {
95 unsigned long flags;
96 spin_lock_irqsave(&worker->workers->lock, flags);
97 worker->idle = 0;
98
99 if (!list_empty(&worker->worker_list)) {
100 list_move_tail(&worker->worker_list,
101 &worker->workers->worker_list);
102 }
103 spin_unlock_irqrestore(&worker->workers->lock, flags);
104 }
105 }
106
107 static void check_pending_worker_creates(struct btrfs_worker_thread *worker)
108 {
109 struct btrfs_workers *workers = worker->workers;
110 unsigned long flags;
111
112 rmb();
113 if (!workers->atomic_start_pending)
114 return;
115
116 spin_lock_irqsave(&workers->lock, flags);
117 if (!workers->atomic_start_pending)
118 goto out;
119
120 workers->atomic_start_pending = 0;
121 if (workers->num_workers >= workers->max_workers)
122 goto out;
123
124 spin_unlock_irqrestore(&workers->lock, flags);
125 btrfs_start_workers(workers, 1);
126 return;
127
128 out:
129 spin_unlock_irqrestore(&workers->lock, flags);
130 }
131
132 static noinline int run_ordered_completions(struct btrfs_workers *workers,
133 struct btrfs_work *work)
134 {
135 if (!workers->ordered)
136 return 0;
137
138 set_bit(WORK_DONE_BIT, &work->flags);
139
140 spin_lock(&workers->order_lock);
141
142 while (1) {
143 if (!list_empty(&workers->prio_order_list)) {
144 work = list_entry(workers->prio_order_list.next,
145 struct btrfs_work, order_list);
146 } else if (!list_empty(&workers->order_list)) {
147 work = list_entry(workers->order_list.next,
148 struct btrfs_work, order_list);
149 } else {
150 break;
151 }
152 if (!test_bit(WORK_DONE_BIT, &work->flags))
153 break;
154
155 /* we are going to call the ordered done function, but
156 * we leave the work item on the list as a barrier so
157 * that later work items that are done don't have their
158 * functions called before this one returns
159 */
160 if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
161 break;
162
163 spin_unlock(&workers->order_lock);
164
165 work->ordered_func(work);
166
167 /* now take the lock again and call the freeing code */
168 spin_lock(&workers->order_lock);
169 list_del(&work->order_list);
170 work->ordered_free(work);
171 }
172
173 spin_unlock(&workers->order_lock);
174 return 0;
175 }
176
177 static void put_worker(struct btrfs_worker_thread *worker)
178 {
179 if (atomic_dec_and_test(&worker->refs))
180 kfree(worker);
181 }
182
183 static int try_worker_shutdown(struct btrfs_worker_thread *worker)
184 {
185 int freeit = 0;
186
187 spin_lock_irq(&worker->lock);
188 spin_lock(&worker->workers->lock);
189 if (worker->workers->num_workers > 1 &&
190 worker->idle &&
191 !worker->working &&
192 !list_empty(&worker->worker_list) &&
193 list_empty(&worker->prio_pending) &&
194 list_empty(&worker->pending) &&
195 atomic_read(&worker->num_pending) == 0) {
196 freeit = 1;
197 list_del_init(&worker->worker_list);
198 worker->workers->num_workers--;
199 }
200 spin_unlock(&worker->workers->lock);
201 spin_unlock_irq(&worker->lock);
202
203 if (freeit)
204 put_worker(worker);
205 return freeit;
206 }
207
208 static struct btrfs_work *get_next_work(struct btrfs_worker_thread *worker,
209 struct list_head *prio_head,
210 struct list_head *head)
211 {
212 struct btrfs_work *work = NULL;
213 struct list_head *cur = NULL;
214
215 if(!list_empty(prio_head))
216 cur = prio_head->next;
217
218 smp_mb();
219 if (!list_empty(&worker->prio_pending))
220 goto refill;
221
222 if (!list_empty(head))
223 cur = head->next;
224
225 if (cur)
226 goto out;
227
228 refill:
229 spin_lock_irq(&worker->lock);
230 list_splice_tail_init(&worker->prio_pending, prio_head);
231 list_splice_tail_init(&worker->pending, head);
232
233 if (!list_empty(prio_head))
234 cur = prio_head->next;
235 else if (!list_empty(head))
236 cur = head->next;
237 spin_unlock_irq(&worker->lock);
238
239 if (!cur)
240 goto out_fail;
241
242 out:
243 work = list_entry(cur, struct btrfs_work, list);
244
245 out_fail:
246 return work;
247 }
248
249 /*
250 * main loop for servicing work items
251 */
252 static int worker_loop(void *arg)
253 {
254 struct btrfs_worker_thread *worker = arg;
255 struct list_head head;
256 struct list_head prio_head;
257 struct btrfs_work *work;
258
259 INIT_LIST_HEAD(&head);
260 INIT_LIST_HEAD(&prio_head);
261
262 do {
263 again:
264 while (1) {
265
266
267 work = get_next_work(worker, &prio_head, &head);
268 if (!work)
269 break;
270
271 list_del(&work->list);
272 clear_bit(WORK_QUEUED_BIT, &work->flags);
273
274 work->worker = worker;
275
276 work->func(work);
277
278 atomic_dec(&worker->num_pending);
279 /*
280 * unless this is an ordered work queue,
281 * 'work' was probably freed by func above.
282 */
283 run_ordered_completions(worker->workers, work);
284
285 check_pending_worker_creates(worker);
286
287 }
288
289 spin_lock_irq(&worker->lock);
290 check_idle_worker(worker);
291
292 if (freezing(current)) {
293 worker->working = 0;
294 spin_unlock_irq(&worker->lock);
295 refrigerator();
296 } else {
297 spin_unlock_irq(&worker->lock);
298 if (!kthread_should_stop()) {
299 cpu_relax();
300 /*
301 * we've dropped the lock, did someone else
302 * jump_in?
303 */
304 smp_mb();
305 if (!list_empty(&worker->pending) ||
306 !list_empty(&worker->prio_pending))
307 continue;
308
309 /*
310 * this short schedule allows more work to
311 * come in without the queue functions
312 * needing to go through wake_up_process()
313 *
314 * worker->working is still 1, so nobody
315 * is going to try and wake us up
316 */
317 schedule_timeout(1);
318 smp_mb();
319 if (!list_empty(&worker->pending) ||
320 !list_empty(&worker->prio_pending))
321 continue;
322
323 if (kthread_should_stop())
324 break;
325
326 /* still no more work?, sleep for real */
327 spin_lock_irq(&worker->lock);
328 set_current_state(TASK_INTERRUPTIBLE);
329 if (!list_empty(&worker->pending) ||
330 !list_empty(&worker->prio_pending)) {
331 spin_unlock_irq(&worker->lock);
332 goto again;
333 }
334
335 /*
336 * this makes sure we get a wakeup when someone
337 * adds something new to the queue
338 */
339 worker->working = 0;
340 spin_unlock_irq(&worker->lock);
341
342 if (!kthread_should_stop()) {
343 schedule_timeout(HZ * 120);
344 if (!worker->working &&
345 try_worker_shutdown(worker)) {
346 return 0;
347 }
348 }
349 }
350 __set_current_state(TASK_RUNNING);
351 }
352 } while (!kthread_should_stop());
353 return 0;
354 }
355
356 /*
357 * this will wait for all the worker threads to shutdown
358 */
359 int btrfs_stop_workers(struct btrfs_workers *workers)
360 {
361 struct list_head *cur;
362 struct btrfs_worker_thread *worker;
363 int can_stop;
364
365 spin_lock_irq(&workers->lock);
366 list_splice_init(&workers->idle_list, &workers->worker_list);
367 while (!list_empty(&workers->worker_list)) {
368 cur = workers->worker_list.next;
369 worker = list_entry(cur, struct btrfs_worker_thread,
370 worker_list);
371
372 atomic_inc(&worker->refs);
373 workers->num_workers -= 1;
374 if (!list_empty(&worker->worker_list)) {
375 list_del_init(&worker->worker_list);
376 put_worker(worker);
377 can_stop = 1;
378 } else
379 can_stop = 0;
380 spin_unlock_irq(&workers->lock);
381 if (can_stop)
382 kthread_stop(worker->task);
383 spin_lock_irq(&workers->lock);
384 put_worker(worker);
385 }
386 spin_unlock_irq(&workers->lock);
387 return 0;
388 }
389
390 /*
391 * simple init on struct btrfs_workers
392 */
393 void btrfs_init_workers(struct btrfs_workers *workers, char *name, int max)
394 {
395 workers->num_workers = 0;
396 INIT_LIST_HEAD(&workers->worker_list);
397 INIT_LIST_HEAD(&workers->idle_list);
398 INIT_LIST_HEAD(&workers->order_list);
399 INIT_LIST_HEAD(&workers->prio_order_list);
400 spin_lock_init(&workers->lock);
401 spin_lock_init(&workers->order_lock);
402 workers->max_workers = max;
403 workers->idle_thresh = 32;
404 workers->name = name;
405 workers->ordered = 0;
406 workers->atomic_start_pending = 0;
407 workers->atomic_worker_start = 0;
408 }
409
410 /*
411 * starts new worker threads. This does not enforce the max worker
412 * count in case you need to temporarily go past it.
413 */
414 int btrfs_start_workers(struct btrfs_workers *workers, int num_workers)
415 {
416 struct btrfs_worker_thread *worker;
417 int ret = 0;
418 int i;
419
420 for (i = 0; i < num_workers; i++) {
421 worker = kzalloc(sizeof(*worker), GFP_NOFS);
422 if (!worker) {
423 ret = -ENOMEM;
424 goto fail;
425 }
426
427 INIT_LIST_HEAD(&worker->pending);
428 INIT_LIST_HEAD(&worker->prio_pending);
429 INIT_LIST_HEAD(&worker->worker_list);
430 spin_lock_init(&worker->lock);
431
432 atomic_set(&worker->num_pending, 0);
433 atomic_set(&worker->refs, 1);
434 worker->workers = workers;
435 worker->task = kthread_run(worker_loop, worker,
436 "btrfs-%s-%d", workers->name,
437 workers->num_workers + i);
438 if (IS_ERR(worker->task)) {
439 ret = PTR_ERR(worker->task);
440 kfree(worker);
441 goto fail;
442 }
443 spin_lock_irq(&workers->lock);
444 list_add_tail(&worker->worker_list, &workers->idle_list);
445 worker->idle = 1;
446 workers->num_workers++;
447 spin_unlock_irq(&workers->lock);
448 }
449 return 0;
450 fail:
451 btrfs_stop_workers(workers);
452 return ret;
453 }
454
455 /*
456 * run through the list and find a worker thread that doesn't have a lot
457 * to do right now. This can return null if we aren't yet at the thread
458 * count limit and all of the threads are busy.
459 */
460 static struct btrfs_worker_thread *next_worker(struct btrfs_workers *workers)
461 {
462 struct btrfs_worker_thread *worker;
463 struct list_head *next;
464 int enforce_min = workers->num_workers < workers->max_workers;
465
466 /*
467 * if we find an idle thread, don't move it to the end of the
468 * idle list. This improves the chance that the next submission
469 * will reuse the same thread, and maybe catch it while it is still
470 * working
471 */
472 if (!list_empty(&workers->idle_list)) {
473 next = workers->idle_list.next;
474 worker = list_entry(next, struct btrfs_worker_thread,
475 worker_list);
476 return worker;
477 }
478 if (enforce_min || list_empty(&workers->worker_list))
479 return NULL;
480
481 /*
482 * if we pick a busy task, move the task to the end of the list.
483 * hopefully this will keep things somewhat evenly balanced.
484 * Do the move in batches based on the sequence number. This groups
485 * requests submitted at roughly the same time onto the same worker.
486 */
487 next = workers->worker_list.next;
488 worker = list_entry(next, struct btrfs_worker_thread, worker_list);
489 worker->sequence++;
490
491 if (worker->sequence % workers->idle_thresh == 0)
492 list_move_tail(next, &workers->worker_list);
493 return worker;
494 }
495
496 /*
497 * selects a worker thread to take the next job. This will either find
498 * an idle worker, start a new worker up to the max count, or just return
499 * one of the existing busy workers.
500 */
501 static struct btrfs_worker_thread *find_worker(struct btrfs_workers *workers)
502 {
503 struct btrfs_worker_thread *worker;
504 unsigned long flags;
505 struct list_head *fallback;
506
507 again:
508 spin_lock_irqsave(&workers->lock, flags);
509 worker = next_worker(workers);
510
511 if (!worker) {
512 if (workers->num_workers >= workers->max_workers) {
513 goto fallback;
514 } else if (workers->atomic_worker_start) {
515 workers->atomic_start_pending = 1;
516 goto fallback;
517 } else {
518 spin_unlock_irqrestore(&workers->lock, flags);
519 /* we're below the limit, start another worker */
520 btrfs_start_workers(workers, 1);
521 goto again;
522 }
523 }
524 goto found;
525
526 fallback:
527 fallback = NULL;
528 /*
529 * we have failed to find any workers, just
530 * return the first one we can find.
531 */
532 if (!list_empty(&workers->worker_list))
533 fallback = workers->worker_list.next;
534 if (!list_empty(&workers->idle_list))
535 fallback = workers->idle_list.next;
536 BUG_ON(!fallback);
537 worker = list_entry(fallback,
538 struct btrfs_worker_thread, worker_list);
539 found:
540 /*
541 * this makes sure the worker doesn't exit before it is placed
542 * onto a busy/idle list
543 */
544 atomic_inc(&worker->num_pending);
545 spin_unlock_irqrestore(&workers->lock, flags);
546 return worker;
547 }
548
549 /*
550 * btrfs_requeue_work just puts the work item back on the tail of the list
551 * it was taken from. It is intended for use with long running work functions
552 * that make some progress and want to give the cpu up for others.
553 */
554 int btrfs_requeue_work(struct btrfs_work *work)
555 {
556 struct btrfs_worker_thread *worker = work->worker;
557 unsigned long flags;
558 int wake = 0;
559
560 if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags))
561 goto out;
562
563 spin_lock_irqsave(&worker->lock, flags);
564 if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags))
565 list_add_tail(&work->list, &worker->prio_pending);
566 else
567 list_add_tail(&work->list, &worker->pending);
568 atomic_inc(&worker->num_pending);
569
570 /* by definition we're busy, take ourselves off the idle
571 * list
572 */
573 if (worker->idle) {
574 spin_lock(&worker->workers->lock);
575 worker->idle = 0;
576 list_move_tail(&worker->worker_list,
577 &worker->workers->worker_list);
578 spin_unlock(&worker->workers->lock);
579 }
580 if (!worker->working) {
581 wake = 1;
582 worker->working = 1;
583 }
584
585 if (wake)
586 wake_up_process(worker->task);
587 spin_unlock_irqrestore(&worker->lock, flags);
588 out:
589
590 return 0;
591 }
592
593 void btrfs_set_work_high_prio(struct btrfs_work *work)
594 {
595 set_bit(WORK_HIGH_PRIO_BIT, &work->flags);
596 }
597
598 /*
599 * places a struct btrfs_work into the pending queue of one of the kthreads
600 */
601 int btrfs_queue_worker(struct btrfs_workers *workers, struct btrfs_work *work)
602 {
603 struct btrfs_worker_thread *worker;
604 unsigned long flags;
605 int wake = 0;
606
607 /* don't requeue something already on a list */
608 if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags))
609 goto out;
610
611 worker = find_worker(workers);
612 if (workers->ordered) {
613 /*
614 * you're not allowed to do ordered queues from an
615 * interrupt handler
616 */
617 spin_lock(&workers->order_lock);
618 if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags)) {
619 list_add_tail(&work->order_list,
620 &workers->prio_order_list);
621 } else {
622 list_add_tail(&work->order_list, &workers->order_list);
623 }
624 spin_unlock(&workers->order_lock);
625 } else {
626 INIT_LIST_HEAD(&work->order_list);
627 }
628
629 spin_lock_irqsave(&worker->lock, flags);
630
631 if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags))
632 list_add_tail(&work->list, &worker->prio_pending);
633 else
634 list_add_tail(&work->list, &worker->pending);
635 check_busy_worker(worker);
636
637 /*
638 * avoid calling into wake_up_process if this thread has already
639 * been kicked
640 */
641 if (!worker->working)
642 wake = 1;
643 worker->working = 1;
644
645 if (wake)
646 wake_up_process(worker->task);
647 spin_unlock_irqrestore(&worker->lock, flags);
648
649 out:
650 return 0;
651 }