Merge branch 'akpm' (Andrew's patch-bomb)
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / binfmt_elf.c
1 /*
2 * linux/fs/binfmt_elf.c
3 *
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
8 *
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/utsname.h>
35 #include <linux/coredump.h>
36 #include <asm/uaccess.h>
37 #include <asm/param.h>
38 #include <asm/page.h>
39 #include <asm/exec.h>
40
41 #ifndef user_long_t
42 #define user_long_t long
43 #endif
44 #ifndef user_siginfo_t
45 #define user_siginfo_t siginfo_t
46 #endif
47
48 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
49 static int load_elf_library(struct file *);
50 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
51 int, int, unsigned long);
52
53 /*
54 * If we don't support core dumping, then supply a NULL so we
55 * don't even try.
56 */
57 #ifdef CONFIG_ELF_CORE
58 static int elf_core_dump(struct coredump_params *cprm);
59 #else
60 #define elf_core_dump NULL
61 #endif
62
63 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
64 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
65 #else
66 #define ELF_MIN_ALIGN PAGE_SIZE
67 #endif
68
69 #ifndef ELF_CORE_EFLAGS
70 #define ELF_CORE_EFLAGS 0
71 #endif
72
73 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
74 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
75 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
76
77 static struct linux_binfmt elf_format = {
78 .module = THIS_MODULE,
79 .load_binary = load_elf_binary,
80 .load_shlib = load_elf_library,
81 .core_dump = elf_core_dump,
82 .min_coredump = ELF_EXEC_PAGESIZE,
83 };
84
85 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
86
87 static int set_brk(unsigned long start, unsigned long end)
88 {
89 start = ELF_PAGEALIGN(start);
90 end = ELF_PAGEALIGN(end);
91 if (end > start) {
92 unsigned long addr;
93 addr = vm_brk(start, end - start);
94 if (BAD_ADDR(addr))
95 return addr;
96 }
97 current->mm->start_brk = current->mm->brk = end;
98 return 0;
99 }
100
101 /* We need to explicitly zero any fractional pages
102 after the data section (i.e. bss). This would
103 contain the junk from the file that should not
104 be in memory
105 */
106 static int padzero(unsigned long elf_bss)
107 {
108 unsigned long nbyte;
109
110 nbyte = ELF_PAGEOFFSET(elf_bss);
111 if (nbyte) {
112 nbyte = ELF_MIN_ALIGN - nbyte;
113 if (clear_user((void __user *) elf_bss, nbyte))
114 return -EFAULT;
115 }
116 return 0;
117 }
118
119 /* Let's use some macros to make this stack manipulation a little clearer */
120 #ifdef CONFIG_STACK_GROWSUP
121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
122 #define STACK_ROUND(sp, items) \
123 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
124 #define STACK_ALLOC(sp, len) ({ \
125 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
126 old_sp; })
127 #else
128 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
129 #define STACK_ROUND(sp, items) \
130 (((unsigned long) (sp - items)) &~ 15UL)
131 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
132 #endif
133
134 #ifndef ELF_BASE_PLATFORM
135 /*
136 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
137 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
138 * will be copied to the user stack in the same manner as AT_PLATFORM.
139 */
140 #define ELF_BASE_PLATFORM NULL
141 #endif
142
143 static int
144 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
145 unsigned long load_addr, unsigned long interp_load_addr)
146 {
147 unsigned long p = bprm->p;
148 int argc = bprm->argc;
149 int envc = bprm->envc;
150 elf_addr_t __user *argv;
151 elf_addr_t __user *envp;
152 elf_addr_t __user *sp;
153 elf_addr_t __user *u_platform;
154 elf_addr_t __user *u_base_platform;
155 elf_addr_t __user *u_rand_bytes;
156 const char *k_platform = ELF_PLATFORM;
157 const char *k_base_platform = ELF_BASE_PLATFORM;
158 unsigned char k_rand_bytes[16];
159 int items;
160 elf_addr_t *elf_info;
161 int ei_index = 0;
162 const struct cred *cred = current_cred();
163 struct vm_area_struct *vma;
164
165 /*
166 * In some cases (e.g. Hyper-Threading), we want to avoid L1
167 * evictions by the processes running on the same package. One
168 * thing we can do is to shuffle the initial stack for them.
169 */
170
171 p = arch_align_stack(p);
172
173 /*
174 * If this architecture has a platform capability string, copy it
175 * to userspace. In some cases (Sparc), this info is impossible
176 * for userspace to get any other way, in others (i386) it is
177 * merely difficult.
178 */
179 u_platform = NULL;
180 if (k_platform) {
181 size_t len = strlen(k_platform) + 1;
182
183 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
184 if (__copy_to_user(u_platform, k_platform, len))
185 return -EFAULT;
186 }
187
188 /*
189 * If this architecture has a "base" platform capability
190 * string, copy it to userspace.
191 */
192 u_base_platform = NULL;
193 if (k_base_platform) {
194 size_t len = strlen(k_base_platform) + 1;
195
196 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
197 if (__copy_to_user(u_base_platform, k_base_platform, len))
198 return -EFAULT;
199 }
200
201 /*
202 * Generate 16 random bytes for userspace PRNG seeding.
203 */
204 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
205 u_rand_bytes = (elf_addr_t __user *)
206 STACK_ALLOC(p, sizeof(k_rand_bytes));
207 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
208 return -EFAULT;
209
210 /* Create the ELF interpreter info */
211 elf_info = (elf_addr_t *)current->mm->saved_auxv;
212 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
213 #define NEW_AUX_ENT(id, val) \
214 do { \
215 elf_info[ei_index++] = id; \
216 elf_info[ei_index++] = val; \
217 } while (0)
218
219 #ifdef ARCH_DLINFO
220 /*
221 * ARCH_DLINFO must come first so PPC can do its special alignment of
222 * AUXV.
223 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
224 * ARCH_DLINFO changes
225 */
226 ARCH_DLINFO;
227 #endif
228 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
229 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
230 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
231 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
232 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
233 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
234 NEW_AUX_ENT(AT_BASE, interp_load_addr);
235 NEW_AUX_ENT(AT_FLAGS, 0);
236 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
237 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
238 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
239 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
240 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
241 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
242 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
243 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
244 if (k_platform) {
245 NEW_AUX_ENT(AT_PLATFORM,
246 (elf_addr_t)(unsigned long)u_platform);
247 }
248 if (k_base_platform) {
249 NEW_AUX_ENT(AT_BASE_PLATFORM,
250 (elf_addr_t)(unsigned long)u_base_platform);
251 }
252 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
253 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
254 }
255 #undef NEW_AUX_ENT
256 /* AT_NULL is zero; clear the rest too */
257 memset(&elf_info[ei_index], 0,
258 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
259
260 /* And advance past the AT_NULL entry. */
261 ei_index += 2;
262
263 sp = STACK_ADD(p, ei_index);
264
265 items = (argc + 1) + (envc + 1) + 1;
266 bprm->p = STACK_ROUND(sp, items);
267
268 /* Point sp at the lowest address on the stack */
269 #ifdef CONFIG_STACK_GROWSUP
270 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
271 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
272 #else
273 sp = (elf_addr_t __user *)bprm->p;
274 #endif
275
276
277 /*
278 * Grow the stack manually; some architectures have a limit on how
279 * far ahead a user-space access may be in order to grow the stack.
280 */
281 vma = find_extend_vma(current->mm, bprm->p);
282 if (!vma)
283 return -EFAULT;
284
285 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
286 if (__put_user(argc, sp++))
287 return -EFAULT;
288 argv = sp;
289 envp = argv + argc + 1;
290
291 /* Populate argv and envp */
292 p = current->mm->arg_end = current->mm->arg_start;
293 while (argc-- > 0) {
294 size_t len;
295 if (__put_user((elf_addr_t)p, argv++))
296 return -EFAULT;
297 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
298 if (!len || len > MAX_ARG_STRLEN)
299 return -EINVAL;
300 p += len;
301 }
302 if (__put_user(0, argv))
303 return -EFAULT;
304 current->mm->arg_end = current->mm->env_start = p;
305 while (envc-- > 0) {
306 size_t len;
307 if (__put_user((elf_addr_t)p, envp++))
308 return -EFAULT;
309 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
310 if (!len || len > MAX_ARG_STRLEN)
311 return -EINVAL;
312 p += len;
313 }
314 if (__put_user(0, envp))
315 return -EFAULT;
316 current->mm->env_end = p;
317
318 /* Put the elf_info on the stack in the right place. */
319 sp = (elf_addr_t __user *)envp + 1;
320 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
321 return -EFAULT;
322 return 0;
323 }
324
325 static unsigned long elf_map(struct file *filep, unsigned long addr,
326 struct elf_phdr *eppnt, int prot, int type,
327 unsigned long total_size)
328 {
329 unsigned long map_addr;
330 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
331 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
332 addr = ELF_PAGESTART(addr);
333 size = ELF_PAGEALIGN(size);
334
335 /* mmap() will return -EINVAL if given a zero size, but a
336 * segment with zero filesize is perfectly valid */
337 if (!size)
338 return addr;
339
340 /*
341 * total_size is the size of the ELF (interpreter) image.
342 * The _first_ mmap needs to know the full size, otherwise
343 * randomization might put this image into an overlapping
344 * position with the ELF binary image. (since size < total_size)
345 * So we first map the 'big' image - and unmap the remainder at
346 * the end. (which unmap is needed for ELF images with holes.)
347 */
348 if (total_size) {
349 total_size = ELF_PAGEALIGN(total_size);
350 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
351 if (!BAD_ADDR(map_addr))
352 vm_munmap(map_addr+size, total_size-size);
353 } else
354 map_addr = vm_mmap(filep, addr, size, prot, type, off);
355
356 return(map_addr);
357 }
358
359 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
360 {
361 int i, first_idx = -1, last_idx = -1;
362
363 for (i = 0; i < nr; i++) {
364 if (cmds[i].p_type == PT_LOAD) {
365 last_idx = i;
366 if (first_idx == -1)
367 first_idx = i;
368 }
369 }
370 if (first_idx == -1)
371 return 0;
372
373 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
374 ELF_PAGESTART(cmds[first_idx].p_vaddr);
375 }
376
377
378 /* This is much more generalized than the library routine read function,
379 so we keep this separate. Technically the library read function
380 is only provided so that we can read a.out libraries that have
381 an ELF header */
382
383 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
384 struct file *interpreter, unsigned long *interp_map_addr,
385 unsigned long no_base)
386 {
387 struct elf_phdr *elf_phdata;
388 struct elf_phdr *eppnt;
389 unsigned long load_addr = 0;
390 int load_addr_set = 0;
391 unsigned long last_bss = 0, elf_bss = 0;
392 unsigned long error = ~0UL;
393 unsigned long total_size;
394 int retval, i, size;
395
396 /* First of all, some simple consistency checks */
397 if (interp_elf_ex->e_type != ET_EXEC &&
398 interp_elf_ex->e_type != ET_DYN)
399 goto out;
400 if (!elf_check_arch(interp_elf_ex))
401 goto out;
402 if (!interpreter->f_op || !interpreter->f_op->mmap)
403 goto out;
404
405 /*
406 * If the size of this structure has changed, then punt, since
407 * we will be doing the wrong thing.
408 */
409 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
410 goto out;
411 if (interp_elf_ex->e_phnum < 1 ||
412 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
413 goto out;
414
415 /* Now read in all of the header information */
416 size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
417 if (size > ELF_MIN_ALIGN)
418 goto out;
419 elf_phdata = kmalloc(size, GFP_KERNEL);
420 if (!elf_phdata)
421 goto out;
422
423 retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
424 (char *)elf_phdata, size);
425 error = -EIO;
426 if (retval != size) {
427 if (retval < 0)
428 error = retval;
429 goto out_close;
430 }
431
432 total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
433 if (!total_size) {
434 error = -EINVAL;
435 goto out_close;
436 }
437
438 eppnt = elf_phdata;
439 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
440 if (eppnt->p_type == PT_LOAD) {
441 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
442 int elf_prot = 0;
443 unsigned long vaddr = 0;
444 unsigned long k, map_addr;
445
446 if (eppnt->p_flags & PF_R)
447 elf_prot = PROT_READ;
448 if (eppnt->p_flags & PF_W)
449 elf_prot |= PROT_WRITE;
450 if (eppnt->p_flags & PF_X)
451 elf_prot |= PROT_EXEC;
452 vaddr = eppnt->p_vaddr;
453 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
454 elf_type |= MAP_FIXED;
455 else if (no_base && interp_elf_ex->e_type == ET_DYN)
456 load_addr = -vaddr;
457
458 map_addr = elf_map(interpreter, load_addr + vaddr,
459 eppnt, elf_prot, elf_type, total_size);
460 total_size = 0;
461 if (!*interp_map_addr)
462 *interp_map_addr = map_addr;
463 error = map_addr;
464 if (BAD_ADDR(map_addr))
465 goto out_close;
466
467 if (!load_addr_set &&
468 interp_elf_ex->e_type == ET_DYN) {
469 load_addr = map_addr - ELF_PAGESTART(vaddr);
470 load_addr_set = 1;
471 }
472
473 /*
474 * Check to see if the section's size will overflow the
475 * allowed task size. Note that p_filesz must always be
476 * <= p_memsize so it's only necessary to check p_memsz.
477 */
478 k = load_addr + eppnt->p_vaddr;
479 if (BAD_ADDR(k) ||
480 eppnt->p_filesz > eppnt->p_memsz ||
481 eppnt->p_memsz > TASK_SIZE ||
482 TASK_SIZE - eppnt->p_memsz < k) {
483 error = -ENOMEM;
484 goto out_close;
485 }
486
487 /*
488 * Find the end of the file mapping for this phdr, and
489 * keep track of the largest address we see for this.
490 */
491 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
492 if (k > elf_bss)
493 elf_bss = k;
494
495 /*
496 * Do the same thing for the memory mapping - between
497 * elf_bss and last_bss is the bss section.
498 */
499 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
500 if (k > last_bss)
501 last_bss = k;
502 }
503 }
504
505 if (last_bss > elf_bss) {
506 /*
507 * Now fill out the bss section. First pad the last page up
508 * to the page boundary, and then perform a mmap to make sure
509 * that there are zero-mapped pages up to and including the
510 * last bss page.
511 */
512 if (padzero(elf_bss)) {
513 error = -EFAULT;
514 goto out_close;
515 }
516
517 /* What we have mapped so far */
518 elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
519
520 /* Map the last of the bss segment */
521 error = vm_brk(elf_bss, last_bss - elf_bss);
522 if (BAD_ADDR(error))
523 goto out_close;
524 }
525
526 error = load_addr;
527
528 out_close:
529 kfree(elf_phdata);
530 out:
531 return error;
532 }
533
534 /*
535 * These are the functions used to load ELF style executables and shared
536 * libraries. There is no binary dependent code anywhere else.
537 */
538
539 #define INTERPRETER_NONE 0
540 #define INTERPRETER_ELF 2
541
542 #ifndef STACK_RND_MASK
543 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
544 #endif
545
546 static unsigned long randomize_stack_top(unsigned long stack_top)
547 {
548 unsigned int random_variable = 0;
549
550 if ((current->flags & PF_RANDOMIZE) &&
551 !(current->personality & ADDR_NO_RANDOMIZE)) {
552 random_variable = get_random_int() & STACK_RND_MASK;
553 random_variable <<= PAGE_SHIFT;
554 }
555 #ifdef CONFIG_STACK_GROWSUP
556 return PAGE_ALIGN(stack_top) + random_variable;
557 #else
558 return PAGE_ALIGN(stack_top) - random_variable;
559 #endif
560 }
561
562 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
563 {
564 struct file *interpreter = NULL; /* to shut gcc up */
565 unsigned long load_addr = 0, load_bias = 0;
566 int load_addr_set = 0;
567 char * elf_interpreter = NULL;
568 unsigned long error;
569 struct elf_phdr *elf_ppnt, *elf_phdata;
570 unsigned long elf_bss, elf_brk;
571 int retval, i;
572 unsigned int size;
573 unsigned long elf_entry;
574 unsigned long interp_load_addr = 0;
575 unsigned long start_code, end_code, start_data, end_data;
576 unsigned long reloc_func_desc __maybe_unused = 0;
577 int executable_stack = EXSTACK_DEFAULT;
578 unsigned long def_flags = 0;
579 struct {
580 struct elfhdr elf_ex;
581 struct elfhdr interp_elf_ex;
582 } *loc;
583
584 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
585 if (!loc) {
586 retval = -ENOMEM;
587 goto out_ret;
588 }
589
590 /* Get the exec-header */
591 loc->elf_ex = *((struct elfhdr *)bprm->buf);
592
593 retval = -ENOEXEC;
594 /* First of all, some simple consistency checks */
595 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
596 goto out;
597
598 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
599 goto out;
600 if (!elf_check_arch(&loc->elf_ex))
601 goto out;
602 if (!bprm->file->f_op || !bprm->file->f_op->mmap)
603 goto out;
604
605 /* Now read in all of the header information */
606 if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
607 goto out;
608 if (loc->elf_ex.e_phnum < 1 ||
609 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
610 goto out;
611 size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
612 retval = -ENOMEM;
613 elf_phdata = kmalloc(size, GFP_KERNEL);
614 if (!elf_phdata)
615 goto out;
616
617 retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
618 (char *)elf_phdata, size);
619 if (retval != size) {
620 if (retval >= 0)
621 retval = -EIO;
622 goto out_free_ph;
623 }
624
625 elf_ppnt = elf_phdata;
626 elf_bss = 0;
627 elf_brk = 0;
628
629 start_code = ~0UL;
630 end_code = 0;
631 start_data = 0;
632 end_data = 0;
633
634 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
635 if (elf_ppnt->p_type == PT_INTERP) {
636 /* This is the program interpreter used for
637 * shared libraries - for now assume that this
638 * is an a.out format binary
639 */
640 retval = -ENOEXEC;
641 if (elf_ppnt->p_filesz > PATH_MAX ||
642 elf_ppnt->p_filesz < 2)
643 goto out_free_ph;
644
645 retval = -ENOMEM;
646 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
647 GFP_KERNEL);
648 if (!elf_interpreter)
649 goto out_free_ph;
650
651 retval = kernel_read(bprm->file, elf_ppnt->p_offset,
652 elf_interpreter,
653 elf_ppnt->p_filesz);
654 if (retval != elf_ppnt->p_filesz) {
655 if (retval >= 0)
656 retval = -EIO;
657 goto out_free_interp;
658 }
659 /* make sure path is NULL terminated */
660 retval = -ENOEXEC;
661 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
662 goto out_free_interp;
663
664 interpreter = open_exec(elf_interpreter);
665 retval = PTR_ERR(interpreter);
666 if (IS_ERR(interpreter))
667 goto out_free_interp;
668
669 /*
670 * If the binary is not readable then enforce
671 * mm->dumpable = 0 regardless of the interpreter's
672 * permissions.
673 */
674 would_dump(bprm, interpreter);
675
676 retval = kernel_read(interpreter, 0, bprm->buf,
677 BINPRM_BUF_SIZE);
678 if (retval != BINPRM_BUF_SIZE) {
679 if (retval >= 0)
680 retval = -EIO;
681 goto out_free_dentry;
682 }
683
684 /* Get the exec headers */
685 loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
686 break;
687 }
688 elf_ppnt++;
689 }
690
691 elf_ppnt = elf_phdata;
692 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
693 if (elf_ppnt->p_type == PT_GNU_STACK) {
694 if (elf_ppnt->p_flags & PF_X)
695 executable_stack = EXSTACK_ENABLE_X;
696 else
697 executable_stack = EXSTACK_DISABLE_X;
698 break;
699 }
700
701 /* Some simple consistency checks for the interpreter */
702 if (elf_interpreter) {
703 retval = -ELIBBAD;
704 /* Not an ELF interpreter */
705 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
706 goto out_free_dentry;
707 /* Verify the interpreter has a valid arch */
708 if (!elf_check_arch(&loc->interp_elf_ex))
709 goto out_free_dentry;
710 }
711
712 /* Flush all traces of the currently running executable */
713 retval = flush_old_exec(bprm);
714 if (retval)
715 goto out_free_dentry;
716
717 /* OK, This is the point of no return */
718 current->mm->def_flags = def_flags;
719
720 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
721 may depend on the personality. */
722 SET_PERSONALITY(loc->elf_ex);
723 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
724 current->personality |= READ_IMPLIES_EXEC;
725
726 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
727 current->flags |= PF_RANDOMIZE;
728
729 setup_new_exec(bprm);
730
731 /* Do this so that we can load the interpreter, if need be. We will
732 change some of these later */
733 current->mm->free_area_cache = current->mm->mmap_base;
734 current->mm->cached_hole_size = 0;
735 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
736 executable_stack);
737 if (retval < 0) {
738 send_sig(SIGKILL, current, 0);
739 goto out_free_dentry;
740 }
741
742 current->mm->start_stack = bprm->p;
743
744 /* Now we do a little grungy work by mmapping the ELF image into
745 the correct location in memory. */
746 for(i = 0, elf_ppnt = elf_phdata;
747 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
748 int elf_prot = 0, elf_flags;
749 unsigned long k, vaddr;
750
751 if (elf_ppnt->p_type != PT_LOAD)
752 continue;
753
754 if (unlikely (elf_brk > elf_bss)) {
755 unsigned long nbyte;
756
757 /* There was a PT_LOAD segment with p_memsz > p_filesz
758 before this one. Map anonymous pages, if needed,
759 and clear the area. */
760 retval = set_brk(elf_bss + load_bias,
761 elf_brk + load_bias);
762 if (retval) {
763 send_sig(SIGKILL, current, 0);
764 goto out_free_dentry;
765 }
766 nbyte = ELF_PAGEOFFSET(elf_bss);
767 if (nbyte) {
768 nbyte = ELF_MIN_ALIGN - nbyte;
769 if (nbyte > elf_brk - elf_bss)
770 nbyte = elf_brk - elf_bss;
771 if (clear_user((void __user *)elf_bss +
772 load_bias, nbyte)) {
773 /*
774 * This bss-zeroing can fail if the ELF
775 * file specifies odd protections. So
776 * we don't check the return value
777 */
778 }
779 }
780 }
781
782 if (elf_ppnt->p_flags & PF_R)
783 elf_prot |= PROT_READ;
784 if (elf_ppnt->p_flags & PF_W)
785 elf_prot |= PROT_WRITE;
786 if (elf_ppnt->p_flags & PF_X)
787 elf_prot |= PROT_EXEC;
788
789 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
790
791 vaddr = elf_ppnt->p_vaddr;
792 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
793 elf_flags |= MAP_FIXED;
794 } else if (loc->elf_ex.e_type == ET_DYN) {
795 /* Try and get dynamic programs out of the way of the
796 * default mmap base, as well as whatever program they
797 * might try to exec. This is because the brk will
798 * follow the loader, and is not movable. */
799 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
800 /* Memory randomization might have been switched off
801 * in runtime via sysctl.
802 * If that is the case, retain the original non-zero
803 * load_bias value in order to establish proper
804 * non-randomized mappings.
805 */
806 if (current->flags & PF_RANDOMIZE)
807 load_bias = 0;
808 else
809 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
810 #else
811 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
812 #endif
813 }
814
815 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
816 elf_prot, elf_flags, 0);
817 if (BAD_ADDR(error)) {
818 send_sig(SIGKILL, current, 0);
819 retval = IS_ERR((void *)error) ?
820 PTR_ERR((void*)error) : -EINVAL;
821 goto out_free_dentry;
822 }
823
824 if (!load_addr_set) {
825 load_addr_set = 1;
826 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
827 if (loc->elf_ex.e_type == ET_DYN) {
828 load_bias += error -
829 ELF_PAGESTART(load_bias + vaddr);
830 load_addr += load_bias;
831 reloc_func_desc = load_bias;
832 }
833 }
834 k = elf_ppnt->p_vaddr;
835 if (k < start_code)
836 start_code = k;
837 if (start_data < k)
838 start_data = k;
839
840 /*
841 * Check to see if the section's size will overflow the
842 * allowed task size. Note that p_filesz must always be
843 * <= p_memsz so it is only necessary to check p_memsz.
844 */
845 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
846 elf_ppnt->p_memsz > TASK_SIZE ||
847 TASK_SIZE - elf_ppnt->p_memsz < k) {
848 /* set_brk can never work. Avoid overflows. */
849 send_sig(SIGKILL, current, 0);
850 retval = -EINVAL;
851 goto out_free_dentry;
852 }
853
854 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
855
856 if (k > elf_bss)
857 elf_bss = k;
858 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
859 end_code = k;
860 if (end_data < k)
861 end_data = k;
862 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
863 if (k > elf_brk)
864 elf_brk = k;
865 }
866
867 loc->elf_ex.e_entry += load_bias;
868 elf_bss += load_bias;
869 elf_brk += load_bias;
870 start_code += load_bias;
871 end_code += load_bias;
872 start_data += load_bias;
873 end_data += load_bias;
874
875 /* Calling set_brk effectively mmaps the pages that we need
876 * for the bss and break sections. We must do this before
877 * mapping in the interpreter, to make sure it doesn't wind
878 * up getting placed where the bss needs to go.
879 */
880 retval = set_brk(elf_bss, elf_brk);
881 if (retval) {
882 send_sig(SIGKILL, current, 0);
883 goto out_free_dentry;
884 }
885 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
886 send_sig(SIGSEGV, current, 0);
887 retval = -EFAULT; /* Nobody gets to see this, but.. */
888 goto out_free_dentry;
889 }
890
891 if (elf_interpreter) {
892 unsigned long interp_map_addr = 0;
893
894 elf_entry = load_elf_interp(&loc->interp_elf_ex,
895 interpreter,
896 &interp_map_addr,
897 load_bias);
898 if (!IS_ERR((void *)elf_entry)) {
899 /*
900 * load_elf_interp() returns relocation
901 * adjustment
902 */
903 interp_load_addr = elf_entry;
904 elf_entry += loc->interp_elf_ex.e_entry;
905 }
906 if (BAD_ADDR(elf_entry)) {
907 force_sig(SIGSEGV, current);
908 retval = IS_ERR((void *)elf_entry) ?
909 (int)elf_entry : -EINVAL;
910 goto out_free_dentry;
911 }
912 reloc_func_desc = interp_load_addr;
913
914 allow_write_access(interpreter);
915 fput(interpreter);
916 kfree(elf_interpreter);
917 } else {
918 elf_entry = loc->elf_ex.e_entry;
919 if (BAD_ADDR(elf_entry)) {
920 force_sig(SIGSEGV, current);
921 retval = -EINVAL;
922 goto out_free_dentry;
923 }
924 }
925
926 kfree(elf_phdata);
927
928 set_binfmt(&elf_format);
929
930 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
931 retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
932 if (retval < 0) {
933 send_sig(SIGKILL, current, 0);
934 goto out;
935 }
936 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
937
938 install_exec_creds(bprm);
939 retval = create_elf_tables(bprm, &loc->elf_ex,
940 load_addr, interp_load_addr);
941 if (retval < 0) {
942 send_sig(SIGKILL, current, 0);
943 goto out;
944 }
945 /* N.B. passed_fileno might not be initialized? */
946 current->mm->end_code = end_code;
947 current->mm->start_code = start_code;
948 current->mm->start_data = start_data;
949 current->mm->end_data = end_data;
950 current->mm->start_stack = bprm->p;
951
952 #ifdef arch_randomize_brk
953 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
954 current->mm->brk = current->mm->start_brk =
955 arch_randomize_brk(current->mm);
956 #ifdef CONFIG_COMPAT_BRK
957 current->brk_randomized = 1;
958 #endif
959 }
960 #endif
961
962 if (current->personality & MMAP_PAGE_ZERO) {
963 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
964 and some applications "depend" upon this behavior.
965 Since we do not have the power to recompile these, we
966 emulate the SVr4 behavior. Sigh. */
967 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
968 MAP_FIXED | MAP_PRIVATE, 0);
969 }
970
971 #ifdef ELF_PLAT_INIT
972 /*
973 * The ABI may specify that certain registers be set up in special
974 * ways (on i386 %edx is the address of a DT_FINI function, for
975 * example. In addition, it may also specify (eg, PowerPC64 ELF)
976 * that the e_entry field is the address of the function descriptor
977 * for the startup routine, rather than the address of the startup
978 * routine itself. This macro performs whatever initialization to
979 * the regs structure is required as well as any relocations to the
980 * function descriptor entries when executing dynamically links apps.
981 */
982 ELF_PLAT_INIT(regs, reloc_func_desc);
983 #endif
984
985 start_thread(regs, elf_entry, bprm->p);
986 retval = 0;
987 out:
988 kfree(loc);
989 out_ret:
990 return retval;
991
992 /* error cleanup */
993 out_free_dentry:
994 allow_write_access(interpreter);
995 if (interpreter)
996 fput(interpreter);
997 out_free_interp:
998 kfree(elf_interpreter);
999 out_free_ph:
1000 kfree(elf_phdata);
1001 goto out;
1002 }
1003
1004 /* This is really simpleminded and specialized - we are loading an
1005 a.out library that is given an ELF header. */
1006 static int load_elf_library(struct file *file)
1007 {
1008 struct elf_phdr *elf_phdata;
1009 struct elf_phdr *eppnt;
1010 unsigned long elf_bss, bss, len;
1011 int retval, error, i, j;
1012 struct elfhdr elf_ex;
1013
1014 error = -ENOEXEC;
1015 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1016 if (retval != sizeof(elf_ex))
1017 goto out;
1018
1019 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1020 goto out;
1021
1022 /* First of all, some simple consistency checks */
1023 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1024 !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1025 goto out;
1026
1027 /* Now read in all of the header information */
1028
1029 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1030 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1031
1032 error = -ENOMEM;
1033 elf_phdata = kmalloc(j, GFP_KERNEL);
1034 if (!elf_phdata)
1035 goto out;
1036
1037 eppnt = elf_phdata;
1038 error = -ENOEXEC;
1039 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1040 if (retval != j)
1041 goto out_free_ph;
1042
1043 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1044 if ((eppnt + i)->p_type == PT_LOAD)
1045 j++;
1046 if (j != 1)
1047 goto out_free_ph;
1048
1049 while (eppnt->p_type != PT_LOAD)
1050 eppnt++;
1051
1052 /* Now use mmap to map the library into memory. */
1053 error = vm_mmap(file,
1054 ELF_PAGESTART(eppnt->p_vaddr),
1055 (eppnt->p_filesz +
1056 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1057 PROT_READ | PROT_WRITE | PROT_EXEC,
1058 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1059 (eppnt->p_offset -
1060 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1061 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1062 goto out_free_ph;
1063
1064 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1065 if (padzero(elf_bss)) {
1066 error = -EFAULT;
1067 goto out_free_ph;
1068 }
1069
1070 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1071 ELF_MIN_ALIGN - 1);
1072 bss = eppnt->p_memsz + eppnt->p_vaddr;
1073 if (bss > len)
1074 vm_brk(len, bss - len);
1075 error = 0;
1076
1077 out_free_ph:
1078 kfree(elf_phdata);
1079 out:
1080 return error;
1081 }
1082
1083 #ifdef CONFIG_ELF_CORE
1084 /*
1085 * ELF core dumper
1086 *
1087 * Modelled on fs/exec.c:aout_core_dump()
1088 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1089 */
1090
1091 /*
1092 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1093 * that are useful for post-mortem analysis are included in every core dump.
1094 * In that way we ensure that the core dump is fully interpretable later
1095 * without matching up the same kernel and hardware config to see what PC values
1096 * meant. These special mappings include - vDSO, vsyscall, and other
1097 * architecture specific mappings
1098 */
1099 static bool always_dump_vma(struct vm_area_struct *vma)
1100 {
1101 /* Any vsyscall mappings? */
1102 if (vma == get_gate_vma(vma->vm_mm))
1103 return true;
1104 /*
1105 * arch_vma_name() returns non-NULL for special architecture mappings,
1106 * such as vDSO sections.
1107 */
1108 if (arch_vma_name(vma))
1109 return true;
1110
1111 return false;
1112 }
1113
1114 /*
1115 * Decide what to dump of a segment, part, all or none.
1116 */
1117 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1118 unsigned long mm_flags)
1119 {
1120 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1121
1122 /* always dump the vdso and vsyscall sections */
1123 if (always_dump_vma(vma))
1124 goto whole;
1125
1126 if (vma->vm_flags & VM_NODUMP)
1127 return 0;
1128
1129 /* Hugetlb memory check */
1130 if (vma->vm_flags & VM_HUGETLB) {
1131 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1132 goto whole;
1133 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1134 goto whole;
1135 }
1136
1137 /* Do not dump I/O mapped devices or special mappings */
1138 if (vma->vm_flags & (VM_IO | VM_RESERVED))
1139 return 0;
1140
1141 /* By default, dump shared memory if mapped from an anonymous file. */
1142 if (vma->vm_flags & VM_SHARED) {
1143 if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1144 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1145 goto whole;
1146 return 0;
1147 }
1148
1149 /* Dump segments that have been written to. */
1150 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1151 goto whole;
1152 if (vma->vm_file == NULL)
1153 return 0;
1154
1155 if (FILTER(MAPPED_PRIVATE))
1156 goto whole;
1157
1158 /*
1159 * If this looks like the beginning of a DSO or executable mapping,
1160 * check for an ELF header. If we find one, dump the first page to
1161 * aid in determining what was mapped here.
1162 */
1163 if (FILTER(ELF_HEADERS) &&
1164 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1165 u32 __user *header = (u32 __user *) vma->vm_start;
1166 u32 word;
1167 mm_segment_t fs = get_fs();
1168 /*
1169 * Doing it this way gets the constant folded by GCC.
1170 */
1171 union {
1172 u32 cmp;
1173 char elfmag[SELFMAG];
1174 } magic;
1175 BUILD_BUG_ON(SELFMAG != sizeof word);
1176 magic.elfmag[EI_MAG0] = ELFMAG0;
1177 magic.elfmag[EI_MAG1] = ELFMAG1;
1178 magic.elfmag[EI_MAG2] = ELFMAG2;
1179 magic.elfmag[EI_MAG3] = ELFMAG3;
1180 /*
1181 * Switch to the user "segment" for get_user(),
1182 * then put back what elf_core_dump() had in place.
1183 */
1184 set_fs(USER_DS);
1185 if (unlikely(get_user(word, header)))
1186 word = 0;
1187 set_fs(fs);
1188 if (word == magic.cmp)
1189 return PAGE_SIZE;
1190 }
1191
1192 #undef FILTER
1193
1194 return 0;
1195
1196 whole:
1197 return vma->vm_end - vma->vm_start;
1198 }
1199
1200 /* An ELF note in memory */
1201 struct memelfnote
1202 {
1203 const char *name;
1204 int type;
1205 unsigned int datasz;
1206 void *data;
1207 };
1208
1209 static int notesize(struct memelfnote *en)
1210 {
1211 int sz;
1212
1213 sz = sizeof(struct elf_note);
1214 sz += roundup(strlen(en->name) + 1, 4);
1215 sz += roundup(en->datasz, 4);
1216
1217 return sz;
1218 }
1219
1220 #define DUMP_WRITE(addr, nr, foffset) \
1221 do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1222
1223 static int alignfile(struct file *file, loff_t *foffset)
1224 {
1225 static const char buf[4] = { 0, };
1226 DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1227 return 1;
1228 }
1229
1230 static int writenote(struct memelfnote *men, struct file *file,
1231 loff_t *foffset)
1232 {
1233 struct elf_note en;
1234 en.n_namesz = strlen(men->name) + 1;
1235 en.n_descsz = men->datasz;
1236 en.n_type = men->type;
1237
1238 DUMP_WRITE(&en, sizeof(en), foffset);
1239 DUMP_WRITE(men->name, en.n_namesz, foffset);
1240 if (!alignfile(file, foffset))
1241 return 0;
1242 DUMP_WRITE(men->data, men->datasz, foffset);
1243 if (!alignfile(file, foffset))
1244 return 0;
1245
1246 return 1;
1247 }
1248 #undef DUMP_WRITE
1249
1250 static void fill_elf_header(struct elfhdr *elf, int segs,
1251 u16 machine, u32 flags, u8 osabi)
1252 {
1253 memset(elf, 0, sizeof(*elf));
1254
1255 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1256 elf->e_ident[EI_CLASS] = ELF_CLASS;
1257 elf->e_ident[EI_DATA] = ELF_DATA;
1258 elf->e_ident[EI_VERSION] = EV_CURRENT;
1259 elf->e_ident[EI_OSABI] = ELF_OSABI;
1260
1261 elf->e_type = ET_CORE;
1262 elf->e_machine = machine;
1263 elf->e_version = EV_CURRENT;
1264 elf->e_phoff = sizeof(struct elfhdr);
1265 elf->e_flags = flags;
1266 elf->e_ehsize = sizeof(struct elfhdr);
1267 elf->e_phentsize = sizeof(struct elf_phdr);
1268 elf->e_phnum = segs;
1269
1270 return;
1271 }
1272
1273 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1274 {
1275 phdr->p_type = PT_NOTE;
1276 phdr->p_offset = offset;
1277 phdr->p_vaddr = 0;
1278 phdr->p_paddr = 0;
1279 phdr->p_filesz = sz;
1280 phdr->p_memsz = 0;
1281 phdr->p_flags = 0;
1282 phdr->p_align = 0;
1283 return;
1284 }
1285
1286 static void fill_note(struct memelfnote *note, const char *name, int type,
1287 unsigned int sz, void *data)
1288 {
1289 note->name = name;
1290 note->type = type;
1291 note->datasz = sz;
1292 note->data = data;
1293 return;
1294 }
1295
1296 /*
1297 * fill up all the fields in prstatus from the given task struct, except
1298 * registers which need to be filled up separately.
1299 */
1300 static void fill_prstatus(struct elf_prstatus *prstatus,
1301 struct task_struct *p, long signr)
1302 {
1303 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1304 prstatus->pr_sigpend = p->pending.signal.sig[0];
1305 prstatus->pr_sighold = p->blocked.sig[0];
1306 rcu_read_lock();
1307 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1308 rcu_read_unlock();
1309 prstatus->pr_pid = task_pid_vnr(p);
1310 prstatus->pr_pgrp = task_pgrp_vnr(p);
1311 prstatus->pr_sid = task_session_vnr(p);
1312 if (thread_group_leader(p)) {
1313 struct task_cputime cputime;
1314
1315 /*
1316 * This is the record for the group leader. It shows the
1317 * group-wide total, not its individual thread total.
1318 */
1319 thread_group_cputime(p, &cputime);
1320 cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1321 cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1322 } else {
1323 cputime_to_timeval(p->utime, &prstatus->pr_utime);
1324 cputime_to_timeval(p->stime, &prstatus->pr_stime);
1325 }
1326 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1327 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1328 }
1329
1330 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1331 struct mm_struct *mm)
1332 {
1333 const struct cred *cred;
1334 unsigned int i, len;
1335
1336 /* first copy the parameters from user space */
1337 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1338
1339 len = mm->arg_end - mm->arg_start;
1340 if (len >= ELF_PRARGSZ)
1341 len = ELF_PRARGSZ-1;
1342 if (copy_from_user(&psinfo->pr_psargs,
1343 (const char __user *)mm->arg_start, len))
1344 return -EFAULT;
1345 for(i = 0; i < len; i++)
1346 if (psinfo->pr_psargs[i] == 0)
1347 psinfo->pr_psargs[i] = ' ';
1348 psinfo->pr_psargs[len] = 0;
1349
1350 rcu_read_lock();
1351 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1352 rcu_read_unlock();
1353 psinfo->pr_pid = task_pid_vnr(p);
1354 psinfo->pr_pgrp = task_pgrp_vnr(p);
1355 psinfo->pr_sid = task_session_vnr(p);
1356
1357 i = p->state ? ffz(~p->state) + 1 : 0;
1358 psinfo->pr_state = i;
1359 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1360 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1361 psinfo->pr_nice = task_nice(p);
1362 psinfo->pr_flag = p->flags;
1363 rcu_read_lock();
1364 cred = __task_cred(p);
1365 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1366 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1367 rcu_read_unlock();
1368 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1369
1370 return 0;
1371 }
1372
1373 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1374 {
1375 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1376 int i = 0;
1377 do
1378 i += 2;
1379 while (auxv[i - 2] != AT_NULL);
1380 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1381 }
1382
1383 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1384 siginfo_t *siginfo)
1385 {
1386 mm_segment_t old_fs = get_fs();
1387 set_fs(KERNEL_DS);
1388 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1389 set_fs(old_fs);
1390 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1391 }
1392
1393 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1394 /*
1395 * Format of NT_FILE note:
1396 *
1397 * long count -- how many files are mapped
1398 * long page_size -- units for file_ofs
1399 * array of [COUNT] elements of
1400 * long start
1401 * long end
1402 * long file_ofs
1403 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1404 */
1405 static void fill_files_note(struct memelfnote *note)
1406 {
1407 struct vm_area_struct *vma;
1408 unsigned count, size, names_ofs, remaining, n;
1409 user_long_t *data;
1410 user_long_t *start_end_ofs;
1411 char *name_base, *name_curpos;
1412
1413 /* *Estimated* file count and total data size needed */
1414 count = current->mm->map_count;
1415 size = count * 64;
1416
1417 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1418 alloc:
1419 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1420 goto err;
1421 size = round_up(size, PAGE_SIZE);
1422 data = vmalloc(size);
1423 if (!data)
1424 goto err;
1425
1426 start_end_ofs = data + 2;
1427 name_base = name_curpos = ((char *)data) + names_ofs;
1428 remaining = size - names_ofs;
1429 count = 0;
1430 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1431 struct file *file;
1432 const char *filename;
1433
1434 file = vma->vm_file;
1435 if (!file)
1436 continue;
1437 filename = d_path(&file->f_path, name_curpos, remaining);
1438 if (IS_ERR(filename)) {
1439 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1440 vfree(data);
1441 size = size * 5 / 4;
1442 goto alloc;
1443 }
1444 continue;
1445 }
1446
1447 /* d_path() fills at the end, move name down */
1448 /* n = strlen(filename) + 1: */
1449 n = (name_curpos + remaining) - filename;
1450 remaining = filename - name_curpos;
1451 memmove(name_curpos, filename, n);
1452 name_curpos += n;
1453
1454 *start_end_ofs++ = vma->vm_start;
1455 *start_end_ofs++ = vma->vm_end;
1456 *start_end_ofs++ = vma->vm_pgoff;
1457 count++;
1458 }
1459
1460 /* Now we know exact count of files, can store it */
1461 data[0] = count;
1462 data[1] = PAGE_SIZE;
1463 /*
1464 * Count usually is less than current->mm->map_count,
1465 * we need to move filenames down.
1466 */
1467 n = current->mm->map_count - count;
1468 if (n != 0) {
1469 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1470 memmove(name_base - shift_bytes, name_base,
1471 name_curpos - name_base);
1472 name_curpos -= shift_bytes;
1473 }
1474
1475 size = name_curpos - (char *)data;
1476 fill_note(note, "CORE", NT_FILE, size, data);
1477 err: ;
1478 }
1479
1480 #ifdef CORE_DUMP_USE_REGSET
1481 #include <linux/regset.h>
1482
1483 struct elf_thread_core_info {
1484 struct elf_thread_core_info *next;
1485 struct task_struct *task;
1486 struct elf_prstatus prstatus;
1487 struct memelfnote notes[0];
1488 };
1489
1490 struct elf_note_info {
1491 struct elf_thread_core_info *thread;
1492 struct memelfnote psinfo;
1493 struct memelfnote signote;
1494 struct memelfnote auxv;
1495 struct memelfnote files;
1496 user_siginfo_t csigdata;
1497 size_t size;
1498 int thread_notes;
1499 };
1500
1501 /*
1502 * When a regset has a writeback hook, we call it on each thread before
1503 * dumping user memory. On register window machines, this makes sure the
1504 * user memory backing the register data is up to date before we read it.
1505 */
1506 static void do_thread_regset_writeback(struct task_struct *task,
1507 const struct user_regset *regset)
1508 {
1509 if (regset->writeback)
1510 regset->writeback(task, regset, 1);
1511 }
1512
1513 #ifndef PR_REG_SIZE
1514 #define PR_REG_SIZE(S) sizeof(S)
1515 #endif
1516
1517 #ifndef PRSTATUS_SIZE
1518 #define PRSTATUS_SIZE(S) sizeof(S)
1519 #endif
1520
1521 #ifndef PR_REG_PTR
1522 #define PR_REG_PTR(S) (&((S)->pr_reg))
1523 #endif
1524
1525 #ifndef SET_PR_FPVALID
1526 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1527 #endif
1528
1529 static int fill_thread_core_info(struct elf_thread_core_info *t,
1530 const struct user_regset_view *view,
1531 long signr, size_t *total)
1532 {
1533 unsigned int i;
1534
1535 /*
1536 * NT_PRSTATUS is the one special case, because the regset data
1537 * goes into the pr_reg field inside the note contents, rather
1538 * than being the whole note contents. We fill the reset in here.
1539 * We assume that regset 0 is NT_PRSTATUS.
1540 */
1541 fill_prstatus(&t->prstatus, t->task, signr);
1542 (void) view->regsets[0].get(t->task, &view->regsets[0],
1543 0, PR_REG_SIZE(t->prstatus.pr_reg),
1544 PR_REG_PTR(&t->prstatus), NULL);
1545
1546 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1547 PRSTATUS_SIZE(t->prstatus), &t->prstatus);
1548 *total += notesize(&t->notes[0]);
1549
1550 do_thread_regset_writeback(t->task, &view->regsets[0]);
1551
1552 /*
1553 * Each other regset might generate a note too. For each regset
1554 * that has no core_note_type or is inactive, we leave t->notes[i]
1555 * all zero and we'll know to skip writing it later.
1556 */
1557 for (i = 1; i < view->n; ++i) {
1558 const struct user_regset *regset = &view->regsets[i];
1559 do_thread_regset_writeback(t->task, regset);
1560 if (regset->core_note_type && regset->get &&
1561 (!regset->active || regset->active(t->task, regset))) {
1562 int ret;
1563 size_t size = regset->n * regset->size;
1564 void *data = kmalloc(size, GFP_KERNEL);
1565 if (unlikely(!data))
1566 return 0;
1567 ret = regset->get(t->task, regset,
1568 0, size, data, NULL);
1569 if (unlikely(ret))
1570 kfree(data);
1571 else {
1572 if (regset->core_note_type != NT_PRFPREG)
1573 fill_note(&t->notes[i], "LINUX",
1574 regset->core_note_type,
1575 size, data);
1576 else {
1577 SET_PR_FPVALID(&t->prstatus, 1);
1578 fill_note(&t->notes[i], "CORE",
1579 NT_PRFPREG, size, data);
1580 }
1581 *total += notesize(&t->notes[i]);
1582 }
1583 }
1584 }
1585
1586 return 1;
1587 }
1588
1589 static int fill_note_info(struct elfhdr *elf, int phdrs,
1590 struct elf_note_info *info,
1591 siginfo_t *siginfo, struct pt_regs *regs)
1592 {
1593 struct task_struct *dump_task = current;
1594 const struct user_regset_view *view = task_user_regset_view(dump_task);
1595 struct elf_thread_core_info *t;
1596 struct elf_prpsinfo *psinfo;
1597 struct core_thread *ct;
1598 unsigned int i;
1599
1600 info->size = 0;
1601 info->thread = NULL;
1602
1603 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1604 if (psinfo == NULL)
1605 return 0;
1606
1607 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1608
1609 /*
1610 * Figure out how many notes we're going to need for each thread.
1611 */
1612 info->thread_notes = 0;
1613 for (i = 0; i < view->n; ++i)
1614 if (view->regsets[i].core_note_type != 0)
1615 ++info->thread_notes;
1616
1617 /*
1618 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1619 * since it is our one special case.
1620 */
1621 if (unlikely(info->thread_notes == 0) ||
1622 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1623 WARN_ON(1);
1624 return 0;
1625 }
1626
1627 /*
1628 * Initialize the ELF file header.
1629 */
1630 fill_elf_header(elf, phdrs,
1631 view->e_machine, view->e_flags, view->ei_osabi);
1632
1633 /*
1634 * Allocate a structure for each thread.
1635 */
1636 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1637 t = kzalloc(offsetof(struct elf_thread_core_info,
1638 notes[info->thread_notes]),
1639 GFP_KERNEL);
1640 if (unlikely(!t))
1641 return 0;
1642
1643 t->task = ct->task;
1644 if (ct->task == dump_task || !info->thread) {
1645 t->next = info->thread;
1646 info->thread = t;
1647 } else {
1648 /*
1649 * Make sure to keep the original task at
1650 * the head of the list.
1651 */
1652 t->next = info->thread->next;
1653 info->thread->next = t;
1654 }
1655 }
1656
1657 /*
1658 * Now fill in each thread's information.
1659 */
1660 for (t = info->thread; t != NULL; t = t->next)
1661 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1662 return 0;
1663
1664 /*
1665 * Fill in the two process-wide notes.
1666 */
1667 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1668 info->size += notesize(&info->psinfo);
1669
1670 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1671 info->size += notesize(&info->signote);
1672
1673 fill_auxv_note(&info->auxv, current->mm);
1674 info->size += notesize(&info->auxv);
1675
1676 fill_files_note(&info->files);
1677 info->size += notesize(&info->files);
1678
1679 return 1;
1680 }
1681
1682 static size_t get_note_info_size(struct elf_note_info *info)
1683 {
1684 return info->size;
1685 }
1686
1687 /*
1688 * Write all the notes for each thread. When writing the first thread, the
1689 * process-wide notes are interleaved after the first thread-specific note.
1690 */
1691 static int write_note_info(struct elf_note_info *info,
1692 struct file *file, loff_t *foffset)
1693 {
1694 bool first = 1;
1695 struct elf_thread_core_info *t = info->thread;
1696
1697 do {
1698 int i;
1699
1700 if (!writenote(&t->notes[0], file, foffset))
1701 return 0;
1702
1703 if (first && !writenote(&info->psinfo, file, foffset))
1704 return 0;
1705 if (first && !writenote(&info->signote, file, foffset))
1706 return 0;
1707 if (first && !writenote(&info->auxv, file, foffset))
1708 return 0;
1709 if (first && !writenote(&info->files, file, foffset))
1710 return 0;
1711
1712 for (i = 1; i < info->thread_notes; ++i)
1713 if (t->notes[i].data &&
1714 !writenote(&t->notes[i], file, foffset))
1715 return 0;
1716
1717 first = 0;
1718 t = t->next;
1719 } while (t);
1720
1721 return 1;
1722 }
1723
1724 static void free_note_info(struct elf_note_info *info)
1725 {
1726 struct elf_thread_core_info *threads = info->thread;
1727 while (threads) {
1728 unsigned int i;
1729 struct elf_thread_core_info *t = threads;
1730 threads = t->next;
1731 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1732 for (i = 1; i < info->thread_notes; ++i)
1733 kfree(t->notes[i].data);
1734 kfree(t);
1735 }
1736 kfree(info->psinfo.data);
1737 vfree(info->files.data);
1738 }
1739
1740 #else
1741
1742 /* Here is the structure in which status of each thread is captured. */
1743 struct elf_thread_status
1744 {
1745 struct list_head list;
1746 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1747 elf_fpregset_t fpu; /* NT_PRFPREG */
1748 struct task_struct *thread;
1749 #ifdef ELF_CORE_COPY_XFPREGS
1750 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1751 #endif
1752 struct memelfnote notes[3];
1753 int num_notes;
1754 };
1755
1756 /*
1757 * In order to add the specific thread information for the elf file format,
1758 * we need to keep a linked list of every threads pr_status and then create
1759 * a single section for them in the final core file.
1760 */
1761 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1762 {
1763 int sz = 0;
1764 struct task_struct *p = t->thread;
1765 t->num_notes = 0;
1766
1767 fill_prstatus(&t->prstatus, p, signr);
1768 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1769
1770 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1771 &(t->prstatus));
1772 t->num_notes++;
1773 sz += notesize(&t->notes[0]);
1774
1775 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1776 &t->fpu))) {
1777 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1778 &(t->fpu));
1779 t->num_notes++;
1780 sz += notesize(&t->notes[1]);
1781 }
1782
1783 #ifdef ELF_CORE_COPY_XFPREGS
1784 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1785 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1786 sizeof(t->xfpu), &t->xfpu);
1787 t->num_notes++;
1788 sz += notesize(&t->notes[2]);
1789 }
1790 #endif
1791 return sz;
1792 }
1793
1794 struct elf_note_info {
1795 struct memelfnote *notes;
1796 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1797 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1798 struct list_head thread_list;
1799 elf_fpregset_t *fpu;
1800 #ifdef ELF_CORE_COPY_XFPREGS
1801 elf_fpxregset_t *xfpu;
1802 #endif
1803 user_siginfo_t csigdata;
1804 int thread_status_size;
1805 int numnote;
1806 };
1807
1808 static int elf_note_info_init(struct elf_note_info *info)
1809 {
1810 memset(info, 0, sizeof(*info));
1811 INIT_LIST_HEAD(&info->thread_list);
1812
1813 /* Allocate space for ELF notes */
1814 info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1815 if (!info->notes)
1816 return 0;
1817 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1818 if (!info->psinfo)
1819 return 0;
1820 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1821 if (!info->prstatus)
1822 return 0;
1823 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1824 if (!info->fpu)
1825 return 0;
1826 #ifdef ELF_CORE_COPY_XFPREGS
1827 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1828 if (!info->xfpu)
1829 return 0;
1830 #endif
1831 return 1;
1832 }
1833
1834 static int fill_note_info(struct elfhdr *elf, int phdrs,
1835 struct elf_note_info *info,
1836 siginfo_t *siginfo, struct pt_regs *regs)
1837 {
1838 struct list_head *t;
1839
1840 if (!elf_note_info_init(info))
1841 return 0;
1842
1843 if (siginfo->si_signo) {
1844 struct core_thread *ct;
1845 struct elf_thread_status *ets;
1846
1847 for (ct = current->mm->core_state->dumper.next;
1848 ct; ct = ct->next) {
1849 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1850 if (!ets)
1851 return 0;
1852
1853 ets->thread = ct->task;
1854 list_add(&ets->list, &info->thread_list);
1855 }
1856
1857 list_for_each(t, &info->thread_list) {
1858 int sz;
1859
1860 ets = list_entry(t, struct elf_thread_status, list);
1861 sz = elf_dump_thread_status(siginfo->si_signo, ets);
1862 info->thread_status_size += sz;
1863 }
1864 }
1865 /* now collect the dump for the current */
1866 memset(info->prstatus, 0, sizeof(*info->prstatus));
1867 fill_prstatus(info->prstatus, current, siginfo->si_signo);
1868 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1869
1870 /* Set up header */
1871 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1872
1873 /*
1874 * Set up the notes in similar form to SVR4 core dumps made
1875 * with info from their /proc.
1876 */
1877
1878 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1879 sizeof(*info->prstatus), info->prstatus);
1880 fill_psinfo(info->psinfo, current->group_leader, current->mm);
1881 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1882 sizeof(*info->psinfo), info->psinfo);
1883
1884 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
1885 fill_auxv_note(info->notes + 3, current->mm);
1886 fill_files_note(info->notes + 4);
1887
1888 info->numnote = 5;
1889
1890 /* Try to dump the FPU. */
1891 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1892 info->fpu);
1893 if (info->prstatus->pr_fpvalid)
1894 fill_note(info->notes + info->numnote++,
1895 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1896 #ifdef ELF_CORE_COPY_XFPREGS
1897 if (elf_core_copy_task_xfpregs(current, info->xfpu))
1898 fill_note(info->notes + info->numnote++,
1899 "LINUX", ELF_CORE_XFPREG_TYPE,
1900 sizeof(*info->xfpu), info->xfpu);
1901 #endif
1902
1903 return 1;
1904 }
1905
1906 static size_t get_note_info_size(struct elf_note_info *info)
1907 {
1908 int sz = 0;
1909 int i;
1910
1911 for (i = 0; i < info->numnote; i++)
1912 sz += notesize(info->notes + i);
1913
1914 sz += info->thread_status_size;
1915
1916 return sz;
1917 }
1918
1919 static int write_note_info(struct elf_note_info *info,
1920 struct file *file, loff_t *foffset)
1921 {
1922 int i;
1923 struct list_head *t;
1924
1925 for (i = 0; i < info->numnote; i++)
1926 if (!writenote(info->notes + i, file, foffset))
1927 return 0;
1928
1929 /* write out the thread status notes section */
1930 list_for_each(t, &info->thread_list) {
1931 struct elf_thread_status *tmp =
1932 list_entry(t, struct elf_thread_status, list);
1933
1934 for (i = 0; i < tmp->num_notes; i++)
1935 if (!writenote(&tmp->notes[i], file, foffset))
1936 return 0;
1937 }
1938
1939 return 1;
1940 }
1941
1942 static void free_note_info(struct elf_note_info *info)
1943 {
1944 while (!list_empty(&info->thread_list)) {
1945 struct list_head *tmp = info->thread_list.next;
1946 list_del(tmp);
1947 kfree(list_entry(tmp, struct elf_thread_status, list));
1948 }
1949
1950 /* Free data allocated by fill_files_note(): */
1951 vfree(info->notes[4].data);
1952
1953 kfree(info->prstatus);
1954 kfree(info->psinfo);
1955 kfree(info->notes);
1956 kfree(info->fpu);
1957 #ifdef ELF_CORE_COPY_XFPREGS
1958 kfree(info->xfpu);
1959 #endif
1960 }
1961
1962 #endif
1963
1964 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1965 struct vm_area_struct *gate_vma)
1966 {
1967 struct vm_area_struct *ret = tsk->mm->mmap;
1968
1969 if (ret)
1970 return ret;
1971 return gate_vma;
1972 }
1973 /*
1974 * Helper function for iterating across a vma list. It ensures that the caller
1975 * will visit `gate_vma' prior to terminating the search.
1976 */
1977 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1978 struct vm_area_struct *gate_vma)
1979 {
1980 struct vm_area_struct *ret;
1981
1982 ret = this_vma->vm_next;
1983 if (ret)
1984 return ret;
1985 if (this_vma == gate_vma)
1986 return NULL;
1987 return gate_vma;
1988 }
1989
1990 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1991 elf_addr_t e_shoff, int segs)
1992 {
1993 elf->e_shoff = e_shoff;
1994 elf->e_shentsize = sizeof(*shdr4extnum);
1995 elf->e_shnum = 1;
1996 elf->e_shstrndx = SHN_UNDEF;
1997
1998 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
1999
2000 shdr4extnum->sh_type = SHT_NULL;
2001 shdr4extnum->sh_size = elf->e_shnum;
2002 shdr4extnum->sh_link = elf->e_shstrndx;
2003 shdr4extnum->sh_info = segs;
2004 }
2005
2006 static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma,
2007 unsigned long mm_flags)
2008 {
2009 struct vm_area_struct *vma;
2010 size_t size = 0;
2011
2012 for (vma = first_vma(current, gate_vma); vma != NULL;
2013 vma = next_vma(vma, gate_vma))
2014 size += vma_dump_size(vma, mm_flags);
2015 return size;
2016 }
2017
2018 /*
2019 * Actual dumper
2020 *
2021 * This is a two-pass process; first we find the offsets of the bits,
2022 * and then they are actually written out. If we run out of core limit
2023 * we just truncate.
2024 */
2025 static int elf_core_dump(struct coredump_params *cprm)
2026 {
2027 int has_dumped = 0;
2028 mm_segment_t fs;
2029 int segs;
2030 size_t size = 0;
2031 struct vm_area_struct *vma, *gate_vma;
2032 struct elfhdr *elf = NULL;
2033 loff_t offset = 0, dataoff, foffset;
2034 struct elf_note_info info;
2035 struct elf_phdr *phdr4note = NULL;
2036 struct elf_shdr *shdr4extnum = NULL;
2037 Elf_Half e_phnum;
2038 elf_addr_t e_shoff;
2039
2040 /*
2041 * We no longer stop all VM operations.
2042 *
2043 * This is because those proceses that could possibly change map_count
2044 * or the mmap / vma pages are now blocked in do_exit on current
2045 * finishing this core dump.
2046 *
2047 * Only ptrace can touch these memory addresses, but it doesn't change
2048 * the map_count or the pages allocated. So no possibility of crashing
2049 * exists while dumping the mm->vm_next areas to the core file.
2050 */
2051
2052 /* alloc memory for large data structures: too large to be on stack */
2053 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2054 if (!elf)
2055 goto out;
2056 /*
2057 * The number of segs are recored into ELF header as 16bit value.
2058 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2059 */
2060 segs = current->mm->map_count;
2061 segs += elf_core_extra_phdrs();
2062
2063 gate_vma = get_gate_vma(current->mm);
2064 if (gate_vma != NULL)
2065 segs++;
2066
2067 /* for notes section */
2068 segs++;
2069
2070 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2071 * this, kernel supports extended numbering. Have a look at
2072 * include/linux/elf.h for further information. */
2073 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2074
2075 /*
2076 * Collect all the non-memory information about the process for the
2077 * notes. This also sets up the file header.
2078 */
2079 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2080 goto cleanup;
2081
2082 has_dumped = 1;
2083 current->flags |= PF_DUMPCORE;
2084
2085 fs = get_fs();
2086 set_fs(KERNEL_DS);
2087
2088 offset += sizeof(*elf); /* Elf header */
2089 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2090 foffset = offset;
2091
2092 /* Write notes phdr entry */
2093 {
2094 size_t sz = get_note_info_size(&info);
2095
2096 sz += elf_coredump_extra_notes_size();
2097
2098 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2099 if (!phdr4note)
2100 goto end_coredump;
2101
2102 fill_elf_note_phdr(phdr4note, sz, offset);
2103 offset += sz;
2104 }
2105
2106 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2107
2108 offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags);
2109 offset += elf_core_extra_data_size();
2110 e_shoff = offset;
2111
2112 if (e_phnum == PN_XNUM) {
2113 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2114 if (!shdr4extnum)
2115 goto end_coredump;
2116 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2117 }
2118
2119 offset = dataoff;
2120
2121 size += sizeof(*elf);
2122 if (size > cprm->limit || !dump_write(cprm->file, elf, sizeof(*elf)))
2123 goto end_coredump;
2124
2125 size += sizeof(*phdr4note);
2126 if (size > cprm->limit
2127 || !dump_write(cprm->file, phdr4note, sizeof(*phdr4note)))
2128 goto end_coredump;
2129
2130 /* Write program headers for segments dump */
2131 for (vma = first_vma(current, gate_vma); vma != NULL;
2132 vma = next_vma(vma, gate_vma)) {
2133 struct elf_phdr phdr;
2134
2135 phdr.p_type = PT_LOAD;
2136 phdr.p_offset = offset;
2137 phdr.p_vaddr = vma->vm_start;
2138 phdr.p_paddr = 0;
2139 phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags);
2140 phdr.p_memsz = vma->vm_end - vma->vm_start;
2141 offset += phdr.p_filesz;
2142 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2143 if (vma->vm_flags & VM_WRITE)
2144 phdr.p_flags |= PF_W;
2145 if (vma->vm_flags & VM_EXEC)
2146 phdr.p_flags |= PF_X;
2147 phdr.p_align = ELF_EXEC_PAGESIZE;
2148
2149 size += sizeof(phdr);
2150 if (size > cprm->limit
2151 || !dump_write(cprm->file, &phdr, sizeof(phdr)))
2152 goto end_coredump;
2153 }
2154
2155 if (!elf_core_write_extra_phdrs(cprm->file, offset, &size, cprm->limit))
2156 goto end_coredump;
2157
2158 /* write out the notes section */
2159 if (!write_note_info(&info, cprm->file, &foffset))
2160 goto end_coredump;
2161
2162 if (elf_coredump_extra_notes_write(cprm->file, &foffset))
2163 goto end_coredump;
2164
2165 /* Align to page */
2166 if (!dump_seek(cprm->file, dataoff - foffset))
2167 goto end_coredump;
2168
2169 for (vma = first_vma(current, gate_vma); vma != NULL;
2170 vma = next_vma(vma, gate_vma)) {
2171 unsigned long addr;
2172 unsigned long end;
2173
2174 end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags);
2175
2176 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2177 struct page *page;
2178 int stop;
2179
2180 page = get_dump_page(addr);
2181 if (page) {
2182 void *kaddr = kmap(page);
2183 stop = ((size += PAGE_SIZE) > cprm->limit) ||
2184 !dump_write(cprm->file, kaddr,
2185 PAGE_SIZE);
2186 kunmap(page);
2187 page_cache_release(page);
2188 } else
2189 stop = !dump_seek(cprm->file, PAGE_SIZE);
2190 if (stop)
2191 goto end_coredump;
2192 }
2193 }
2194
2195 if (!elf_core_write_extra_data(cprm->file, &size, cprm->limit))
2196 goto end_coredump;
2197
2198 if (e_phnum == PN_XNUM) {
2199 size += sizeof(*shdr4extnum);
2200 if (size > cprm->limit
2201 || !dump_write(cprm->file, shdr4extnum,
2202 sizeof(*shdr4extnum)))
2203 goto end_coredump;
2204 }
2205
2206 end_coredump:
2207 set_fs(fs);
2208
2209 cleanup:
2210 free_note_info(&info);
2211 kfree(shdr4extnum);
2212 kfree(phdr4note);
2213 kfree(elf);
2214 out:
2215 return has_dumped;
2216 }
2217
2218 #endif /* CONFIG_ELF_CORE */
2219
2220 static int __init init_elf_binfmt(void)
2221 {
2222 register_binfmt(&elf_format);
2223 return 0;
2224 }
2225
2226 static void __exit exit_elf_binfmt(void)
2227 {
2228 /* Remove the COFF and ELF loaders. */
2229 unregister_binfmt(&elf_format);
2230 }
2231
2232 core_initcall(init_elf_binfmt);
2233 module_exit(exit_elf_binfmt);
2234 MODULE_LICENSE("GPL");