mtd: bcm47xxpart: only register partitions if the trx header was filled
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / drivers / xen / swiotlb-xen.c
1 /*
2 * Copyright 2010
3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
4 *
5 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License v2.0 as published by
9 * the Free Software Foundation
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * PV guests under Xen are running in an non-contiguous memory architecture.
17 *
18 * When PCI pass-through is utilized, this necessitates an IOMMU for
19 * translating bus (DMA) to virtual and vice-versa and also providing a
20 * mechanism to have contiguous pages for device drivers operations (say DMA
21 * operations).
22 *
23 * Specifically, under Xen the Linux idea of pages is an illusion. It
24 * assumes that pages start at zero and go up to the available memory. To
25 * help with that, the Linux Xen MMU provides a lookup mechanism to
26 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28 * memory is not contiguous. Xen hypervisor stitches memory for guests
29 * from different pools, which means there is no guarantee that PFN==MFN
30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31 * allocated in descending order (high to low), meaning the guest might
32 * never get any MFN's under the 4GB mark.
33 *
34 */
35
36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
37
38 #include <linux/bootmem.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/export.h>
41 #include <xen/swiotlb-xen.h>
42 #include <xen/page.h>
43 #include <xen/xen-ops.h>
44 #include <xen/hvc-console.h>
45
46 #include <asm/dma-mapping.h>
47 #include <asm/xen/page-coherent.h>
48
49 #include <trace/events/swiotlb.h>
50 /*
51 * Used to do a quick range check in swiotlb_tbl_unmap_single and
52 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
53 * API.
54 */
55
56 #ifndef CONFIG_X86
57 static unsigned long dma_alloc_coherent_mask(struct device *dev,
58 gfp_t gfp)
59 {
60 unsigned long dma_mask = 0;
61
62 dma_mask = dev->coherent_dma_mask;
63 if (!dma_mask)
64 dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32);
65
66 return dma_mask;
67 }
68 #endif
69
70 static char *xen_io_tlb_start, *xen_io_tlb_end;
71 static unsigned long xen_io_tlb_nslabs;
72 /*
73 * Quick lookup value of the bus address of the IOTLB.
74 */
75
76 static u64 start_dma_addr;
77
78 /*
79 * Both of these functions should avoid PFN_PHYS because phys_addr_t
80 * can be 32bit when dma_addr_t is 64bit leading to a loss in
81 * information if the shift is done before casting to 64bit.
82 */
83 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
84 {
85 unsigned long mfn = pfn_to_mfn(PFN_DOWN(paddr));
86 dma_addr_t dma = (dma_addr_t)mfn << PAGE_SHIFT;
87
88 dma |= paddr & ~PAGE_MASK;
89
90 return dma;
91 }
92
93 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
94 {
95 unsigned long pfn = mfn_to_pfn(PFN_DOWN(baddr));
96 dma_addr_t dma = (dma_addr_t)pfn << PAGE_SHIFT;
97 phys_addr_t paddr = dma;
98
99 BUG_ON(paddr != dma); /* truncation has occurred, should never happen */
100
101 paddr |= baddr & ~PAGE_MASK;
102
103 return paddr;
104 }
105
106 static inline dma_addr_t xen_virt_to_bus(void *address)
107 {
108 return xen_phys_to_bus(virt_to_phys(address));
109 }
110
111 static int check_pages_physically_contiguous(unsigned long pfn,
112 unsigned int offset,
113 size_t length)
114 {
115 unsigned long next_mfn;
116 int i;
117 int nr_pages;
118
119 next_mfn = pfn_to_mfn(pfn);
120 nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
121
122 for (i = 1; i < nr_pages; i++) {
123 if (pfn_to_mfn(++pfn) != ++next_mfn)
124 return 0;
125 }
126 return 1;
127 }
128
129 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
130 {
131 unsigned long pfn = PFN_DOWN(p);
132 unsigned int offset = p & ~PAGE_MASK;
133
134 if (offset + size <= PAGE_SIZE)
135 return 0;
136 if (check_pages_physically_contiguous(pfn, offset, size))
137 return 0;
138 return 1;
139 }
140
141 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
142 {
143 unsigned long mfn = PFN_DOWN(dma_addr);
144 unsigned long pfn = mfn_to_local_pfn(mfn);
145 phys_addr_t paddr;
146
147 /* If the address is outside our domain, it CAN
148 * have the same virtual address as another address
149 * in our domain. Therefore _only_ check address within our domain.
150 */
151 if (pfn_valid(pfn)) {
152 paddr = PFN_PHYS(pfn);
153 return paddr >= virt_to_phys(xen_io_tlb_start) &&
154 paddr < virt_to_phys(xen_io_tlb_end);
155 }
156 return 0;
157 }
158
159 static int max_dma_bits = 32;
160
161 static int
162 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
163 {
164 int i, rc;
165 int dma_bits;
166 dma_addr_t dma_handle;
167 phys_addr_t p = virt_to_phys(buf);
168
169 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
170
171 i = 0;
172 do {
173 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
174
175 do {
176 rc = xen_create_contiguous_region(
177 p + (i << IO_TLB_SHIFT),
178 get_order(slabs << IO_TLB_SHIFT),
179 dma_bits, &dma_handle);
180 } while (rc && dma_bits++ < max_dma_bits);
181 if (rc)
182 return rc;
183
184 i += slabs;
185 } while (i < nslabs);
186 return 0;
187 }
188 static unsigned long xen_set_nslabs(unsigned long nr_tbl)
189 {
190 if (!nr_tbl) {
191 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
192 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
193 } else
194 xen_io_tlb_nslabs = nr_tbl;
195
196 return xen_io_tlb_nslabs << IO_TLB_SHIFT;
197 }
198
199 enum xen_swiotlb_err {
200 XEN_SWIOTLB_UNKNOWN = 0,
201 XEN_SWIOTLB_ENOMEM,
202 XEN_SWIOTLB_EFIXUP
203 };
204
205 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
206 {
207 switch (err) {
208 case XEN_SWIOTLB_ENOMEM:
209 return "Cannot allocate Xen-SWIOTLB buffer\n";
210 case XEN_SWIOTLB_EFIXUP:
211 return "Failed to get contiguous memory for DMA from Xen!\n"\
212 "You either: don't have the permissions, do not have"\
213 " enough free memory under 4GB, or the hypervisor memory"\
214 " is too fragmented!";
215 default:
216 break;
217 }
218 return "";
219 }
220 int __ref xen_swiotlb_init(int verbose, bool early)
221 {
222 unsigned long bytes, order;
223 int rc = -ENOMEM;
224 enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
225 unsigned int repeat = 3;
226
227 xen_io_tlb_nslabs = swiotlb_nr_tbl();
228 retry:
229 bytes = xen_set_nslabs(xen_io_tlb_nslabs);
230 order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
231 /*
232 * Get IO TLB memory from any location.
233 */
234 if (early)
235 xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
236 else {
237 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
238 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
239 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
240 xen_io_tlb_start = (void *)__get_free_pages(__GFP_NOWARN, order);
241 if (xen_io_tlb_start)
242 break;
243 order--;
244 }
245 if (order != get_order(bytes)) {
246 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
247 (PAGE_SIZE << order) >> 20);
248 xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
249 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
250 }
251 }
252 if (!xen_io_tlb_start) {
253 m_ret = XEN_SWIOTLB_ENOMEM;
254 goto error;
255 }
256 xen_io_tlb_end = xen_io_tlb_start + bytes;
257 /*
258 * And replace that memory with pages under 4GB.
259 */
260 rc = xen_swiotlb_fixup(xen_io_tlb_start,
261 bytes,
262 xen_io_tlb_nslabs);
263 if (rc) {
264 if (early)
265 free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
266 else {
267 free_pages((unsigned long)xen_io_tlb_start, order);
268 xen_io_tlb_start = NULL;
269 }
270 m_ret = XEN_SWIOTLB_EFIXUP;
271 goto error;
272 }
273 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
274 if (early) {
275 if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
276 verbose))
277 panic("Cannot allocate SWIOTLB buffer");
278 rc = 0;
279 } else
280 rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
281 return rc;
282 error:
283 if (repeat--) {
284 xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
285 (xen_io_tlb_nslabs >> 1));
286 pr_info("Lowering to %luMB\n",
287 (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
288 goto retry;
289 }
290 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
291 if (early)
292 panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
293 else
294 free_pages((unsigned long)xen_io_tlb_start, order);
295 return rc;
296 }
297 void *
298 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
299 dma_addr_t *dma_handle, gfp_t flags,
300 struct dma_attrs *attrs)
301 {
302 void *ret;
303 int order = get_order(size);
304 u64 dma_mask = DMA_BIT_MASK(32);
305 phys_addr_t phys;
306 dma_addr_t dev_addr;
307
308 /*
309 * Ignore region specifiers - the kernel's ideas of
310 * pseudo-phys memory layout has nothing to do with the
311 * machine physical layout. We can't allocate highmem
312 * because we can't return a pointer to it.
313 */
314 flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
315
316 if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
317 return ret;
318
319 /* On ARM this function returns an ioremap'ped virtual address for
320 * which virt_to_phys doesn't return the corresponding physical
321 * address. In fact on ARM virt_to_phys only works for kernel direct
322 * mapped RAM memory. Also see comment below.
323 */
324 ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
325
326 if (!ret)
327 return ret;
328
329 if (hwdev && hwdev->coherent_dma_mask)
330 dma_mask = dma_alloc_coherent_mask(hwdev, flags);
331
332 /* At this point dma_handle is the physical address, next we are
333 * going to set it to the machine address.
334 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
335 * to *dma_handle. */
336 phys = *dma_handle;
337 dev_addr = xen_phys_to_bus(phys);
338 if (((dev_addr + size - 1 <= dma_mask)) &&
339 !range_straddles_page_boundary(phys, size))
340 *dma_handle = dev_addr;
341 else {
342 if (xen_create_contiguous_region(phys, order,
343 fls64(dma_mask), dma_handle) != 0) {
344 xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
345 return NULL;
346 }
347 }
348 memset(ret, 0, size);
349 return ret;
350 }
351 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
352
353 void
354 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
355 dma_addr_t dev_addr, struct dma_attrs *attrs)
356 {
357 int order = get_order(size);
358 phys_addr_t phys;
359 u64 dma_mask = DMA_BIT_MASK(32);
360
361 if (dma_release_from_coherent(hwdev, order, vaddr))
362 return;
363
364 if (hwdev && hwdev->coherent_dma_mask)
365 dma_mask = hwdev->coherent_dma_mask;
366
367 /* do not use virt_to_phys because on ARM it doesn't return you the
368 * physical address */
369 phys = xen_bus_to_phys(dev_addr);
370
371 if (((dev_addr + size - 1 > dma_mask)) ||
372 range_straddles_page_boundary(phys, size))
373 xen_destroy_contiguous_region(phys, order);
374
375 xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
376 }
377 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
378
379
380 /*
381 * Map a single buffer of the indicated size for DMA in streaming mode. The
382 * physical address to use is returned.
383 *
384 * Once the device is given the dma address, the device owns this memory until
385 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
386 */
387 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
388 unsigned long offset, size_t size,
389 enum dma_data_direction dir,
390 struct dma_attrs *attrs)
391 {
392 phys_addr_t map, phys = page_to_phys(page) + offset;
393 dma_addr_t dev_addr = xen_phys_to_bus(phys);
394
395 BUG_ON(dir == DMA_NONE);
396 /*
397 * If the address happens to be in the device's DMA window,
398 * we can safely return the device addr and not worry about bounce
399 * buffering it.
400 */
401 if (dma_capable(dev, dev_addr, size) &&
402 !range_straddles_page_boundary(phys, size) && !swiotlb_force) {
403 /* we are not interested in the dma_addr returned by
404 * xen_dma_map_page, only in the potential cache flushes executed
405 * by the function. */
406 xen_dma_map_page(dev, page, offset, size, dir, attrs);
407 return dev_addr;
408 }
409
410 /*
411 * Oh well, have to allocate and map a bounce buffer.
412 */
413 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
414
415 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
416 if (map == SWIOTLB_MAP_ERROR)
417 return DMA_ERROR_CODE;
418
419 xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
420 map & ~PAGE_MASK, size, dir, attrs);
421 dev_addr = xen_phys_to_bus(map);
422
423 /*
424 * Ensure that the address returned is DMA'ble
425 */
426 if (!dma_capable(dev, dev_addr, size)) {
427 swiotlb_tbl_unmap_single(dev, map, size, dir);
428 dev_addr = 0;
429 }
430 return dev_addr;
431 }
432 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
433
434 /*
435 * Unmap a single streaming mode DMA translation. The dma_addr and size must
436 * match what was provided for in a previous xen_swiotlb_map_page call. All
437 * other usages are undefined.
438 *
439 * After this call, reads by the cpu to the buffer are guaranteed to see
440 * whatever the device wrote there.
441 */
442 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
443 size_t size, enum dma_data_direction dir,
444 struct dma_attrs *attrs)
445 {
446 phys_addr_t paddr = xen_bus_to_phys(dev_addr);
447
448 BUG_ON(dir == DMA_NONE);
449
450 xen_dma_unmap_page(hwdev, paddr, size, dir, attrs);
451
452 /* NOTE: We use dev_addr here, not paddr! */
453 if (is_xen_swiotlb_buffer(dev_addr)) {
454 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
455 return;
456 }
457
458 if (dir != DMA_FROM_DEVICE)
459 return;
460
461 /*
462 * phys_to_virt doesn't work with hihgmem page but we could
463 * call dma_mark_clean() with hihgmem page here. However, we
464 * are fine since dma_mark_clean() is null on POWERPC. We can
465 * make dma_mark_clean() take a physical address if necessary.
466 */
467 dma_mark_clean(phys_to_virt(paddr), size);
468 }
469
470 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
471 size_t size, enum dma_data_direction dir,
472 struct dma_attrs *attrs)
473 {
474 xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
475 }
476 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
477
478 /*
479 * Make physical memory consistent for a single streaming mode DMA translation
480 * after a transfer.
481 *
482 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
483 * using the cpu, yet do not wish to teardown the dma mapping, you must
484 * call this function before doing so. At the next point you give the dma
485 * address back to the card, you must first perform a
486 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
487 */
488 static void
489 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
490 size_t size, enum dma_data_direction dir,
491 enum dma_sync_target target)
492 {
493 phys_addr_t paddr = xen_bus_to_phys(dev_addr);
494
495 BUG_ON(dir == DMA_NONE);
496
497 if (target == SYNC_FOR_CPU)
498 xen_dma_sync_single_for_cpu(hwdev, paddr, size, dir);
499
500 /* NOTE: We use dev_addr here, not paddr! */
501 if (is_xen_swiotlb_buffer(dev_addr))
502 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
503
504 if (target == SYNC_FOR_DEVICE)
505 xen_dma_sync_single_for_cpu(hwdev, paddr, size, dir);
506
507 if (dir != DMA_FROM_DEVICE)
508 return;
509
510 dma_mark_clean(phys_to_virt(paddr), size);
511 }
512
513 void
514 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
515 size_t size, enum dma_data_direction dir)
516 {
517 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
518 }
519 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
520
521 void
522 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
523 size_t size, enum dma_data_direction dir)
524 {
525 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
526 }
527 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
528
529 /*
530 * Map a set of buffers described by scatterlist in streaming mode for DMA.
531 * This is the scatter-gather version of the above xen_swiotlb_map_page
532 * interface. Here the scatter gather list elements are each tagged with the
533 * appropriate dma address and length. They are obtained via
534 * sg_dma_{address,length}(SG).
535 *
536 * NOTE: An implementation may be able to use a smaller number of
537 * DMA address/length pairs than there are SG table elements.
538 * (for example via virtual mapping capabilities)
539 * The routine returns the number of addr/length pairs actually
540 * used, at most nents.
541 *
542 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
543 * same here.
544 */
545 int
546 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
547 int nelems, enum dma_data_direction dir,
548 struct dma_attrs *attrs)
549 {
550 struct scatterlist *sg;
551 int i;
552
553 BUG_ON(dir == DMA_NONE);
554
555 for_each_sg(sgl, sg, nelems, i) {
556 phys_addr_t paddr = sg_phys(sg);
557 dma_addr_t dev_addr = xen_phys_to_bus(paddr);
558
559 if (swiotlb_force ||
560 !dma_capable(hwdev, dev_addr, sg->length) ||
561 range_straddles_page_boundary(paddr, sg->length)) {
562 phys_addr_t map = swiotlb_tbl_map_single(hwdev,
563 start_dma_addr,
564 sg_phys(sg),
565 sg->length,
566 dir);
567 if (map == SWIOTLB_MAP_ERROR) {
568 dev_warn(hwdev, "swiotlb buffer is full\n");
569 /* Don't panic here, we expect map_sg users
570 to do proper error handling. */
571 xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
572 attrs);
573 sg_dma_len(sgl) = 0;
574 return 0;
575 }
576 xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT),
577 map & ~PAGE_MASK,
578 sg->length,
579 dir,
580 attrs);
581 sg->dma_address = xen_phys_to_bus(map);
582 } else {
583 /* we are not interested in the dma_addr returned by
584 * xen_dma_map_page, only in the potential cache flushes executed
585 * by the function. */
586 xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
587 paddr & ~PAGE_MASK,
588 sg->length,
589 dir,
590 attrs);
591 sg->dma_address = dev_addr;
592 }
593 sg_dma_len(sg) = sg->length;
594 }
595 return nelems;
596 }
597 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
598
599 /*
600 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
601 * concerning calls here are the same as for swiotlb_unmap_page() above.
602 */
603 void
604 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
605 int nelems, enum dma_data_direction dir,
606 struct dma_attrs *attrs)
607 {
608 struct scatterlist *sg;
609 int i;
610
611 BUG_ON(dir == DMA_NONE);
612
613 for_each_sg(sgl, sg, nelems, i)
614 xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
615
616 }
617 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
618
619 /*
620 * Make physical memory consistent for a set of streaming mode DMA translations
621 * after a transfer.
622 *
623 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
624 * and usage.
625 */
626 static void
627 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
628 int nelems, enum dma_data_direction dir,
629 enum dma_sync_target target)
630 {
631 struct scatterlist *sg;
632 int i;
633
634 for_each_sg(sgl, sg, nelems, i)
635 xen_swiotlb_sync_single(hwdev, sg->dma_address,
636 sg_dma_len(sg), dir, target);
637 }
638
639 void
640 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
641 int nelems, enum dma_data_direction dir)
642 {
643 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
644 }
645 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
646
647 void
648 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
649 int nelems, enum dma_data_direction dir)
650 {
651 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
652 }
653 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
654
655 int
656 xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
657 {
658 return !dma_addr;
659 }
660 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
661
662 /*
663 * Return whether the given device DMA address mask can be supported
664 * properly. For example, if your device can only drive the low 24-bits
665 * during bus mastering, then you would pass 0x00ffffff as the mask to
666 * this function.
667 */
668 int
669 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
670 {
671 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
672 }
673 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
674
675 int
676 xen_swiotlb_set_dma_mask(struct device *dev, u64 dma_mask)
677 {
678 if (!dev->dma_mask || !xen_swiotlb_dma_supported(dev, dma_mask))
679 return -EIO;
680
681 *dev->dma_mask = dma_mask;
682
683 return 0;
684 }
685 EXPORT_SYMBOL_GPL(xen_swiotlb_set_dma_mask);