coredump: add a new elf note with siginfo of the signal
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / binfmt_elf.c
1 /*
2 * linux/fs/binfmt_elf.c
3 *
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
8 *
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/security.h>
31 #include <linux/random.h>
32 #include <linux/elf.h>
33 #include <linux/utsname.h>
34 #include <linux/coredump.h>
35 #include <asm/uaccess.h>
36 #include <asm/param.h>
37 #include <asm/page.h>
38 #include <asm/exec.h>
39
40 #ifndef user_siginfo_t
41 #define user_siginfo_t siginfo_t
42 #endif
43
44 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
45 static int load_elf_library(struct file *);
46 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
47 int, int, unsigned long);
48
49 /*
50 * If we don't support core dumping, then supply a NULL so we
51 * don't even try.
52 */
53 #ifdef CONFIG_ELF_CORE
54 static int elf_core_dump(struct coredump_params *cprm);
55 #else
56 #define elf_core_dump NULL
57 #endif
58
59 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
60 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
61 #else
62 #define ELF_MIN_ALIGN PAGE_SIZE
63 #endif
64
65 #ifndef ELF_CORE_EFLAGS
66 #define ELF_CORE_EFLAGS 0
67 #endif
68
69 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
70 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
71 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
72
73 static struct linux_binfmt elf_format = {
74 .module = THIS_MODULE,
75 .load_binary = load_elf_binary,
76 .load_shlib = load_elf_library,
77 .core_dump = elf_core_dump,
78 .min_coredump = ELF_EXEC_PAGESIZE,
79 };
80
81 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
82
83 static int set_brk(unsigned long start, unsigned long end)
84 {
85 start = ELF_PAGEALIGN(start);
86 end = ELF_PAGEALIGN(end);
87 if (end > start) {
88 unsigned long addr;
89 addr = vm_brk(start, end - start);
90 if (BAD_ADDR(addr))
91 return addr;
92 }
93 current->mm->start_brk = current->mm->brk = end;
94 return 0;
95 }
96
97 /* We need to explicitly zero any fractional pages
98 after the data section (i.e. bss). This would
99 contain the junk from the file that should not
100 be in memory
101 */
102 static int padzero(unsigned long elf_bss)
103 {
104 unsigned long nbyte;
105
106 nbyte = ELF_PAGEOFFSET(elf_bss);
107 if (nbyte) {
108 nbyte = ELF_MIN_ALIGN - nbyte;
109 if (clear_user((void __user *) elf_bss, nbyte))
110 return -EFAULT;
111 }
112 return 0;
113 }
114
115 /* Let's use some macros to make this stack manipulation a little clearer */
116 #ifdef CONFIG_STACK_GROWSUP
117 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
118 #define STACK_ROUND(sp, items) \
119 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
120 #define STACK_ALLOC(sp, len) ({ \
121 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
122 old_sp; })
123 #else
124 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
125 #define STACK_ROUND(sp, items) \
126 (((unsigned long) (sp - items)) &~ 15UL)
127 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
128 #endif
129
130 #ifndef ELF_BASE_PLATFORM
131 /*
132 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
133 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
134 * will be copied to the user stack in the same manner as AT_PLATFORM.
135 */
136 #define ELF_BASE_PLATFORM NULL
137 #endif
138
139 static int
140 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
141 unsigned long load_addr, unsigned long interp_load_addr)
142 {
143 unsigned long p = bprm->p;
144 int argc = bprm->argc;
145 int envc = bprm->envc;
146 elf_addr_t __user *argv;
147 elf_addr_t __user *envp;
148 elf_addr_t __user *sp;
149 elf_addr_t __user *u_platform;
150 elf_addr_t __user *u_base_platform;
151 elf_addr_t __user *u_rand_bytes;
152 const char *k_platform = ELF_PLATFORM;
153 const char *k_base_platform = ELF_BASE_PLATFORM;
154 unsigned char k_rand_bytes[16];
155 int items;
156 elf_addr_t *elf_info;
157 int ei_index = 0;
158 const struct cred *cred = current_cred();
159 struct vm_area_struct *vma;
160
161 /*
162 * In some cases (e.g. Hyper-Threading), we want to avoid L1
163 * evictions by the processes running on the same package. One
164 * thing we can do is to shuffle the initial stack for them.
165 */
166
167 p = arch_align_stack(p);
168
169 /*
170 * If this architecture has a platform capability string, copy it
171 * to userspace. In some cases (Sparc), this info is impossible
172 * for userspace to get any other way, in others (i386) it is
173 * merely difficult.
174 */
175 u_platform = NULL;
176 if (k_platform) {
177 size_t len = strlen(k_platform) + 1;
178
179 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
180 if (__copy_to_user(u_platform, k_platform, len))
181 return -EFAULT;
182 }
183
184 /*
185 * If this architecture has a "base" platform capability
186 * string, copy it to userspace.
187 */
188 u_base_platform = NULL;
189 if (k_base_platform) {
190 size_t len = strlen(k_base_platform) + 1;
191
192 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
193 if (__copy_to_user(u_base_platform, k_base_platform, len))
194 return -EFAULT;
195 }
196
197 /*
198 * Generate 16 random bytes for userspace PRNG seeding.
199 */
200 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
201 u_rand_bytes = (elf_addr_t __user *)
202 STACK_ALLOC(p, sizeof(k_rand_bytes));
203 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
204 return -EFAULT;
205
206 /* Create the ELF interpreter info */
207 elf_info = (elf_addr_t *)current->mm->saved_auxv;
208 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
209 #define NEW_AUX_ENT(id, val) \
210 do { \
211 elf_info[ei_index++] = id; \
212 elf_info[ei_index++] = val; \
213 } while (0)
214
215 #ifdef ARCH_DLINFO
216 /*
217 * ARCH_DLINFO must come first so PPC can do its special alignment of
218 * AUXV.
219 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
220 * ARCH_DLINFO changes
221 */
222 ARCH_DLINFO;
223 #endif
224 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
225 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
226 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
227 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
228 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
229 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
230 NEW_AUX_ENT(AT_BASE, interp_load_addr);
231 NEW_AUX_ENT(AT_FLAGS, 0);
232 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
233 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
234 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
235 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
236 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
237 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
238 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
239 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
240 if (k_platform) {
241 NEW_AUX_ENT(AT_PLATFORM,
242 (elf_addr_t)(unsigned long)u_platform);
243 }
244 if (k_base_platform) {
245 NEW_AUX_ENT(AT_BASE_PLATFORM,
246 (elf_addr_t)(unsigned long)u_base_platform);
247 }
248 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
249 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
250 }
251 #undef NEW_AUX_ENT
252 /* AT_NULL is zero; clear the rest too */
253 memset(&elf_info[ei_index], 0,
254 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
255
256 /* And advance past the AT_NULL entry. */
257 ei_index += 2;
258
259 sp = STACK_ADD(p, ei_index);
260
261 items = (argc + 1) + (envc + 1) + 1;
262 bprm->p = STACK_ROUND(sp, items);
263
264 /* Point sp at the lowest address on the stack */
265 #ifdef CONFIG_STACK_GROWSUP
266 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
267 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
268 #else
269 sp = (elf_addr_t __user *)bprm->p;
270 #endif
271
272
273 /*
274 * Grow the stack manually; some architectures have a limit on how
275 * far ahead a user-space access may be in order to grow the stack.
276 */
277 vma = find_extend_vma(current->mm, bprm->p);
278 if (!vma)
279 return -EFAULT;
280
281 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
282 if (__put_user(argc, sp++))
283 return -EFAULT;
284 argv = sp;
285 envp = argv + argc + 1;
286
287 /* Populate argv and envp */
288 p = current->mm->arg_end = current->mm->arg_start;
289 while (argc-- > 0) {
290 size_t len;
291 if (__put_user((elf_addr_t)p, argv++))
292 return -EFAULT;
293 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
294 if (!len || len > MAX_ARG_STRLEN)
295 return -EINVAL;
296 p += len;
297 }
298 if (__put_user(0, argv))
299 return -EFAULT;
300 current->mm->arg_end = current->mm->env_start = p;
301 while (envc-- > 0) {
302 size_t len;
303 if (__put_user((elf_addr_t)p, envp++))
304 return -EFAULT;
305 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
306 if (!len || len > MAX_ARG_STRLEN)
307 return -EINVAL;
308 p += len;
309 }
310 if (__put_user(0, envp))
311 return -EFAULT;
312 current->mm->env_end = p;
313
314 /* Put the elf_info on the stack in the right place. */
315 sp = (elf_addr_t __user *)envp + 1;
316 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
317 return -EFAULT;
318 return 0;
319 }
320
321 static unsigned long elf_map(struct file *filep, unsigned long addr,
322 struct elf_phdr *eppnt, int prot, int type,
323 unsigned long total_size)
324 {
325 unsigned long map_addr;
326 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
327 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
328 addr = ELF_PAGESTART(addr);
329 size = ELF_PAGEALIGN(size);
330
331 /* mmap() will return -EINVAL if given a zero size, but a
332 * segment with zero filesize is perfectly valid */
333 if (!size)
334 return addr;
335
336 /*
337 * total_size is the size of the ELF (interpreter) image.
338 * The _first_ mmap needs to know the full size, otherwise
339 * randomization might put this image into an overlapping
340 * position with the ELF binary image. (since size < total_size)
341 * So we first map the 'big' image - and unmap the remainder at
342 * the end. (which unmap is needed for ELF images with holes.)
343 */
344 if (total_size) {
345 total_size = ELF_PAGEALIGN(total_size);
346 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
347 if (!BAD_ADDR(map_addr))
348 vm_munmap(map_addr+size, total_size-size);
349 } else
350 map_addr = vm_mmap(filep, addr, size, prot, type, off);
351
352 return(map_addr);
353 }
354
355 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
356 {
357 int i, first_idx = -1, last_idx = -1;
358
359 for (i = 0; i < nr; i++) {
360 if (cmds[i].p_type == PT_LOAD) {
361 last_idx = i;
362 if (first_idx == -1)
363 first_idx = i;
364 }
365 }
366 if (first_idx == -1)
367 return 0;
368
369 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
370 ELF_PAGESTART(cmds[first_idx].p_vaddr);
371 }
372
373
374 /* This is much more generalized than the library routine read function,
375 so we keep this separate. Technically the library read function
376 is only provided so that we can read a.out libraries that have
377 an ELF header */
378
379 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
380 struct file *interpreter, unsigned long *interp_map_addr,
381 unsigned long no_base)
382 {
383 struct elf_phdr *elf_phdata;
384 struct elf_phdr *eppnt;
385 unsigned long load_addr = 0;
386 int load_addr_set = 0;
387 unsigned long last_bss = 0, elf_bss = 0;
388 unsigned long error = ~0UL;
389 unsigned long total_size;
390 int retval, i, size;
391
392 /* First of all, some simple consistency checks */
393 if (interp_elf_ex->e_type != ET_EXEC &&
394 interp_elf_ex->e_type != ET_DYN)
395 goto out;
396 if (!elf_check_arch(interp_elf_ex))
397 goto out;
398 if (!interpreter->f_op || !interpreter->f_op->mmap)
399 goto out;
400
401 /*
402 * If the size of this structure has changed, then punt, since
403 * we will be doing the wrong thing.
404 */
405 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
406 goto out;
407 if (interp_elf_ex->e_phnum < 1 ||
408 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
409 goto out;
410
411 /* Now read in all of the header information */
412 size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
413 if (size > ELF_MIN_ALIGN)
414 goto out;
415 elf_phdata = kmalloc(size, GFP_KERNEL);
416 if (!elf_phdata)
417 goto out;
418
419 retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
420 (char *)elf_phdata, size);
421 error = -EIO;
422 if (retval != size) {
423 if (retval < 0)
424 error = retval;
425 goto out_close;
426 }
427
428 total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
429 if (!total_size) {
430 error = -EINVAL;
431 goto out_close;
432 }
433
434 eppnt = elf_phdata;
435 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
436 if (eppnt->p_type == PT_LOAD) {
437 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
438 int elf_prot = 0;
439 unsigned long vaddr = 0;
440 unsigned long k, map_addr;
441
442 if (eppnt->p_flags & PF_R)
443 elf_prot = PROT_READ;
444 if (eppnt->p_flags & PF_W)
445 elf_prot |= PROT_WRITE;
446 if (eppnt->p_flags & PF_X)
447 elf_prot |= PROT_EXEC;
448 vaddr = eppnt->p_vaddr;
449 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
450 elf_type |= MAP_FIXED;
451 else if (no_base && interp_elf_ex->e_type == ET_DYN)
452 load_addr = -vaddr;
453
454 map_addr = elf_map(interpreter, load_addr + vaddr,
455 eppnt, elf_prot, elf_type, total_size);
456 total_size = 0;
457 if (!*interp_map_addr)
458 *interp_map_addr = map_addr;
459 error = map_addr;
460 if (BAD_ADDR(map_addr))
461 goto out_close;
462
463 if (!load_addr_set &&
464 interp_elf_ex->e_type == ET_DYN) {
465 load_addr = map_addr - ELF_PAGESTART(vaddr);
466 load_addr_set = 1;
467 }
468
469 /*
470 * Check to see if the section's size will overflow the
471 * allowed task size. Note that p_filesz must always be
472 * <= p_memsize so it's only necessary to check p_memsz.
473 */
474 k = load_addr + eppnt->p_vaddr;
475 if (BAD_ADDR(k) ||
476 eppnt->p_filesz > eppnt->p_memsz ||
477 eppnt->p_memsz > TASK_SIZE ||
478 TASK_SIZE - eppnt->p_memsz < k) {
479 error = -ENOMEM;
480 goto out_close;
481 }
482
483 /*
484 * Find the end of the file mapping for this phdr, and
485 * keep track of the largest address we see for this.
486 */
487 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
488 if (k > elf_bss)
489 elf_bss = k;
490
491 /*
492 * Do the same thing for the memory mapping - between
493 * elf_bss and last_bss is the bss section.
494 */
495 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
496 if (k > last_bss)
497 last_bss = k;
498 }
499 }
500
501 if (last_bss > elf_bss) {
502 /*
503 * Now fill out the bss section. First pad the last page up
504 * to the page boundary, and then perform a mmap to make sure
505 * that there are zero-mapped pages up to and including the
506 * last bss page.
507 */
508 if (padzero(elf_bss)) {
509 error = -EFAULT;
510 goto out_close;
511 }
512
513 /* What we have mapped so far */
514 elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
515
516 /* Map the last of the bss segment */
517 error = vm_brk(elf_bss, last_bss - elf_bss);
518 if (BAD_ADDR(error))
519 goto out_close;
520 }
521
522 error = load_addr;
523
524 out_close:
525 kfree(elf_phdata);
526 out:
527 return error;
528 }
529
530 /*
531 * These are the functions used to load ELF style executables and shared
532 * libraries. There is no binary dependent code anywhere else.
533 */
534
535 #define INTERPRETER_NONE 0
536 #define INTERPRETER_ELF 2
537
538 #ifndef STACK_RND_MASK
539 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
540 #endif
541
542 static unsigned long randomize_stack_top(unsigned long stack_top)
543 {
544 unsigned int random_variable = 0;
545
546 if ((current->flags & PF_RANDOMIZE) &&
547 !(current->personality & ADDR_NO_RANDOMIZE)) {
548 random_variable = get_random_int() & STACK_RND_MASK;
549 random_variable <<= PAGE_SHIFT;
550 }
551 #ifdef CONFIG_STACK_GROWSUP
552 return PAGE_ALIGN(stack_top) + random_variable;
553 #else
554 return PAGE_ALIGN(stack_top) - random_variable;
555 #endif
556 }
557
558 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
559 {
560 struct file *interpreter = NULL; /* to shut gcc up */
561 unsigned long load_addr = 0, load_bias = 0;
562 int load_addr_set = 0;
563 char * elf_interpreter = NULL;
564 unsigned long error;
565 struct elf_phdr *elf_ppnt, *elf_phdata;
566 unsigned long elf_bss, elf_brk;
567 int retval, i;
568 unsigned int size;
569 unsigned long elf_entry;
570 unsigned long interp_load_addr = 0;
571 unsigned long start_code, end_code, start_data, end_data;
572 unsigned long reloc_func_desc __maybe_unused = 0;
573 int executable_stack = EXSTACK_DEFAULT;
574 unsigned long def_flags = 0;
575 struct {
576 struct elfhdr elf_ex;
577 struct elfhdr interp_elf_ex;
578 } *loc;
579
580 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
581 if (!loc) {
582 retval = -ENOMEM;
583 goto out_ret;
584 }
585
586 /* Get the exec-header */
587 loc->elf_ex = *((struct elfhdr *)bprm->buf);
588
589 retval = -ENOEXEC;
590 /* First of all, some simple consistency checks */
591 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
592 goto out;
593
594 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
595 goto out;
596 if (!elf_check_arch(&loc->elf_ex))
597 goto out;
598 if (!bprm->file->f_op || !bprm->file->f_op->mmap)
599 goto out;
600
601 /* Now read in all of the header information */
602 if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
603 goto out;
604 if (loc->elf_ex.e_phnum < 1 ||
605 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
606 goto out;
607 size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
608 retval = -ENOMEM;
609 elf_phdata = kmalloc(size, GFP_KERNEL);
610 if (!elf_phdata)
611 goto out;
612
613 retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
614 (char *)elf_phdata, size);
615 if (retval != size) {
616 if (retval >= 0)
617 retval = -EIO;
618 goto out_free_ph;
619 }
620
621 elf_ppnt = elf_phdata;
622 elf_bss = 0;
623 elf_brk = 0;
624
625 start_code = ~0UL;
626 end_code = 0;
627 start_data = 0;
628 end_data = 0;
629
630 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
631 if (elf_ppnt->p_type == PT_INTERP) {
632 /* This is the program interpreter used for
633 * shared libraries - for now assume that this
634 * is an a.out format binary
635 */
636 retval = -ENOEXEC;
637 if (elf_ppnt->p_filesz > PATH_MAX ||
638 elf_ppnt->p_filesz < 2)
639 goto out_free_ph;
640
641 retval = -ENOMEM;
642 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
643 GFP_KERNEL);
644 if (!elf_interpreter)
645 goto out_free_ph;
646
647 retval = kernel_read(bprm->file, elf_ppnt->p_offset,
648 elf_interpreter,
649 elf_ppnt->p_filesz);
650 if (retval != elf_ppnt->p_filesz) {
651 if (retval >= 0)
652 retval = -EIO;
653 goto out_free_interp;
654 }
655 /* make sure path is NULL terminated */
656 retval = -ENOEXEC;
657 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
658 goto out_free_interp;
659
660 interpreter = open_exec(elf_interpreter);
661 retval = PTR_ERR(interpreter);
662 if (IS_ERR(interpreter))
663 goto out_free_interp;
664
665 /*
666 * If the binary is not readable then enforce
667 * mm->dumpable = 0 regardless of the interpreter's
668 * permissions.
669 */
670 would_dump(bprm, interpreter);
671
672 retval = kernel_read(interpreter, 0, bprm->buf,
673 BINPRM_BUF_SIZE);
674 if (retval != BINPRM_BUF_SIZE) {
675 if (retval >= 0)
676 retval = -EIO;
677 goto out_free_dentry;
678 }
679
680 /* Get the exec headers */
681 loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
682 break;
683 }
684 elf_ppnt++;
685 }
686
687 elf_ppnt = elf_phdata;
688 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
689 if (elf_ppnt->p_type == PT_GNU_STACK) {
690 if (elf_ppnt->p_flags & PF_X)
691 executable_stack = EXSTACK_ENABLE_X;
692 else
693 executable_stack = EXSTACK_DISABLE_X;
694 break;
695 }
696
697 /* Some simple consistency checks for the interpreter */
698 if (elf_interpreter) {
699 retval = -ELIBBAD;
700 /* Not an ELF interpreter */
701 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
702 goto out_free_dentry;
703 /* Verify the interpreter has a valid arch */
704 if (!elf_check_arch(&loc->interp_elf_ex))
705 goto out_free_dentry;
706 }
707
708 /* Flush all traces of the currently running executable */
709 retval = flush_old_exec(bprm);
710 if (retval)
711 goto out_free_dentry;
712
713 /* OK, This is the point of no return */
714 current->mm->def_flags = def_flags;
715
716 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
717 may depend on the personality. */
718 SET_PERSONALITY(loc->elf_ex);
719 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
720 current->personality |= READ_IMPLIES_EXEC;
721
722 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
723 current->flags |= PF_RANDOMIZE;
724
725 setup_new_exec(bprm);
726
727 /* Do this so that we can load the interpreter, if need be. We will
728 change some of these later */
729 current->mm->free_area_cache = current->mm->mmap_base;
730 current->mm->cached_hole_size = 0;
731 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
732 executable_stack);
733 if (retval < 0) {
734 send_sig(SIGKILL, current, 0);
735 goto out_free_dentry;
736 }
737
738 current->mm->start_stack = bprm->p;
739
740 /* Now we do a little grungy work by mmapping the ELF image into
741 the correct location in memory. */
742 for(i = 0, elf_ppnt = elf_phdata;
743 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
744 int elf_prot = 0, elf_flags;
745 unsigned long k, vaddr;
746
747 if (elf_ppnt->p_type != PT_LOAD)
748 continue;
749
750 if (unlikely (elf_brk > elf_bss)) {
751 unsigned long nbyte;
752
753 /* There was a PT_LOAD segment with p_memsz > p_filesz
754 before this one. Map anonymous pages, if needed,
755 and clear the area. */
756 retval = set_brk(elf_bss + load_bias,
757 elf_brk + load_bias);
758 if (retval) {
759 send_sig(SIGKILL, current, 0);
760 goto out_free_dentry;
761 }
762 nbyte = ELF_PAGEOFFSET(elf_bss);
763 if (nbyte) {
764 nbyte = ELF_MIN_ALIGN - nbyte;
765 if (nbyte > elf_brk - elf_bss)
766 nbyte = elf_brk - elf_bss;
767 if (clear_user((void __user *)elf_bss +
768 load_bias, nbyte)) {
769 /*
770 * This bss-zeroing can fail if the ELF
771 * file specifies odd protections. So
772 * we don't check the return value
773 */
774 }
775 }
776 }
777
778 if (elf_ppnt->p_flags & PF_R)
779 elf_prot |= PROT_READ;
780 if (elf_ppnt->p_flags & PF_W)
781 elf_prot |= PROT_WRITE;
782 if (elf_ppnt->p_flags & PF_X)
783 elf_prot |= PROT_EXEC;
784
785 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
786
787 vaddr = elf_ppnt->p_vaddr;
788 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
789 elf_flags |= MAP_FIXED;
790 } else if (loc->elf_ex.e_type == ET_DYN) {
791 /* Try and get dynamic programs out of the way of the
792 * default mmap base, as well as whatever program they
793 * might try to exec. This is because the brk will
794 * follow the loader, and is not movable. */
795 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
796 /* Memory randomization might have been switched off
797 * in runtime via sysctl.
798 * If that is the case, retain the original non-zero
799 * load_bias value in order to establish proper
800 * non-randomized mappings.
801 */
802 if (current->flags & PF_RANDOMIZE)
803 load_bias = 0;
804 else
805 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
806 #else
807 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
808 #endif
809 }
810
811 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
812 elf_prot, elf_flags, 0);
813 if (BAD_ADDR(error)) {
814 send_sig(SIGKILL, current, 0);
815 retval = IS_ERR((void *)error) ?
816 PTR_ERR((void*)error) : -EINVAL;
817 goto out_free_dentry;
818 }
819
820 if (!load_addr_set) {
821 load_addr_set = 1;
822 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
823 if (loc->elf_ex.e_type == ET_DYN) {
824 load_bias += error -
825 ELF_PAGESTART(load_bias + vaddr);
826 load_addr += load_bias;
827 reloc_func_desc = load_bias;
828 }
829 }
830 k = elf_ppnt->p_vaddr;
831 if (k < start_code)
832 start_code = k;
833 if (start_data < k)
834 start_data = k;
835
836 /*
837 * Check to see if the section's size will overflow the
838 * allowed task size. Note that p_filesz must always be
839 * <= p_memsz so it is only necessary to check p_memsz.
840 */
841 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
842 elf_ppnt->p_memsz > TASK_SIZE ||
843 TASK_SIZE - elf_ppnt->p_memsz < k) {
844 /* set_brk can never work. Avoid overflows. */
845 send_sig(SIGKILL, current, 0);
846 retval = -EINVAL;
847 goto out_free_dentry;
848 }
849
850 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
851
852 if (k > elf_bss)
853 elf_bss = k;
854 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
855 end_code = k;
856 if (end_data < k)
857 end_data = k;
858 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
859 if (k > elf_brk)
860 elf_brk = k;
861 }
862
863 loc->elf_ex.e_entry += load_bias;
864 elf_bss += load_bias;
865 elf_brk += load_bias;
866 start_code += load_bias;
867 end_code += load_bias;
868 start_data += load_bias;
869 end_data += load_bias;
870
871 /* Calling set_brk effectively mmaps the pages that we need
872 * for the bss and break sections. We must do this before
873 * mapping in the interpreter, to make sure it doesn't wind
874 * up getting placed where the bss needs to go.
875 */
876 retval = set_brk(elf_bss, elf_brk);
877 if (retval) {
878 send_sig(SIGKILL, current, 0);
879 goto out_free_dentry;
880 }
881 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
882 send_sig(SIGSEGV, current, 0);
883 retval = -EFAULT; /* Nobody gets to see this, but.. */
884 goto out_free_dentry;
885 }
886
887 if (elf_interpreter) {
888 unsigned long interp_map_addr = 0;
889
890 elf_entry = load_elf_interp(&loc->interp_elf_ex,
891 interpreter,
892 &interp_map_addr,
893 load_bias);
894 if (!IS_ERR((void *)elf_entry)) {
895 /*
896 * load_elf_interp() returns relocation
897 * adjustment
898 */
899 interp_load_addr = elf_entry;
900 elf_entry += loc->interp_elf_ex.e_entry;
901 }
902 if (BAD_ADDR(elf_entry)) {
903 force_sig(SIGSEGV, current);
904 retval = IS_ERR((void *)elf_entry) ?
905 (int)elf_entry : -EINVAL;
906 goto out_free_dentry;
907 }
908 reloc_func_desc = interp_load_addr;
909
910 allow_write_access(interpreter);
911 fput(interpreter);
912 kfree(elf_interpreter);
913 } else {
914 elf_entry = loc->elf_ex.e_entry;
915 if (BAD_ADDR(elf_entry)) {
916 force_sig(SIGSEGV, current);
917 retval = -EINVAL;
918 goto out_free_dentry;
919 }
920 }
921
922 kfree(elf_phdata);
923
924 set_binfmt(&elf_format);
925
926 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
927 retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
928 if (retval < 0) {
929 send_sig(SIGKILL, current, 0);
930 goto out;
931 }
932 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
933
934 install_exec_creds(bprm);
935 retval = create_elf_tables(bprm, &loc->elf_ex,
936 load_addr, interp_load_addr);
937 if (retval < 0) {
938 send_sig(SIGKILL, current, 0);
939 goto out;
940 }
941 /* N.B. passed_fileno might not be initialized? */
942 current->mm->end_code = end_code;
943 current->mm->start_code = start_code;
944 current->mm->start_data = start_data;
945 current->mm->end_data = end_data;
946 current->mm->start_stack = bprm->p;
947
948 #ifdef arch_randomize_brk
949 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
950 current->mm->brk = current->mm->start_brk =
951 arch_randomize_brk(current->mm);
952 #ifdef CONFIG_COMPAT_BRK
953 current->brk_randomized = 1;
954 #endif
955 }
956 #endif
957
958 if (current->personality & MMAP_PAGE_ZERO) {
959 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
960 and some applications "depend" upon this behavior.
961 Since we do not have the power to recompile these, we
962 emulate the SVr4 behavior. Sigh. */
963 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
964 MAP_FIXED | MAP_PRIVATE, 0);
965 }
966
967 #ifdef ELF_PLAT_INIT
968 /*
969 * The ABI may specify that certain registers be set up in special
970 * ways (on i386 %edx is the address of a DT_FINI function, for
971 * example. In addition, it may also specify (eg, PowerPC64 ELF)
972 * that the e_entry field is the address of the function descriptor
973 * for the startup routine, rather than the address of the startup
974 * routine itself. This macro performs whatever initialization to
975 * the regs structure is required as well as any relocations to the
976 * function descriptor entries when executing dynamically links apps.
977 */
978 ELF_PLAT_INIT(regs, reloc_func_desc);
979 #endif
980
981 start_thread(regs, elf_entry, bprm->p);
982 retval = 0;
983 out:
984 kfree(loc);
985 out_ret:
986 return retval;
987
988 /* error cleanup */
989 out_free_dentry:
990 allow_write_access(interpreter);
991 if (interpreter)
992 fput(interpreter);
993 out_free_interp:
994 kfree(elf_interpreter);
995 out_free_ph:
996 kfree(elf_phdata);
997 goto out;
998 }
999
1000 /* This is really simpleminded and specialized - we are loading an
1001 a.out library that is given an ELF header. */
1002 static int load_elf_library(struct file *file)
1003 {
1004 struct elf_phdr *elf_phdata;
1005 struct elf_phdr *eppnt;
1006 unsigned long elf_bss, bss, len;
1007 int retval, error, i, j;
1008 struct elfhdr elf_ex;
1009
1010 error = -ENOEXEC;
1011 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1012 if (retval != sizeof(elf_ex))
1013 goto out;
1014
1015 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1016 goto out;
1017
1018 /* First of all, some simple consistency checks */
1019 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1020 !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1021 goto out;
1022
1023 /* Now read in all of the header information */
1024
1025 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1026 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1027
1028 error = -ENOMEM;
1029 elf_phdata = kmalloc(j, GFP_KERNEL);
1030 if (!elf_phdata)
1031 goto out;
1032
1033 eppnt = elf_phdata;
1034 error = -ENOEXEC;
1035 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1036 if (retval != j)
1037 goto out_free_ph;
1038
1039 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1040 if ((eppnt + i)->p_type == PT_LOAD)
1041 j++;
1042 if (j != 1)
1043 goto out_free_ph;
1044
1045 while (eppnt->p_type != PT_LOAD)
1046 eppnt++;
1047
1048 /* Now use mmap to map the library into memory. */
1049 error = vm_mmap(file,
1050 ELF_PAGESTART(eppnt->p_vaddr),
1051 (eppnt->p_filesz +
1052 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1053 PROT_READ | PROT_WRITE | PROT_EXEC,
1054 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1055 (eppnt->p_offset -
1056 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1057 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1058 goto out_free_ph;
1059
1060 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1061 if (padzero(elf_bss)) {
1062 error = -EFAULT;
1063 goto out_free_ph;
1064 }
1065
1066 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1067 ELF_MIN_ALIGN - 1);
1068 bss = eppnt->p_memsz + eppnt->p_vaddr;
1069 if (bss > len)
1070 vm_brk(len, bss - len);
1071 error = 0;
1072
1073 out_free_ph:
1074 kfree(elf_phdata);
1075 out:
1076 return error;
1077 }
1078
1079 #ifdef CONFIG_ELF_CORE
1080 /*
1081 * ELF core dumper
1082 *
1083 * Modelled on fs/exec.c:aout_core_dump()
1084 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1085 */
1086
1087 /*
1088 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1089 * that are useful for post-mortem analysis are included in every core dump.
1090 * In that way we ensure that the core dump is fully interpretable later
1091 * without matching up the same kernel and hardware config to see what PC values
1092 * meant. These special mappings include - vDSO, vsyscall, and other
1093 * architecture specific mappings
1094 */
1095 static bool always_dump_vma(struct vm_area_struct *vma)
1096 {
1097 /* Any vsyscall mappings? */
1098 if (vma == get_gate_vma(vma->vm_mm))
1099 return true;
1100 /*
1101 * arch_vma_name() returns non-NULL for special architecture mappings,
1102 * such as vDSO sections.
1103 */
1104 if (arch_vma_name(vma))
1105 return true;
1106
1107 return false;
1108 }
1109
1110 /*
1111 * Decide what to dump of a segment, part, all or none.
1112 */
1113 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1114 unsigned long mm_flags)
1115 {
1116 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1117
1118 /* always dump the vdso and vsyscall sections */
1119 if (always_dump_vma(vma))
1120 goto whole;
1121
1122 if (vma->vm_flags & VM_NODUMP)
1123 return 0;
1124
1125 /* Hugetlb memory check */
1126 if (vma->vm_flags & VM_HUGETLB) {
1127 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1128 goto whole;
1129 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1130 goto whole;
1131 }
1132
1133 /* Do not dump I/O mapped devices or special mappings */
1134 if (vma->vm_flags & (VM_IO | VM_RESERVED))
1135 return 0;
1136
1137 /* By default, dump shared memory if mapped from an anonymous file. */
1138 if (vma->vm_flags & VM_SHARED) {
1139 if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1140 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1141 goto whole;
1142 return 0;
1143 }
1144
1145 /* Dump segments that have been written to. */
1146 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1147 goto whole;
1148 if (vma->vm_file == NULL)
1149 return 0;
1150
1151 if (FILTER(MAPPED_PRIVATE))
1152 goto whole;
1153
1154 /*
1155 * If this looks like the beginning of a DSO or executable mapping,
1156 * check for an ELF header. If we find one, dump the first page to
1157 * aid in determining what was mapped here.
1158 */
1159 if (FILTER(ELF_HEADERS) &&
1160 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1161 u32 __user *header = (u32 __user *) vma->vm_start;
1162 u32 word;
1163 mm_segment_t fs = get_fs();
1164 /*
1165 * Doing it this way gets the constant folded by GCC.
1166 */
1167 union {
1168 u32 cmp;
1169 char elfmag[SELFMAG];
1170 } magic;
1171 BUILD_BUG_ON(SELFMAG != sizeof word);
1172 magic.elfmag[EI_MAG0] = ELFMAG0;
1173 magic.elfmag[EI_MAG1] = ELFMAG1;
1174 magic.elfmag[EI_MAG2] = ELFMAG2;
1175 magic.elfmag[EI_MAG3] = ELFMAG3;
1176 /*
1177 * Switch to the user "segment" for get_user(),
1178 * then put back what elf_core_dump() had in place.
1179 */
1180 set_fs(USER_DS);
1181 if (unlikely(get_user(word, header)))
1182 word = 0;
1183 set_fs(fs);
1184 if (word == magic.cmp)
1185 return PAGE_SIZE;
1186 }
1187
1188 #undef FILTER
1189
1190 return 0;
1191
1192 whole:
1193 return vma->vm_end - vma->vm_start;
1194 }
1195
1196 /* An ELF note in memory */
1197 struct memelfnote
1198 {
1199 const char *name;
1200 int type;
1201 unsigned int datasz;
1202 void *data;
1203 };
1204
1205 static int notesize(struct memelfnote *en)
1206 {
1207 int sz;
1208
1209 sz = sizeof(struct elf_note);
1210 sz += roundup(strlen(en->name) + 1, 4);
1211 sz += roundup(en->datasz, 4);
1212
1213 return sz;
1214 }
1215
1216 #define DUMP_WRITE(addr, nr, foffset) \
1217 do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1218
1219 static int alignfile(struct file *file, loff_t *foffset)
1220 {
1221 static const char buf[4] = { 0, };
1222 DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1223 return 1;
1224 }
1225
1226 static int writenote(struct memelfnote *men, struct file *file,
1227 loff_t *foffset)
1228 {
1229 struct elf_note en;
1230 en.n_namesz = strlen(men->name) + 1;
1231 en.n_descsz = men->datasz;
1232 en.n_type = men->type;
1233
1234 DUMP_WRITE(&en, sizeof(en), foffset);
1235 DUMP_WRITE(men->name, en.n_namesz, foffset);
1236 if (!alignfile(file, foffset))
1237 return 0;
1238 DUMP_WRITE(men->data, men->datasz, foffset);
1239 if (!alignfile(file, foffset))
1240 return 0;
1241
1242 return 1;
1243 }
1244 #undef DUMP_WRITE
1245
1246 static void fill_elf_header(struct elfhdr *elf, int segs,
1247 u16 machine, u32 flags, u8 osabi)
1248 {
1249 memset(elf, 0, sizeof(*elf));
1250
1251 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1252 elf->e_ident[EI_CLASS] = ELF_CLASS;
1253 elf->e_ident[EI_DATA] = ELF_DATA;
1254 elf->e_ident[EI_VERSION] = EV_CURRENT;
1255 elf->e_ident[EI_OSABI] = ELF_OSABI;
1256
1257 elf->e_type = ET_CORE;
1258 elf->e_machine = machine;
1259 elf->e_version = EV_CURRENT;
1260 elf->e_phoff = sizeof(struct elfhdr);
1261 elf->e_flags = flags;
1262 elf->e_ehsize = sizeof(struct elfhdr);
1263 elf->e_phentsize = sizeof(struct elf_phdr);
1264 elf->e_phnum = segs;
1265
1266 return;
1267 }
1268
1269 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1270 {
1271 phdr->p_type = PT_NOTE;
1272 phdr->p_offset = offset;
1273 phdr->p_vaddr = 0;
1274 phdr->p_paddr = 0;
1275 phdr->p_filesz = sz;
1276 phdr->p_memsz = 0;
1277 phdr->p_flags = 0;
1278 phdr->p_align = 0;
1279 return;
1280 }
1281
1282 static void fill_note(struct memelfnote *note, const char *name, int type,
1283 unsigned int sz, void *data)
1284 {
1285 note->name = name;
1286 note->type = type;
1287 note->datasz = sz;
1288 note->data = data;
1289 return;
1290 }
1291
1292 /*
1293 * fill up all the fields in prstatus from the given task struct, except
1294 * registers which need to be filled up separately.
1295 */
1296 static void fill_prstatus(struct elf_prstatus *prstatus,
1297 struct task_struct *p, long signr)
1298 {
1299 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1300 prstatus->pr_sigpend = p->pending.signal.sig[0];
1301 prstatus->pr_sighold = p->blocked.sig[0];
1302 rcu_read_lock();
1303 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1304 rcu_read_unlock();
1305 prstatus->pr_pid = task_pid_vnr(p);
1306 prstatus->pr_pgrp = task_pgrp_vnr(p);
1307 prstatus->pr_sid = task_session_vnr(p);
1308 if (thread_group_leader(p)) {
1309 struct task_cputime cputime;
1310
1311 /*
1312 * This is the record for the group leader. It shows the
1313 * group-wide total, not its individual thread total.
1314 */
1315 thread_group_cputime(p, &cputime);
1316 cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1317 cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1318 } else {
1319 cputime_to_timeval(p->utime, &prstatus->pr_utime);
1320 cputime_to_timeval(p->stime, &prstatus->pr_stime);
1321 }
1322 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1323 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1324 }
1325
1326 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1327 struct mm_struct *mm)
1328 {
1329 const struct cred *cred;
1330 unsigned int i, len;
1331
1332 /* first copy the parameters from user space */
1333 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1334
1335 len = mm->arg_end - mm->arg_start;
1336 if (len >= ELF_PRARGSZ)
1337 len = ELF_PRARGSZ-1;
1338 if (copy_from_user(&psinfo->pr_psargs,
1339 (const char __user *)mm->arg_start, len))
1340 return -EFAULT;
1341 for(i = 0; i < len; i++)
1342 if (psinfo->pr_psargs[i] == 0)
1343 psinfo->pr_psargs[i] = ' ';
1344 psinfo->pr_psargs[len] = 0;
1345
1346 rcu_read_lock();
1347 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1348 rcu_read_unlock();
1349 psinfo->pr_pid = task_pid_vnr(p);
1350 psinfo->pr_pgrp = task_pgrp_vnr(p);
1351 psinfo->pr_sid = task_session_vnr(p);
1352
1353 i = p->state ? ffz(~p->state) + 1 : 0;
1354 psinfo->pr_state = i;
1355 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1356 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1357 psinfo->pr_nice = task_nice(p);
1358 psinfo->pr_flag = p->flags;
1359 rcu_read_lock();
1360 cred = __task_cred(p);
1361 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1362 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1363 rcu_read_unlock();
1364 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1365
1366 return 0;
1367 }
1368
1369 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1370 {
1371 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1372 int i = 0;
1373 do
1374 i += 2;
1375 while (auxv[i - 2] != AT_NULL);
1376 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1377 }
1378
1379 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1380 siginfo_t *siginfo)
1381 {
1382 mm_segment_t old_fs = get_fs();
1383 set_fs(KERNEL_DS);
1384 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1385 set_fs(old_fs);
1386 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1387 }
1388
1389 #ifdef CORE_DUMP_USE_REGSET
1390 #include <linux/regset.h>
1391
1392 struct elf_thread_core_info {
1393 struct elf_thread_core_info *next;
1394 struct task_struct *task;
1395 struct elf_prstatus prstatus;
1396 struct memelfnote notes[0];
1397 };
1398
1399 struct elf_note_info {
1400 struct elf_thread_core_info *thread;
1401 struct memelfnote psinfo;
1402 struct memelfnote signote;
1403 struct memelfnote auxv;
1404 user_siginfo_t csigdata;
1405 size_t size;
1406 int thread_notes;
1407 };
1408
1409 /*
1410 * When a regset has a writeback hook, we call it on each thread before
1411 * dumping user memory. On register window machines, this makes sure the
1412 * user memory backing the register data is up to date before we read it.
1413 */
1414 static void do_thread_regset_writeback(struct task_struct *task,
1415 const struct user_regset *regset)
1416 {
1417 if (regset->writeback)
1418 regset->writeback(task, regset, 1);
1419 }
1420
1421 #ifndef PR_REG_SIZE
1422 #define PR_REG_SIZE(S) sizeof(S)
1423 #endif
1424
1425 #ifndef PRSTATUS_SIZE
1426 #define PRSTATUS_SIZE(S) sizeof(S)
1427 #endif
1428
1429 #ifndef PR_REG_PTR
1430 #define PR_REG_PTR(S) (&((S)->pr_reg))
1431 #endif
1432
1433 #ifndef SET_PR_FPVALID
1434 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1435 #endif
1436
1437 static int fill_thread_core_info(struct elf_thread_core_info *t,
1438 const struct user_regset_view *view,
1439 long signr, size_t *total)
1440 {
1441 unsigned int i;
1442
1443 /*
1444 * NT_PRSTATUS is the one special case, because the regset data
1445 * goes into the pr_reg field inside the note contents, rather
1446 * than being the whole note contents. We fill the reset in here.
1447 * We assume that regset 0 is NT_PRSTATUS.
1448 */
1449 fill_prstatus(&t->prstatus, t->task, signr);
1450 (void) view->regsets[0].get(t->task, &view->regsets[0],
1451 0, PR_REG_SIZE(t->prstatus.pr_reg),
1452 PR_REG_PTR(&t->prstatus), NULL);
1453
1454 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1455 PRSTATUS_SIZE(t->prstatus), &t->prstatus);
1456 *total += notesize(&t->notes[0]);
1457
1458 do_thread_regset_writeback(t->task, &view->regsets[0]);
1459
1460 /*
1461 * Each other regset might generate a note too. For each regset
1462 * that has no core_note_type or is inactive, we leave t->notes[i]
1463 * all zero and we'll know to skip writing it later.
1464 */
1465 for (i = 1; i < view->n; ++i) {
1466 const struct user_regset *regset = &view->regsets[i];
1467 do_thread_regset_writeback(t->task, regset);
1468 if (regset->core_note_type && regset->get &&
1469 (!regset->active || regset->active(t->task, regset))) {
1470 int ret;
1471 size_t size = regset->n * regset->size;
1472 void *data = kmalloc(size, GFP_KERNEL);
1473 if (unlikely(!data))
1474 return 0;
1475 ret = regset->get(t->task, regset,
1476 0, size, data, NULL);
1477 if (unlikely(ret))
1478 kfree(data);
1479 else {
1480 if (regset->core_note_type != NT_PRFPREG)
1481 fill_note(&t->notes[i], "LINUX",
1482 regset->core_note_type,
1483 size, data);
1484 else {
1485 SET_PR_FPVALID(&t->prstatus, 1);
1486 fill_note(&t->notes[i], "CORE",
1487 NT_PRFPREG, size, data);
1488 }
1489 *total += notesize(&t->notes[i]);
1490 }
1491 }
1492 }
1493
1494 return 1;
1495 }
1496
1497 static int fill_note_info(struct elfhdr *elf, int phdrs,
1498 struct elf_note_info *info,
1499 siginfo_t *siginfo, struct pt_regs *regs)
1500 {
1501 struct task_struct *dump_task = current;
1502 const struct user_regset_view *view = task_user_regset_view(dump_task);
1503 struct elf_thread_core_info *t;
1504 struct elf_prpsinfo *psinfo;
1505 struct core_thread *ct;
1506 unsigned int i;
1507
1508 info->size = 0;
1509 info->thread = NULL;
1510
1511 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1512 if (psinfo == NULL)
1513 return 0;
1514
1515 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1516
1517 /*
1518 * Figure out how many notes we're going to need for each thread.
1519 */
1520 info->thread_notes = 0;
1521 for (i = 0; i < view->n; ++i)
1522 if (view->regsets[i].core_note_type != 0)
1523 ++info->thread_notes;
1524
1525 /*
1526 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1527 * since it is our one special case.
1528 */
1529 if (unlikely(info->thread_notes == 0) ||
1530 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1531 WARN_ON(1);
1532 return 0;
1533 }
1534
1535 /*
1536 * Initialize the ELF file header.
1537 */
1538 fill_elf_header(elf, phdrs,
1539 view->e_machine, view->e_flags, view->ei_osabi);
1540
1541 /*
1542 * Allocate a structure for each thread.
1543 */
1544 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1545 t = kzalloc(offsetof(struct elf_thread_core_info,
1546 notes[info->thread_notes]),
1547 GFP_KERNEL);
1548 if (unlikely(!t))
1549 return 0;
1550
1551 t->task = ct->task;
1552 if (ct->task == dump_task || !info->thread) {
1553 t->next = info->thread;
1554 info->thread = t;
1555 } else {
1556 /*
1557 * Make sure to keep the original task at
1558 * the head of the list.
1559 */
1560 t->next = info->thread->next;
1561 info->thread->next = t;
1562 }
1563 }
1564
1565 /*
1566 * Now fill in each thread's information.
1567 */
1568 for (t = info->thread; t != NULL; t = t->next)
1569 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1570 return 0;
1571
1572 /*
1573 * Fill in the two process-wide notes.
1574 */
1575 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1576 info->size += notesize(&info->psinfo);
1577
1578 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1579 info->size += notesize(&info->signote);
1580
1581 fill_auxv_note(&info->auxv, current->mm);
1582 info->size += notesize(&info->auxv);
1583
1584 return 1;
1585 }
1586
1587 static size_t get_note_info_size(struct elf_note_info *info)
1588 {
1589 return info->size;
1590 }
1591
1592 /*
1593 * Write all the notes for each thread. When writing the first thread, the
1594 * process-wide notes are interleaved after the first thread-specific note.
1595 */
1596 static int write_note_info(struct elf_note_info *info,
1597 struct file *file, loff_t *foffset)
1598 {
1599 bool first = 1;
1600 struct elf_thread_core_info *t = info->thread;
1601
1602 do {
1603 int i;
1604
1605 if (!writenote(&t->notes[0], file, foffset))
1606 return 0;
1607
1608 if (first && !writenote(&info->psinfo, file, foffset))
1609 return 0;
1610 if (first && !writenote(&info->signote, file, foffset))
1611 return 0;
1612 if (first && !writenote(&info->auxv, file, foffset))
1613 return 0;
1614
1615 for (i = 1; i < info->thread_notes; ++i)
1616 if (t->notes[i].data &&
1617 !writenote(&t->notes[i], file, foffset))
1618 return 0;
1619
1620 first = 0;
1621 t = t->next;
1622 } while (t);
1623
1624 return 1;
1625 }
1626
1627 static void free_note_info(struct elf_note_info *info)
1628 {
1629 struct elf_thread_core_info *threads = info->thread;
1630 while (threads) {
1631 unsigned int i;
1632 struct elf_thread_core_info *t = threads;
1633 threads = t->next;
1634 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1635 for (i = 1; i < info->thread_notes; ++i)
1636 kfree(t->notes[i].data);
1637 kfree(t);
1638 }
1639 kfree(info->psinfo.data);
1640 }
1641
1642 #else
1643
1644 /* Here is the structure in which status of each thread is captured. */
1645 struct elf_thread_status
1646 {
1647 struct list_head list;
1648 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1649 elf_fpregset_t fpu; /* NT_PRFPREG */
1650 struct task_struct *thread;
1651 #ifdef ELF_CORE_COPY_XFPREGS
1652 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1653 #endif
1654 struct memelfnote notes[3];
1655 int num_notes;
1656 };
1657
1658 /*
1659 * In order to add the specific thread information for the elf file format,
1660 * we need to keep a linked list of every threads pr_status and then create
1661 * a single section for them in the final core file.
1662 */
1663 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1664 {
1665 int sz = 0;
1666 struct task_struct *p = t->thread;
1667 t->num_notes = 0;
1668
1669 fill_prstatus(&t->prstatus, p, signr);
1670 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1671
1672 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1673 &(t->prstatus));
1674 t->num_notes++;
1675 sz += notesize(&t->notes[0]);
1676
1677 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1678 &t->fpu))) {
1679 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1680 &(t->fpu));
1681 t->num_notes++;
1682 sz += notesize(&t->notes[1]);
1683 }
1684
1685 #ifdef ELF_CORE_COPY_XFPREGS
1686 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1687 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1688 sizeof(t->xfpu), &t->xfpu);
1689 t->num_notes++;
1690 sz += notesize(&t->notes[2]);
1691 }
1692 #endif
1693 return sz;
1694 }
1695
1696 struct elf_note_info {
1697 struct memelfnote *notes;
1698 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1699 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1700 struct list_head thread_list;
1701 elf_fpregset_t *fpu;
1702 #ifdef ELF_CORE_COPY_XFPREGS
1703 elf_fpxregset_t *xfpu;
1704 #endif
1705 user_siginfo_t csigdata;
1706 int thread_status_size;
1707 int numnote;
1708 };
1709
1710 static int elf_note_info_init(struct elf_note_info *info)
1711 {
1712 memset(info, 0, sizeof(*info));
1713 INIT_LIST_HEAD(&info->thread_list);
1714
1715 /* Allocate space for ELF notes */
1716 info->notes = kmalloc(7 * sizeof(struct memelfnote), GFP_KERNEL);
1717 if (!info->notes)
1718 return 0;
1719 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1720 if (!info->psinfo)
1721 return 0;
1722 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1723 if (!info->prstatus)
1724 return 0;
1725 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1726 if (!info->fpu)
1727 return 0;
1728 #ifdef ELF_CORE_COPY_XFPREGS
1729 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1730 if (!info->xfpu)
1731 return 0;
1732 #endif
1733 return 1;
1734 }
1735
1736 static int fill_note_info(struct elfhdr *elf, int phdrs,
1737 struct elf_note_info *info,
1738 siginfo_t *siginfo, struct pt_regs *regs)
1739 {
1740 struct list_head *t;
1741
1742 if (!elf_note_info_init(info))
1743 return 0;
1744
1745 if (siginfo->si_signo) {
1746 struct core_thread *ct;
1747 struct elf_thread_status *ets;
1748
1749 for (ct = current->mm->core_state->dumper.next;
1750 ct; ct = ct->next) {
1751 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1752 if (!ets)
1753 return 0;
1754
1755 ets->thread = ct->task;
1756 list_add(&ets->list, &info->thread_list);
1757 }
1758
1759 list_for_each(t, &info->thread_list) {
1760 int sz;
1761
1762 ets = list_entry(t, struct elf_thread_status, list);
1763 sz = elf_dump_thread_status(siginfo->si_signo, ets);
1764 info->thread_status_size += sz;
1765 }
1766 }
1767 /* now collect the dump for the current */
1768 memset(info->prstatus, 0, sizeof(*info->prstatus));
1769 fill_prstatus(info->prstatus, current, siginfo->si_signo);
1770 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1771
1772 /* Set up header */
1773 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1774
1775 /*
1776 * Set up the notes in similar form to SVR4 core dumps made
1777 * with info from their /proc.
1778 */
1779
1780 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1781 sizeof(*info->prstatus), info->prstatus);
1782 fill_psinfo(info->psinfo, current->group_leader, current->mm);
1783 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1784 sizeof(*info->psinfo), info->psinfo);
1785
1786 info->numnote = 2;
1787
1788 fill_siginfo_note(&info->notes[info->numnote++], &info->csigdata, siginfo);
1789 fill_auxv_note(&info->notes[info->numnote++], current->mm);
1790
1791 /* Try to dump the FPU. */
1792 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1793 info->fpu);
1794 if (info->prstatus->pr_fpvalid)
1795 fill_note(info->notes + info->numnote++,
1796 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1797 #ifdef ELF_CORE_COPY_XFPREGS
1798 if (elf_core_copy_task_xfpregs(current, info->xfpu))
1799 fill_note(info->notes + info->numnote++,
1800 "LINUX", ELF_CORE_XFPREG_TYPE,
1801 sizeof(*info->xfpu), info->xfpu);
1802 #endif
1803
1804 return 1;
1805 }
1806
1807 static size_t get_note_info_size(struct elf_note_info *info)
1808 {
1809 int sz = 0;
1810 int i;
1811
1812 for (i = 0; i < info->numnote; i++)
1813 sz += notesize(info->notes + i);
1814
1815 sz += info->thread_status_size;
1816
1817 return sz;
1818 }
1819
1820 static int write_note_info(struct elf_note_info *info,
1821 struct file *file, loff_t *foffset)
1822 {
1823 int i;
1824 struct list_head *t;
1825
1826 for (i = 0; i < info->numnote; i++)
1827 if (!writenote(info->notes + i, file, foffset))
1828 return 0;
1829
1830 /* write out the thread status notes section */
1831 list_for_each(t, &info->thread_list) {
1832 struct elf_thread_status *tmp =
1833 list_entry(t, struct elf_thread_status, list);
1834
1835 for (i = 0; i < tmp->num_notes; i++)
1836 if (!writenote(&tmp->notes[i], file, foffset))
1837 return 0;
1838 }
1839
1840 return 1;
1841 }
1842
1843 static void free_note_info(struct elf_note_info *info)
1844 {
1845 while (!list_empty(&info->thread_list)) {
1846 struct list_head *tmp = info->thread_list.next;
1847 list_del(tmp);
1848 kfree(list_entry(tmp, struct elf_thread_status, list));
1849 }
1850
1851 kfree(info->prstatus);
1852 kfree(info->psinfo);
1853 kfree(info->notes);
1854 kfree(info->fpu);
1855 #ifdef ELF_CORE_COPY_XFPREGS
1856 kfree(info->xfpu);
1857 #endif
1858 }
1859
1860 #endif
1861
1862 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1863 struct vm_area_struct *gate_vma)
1864 {
1865 struct vm_area_struct *ret = tsk->mm->mmap;
1866
1867 if (ret)
1868 return ret;
1869 return gate_vma;
1870 }
1871 /*
1872 * Helper function for iterating across a vma list. It ensures that the caller
1873 * will visit `gate_vma' prior to terminating the search.
1874 */
1875 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1876 struct vm_area_struct *gate_vma)
1877 {
1878 struct vm_area_struct *ret;
1879
1880 ret = this_vma->vm_next;
1881 if (ret)
1882 return ret;
1883 if (this_vma == gate_vma)
1884 return NULL;
1885 return gate_vma;
1886 }
1887
1888 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1889 elf_addr_t e_shoff, int segs)
1890 {
1891 elf->e_shoff = e_shoff;
1892 elf->e_shentsize = sizeof(*shdr4extnum);
1893 elf->e_shnum = 1;
1894 elf->e_shstrndx = SHN_UNDEF;
1895
1896 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
1897
1898 shdr4extnum->sh_type = SHT_NULL;
1899 shdr4extnum->sh_size = elf->e_shnum;
1900 shdr4extnum->sh_link = elf->e_shstrndx;
1901 shdr4extnum->sh_info = segs;
1902 }
1903
1904 static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma,
1905 unsigned long mm_flags)
1906 {
1907 struct vm_area_struct *vma;
1908 size_t size = 0;
1909
1910 for (vma = first_vma(current, gate_vma); vma != NULL;
1911 vma = next_vma(vma, gate_vma))
1912 size += vma_dump_size(vma, mm_flags);
1913 return size;
1914 }
1915
1916 /*
1917 * Actual dumper
1918 *
1919 * This is a two-pass process; first we find the offsets of the bits,
1920 * and then they are actually written out. If we run out of core limit
1921 * we just truncate.
1922 */
1923 static int elf_core_dump(struct coredump_params *cprm)
1924 {
1925 int has_dumped = 0;
1926 mm_segment_t fs;
1927 int segs;
1928 size_t size = 0;
1929 struct vm_area_struct *vma, *gate_vma;
1930 struct elfhdr *elf = NULL;
1931 loff_t offset = 0, dataoff, foffset;
1932 struct elf_note_info info;
1933 struct elf_phdr *phdr4note = NULL;
1934 struct elf_shdr *shdr4extnum = NULL;
1935 Elf_Half e_phnum;
1936 elf_addr_t e_shoff;
1937
1938 /*
1939 * We no longer stop all VM operations.
1940 *
1941 * This is because those proceses that could possibly change map_count
1942 * or the mmap / vma pages are now blocked in do_exit on current
1943 * finishing this core dump.
1944 *
1945 * Only ptrace can touch these memory addresses, but it doesn't change
1946 * the map_count or the pages allocated. So no possibility of crashing
1947 * exists while dumping the mm->vm_next areas to the core file.
1948 */
1949
1950 /* alloc memory for large data structures: too large to be on stack */
1951 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
1952 if (!elf)
1953 goto out;
1954 /*
1955 * The number of segs are recored into ELF header as 16bit value.
1956 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
1957 */
1958 segs = current->mm->map_count;
1959 segs += elf_core_extra_phdrs();
1960
1961 gate_vma = get_gate_vma(current->mm);
1962 if (gate_vma != NULL)
1963 segs++;
1964
1965 /* for notes section */
1966 segs++;
1967
1968 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
1969 * this, kernel supports extended numbering. Have a look at
1970 * include/linux/elf.h for further information. */
1971 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
1972
1973 /*
1974 * Collect all the non-memory information about the process for the
1975 * notes. This also sets up the file header.
1976 */
1977 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
1978 goto cleanup;
1979
1980 has_dumped = 1;
1981 current->flags |= PF_DUMPCORE;
1982
1983 fs = get_fs();
1984 set_fs(KERNEL_DS);
1985
1986 offset += sizeof(*elf); /* Elf header */
1987 offset += segs * sizeof(struct elf_phdr); /* Program headers */
1988 foffset = offset;
1989
1990 /* Write notes phdr entry */
1991 {
1992 size_t sz = get_note_info_size(&info);
1993
1994 sz += elf_coredump_extra_notes_size();
1995
1996 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
1997 if (!phdr4note)
1998 goto end_coredump;
1999
2000 fill_elf_note_phdr(phdr4note, sz, offset);
2001 offset += sz;
2002 }
2003
2004 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2005
2006 offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags);
2007 offset += elf_core_extra_data_size();
2008 e_shoff = offset;
2009
2010 if (e_phnum == PN_XNUM) {
2011 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2012 if (!shdr4extnum)
2013 goto end_coredump;
2014 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2015 }
2016
2017 offset = dataoff;
2018
2019 size += sizeof(*elf);
2020 if (size > cprm->limit || !dump_write(cprm->file, elf, sizeof(*elf)))
2021 goto end_coredump;
2022
2023 size += sizeof(*phdr4note);
2024 if (size > cprm->limit
2025 || !dump_write(cprm->file, phdr4note, sizeof(*phdr4note)))
2026 goto end_coredump;
2027
2028 /* Write program headers for segments dump */
2029 for (vma = first_vma(current, gate_vma); vma != NULL;
2030 vma = next_vma(vma, gate_vma)) {
2031 struct elf_phdr phdr;
2032
2033 phdr.p_type = PT_LOAD;
2034 phdr.p_offset = offset;
2035 phdr.p_vaddr = vma->vm_start;
2036 phdr.p_paddr = 0;
2037 phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags);
2038 phdr.p_memsz = vma->vm_end - vma->vm_start;
2039 offset += phdr.p_filesz;
2040 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2041 if (vma->vm_flags & VM_WRITE)
2042 phdr.p_flags |= PF_W;
2043 if (vma->vm_flags & VM_EXEC)
2044 phdr.p_flags |= PF_X;
2045 phdr.p_align = ELF_EXEC_PAGESIZE;
2046
2047 size += sizeof(phdr);
2048 if (size > cprm->limit
2049 || !dump_write(cprm->file, &phdr, sizeof(phdr)))
2050 goto end_coredump;
2051 }
2052
2053 if (!elf_core_write_extra_phdrs(cprm->file, offset, &size, cprm->limit))
2054 goto end_coredump;
2055
2056 /* write out the notes section */
2057 if (!write_note_info(&info, cprm->file, &foffset))
2058 goto end_coredump;
2059
2060 if (elf_coredump_extra_notes_write(cprm->file, &foffset))
2061 goto end_coredump;
2062
2063 /* Align to page */
2064 if (!dump_seek(cprm->file, dataoff - foffset))
2065 goto end_coredump;
2066
2067 for (vma = first_vma(current, gate_vma); vma != NULL;
2068 vma = next_vma(vma, gate_vma)) {
2069 unsigned long addr;
2070 unsigned long end;
2071
2072 end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags);
2073
2074 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2075 struct page *page;
2076 int stop;
2077
2078 page = get_dump_page(addr);
2079 if (page) {
2080 void *kaddr = kmap(page);
2081 stop = ((size += PAGE_SIZE) > cprm->limit) ||
2082 !dump_write(cprm->file, kaddr,
2083 PAGE_SIZE);
2084 kunmap(page);
2085 page_cache_release(page);
2086 } else
2087 stop = !dump_seek(cprm->file, PAGE_SIZE);
2088 if (stop)
2089 goto end_coredump;
2090 }
2091 }
2092
2093 if (!elf_core_write_extra_data(cprm->file, &size, cprm->limit))
2094 goto end_coredump;
2095
2096 if (e_phnum == PN_XNUM) {
2097 size += sizeof(*shdr4extnum);
2098 if (size > cprm->limit
2099 || !dump_write(cprm->file, shdr4extnum,
2100 sizeof(*shdr4extnum)))
2101 goto end_coredump;
2102 }
2103
2104 end_coredump:
2105 set_fs(fs);
2106
2107 cleanup:
2108 free_note_info(&info);
2109 kfree(shdr4extnum);
2110 kfree(phdr4note);
2111 kfree(elf);
2112 out:
2113 return has_dumped;
2114 }
2115
2116 #endif /* CONFIG_ELF_CORE */
2117
2118 static int __init init_elf_binfmt(void)
2119 {
2120 register_binfmt(&elf_format);
2121 return 0;
2122 }
2123
2124 static void __exit exit_elf_binfmt(void)
2125 {
2126 /* Remove the COFF and ELF loaders. */
2127 unregister_binfmt(&elf_format);
2128 }
2129
2130 core_initcall(init_elf_binfmt);
2131 module_exit(exit_elf_binfmt);
2132 MODULE_LICENSE("GPL");