Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / aio.c
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/compat.h>
38
39 #include <asm/kmap_types.h>
40 #include <asm/uaccess.h>
41
42 #define AIO_RING_MAGIC 0xa10a10a1
43 #define AIO_RING_COMPAT_FEATURES 1
44 #define AIO_RING_INCOMPAT_FEATURES 0
45 struct aio_ring {
46 unsigned id; /* kernel internal index number */
47 unsigned nr; /* number of io_events */
48 unsigned head;
49 unsigned tail;
50
51 unsigned magic;
52 unsigned compat_features;
53 unsigned incompat_features;
54 unsigned header_length; /* size of aio_ring */
55
56
57 struct io_event io_events[0];
58 }; /* 128 bytes + ring size */
59
60 #define AIO_RING_PAGES 8
61
62 struct kioctx {
63 atomic_t users;
64 atomic_t dead;
65
66 /* This needs improving */
67 unsigned long user_id;
68 struct hlist_node list;
69
70 /*
71 * This is what userspace passed to io_setup(), it's not used for
72 * anything but counting against the global max_reqs quota.
73 *
74 * The real limit is nr_events - 1, which will be larger (see
75 * aio_setup_ring())
76 */
77 unsigned max_reqs;
78
79 /* Size of ringbuffer, in units of struct io_event */
80 unsigned nr_events;
81
82 unsigned long mmap_base;
83 unsigned long mmap_size;
84
85 struct page **ring_pages;
86 long nr_pages;
87
88 struct rcu_head rcu_head;
89 struct work_struct rcu_work;
90
91 struct {
92 atomic_t reqs_active;
93 } ____cacheline_aligned_in_smp;
94
95 struct {
96 spinlock_t ctx_lock;
97 struct list_head active_reqs; /* used for cancellation */
98 } ____cacheline_aligned_in_smp;
99
100 struct {
101 struct mutex ring_lock;
102 wait_queue_head_t wait;
103 } ____cacheline_aligned_in_smp;
104
105 struct {
106 unsigned tail;
107 spinlock_t completion_lock;
108 } ____cacheline_aligned_in_smp;
109
110 struct page *internal_pages[AIO_RING_PAGES];
111 };
112
113 /*------ sysctl variables----*/
114 static DEFINE_SPINLOCK(aio_nr_lock);
115 unsigned long aio_nr; /* current system wide number of aio requests */
116 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
117 /*----end sysctl variables---*/
118
119 static struct kmem_cache *kiocb_cachep;
120 static struct kmem_cache *kioctx_cachep;
121
122 /* aio_setup
123 * Creates the slab caches used by the aio routines, panic on
124 * failure as this is done early during the boot sequence.
125 */
126 static int __init aio_setup(void)
127 {
128 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
129 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
130
131 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
132
133 return 0;
134 }
135 __initcall(aio_setup);
136
137 static void aio_free_ring(struct kioctx *ctx)
138 {
139 long i;
140
141 for (i = 0; i < ctx->nr_pages; i++)
142 put_page(ctx->ring_pages[i]);
143
144 if (ctx->mmap_size)
145 vm_munmap(ctx->mmap_base, ctx->mmap_size);
146
147 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages)
148 kfree(ctx->ring_pages);
149 }
150
151 static int aio_setup_ring(struct kioctx *ctx)
152 {
153 struct aio_ring *ring;
154 unsigned nr_events = ctx->max_reqs;
155 struct mm_struct *mm = current->mm;
156 unsigned long size, populate;
157 int nr_pages;
158
159 /* Compensate for the ring buffer's head/tail overlap entry */
160 nr_events += 2; /* 1 is required, 2 for good luck */
161
162 size = sizeof(struct aio_ring);
163 size += sizeof(struct io_event) * nr_events;
164 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
165
166 if (nr_pages < 0)
167 return -EINVAL;
168
169 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
170
171 ctx->nr_events = 0;
172 ctx->ring_pages = ctx->internal_pages;
173 if (nr_pages > AIO_RING_PAGES) {
174 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
175 GFP_KERNEL);
176 if (!ctx->ring_pages)
177 return -ENOMEM;
178 }
179
180 ctx->mmap_size = nr_pages * PAGE_SIZE;
181 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
182 down_write(&mm->mmap_sem);
183 ctx->mmap_base = do_mmap_pgoff(NULL, 0, ctx->mmap_size,
184 PROT_READ|PROT_WRITE,
185 MAP_ANONYMOUS|MAP_PRIVATE, 0, &populate);
186 if (IS_ERR((void *)ctx->mmap_base)) {
187 up_write(&mm->mmap_sem);
188 ctx->mmap_size = 0;
189 aio_free_ring(ctx);
190 return -EAGAIN;
191 }
192
193 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
194 ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages,
195 1, 0, ctx->ring_pages, NULL);
196 up_write(&mm->mmap_sem);
197
198 if (unlikely(ctx->nr_pages != nr_pages)) {
199 aio_free_ring(ctx);
200 return -EAGAIN;
201 }
202 if (populate)
203 mm_populate(ctx->mmap_base, populate);
204
205 ctx->user_id = ctx->mmap_base;
206 ctx->nr_events = nr_events; /* trusted copy */
207
208 ring = kmap_atomic(ctx->ring_pages[0]);
209 ring->nr = nr_events; /* user copy */
210 ring->id = ctx->user_id;
211 ring->head = ring->tail = 0;
212 ring->magic = AIO_RING_MAGIC;
213 ring->compat_features = AIO_RING_COMPAT_FEATURES;
214 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
215 ring->header_length = sizeof(struct aio_ring);
216 kunmap_atomic(ring);
217 flush_dcache_page(ctx->ring_pages[0]);
218
219 return 0;
220 }
221
222 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
223 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
224 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
225
226 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
227 {
228 struct kioctx *ctx = req->ki_ctx;
229 unsigned long flags;
230
231 spin_lock_irqsave(&ctx->ctx_lock, flags);
232
233 if (!req->ki_list.next)
234 list_add(&req->ki_list, &ctx->active_reqs);
235
236 req->ki_cancel = cancel;
237
238 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
239 }
240 EXPORT_SYMBOL(kiocb_set_cancel_fn);
241
242 static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb,
243 struct io_event *res)
244 {
245 kiocb_cancel_fn *old, *cancel;
246 int ret = -EINVAL;
247
248 /*
249 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
250 * actually has a cancel function, hence the cmpxchg()
251 */
252
253 cancel = ACCESS_ONCE(kiocb->ki_cancel);
254 do {
255 if (!cancel || cancel == KIOCB_CANCELLED)
256 return ret;
257
258 old = cancel;
259 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
260 } while (cancel != old);
261
262 atomic_inc(&kiocb->ki_users);
263 spin_unlock_irq(&ctx->ctx_lock);
264
265 memset(res, 0, sizeof(*res));
266 res->obj = (u64)(unsigned long)kiocb->ki_obj.user;
267 res->data = kiocb->ki_user_data;
268 ret = cancel(kiocb, res);
269
270 spin_lock_irq(&ctx->ctx_lock);
271
272 return ret;
273 }
274
275 static void free_ioctx_rcu(struct rcu_head *head)
276 {
277 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
278 kmem_cache_free(kioctx_cachep, ctx);
279 }
280
281 /*
282 * When this function runs, the kioctx has been removed from the "hash table"
283 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
284 * now it's safe to cancel any that need to be.
285 */
286 static void free_ioctx(struct kioctx *ctx)
287 {
288 struct aio_ring *ring;
289 struct io_event res;
290 struct kiocb *req;
291 unsigned head, avail;
292
293 spin_lock_irq(&ctx->ctx_lock);
294
295 while (!list_empty(&ctx->active_reqs)) {
296 req = list_first_entry(&ctx->active_reqs,
297 struct kiocb, ki_list);
298
299 list_del_init(&req->ki_list);
300 kiocb_cancel(ctx, req, &res);
301 }
302
303 spin_unlock_irq(&ctx->ctx_lock);
304
305 ring = kmap_atomic(ctx->ring_pages[0]);
306 head = ring->head;
307 kunmap_atomic(ring);
308
309 while (atomic_read(&ctx->reqs_active) > 0) {
310 wait_event(ctx->wait,
311 head != ctx->tail ||
312 atomic_read(&ctx->reqs_active) <= 0);
313
314 avail = (head <= ctx->tail ? ctx->tail : ctx->nr_events) - head;
315
316 atomic_sub(avail, &ctx->reqs_active);
317 head += avail;
318 head %= ctx->nr_events;
319 }
320
321 WARN_ON(atomic_read(&ctx->reqs_active) < 0);
322
323 aio_free_ring(ctx);
324
325 spin_lock(&aio_nr_lock);
326 BUG_ON(aio_nr - ctx->max_reqs > aio_nr);
327 aio_nr -= ctx->max_reqs;
328 spin_unlock(&aio_nr_lock);
329
330 pr_debug("freeing %p\n", ctx);
331
332 /*
333 * Here the call_rcu() is between the wait_event() for reqs_active to
334 * hit 0, and freeing the ioctx.
335 *
336 * aio_complete() decrements reqs_active, but it has to touch the ioctx
337 * after to issue a wakeup so we use rcu.
338 */
339 call_rcu(&ctx->rcu_head, free_ioctx_rcu);
340 }
341
342 static void put_ioctx(struct kioctx *ctx)
343 {
344 if (unlikely(atomic_dec_and_test(&ctx->users)))
345 free_ioctx(ctx);
346 }
347
348 /* ioctx_alloc
349 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
350 */
351 static struct kioctx *ioctx_alloc(unsigned nr_events)
352 {
353 struct mm_struct *mm = current->mm;
354 struct kioctx *ctx;
355 int err = -ENOMEM;
356
357 /* Prevent overflows */
358 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
359 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
360 pr_debug("ENOMEM: nr_events too high\n");
361 return ERR_PTR(-EINVAL);
362 }
363
364 if (!nr_events || (unsigned long)nr_events > aio_max_nr)
365 return ERR_PTR(-EAGAIN);
366
367 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
368 if (!ctx)
369 return ERR_PTR(-ENOMEM);
370
371 ctx->max_reqs = nr_events;
372
373 atomic_set(&ctx->users, 2);
374 atomic_set(&ctx->dead, 0);
375 spin_lock_init(&ctx->ctx_lock);
376 spin_lock_init(&ctx->completion_lock);
377 mutex_init(&ctx->ring_lock);
378 init_waitqueue_head(&ctx->wait);
379
380 INIT_LIST_HEAD(&ctx->active_reqs);
381
382 if (aio_setup_ring(ctx) < 0)
383 goto out_freectx;
384
385 /* limit the number of system wide aios */
386 spin_lock(&aio_nr_lock);
387 if (aio_nr + nr_events > aio_max_nr ||
388 aio_nr + nr_events < aio_nr) {
389 spin_unlock(&aio_nr_lock);
390 goto out_cleanup;
391 }
392 aio_nr += ctx->max_reqs;
393 spin_unlock(&aio_nr_lock);
394
395 /* now link into global list. */
396 spin_lock(&mm->ioctx_lock);
397 hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
398 spin_unlock(&mm->ioctx_lock);
399
400 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
401 ctx, ctx->user_id, mm, ctx->nr_events);
402 return ctx;
403
404 out_cleanup:
405 err = -EAGAIN;
406 aio_free_ring(ctx);
407 out_freectx:
408 kmem_cache_free(kioctx_cachep, ctx);
409 pr_debug("error allocating ioctx %d\n", err);
410 return ERR_PTR(err);
411 }
412
413 static void kill_ioctx_work(struct work_struct *work)
414 {
415 struct kioctx *ctx = container_of(work, struct kioctx, rcu_work);
416
417 wake_up_all(&ctx->wait);
418 put_ioctx(ctx);
419 }
420
421 static void kill_ioctx_rcu(struct rcu_head *head)
422 {
423 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
424
425 INIT_WORK(&ctx->rcu_work, kill_ioctx_work);
426 schedule_work(&ctx->rcu_work);
427 }
428
429 /* kill_ioctx
430 * Cancels all outstanding aio requests on an aio context. Used
431 * when the processes owning a context have all exited to encourage
432 * the rapid destruction of the kioctx.
433 */
434 static void kill_ioctx(struct kioctx *ctx)
435 {
436 if (!atomic_xchg(&ctx->dead, 1)) {
437 hlist_del_rcu(&ctx->list);
438 /* Between hlist_del_rcu() and dropping the initial ref */
439 synchronize_rcu();
440
441 /*
442 * We can't punt to workqueue here because put_ioctx() ->
443 * free_ioctx() will unmap the ringbuffer, and that has to be
444 * done in the original process's context. kill_ioctx_rcu/work()
445 * exist for exit_aio(), as in that path free_ioctx() won't do
446 * the unmap.
447 */
448 kill_ioctx_work(&ctx->rcu_work);
449 }
450 }
451
452 /* wait_on_sync_kiocb:
453 * Waits on the given sync kiocb to complete.
454 */
455 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
456 {
457 while (atomic_read(&iocb->ki_users)) {
458 set_current_state(TASK_UNINTERRUPTIBLE);
459 if (!atomic_read(&iocb->ki_users))
460 break;
461 io_schedule();
462 }
463 __set_current_state(TASK_RUNNING);
464 return iocb->ki_user_data;
465 }
466 EXPORT_SYMBOL(wait_on_sync_kiocb);
467
468 /*
469 * exit_aio: called when the last user of mm goes away. At this point, there is
470 * no way for any new requests to be submited or any of the io_* syscalls to be
471 * called on the context.
472 *
473 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
474 * them.
475 */
476 void exit_aio(struct mm_struct *mm)
477 {
478 struct kioctx *ctx;
479 struct hlist_node *n;
480
481 hlist_for_each_entry_safe(ctx, n, &mm->ioctx_list, list) {
482 if (1 != atomic_read(&ctx->users))
483 printk(KERN_DEBUG
484 "exit_aio:ioctx still alive: %d %d %d\n",
485 atomic_read(&ctx->users),
486 atomic_read(&ctx->dead),
487 atomic_read(&ctx->reqs_active));
488 /*
489 * We don't need to bother with munmap() here -
490 * exit_mmap(mm) is coming and it'll unmap everything.
491 * Since aio_free_ring() uses non-zero ->mmap_size
492 * as indicator that it needs to unmap the area,
493 * just set it to 0; aio_free_ring() is the only
494 * place that uses ->mmap_size, so it's safe.
495 */
496 ctx->mmap_size = 0;
497
498 if (!atomic_xchg(&ctx->dead, 1)) {
499 hlist_del_rcu(&ctx->list);
500 call_rcu(&ctx->rcu_head, kill_ioctx_rcu);
501 }
502 }
503 }
504
505 /* aio_get_req
506 * Allocate a slot for an aio request. Increments the ki_users count
507 * of the kioctx so that the kioctx stays around until all requests are
508 * complete. Returns NULL if no requests are free.
509 *
510 * Returns with kiocb->ki_users set to 2. The io submit code path holds
511 * an extra reference while submitting the i/o.
512 * This prevents races between the aio code path referencing the
513 * req (after submitting it) and aio_complete() freeing the req.
514 */
515 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
516 {
517 struct kiocb *req;
518
519 if (atomic_read(&ctx->reqs_active) >= ctx->nr_events)
520 return NULL;
521
522 if (atomic_inc_return(&ctx->reqs_active) > ctx->nr_events - 1)
523 goto out_put;
524
525 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
526 if (unlikely(!req))
527 goto out_put;
528
529 atomic_set(&req->ki_users, 2);
530 req->ki_ctx = ctx;
531
532 return req;
533 out_put:
534 atomic_dec(&ctx->reqs_active);
535 return NULL;
536 }
537
538 static void kiocb_free(struct kiocb *req)
539 {
540 if (req->ki_filp)
541 fput(req->ki_filp);
542 if (req->ki_eventfd != NULL)
543 eventfd_ctx_put(req->ki_eventfd);
544 if (req->ki_dtor)
545 req->ki_dtor(req);
546 if (req->ki_iovec != &req->ki_inline_vec)
547 kfree(req->ki_iovec);
548 kmem_cache_free(kiocb_cachep, req);
549 }
550
551 void aio_put_req(struct kiocb *req)
552 {
553 if (atomic_dec_and_test(&req->ki_users))
554 kiocb_free(req);
555 }
556 EXPORT_SYMBOL(aio_put_req);
557
558 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
559 {
560 struct mm_struct *mm = current->mm;
561 struct kioctx *ctx, *ret = NULL;
562
563 rcu_read_lock();
564
565 hlist_for_each_entry_rcu(ctx, &mm->ioctx_list, list) {
566 if (ctx->user_id == ctx_id) {
567 atomic_inc(&ctx->users);
568 ret = ctx;
569 break;
570 }
571 }
572
573 rcu_read_unlock();
574 return ret;
575 }
576
577 /* aio_complete
578 * Called when the io request on the given iocb is complete.
579 */
580 void aio_complete(struct kiocb *iocb, long res, long res2)
581 {
582 struct kioctx *ctx = iocb->ki_ctx;
583 struct aio_ring *ring;
584 struct io_event *ev_page, *event;
585 unsigned long flags;
586 unsigned tail, pos;
587
588 /*
589 * Special case handling for sync iocbs:
590 * - events go directly into the iocb for fast handling
591 * - the sync task with the iocb in its stack holds the single iocb
592 * ref, no other paths have a way to get another ref
593 * - the sync task helpfully left a reference to itself in the iocb
594 */
595 if (is_sync_kiocb(iocb)) {
596 BUG_ON(atomic_read(&iocb->ki_users) != 1);
597 iocb->ki_user_data = res;
598 atomic_set(&iocb->ki_users, 0);
599 wake_up_process(iocb->ki_obj.tsk);
600 return;
601 }
602
603 /*
604 * Take rcu_read_lock() in case the kioctx is being destroyed, as we
605 * need to issue a wakeup after decrementing reqs_active.
606 */
607 rcu_read_lock();
608
609 if (iocb->ki_list.next) {
610 unsigned long flags;
611
612 spin_lock_irqsave(&ctx->ctx_lock, flags);
613 list_del(&iocb->ki_list);
614 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
615 }
616
617 /*
618 * cancelled requests don't get events, userland was given one
619 * when the event got cancelled.
620 */
621 if (unlikely(xchg(&iocb->ki_cancel,
622 KIOCB_CANCELLED) == KIOCB_CANCELLED)) {
623 atomic_dec(&ctx->reqs_active);
624 /* Still need the wake_up in case free_ioctx is waiting */
625 goto put_rq;
626 }
627
628 /*
629 * Add a completion event to the ring buffer. Must be done holding
630 * ctx->ctx_lock to prevent other code from messing with the tail
631 * pointer since we might be called from irq context.
632 */
633 spin_lock_irqsave(&ctx->completion_lock, flags);
634
635 tail = ctx->tail;
636 pos = tail + AIO_EVENTS_OFFSET;
637
638 if (++tail >= ctx->nr_events)
639 tail = 0;
640
641 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
642 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
643
644 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
645 event->data = iocb->ki_user_data;
646 event->res = res;
647 event->res2 = res2;
648
649 kunmap_atomic(ev_page);
650 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
651
652 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
653 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
654 res, res2);
655
656 /* after flagging the request as done, we
657 * must never even look at it again
658 */
659 smp_wmb(); /* make event visible before updating tail */
660
661 ctx->tail = tail;
662
663 ring = kmap_atomic(ctx->ring_pages[0]);
664 ring->tail = tail;
665 kunmap_atomic(ring);
666 flush_dcache_page(ctx->ring_pages[0]);
667
668 spin_unlock_irqrestore(&ctx->completion_lock, flags);
669
670 pr_debug("added to ring %p at [%u]\n", iocb, tail);
671
672 /*
673 * Check if the user asked us to deliver the result through an
674 * eventfd. The eventfd_signal() function is safe to be called
675 * from IRQ context.
676 */
677 if (iocb->ki_eventfd != NULL)
678 eventfd_signal(iocb->ki_eventfd, 1);
679
680 put_rq:
681 /* everything turned out well, dispose of the aiocb. */
682 aio_put_req(iocb);
683
684 /*
685 * We have to order our ring_info tail store above and test
686 * of the wait list below outside the wait lock. This is
687 * like in wake_up_bit() where clearing a bit has to be
688 * ordered with the unlocked test.
689 */
690 smp_mb();
691
692 if (waitqueue_active(&ctx->wait))
693 wake_up(&ctx->wait);
694
695 rcu_read_unlock();
696 }
697 EXPORT_SYMBOL(aio_complete);
698
699 /* aio_read_events
700 * Pull an event off of the ioctx's event ring. Returns the number of
701 * events fetched
702 */
703 static long aio_read_events_ring(struct kioctx *ctx,
704 struct io_event __user *event, long nr)
705 {
706 struct aio_ring *ring;
707 unsigned head, pos;
708 long ret = 0;
709 int copy_ret;
710
711 mutex_lock(&ctx->ring_lock);
712
713 ring = kmap_atomic(ctx->ring_pages[0]);
714 head = ring->head;
715 kunmap_atomic(ring);
716
717 pr_debug("h%u t%u m%u\n", head, ctx->tail, ctx->nr_events);
718
719 if (head == ctx->tail)
720 goto out;
721
722 while (ret < nr) {
723 long avail;
724 struct io_event *ev;
725 struct page *page;
726
727 avail = (head <= ctx->tail ? ctx->tail : ctx->nr_events) - head;
728 if (head == ctx->tail)
729 break;
730
731 avail = min(avail, nr - ret);
732 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
733 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
734
735 pos = head + AIO_EVENTS_OFFSET;
736 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
737 pos %= AIO_EVENTS_PER_PAGE;
738
739 ev = kmap(page);
740 copy_ret = copy_to_user(event + ret, ev + pos,
741 sizeof(*ev) * avail);
742 kunmap(page);
743
744 if (unlikely(copy_ret)) {
745 ret = -EFAULT;
746 goto out;
747 }
748
749 ret += avail;
750 head += avail;
751 head %= ctx->nr_events;
752 }
753
754 ring = kmap_atomic(ctx->ring_pages[0]);
755 ring->head = head;
756 kunmap_atomic(ring);
757 flush_dcache_page(ctx->ring_pages[0]);
758
759 pr_debug("%li h%u t%u\n", ret, head, ctx->tail);
760
761 atomic_sub(ret, &ctx->reqs_active);
762 out:
763 mutex_unlock(&ctx->ring_lock);
764
765 return ret;
766 }
767
768 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
769 struct io_event __user *event, long *i)
770 {
771 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
772
773 if (ret > 0)
774 *i += ret;
775
776 if (unlikely(atomic_read(&ctx->dead)))
777 ret = -EINVAL;
778
779 if (!*i)
780 *i = ret;
781
782 return ret < 0 || *i >= min_nr;
783 }
784
785 static long read_events(struct kioctx *ctx, long min_nr, long nr,
786 struct io_event __user *event,
787 struct timespec __user *timeout)
788 {
789 ktime_t until = { .tv64 = KTIME_MAX };
790 long ret = 0;
791
792 if (timeout) {
793 struct timespec ts;
794
795 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
796 return -EFAULT;
797
798 until = timespec_to_ktime(ts);
799 }
800
801 /*
802 * Note that aio_read_events() is being called as the conditional - i.e.
803 * we're calling it after prepare_to_wait() has set task state to
804 * TASK_INTERRUPTIBLE.
805 *
806 * But aio_read_events() can block, and if it blocks it's going to flip
807 * the task state back to TASK_RUNNING.
808 *
809 * This should be ok, provided it doesn't flip the state back to
810 * TASK_RUNNING and return 0 too much - that causes us to spin. That
811 * will only happen if the mutex_lock() call blocks, and we then find
812 * the ringbuffer empty. So in practice we should be ok, but it's
813 * something to be aware of when touching this code.
814 */
815 wait_event_interruptible_hrtimeout(ctx->wait,
816 aio_read_events(ctx, min_nr, nr, event, &ret), until);
817
818 if (!ret && signal_pending(current))
819 ret = -EINTR;
820
821 return ret;
822 }
823
824 /* sys_io_setup:
825 * Create an aio_context capable of receiving at least nr_events.
826 * ctxp must not point to an aio_context that already exists, and
827 * must be initialized to 0 prior to the call. On successful
828 * creation of the aio_context, *ctxp is filled in with the resulting
829 * handle. May fail with -EINVAL if *ctxp is not initialized,
830 * if the specified nr_events exceeds internal limits. May fail
831 * with -EAGAIN if the specified nr_events exceeds the user's limit
832 * of available events. May fail with -ENOMEM if insufficient kernel
833 * resources are available. May fail with -EFAULT if an invalid
834 * pointer is passed for ctxp. Will fail with -ENOSYS if not
835 * implemented.
836 */
837 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
838 {
839 struct kioctx *ioctx = NULL;
840 unsigned long ctx;
841 long ret;
842
843 ret = get_user(ctx, ctxp);
844 if (unlikely(ret))
845 goto out;
846
847 ret = -EINVAL;
848 if (unlikely(ctx || nr_events == 0)) {
849 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
850 ctx, nr_events);
851 goto out;
852 }
853
854 ioctx = ioctx_alloc(nr_events);
855 ret = PTR_ERR(ioctx);
856 if (!IS_ERR(ioctx)) {
857 ret = put_user(ioctx->user_id, ctxp);
858 if (ret)
859 kill_ioctx(ioctx);
860 put_ioctx(ioctx);
861 }
862
863 out:
864 return ret;
865 }
866
867 /* sys_io_destroy:
868 * Destroy the aio_context specified. May cancel any outstanding
869 * AIOs and block on completion. Will fail with -ENOSYS if not
870 * implemented. May fail with -EINVAL if the context pointed to
871 * is invalid.
872 */
873 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
874 {
875 struct kioctx *ioctx = lookup_ioctx(ctx);
876 if (likely(NULL != ioctx)) {
877 kill_ioctx(ioctx);
878 put_ioctx(ioctx);
879 return 0;
880 }
881 pr_debug("EINVAL: io_destroy: invalid context id\n");
882 return -EINVAL;
883 }
884
885 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
886 {
887 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
888
889 BUG_ON(ret <= 0);
890
891 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
892 ssize_t this = min((ssize_t)iov->iov_len, ret);
893 iov->iov_base += this;
894 iov->iov_len -= this;
895 iocb->ki_left -= this;
896 ret -= this;
897 if (iov->iov_len == 0) {
898 iocb->ki_cur_seg++;
899 iov++;
900 }
901 }
902
903 /* the caller should not have done more io than what fit in
904 * the remaining iovecs */
905 BUG_ON(ret > 0 && iocb->ki_left == 0);
906 }
907
908 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
909 unsigned long, loff_t);
910
911 static ssize_t aio_rw_vect_retry(struct kiocb *iocb, int rw, aio_rw_op *rw_op)
912 {
913 struct file *file = iocb->ki_filp;
914 struct address_space *mapping = file->f_mapping;
915 struct inode *inode = mapping->host;
916 ssize_t ret = 0;
917
918 /* This matches the pread()/pwrite() logic */
919 if (iocb->ki_pos < 0)
920 return -EINVAL;
921
922 if (rw == WRITE)
923 file_start_write(file);
924 do {
925 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
926 iocb->ki_nr_segs - iocb->ki_cur_seg,
927 iocb->ki_pos);
928 if (ret > 0)
929 aio_advance_iovec(iocb, ret);
930
931 /* retry all partial writes. retry partial reads as long as its a
932 * regular file. */
933 } while (ret > 0 && iocb->ki_left > 0 &&
934 (rw == WRITE ||
935 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
936 if (rw == WRITE)
937 file_end_write(file);
938
939 /* This means we must have transferred all that we could */
940 /* No need to retry anymore */
941 if ((ret == 0) || (iocb->ki_left == 0))
942 ret = iocb->ki_nbytes - iocb->ki_left;
943
944 /* If we managed to write some out we return that, rather than
945 * the eventual error. */
946 if (rw == WRITE
947 && ret < 0 && ret != -EIOCBQUEUED
948 && iocb->ki_nbytes - iocb->ki_left)
949 ret = iocb->ki_nbytes - iocb->ki_left;
950
951 return ret;
952 }
953
954 static ssize_t aio_setup_vectored_rw(int rw, struct kiocb *kiocb, bool compat)
955 {
956 ssize_t ret;
957
958 kiocb->ki_nr_segs = kiocb->ki_nbytes;
959
960 #ifdef CONFIG_COMPAT
961 if (compat)
962 ret = compat_rw_copy_check_uvector(rw,
963 (struct compat_iovec __user *)kiocb->ki_buf,
964 kiocb->ki_nr_segs, 1, &kiocb->ki_inline_vec,
965 &kiocb->ki_iovec);
966 else
967 #endif
968 ret = rw_copy_check_uvector(rw,
969 (struct iovec __user *)kiocb->ki_buf,
970 kiocb->ki_nr_segs, 1, &kiocb->ki_inline_vec,
971 &kiocb->ki_iovec);
972 if (ret < 0)
973 return ret;
974
975 /* ki_nbytes now reflect bytes instead of segs */
976 kiocb->ki_nbytes = ret;
977 return 0;
978 }
979
980 static ssize_t aio_setup_single_vector(int rw, struct kiocb *kiocb)
981 {
982 if (unlikely(!access_ok(!rw, kiocb->ki_buf, kiocb->ki_nbytes)))
983 return -EFAULT;
984
985 kiocb->ki_iovec = &kiocb->ki_inline_vec;
986 kiocb->ki_iovec->iov_base = kiocb->ki_buf;
987 kiocb->ki_iovec->iov_len = kiocb->ki_nbytes;
988 kiocb->ki_nr_segs = 1;
989 return 0;
990 }
991
992 /*
993 * aio_setup_iocb:
994 * Performs the initial checks and aio retry method
995 * setup for the kiocb at the time of io submission.
996 */
997 static ssize_t aio_run_iocb(struct kiocb *req, bool compat)
998 {
999 struct file *file = req->ki_filp;
1000 ssize_t ret;
1001 int rw;
1002 fmode_t mode;
1003 aio_rw_op *rw_op;
1004
1005 switch (req->ki_opcode) {
1006 case IOCB_CMD_PREAD:
1007 case IOCB_CMD_PREADV:
1008 mode = FMODE_READ;
1009 rw = READ;
1010 rw_op = file->f_op->aio_read;
1011 goto rw_common;
1012
1013 case IOCB_CMD_PWRITE:
1014 case IOCB_CMD_PWRITEV:
1015 mode = FMODE_WRITE;
1016 rw = WRITE;
1017 rw_op = file->f_op->aio_write;
1018 goto rw_common;
1019 rw_common:
1020 if (unlikely(!(file->f_mode & mode)))
1021 return -EBADF;
1022
1023 if (!rw_op)
1024 return -EINVAL;
1025
1026 ret = (req->ki_opcode == IOCB_CMD_PREADV ||
1027 req->ki_opcode == IOCB_CMD_PWRITEV)
1028 ? aio_setup_vectored_rw(rw, req, compat)
1029 : aio_setup_single_vector(rw, req);
1030 if (ret)
1031 return ret;
1032
1033 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1034 if (ret < 0)
1035 return ret;
1036
1037 req->ki_nbytes = ret;
1038 req->ki_left = ret;
1039
1040 ret = aio_rw_vect_retry(req, rw, rw_op);
1041 break;
1042
1043 case IOCB_CMD_FDSYNC:
1044 if (!file->f_op->aio_fsync)
1045 return -EINVAL;
1046
1047 ret = file->f_op->aio_fsync(req, 1);
1048 break;
1049
1050 case IOCB_CMD_FSYNC:
1051 if (!file->f_op->aio_fsync)
1052 return -EINVAL;
1053
1054 ret = file->f_op->aio_fsync(req, 0);
1055 break;
1056
1057 default:
1058 pr_debug("EINVAL: no operation provided\n");
1059 return -EINVAL;
1060 }
1061
1062 if (ret != -EIOCBQUEUED) {
1063 /*
1064 * There's no easy way to restart the syscall since other AIO's
1065 * may be already running. Just fail this IO with EINTR.
1066 */
1067 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1068 ret == -ERESTARTNOHAND ||
1069 ret == -ERESTART_RESTARTBLOCK))
1070 ret = -EINTR;
1071 aio_complete(req, ret, 0);
1072 }
1073
1074 return 0;
1075 }
1076
1077 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1078 struct iocb *iocb, bool compat)
1079 {
1080 struct kiocb *req;
1081 ssize_t ret;
1082
1083 /* enforce forwards compatibility on users */
1084 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1085 pr_debug("EINVAL: reserve field set\n");
1086 return -EINVAL;
1087 }
1088
1089 /* prevent overflows */
1090 if (unlikely(
1091 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1092 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1093 ((ssize_t)iocb->aio_nbytes < 0)
1094 )) {
1095 pr_debug("EINVAL: io_submit: overflow check\n");
1096 return -EINVAL;
1097 }
1098
1099 req = aio_get_req(ctx);
1100 if (unlikely(!req))
1101 return -EAGAIN;
1102
1103 req->ki_filp = fget(iocb->aio_fildes);
1104 if (unlikely(!req->ki_filp)) {
1105 ret = -EBADF;
1106 goto out_put_req;
1107 }
1108
1109 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1110 /*
1111 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1112 * instance of the file* now. The file descriptor must be
1113 * an eventfd() fd, and will be signaled for each completed
1114 * event using the eventfd_signal() function.
1115 */
1116 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1117 if (IS_ERR(req->ki_eventfd)) {
1118 ret = PTR_ERR(req->ki_eventfd);
1119 req->ki_eventfd = NULL;
1120 goto out_put_req;
1121 }
1122 }
1123
1124 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1125 if (unlikely(ret)) {
1126 pr_debug("EFAULT: aio_key\n");
1127 goto out_put_req;
1128 }
1129
1130 req->ki_obj.user = user_iocb;
1131 req->ki_user_data = iocb->aio_data;
1132 req->ki_pos = iocb->aio_offset;
1133
1134 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1135 req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1136 req->ki_opcode = iocb->aio_lio_opcode;
1137
1138 ret = aio_run_iocb(req, compat);
1139 if (ret)
1140 goto out_put_req;
1141
1142 aio_put_req(req); /* drop extra ref to req */
1143 return 0;
1144 out_put_req:
1145 atomic_dec(&ctx->reqs_active);
1146 aio_put_req(req); /* drop extra ref to req */
1147 aio_put_req(req); /* drop i/o ref to req */
1148 return ret;
1149 }
1150
1151 long do_io_submit(aio_context_t ctx_id, long nr,
1152 struct iocb __user *__user *iocbpp, bool compat)
1153 {
1154 struct kioctx *ctx;
1155 long ret = 0;
1156 int i = 0;
1157 struct blk_plug plug;
1158
1159 if (unlikely(nr < 0))
1160 return -EINVAL;
1161
1162 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1163 nr = LONG_MAX/sizeof(*iocbpp);
1164
1165 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1166 return -EFAULT;
1167
1168 ctx = lookup_ioctx(ctx_id);
1169 if (unlikely(!ctx)) {
1170 pr_debug("EINVAL: invalid context id\n");
1171 return -EINVAL;
1172 }
1173
1174 blk_start_plug(&plug);
1175
1176 /*
1177 * AKPM: should this return a partial result if some of the IOs were
1178 * successfully submitted?
1179 */
1180 for (i=0; i<nr; i++) {
1181 struct iocb __user *user_iocb;
1182 struct iocb tmp;
1183
1184 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1185 ret = -EFAULT;
1186 break;
1187 }
1188
1189 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1190 ret = -EFAULT;
1191 break;
1192 }
1193
1194 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1195 if (ret)
1196 break;
1197 }
1198 blk_finish_plug(&plug);
1199
1200 put_ioctx(ctx);
1201 return i ? i : ret;
1202 }
1203
1204 /* sys_io_submit:
1205 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1206 * the number of iocbs queued. May return -EINVAL if the aio_context
1207 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1208 * *iocbpp[0] is not properly initialized, if the operation specified
1209 * is invalid for the file descriptor in the iocb. May fail with
1210 * -EFAULT if any of the data structures point to invalid data. May
1211 * fail with -EBADF if the file descriptor specified in the first
1212 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1213 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1214 * fail with -ENOSYS if not implemented.
1215 */
1216 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1217 struct iocb __user * __user *, iocbpp)
1218 {
1219 return do_io_submit(ctx_id, nr, iocbpp, 0);
1220 }
1221
1222 /* lookup_kiocb
1223 * Finds a given iocb for cancellation.
1224 */
1225 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1226 u32 key)
1227 {
1228 struct list_head *pos;
1229
1230 assert_spin_locked(&ctx->ctx_lock);
1231
1232 if (key != KIOCB_KEY)
1233 return NULL;
1234
1235 /* TODO: use a hash or array, this sucks. */
1236 list_for_each(pos, &ctx->active_reqs) {
1237 struct kiocb *kiocb = list_kiocb(pos);
1238 if (kiocb->ki_obj.user == iocb)
1239 return kiocb;
1240 }
1241 return NULL;
1242 }
1243
1244 /* sys_io_cancel:
1245 * Attempts to cancel an iocb previously passed to io_submit. If
1246 * the operation is successfully cancelled, the resulting event is
1247 * copied into the memory pointed to by result without being placed
1248 * into the completion queue and 0 is returned. May fail with
1249 * -EFAULT if any of the data structures pointed to are invalid.
1250 * May fail with -EINVAL if aio_context specified by ctx_id is
1251 * invalid. May fail with -EAGAIN if the iocb specified was not
1252 * cancelled. Will fail with -ENOSYS if not implemented.
1253 */
1254 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1255 struct io_event __user *, result)
1256 {
1257 struct io_event res;
1258 struct kioctx *ctx;
1259 struct kiocb *kiocb;
1260 u32 key;
1261 int ret;
1262
1263 ret = get_user(key, &iocb->aio_key);
1264 if (unlikely(ret))
1265 return -EFAULT;
1266
1267 ctx = lookup_ioctx(ctx_id);
1268 if (unlikely(!ctx))
1269 return -EINVAL;
1270
1271 spin_lock_irq(&ctx->ctx_lock);
1272
1273 kiocb = lookup_kiocb(ctx, iocb, key);
1274 if (kiocb)
1275 ret = kiocb_cancel(ctx, kiocb, &res);
1276 else
1277 ret = -EINVAL;
1278
1279 spin_unlock_irq(&ctx->ctx_lock);
1280
1281 if (!ret) {
1282 /* Cancellation succeeded -- copy the result
1283 * into the user's buffer.
1284 */
1285 if (copy_to_user(result, &res, sizeof(res)))
1286 ret = -EFAULT;
1287 }
1288
1289 put_ioctx(ctx);
1290
1291 return ret;
1292 }
1293
1294 /* io_getevents:
1295 * Attempts to read at least min_nr events and up to nr events from
1296 * the completion queue for the aio_context specified by ctx_id. If
1297 * it succeeds, the number of read events is returned. May fail with
1298 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1299 * out of range, if timeout is out of range. May fail with -EFAULT
1300 * if any of the memory specified is invalid. May return 0 or
1301 * < min_nr if the timeout specified by timeout has elapsed
1302 * before sufficient events are available, where timeout == NULL
1303 * specifies an infinite timeout. Note that the timeout pointed to by
1304 * timeout is relative. Will fail with -ENOSYS if not implemented.
1305 */
1306 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1307 long, min_nr,
1308 long, nr,
1309 struct io_event __user *, events,
1310 struct timespec __user *, timeout)
1311 {
1312 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1313 long ret = -EINVAL;
1314
1315 if (likely(ioctx)) {
1316 if (likely(min_nr <= nr && min_nr >= 0))
1317 ret = read_events(ioctx, min_nr, nr, events, timeout);
1318 put_ioctx(ioctx);
1319 }
1320 return ret;
1321 }