block: Abstract out bvec iterator
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 #include <scsi/sg.h> /* for struct sg_iovec */
32
33 #include <trace/events/block.h>
34
35 /*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39 #define BIO_INLINE_VECS 4
40
41 static mempool_t *bio_split_pool __read_mostly;
42
43 /*
44 * if you change this list, also change bvec_alloc or things will
45 * break badly! cannot be bigger than what you can fit into an
46 * unsigned short
47 */
48 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
49 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
50 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
51 };
52 #undef BV
53
54 /*
55 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56 * IO code that does not need private memory pools.
57 */
58 struct bio_set *fs_bio_set;
59 EXPORT_SYMBOL(fs_bio_set);
60
61 /*
62 * Our slab pool management
63 */
64 struct bio_slab {
65 struct kmem_cache *slab;
66 unsigned int slab_ref;
67 unsigned int slab_size;
68 char name[8];
69 };
70 static DEFINE_MUTEX(bio_slab_lock);
71 static struct bio_slab *bio_slabs;
72 static unsigned int bio_slab_nr, bio_slab_max;
73
74 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75 {
76 unsigned int sz = sizeof(struct bio) + extra_size;
77 struct kmem_cache *slab = NULL;
78 struct bio_slab *bslab, *new_bio_slabs;
79 unsigned int new_bio_slab_max;
80 unsigned int i, entry = -1;
81
82 mutex_lock(&bio_slab_lock);
83
84 i = 0;
85 while (i < bio_slab_nr) {
86 bslab = &bio_slabs[i];
87
88 if (!bslab->slab && entry == -1)
89 entry = i;
90 else if (bslab->slab_size == sz) {
91 slab = bslab->slab;
92 bslab->slab_ref++;
93 break;
94 }
95 i++;
96 }
97
98 if (slab)
99 goto out_unlock;
100
101 if (bio_slab_nr == bio_slab_max && entry == -1) {
102 new_bio_slab_max = bio_slab_max << 1;
103 new_bio_slabs = krealloc(bio_slabs,
104 new_bio_slab_max * sizeof(struct bio_slab),
105 GFP_KERNEL);
106 if (!new_bio_slabs)
107 goto out_unlock;
108 bio_slab_max = new_bio_slab_max;
109 bio_slabs = new_bio_slabs;
110 }
111 if (entry == -1)
112 entry = bio_slab_nr++;
113
114 bslab = &bio_slabs[entry];
115
116 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
117 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
118 if (!slab)
119 goto out_unlock;
120
121 printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
122 bslab->slab = slab;
123 bslab->slab_ref = 1;
124 bslab->slab_size = sz;
125 out_unlock:
126 mutex_unlock(&bio_slab_lock);
127 return slab;
128 }
129
130 static void bio_put_slab(struct bio_set *bs)
131 {
132 struct bio_slab *bslab = NULL;
133 unsigned int i;
134
135 mutex_lock(&bio_slab_lock);
136
137 for (i = 0; i < bio_slab_nr; i++) {
138 if (bs->bio_slab == bio_slabs[i].slab) {
139 bslab = &bio_slabs[i];
140 break;
141 }
142 }
143
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 goto out;
146
147 WARN_ON(!bslab->slab_ref);
148
149 if (--bslab->slab_ref)
150 goto out;
151
152 kmem_cache_destroy(bslab->slab);
153 bslab->slab = NULL;
154
155 out:
156 mutex_unlock(&bio_slab_lock);
157 }
158
159 unsigned int bvec_nr_vecs(unsigned short idx)
160 {
161 return bvec_slabs[idx].nr_vecs;
162 }
163
164 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
165 {
166 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
167
168 if (idx == BIOVEC_MAX_IDX)
169 mempool_free(bv, pool);
170 else {
171 struct biovec_slab *bvs = bvec_slabs + idx;
172
173 kmem_cache_free(bvs->slab, bv);
174 }
175 }
176
177 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
178 mempool_t *pool)
179 {
180 struct bio_vec *bvl;
181
182 /*
183 * see comment near bvec_array define!
184 */
185 switch (nr) {
186 case 1:
187 *idx = 0;
188 break;
189 case 2 ... 4:
190 *idx = 1;
191 break;
192 case 5 ... 16:
193 *idx = 2;
194 break;
195 case 17 ... 64:
196 *idx = 3;
197 break;
198 case 65 ... 128:
199 *idx = 4;
200 break;
201 case 129 ... BIO_MAX_PAGES:
202 *idx = 5;
203 break;
204 default:
205 return NULL;
206 }
207
208 /*
209 * idx now points to the pool we want to allocate from. only the
210 * 1-vec entry pool is mempool backed.
211 */
212 if (*idx == BIOVEC_MAX_IDX) {
213 fallback:
214 bvl = mempool_alloc(pool, gfp_mask);
215 } else {
216 struct biovec_slab *bvs = bvec_slabs + *idx;
217 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
218
219 /*
220 * Make this allocation restricted and don't dump info on
221 * allocation failures, since we'll fallback to the mempool
222 * in case of failure.
223 */
224 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
225
226 /*
227 * Try a slab allocation. If this fails and __GFP_WAIT
228 * is set, retry with the 1-entry mempool
229 */
230 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
231 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
232 *idx = BIOVEC_MAX_IDX;
233 goto fallback;
234 }
235 }
236
237 return bvl;
238 }
239
240 static void __bio_free(struct bio *bio)
241 {
242 bio_disassociate_task(bio);
243
244 if (bio_integrity(bio))
245 bio_integrity_free(bio);
246 }
247
248 static void bio_free(struct bio *bio)
249 {
250 struct bio_set *bs = bio->bi_pool;
251 void *p;
252
253 __bio_free(bio);
254
255 if (bs) {
256 if (bio_flagged(bio, BIO_OWNS_VEC))
257 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
258
259 /*
260 * If we have front padding, adjust the bio pointer before freeing
261 */
262 p = bio;
263 p -= bs->front_pad;
264
265 mempool_free(p, bs->bio_pool);
266 } else {
267 /* Bio was allocated by bio_kmalloc() */
268 kfree(bio);
269 }
270 }
271
272 void bio_init(struct bio *bio)
273 {
274 memset(bio, 0, sizeof(*bio));
275 bio->bi_flags = 1 << BIO_UPTODATE;
276 atomic_set(&bio->bi_cnt, 1);
277 }
278 EXPORT_SYMBOL(bio_init);
279
280 /**
281 * bio_reset - reinitialize a bio
282 * @bio: bio to reset
283 *
284 * Description:
285 * After calling bio_reset(), @bio will be in the same state as a freshly
286 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
287 * preserved are the ones that are initialized by bio_alloc_bioset(). See
288 * comment in struct bio.
289 */
290 void bio_reset(struct bio *bio)
291 {
292 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
293
294 __bio_free(bio);
295
296 memset(bio, 0, BIO_RESET_BYTES);
297 bio->bi_flags = flags|(1 << BIO_UPTODATE);
298 }
299 EXPORT_SYMBOL(bio_reset);
300
301 static void bio_alloc_rescue(struct work_struct *work)
302 {
303 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
304 struct bio *bio;
305
306 while (1) {
307 spin_lock(&bs->rescue_lock);
308 bio = bio_list_pop(&bs->rescue_list);
309 spin_unlock(&bs->rescue_lock);
310
311 if (!bio)
312 break;
313
314 generic_make_request(bio);
315 }
316 }
317
318 static void punt_bios_to_rescuer(struct bio_set *bs)
319 {
320 struct bio_list punt, nopunt;
321 struct bio *bio;
322
323 /*
324 * In order to guarantee forward progress we must punt only bios that
325 * were allocated from this bio_set; otherwise, if there was a bio on
326 * there for a stacking driver higher up in the stack, processing it
327 * could require allocating bios from this bio_set, and doing that from
328 * our own rescuer would be bad.
329 *
330 * Since bio lists are singly linked, pop them all instead of trying to
331 * remove from the middle of the list:
332 */
333
334 bio_list_init(&punt);
335 bio_list_init(&nopunt);
336
337 while ((bio = bio_list_pop(current->bio_list)))
338 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
339
340 *current->bio_list = nopunt;
341
342 spin_lock(&bs->rescue_lock);
343 bio_list_merge(&bs->rescue_list, &punt);
344 spin_unlock(&bs->rescue_lock);
345
346 queue_work(bs->rescue_workqueue, &bs->rescue_work);
347 }
348
349 /**
350 * bio_alloc_bioset - allocate a bio for I/O
351 * @gfp_mask: the GFP_ mask given to the slab allocator
352 * @nr_iovecs: number of iovecs to pre-allocate
353 * @bs: the bio_set to allocate from.
354 *
355 * Description:
356 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
357 * backed by the @bs's mempool.
358 *
359 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
360 * able to allocate a bio. This is due to the mempool guarantees. To make this
361 * work, callers must never allocate more than 1 bio at a time from this pool.
362 * Callers that need to allocate more than 1 bio must always submit the
363 * previously allocated bio for IO before attempting to allocate a new one.
364 * Failure to do so can cause deadlocks under memory pressure.
365 *
366 * Note that when running under generic_make_request() (i.e. any block
367 * driver), bios are not submitted until after you return - see the code in
368 * generic_make_request() that converts recursion into iteration, to prevent
369 * stack overflows.
370 *
371 * This would normally mean allocating multiple bios under
372 * generic_make_request() would be susceptible to deadlocks, but we have
373 * deadlock avoidance code that resubmits any blocked bios from a rescuer
374 * thread.
375 *
376 * However, we do not guarantee forward progress for allocations from other
377 * mempools. Doing multiple allocations from the same mempool under
378 * generic_make_request() should be avoided - instead, use bio_set's front_pad
379 * for per bio allocations.
380 *
381 * RETURNS:
382 * Pointer to new bio on success, NULL on failure.
383 */
384 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
385 {
386 gfp_t saved_gfp = gfp_mask;
387 unsigned front_pad;
388 unsigned inline_vecs;
389 unsigned long idx = BIO_POOL_NONE;
390 struct bio_vec *bvl = NULL;
391 struct bio *bio;
392 void *p;
393
394 if (!bs) {
395 if (nr_iovecs > UIO_MAXIOV)
396 return NULL;
397
398 p = kmalloc(sizeof(struct bio) +
399 nr_iovecs * sizeof(struct bio_vec),
400 gfp_mask);
401 front_pad = 0;
402 inline_vecs = nr_iovecs;
403 } else {
404 /*
405 * generic_make_request() converts recursion to iteration; this
406 * means if we're running beneath it, any bios we allocate and
407 * submit will not be submitted (and thus freed) until after we
408 * return.
409 *
410 * This exposes us to a potential deadlock if we allocate
411 * multiple bios from the same bio_set() while running
412 * underneath generic_make_request(). If we were to allocate
413 * multiple bios (say a stacking block driver that was splitting
414 * bios), we would deadlock if we exhausted the mempool's
415 * reserve.
416 *
417 * We solve this, and guarantee forward progress, with a rescuer
418 * workqueue per bio_set. If we go to allocate and there are
419 * bios on current->bio_list, we first try the allocation
420 * without __GFP_WAIT; if that fails, we punt those bios we
421 * would be blocking to the rescuer workqueue before we retry
422 * with the original gfp_flags.
423 */
424
425 if (current->bio_list && !bio_list_empty(current->bio_list))
426 gfp_mask &= ~__GFP_WAIT;
427
428 p = mempool_alloc(bs->bio_pool, gfp_mask);
429 if (!p && gfp_mask != saved_gfp) {
430 punt_bios_to_rescuer(bs);
431 gfp_mask = saved_gfp;
432 p = mempool_alloc(bs->bio_pool, gfp_mask);
433 }
434
435 front_pad = bs->front_pad;
436 inline_vecs = BIO_INLINE_VECS;
437 }
438
439 if (unlikely(!p))
440 return NULL;
441
442 bio = p + front_pad;
443 bio_init(bio);
444
445 if (nr_iovecs > inline_vecs) {
446 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
447 if (!bvl && gfp_mask != saved_gfp) {
448 punt_bios_to_rescuer(bs);
449 gfp_mask = saved_gfp;
450 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
451 }
452
453 if (unlikely(!bvl))
454 goto err_free;
455
456 bio->bi_flags |= 1 << BIO_OWNS_VEC;
457 } else if (nr_iovecs) {
458 bvl = bio->bi_inline_vecs;
459 }
460
461 bio->bi_pool = bs;
462 bio->bi_flags |= idx << BIO_POOL_OFFSET;
463 bio->bi_max_vecs = nr_iovecs;
464 bio->bi_io_vec = bvl;
465 return bio;
466
467 err_free:
468 mempool_free(p, bs->bio_pool);
469 return NULL;
470 }
471 EXPORT_SYMBOL(bio_alloc_bioset);
472
473 void zero_fill_bio(struct bio *bio)
474 {
475 unsigned long flags;
476 struct bio_vec *bv;
477 int i;
478
479 bio_for_each_segment(bv, bio, i) {
480 char *data = bvec_kmap_irq(bv, &flags);
481 memset(data, 0, bv->bv_len);
482 flush_dcache_page(bv->bv_page);
483 bvec_kunmap_irq(data, &flags);
484 }
485 }
486 EXPORT_SYMBOL(zero_fill_bio);
487
488 /**
489 * bio_put - release a reference to a bio
490 * @bio: bio to release reference to
491 *
492 * Description:
493 * Put a reference to a &struct bio, either one you have gotten with
494 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
495 **/
496 void bio_put(struct bio *bio)
497 {
498 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
499
500 /*
501 * last put frees it
502 */
503 if (atomic_dec_and_test(&bio->bi_cnt))
504 bio_free(bio);
505 }
506 EXPORT_SYMBOL(bio_put);
507
508 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
509 {
510 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
511 blk_recount_segments(q, bio);
512
513 return bio->bi_phys_segments;
514 }
515 EXPORT_SYMBOL(bio_phys_segments);
516
517 /**
518 * __bio_clone - clone a bio
519 * @bio: destination bio
520 * @bio_src: bio to clone
521 *
522 * Clone a &bio. Caller will own the returned bio, but not
523 * the actual data it points to. Reference count of returned
524 * bio will be one.
525 */
526 void __bio_clone(struct bio *bio, struct bio *bio_src)
527 {
528 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
529 bio_src->bi_max_vecs * sizeof(struct bio_vec));
530
531 /*
532 * most users will be overriding ->bi_bdev with a new target,
533 * so we don't set nor calculate new physical/hw segment counts here
534 */
535 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
536 bio->bi_bdev = bio_src->bi_bdev;
537 bio->bi_flags |= 1 << BIO_CLONED;
538 bio->bi_rw = bio_src->bi_rw;
539 bio->bi_vcnt = bio_src->bi_vcnt;
540 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
541 bio->bi_iter.bi_idx = bio_src->bi_iter.bi_idx;
542 }
543 EXPORT_SYMBOL(__bio_clone);
544
545 /**
546 * bio_clone_bioset - clone a bio
547 * @bio: bio to clone
548 * @gfp_mask: allocation priority
549 * @bs: bio_set to allocate from
550 *
551 * Like __bio_clone, only also allocates the returned bio
552 */
553 struct bio *bio_clone_bioset(struct bio *bio, gfp_t gfp_mask,
554 struct bio_set *bs)
555 {
556 struct bio *b;
557
558 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, bs);
559 if (!b)
560 return NULL;
561
562 __bio_clone(b, bio);
563
564 if (bio_integrity(bio)) {
565 int ret;
566
567 ret = bio_integrity_clone(b, bio, gfp_mask);
568
569 if (ret < 0) {
570 bio_put(b);
571 return NULL;
572 }
573 }
574
575 return b;
576 }
577 EXPORT_SYMBOL(bio_clone_bioset);
578
579 /**
580 * bio_get_nr_vecs - return approx number of vecs
581 * @bdev: I/O target
582 *
583 * Return the approximate number of pages we can send to this target.
584 * There's no guarantee that you will be able to fit this number of pages
585 * into a bio, it does not account for dynamic restrictions that vary
586 * on offset.
587 */
588 int bio_get_nr_vecs(struct block_device *bdev)
589 {
590 struct request_queue *q = bdev_get_queue(bdev);
591 int nr_pages;
592
593 nr_pages = min_t(unsigned,
594 queue_max_segments(q),
595 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
596
597 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
598
599 }
600 EXPORT_SYMBOL(bio_get_nr_vecs);
601
602 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
603 *page, unsigned int len, unsigned int offset,
604 unsigned int max_sectors)
605 {
606 int retried_segments = 0;
607 struct bio_vec *bvec;
608
609 /*
610 * cloned bio must not modify vec list
611 */
612 if (unlikely(bio_flagged(bio, BIO_CLONED)))
613 return 0;
614
615 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
616 return 0;
617
618 /*
619 * For filesystems with a blocksize smaller than the pagesize
620 * we will often be called with the same page as last time and
621 * a consecutive offset. Optimize this special case.
622 */
623 if (bio->bi_vcnt > 0) {
624 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
625
626 if (page == prev->bv_page &&
627 offset == prev->bv_offset + prev->bv_len) {
628 unsigned int prev_bv_len = prev->bv_len;
629 prev->bv_len += len;
630
631 if (q->merge_bvec_fn) {
632 struct bvec_merge_data bvm = {
633 /* prev_bvec is already charged in
634 bi_size, discharge it in order to
635 simulate merging updated prev_bvec
636 as new bvec. */
637 .bi_bdev = bio->bi_bdev,
638 .bi_sector = bio->bi_iter.bi_sector,
639 .bi_size = bio->bi_iter.bi_size -
640 prev_bv_len,
641 .bi_rw = bio->bi_rw,
642 };
643
644 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
645 prev->bv_len -= len;
646 return 0;
647 }
648 }
649
650 goto done;
651 }
652 }
653
654 if (bio->bi_vcnt >= bio->bi_max_vecs)
655 return 0;
656
657 /*
658 * we might lose a segment or two here, but rather that than
659 * make this too complex.
660 */
661
662 while (bio->bi_phys_segments >= queue_max_segments(q)) {
663
664 if (retried_segments)
665 return 0;
666
667 retried_segments = 1;
668 blk_recount_segments(q, bio);
669 }
670
671 /*
672 * setup the new entry, we might clear it again later if we
673 * cannot add the page
674 */
675 bvec = &bio->bi_io_vec[bio->bi_vcnt];
676 bvec->bv_page = page;
677 bvec->bv_len = len;
678 bvec->bv_offset = offset;
679
680 /*
681 * if queue has other restrictions (eg varying max sector size
682 * depending on offset), it can specify a merge_bvec_fn in the
683 * queue to get further control
684 */
685 if (q->merge_bvec_fn) {
686 struct bvec_merge_data bvm = {
687 .bi_bdev = bio->bi_bdev,
688 .bi_sector = bio->bi_iter.bi_sector,
689 .bi_size = bio->bi_iter.bi_size,
690 .bi_rw = bio->bi_rw,
691 };
692
693 /*
694 * merge_bvec_fn() returns number of bytes it can accept
695 * at this offset
696 */
697 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
698 bvec->bv_page = NULL;
699 bvec->bv_len = 0;
700 bvec->bv_offset = 0;
701 return 0;
702 }
703 }
704
705 /* If we may be able to merge these biovecs, force a recount */
706 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
707 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
708
709 bio->bi_vcnt++;
710 bio->bi_phys_segments++;
711 done:
712 bio->bi_iter.bi_size += len;
713 return len;
714 }
715
716 /**
717 * bio_add_pc_page - attempt to add page to bio
718 * @q: the target queue
719 * @bio: destination bio
720 * @page: page to add
721 * @len: vec entry length
722 * @offset: vec entry offset
723 *
724 * Attempt to add a page to the bio_vec maplist. This can fail for a
725 * number of reasons, such as the bio being full or target block device
726 * limitations. The target block device must allow bio's up to PAGE_SIZE,
727 * so it is always possible to add a single page to an empty bio.
728 *
729 * This should only be used by REQ_PC bios.
730 */
731 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
732 unsigned int len, unsigned int offset)
733 {
734 return __bio_add_page(q, bio, page, len, offset,
735 queue_max_hw_sectors(q));
736 }
737 EXPORT_SYMBOL(bio_add_pc_page);
738
739 /**
740 * bio_add_page - attempt to add page to bio
741 * @bio: destination bio
742 * @page: page to add
743 * @len: vec entry length
744 * @offset: vec entry offset
745 *
746 * Attempt to add a page to the bio_vec maplist. This can fail for a
747 * number of reasons, such as the bio being full or target block device
748 * limitations. The target block device must allow bio's up to PAGE_SIZE,
749 * so it is always possible to add a single page to an empty bio.
750 */
751 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
752 unsigned int offset)
753 {
754 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
755 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
756 }
757 EXPORT_SYMBOL(bio_add_page);
758
759 struct submit_bio_ret {
760 struct completion event;
761 int error;
762 };
763
764 static void submit_bio_wait_endio(struct bio *bio, int error)
765 {
766 struct submit_bio_ret *ret = bio->bi_private;
767
768 ret->error = error;
769 complete(&ret->event);
770 }
771
772 /**
773 * submit_bio_wait - submit a bio, and wait until it completes
774 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
775 * @bio: The &struct bio which describes the I/O
776 *
777 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
778 * bio_endio() on failure.
779 */
780 int submit_bio_wait(int rw, struct bio *bio)
781 {
782 struct submit_bio_ret ret;
783
784 rw |= REQ_SYNC;
785 init_completion(&ret.event);
786 bio->bi_private = &ret;
787 bio->bi_end_io = submit_bio_wait_endio;
788 submit_bio(rw, bio);
789 wait_for_completion(&ret.event);
790
791 return ret.error;
792 }
793 EXPORT_SYMBOL(submit_bio_wait);
794
795 /**
796 * bio_advance - increment/complete a bio by some number of bytes
797 * @bio: bio to advance
798 * @bytes: number of bytes to complete
799 *
800 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
801 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
802 * be updated on the last bvec as well.
803 *
804 * @bio will then represent the remaining, uncompleted portion of the io.
805 */
806 void bio_advance(struct bio *bio, unsigned bytes)
807 {
808 if (bio_integrity(bio))
809 bio_integrity_advance(bio, bytes);
810
811 bio->bi_iter.bi_sector += bytes >> 9;
812 bio->bi_iter.bi_size -= bytes;
813
814 if (bio->bi_rw & BIO_NO_ADVANCE_ITER_MASK)
815 return;
816
817 while (bytes) {
818 if (unlikely(bio->bi_iter.bi_idx >= bio->bi_vcnt)) {
819 WARN_ONCE(1, "bio idx %d >= vcnt %d\n",
820 bio->bi_iter.bi_idx, bio->bi_vcnt);
821 break;
822 }
823
824 if (bytes >= bio_iovec(bio)->bv_len) {
825 bytes -= bio_iovec(bio)->bv_len;
826 bio->bi_iter.bi_idx++;
827 } else {
828 bio_iovec(bio)->bv_len -= bytes;
829 bio_iovec(bio)->bv_offset += bytes;
830 bytes = 0;
831 }
832 }
833 }
834 EXPORT_SYMBOL(bio_advance);
835
836 /**
837 * bio_alloc_pages - allocates a single page for each bvec in a bio
838 * @bio: bio to allocate pages for
839 * @gfp_mask: flags for allocation
840 *
841 * Allocates pages up to @bio->bi_vcnt.
842 *
843 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
844 * freed.
845 */
846 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
847 {
848 int i;
849 struct bio_vec *bv;
850
851 bio_for_each_segment_all(bv, bio, i) {
852 bv->bv_page = alloc_page(gfp_mask);
853 if (!bv->bv_page) {
854 while (--bv >= bio->bi_io_vec)
855 __free_page(bv->bv_page);
856 return -ENOMEM;
857 }
858 }
859
860 return 0;
861 }
862 EXPORT_SYMBOL(bio_alloc_pages);
863
864 /**
865 * bio_copy_data - copy contents of data buffers from one chain of bios to
866 * another
867 * @src: source bio list
868 * @dst: destination bio list
869 *
870 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
871 * @src and @dst as linked lists of bios.
872 *
873 * Stops when it reaches the end of either @src or @dst - that is, copies
874 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
875 */
876 void bio_copy_data(struct bio *dst, struct bio *src)
877 {
878 struct bio_vec *src_bv, *dst_bv;
879 unsigned src_offset, dst_offset, bytes;
880 void *src_p, *dst_p;
881
882 src_bv = bio_iovec(src);
883 dst_bv = bio_iovec(dst);
884
885 src_offset = src_bv->bv_offset;
886 dst_offset = dst_bv->bv_offset;
887
888 while (1) {
889 if (src_offset == src_bv->bv_offset + src_bv->bv_len) {
890 src_bv++;
891 if (src_bv == bio_iovec_idx(src, src->bi_vcnt)) {
892 src = src->bi_next;
893 if (!src)
894 break;
895
896 src_bv = bio_iovec(src);
897 }
898
899 src_offset = src_bv->bv_offset;
900 }
901
902 if (dst_offset == dst_bv->bv_offset + dst_bv->bv_len) {
903 dst_bv++;
904 if (dst_bv == bio_iovec_idx(dst, dst->bi_vcnt)) {
905 dst = dst->bi_next;
906 if (!dst)
907 break;
908
909 dst_bv = bio_iovec(dst);
910 }
911
912 dst_offset = dst_bv->bv_offset;
913 }
914
915 bytes = min(dst_bv->bv_offset + dst_bv->bv_len - dst_offset,
916 src_bv->bv_offset + src_bv->bv_len - src_offset);
917
918 src_p = kmap_atomic(src_bv->bv_page);
919 dst_p = kmap_atomic(dst_bv->bv_page);
920
921 memcpy(dst_p + dst_offset,
922 src_p + src_offset,
923 bytes);
924
925 kunmap_atomic(dst_p);
926 kunmap_atomic(src_p);
927
928 src_offset += bytes;
929 dst_offset += bytes;
930 }
931 }
932 EXPORT_SYMBOL(bio_copy_data);
933
934 struct bio_map_data {
935 struct bio_vec *iovecs;
936 struct sg_iovec *sgvecs;
937 int nr_sgvecs;
938 int is_our_pages;
939 };
940
941 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
942 struct sg_iovec *iov, int iov_count,
943 int is_our_pages)
944 {
945 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
946 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
947 bmd->nr_sgvecs = iov_count;
948 bmd->is_our_pages = is_our_pages;
949 bio->bi_private = bmd;
950 }
951
952 static void bio_free_map_data(struct bio_map_data *bmd)
953 {
954 kfree(bmd->iovecs);
955 kfree(bmd->sgvecs);
956 kfree(bmd);
957 }
958
959 static struct bio_map_data *bio_alloc_map_data(int nr_segs,
960 unsigned int iov_count,
961 gfp_t gfp_mask)
962 {
963 struct bio_map_data *bmd;
964
965 if (iov_count > UIO_MAXIOV)
966 return NULL;
967
968 bmd = kmalloc(sizeof(*bmd), gfp_mask);
969 if (!bmd)
970 return NULL;
971
972 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
973 if (!bmd->iovecs) {
974 kfree(bmd);
975 return NULL;
976 }
977
978 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
979 if (bmd->sgvecs)
980 return bmd;
981
982 kfree(bmd->iovecs);
983 kfree(bmd);
984 return NULL;
985 }
986
987 static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
988 struct sg_iovec *iov, int iov_count,
989 int to_user, int from_user, int do_free_page)
990 {
991 int ret = 0, i;
992 struct bio_vec *bvec;
993 int iov_idx = 0;
994 unsigned int iov_off = 0;
995
996 bio_for_each_segment_all(bvec, bio, i) {
997 char *bv_addr = page_address(bvec->bv_page);
998 unsigned int bv_len = iovecs[i].bv_len;
999
1000 while (bv_len && iov_idx < iov_count) {
1001 unsigned int bytes;
1002 char __user *iov_addr;
1003
1004 bytes = min_t(unsigned int,
1005 iov[iov_idx].iov_len - iov_off, bv_len);
1006 iov_addr = iov[iov_idx].iov_base + iov_off;
1007
1008 if (!ret) {
1009 if (to_user)
1010 ret = copy_to_user(iov_addr, bv_addr,
1011 bytes);
1012
1013 if (from_user)
1014 ret = copy_from_user(bv_addr, iov_addr,
1015 bytes);
1016
1017 if (ret)
1018 ret = -EFAULT;
1019 }
1020
1021 bv_len -= bytes;
1022 bv_addr += bytes;
1023 iov_addr += bytes;
1024 iov_off += bytes;
1025
1026 if (iov[iov_idx].iov_len == iov_off) {
1027 iov_idx++;
1028 iov_off = 0;
1029 }
1030 }
1031
1032 if (do_free_page)
1033 __free_page(bvec->bv_page);
1034 }
1035
1036 return ret;
1037 }
1038
1039 /**
1040 * bio_uncopy_user - finish previously mapped bio
1041 * @bio: bio being terminated
1042 *
1043 * Free pages allocated from bio_copy_user() and write back data
1044 * to user space in case of a read.
1045 */
1046 int bio_uncopy_user(struct bio *bio)
1047 {
1048 struct bio_map_data *bmd = bio->bi_private;
1049 struct bio_vec *bvec;
1050 int ret = 0, i;
1051
1052 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1053 /*
1054 * if we're in a workqueue, the request is orphaned, so
1055 * don't copy into a random user address space, just free.
1056 */
1057 if (current->mm)
1058 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
1059 bmd->nr_sgvecs, bio_data_dir(bio) == READ,
1060 0, bmd->is_our_pages);
1061 else if (bmd->is_our_pages)
1062 bio_for_each_segment_all(bvec, bio, i)
1063 __free_page(bvec->bv_page);
1064 }
1065 bio_free_map_data(bmd);
1066 bio_put(bio);
1067 return ret;
1068 }
1069 EXPORT_SYMBOL(bio_uncopy_user);
1070
1071 /**
1072 * bio_copy_user_iov - copy user data to bio
1073 * @q: destination block queue
1074 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1075 * @iov: the iovec.
1076 * @iov_count: number of elements in the iovec
1077 * @write_to_vm: bool indicating writing to pages or not
1078 * @gfp_mask: memory allocation flags
1079 *
1080 * Prepares and returns a bio for indirect user io, bouncing data
1081 * to/from kernel pages as necessary. Must be paired with
1082 * call bio_uncopy_user() on io completion.
1083 */
1084 struct bio *bio_copy_user_iov(struct request_queue *q,
1085 struct rq_map_data *map_data,
1086 struct sg_iovec *iov, int iov_count,
1087 int write_to_vm, gfp_t gfp_mask)
1088 {
1089 struct bio_map_data *bmd;
1090 struct bio_vec *bvec;
1091 struct page *page;
1092 struct bio *bio;
1093 int i, ret;
1094 int nr_pages = 0;
1095 unsigned int len = 0;
1096 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1097
1098 for (i = 0; i < iov_count; i++) {
1099 unsigned long uaddr;
1100 unsigned long end;
1101 unsigned long start;
1102
1103 uaddr = (unsigned long)iov[i].iov_base;
1104 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1105 start = uaddr >> PAGE_SHIFT;
1106
1107 /*
1108 * Overflow, abort
1109 */
1110 if (end < start)
1111 return ERR_PTR(-EINVAL);
1112
1113 nr_pages += end - start;
1114 len += iov[i].iov_len;
1115 }
1116
1117 if (offset)
1118 nr_pages++;
1119
1120 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1121 if (!bmd)
1122 return ERR_PTR(-ENOMEM);
1123
1124 ret = -ENOMEM;
1125 bio = bio_kmalloc(gfp_mask, nr_pages);
1126 if (!bio)
1127 goto out_bmd;
1128
1129 if (!write_to_vm)
1130 bio->bi_rw |= REQ_WRITE;
1131
1132 ret = 0;
1133
1134 if (map_data) {
1135 nr_pages = 1 << map_data->page_order;
1136 i = map_data->offset / PAGE_SIZE;
1137 }
1138 while (len) {
1139 unsigned int bytes = PAGE_SIZE;
1140
1141 bytes -= offset;
1142
1143 if (bytes > len)
1144 bytes = len;
1145
1146 if (map_data) {
1147 if (i == map_data->nr_entries * nr_pages) {
1148 ret = -ENOMEM;
1149 break;
1150 }
1151
1152 page = map_data->pages[i / nr_pages];
1153 page += (i % nr_pages);
1154
1155 i++;
1156 } else {
1157 page = alloc_page(q->bounce_gfp | gfp_mask);
1158 if (!page) {
1159 ret = -ENOMEM;
1160 break;
1161 }
1162 }
1163
1164 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1165 break;
1166
1167 len -= bytes;
1168 offset = 0;
1169 }
1170
1171 if (ret)
1172 goto cleanup;
1173
1174 /*
1175 * success
1176 */
1177 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
1178 (map_data && map_data->from_user)) {
1179 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
1180 if (ret)
1181 goto cleanup;
1182 }
1183
1184 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1185 return bio;
1186 cleanup:
1187 if (!map_data)
1188 bio_for_each_segment_all(bvec, bio, i)
1189 __free_page(bvec->bv_page);
1190
1191 bio_put(bio);
1192 out_bmd:
1193 bio_free_map_data(bmd);
1194 return ERR_PTR(ret);
1195 }
1196
1197 /**
1198 * bio_copy_user - copy user data to bio
1199 * @q: destination block queue
1200 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1201 * @uaddr: start of user address
1202 * @len: length in bytes
1203 * @write_to_vm: bool indicating writing to pages or not
1204 * @gfp_mask: memory allocation flags
1205 *
1206 * Prepares and returns a bio for indirect user io, bouncing data
1207 * to/from kernel pages as necessary. Must be paired with
1208 * call bio_uncopy_user() on io completion.
1209 */
1210 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
1211 unsigned long uaddr, unsigned int len,
1212 int write_to_vm, gfp_t gfp_mask)
1213 {
1214 struct sg_iovec iov;
1215
1216 iov.iov_base = (void __user *)uaddr;
1217 iov.iov_len = len;
1218
1219 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
1220 }
1221 EXPORT_SYMBOL(bio_copy_user);
1222
1223 static struct bio *__bio_map_user_iov(struct request_queue *q,
1224 struct block_device *bdev,
1225 struct sg_iovec *iov, int iov_count,
1226 int write_to_vm, gfp_t gfp_mask)
1227 {
1228 int i, j;
1229 int nr_pages = 0;
1230 struct page **pages;
1231 struct bio *bio;
1232 int cur_page = 0;
1233 int ret, offset;
1234
1235 for (i = 0; i < iov_count; i++) {
1236 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1237 unsigned long len = iov[i].iov_len;
1238 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1239 unsigned long start = uaddr >> PAGE_SHIFT;
1240
1241 /*
1242 * Overflow, abort
1243 */
1244 if (end < start)
1245 return ERR_PTR(-EINVAL);
1246
1247 nr_pages += end - start;
1248 /*
1249 * buffer must be aligned to at least hardsector size for now
1250 */
1251 if (uaddr & queue_dma_alignment(q))
1252 return ERR_PTR(-EINVAL);
1253 }
1254
1255 if (!nr_pages)
1256 return ERR_PTR(-EINVAL);
1257
1258 bio = bio_kmalloc(gfp_mask, nr_pages);
1259 if (!bio)
1260 return ERR_PTR(-ENOMEM);
1261
1262 ret = -ENOMEM;
1263 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1264 if (!pages)
1265 goto out;
1266
1267 for (i = 0; i < iov_count; i++) {
1268 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1269 unsigned long len = iov[i].iov_len;
1270 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1271 unsigned long start = uaddr >> PAGE_SHIFT;
1272 const int local_nr_pages = end - start;
1273 const int page_limit = cur_page + local_nr_pages;
1274
1275 ret = get_user_pages_fast(uaddr, local_nr_pages,
1276 write_to_vm, &pages[cur_page]);
1277 if (ret < local_nr_pages) {
1278 ret = -EFAULT;
1279 goto out_unmap;
1280 }
1281
1282 offset = uaddr & ~PAGE_MASK;
1283 for (j = cur_page; j < page_limit; j++) {
1284 unsigned int bytes = PAGE_SIZE - offset;
1285
1286 if (len <= 0)
1287 break;
1288
1289 if (bytes > len)
1290 bytes = len;
1291
1292 /*
1293 * sorry...
1294 */
1295 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1296 bytes)
1297 break;
1298
1299 len -= bytes;
1300 offset = 0;
1301 }
1302
1303 cur_page = j;
1304 /*
1305 * release the pages we didn't map into the bio, if any
1306 */
1307 while (j < page_limit)
1308 page_cache_release(pages[j++]);
1309 }
1310
1311 kfree(pages);
1312
1313 /*
1314 * set data direction, and check if mapped pages need bouncing
1315 */
1316 if (!write_to_vm)
1317 bio->bi_rw |= REQ_WRITE;
1318
1319 bio->bi_bdev = bdev;
1320 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1321 return bio;
1322
1323 out_unmap:
1324 for (i = 0; i < nr_pages; i++) {
1325 if(!pages[i])
1326 break;
1327 page_cache_release(pages[i]);
1328 }
1329 out:
1330 kfree(pages);
1331 bio_put(bio);
1332 return ERR_PTR(ret);
1333 }
1334
1335 /**
1336 * bio_map_user - map user address into bio
1337 * @q: the struct request_queue for the bio
1338 * @bdev: destination block device
1339 * @uaddr: start of user address
1340 * @len: length in bytes
1341 * @write_to_vm: bool indicating writing to pages or not
1342 * @gfp_mask: memory allocation flags
1343 *
1344 * Map the user space address into a bio suitable for io to a block
1345 * device. Returns an error pointer in case of error.
1346 */
1347 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1348 unsigned long uaddr, unsigned int len, int write_to_vm,
1349 gfp_t gfp_mask)
1350 {
1351 struct sg_iovec iov;
1352
1353 iov.iov_base = (void __user *)uaddr;
1354 iov.iov_len = len;
1355
1356 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1357 }
1358 EXPORT_SYMBOL(bio_map_user);
1359
1360 /**
1361 * bio_map_user_iov - map user sg_iovec table into bio
1362 * @q: the struct request_queue for the bio
1363 * @bdev: destination block device
1364 * @iov: the iovec.
1365 * @iov_count: number of elements in the iovec
1366 * @write_to_vm: bool indicating writing to pages or not
1367 * @gfp_mask: memory allocation flags
1368 *
1369 * Map the user space address into a bio suitable for io to a block
1370 * device. Returns an error pointer in case of error.
1371 */
1372 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1373 struct sg_iovec *iov, int iov_count,
1374 int write_to_vm, gfp_t gfp_mask)
1375 {
1376 struct bio *bio;
1377
1378 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1379 gfp_mask);
1380 if (IS_ERR(bio))
1381 return bio;
1382
1383 /*
1384 * subtle -- if __bio_map_user() ended up bouncing a bio,
1385 * it would normally disappear when its bi_end_io is run.
1386 * however, we need it for the unmap, so grab an extra
1387 * reference to it
1388 */
1389 bio_get(bio);
1390
1391 return bio;
1392 }
1393
1394 static void __bio_unmap_user(struct bio *bio)
1395 {
1396 struct bio_vec *bvec;
1397 int i;
1398
1399 /*
1400 * make sure we dirty pages we wrote to
1401 */
1402 bio_for_each_segment_all(bvec, bio, i) {
1403 if (bio_data_dir(bio) == READ)
1404 set_page_dirty_lock(bvec->bv_page);
1405
1406 page_cache_release(bvec->bv_page);
1407 }
1408
1409 bio_put(bio);
1410 }
1411
1412 /**
1413 * bio_unmap_user - unmap a bio
1414 * @bio: the bio being unmapped
1415 *
1416 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1417 * a process context.
1418 *
1419 * bio_unmap_user() may sleep.
1420 */
1421 void bio_unmap_user(struct bio *bio)
1422 {
1423 __bio_unmap_user(bio);
1424 bio_put(bio);
1425 }
1426 EXPORT_SYMBOL(bio_unmap_user);
1427
1428 static void bio_map_kern_endio(struct bio *bio, int err)
1429 {
1430 bio_put(bio);
1431 }
1432
1433 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1434 unsigned int len, gfp_t gfp_mask)
1435 {
1436 unsigned long kaddr = (unsigned long)data;
1437 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1438 unsigned long start = kaddr >> PAGE_SHIFT;
1439 const int nr_pages = end - start;
1440 int offset, i;
1441 struct bio *bio;
1442
1443 bio = bio_kmalloc(gfp_mask, nr_pages);
1444 if (!bio)
1445 return ERR_PTR(-ENOMEM);
1446
1447 offset = offset_in_page(kaddr);
1448 for (i = 0; i < nr_pages; i++) {
1449 unsigned int bytes = PAGE_SIZE - offset;
1450
1451 if (len <= 0)
1452 break;
1453
1454 if (bytes > len)
1455 bytes = len;
1456
1457 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1458 offset) < bytes)
1459 break;
1460
1461 data += bytes;
1462 len -= bytes;
1463 offset = 0;
1464 }
1465
1466 bio->bi_end_io = bio_map_kern_endio;
1467 return bio;
1468 }
1469
1470 /**
1471 * bio_map_kern - map kernel address into bio
1472 * @q: the struct request_queue for the bio
1473 * @data: pointer to buffer to map
1474 * @len: length in bytes
1475 * @gfp_mask: allocation flags for bio allocation
1476 *
1477 * Map the kernel address into a bio suitable for io to a block
1478 * device. Returns an error pointer in case of error.
1479 */
1480 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1481 gfp_t gfp_mask)
1482 {
1483 struct bio *bio;
1484
1485 bio = __bio_map_kern(q, data, len, gfp_mask);
1486 if (IS_ERR(bio))
1487 return bio;
1488
1489 if (bio->bi_iter.bi_size == len)
1490 return bio;
1491
1492 /*
1493 * Don't support partial mappings.
1494 */
1495 bio_put(bio);
1496 return ERR_PTR(-EINVAL);
1497 }
1498 EXPORT_SYMBOL(bio_map_kern);
1499
1500 static void bio_copy_kern_endio(struct bio *bio, int err)
1501 {
1502 struct bio_vec *bvec;
1503 const int read = bio_data_dir(bio) == READ;
1504 struct bio_map_data *bmd = bio->bi_private;
1505 int i;
1506 char *p = bmd->sgvecs[0].iov_base;
1507
1508 bio_for_each_segment_all(bvec, bio, i) {
1509 char *addr = page_address(bvec->bv_page);
1510 int len = bmd->iovecs[i].bv_len;
1511
1512 if (read)
1513 memcpy(p, addr, len);
1514
1515 __free_page(bvec->bv_page);
1516 p += len;
1517 }
1518
1519 bio_free_map_data(bmd);
1520 bio_put(bio);
1521 }
1522
1523 /**
1524 * bio_copy_kern - copy kernel address into bio
1525 * @q: the struct request_queue for the bio
1526 * @data: pointer to buffer to copy
1527 * @len: length in bytes
1528 * @gfp_mask: allocation flags for bio and page allocation
1529 * @reading: data direction is READ
1530 *
1531 * copy the kernel address into a bio suitable for io to a block
1532 * device. Returns an error pointer in case of error.
1533 */
1534 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1535 gfp_t gfp_mask, int reading)
1536 {
1537 struct bio *bio;
1538 struct bio_vec *bvec;
1539 int i;
1540
1541 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1542 if (IS_ERR(bio))
1543 return bio;
1544
1545 if (!reading) {
1546 void *p = data;
1547
1548 bio_for_each_segment_all(bvec, bio, i) {
1549 char *addr = page_address(bvec->bv_page);
1550
1551 memcpy(addr, p, bvec->bv_len);
1552 p += bvec->bv_len;
1553 }
1554 }
1555
1556 bio->bi_end_io = bio_copy_kern_endio;
1557
1558 return bio;
1559 }
1560 EXPORT_SYMBOL(bio_copy_kern);
1561
1562 /*
1563 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1564 * for performing direct-IO in BIOs.
1565 *
1566 * The problem is that we cannot run set_page_dirty() from interrupt context
1567 * because the required locks are not interrupt-safe. So what we can do is to
1568 * mark the pages dirty _before_ performing IO. And in interrupt context,
1569 * check that the pages are still dirty. If so, fine. If not, redirty them
1570 * in process context.
1571 *
1572 * We special-case compound pages here: normally this means reads into hugetlb
1573 * pages. The logic in here doesn't really work right for compound pages
1574 * because the VM does not uniformly chase down the head page in all cases.
1575 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1576 * handle them at all. So we skip compound pages here at an early stage.
1577 *
1578 * Note that this code is very hard to test under normal circumstances because
1579 * direct-io pins the pages with get_user_pages(). This makes
1580 * is_page_cache_freeable return false, and the VM will not clean the pages.
1581 * But other code (eg, flusher threads) could clean the pages if they are mapped
1582 * pagecache.
1583 *
1584 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1585 * deferred bio dirtying paths.
1586 */
1587
1588 /*
1589 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1590 */
1591 void bio_set_pages_dirty(struct bio *bio)
1592 {
1593 struct bio_vec *bvec;
1594 int i;
1595
1596 bio_for_each_segment_all(bvec, bio, i) {
1597 struct page *page = bvec->bv_page;
1598
1599 if (page && !PageCompound(page))
1600 set_page_dirty_lock(page);
1601 }
1602 }
1603
1604 static void bio_release_pages(struct bio *bio)
1605 {
1606 struct bio_vec *bvec;
1607 int i;
1608
1609 bio_for_each_segment_all(bvec, bio, i) {
1610 struct page *page = bvec->bv_page;
1611
1612 if (page)
1613 put_page(page);
1614 }
1615 }
1616
1617 /*
1618 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1619 * If they are, then fine. If, however, some pages are clean then they must
1620 * have been written out during the direct-IO read. So we take another ref on
1621 * the BIO and the offending pages and re-dirty the pages in process context.
1622 *
1623 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1624 * here on. It will run one page_cache_release() against each page and will
1625 * run one bio_put() against the BIO.
1626 */
1627
1628 static void bio_dirty_fn(struct work_struct *work);
1629
1630 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1631 static DEFINE_SPINLOCK(bio_dirty_lock);
1632 static struct bio *bio_dirty_list;
1633
1634 /*
1635 * This runs in process context
1636 */
1637 static void bio_dirty_fn(struct work_struct *work)
1638 {
1639 unsigned long flags;
1640 struct bio *bio;
1641
1642 spin_lock_irqsave(&bio_dirty_lock, flags);
1643 bio = bio_dirty_list;
1644 bio_dirty_list = NULL;
1645 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1646
1647 while (bio) {
1648 struct bio *next = bio->bi_private;
1649
1650 bio_set_pages_dirty(bio);
1651 bio_release_pages(bio);
1652 bio_put(bio);
1653 bio = next;
1654 }
1655 }
1656
1657 void bio_check_pages_dirty(struct bio *bio)
1658 {
1659 struct bio_vec *bvec;
1660 int nr_clean_pages = 0;
1661 int i;
1662
1663 bio_for_each_segment_all(bvec, bio, i) {
1664 struct page *page = bvec->bv_page;
1665
1666 if (PageDirty(page) || PageCompound(page)) {
1667 page_cache_release(page);
1668 bvec->bv_page = NULL;
1669 } else {
1670 nr_clean_pages++;
1671 }
1672 }
1673
1674 if (nr_clean_pages) {
1675 unsigned long flags;
1676
1677 spin_lock_irqsave(&bio_dirty_lock, flags);
1678 bio->bi_private = bio_dirty_list;
1679 bio_dirty_list = bio;
1680 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1681 schedule_work(&bio_dirty_work);
1682 } else {
1683 bio_put(bio);
1684 }
1685 }
1686
1687 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1688 void bio_flush_dcache_pages(struct bio *bi)
1689 {
1690 int i;
1691 struct bio_vec *bvec;
1692
1693 bio_for_each_segment(bvec, bi, i)
1694 flush_dcache_page(bvec->bv_page);
1695 }
1696 EXPORT_SYMBOL(bio_flush_dcache_pages);
1697 #endif
1698
1699 /**
1700 * bio_endio - end I/O on a bio
1701 * @bio: bio
1702 * @error: error, if any
1703 *
1704 * Description:
1705 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1706 * preferred way to end I/O on a bio, it takes care of clearing
1707 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1708 * established -Exxxx (-EIO, for instance) error values in case
1709 * something went wrong. No one should call bi_end_io() directly on a
1710 * bio unless they own it and thus know that it has an end_io
1711 * function.
1712 **/
1713 void bio_endio(struct bio *bio, int error)
1714 {
1715 if (error)
1716 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1717 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1718 error = -EIO;
1719
1720 if (bio->bi_end_io)
1721 bio->bi_end_io(bio, error);
1722 }
1723 EXPORT_SYMBOL(bio_endio);
1724
1725 void bio_pair_release(struct bio_pair *bp)
1726 {
1727 if (atomic_dec_and_test(&bp->cnt)) {
1728 struct bio *master = bp->bio1.bi_private;
1729
1730 bio_endio(master, bp->error);
1731 mempool_free(bp, bp->bio2.bi_private);
1732 }
1733 }
1734 EXPORT_SYMBOL(bio_pair_release);
1735
1736 static void bio_pair_end_1(struct bio *bi, int err)
1737 {
1738 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1739
1740 if (err)
1741 bp->error = err;
1742
1743 bio_pair_release(bp);
1744 }
1745
1746 static void bio_pair_end_2(struct bio *bi, int err)
1747 {
1748 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1749
1750 if (err)
1751 bp->error = err;
1752
1753 bio_pair_release(bp);
1754 }
1755
1756 /*
1757 * split a bio - only worry about a bio with a single page in its iovec
1758 */
1759 struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1760 {
1761 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1762
1763 if (!bp)
1764 return bp;
1765
1766 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
1767 bi->bi_iter.bi_sector + first_sectors);
1768
1769 BUG_ON(bio_segments(bi) > 1);
1770 atomic_set(&bp->cnt, 3);
1771 bp->error = 0;
1772 bp->bio1 = *bi;
1773 bp->bio2 = *bi;
1774 bp->bio2.bi_iter.bi_sector += first_sectors;
1775 bp->bio2.bi_iter.bi_size -= first_sectors << 9;
1776 bp->bio1.bi_iter.bi_size = first_sectors << 9;
1777
1778 if (bi->bi_vcnt != 0) {
1779 bp->bv1 = *bio_iovec(bi);
1780 bp->bv2 = *bio_iovec(bi);
1781
1782 if (bio_is_rw(bi)) {
1783 bp->bv2.bv_offset += first_sectors << 9;
1784 bp->bv2.bv_len -= first_sectors << 9;
1785 bp->bv1.bv_len = first_sectors << 9;
1786 }
1787
1788 bp->bio1.bi_io_vec = &bp->bv1;
1789 bp->bio2.bi_io_vec = &bp->bv2;
1790
1791 bp->bio1.bi_max_vecs = 1;
1792 bp->bio2.bi_max_vecs = 1;
1793 }
1794
1795 bp->bio1.bi_end_io = bio_pair_end_1;
1796 bp->bio2.bi_end_io = bio_pair_end_2;
1797
1798 bp->bio1.bi_private = bi;
1799 bp->bio2.bi_private = bio_split_pool;
1800
1801 if (bio_integrity(bi))
1802 bio_integrity_split(bi, bp, first_sectors);
1803
1804 return bp;
1805 }
1806 EXPORT_SYMBOL(bio_split);
1807
1808 /**
1809 * bio_trim - trim a bio
1810 * @bio: bio to trim
1811 * @offset: number of sectors to trim from the front of @bio
1812 * @size: size we want to trim @bio to, in sectors
1813 */
1814 void bio_trim(struct bio *bio, int offset, int size)
1815 {
1816 /* 'bio' is a cloned bio which we need to trim to match
1817 * the given offset and size.
1818 * This requires adjusting bi_sector, bi_size, and bi_io_vec
1819 */
1820 int i;
1821 struct bio_vec *bvec;
1822 int sofar = 0;
1823
1824 size <<= 9;
1825 if (offset == 0 && size == bio->bi_iter.bi_size)
1826 return;
1827
1828 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1829
1830 bio_advance(bio, offset << 9);
1831
1832 bio->bi_iter.bi_size = size;
1833
1834 /* avoid any complications with bi_idx being non-zero*/
1835 if (bio->bi_iter.bi_idx) {
1836 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_iter.bi_idx,
1837 (bio->bi_vcnt - bio->bi_iter.bi_idx) *
1838 sizeof(struct bio_vec));
1839 bio->bi_vcnt -= bio->bi_iter.bi_idx;
1840 bio->bi_iter.bi_idx = 0;
1841 }
1842 /* Make sure vcnt and last bv are not too big */
1843 bio_for_each_segment(bvec, bio, i) {
1844 if (sofar + bvec->bv_len > size)
1845 bvec->bv_len = size - sofar;
1846 if (bvec->bv_len == 0) {
1847 bio->bi_vcnt = i;
1848 break;
1849 }
1850 sofar += bvec->bv_len;
1851 }
1852 }
1853 EXPORT_SYMBOL_GPL(bio_trim);
1854
1855 /**
1856 * bio_sector_offset - Find hardware sector offset in bio
1857 * @bio: bio to inspect
1858 * @index: bio_vec index
1859 * @offset: offset in bv_page
1860 *
1861 * Return the number of hardware sectors between beginning of bio
1862 * and an end point indicated by a bio_vec index and an offset
1863 * within that vector's page.
1864 */
1865 sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1866 unsigned int offset)
1867 {
1868 unsigned int sector_sz;
1869 struct bio_vec *bv;
1870 sector_t sectors;
1871 int i;
1872
1873 sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
1874 sectors = 0;
1875
1876 if (index >= bio->bi_iter.bi_idx)
1877 index = bio->bi_vcnt - 1;
1878
1879 bio_for_each_segment_all(bv, bio, i) {
1880 if (i == index) {
1881 if (offset > bv->bv_offset)
1882 sectors += (offset - bv->bv_offset) / sector_sz;
1883 break;
1884 }
1885
1886 sectors += bv->bv_len / sector_sz;
1887 }
1888
1889 return sectors;
1890 }
1891 EXPORT_SYMBOL(bio_sector_offset);
1892
1893 /*
1894 * create memory pools for biovec's in a bio_set.
1895 * use the global biovec slabs created for general use.
1896 */
1897 mempool_t *biovec_create_pool(struct bio_set *bs, int pool_entries)
1898 {
1899 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1900
1901 return mempool_create_slab_pool(pool_entries, bp->slab);
1902 }
1903
1904 void bioset_free(struct bio_set *bs)
1905 {
1906 if (bs->rescue_workqueue)
1907 destroy_workqueue(bs->rescue_workqueue);
1908
1909 if (bs->bio_pool)
1910 mempool_destroy(bs->bio_pool);
1911
1912 if (bs->bvec_pool)
1913 mempool_destroy(bs->bvec_pool);
1914
1915 bioset_integrity_free(bs);
1916 bio_put_slab(bs);
1917
1918 kfree(bs);
1919 }
1920 EXPORT_SYMBOL(bioset_free);
1921
1922 /**
1923 * bioset_create - Create a bio_set
1924 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1925 * @front_pad: Number of bytes to allocate in front of the returned bio
1926 *
1927 * Description:
1928 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1929 * to ask for a number of bytes to be allocated in front of the bio.
1930 * Front pad allocation is useful for embedding the bio inside
1931 * another structure, to avoid allocating extra data to go with the bio.
1932 * Note that the bio must be embedded at the END of that structure always,
1933 * or things will break badly.
1934 */
1935 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1936 {
1937 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1938 struct bio_set *bs;
1939
1940 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1941 if (!bs)
1942 return NULL;
1943
1944 bs->front_pad = front_pad;
1945
1946 spin_lock_init(&bs->rescue_lock);
1947 bio_list_init(&bs->rescue_list);
1948 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1949
1950 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1951 if (!bs->bio_slab) {
1952 kfree(bs);
1953 return NULL;
1954 }
1955
1956 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1957 if (!bs->bio_pool)
1958 goto bad;
1959
1960 bs->bvec_pool = biovec_create_pool(bs, pool_size);
1961 if (!bs->bvec_pool)
1962 goto bad;
1963
1964 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1965 if (!bs->rescue_workqueue)
1966 goto bad;
1967
1968 return bs;
1969 bad:
1970 bioset_free(bs);
1971 return NULL;
1972 }
1973 EXPORT_SYMBOL(bioset_create);
1974
1975 #ifdef CONFIG_BLK_CGROUP
1976 /**
1977 * bio_associate_current - associate a bio with %current
1978 * @bio: target bio
1979 *
1980 * Associate @bio with %current if it hasn't been associated yet. Block
1981 * layer will treat @bio as if it were issued by %current no matter which
1982 * task actually issues it.
1983 *
1984 * This function takes an extra reference of @task's io_context and blkcg
1985 * which will be put when @bio is released. The caller must own @bio,
1986 * ensure %current->io_context exists, and is responsible for synchronizing
1987 * calls to this function.
1988 */
1989 int bio_associate_current(struct bio *bio)
1990 {
1991 struct io_context *ioc;
1992 struct cgroup_subsys_state *css;
1993
1994 if (bio->bi_ioc)
1995 return -EBUSY;
1996
1997 ioc = current->io_context;
1998 if (!ioc)
1999 return -ENOENT;
2000
2001 /* acquire active ref on @ioc and associate */
2002 get_io_context_active(ioc);
2003 bio->bi_ioc = ioc;
2004
2005 /* associate blkcg if exists */
2006 rcu_read_lock();
2007 css = task_css(current, blkio_subsys_id);
2008 if (css && css_tryget(css))
2009 bio->bi_css = css;
2010 rcu_read_unlock();
2011
2012 return 0;
2013 }
2014
2015 /**
2016 * bio_disassociate_task - undo bio_associate_current()
2017 * @bio: target bio
2018 */
2019 void bio_disassociate_task(struct bio *bio)
2020 {
2021 if (bio->bi_ioc) {
2022 put_io_context(bio->bi_ioc);
2023 bio->bi_ioc = NULL;
2024 }
2025 if (bio->bi_css) {
2026 css_put(bio->bi_css);
2027 bio->bi_css = NULL;
2028 }
2029 }
2030
2031 #endif /* CONFIG_BLK_CGROUP */
2032
2033 static void __init biovec_init_slabs(void)
2034 {
2035 int i;
2036
2037 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2038 int size;
2039 struct biovec_slab *bvs = bvec_slabs + i;
2040
2041 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2042 bvs->slab = NULL;
2043 continue;
2044 }
2045
2046 size = bvs->nr_vecs * sizeof(struct bio_vec);
2047 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2048 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2049 }
2050 }
2051
2052 static int __init init_bio(void)
2053 {
2054 bio_slab_max = 2;
2055 bio_slab_nr = 0;
2056 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2057 if (!bio_slabs)
2058 panic("bio: can't allocate bios\n");
2059
2060 bio_integrity_init();
2061 biovec_init_slabs();
2062
2063 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2064 if (!fs_bio_set)
2065 panic("bio: can't allocate bios\n");
2066
2067 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2068 panic("bio: can't create integrity pool\n");
2069
2070 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
2071 sizeof(struct bio_pair));
2072 if (!bio_split_pool)
2073 panic("bio: can't create split pool\n");
2074
2075 return 0;
2076 }
2077 subsys_initcall(init_bio);