Merge tag 'module-for-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / binfmt_elf.c
1 /*
2 * linux/fs/binfmt_elf.c
3 *
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
8 *
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/security.h>
31 #include <linux/random.h>
32 #include <linux/elf.h>
33 #include <linux/utsname.h>
34 #include <linux/coredump.h>
35 #include <asm/uaccess.h>
36 #include <asm/param.h>
37 #include <asm/page.h>
38
39 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
40 static int load_elf_library(struct file *);
41 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
42 int, int, unsigned long);
43
44 /*
45 * If we don't support core dumping, then supply a NULL so we
46 * don't even try.
47 */
48 #ifdef CONFIG_ELF_CORE
49 static int elf_core_dump(struct coredump_params *cprm);
50 #else
51 #define elf_core_dump NULL
52 #endif
53
54 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
55 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
56 #else
57 #define ELF_MIN_ALIGN PAGE_SIZE
58 #endif
59
60 #ifndef ELF_CORE_EFLAGS
61 #define ELF_CORE_EFLAGS 0
62 #endif
63
64 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
65 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
66 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
67
68 static struct linux_binfmt elf_format = {
69 .module = THIS_MODULE,
70 .load_binary = load_elf_binary,
71 .load_shlib = load_elf_library,
72 .core_dump = elf_core_dump,
73 .min_coredump = ELF_EXEC_PAGESIZE,
74 };
75
76 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
77
78 static int set_brk(unsigned long start, unsigned long end)
79 {
80 start = ELF_PAGEALIGN(start);
81 end = ELF_PAGEALIGN(end);
82 if (end > start) {
83 unsigned long addr;
84 down_write(&current->mm->mmap_sem);
85 addr = do_brk(start, end - start);
86 up_write(&current->mm->mmap_sem);
87 if (BAD_ADDR(addr))
88 return addr;
89 }
90 current->mm->start_brk = current->mm->brk = end;
91 return 0;
92 }
93
94 /* We need to explicitly zero any fractional pages
95 after the data section (i.e. bss). This would
96 contain the junk from the file that should not
97 be in memory
98 */
99 static int padzero(unsigned long elf_bss)
100 {
101 unsigned long nbyte;
102
103 nbyte = ELF_PAGEOFFSET(elf_bss);
104 if (nbyte) {
105 nbyte = ELF_MIN_ALIGN - nbyte;
106 if (clear_user((void __user *) elf_bss, nbyte))
107 return -EFAULT;
108 }
109 return 0;
110 }
111
112 /* Let's use some macros to make this stack manipulation a little clearer */
113 #ifdef CONFIG_STACK_GROWSUP
114 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
115 #define STACK_ROUND(sp, items) \
116 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
117 #define STACK_ALLOC(sp, len) ({ \
118 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
119 old_sp; })
120 #else
121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
122 #define STACK_ROUND(sp, items) \
123 (((unsigned long) (sp - items)) &~ 15UL)
124 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
125 #endif
126
127 #ifndef ELF_BASE_PLATFORM
128 /*
129 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
130 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
131 * will be copied to the user stack in the same manner as AT_PLATFORM.
132 */
133 #define ELF_BASE_PLATFORM NULL
134 #endif
135
136 static int
137 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
138 unsigned long load_addr, unsigned long interp_load_addr)
139 {
140 unsigned long p = bprm->p;
141 int argc = bprm->argc;
142 int envc = bprm->envc;
143 elf_addr_t __user *argv;
144 elf_addr_t __user *envp;
145 elf_addr_t __user *sp;
146 elf_addr_t __user *u_platform;
147 elf_addr_t __user *u_base_platform;
148 elf_addr_t __user *u_rand_bytes;
149 const char *k_platform = ELF_PLATFORM;
150 const char *k_base_platform = ELF_BASE_PLATFORM;
151 unsigned char k_rand_bytes[16];
152 int items;
153 elf_addr_t *elf_info;
154 int ei_index = 0;
155 const struct cred *cred = current_cred();
156 struct vm_area_struct *vma;
157
158 /*
159 * In some cases (e.g. Hyper-Threading), we want to avoid L1
160 * evictions by the processes running on the same package. One
161 * thing we can do is to shuffle the initial stack for them.
162 */
163
164 p = arch_align_stack(p);
165
166 /*
167 * If this architecture has a platform capability string, copy it
168 * to userspace. In some cases (Sparc), this info is impossible
169 * for userspace to get any other way, in others (i386) it is
170 * merely difficult.
171 */
172 u_platform = NULL;
173 if (k_platform) {
174 size_t len = strlen(k_platform) + 1;
175
176 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
177 if (__copy_to_user(u_platform, k_platform, len))
178 return -EFAULT;
179 }
180
181 /*
182 * If this architecture has a "base" platform capability
183 * string, copy it to userspace.
184 */
185 u_base_platform = NULL;
186 if (k_base_platform) {
187 size_t len = strlen(k_base_platform) + 1;
188
189 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
190 if (__copy_to_user(u_base_platform, k_base_platform, len))
191 return -EFAULT;
192 }
193
194 /*
195 * Generate 16 random bytes for userspace PRNG seeding.
196 */
197 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
198 u_rand_bytes = (elf_addr_t __user *)
199 STACK_ALLOC(p, sizeof(k_rand_bytes));
200 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
201 return -EFAULT;
202
203 /* Create the ELF interpreter info */
204 elf_info = (elf_addr_t *)current->mm->saved_auxv;
205 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
206 #define NEW_AUX_ENT(id, val) \
207 do { \
208 elf_info[ei_index++] = id; \
209 elf_info[ei_index++] = val; \
210 } while (0)
211
212 #ifdef ARCH_DLINFO
213 /*
214 * ARCH_DLINFO must come first so PPC can do its special alignment of
215 * AUXV.
216 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
217 * ARCH_DLINFO changes
218 */
219 ARCH_DLINFO;
220 #endif
221 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
222 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
223 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
224 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
225 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
226 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
227 NEW_AUX_ENT(AT_BASE, interp_load_addr);
228 NEW_AUX_ENT(AT_FLAGS, 0);
229 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
230 NEW_AUX_ENT(AT_UID, cred->uid);
231 NEW_AUX_ENT(AT_EUID, cred->euid);
232 NEW_AUX_ENT(AT_GID, cred->gid);
233 NEW_AUX_ENT(AT_EGID, cred->egid);
234 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
235 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
236 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
237 if (k_platform) {
238 NEW_AUX_ENT(AT_PLATFORM,
239 (elf_addr_t)(unsigned long)u_platform);
240 }
241 if (k_base_platform) {
242 NEW_AUX_ENT(AT_BASE_PLATFORM,
243 (elf_addr_t)(unsigned long)u_base_platform);
244 }
245 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
246 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
247 }
248 #undef NEW_AUX_ENT
249 /* AT_NULL is zero; clear the rest too */
250 memset(&elf_info[ei_index], 0,
251 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
252
253 /* And advance past the AT_NULL entry. */
254 ei_index += 2;
255
256 sp = STACK_ADD(p, ei_index);
257
258 items = (argc + 1) + (envc + 1) + 1;
259 bprm->p = STACK_ROUND(sp, items);
260
261 /* Point sp at the lowest address on the stack */
262 #ifdef CONFIG_STACK_GROWSUP
263 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
264 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
265 #else
266 sp = (elf_addr_t __user *)bprm->p;
267 #endif
268
269
270 /*
271 * Grow the stack manually; some architectures have a limit on how
272 * far ahead a user-space access may be in order to grow the stack.
273 */
274 vma = find_extend_vma(current->mm, bprm->p);
275 if (!vma)
276 return -EFAULT;
277
278 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
279 if (__put_user(argc, sp++))
280 return -EFAULT;
281 argv = sp;
282 envp = argv + argc + 1;
283
284 /* Populate argv and envp */
285 p = current->mm->arg_end = current->mm->arg_start;
286 while (argc-- > 0) {
287 size_t len;
288 if (__put_user((elf_addr_t)p, argv++))
289 return -EFAULT;
290 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
291 if (!len || len > MAX_ARG_STRLEN)
292 return -EINVAL;
293 p += len;
294 }
295 if (__put_user(0, argv))
296 return -EFAULT;
297 current->mm->arg_end = current->mm->env_start = p;
298 while (envc-- > 0) {
299 size_t len;
300 if (__put_user((elf_addr_t)p, envp++))
301 return -EFAULT;
302 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
303 if (!len || len > MAX_ARG_STRLEN)
304 return -EINVAL;
305 p += len;
306 }
307 if (__put_user(0, envp))
308 return -EFAULT;
309 current->mm->env_end = p;
310
311 /* Put the elf_info on the stack in the right place. */
312 sp = (elf_addr_t __user *)envp + 1;
313 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
314 return -EFAULT;
315 return 0;
316 }
317
318 static unsigned long elf_map(struct file *filep, unsigned long addr,
319 struct elf_phdr *eppnt, int prot, int type,
320 unsigned long total_size)
321 {
322 unsigned long map_addr;
323 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
324 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
325 addr = ELF_PAGESTART(addr);
326 size = ELF_PAGEALIGN(size);
327
328 /* mmap() will return -EINVAL if given a zero size, but a
329 * segment with zero filesize is perfectly valid */
330 if (!size)
331 return addr;
332
333 down_write(&current->mm->mmap_sem);
334 /*
335 * total_size is the size of the ELF (interpreter) image.
336 * The _first_ mmap needs to know the full size, otherwise
337 * randomization might put this image into an overlapping
338 * position with the ELF binary image. (since size < total_size)
339 * So we first map the 'big' image - and unmap the remainder at
340 * the end. (which unmap is needed for ELF images with holes.)
341 */
342 if (total_size) {
343 total_size = ELF_PAGEALIGN(total_size);
344 map_addr = do_mmap(filep, addr, total_size, prot, type, off);
345 if (!BAD_ADDR(map_addr))
346 do_munmap(current->mm, map_addr+size, total_size-size);
347 } else
348 map_addr = do_mmap(filep, addr, size, prot, type, off);
349
350 up_write(&current->mm->mmap_sem);
351 return(map_addr);
352 }
353
354 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
355 {
356 int i, first_idx = -1, last_idx = -1;
357
358 for (i = 0; i < nr; i++) {
359 if (cmds[i].p_type == PT_LOAD) {
360 last_idx = i;
361 if (first_idx == -1)
362 first_idx = i;
363 }
364 }
365 if (first_idx == -1)
366 return 0;
367
368 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
369 ELF_PAGESTART(cmds[first_idx].p_vaddr);
370 }
371
372
373 /* This is much more generalized than the library routine read function,
374 so we keep this separate. Technically the library read function
375 is only provided so that we can read a.out libraries that have
376 an ELF header */
377
378 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
379 struct file *interpreter, unsigned long *interp_map_addr,
380 unsigned long no_base)
381 {
382 struct elf_phdr *elf_phdata;
383 struct elf_phdr *eppnt;
384 unsigned long load_addr = 0;
385 int load_addr_set = 0;
386 unsigned long last_bss = 0, elf_bss = 0;
387 unsigned long error = ~0UL;
388 unsigned long total_size;
389 int retval, i, size;
390
391 /* First of all, some simple consistency checks */
392 if (interp_elf_ex->e_type != ET_EXEC &&
393 interp_elf_ex->e_type != ET_DYN)
394 goto out;
395 if (!elf_check_arch(interp_elf_ex))
396 goto out;
397 if (!interpreter->f_op || !interpreter->f_op->mmap)
398 goto out;
399
400 /*
401 * If the size of this structure has changed, then punt, since
402 * we will be doing the wrong thing.
403 */
404 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
405 goto out;
406 if (interp_elf_ex->e_phnum < 1 ||
407 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
408 goto out;
409
410 /* Now read in all of the header information */
411 size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
412 if (size > ELF_MIN_ALIGN)
413 goto out;
414 elf_phdata = kmalloc(size, GFP_KERNEL);
415 if (!elf_phdata)
416 goto out;
417
418 retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
419 (char *)elf_phdata, size);
420 error = -EIO;
421 if (retval != size) {
422 if (retval < 0)
423 error = retval;
424 goto out_close;
425 }
426
427 total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
428 if (!total_size) {
429 error = -EINVAL;
430 goto out_close;
431 }
432
433 eppnt = elf_phdata;
434 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
435 if (eppnt->p_type == PT_LOAD) {
436 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
437 int elf_prot = 0;
438 unsigned long vaddr = 0;
439 unsigned long k, map_addr;
440
441 if (eppnt->p_flags & PF_R)
442 elf_prot = PROT_READ;
443 if (eppnt->p_flags & PF_W)
444 elf_prot |= PROT_WRITE;
445 if (eppnt->p_flags & PF_X)
446 elf_prot |= PROT_EXEC;
447 vaddr = eppnt->p_vaddr;
448 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
449 elf_type |= MAP_FIXED;
450 else if (no_base && interp_elf_ex->e_type == ET_DYN)
451 load_addr = -vaddr;
452
453 map_addr = elf_map(interpreter, load_addr + vaddr,
454 eppnt, elf_prot, elf_type, total_size);
455 total_size = 0;
456 if (!*interp_map_addr)
457 *interp_map_addr = map_addr;
458 error = map_addr;
459 if (BAD_ADDR(map_addr))
460 goto out_close;
461
462 if (!load_addr_set &&
463 interp_elf_ex->e_type == ET_DYN) {
464 load_addr = map_addr - ELF_PAGESTART(vaddr);
465 load_addr_set = 1;
466 }
467
468 /*
469 * Check to see if the section's size will overflow the
470 * allowed task size. Note that p_filesz must always be
471 * <= p_memsize so it's only necessary to check p_memsz.
472 */
473 k = load_addr + eppnt->p_vaddr;
474 if (BAD_ADDR(k) ||
475 eppnt->p_filesz > eppnt->p_memsz ||
476 eppnt->p_memsz > TASK_SIZE ||
477 TASK_SIZE - eppnt->p_memsz < k) {
478 error = -ENOMEM;
479 goto out_close;
480 }
481
482 /*
483 * Find the end of the file mapping for this phdr, and
484 * keep track of the largest address we see for this.
485 */
486 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
487 if (k > elf_bss)
488 elf_bss = k;
489
490 /*
491 * Do the same thing for the memory mapping - between
492 * elf_bss and last_bss is the bss section.
493 */
494 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
495 if (k > last_bss)
496 last_bss = k;
497 }
498 }
499
500 if (last_bss > elf_bss) {
501 /*
502 * Now fill out the bss section. First pad the last page up
503 * to the page boundary, and then perform a mmap to make sure
504 * that there are zero-mapped pages up to and including the
505 * last bss page.
506 */
507 if (padzero(elf_bss)) {
508 error = -EFAULT;
509 goto out_close;
510 }
511
512 /* What we have mapped so far */
513 elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
514
515 /* Map the last of the bss segment */
516 down_write(&current->mm->mmap_sem);
517 error = do_brk(elf_bss, last_bss - elf_bss);
518 up_write(&current->mm->mmap_sem);
519 if (BAD_ADDR(error))
520 goto out_close;
521 }
522
523 error = load_addr;
524
525 out_close:
526 kfree(elf_phdata);
527 out:
528 return error;
529 }
530
531 /*
532 * These are the functions used to load ELF style executables and shared
533 * libraries. There is no binary dependent code anywhere else.
534 */
535
536 #define INTERPRETER_NONE 0
537 #define INTERPRETER_ELF 2
538
539 #ifndef STACK_RND_MASK
540 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
541 #endif
542
543 static unsigned long randomize_stack_top(unsigned long stack_top)
544 {
545 unsigned int random_variable = 0;
546
547 if ((current->flags & PF_RANDOMIZE) &&
548 !(current->personality & ADDR_NO_RANDOMIZE)) {
549 random_variable = get_random_int() & STACK_RND_MASK;
550 random_variable <<= PAGE_SHIFT;
551 }
552 #ifdef CONFIG_STACK_GROWSUP
553 return PAGE_ALIGN(stack_top) + random_variable;
554 #else
555 return PAGE_ALIGN(stack_top) - random_variable;
556 #endif
557 }
558
559 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
560 {
561 struct file *interpreter = NULL; /* to shut gcc up */
562 unsigned long load_addr = 0, load_bias = 0;
563 int load_addr_set = 0;
564 char * elf_interpreter = NULL;
565 unsigned long error;
566 struct elf_phdr *elf_ppnt, *elf_phdata;
567 unsigned long elf_bss, elf_brk;
568 int retval, i;
569 unsigned int size;
570 unsigned long elf_entry;
571 unsigned long interp_load_addr = 0;
572 unsigned long start_code, end_code, start_data, end_data;
573 unsigned long reloc_func_desc __maybe_unused = 0;
574 int executable_stack = EXSTACK_DEFAULT;
575 unsigned long def_flags = 0;
576 struct {
577 struct elfhdr elf_ex;
578 struct elfhdr interp_elf_ex;
579 } *loc;
580
581 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
582 if (!loc) {
583 retval = -ENOMEM;
584 goto out_ret;
585 }
586
587 /* Get the exec-header */
588 loc->elf_ex = *((struct elfhdr *)bprm->buf);
589
590 retval = -ENOEXEC;
591 /* First of all, some simple consistency checks */
592 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
593 goto out;
594
595 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
596 goto out;
597 if (!elf_check_arch(&loc->elf_ex))
598 goto out;
599 if (!bprm->file->f_op || !bprm->file->f_op->mmap)
600 goto out;
601
602 /* Now read in all of the header information */
603 if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
604 goto out;
605 if (loc->elf_ex.e_phnum < 1 ||
606 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
607 goto out;
608 size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
609 retval = -ENOMEM;
610 elf_phdata = kmalloc(size, GFP_KERNEL);
611 if (!elf_phdata)
612 goto out;
613
614 retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
615 (char *)elf_phdata, size);
616 if (retval != size) {
617 if (retval >= 0)
618 retval = -EIO;
619 goto out_free_ph;
620 }
621
622 elf_ppnt = elf_phdata;
623 elf_bss = 0;
624 elf_brk = 0;
625
626 start_code = ~0UL;
627 end_code = 0;
628 start_data = 0;
629 end_data = 0;
630
631 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
632 if (elf_ppnt->p_type == PT_INTERP) {
633 /* This is the program interpreter used for
634 * shared libraries - for now assume that this
635 * is an a.out format binary
636 */
637 retval = -ENOEXEC;
638 if (elf_ppnt->p_filesz > PATH_MAX ||
639 elf_ppnt->p_filesz < 2)
640 goto out_free_ph;
641
642 retval = -ENOMEM;
643 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
644 GFP_KERNEL);
645 if (!elf_interpreter)
646 goto out_free_ph;
647
648 retval = kernel_read(bprm->file, elf_ppnt->p_offset,
649 elf_interpreter,
650 elf_ppnt->p_filesz);
651 if (retval != elf_ppnt->p_filesz) {
652 if (retval >= 0)
653 retval = -EIO;
654 goto out_free_interp;
655 }
656 /* make sure path is NULL terminated */
657 retval = -ENOEXEC;
658 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
659 goto out_free_interp;
660
661 interpreter = open_exec(elf_interpreter);
662 retval = PTR_ERR(interpreter);
663 if (IS_ERR(interpreter))
664 goto out_free_interp;
665
666 /*
667 * If the binary is not readable then enforce
668 * mm->dumpable = 0 regardless of the interpreter's
669 * permissions.
670 */
671 would_dump(bprm, interpreter);
672
673 retval = kernel_read(interpreter, 0, bprm->buf,
674 BINPRM_BUF_SIZE);
675 if (retval != BINPRM_BUF_SIZE) {
676 if (retval >= 0)
677 retval = -EIO;
678 goto out_free_dentry;
679 }
680
681 /* Get the exec headers */
682 loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
683 break;
684 }
685 elf_ppnt++;
686 }
687
688 elf_ppnt = elf_phdata;
689 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
690 if (elf_ppnt->p_type == PT_GNU_STACK) {
691 if (elf_ppnt->p_flags & PF_X)
692 executable_stack = EXSTACK_ENABLE_X;
693 else
694 executable_stack = EXSTACK_DISABLE_X;
695 break;
696 }
697
698 /* Some simple consistency checks for the interpreter */
699 if (elf_interpreter) {
700 retval = -ELIBBAD;
701 /* Not an ELF interpreter */
702 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
703 goto out_free_dentry;
704 /* Verify the interpreter has a valid arch */
705 if (!elf_check_arch(&loc->interp_elf_ex))
706 goto out_free_dentry;
707 }
708
709 /* Flush all traces of the currently running executable */
710 retval = flush_old_exec(bprm);
711 if (retval)
712 goto out_free_dentry;
713
714 /* OK, This is the point of no return */
715 current->mm->def_flags = def_flags;
716
717 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
718 may depend on the personality. */
719 SET_PERSONALITY(loc->elf_ex);
720 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
721 current->personality |= READ_IMPLIES_EXEC;
722
723 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
724 current->flags |= PF_RANDOMIZE;
725
726 setup_new_exec(bprm);
727
728 /* Do this so that we can load the interpreter, if need be. We will
729 change some of these later */
730 current->mm->free_area_cache = current->mm->mmap_base;
731 current->mm->cached_hole_size = 0;
732 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
733 executable_stack);
734 if (retval < 0) {
735 send_sig(SIGKILL, current, 0);
736 goto out_free_dentry;
737 }
738
739 current->mm->start_stack = bprm->p;
740
741 /* Now we do a little grungy work by mmapping the ELF image into
742 the correct location in memory. */
743 for(i = 0, elf_ppnt = elf_phdata;
744 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
745 int elf_prot = 0, elf_flags;
746 unsigned long k, vaddr;
747
748 if (elf_ppnt->p_type != PT_LOAD)
749 continue;
750
751 if (unlikely (elf_brk > elf_bss)) {
752 unsigned long nbyte;
753
754 /* There was a PT_LOAD segment with p_memsz > p_filesz
755 before this one. Map anonymous pages, if needed,
756 and clear the area. */
757 retval = set_brk(elf_bss + load_bias,
758 elf_brk + load_bias);
759 if (retval) {
760 send_sig(SIGKILL, current, 0);
761 goto out_free_dentry;
762 }
763 nbyte = ELF_PAGEOFFSET(elf_bss);
764 if (nbyte) {
765 nbyte = ELF_MIN_ALIGN - nbyte;
766 if (nbyte > elf_brk - elf_bss)
767 nbyte = elf_brk - elf_bss;
768 if (clear_user((void __user *)elf_bss +
769 load_bias, nbyte)) {
770 /*
771 * This bss-zeroing can fail if the ELF
772 * file specifies odd protections. So
773 * we don't check the return value
774 */
775 }
776 }
777 }
778
779 if (elf_ppnt->p_flags & PF_R)
780 elf_prot |= PROT_READ;
781 if (elf_ppnt->p_flags & PF_W)
782 elf_prot |= PROT_WRITE;
783 if (elf_ppnt->p_flags & PF_X)
784 elf_prot |= PROT_EXEC;
785
786 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
787
788 vaddr = elf_ppnt->p_vaddr;
789 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
790 elf_flags |= MAP_FIXED;
791 } else if (loc->elf_ex.e_type == ET_DYN) {
792 /* Try and get dynamic programs out of the way of the
793 * default mmap base, as well as whatever program they
794 * might try to exec. This is because the brk will
795 * follow the loader, and is not movable. */
796 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
797 /* Memory randomization might have been switched off
798 * in runtime via sysctl.
799 * If that is the case, retain the original non-zero
800 * load_bias value in order to establish proper
801 * non-randomized mappings.
802 */
803 if (current->flags & PF_RANDOMIZE)
804 load_bias = 0;
805 else
806 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
807 #else
808 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
809 #endif
810 }
811
812 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
813 elf_prot, elf_flags, 0);
814 if (BAD_ADDR(error)) {
815 send_sig(SIGKILL, current, 0);
816 retval = IS_ERR((void *)error) ?
817 PTR_ERR((void*)error) : -EINVAL;
818 goto out_free_dentry;
819 }
820
821 if (!load_addr_set) {
822 load_addr_set = 1;
823 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
824 if (loc->elf_ex.e_type == ET_DYN) {
825 load_bias += error -
826 ELF_PAGESTART(load_bias + vaddr);
827 load_addr += load_bias;
828 reloc_func_desc = load_bias;
829 }
830 }
831 k = elf_ppnt->p_vaddr;
832 if (k < start_code)
833 start_code = k;
834 if (start_data < k)
835 start_data = k;
836
837 /*
838 * Check to see if the section's size will overflow the
839 * allowed task size. Note that p_filesz must always be
840 * <= p_memsz so it is only necessary to check p_memsz.
841 */
842 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
843 elf_ppnt->p_memsz > TASK_SIZE ||
844 TASK_SIZE - elf_ppnt->p_memsz < k) {
845 /* set_brk can never work. Avoid overflows. */
846 send_sig(SIGKILL, current, 0);
847 retval = -EINVAL;
848 goto out_free_dentry;
849 }
850
851 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
852
853 if (k > elf_bss)
854 elf_bss = k;
855 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
856 end_code = k;
857 if (end_data < k)
858 end_data = k;
859 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
860 if (k > elf_brk)
861 elf_brk = k;
862 }
863
864 loc->elf_ex.e_entry += load_bias;
865 elf_bss += load_bias;
866 elf_brk += load_bias;
867 start_code += load_bias;
868 end_code += load_bias;
869 start_data += load_bias;
870 end_data += load_bias;
871
872 /* Calling set_brk effectively mmaps the pages that we need
873 * for the bss and break sections. We must do this before
874 * mapping in the interpreter, to make sure it doesn't wind
875 * up getting placed where the bss needs to go.
876 */
877 retval = set_brk(elf_bss, elf_brk);
878 if (retval) {
879 send_sig(SIGKILL, current, 0);
880 goto out_free_dentry;
881 }
882 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
883 send_sig(SIGSEGV, current, 0);
884 retval = -EFAULT; /* Nobody gets to see this, but.. */
885 goto out_free_dentry;
886 }
887
888 if (elf_interpreter) {
889 unsigned long uninitialized_var(interp_map_addr);
890
891 elf_entry = load_elf_interp(&loc->interp_elf_ex,
892 interpreter,
893 &interp_map_addr,
894 load_bias);
895 if (!IS_ERR((void *)elf_entry)) {
896 /*
897 * load_elf_interp() returns relocation
898 * adjustment
899 */
900 interp_load_addr = elf_entry;
901 elf_entry += loc->interp_elf_ex.e_entry;
902 }
903 if (BAD_ADDR(elf_entry)) {
904 force_sig(SIGSEGV, current);
905 retval = IS_ERR((void *)elf_entry) ?
906 (int)elf_entry : -EINVAL;
907 goto out_free_dentry;
908 }
909 reloc_func_desc = interp_load_addr;
910
911 allow_write_access(interpreter);
912 fput(interpreter);
913 kfree(elf_interpreter);
914 } else {
915 elf_entry = loc->elf_ex.e_entry;
916 if (BAD_ADDR(elf_entry)) {
917 force_sig(SIGSEGV, current);
918 retval = -EINVAL;
919 goto out_free_dentry;
920 }
921 }
922
923 kfree(elf_phdata);
924
925 set_binfmt(&elf_format);
926
927 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
928 retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
929 if (retval < 0) {
930 send_sig(SIGKILL, current, 0);
931 goto out;
932 }
933 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
934
935 install_exec_creds(bprm);
936 retval = create_elf_tables(bprm, &loc->elf_ex,
937 load_addr, interp_load_addr);
938 if (retval < 0) {
939 send_sig(SIGKILL, current, 0);
940 goto out;
941 }
942 /* N.B. passed_fileno might not be initialized? */
943 current->mm->end_code = end_code;
944 current->mm->start_code = start_code;
945 current->mm->start_data = start_data;
946 current->mm->end_data = end_data;
947 current->mm->start_stack = bprm->p;
948
949 #ifdef arch_randomize_brk
950 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
951 current->mm->brk = current->mm->start_brk =
952 arch_randomize_brk(current->mm);
953 #ifdef CONFIG_COMPAT_BRK
954 current->brk_randomized = 1;
955 #endif
956 }
957 #endif
958
959 if (current->personality & MMAP_PAGE_ZERO) {
960 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
961 and some applications "depend" upon this behavior.
962 Since we do not have the power to recompile these, we
963 emulate the SVr4 behavior. Sigh. */
964 down_write(&current->mm->mmap_sem);
965 error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
966 MAP_FIXED | MAP_PRIVATE, 0);
967 up_write(&current->mm->mmap_sem);
968 }
969
970 #ifdef ELF_PLAT_INIT
971 /*
972 * The ABI may specify that certain registers be set up in special
973 * ways (on i386 %edx is the address of a DT_FINI function, for
974 * example. In addition, it may also specify (eg, PowerPC64 ELF)
975 * that the e_entry field is the address of the function descriptor
976 * for the startup routine, rather than the address of the startup
977 * routine itself. This macro performs whatever initialization to
978 * the regs structure is required as well as any relocations to the
979 * function descriptor entries when executing dynamically links apps.
980 */
981 ELF_PLAT_INIT(regs, reloc_func_desc);
982 #endif
983
984 start_thread(regs, elf_entry, bprm->p);
985 retval = 0;
986 out:
987 kfree(loc);
988 out_ret:
989 return retval;
990
991 /* error cleanup */
992 out_free_dentry:
993 allow_write_access(interpreter);
994 if (interpreter)
995 fput(interpreter);
996 out_free_interp:
997 kfree(elf_interpreter);
998 out_free_ph:
999 kfree(elf_phdata);
1000 goto out;
1001 }
1002
1003 /* This is really simpleminded and specialized - we are loading an
1004 a.out library that is given an ELF header. */
1005 static int load_elf_library(struct file *file)
1006 {
1007 struct elf_phdr *elf_phdata;
1008 struct elf_phdr *eppnt;
1009 unsigned long elf_bss, bss, len;
1010 int retval, error, i, j;
1011 struct elfhdr elf_ex;
1012
1013 error = -ENOEXEC;
1014 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1015 if (retval != sizeof(elf_ex))
1016 goto out;
1017
1018 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1019 goto out;
1020
1021 /* First of all, some simple consistency checks */
1022 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1023 !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1024 goto out;
1025
1026 /* Now read in all of the header information */
1027
1028 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1029 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1030
1031 error = -ENOMEM;
1032 elf_phdata = kmalloc(j, GFP_KERNEL);
1033 if (!elf_phdata)
1034 goto out;
1035
1036 eppnt = elf_phdata;
1037 error = -ENOEXEC;
1038 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1039 if (retval != j)
1040 goto out_free_ph;
1041
1042 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1043 if ((eppnt + i)->p_type == PT_LOAD)
1044 j++;
1045 if (j != 1)
1046 goto out_free_ph;
1047
1048 while (eppnt->p_type != PT_LOAD)
1049 eppnt++;
1050
1051 /* Now use mmap to map the library into memory. */
1052 down_write(&current->mm->mmap_sem);
1053 error = do_mmap(file,
1054 ELF_PAGESTART(eppnt->p_vaddr),
1055 (eppnt->p_filesz +
1056 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1057 PROT_READ | PROT_WRITE | PROT_EXEC,
1058 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1059 (eppnt->p_offset -
1060 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1061 up_write(&current->mm->mmap_sem);
1062 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1063 goto out_free_ph;
1064
1065 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1066 if (padzero(elf_bss)) {
1067 error = -EFAULT;
1068 goto out_free_ph;
1069 }
1070
1071 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1072 ELF_MIN_ALIGN - 1);
1073 bss = eppnt->p_memsz + eppnt->p_vaddr;
1074 if (bss > len) {
1075 down_write(&current->mm->mmap_sem);
1076 do_brk(len, bss - len);
1077 up_write(&current->mm->mmap_sem);
1078 }
1079 error = 0;
1080
1081 out_free_ph:
1082 kfree(elf_phdata);
1083 out:
1084 return error;
1085 }
1086
1087 #ifdef CONFIG_ELF_CORE
1088 /*
1089 * ELF core dumper
1090 *
1091 * Modelled on fs/exec.c:aout_core_dump()
1092 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1093 */
1094
1095 /*
1096 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1097 * that are useful for post-mortem analysis are included in every core dump.
1098 * In that way we ensure that the core dump is fully interpretable later
1099 * without matching up the same kernel and hardware config to see what PC values
1100 * meant. These special mappings include - vDSO, vsyscall, and other
1101 * architecture specific mappings
1102 */
1103 static bool always_dump_vma(struct vm_area_struct *vma)
1104 {
1105 /* Any vsyscall mappings? */
1106 if (vma == get_gate_vma(vma->vm_mm))
1107 return true;
1108 /*
1109 * arch_vma_name() returns non-NULL for special architecture mappings,
1110 * such as vDSO sections.
1111 */
1112 if (arch_vma_name(vma))
1113 return true;
1114
1115 return false;
1116 }
1117
1118 /*
1119 * Decide what to dump of a segment, part, all or none.
1120 */
1121 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1122 unsigned long mm_flags)
1123 {
1124 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1125
1126 /* always dump the vdso and vsyscall sections */
1127 if (always_dump_vma(vma))
1128 goto whole;
1129
1130 if (vma->vm_flags & VM_NODUMP)
1131 return 0;
1132
1133 /* Hugetlb memory check */
1134 if (vma->vm_flags & VM_HUGETLB) {
1135 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1136 goto whole;
1137 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1138 goto whole;
1139 }
1140
1141 /* Do not dump I/O mapped devices or special mappings */
1142 if (vma->vm_flags & (VM_IO | VM_RESERVED))
1143 return 0;
1144
1145 /* By default, dump shared memory if mapped from an anonymous file. */
1146 if (vma->vm_flags & VM_SHARED) {
1147 if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1148 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1149 goto whole;
1150 return 0;
1151 }
1152
1153 /* Dump segments that have been written to. */
1154 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1155 goto whole;
1156 if (vma->vm_file == NULL)
1157 return 0;
1158
1159 if (FILTER(MAPPED_PRIVATE))
1160 goto whole;
1161
1162 /*
1163 * If this looks like the beginning of a DSO or executable mapping,
1164 * check for an ELF header. If we find one, dump the first page to
1165 * aid in determining what was mapped here.
1166 */
1167 if (FILTER(ELF_HEADERS) &&
1168 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1169 u32 __user *header = (u32 __user *) vma->vm_start;
1170 u32 word;
1171 mm_segment_t fs = get_fs();
1172 /*
1173 * Doing it this way gets the constant folded by GCC.
1174 */
1175 union {
1176 u32 cmp;
1177 char elfmag[SELFMAG];
1178 } magic;
1179 BUILD_BUG_ON(SELFMAG != sizeof word);
1180 magic.elfmag[EI_MAG0] = ELFMAG0;
1181 magic.elfmag[EI_MAG1] = ELFMAG1;
1182 magic.elfmag[EI_MAG2] = ELFMAG2;
1183 magic.elfmag[EI_MAG3] = ELFMAG3;
1184 /*
1185 * Switch to the user "segment" for get_user(),
1186 * then put back what elf_core_dump() had in place.
1187 */
1188 set_fs(USER_DS);
1189 if (unlikely(get_user(word, header)))
1190 word = 0;
1191 set_fs(fs);
1192 if (word == magic.cmp)
1193 return PAGE_SIZE;
1194 }
1195
1196 #undef FILTER
1197
1198 return 0;
1199
1200 whole:
1201 return vma->vm_end - vma->vm_start;
1202 }
1203
1204 /* An ELF note in memory */
1205 struct memelfnote
1206 {
1207 const char *name;
1208 int type;
1209 unsigned int datasz;
1210 void *data;
1211 };
1212
1213 static int notesize(struct memelfnote *en)
1214 {
1215 int sz;
1216
1217 sz = sizeof(struct elf_note);
1218 sz += roundup(strlen(en->name) + 1, 4);
1219 sz += roundup(en->datasz, 4);
1220
1221 return sz;
1222 }
1223
1224 #define DUMP_WRITE(addr, nr, foffset) \
1225 do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1226
1227 static int alignfile(struct file *file, loff_t *foffset)
1228 {
1229 static const char buf[4] = { 0, };
1230 DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1231 return 1;
1232 }
1233
1234 static int writenote(struct memelfnote *men, struct file *file,
1235 loff_t *foffset)
1236 {
1237 struct elf_note en;
1238 en.n_namesz = strlen(men->name) + 1;
1239 en.n_descsz = men->datasz;
1240 en.n_type = men->type;
1241
1242 DUMP_WRITE(&en, sizeof(en), foffset);
1243 DUMP_WRITE(men->name, en.n_namesz, foffset);
1244 if (!alignfile(file, foffset))
1245 return 0;
1246 DUMP_WRITE(men->data, men->datasz, foffset);
1247 if (!alignfile(file, foffset))
1248 return 0;
1249
1250 return 1;
1251 }
1252 #undef DUMP_WRITE
1253
1254 static void fill_elf_header(struct elfhdr *elf, int segs,
1255 u16 machine, u32 flags, u8 osabi)
1256 {
1257 memset(elf, 0, sizeof(*elf));
1258
1259 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1260 elf->e_ident[EI_CLASS] = ELF_CLASS;
1261 elf->e_ident[EI_DATA] = ELF_DATA;
1262 elf->e_ident[EI_VERSION] = EV_CURRENT;
1263 elf->e_ident[EI_OSABI] = ELF_OSABI;
1264
1265 elf->e_type = ET_CORE;
1266 elf->e_machine = machine;
1267 elf->e_version = EV_CURRENT;
1268 elf->e_phoff = sizeof(struct elfhdr);
1269 elf->e_flags = flags;
1270 elf->e_ehsize = sizeof(struct elfhdr);
1271 elf->e_phentsize = sizeof(struct elf_phdr);
1272 elf->e_phnum = segs;
1273
1274 return;
1275 }
1276
1277 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1278 {
1279 phdr->p_type = PT_NOTE;
1280 phdr->p_offset = offset;
1281 phdr->p_vaddr = 0;
1282 phdr->p_paddr = 0;
1283 phdr->p_filesz = sz;
1284 phdr->p_memsz = 0;
1285 phdr->p_flags = 0;
1286 phdr->p_align = 0;
1287 return;
1288 }
1289
1290 static void fill_note(struct memelfnote *note, const char *name, int type,
1291 unsigned int sz, void *data)
1292 {
1293 note->name = name;
1294 note->type = type;
1295 note->datasz = sz;
1296 note->data = data;
1297 return;
1298 }
1299
1300 /*
1301 * fill up all the fields in prstatus from the given task struct, except
1302 * registers which need to be filled up separately.
1303 */
1304 static void fill_prstatus(struct elf_prstatus *prstatus,
1305 struct task_struct *p, long signr)
1306 {
1307 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1308 prstatus->pr_sigpend = p->pending.signal.sig[0];
1309 prstatus->pr_sighold = p->blocked.sig[0];
1310 rcu_read_lock();
1311 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1312 rcu_read_unlock();
1313 prstatus->pr_pid = task_pid_vnr(p);
1314 prstatus->pr_pgrp = task_pgrp_vnr(p);
1315 prstatus->pr_sid = task_session_vnr(p);
1316 if (thread_group_leader(p)) {
1317 struct task_cputime cputime;
1318
1319 /*
1320 * This is the record for the group leader. It shows the
1321 * group-wide total, not its individual thread total.
1322 */
1323 thread_group_cputime(p, &cputime);
1324 cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1325 cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1326 } else {
1327 cputime_to_timeval(p->utime, &prstatus->pr_utime);
1328 cputime_to_timeval(p->stime, &prstatus->pr_stime);
1329 }
1330 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1331 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1332 }
1333
1334 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1335 struct mm_struct *mm)
1336 {
1337 const struct cred *cred;
1338 unsigned int i, len;
1339
1340 /* first copy the parameters from user space */
1341 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1342
1343 len = mm->arg_end - mm->arg_start;
1344 if (len >= ELF_PRARGSZ)
1345 len = ELF_PRARGSZ-1;
1346 if (copy_from_user(&psinfo->pr_psargs,
1347 (const char __user *)mm->arg_start, len))
1348 return -EFAULT;
1349 for(i = 0; i < len; i++)
1350 if (psinfo->pr_psargs[i] == 0)
1351 psinfo->pr_psargs[i] = ' ';
1352 psinfo->pr_psargs[len] = 0;
1353
1354 rcu_read_lock();
1355 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1356 rcu_read_unlock();
1357 psinfo->pr_pid = task_pid_vnr(p);
1358 psinfo->pr_pgrp = task_pgrp_vnr(p);
1359 psinfo->pr_sid = task_session_vnr(p);
1360
1361 i = p->state ? ffz(~p->state) + 1 : 0;
1362 psinfo->pr_state = i;
1363 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1364 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1365 psinfo->pr_nice = task_nice(p);
1366 psinfo->pr_flag = p->flags;
1367 rcu_read_lock();
1368 cred = __task_cred(p);
1369 SET_UID(psinfo->pr_uid, cred->uid);
1370 SET_GID(psinfo->pr_gid, cred->gid);
1371 rcu_read_unlock();
1372 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1373
1374 return 0;
1375 }
1376
1377 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1378 {
1379 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1380 int i = 0;
1381 do
1382 i += 2;
1383 while (auxv[i - 2] != AT_NULL);
1384 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1385 }
1386
1387 #ifdef CORE_DUMP_USE_REGSET
1388 #include <linux/regset.h>
1389
1390 struct elf_thread_core_info {
1391 struct elf_thread_core_info *next;
1392 struct task_struct *task;
1393 struct elf_prstatus prstatus;
1394 struct memelfnote notes[0];
1395 };
1396
1397 struct elf_note_info {
1398 struct elf_thread_core_info *thread;
1399 struct memelfnote psinfo;
1400 struct memelfnote auxv;
1401 size_t size;
1402 int thread_notes;
1403 };
1404
1405 /*
1406 * When a regset has a writeback hook, we call it on each thread before
1407 * dumping user memory. On register window machines, this makes sure the
1408 * user memory backing the register data is up to date before we read it.
1409 */
1410 static void do_thread_regset_writeback(struct task_struct *task,
1411 const struct user_regset *regset)
1412 {
1413 if (regset->writeback)
1414 regset->writeback(task, regset, 1);
1415 }
1416
1417 static int fill_thread_core_info(struct elf_thread_core_info *t,
1418 const struct user_regset_view *view,
1419 long signr, size_t *total)
1420 {
1421 unsigned int i;
1422
1423 /*
1424 * NT_PRSTATUS is the one special case, because the regset data
1425 * goes into the pr_reg field inside the note contents, rather
1426 * than being the whole note contents. We fill the reset in here.
1427 * We assume that regset 0 is NT_PRSTATUS.
1428 */
1429 fill_prstatus(&t->prstatus, t->task, signr);
1430 (void) view->regsets[0].get(t->task, &view->regsets[0],
1431 0, sizeof(t->prstatus.pr_reg),
1432 &t->prstatus.pr_reg, NULL);
1433
1434 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1435 sizeof(t->prstatus), &t->prstatus);
1436 *total += notesize(&t->notes[0]);
1437
1438 do_thread_regset_writeback(t->task, &view->regsets[0]);
1439
1440 /*
1441 * Each other regset might generate a note too. For each regset
1442 * that has no core_note_type or is inactive, we leave t->notes[i]
1443 * all zero and we'll know to skip writing it later.
1444 */
1445 for (i = 1; i < view->n; ++i) {
1446 const struct user_regset *regset = &view->regsets[i];
1447 do_thread_regset_writeback(t->task, regset);
1448 if (regset->core_note_type && regset->get &&
1449 (!regset->active || regset->active(t->task, regset))) {
1450 int ret;
1451 size_t size = regset->n * regset->size;
1452 void *data = kmalloc(size, GFP_KERNEL);
1453 if (unlikely(!data))
1454 return 0;
1455 ret = regset->get(t->task, regset,
1456 0, size, data, NULL);
1457 if (unlikely(ret))
1458 kfree(data);
1459 else {
1460 if (regset->core_note_type != NT_PRFPREG)
1461 fill_note(&t->notes[i], "LINUX",
1462 regset->core_note_type,
1463 size, data);
1464 else {
1465 t->prstatus.pr_fpvalid = 1;
1466 fill_note(&t->notes[i], "CORE",
1467 NT_PRFPREG, size, data);
1468 }
1469 *total += notesize(&t->notes[i]);
1470 }
1471 }
1472 }
1473
1474 return 1;
1475 }
1476
1477 static int fill_note_info(struct elfhdr *elf, int phdrs,
1478 struct elf_note_info *info,
1479 long signr, struct pt_regs *regs)
1480 {
1481 struct task_struct *dump_task = current;
1482 const struct user_regset_view *view = task_user_regset_view(dump_task);
1483 struct elf_thread_core_info *t;
1484 struct elf_prpsinfo *psinfo;
1485 struct core_thread *ct;
1486 unsigned int i;
1487
1488 info->size = 0;
1489 info->thread = NULL;
1490
1491 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1492 if (psinfo == NULL)
1493 return 0;
1494
1495 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1496
1497 /*
1498 * Figure out how many notes we're going to need for each thread.
1499 */
1500 info->thread_notes = 0;
1501 for (i = 0; i < view->n; ++i)
1502 if (view->regsets[i].core_note_type != 0)
1503 ++info->thread_notes;
1504
1505 /*
1506 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1507 * since it is our one special case.
1508 */
1509 if (unlikely(info->thread_notes == 0) ||
1510 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1511 WARN_ON(1);
1512 return 0;
1513 }
1514
1515 /*
1516 * Initialize the ELF file header.
1517 */
1518 fill_elf_header(elf, phdrs,
1519 view->e_machine, view->e_flags, view->ei_osabi);
1520
1521 /*
1522 * Allocate a structure for each thread.
1523 */
1524 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1525 t = kzalloc(offsetof(struct elf_thread_core_info,
1526 notes[info->thread_notes]),
1527 GFP_KERNEL);
1528 if (unlikely(!t))
1529 return 0;
1530
1531 t->task = ct->task;
1532 if (ct->task == dump_task || !info->thread) {
1533 t->next = info->thread;
1534 info->thread = t;
1535 } else {
1536 /*
1537 * Make sure to keep the original task at
1538 * the head of the list.
1539 */
1540 t->next = info->thread->next;
1541 info->thread->next = t;
1542 }
1543 }
1544
1545 /*
1546 * Now fill in each thread's information.
1547 */
1548 for (t = info->thread; t != NULL; t = t->next)
1549 if (!fill_thread_core_info(t, view, signr, &info->size))
1550 return 0;
1551
1552 /*
1553 * Fill in the two process-wide notes.
1554 */
1555 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1556 info->size += notesize(&info->psinfo);
1557
1558 fill_auxv_note(&info->auxv, current->mm);
1559 info->size += notesize(&info->auxv);
1560
1561 return 1;
1562 }
1563
1564 static size_t get_note_info_size(struct elf_note_info *info)
1565 {
1566 return info->size;
1567 }
1568
1569 /*
1570 * Write all the notes for each thread. When writing the first thread, the
1571 * process-wide notes are interleaved after the first thread-specific note.
1572 */
1573 static int write_note_info(struct elf_note_info *info,
1574 struct file *file, loff_t *foffset)
1575 {
1576 bool first = 1;
1577 struct elf_thread_core_info *t = info->thread;
1578
1579 do {
1580 int i;
1581
1582 if (!writenote(&t->notes[0], file, foffset))
1583 return 0;
1584
1585 if (first && !writenote(&info->psinfo, file, foffset))
1586 return 0;
1587 if (first && !writenote(&info->auxv, file, foffset))
1588 return 0;
1589
1590 for (i = 1; i < info->thread_notes; ++i)
1591 if (t->notes[i].data &&
1592 !writenote(&t->notes[i], file, foffset))
1593 return 0;
1594
1595 first = 0;
1596 t = t->next;
1597 } while (t);
1598
1599 return 1;
1600 }
1601
1602 static void free_note_info(struct elf_note_info *info)
1603 {
1604 struct elf_thread_core_info *threads = info->thread;
1605 while (threads) {
1606 unsigned int i;
1607 struct elf_thread_core_info *t = threads;
1608 threads = t->next;
1609 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1610 for (i = 1; i < info->thread_notes; ++i)
1611 kfree(t->notes[i].data);
1612 kfree(t);
1613 }
1614 kfree(info->psinfo.data);
1615 }
1616
1617 #else
1618
1619 /* Here is the structure in which status of each thread is captured. */
1620 struct elf_thread_status
1621 {
1622 struct list_head list;
1623 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1624 elf_fpregset_t fpu; /* NT_PRFPREG */
1625 struct task_struct *thread;
1626 #ifdef ELF_CORE_COPY_XFPREGS
1627 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1628 #endif
1629 struct memelfnote notes[3];
1630 int num_notes;
1631 };
1632
1633 /*
1634 * In order to add the specific thread information for the elf file format,
1635 * we need to keep a linked list of every threads pr_status and then create
1636 * a single section for them in the final core file.
1637 */
1638 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1639 {
1640 int sz = 0;
1641 struct task_struct *p = t->thread;
1642 t->num_notes = 0;
1643
1644 fill_prstatus(&t->prstatus, p, signr);
1645 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1646
1647 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1648 &(t->prstatus));
1649 t->num_notes++;
1650 sz += notesize(&t->notes[0]);
1651
1652 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1653 &t->fpu))) {
1654 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1655 &(t->fpu));
1656 t->num_notes++;
1657 sz += notesize(&t->notes[1]);
1658 }
1659
1660 #ifdef ELF_CORE_COPY_XFPREGS
1661 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1662 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1663 sizeof(t->xfpu), &t->xfpu);
1664 t->num_notes++;
1665 sz += notesize(&t->notes[2]);
1666 }
1667 #endif
1668 return sz;
1669 }
1670
1671 struct elf_note_info {
1672 struct memelfnote *notes;
1673 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1674 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1675 struct list_head thread_list;
1676 elf_fpregset_t *fpu;
1677 #ifdef ELF_CORE_COPY_XFPREGS
1678 elf_fpxregset_t *xfpu;
1679 #endif
1680 int thread_status_size;
1681 int numnote;
1682 };
1683
1684 static int elf_note_info_init(struct elf_note_info *info)
1685 {
1686 memset(info, 0, sizeof(*info));
1687 INIT_LIST_HEAD(&info->thread_list);
1688
1689 /* Allocate space for six ELF notes */
1690 info->notes = kmalloc(6 * sizeof(struct memelfnote), GFP_KERNEL);
1691 if (!info->notes)
1692 return 0;
1693 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1694 if (!info->psinfo)
1695 goto notes_free;
1696 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1697 if (!info->prstatus)
1698 goto psinfo_free;
1699 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1700 if (!info->fpu)
1701 goto prstatus_free;
1702 #ifdef ELF_CORE_COPY_XFPREGS
1703 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1704 if (!info->xfpu)
1705 goto fpu_free;
1706 #endif
1707 return 1;
1708 #ifdef ELF_CORE_COPY_XFPREGS
1709 fpu_free:
1710 kfree(info->fpu);
1711 #endif
1712 prstatus_free:
1713 kfree(info->prstatus);
1714 psinfo_free:
1715 kfree(info->psinfo);
1716 notes_free:
1717 kfree(info->notes);
1718 return 0;
1719 }
1720
1721 static int fill_note_info(struct elfhdr *elf, int phdrs,
1722 struct elf_note_info *info,
1723 long signr, struct pt_regs *regs)
1724 {
1725 struct list_head *t;
1726
1727 if (!elf_note_info_init(info))
1728 return 0;
1729
1730 if (signr) {
1731 struct core_thread *ct;
1732 struct elf_thread_status *ets;
1733
1734 for (ct = current->mm->core_state->dumper.next;
1735 ct; ct = ct->next) {
1736 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1737 if (!ets)
1738 return 0;
1739
1740 ets->thread = ct->task;
1741 list_add(&ets->list, &info->thread_list);
1742 }
1743
1744 list_for_each(t, &info->thread_list) {
1745 int sz;
1746
1747 ets = list_entry(t, struct elf_thread_status, list);
1748 sz = elf_dump_thread_status(signr, ets);
1749 info->thread_status_size += sz;
1750 }
1751 }
1752 /* now collect the dump for the current */
1753 memset(info->prstatus, 0, sizeof(*info->prstatus));
1754 fill_prstatus(info->prstatus, current, signr);
1755 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1756
1757 /* Set up header */
1758 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1759
1760 /*
1761 * Set up the notes in similar form to SVR4 core dumps made
1762 * with info from their /proc.
1763 */
1764
1765 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1766 sizeof(*info->prstatus), info->prstatus);
1767 fill_psinfo(info->psinfo, current->group_leader, current->mm);
1768 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1769 sizeof(*info->psinfo), info->psinfo);
1770
1771 info->numnote = 2;
1772
1773 fill_auxv_note(&info->notes[info->numnote++], current->mm);
1774
1775 /* Try to dump the FPU. */
1776 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1777 info->fpu);
1778 if (info->prstatus->pr_fpvalid)
1779 fill_note(info->notes + info->numnote++,
1780 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1781 #ifdef ELF_CORE_COPY_XFPREGS
1782 if (elf_core_copy_task_xfpregs(current, info->xfpu))
1783 fill_note(info->notes + info->numnote++,
1784 "LINUX", ELF_CORE_XFPREG_TYPE,
1785 sizeof(*info->xfpu), info->xfpu);
1786 #endif
1787
1788 return 1;
1789 }
1790
1791 static size_t get_note_info_size(struct elf_note_info *info)
1792 {
1793 int sz = 0;
1794 int i;
1795
1796 for (i = 0; i < info->numnote; i++)
1797 sz += notesize(info->notes + i);
1798
1799 sz += info->thread_status_size;
1800
1801 return sz;
1802 }
1803
1804 static int write_note_info(struct elf_note_info *info,
1805 struct file *file, loff_t *foffset)
1806 {
1807 int i;
1808 struct list_head *t;
1809
1810 for (i = 0; i < info->numnote; i++)
1811 if (!writenote(info->notes + i, file, foffset))
1812 return 0;
1813
1814 /* write out the thread status notes section */
1815 list_for_each(t, &info->thread_list) {
1816 struct elf_thread_status *tmp =
1817 list_entry(t, struct elf_thread_status, list);
1818
1819 for (i = 0; i < tmp->num_notes; i++)
1820 if (!writenote(&tmp->notes[i], file, foffset))
1821 return 0;
1822 }
1823
1824 return 1;
1825 }
1826
1827 static void free_note_info(struct elf_note_info *info)
1828 {
1829 while (!list_empty(&info->thread_list)) {
1830 struct list_head *tmp = info->thread_list.next;
1831 list_del(tmp);
1832 kfree(list_entry(tmp, struct elf_thread_status, list));
1833 }
1834
1835 kfree(info->prstatus);
1836 kfree(info->psinfo);
1837 kfree(info->notes);
1838 kfree(info->fpu);
1839 #ifdef ELF_CORE_COPY_XFPREGS
1840 kfree(info->xfpu);
1841 #endif
1842 }
1843
1844 #endif
1845
1846 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1847 struct vm_area_struct *gate_vma)
1848 {
1849 struct vm_area_struct *ret = tsk->mm->mmap;
1850
1851 if (ret)
1852 return ret;
1853 return gate_vma;
1854 }
1855 /*
1856 * Helper function for iterating across a vma list. It ensures that the caller
1857 * will visit `gate_vma' prior to terminating the search.
1858 */
1859 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1860 struct vm_area_struct *gate_vma)
1861 {
1862 struct vm_area_struct *ret;
1863
1864 ret = this_vma->vm_next;
1865 if (ret)
1866 return ret;
1867 if (this_vma == gate_vma)
1868 return NULL;
1869 return gate_vma;
1870 }
1871
1872 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1873 elf_addr_t e_shoff, int segs)
1874 {
1875 elf->e_shoff = e_shoff;
1876 elf->e_shentsize = sizeof(*shdr4extnum);
1877 elf->e_shnum = 1;
1878 elf->e_shstrndx = SHN_UNDEF;
1879
1880 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
1881
1882 shdr4extnum->sh_type = SHT_NULL;
1883 shdr4extnum->sh_size = elf->e_shnum;
1884 shdr4extnum->sh_link = elf->e_shstrndx;
1885 shdr4extnum->sh_info = segs;
1886 }
1887
1888 static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma,
1889 unsigned long mm_flags)
1890 {
1891 struct vm_area_struct *vma;
1892 size_t size = 0;
1893
1894 for (vma = first_vma(current, gate_vma); vma != NULL;
1895 vma = next_vma(vma, gate_vma))
1896 size += vma_dump_size(vma, mm_flags);
1897 return size;
1898 }
1899
1900 /*
1901 * Actual dumper
1902 *
1903 * This is a two-pass process; first we find the offsets of the bits,
1904 * and then they are actually written out. If we run out of core limit
1905 * we just truncate.
1906 */
1907 static int elf_core_dump(struct coredump_params *cprm)
1908 {
1909 int has_dumped = 0;
1910 mm_segment_t fs;
1911 int segs;
1912 size_t size = 0;
1913 struct vm_area_struct *vma, *gate_vma;
1914 struct elfhdr *elf = NULL;
1915 loff_t offset = 0, dataoff, foffset;
1916 struct elf_note_info info;
1917 struct elf_phdr *phdr4note = NULL;
1918 struct elf_shdr *shdr4extnum = NULL;
1919 Elf_Half e_phnum;
1920 elf_addr_t e_shoff;
1921
1922 /*
1923 * We no longer stop all VM operations.
1924 *
1925 * This is because those proceses that could possibly change map_count
1926 * or the mmap / vma pages are now blocked in do_exit on current
1927 * finishing this core dump.
1928 *
1929 * Only ptrace can touch these memory addresses, but it doesn't change
1930 * the map_count or the pages allocated. So no possibility of crashing
1931 * exists while dumping the mm->vm_next areas to the core file.
1932 */
1933
1934 /* alloc memory for large data structures: too large to be on stack */
1935 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
1936 if (!elf)
1937 goto out;
1938 /*
1939 * The number of segs are recored into ELF header as 16bit value.
1940 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
1941 */
1942 segs = current->mm->map_count;
1943 segs += elf_core_extra_phdrs();
1944
1945 gate_vma = get_gate_vma(current->mm);
1946 if (gate_vma != NULL)
1947 segs++;
1948
1949 /* for notes section */
1950 segs++;
1951
1952 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
1953 * this, kernel supports extended numbering. Have a look at
1954 * include/linux/elf.h for further information. */
1955 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
1956
1957 /*
1958 * Collect all the non-memory information about the process for the
1959 * notes. This also sets up the file header.
1960 */
1961 if (!fill_note_info(elf, e_phnum, &info, cprm->signr, cprm->regs))
1962 goto cleanup;
1963
1964 has_dumped = 1;
1965 current->flags |= PF_DUMPCORE;
1966
1967 fs = get_fs();
1968 set_fs(KERNEL_DS);
1969
1970 offset += sizeof(*elf); /* Elf header */
1971 offset += segs * sizeof(struct elf_phdr); /* Program headers */
1972 foffset = offset;
1973
1974 /* Write notes phdr entry */
1975 {
1976 size_t sz = get_note_info_size(&info);
1977
1978 sz += elf_coredump_extra_notes_size();
1979
1980 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
1981 if (!phdr4note)
1982 goto end_coredump;
1983
1984 fill_elf_note_phdr(phdr4note, sz, offset);
1985 offset += sz;
1986 }
1987
1988 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
1989
1990 offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags);
1991 offset += elf_core_extra_data_size();
1992 e_shoff = offset;
1993
1994 if (e_phnum == PN_XNUM) {
1995 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
1996 if (!shdr4extnum)
1997 goto end_coredump;
1998 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
1999 }
2000
2001 offset = dataoff;
2002
2003 size += sizeof(*elf);
2004 if (size > cprm->limit || !dump_write(cprm->file, elf, sizeof(*elf)))
2005 goto end_coredump;
2006
2007 size += sizeof(*phdr4note);
2008 if (size > cprm->limit
2009 || !dump_write(cprm->file, phdr4note, sizeof(*phdr4note)))
2010 goto end_coredump;
2011
2012 /* Write program headers for segments dump */
2013 for (vma = first_vma(current, gate_vma); vma != NULL;
2014 vma = next_vma(vma, gate_vma)) {
2015 struct elf_phdr phdr;
2016
2017 phdr.p_type = PT_LOAD;
2018 phdr.p_offset = offset;
2019 phdr.p_vaddr = vma->vm_start;
2020 phdr.p_paddr = 0;
2021 phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags);
2022 phdr.p_memsz = vma->vm_end - vma->vm_start;
2023 offset += phdr.p_filesz;
2024 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2025 if (vma->vm_flags & VM_WRITE)
2026 phdr.p_flags |= PF_W;
2027 if (vma->vm_flags & VM_EXEC)
2028 phdr.p_flags |= PF_X;
2029 phdr.p_align = ELF_EXEC_PAGESIZE;
2030
2031 size += sizeof(phdr);
2032 if (size > cprm->limit
2033 || !dump_write(cprm->file, &phdr, sizeof(phdr)))
2034 goto end_coredump;
2035 }
2036
2037 if (!elf_core_write_extra_phdrs(cprm->file, offset, &size, cprm->limit))
2038 goto end_coredump;
2039
2040 /* write out the notes section */
2041 if (!write_note_info(&info, cprm->file, &foffset))
2042 goto end_coredump;
2043
2044 if (elf_coredump_extra_notes_write(cprm->file, &foffset))
2045 goto end_coredump;
2046
2047 /* Align to page */
2048 if (!dump_seek(cprm->file, dataoff - foffset))
2049 goto end_coredump;
2050
2051 for (vma = first_vma(current, gate_vma); vma != NULL;
2052 vma = next_vma(vma, gate_vma)) {
2053 unsigned long addr;
2054 unsigned long end;
2055
2056 end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags);
2057
2058 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2059 struct page *page;
2060 int stop;
2061
2062 page = get_dump_page(addr);
2063 if (page) {
2064 void *kaddr = kmap(page);
2065 stop = ((size += PAGE_SIZE) > cprm->limit) ||
2066 !dump_write(cprm->file, kaddr,
2067 PAGE_SIZE);
2068 kunmap(page);
2069 page_cache_release(page);
2070 } else
2071 stop = !dump_seek(cprm->file, PAGE_SIZE);
2072 if (stop)
2073 goto end_coredump;
2074 }
2075 }
2076
2077 if (!elf_core_write_extra_data(cprm->file, &size, cprm->limit))
2078 goto end_coredump;
2079
2080 if (e_phnum == PN_XNUM) {
2081 size += sizeof(*shdr4extnum);
2082 if (size > cprm->limit
2083 || !dump_write(cprm->file, shdr4extnum,
2084 sizeof(*shdr4extnum)))
2085 goto end_coredump;
2086 }
2087
2088 end_coredump:
2089 set_fs(fs);
2090
2091 cleanup:
2092 free_note_info(&info);
2093 kfree(shdr4extnum);
2094 kfree(phdr4note);
2095 kfree(elf);
2096 out:
2097 return has_dumped;
2098 }
2099
2100 #endif /* CONFIG_ELF_CORE */
2101
2102 static int __init init_elf_binfmt(void)
2103 {
2104 register_binfmt(&elf_format);
2105 return 0;
2106 }
2107
2108 static void __exit exit_elf_binfmt(void)
2109 {
2110 /* Remove the COFF and ELF loaders. */
2111 unregister_binfmt(&elf_format);
2112 }
2113
2114 core_initcall(init_elf_binfmt);
2115 module_exit(exit_elf_binfmt);
2116 MODULE_LICENSE("GPL");