Merge tag 'nfs-for-3.10-2' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / video / sa1100fb.c
1 /*
2 * linux/drivers/video/sa1100fb.c
3 *
4 * Copyright (C) 1999 Eric A. Thomas
5 * Based on acornfb.c Copyright (C) Russell King.
6 *
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file COPYING in the main directory of this archive for
9 * more details.
10 *
11 * StrongARM 1100 LCD Controller Frame Buffer Driver
12 *
13 * Please direct your questions and comments on this driver to the following
14 * email address:
15 *
16 * linux-arm-kernel@lists.arm.linux.org.uk
17 *
18 * Clean patches should be sent to the ARM Linux Patch System. Please see the
19 * following web page for more information:
20 *
21 * http://www.arm.linux.org.uk/developer/patches/info.shtml
22 *
23 * Thank you.
24 *
25 * Known problems:
26 * - With the Neponset plugged into an Assabet, LCD powerdown
27 * doesn't work (LCD stays powered up). Therefore we shouldn't
28 * blank the screen.
29 * - We don't limit the CPU clock rate nor the mode selection
30 * according to the available SDRAM bandwidth.
31 *
32 * Other notes:
33 * - Linear grayscale palettes and the kernel.
34 * Such code does not belong in the kernel. The kernel frame buffer
35 * drivers do not expect a linear colourmap, but a colourmap based on
36 * the VT100 standard mapping.
37 *
38 * If your _userspace_ requires a linear colourmap, then the setup of
39 * such a colourmap belongs _in userspace_, not in the kernel. Code
40 * to set the colourmap correctly from user space has been sent to
41 * David Neuer. It's around 8 lines of C code, plus another 4 to
42 * detect if we are using grayscale.
43 *
44 * - The following must never be specified in a panel definition:
45 * LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
46 *
47 * - The following should be specified:
48 * either LCCR0_Color or LCCR0_Mono
49 * either LCCR0_Sngl or LCCR0_Dual
50 * either LCCR0_Act or LCCR0_Pas
51 * either LCCR3_OutEnH or LCCD3_OutEnL
52 * either LCCR3_PixRsEdg or LCCR3_PixFlEdg
53 * either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
54 *
55 * Code Status:
56 * 1999/04/01:
57 * - Driver appears to be working for Brutus 320x200x8bpp mode. Other
58 * resolutions are working, but only the 8bpp mode is supported.
59 * Changes need to be made to the palette encode and decode routines
60 * to support 4 and 16 bpp modes.
61 * Driver is not designed to be a module. The FrameBuffer is statically
62 * allocated since dynamic allocation of a 300k buffer cannot be
63 * guaranteed.
64 *
65 * 1999/06/17:
66 * - FrameBuffer memory is now allocated at run-time when the
67 * driver is initialized.
68 *
69 * 2000/04/10: Nicolas Pitre <nico@fluxnic.net>
70 * - Big cleanup for dynamic selection of machine type at run time.
71 *
72 * 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
73 * - Support for Bitsy aka Compaq iPAQ H3600 added.
74 *
75 * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
76 * Jeff Sutherland <jsutherland@accelent.com>
77 * - Resolved an issue caused by a change made to the Assabet's PLD
78 * earlier this year which broke the framebuffer driver for newer
79 * Phase 4 Assabets. Some other parameters were changed to optimize
80 * for the Sharp display.
81 *
82 * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
83 * - XP860 support added
84 *
85 * 2000/08/19: Mark Huang <mhuang@livetoy.com>
86 * - Allows standard options to be passed on the kernel command line
87 * for most common passive displays.
88 *
89 * 2000/08/29:
90 * - s/save_flags_cli/local_irq_save/
91 * - remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
92 *
93 * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
94 * - Updated LART stuff. Fixed some minor bugs.
95 *
96 * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
97 * - Pangolin support added
98 *
99 * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
100 * - Huw Webpanel support added
101 *
102 * 2000/11/23: Eric Peng <ericpeng@coventive.com>
103 * - Freebird add
104 *
105 * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com>
106 * Cliff Brake <cbrake@accelent.com>
107 * - Added PM callback
108 *
109 * 2001/05/26: <rmk@arm.linux.org.uk>
110 * - Fix 16bpp so that (a) we use the right colours rather than some
111 * totally random colour depending on what was in page 0, and (b)
112 * we don't de-reference a NULL pointer.
113 * - remove duplicated implementation of consistent_alloc()
114 * - convert dma address types to dma_addr_t
115 * - remove unused 'montype' stuff
116 * - remove redundant zero inits of init_var after the initial
117 * memset.
118 * - remove allow_modeset (acornfb idea does not belong here)
119 *
120 * 2001/05/28: <rmk@arm.linux.org.uk>
121 * - massive cleanup - move machine dependent data into structures
122 * - I've left various #warnings in - if you see one, and know
123 * the hardware concerned, please get in contact with me.
124 *
125 * 2001/05/31: <rmk@arm.linux.org.uk>
126 * - Fix LCCR1 HSW value, fix all machine type specifications to
127 * keep values in line. (Please check your machine type specs)
128 *
129 * 2001/06/10: <rmk@arm.linux.org.uk>
130 * - Fiddle with the LCD controller from task context only; mainly
131 * so that we can run with interrupts on, and sleep.
132 * - Convert #warnings into #errors. No pain, no gain. ;)
133 *
134 * 2001/06/14: <rmk@arm.linux.org.uk>
135 * - Make the palette BPS value for 12bpp come out correctly.
136 * - Take notice of "greyscale" on any colour depth.
137 * - Make truecolor visuals use the RGB channel encoding information.
138 *
139 * 2001/07/02: <rmk@arm.linux.org.uk>
140 * - Fix colourmap problems.
141 *
142 * 2001/07/13: <abraham@2d3d.co.za>
143 * - Added support for the ICP LCD-Kit01 on LART. This LCD is
144 * manufactured by Prime View, model no V16C6448AB
145 *
146 * 2001/07/23: <rmk@arm.linux.org.uk>
147 * - Hand merge version from handhelds.org CVS tree. See patch
148 * notes for 595/1 for more information.
149 * - Drop 12bpp (it's 16bpp with different colour register mappings).
150 * - This hardware can not do direct colour. Therefore we don't
151 * support it.
152 *
153 * 2001/07/27: <rmk@arm.linux.org.uk>
154 * - Halve YRES on dual scan LCDs.
155 *
156 * 2001/08/22: <rmk@arm.linux.org.uk>
157 * - Add b/w iPAQ pixclock value.
158 *
159 * 2001/10/12: <rmk@arm.linux.org.uk>
160 * - Add patch 681/1 and clean up stork definitions.
161 */
162
163 #include <linux/module.h>
164 #include <linux/kernel.h>
165 #include <linux/sched.h>
166 #include <linux/errno.h>
167 #include <linux/string.h>
168 #include <linux/interrupt.h>
169 #include <linux/slab.h>
170 #include <linux/mm.h>
171 #include <linux/fb.h>
172 #include <linux/delay.h>
173 #include <linux/init.h>
174 #include <linux/ioport.h>
175 #include <linux/cpufreq.h>
176 #include <linux/gpio.h>
177 #include <linux/platform_device.h>
178 #include <linux/dma-mapping.h>
179 #include <linux/mutex.h>
180 #include <linux/io.h>
181
182 #include <video/sa1100fb.h>
183
184 #include <mach/hardware.h>
185 #include <asm/mach-types.h>
186 #include <mach/shannon.h>
187
188 /*
189 * Complain if VAR is out of range.
190 */
191 #define DEBUG_VAR 1
192
193 #include "sa1100fb.h"
194
195 static const struct sa1100fb_rgb rgb_4 = {
196 .red = { .offset = 0, .length = 4, },
197 .green = { .offset = 0, .length = 4, },
198 .blue = { .offset = 0, .length = 4, },
199 .transp = { .offset = 0, .length = 0, },
200 };
201
202 static const struct sa1100fb_rgb rgb_8 = {
203 .red = { .offset = 0, .length = 8, },
204 .green = { .offset = 0, .length = 8, },
205 .blue = { .offset = 0, .length = 8, },
206 .transp = { .offset = 0, .length = 0, },
207 };
208
209 static const struct sa1100fb_rgb def_rgb_16 = {
210 .red = { .offset = 11, .length = 5, },
211 .green = { .offset = 5, .length = 6, },
212 .blue = { .offset = 0, .length = 5, },
213 .transp = { .offset = 0, .length = 0, },
214 };
215
216
217
218 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *);
219 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state);
220
221 static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state)
222 {
223 unsigned long flags;
224
225 local_irq_save(flags);
226 /*
227 * We need to handle two requests being made at the same time.
228 * There are two important cases:
229 * 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
230 * We must perform the unblanking, which will do our REENABLE for us.
231 * 2. When we are blanking, but immediately unblank before we have
232 * blanked. We do the "REENABLE" thing here as well, just to be sure.
233 */
234 if (fbi->task_state == C_ENABLE && state == C_REENABLE)
235 state = (u_int) -1;
236 if (fbi->task_state == C_DISABLE && state == C_ENABLE)
237 state = C_REENABLE;
238
239 if (state != (u_int)-1) {
240 fbi->task_state = state;
241 schedule_work(&fbi->task);
242 }
243 local_irq_restore(flags);
244 }
245
246 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
247 {
248 chan &= 0xffff;
249 chan >>= 16 - bf->length;
250 return chan << bf->offset;
251 }
252
253 /*
254 * Convert bits-per-pixel to a hardware palette PBS value.
255 */
256 static inline u_int palette_pbs(struct fb_var_screeninfo *var)
257 {
258 int ret = 0;
259 switch (var->bits_per_pixel) {
260 case 4: ret = 0 << 12; break;
261 case 8: ret = 1 << 12; break;
262 case 16: ret = 2 << 12; break;
263 }
264 return ret;
265 }
266
267 static int
268 sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
269 u_int trans, struct fb_info *info)
270 {
271 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
272 u_int val, ret = 1;
273
274 if (regno < fbi->palette_size) {
275 val = ((red >> 4) & 0xf00);
276 val |= ((green >> 8) & 0x0f0);
277 val |= ((blue >> 12) & 0x00f);
278
279 if (regno == 0)
280 val |= palette_pbs(&fbi->fb.var);
281
282 fbi->palette_cpu[regno] = val;
283 ret = 0;
284 }
285 return ret;
286 }
287
288 static int
289 sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
290 u_int trans, struct fb_info *info)
291 {
292 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
293 unsigned int val;
294 int ret = 1;
295
296 /*
297 * If inverse mode was selected, invert all the colours
298 * rather than the register number. The register number
299 * is what you poke into the framebuffer to produce the
300 * colour you requested.
301 */
302 if (fbi->inf->cmap_inverse) {
303 red = 0xffff - red;
304 green = 0xffff - green;
305 blue = 0xffff - blue;
306 }
307
308 /*
309 * If greyscale is true, then we convert the RGB value
310 * to greyscale no mater what visual we are using.
311 */
312 if (fbi->fb.var.grayscale)
313 red = green = blue = (19595 * red + 38470 * green +
314 7471 * blue) >> 16;
315
316 switch (fbi->fb.fix.visual) {
317 case FB_VISUAL_TRUECOLOR:
318 /*
319 * 12 or 16-bit True Colour. We encode the RGB value
320 * according to the RGB bitfield information.
321 */
322 if (regno < 16) {
323 u32 *pal = fbi->fb.pseudo_palette;
324
325 val = chan_to_field(red, &fbi->fb.var.red);
326 val |= chan_to_field(green, &fbi->fb.var.green);
327 val |= chan_to_field(blue, &fbi->fb.var.blue);
328
329 pal[regno] = val;
330 ret = 0;
331 }
332 break;
333
334 case FB_VISUAL_STATIC_PSEUDOCOLOR:
335 case FB_VISUAL_PSEUDOCOLOR:
336 ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info);
337 break;
338 }
339
340 return ret;
341 }
342
343 #ifdef CONFIG_CPU_FREQ
344 /*
345 * sa1100fb_display_dma_period()
346 * Calculate the minimum period (in picoseconds) between two DMA
347 * requests for the LCD controller. If we hit this, it means we're
348 * doing nothing but LCD DMA.
349 */
350 static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var)
351 {
352 /*
353 * Period = pixclock * bits_per_byte * bytes_per_transfer
354 * / memory_bits_per_pixel;
355 */
356 return var->pixclock * 8 * 16 / var->bits_per_pixel;
357 }
358 #endif
359
360 /*
361 * sa1100fb_check_var():
362 * Round up in the following order: bits_per_pixel, xres,
363 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
364 * bitfields, horizontal timing, vertical timing.
365 */
366 static int
367 sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
368 {
369 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
370 int rgbidx;
371
372 if (var->xres < MIN_XRES)
373 var->xres = MIN_XRES;
374 if (var->yres < MIN_YRES)
375 var->yres = MIN_YRES;
376 if (var->xres > fbi->inf->xres)
377 var->xres = fbi->inf->xres;
378 if (var->yres > fbi->inf->yres)
379 var->yres = fbi->inf->yres;
380 var->xres_virtual = max(var->xres_virtual, var->xres);
381 var->yres_virtual = max(var->yres_virtual, var->yres);
382
383 dev_dbg(fbi->dev, "var->bits_per_pixel=%d\n", var->bits_per_pixel);
384 switch (var->bits_per_pixel) {
385 case 4:
386 rgbidx = RGB_4;
387 break;
388 case 8:
389 rgbidx = RGB_8;
390 break;
391 case 16:
392 rgbidx = RGB_16;
393 break;
394 default:
395 return -EINVAL;
396 }
397
398 /*
399 * Copy the RGB parameters for this display
400 * from the machine specific parameters.
401 */
402 var->red = fbi->rgb[rgbidx]->red;
403 var->green = fbi->rgb[rgbidx]->green;
404 var->blue = fbi->rgb[rgbidx]->blue;
405 var->transp = fbi->rgb[rgbidx]->transp;
406
407 dev_dbg(fbi->dev, "RGBT length = %d:%d:%d:%d\n",
408 var->red.length, var->green.length, var->blue.length,
409 var->transp.length);
410
411 dev_dbg(fbi->dev, "RGBT offset = %d:%d:%d:%d\n",
412 var->red.offset, var->green.offset, var->blue.offset,
413 var->transp.offset);
414
415 #ifdef CONFIG_CPU_FREQ
416 dev_dbg(fbi->dev, "dma period = %d ps, clock = %d kHz\n",
417 sa1100fb_display_dma_period(var),
418 cpufreq_get(smp_processor_id()));
419 #endif
420
421 return 0;
422 }
423
424 static void sa1100fb_set_visual(struct sa1100fb_info *fbi, u32 visual)
425 {
426 if (fbi->inf->set_visual)
427 fbi->inf->set_visual(visual);
428 }
429
430 /*
431 * sa1100fb_set_par():
432 * Set the user defined part of the display for the specified console
433 */
434 static int sa1100fb_set_par(struct fb_info *info)
435 {
436 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
437 struct fb_var_screeninfo *var = &info->var;
438 unsigned long palette_mem_size;
439
440 dev_dbg(fbi->dev, "set_par\n");
441
442 if (var->bits_per_pixel == 16)
443 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
444 else if (!fbi->inf->cmap_static)
445 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
446 else {
447 /*
448 * Some people have weird ideas about wanting static
449 * pseudocolor maps. I suspect their user space
450 * applications are broken.
451 */
452 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
453 }
454
455 fbi->fb.fix.line_length = var->xres_virtual *
456 var->bits_per_pixel / 8;
457 fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16;
458
459 palette_mem_size = fbi->palette_size * sizeof(u16);
460
461 dev_dbg(fbi->dev, "palette_mem_size = 0x%08lx\n", palette_mem_size);
462
463 fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
464 fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
465
466 /*
467 * Set (any) board control register to handle new color depth
468 */
469 sa1100fb_set_visual(fbi, fbi->fb.fix.visual);
470 sa1100fb_activate_var(var, fbi);
471
472 return 0;
473 }
474
475 #if 0
476 static int
477 sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con,
478 struct fb_info *info)
479 {
480 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
481
482 /*
483 * Make sure the user isn't doing something stupid.
484 */
485 if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->inf->cmap_static))
486 return -EINVAL;
487
488 return gen_set_cmap(cmap, kspc, con, info);
489 }
490 #endif
491
492 /*
493 * Formal definition of the VESA spec:
494 * On
495 * This refers to the state of the display when it is in full operation
496 * Stand-By
497 * This defines an optional operating state of minimal power reduction with
498 * the shortest recovery time
499 * Suspend
500 * This refers to a level of power management in which substantial power
501 * reduction is achieved by the display. The display can have a longer
502 * recovery time from this state than from the Stand-by state
503 * Off
504 * This indicates that the display is consuming the lowest level of power
505 * and is non-operational. Recovery from this state may optionally require
506 * the user to manually power on the monitor
507 *
508 * Now, the fbdev driver adds an additional state, (blank), where they
509 * turn off the video (maybe by colormap tricks), but don't mess with the
510 * video itself: think of it semantically between on and Stand-By.
511 *
512 * So here's what we should do in our fbdev blank routine:
513 *
514 * VESA_NO_BLANKING (mode 0) Video on, front/back light on
515 * VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off
516 * VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off
517 * VESA_POWERDOWN (mode 3) Video off, front/back light off
518 *
519 * This will match the matrox implementation.
520 */
521 /*
522 * sa1100fb_blank():
523 * Blank the display by setting all palette values to zero. Note, the
524 * 12 and 16 bpp modes don't really use the palette, so this will not
525 * blank the display in all modes.
526 */
527 static int sa1100fb_blank(int blank, struct fb_info *info)
528 {
529 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
530 int i;
531
532 dev_dbg(fbi->dev, "sa1100fb_blank: blank=%d\n", blank);
533
534 switch (blank) {
535 case FB_BLANK_POWERDOWN:
536 case FB_BLANK_VSYNC_SUSPEND:
537 case FB_BLANK_HSYNC_SUSPEND:
538 case FB_BLANK_NORMAL:
539 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
540 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
541 for (i = 0; i < fbi->palette_size; i++)
542 sa1100fb_setpalettereg(i, 0, 0, 0, 0, info);
543 sa1100fb_schedule_work(fbi, C_DISABLE);
544 break;
545
546 case FB_BLANK_UNBLANK:
547 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
548 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
549 fb_set_cmap(&fbi->fb.cmap, info);
550 sa1100fb_schedule_work(fbi, C_ENABLE);
551 }
552 return 0;
553 }
554
555 static int sa1100fb_mmap(struct fb_info *info,
556 struct vm_area_struct *vma)
557 {
558 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
559 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
560
561 if (off < info->fix.smem_len) {
562 vma->vm_pgoff += 1; /* skip over the palette */
563 return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu,
564 fbi->map_dma, fbi->map_size);
565 }
566
567 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
568
569 return vm_iomap_memory(vma, info->fix.mmio_start, info->fix.mmio_len);
570 }
571
572 static struct fb_ops sa1100fb_ops = {
573 .owner = THIS_MODULE,
574 .fb_check_var = sa1100fb_check_var,
575 .fb_set_par = sa1100fb_set_par,
576 // .fb_set_cmap = sa1100fb_set_cmap,
577 .fb_setcolreg = sa1100fb_setcolreg,
578 .fb_fillrect = cfb_fillrect,
579 .fb_copyarea = cfb_copyarea,
580 .fb_imageblit = cfb_imageblit,
581 .fb_blank = sa1100fb_blank,
582 .fb_mmap = sa1100fb_mmap,
583 };
584
585 /*
586 * Calculate the PCD value from the clock rate (in picoseconds).
587 * We take account of the PPCR clock setting.
588 */
589 static inline unsigned int get_pcd(unsigned int pixclock, unsigned int cpuclock)
590 {
591 unsigned int pcd = cpuclock / 100;
592
593 pcd *= pixclock;
594 pcd /= 10000000;
595
596 return pcd + 1; /* make up for integer math truncations */
597 }
598
599 /*
600 * sa1100fb_activate_var():
601 * Configures LCD Controller based on entries in var parameter. Settings are
602 * only written to the controller if changes were made.
603 */
604 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi)
605 {
606 struct sa1100fb_lcd_reg new_regs;
607 u_int half_screen_size, yres, pcd;
608 u_long flags;
609
610 dev_dbg(fbi->dev, "Configuring SA1100 LCD\n");
611
612 dev_dbg(fbi->dev, "var: xres=%d hslen=%d lm=%d rm=%d\n",
613 var->xres, var->hsync_len,
614 var->left_margin, var->right_margin);
615 dev_dbg(fbi->dev, "var: yres=%d vslen=%d um=%d bm=%d\n",
616 var->yres, var->vsync_len,
617 var->upper_margin, var->lower_margin);
618
619 #if DEBUG_VAR
620 if (var->xres < 16 || var->xres > 1024)
621 dev_err(fbi->dev, "%s: invalid xres %d\n",
622 fbi->fb.fix.id, var->xres);
623 if (var->hsync_len < 1 || var->hsync_len > 64)
624 dev_err(fbi->dev, "%s: invalid hsync_len %d\n",
625 fbi->fb.fix.id, var->hsync_len);
626 if (var->left_margin < 1 || var->left_margin > 255)
627 dev_err(fbi->dev, "%s: invalid left_margin %d\n",
628 fbi->fb.fix.id, var->left_margin);
629 if (var->right_margin < 1 || var->right_margin > 255)
630 dev_err(fbi->dev, "%s: invalid right_margin %d\n",
631 fbi->fb.fix.id, var->right_margin);
632 if (var->yres < 1 || var->yres > 1024)
633 dev_err(fbi->dev, "%s: invalid yres %d\n",
634 fbi->fb.fix.id, var->yres);
635 if (var->vsync_len < 1 || var->vsync_len > 64)
636 dev_err(fbi->dev, "%s: invalid vsync_len %d\n",
637 fbi->fb.fix.id, var->vsync_len);
638 if (var->upper_margin < 0 || var->upper_margin > 255)
639 dev_err(fbi->dev, "%s: invalid upper_margin %d\n",
640 fbi->fb.fix.id, var->upper_margin);
641 if (var->lower_margin < 0 || var->lower_margin > 255)
642 dev_err(fbi->dev, "%s: invalid lower_margin %d\n",
643 fbi->fb.fix.id, var->lower_margin);
644 #endif
645
646 new_regs.lccr0 = fbi->inf->lccr0 |
647 LCCR0_LEN | LCCR0_LDM | LCCR0_BAM |
648 LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0);
649
650 new_regs.lccr1 =
651 LCCR1_DisWdth(var->xres) +
652 LCCR1_HorSnchWdth(var->hsync_len) +
653 LCCR1_BegLnDel(var->left_margin) +
654 LCCR1_EndLnDel(var->right_margin);
655
656 /*
657 * If we have a dual scan LCD, then we need to halve
658 * the YRES parameter.
659 */
660 yres = var->yres;
661 if (fbi->inf->lccr0 & LCCR0_Dual)
662 yres /= 2;
663
664 new_regs.lccr2 =
665 LCCR2_DisHght(yres) +
666 LCCR2_VrtSnchWdth(var->vsync_len) +
667 LCCR2_BegFrmDel(var->upper_margin) +
668 LCCR2_EndFrmDel(var->lower_margin);
669
670 pcd = get_pcd(var->pixclock, cpufreq_get(0));
671 new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->inf->lccr3 |
672 (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
673 (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
674
675 dev_dbg(fbi->dev, "nlccr0 = 0x%08lx\n", new_regs.lccr0);
676 dev_dbg(fbi->dev, "nlccr1 = 0x%08lx\n", new_regs.lccr1);
677 dev_dbg(fbi->dev, "nlccr2 = 0x%08lx\n", new_regs.lccr2);
678 dev_dbg(fbi->dev, "nlccr3 = 0x%08lx\n", new_regs.lccr3);
679
680 half_screen_size = var->bits_per_pixel;
681 half_screen_size = half_screen_size * var->xres * var->yres / 16;
682
683 /* Update shadow copy atomically */
684 local_irq_save(flags);
685 fbi->dbar1 = fbi->palette_dma;
686 fbi->dbar2 = fbi->screen_dma + half_screen_size;
687
688 fbi->reg_lccr0 = new_regs.lccr0;
689 fbi->reg_lccr1 = new_regs.lccr1;
690 fbi->reg_lccr2 = new_regs.lccr2;
691 fbi->reg_lccr3 = new_regs.lccr3;
692 local_irq_restore(flags);
693
694 /*
695 * Only update the registers if the controller is enabled
696 * and something has changed.
697 */
698 if (readl_relaxed(fbi->base + LCCR0) != fbi->reg_lccr0 ||
699 readl_relaxed(fbi->base + LCCR1) != fbi->reg_lccr1 ||
700 readl_relaxed(fbi->base + LCCR2) != fbi->reg_lccr2 ||
701 readl_relaxed(fbi->base + LCCR3) != fbi->reg_lccr3 ||
702 readl_relaxed(fbi->base + DBAR1) != fbi->dbar1 ||
703 readl_relaxed(fbi->base + DBAR2) != fbi->dbar2)
704 sa1100fb_schedule_work(fbi, C_REENABLE);
705
706 return 0;
707 }
708
709 /*
710 * NOTE! The following functions are purely helpers for set_ctrlr_state.
711 * Do not call them directly; set_ctrlr_state does the correct serialisation
712 * to ensure that things happen in the right way 100% of time time.
713 * -- rmk
714 */
715 static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on)
716 {
717 dev_dbg(fbi->dev, "backlight o%s\n", on ? "n" : "ff");
718
719 if (fbi->inf->backlight_power)
720 fbi->inf->backlight_power(on);
721 }
722
723 static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on)
724 {
725 dev_dbg(fbi->dev, "LCD power o%s\n", on ? "n" : "ff");
726
727 if (fbi->inf->lcd_power)
728 fbi->inf->lcd_power(on);
729 }
730
731 static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi)
732 {
733 u_int mask = 0;
734
735 /*
736 * Enable GPIO<9:2> for LCD use if:
737 * 1. Active display, or
738 * 2. Color Dual Passive display
739 *
740 * see table 11.8 on page 11-27 in the SA1100 manual
741 * -- Erik.
742 *
743 * SA1110 spec update nr. 25 says we can and should
744 * clear LDD15 to 12 for 4 or 8bpp modes with active
745 * panels.
746 */
747 if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color &&
748 (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) {
749 mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9 | GPIO_LDD8;
750
751 if (fbi->fb.var.bits_per_pixel > 8 ||
752 (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual)
753 mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12;
754
755 }
756
757 if (mask) {
758 unsigned long flags;
759
760 /*
761 * SA-1100 requires the GPIO direction register set
762 * appropriately for the alternate function. Hence
763 * we set it here via bitmask rather than excessive
764 * fiddling via the GPIO subsystem - and even then
765 * we'll still have to deal with GAFR.
766 */
767 local_irq_save(flags);
768 GPDR |= mask;
769 GAFR |= mask;
770 local_irq_restore(flags);
771 }
772 }
773
774 static void sa1100fb_enable_controller(struct sa1100fb_info *fbi)
775 {
776 dev_dbg(fbi->dev, "Enabling LCD controller\n");
777
778 /*
779 * Make sure the mode bits are present in the first palette entry
780 */
781 fbi->palette_cpu[0] &= 0xcfff;
782 fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var);
783
784 /* Sequence from 11.7.10 */
785 writel_relaxed(fbi->reg_lccr3, fbi->base + LCCR3);
786 writel_relaxed(fbi->reg_lccr2, fbi->base + LCCR2);
787 writel_relaxed(fbi->reg_lccr1, fbi->base + LCCR1);
788 writel_relaxed(fbi->reg_lccr0 & ~LCCR0_LEN, fbi->base + LCCR0);
789 writel_relaxed(fbi->dbar1, fbi->base + DBAR1);
790 writel_relaxed(fbi->dbar2, fbi->base + DBAR2);
791 writel_relaxed(fbi->reg_lccr0 | LCCR0_LEN, fbi->base + LCCR0);
792
793 if (machine_is_shannon())
794 gpio_set_value(SHANNON_GPIO_DISP_EN, 1);
795
796 dev_dbg(fbi->dev, "DBAR1: 0x%08x\n", readl_relaxed(fbi->base + DBAR1));
797 dev_dbg(fbi->dev, "DBAR2: 0x%08x\n", readl_relaxed(fbi->base + DBAR2));
798 dev_dbg(fbi->dev, "LCCR0: 0x%08x\n", readl_relaxed(fbi->base + LCCR0));
799 dev_dbg(fbi->dev, "LCCR1: 0x%08x\n", readl_relaxed(fbi->base + LCCR1));
800 dev_dbg(fbi->dev, "LCCR2: 0x%08x\n", readl_relaxed(fbi->base + LCCR2));
801 dev_dbg(fbi->dev, "LCCR3: 0x%08x\n", readl_relaxed(fbi->base + LCCR3));
802 }
803
804 static void sa1100fb_disable_controller(struct sa1100fb_info *fbi)
805 {
806 DECLARE_WAITQUEUE(wait, current);
807 u32 lccr0;
808
809 dev_dbg(fbi->dev, "Disabling LCD controller\n");
810
811 if (machine_is_shannon())
812 gpio_set_value(SHANNON_GPIO_DISP_EN, 0);
813
814 set_current_state(TASK_UNINTERRUPTIBLE);
815 add_wait_queue(&fbi->ctrlr_wait, &wait);
816
817 /* Clear LCD Status Register */
818 writel_relaxed(~0, fbi->base + LCSR);
819
820 lccr0 = readl_relaxed(fbi->base + LCCR0);
821 lccr0 &= ~LCCR0_LDM; /* Enable LCD Disable Done Interrupt */
822 writel_relaxed(lccr0, fbi->base + LCCR0);
823 lccr0 &= ~LCCR0_LEN; /* Disable LCD Controller */
824 writel_relaxed(lccr0, fbi->base + LCCR0);
825
826 schedule_timeout(20 * HZ / 1000);
827 remove_wait_queue(&fbi->ctrlr_wait, &wait);
828 }
829
830 /*
831 * sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
832 */
833 static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id)
834 {
835 struct sa1100fb_info *fbi = dev_id;
836 unsigned int lcsr = readl_relaxed(fbi->base + LCSR);
837
838 if (lcsr & LCSR_LDD) {
839 u32 lccr0 = readl_relaxed(fbi->base + LCCR0) | LCCR0_LDM;
840 writel_relaxed(lccr0, fbi->base + LCCR0);
841 wake_up(&fbi->ctrlr_wait);
842 }
843
844 writel_relaxed(lcsr, fbi->base + LCSR);
845 return IRQ_HANDLED;
846 }
847
848 /*
849 * This function must be called from task context only, since it will
850 * sleep when disabling the LCD controller, or if we get two contending
851 * processes trying to alter state.
852 */
853 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state)
854 {
855 u_int old_state;
856
857 mutex_lock(&fbi->ctrlr_lock);
858
859 old_state = fbi->state;
860
861 /*
862 * Hack around fbcon initialisation.
863 */
864 if (old_state == C_STARTUP && state == C_REENABLE)
865 state = C_ENABLE;
866
867 switch (state) {
868 case C_DISABLE_CLKCHANGE:
869 /*
870 * Disable controller for clock change. If the
871 * controller is already disabled, then do nothing.
872 */
873 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
874 fbi->state = state;
875 sa1100fb_disable_controller(fbi);
876 }
877 break;
878
879 case C_DISABLE_PM:
880 case C_DISABLE:
881 /*
882 * Disable controller
883 */
884 if (old_state != C_DISABLE) {
885 fbi->state = state;
886
887 __sa1100fb_backlight_power(fbi, 0);
888 if (old_state != C_DISABLE_CLKCHANGE)
889 sa1100fb_disable_controller(fbi);
890 __sa1100fb_lcd_power(fbi, 0);
891 }
892 break;
893
894 case C_ENABLE_CLKCHANGE:
895 /*
896 * Enable the controller after clock change. Only
897 * do this if we were disabled for the clock change.
898 */
899 if (old_state == C_DISABLE_CLKCHANGE) {
900 fbi->state = C_ENABLE;
901 sa1100fb_enable_controller(fbi);
902 }
903 break;
904
905 case C_REENABLE:
906 /*
907 * Re-enable the controller only if it was already
908 * enabled. This is so we reprogram the control
909 * registers.
910 */
911 if (old_state == C_ENABLE) {
912 sa1100fb_disable_controller(fbi);
913 sa1100fb_setup_gpio(fbi);
914 sa1100fb_enable_controller(fbi);
915 }
916 break;
917
918 case C_ENABLE_PM:
919 /*
920 * Re-enable the controller after PM. This is not
921 * perfect - think about the case where we were doing
922 * a clock change, and we suspended half-way through.
923 */
924 if (old_state != C_DISABLE_PM)
925 break;
926 /* fall through */
927
928 case C_ENABLE:
929 /*
930 * Power up the LCD screen, enable controller, and
931 * turn on the backlight.
932 */
933 if (old_state != C_ENABLE) {
934 fbi->state = C_ENABLE;
935 sa1100fb_setup_gpio(fbi);
936 __sa1100fb_lcd_power(fbi, 1);
937 sa1100fb_enable_controller(fbi);
938 __sa1100fb_backlight_power(fbi, 1);
939 }
940 break;
941 }
942 mutex_unlock(&fbi->ctrlr_lock);
943 }
944
945 /*
946 * Our LCD controller task (which is called when we blank or unblank)
947 * via keventd.
948 */
949 static void sa1100fb_task(struct work_struct *w)
950 {
951 struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task);
952 u_int state = xchg(&fbi->task_state, -1);
953
954 set_ctrlr_state(fbi, state);
955 }
956
957 #ifdef CONFIG_CPU_FREQ
958 /*
959 * Calculate the minimum DMA period over all displays that we own.
960 * This, together with the SDRAM bandwidth defines the slowest CPU
961 * frequency that can be selected.
962 */
963 static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info *fbi)
964 {
965 #if 0
966 unsigned int min_period = (unsigned int)-1;
967 int i;
968
969 for (i = 0; i < MAX_NR_CONSOLES; i++) {
970 struct display *disp = &fb_display[i];
971 unsigned int period;
972
973 /*
974 * Do we own this display?
975 */
976 if (disp->fb_info != &fbi->fb)
977 continue;
978
979 /*
980 * Ok, calculate its DMA period
981 */
982 period = sa1100fb_display_dma_period(&disp->var);
983 if (period < min_period)
984 min_period = period;
985 }
986
987 return min_period;
988 #else
989 /*
990 * FIXME: we need to verify _all_ consoles.
991 */
992 return sa1100fb_display_dma_period(&fbi->fb.var);
993 #endif
994 }
995
996 /*
997 * CPU clock speed change handler. We need to adjust the LCD timing
998 * parameters when the CPU clock is adjusted by the power management
999 * subsystem.
1000 */
1001 static int
1002 sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val,
1003 void *data)
1004 {
1005 struct sa1100fb_info *fbi = TO_INF(nb, freq_transition);
1006 struct cpufreq_freqs *f = data;
1007 u_int pcd;
1008
1009 switch (val) {
1010 case CPUFREQ_PRECHANGE:
1011 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1012 break;
1013
1014 case CPUFREQ_POSTCHANGE:
1015 pcd = get_pcd(fbi->fb.var.pixclock, f->new);
1016 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
1017 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1018 break;
1019 }
1020 return 0;
1021 }
1022
1023 static int
1024 sa1100fb_freq_policy(struct notifier_block *nb, unsigned long val,
1025 void *data)
1026 {
1027 struct sa1100fb_info *fbi = TO_INF(nb, freq_policy);
1028 struct cpufreq_policy *policy = data;
1029
1030 switch (val) {
1031 case CPUFREQ_ADJUST:
1032 case CPUFREQ_INCOMPATIBLE:
1033 dev_dbg(fbi->dev, "min dma period: %d ps, "
1034 "new clock %d kHz\n", sa1100fb_min_dma_period(fbi),
1035 policy->max);
1036 /* todo: fill in min/max values */
1037 break;
1038 case CPUFREQ_NOTIFY:
1039 do {} while(0);
1040 /* todo: panic if min/max values aren't fulfilled
1041 * [can't really happen unless there's a bug in the
1042 * CPU policy verififcation process *
1043 */
1044 break;
1045 }
1046 return 0;
1047 }
1048 #endif
1049
1050 #ifdef CONFIG_PM
1051 /*
1052 * Power management hooks. Note that we won't be called from IRQ context,
1053 * unlike the blank functions above, so we may sleep.
1054 */
1055 static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state)
1056 {
1057 struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1058
1059 set_ctrlr_state(fbi, C_DISABLE_PM);
1060 return 0;
1061 }
1062
1063 static int sa1100fb_resume(struct platform_device *dev)
1064 {
1065 struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1066
1067 set_ctrlr_state(fbi, C_ENABLE_PM);
1068 return 0;
1069 }
1070 #else
1071 #define sa1100fb_suspend NULL
1072 #define sa1100fb_resume NULL
1073 #endif
1074
1075 /*
1076 * sa1100fb_map_video_memory():
1077 * Allocates the DRAM memory for the frame buffer. This buffer is
1078 * remapped into a non-cached, non-buffered, memory region to
1079 * allow palette and pixel writes to occur without flushing the
1080 * cache. Once this area is remapped, all virtual memory
1081 * access to the video memory should occur at the new region.
1082 */
1083 static int sa1100fb_map_video_memory(struct sa1100fb_info *fbi)
1084 {
1085 /*
1086 * We reserve one page for the palette, plus the size
1087 * of the framebuffer.
1088 */
1089 fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1090 fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
1091 &fbi->map_dma, GFP_KERNEL);
1092
1093 if (fbi->map_cpu) {
1094 fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1095 fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1096 /*
1097 * FIXME: this is actually the wrong thing to place in
1098 * smem_start. But fbdev suffers from the problem that
1099 * it needs an API which doesn't exist (in this case,
1100 * dma_writecombine_mmap)
1101 */
1102 fbi->fb.fix.smem_start = fbi->screen_dma;
1103 }
1104
1105 return fbi->map_cpu ? 0 : -ENOMEM;
1106 }
1107
1108 /* Fake monspecs to fill in fbinfo structure */
1109 static struct fb_monspecs monspecs = {
1110 .hfmin = 30000,
1111 .hfmax = 70000,
1112 .vfmin = 50,
1113 .vfmax = 65,
1114 };
1115
1116
1117 static struct sa1100fb_info *sa1100fb_init_fbinfo(struct device *dev)
1118 {
1119 struct sa1100fb_mach_info *inf = dev->platform_data;
1120 struct sa1100fb_info *fbi;
1121 unsigned i;
1122
1123 fbi = kmalloc(sizeof(struct sa1100fb_info) + sizeof(u32) * 16,
1124 GFP_KERNEL);
1125 if (!fbi)
1126 return NULL;
1127
1128 memset(fbi, 0, sizeof(struct sa1100fb_info));
1129 fbi->dev = dev;
1130
1131 strcpy(fbi->fb.fix.id, SA1100_NAME);
1132
1133 fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1134 fbi->fb.fix.type_aux = 0;
1135 fbi->fb.fix.xpanstep = 0;
1136 fbi->fb.fix.ypanstep = 0;
1137 fbi->fb.fix.ywrapstep = 0;
1138 fbi->fb.fix.accel = FB_ACCEL_NONE;
1139
1140 fbi->fb.var.nonstd = 0;
1141 fbi->fb.var.activate = FB_ACTIVATE_NOW;
1142 fbi->fb.var.height = -1;
1143 fbi->fb.var.width = -1;
1144 fbi->fb.var.accel_flags = 0;
1145 fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
1146
1147 fbi->fb.fbops = &sa1100fb_ops;
1148 fbi->fb.flags = FBINFO_DEFAULT;
1149 fbi->fb.monspecs = monspecs;
1150 fbi->fb.pseudo_palette = (fbi + 1);
1151
1152 fbi->rgb[RGB_4] = &rgb_4;
1153 fbi->rgb[RGB_8] = &rgb_8;
1154 fbi->rgb[RGB_16] = &def_rgb_16;
1155
1156 /*
1157 * People just don't seem to get this. We don't support
1158 * anything but correct entries now, so panic if someone
1159 * does something stupid.
1160 */
1161 if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) ||
1162 inf->pixclock == 0)
1163 panic("sa1100fb error: invalid LCCR3 fields set or zero "
1164 "pixclock.");
1165
1166 fbi->fb.var.xres = inf->xres;
1167 fbi->fb.var.xres_virtual = inf->xres;
1168 fbi->fb.var.yres = inf->yres;
1169 fbi->fb.var.yres_virtual = inf->yres;
1170 fbi->fb.var.bits_per_pixel = inf->bpp;
1171 fbi->fb.var.pixclock = inf->pixclock;
1172 fbi->fb.var.hsync_len = inf->hsync_len;
1173 fbi->fb.var.left_margin = inf->left_margin;
1174 fbi->fb.var.right_margin = inf->right_margin;
1175 fbi->fb.var.vsync_len = inf->vsync_len;
1176 fbi->fb.var.upper_margin = inf->upper_margin;
1177 fbi->fb.var.lower_margin = inf->lower_margin;
1178 fbi->fb.var.sync = inf->sync;
1179 fbi->fb.var.grayscale = inf->cmap_greyscale;
1180 fbi->state = C_STARTUP;
1181 fbi->task_state = (u_char)-1;
1182 fbi->fb.fix.smem_len = inf->xres * inf->yres *
1183 inf->bpp / 8;
1184 fbi->inf = inf;
1185
1186 /* Copy the RGB bitfield overrides */
1187 for (i = 0; i < NR_RGB; i++)
1188 if (inf->rgb[i])
1189 fbi->rgb[i] = inf->rgb[i];
1190
1191 init_waitqueue_head(&fbi->ctrlr_wait);
1192 INIT_WORK(&fbi->task, sa1100fb_task);
1193 mutex_init(&fbi->ctrlr_lock);
1194
1195 return fbi;
1196 }
1197
1198 static int sa1100fb_probe(struct platform_device *pdev)
1199 {
1200 struct sa1100fb_info *fbi;
1201 struct resource *res;
1202 int ret, irq;
1203
1204 if (!pdev->dev.platform_data) {
1205 dev_err(&pdev->dev, "no platform LCD data\n");
1206 return -EINVAL;
1207 }
1208
1209 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1210 irq = platform_get_irq(pdev, 0);
1211 if (irq < 0 || !res)
1212 return -EINVAL;
1213
1214 if (!request_mem_region(res->start, resource_size(res), "LCD"))
1215 return -EBUSY;
1216
1217 fbi = sa1100fb_init_fbinfo(&pdev->dev);
1218 ret = -ENOMEM;
1219 if (!fbi)
1220 goto failed;
1221
1222 fbi->base = ioremap(res->start, resource_size(res));
1223 if (!fbi->base)
1224 goto failed;
1225
1226 /* Initialize video memory */
1227 ret = sa1100fb_map_video_memory(fbi);
1228 if (ret)
1229 goto failed;
1230
1231 ret = request_irq(irq, sa1100fb_handle_irq, 0, "LCD", fbi);
1232 if (ret) {
1233 dev_err(&pdev->dev, "request_irq failed: %d\n", ret);
1234 goto failed;
1235 }
1236
1237 if (machine_is_shannon()) {
1238 ret = gpio_request_one(SHANNON_GPIO_DISP_EN,
1239 GPIOF_OUT_INIT_LOW, "display enable");
1240 if (ret)
1241 goto err_free_irq;
1242 }
1243
1244 /*
1245 * This makes sure that our colour bitfield
1246 * descriptors are correctly initialised.
1247 */
1248 sa1100fb_check_var(&fbi->fb.var, &fbi->fb);
1249
1250 platform_set_drvdata(pdev, fbi);
1251
1252 ret = register_framebuffer(&fbi->fb);
1253 if (ret < 0)
1254 goto err_reg_fb;
1255
1256 #ifdef CONFIG_CPU_FREQ
1257 fbi->freq_transition.notifier_call = sa1100fb_freq_transition;
1258 fbi->freq_policy.notifier_call = sa1100fb_freq_policy;
1259 cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
1260 cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER);
1261 #endif
1262
1263 /* This driver cannot be unloaded at the moment */
1264 return 0;
1265
1266 err_reg_fb:
1267 if (machine_is_shannon())
1268 gpio_free(SHANNON_GPIO_DISP_EN);
1269 err_free_irq:
1270 free_irq(irq, fbi);
1271 failed:
1272 if (fbi)
1273 iounmap(fbi->base);
1274 platform_set_drvdata(pdev, NULL);
1275 kfree(fbi);
1276 release_mem_region(res->start, resource_size(res));
1277 return ret;
1278 }
1279
1280 static struct platform_driver sa1100fb_driver = {
1281 .probe = sa1100fb_probe,
1282 .suspend = sa1100fb_suspend,
1283 .resume = sa1100fb_resume,
1284 .driver = {
1285 .name = "sa11x0-fb",
1286 .owner = THIS_MODULE,
1287 },
1288 };
1289
1290 int __init sa1100fb_init(void)
1291 {
1292 if (fb_get_options("sa1100fb", NULL))
1293 return -ENODEV;
1294
1295 return platform_driver_register(&sa1100fb_driver);
1296 }
1297
1298 int __init sa1100fb_setup(char *options)
1299 {
1300 #if 0
1301 char *this_opt;
1302
1303 if (!options || !*options)
1304 return 0;
1305
1306 while ((this_opt = strsep(&options, ",")) != NULL) {
1307
1308 if (!strncmp(this_opt, "bpp:", 4))
1309 current_par.max_bpp =
1310 simple_strtoul(this_opt + 4, NULL, 0);
1311
1312 if (!strncmp(this_opt, "lccr0:", 6))
1313 lcd_shadow.lccr0 =
1314 simple_strtoul(this_opt + 6, NULL, 0);
1315 if (!strncmp(this_opt, "lccr1:", 6)) {
1316 lcd_shadow.lccr1 =
1317 simple_strtoul(this_opt + 6, NULL, 0);
1318 current_par.max_xres =
1319 (lcd_shadow.lccr1 & 0x3ff) + 16;
1320 }
1321 if (!strncmp(this_opt, "lccr2:", 6)) {
1322 lcd_shadow.lccr2 =
1323 simple_strtoul(this_opt + 6, NULL, 0);
1324 current_par.max_yres =
1325 (lcd_shadow.
1326 lccr0 & LCCR0_SDS) ? ((lcd_shadow.
1327 lccr2 & 0x3ff) +
1328 1) *
1329 2 : ((lcd_shadow.lccr2 & 0x3ff) + 1);
1330 }
1331 if (!strncmp(this_opt, "lccr3:", 6))
1332 lcd_shadow.lccr3 =
1333 simple_strtoul(this_opt + 6, NULL, 0);
1334 }
1335 #endif
1336 return 0;
1337 }
1338
1339 module_init(sa1100fb_init);
1340 MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
1341 MODULE_LICENSE("GPL");