ocfs2: Fix a bug found by sparse check.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / video / pxafb.c
1 /*
2 * linux/drivers/video/pxafb.c
3 *
4 * Copyright (C) 1999 Eric A. Thomas.
5 * Copyright (C) 2004 Jean-Frederic Clere.
6 * Copyright (C) 2004 Ian Campbell.
7 * Copyright (C) 2004 Jeff Lackey.
8 * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
9 * which in turn is
10 * Based on acornfb.c Copyright (C) Russell King.
11 *
12 * This file is subject to the terms and conditions of the GNU General Public
13 * License. See the file COPYING in the main directory of this archive for
14 * more details.
15 *
16 * Intel PXA250/210 LCD Controller Frame Buffer Driver
17 *
18 * Please direct your questions and comments on this driver to the following
19 * email address:
20 *
21 * linux-arm-kernel@lists.arm.linux.org.uk
22 *
23 * Add support for overlay1 and overlay2 based on pxafb_overlay.c:
24 *
25 * Copyright (C) 2004, Intel Corporation
26 *
27 * 2003/08/27: <yu.tang@intel.com>
28 * 2004/03/10: <stanley.cai@intel.com>
29 * 2004/10/28: <yan.yin@intel.com>
30 *
31 * Copyright (C) 2006-2008 Marvell International Ltd.
32 * All Rights Reserved
33 */
34
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/kernel.h>
38 #include <linux/sched.h>
39 #include <linux/errno.h>
40 #include <linux/string.h>
41 #include <linux/interrupt.h>
42 #include <linux/slab.h>
43 #include <linux/mm.h>
44 #include <linux/fb.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/ioport.h>
48 #include <linux/cpufreq.h>
49 #include <linux/platform_device.h>
50 #include <linux/dma-mapping.h>
51 #include <linux/clk.h>
52 #include <linux/err.h>
53 #include <linux/completion.h>
54 #include <linux/mutex.h>
55 #include <linux/kthread.h>
56 #include <linux/freezer.h>
57
58 #include <mach/hardware.h>
59 #include <asm/io.h>
60 #include <asm/irq.h>
61 #include <asm/div64.h>
62 #include <mach/pxa-regs.h>
63 #include <mach/bitfield.h>
64 #include <mach/pxafb.h>
65
66 /*
67 * Complain if VAR is out of range.
68 */
69 #define DEBUG_VAR 1
70
71 #include "pxafb.h"
72
73 /* Bits which should not be set in machine configuration structures */
74 #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
75 LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
76 LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
77
78 #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP | LCCR3_VSP |\
79 LCCR3_PCD | LCCR3_BPP(0xf))
80
81 static int pxafb_activate_var(struct fb_var_screeninfo *var,
82 struct pxafb_info *);
83 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
84 static void setup_base_frame(struct pxafb_info *fbi, int branch);
85 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
86 unsigned long offset, size_t size);
87
88 static unsigned long video_mem_size = 0;
89
90 static inline unsigned long
91 lcd_readl(struct pxafb_info *fbi, unsigned int off)
92 {
93 return __raw_readl(fbi->mmio_base + off);
94 }
95
96 static inline void
97 lcd_writel(struct pxafb_info *fbi, unsigned int off, unsigned long val)
98 {
99 __raw_writel(val, fbi->mmio_base + off);
100 }
101
102 static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
103 {
104 unsigned long flags;
105
106 local_irq_save(flags);
107 /*
108 * We need to handle two requests being made at the same time.
109 * There are two important cases:
110 * 1. When we are changing VT (C_REENABLE) while unblanking
111 * (C_ENABLE) We must perform the unblanking, which will
112 * do our REENABLE for us.
113 * 2. When we are blanking, but immediately unblank before
114 * we have blanked. We do the "REENABLE" thing here as
115 * well, just to be sure.
116 */
117 if (fbi->task_state == C_ENABLE && state == C_REENABLE)
118 state = (u_int) -1;
119 if (fbi->task_state == C_DISABLE && state == C_ENABLE)
120 state = C_REENABLE;
121
122 if (state != (u_int)-1) {
123 fbi->task_state = state;
124 schedule_work(&fbi->task);
125 }
126 local_irq_restore(flags);
127 }
128
129 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
130 {
131 chan &= 0xffff;
132 chan >>= 16 - bf->length;
133 return chan << bf->offset;
134 }
135
136 static int
137 pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
138 u_int trans, struct fb_info *info)
139 {
140 struct pxafb_info *fbi = (struct pxafb_info *)info;
141 u_int val;
142
143 if (regno >= fbi->palette_size)
144 return 1;
145
146 if (fbi->fb.var.grayscale) {
147 fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff);
148 return 0;
149 }
150
151 switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) {
152 case LCCR4_PAL_FOR_0:
153 val = ((red >> 0) & 0xf800);
154 val |= ((green >> 5) & 0x07e0);
155 val |= ((blue >> 11) & 0x001f);
156 fbi->palette_cpu[regno] = val;
157 break;
158 case LCCR4_PAL_FOR_1:
159 val = ((red << 8) & 0x00f80000);
160 val |= ((green >> 0) & 0x0000fc00);
161 val |= ((blue >> 8) & 0x000000f8);
162 ((u32 *)(fbi->palette_cpu))[regno] = val;
163 break;
164 case LCCR4_PAL_FOR_2:
165 val = ((red << 8) & 0x00fc0000);
166 val |= ((green >> 0) & 0x0000fc00);
167 val |= ((blue >> 8) & 0x000000fc);
168 ((u32 *)(fbi->palette_cpu))[regno] = val;
169 break;
170 case LCCR4_PAL_FOR_3:
171 val = ((red << 8) & 0x00ff0000);
172 val |= ((green >> 0) & 0x0000ff00);
173 val |= ((blue >> 8) & 0x000000ff);
174 ((u32 *)(fbi->palette_cpu))[regno] = val;
175 break;
176 }
177
178 return 0;
179 }
180
181 static int
182 pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
183 u_int trans, struct fb_info *info)
184 {
185 struct pxafb_info *fbi = (struct pxafb_info *)info;
186 unsigned int val;
187 int ret = 1;
188
189 /*
190 * If inverse mode was selected, invert all the colours
191 * rather than the register number. The register number
192 * is what you poke into the framebuffer to produce the
193 * colour you requested.
194 */
195 if (fbi->cmap_inverse) {
196 red = 0xffff - red;
197 green = 0xffff - green;
198 blue = 0xffff - blue;
199 }
200
201 /*
202 * If greyscale is true, then we convert the RGB value
203 * to greyscale no matter what visual we are using.
204 */
205 if (fbi->fb.var.grayscale)
206 red = green = blue = (19595 * red + 38470 * green +
207 7471 * blue) >> 16;
208
209 switch (fbi->fb.fix.visual) {
210 case FB_VISUAL_TRUECOLOR:
211 /*
212 * 16-bit True Colour. We encode the RGB value
213 * according to the RGB bitfield information.
214 */
215 if (regno < 16) {
216 u32 *pal = fbi->fb.pseudo_palette;
217
218 val = chan_to_field(red, &fbi->fb.var.red);
219 val |= chan_to_field(green, &fbi->fb.var.green);
220 val |= chan_to_field(blue, &fbi->fb.var.blue);
221
222 pal[regno] = val;
223 ret = 0;
224 }
225 break;
226
227 case FB_VISUAL_STATIC_PSEUDOCOLOR:
228 case FB_VISUAL_PSEUDOCOLOR:
229 ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
230 break;
231 }
232
233 return ret;
234 }
235
236 /* calculate pixel depth, transparency bit included, >=16bpp formats _only_ */
237 static inline int var_to_depth(struct fb_var_screeninfo *var)
238 {
239 return var->red.length + var->green.length +
240 var->blue.length + var->transp.length;
241 }
242
243 /* calculate 4-bit BPP value for LCCR3 and OVLxC1 */
244 static int pxafb_var_to_bpp(struct fb_var_screeninfo *var)
245 {
246 int bpp = -EINVAL;
247
248 switch (var->bits_per_pixel) {
249 case 1: bpp = 0; break;
250 case 2: bpp = 1; break;
251 case 4: bpp = 2; break;
252 case 8: bpp = 3; break;
253 case 16: bpp = 4; break;
254 case 24:
255 switch (var_to_depth(var)) {
256 case 18: bpp = 6; break; /* 18-bits/pixel packed */
257 case 19: bpp = 8; break; /* 19-bits/pixel packed */
258 case 24: bpp = 9; break;
259 }
260 break;
261 case 32:
262 switch (var_to_depth(var)) {
263 case 18: bpp = 5; break; /* 18-bits/pixel unpacked */
264 case 19: bpp = 7; break; /* 19-bits/pixel unpacked */
265 case 25: bpp = 10; break;
266 }
267 break;
268 }
269 return bpp;
270 }
271
272 /*
273 * pxafb_var_to_lccr3():
274 * Convert a bits per pixel value to the correct bit pattern for LCCR3
275 *
276 * NOTE: for PXA27x with overlays support, the LCCR3_PDFOR_x bits have an
277 * implication of the acutal use of transparency bit, which we handle it
278 * here separatedly. See PXA27x Developer's Manual, Section <<7.4.6 Pixel
279 * Formats>> for the valid combination of PDFOR, PAL_FOR for various BPP.
280 *
281 * Transparency for palette pixel formats is not supported at the moment.
282 */
283 static uint32_t pxafb_var_to_lccr3(struct fb_var_screeninfo *var)
284 {
285 int bpp = pxafb_var_to_bpp(var);
286 uint32_t lccr3;
287
288 if (bpp < 0)
289 return 0;
290
291 lccr3 = LCCR3_BPP(bpp);
292
293 switch (var_to_depth(var)) {
294 case 16: lccr3 |= var->transp.length ? LCCR3_PDFOR_3 : 0; break;
295 case 18: lccr3 |= LCCR3_PDFOR_3; break;
296 case 24: lccr3 |= var->transp.length ? LCCR3_PDFOR_2 : LCCR3_PDFOR_3;
297 break;
298 case 19:
299 case 25: lccr3 |= LCCR3_PDFOR_0; break;
300 }
301 return lccr3;
302 }
303
304 #define SET_PIXFMT(v, r, g, b, t) \
305 ({ \
306 (v)->transp.offset = (t) ? (r) + (g) + (b) : 0; \
307 (v)->transp.length = (t) ? (t) : 0; \
308 (v)->blue.length = (b); (v)->blue.offset = 0; \
309 (v)->green.length = (g); (v)->green.offset = (b); \
310 (v)->red.length = (r); (v)->red.offset = (b) + (g); \
311 })
312
313 /* set the RGBT bitfields of fb_var_screeninf according to
314 * var->bits_per_pixel and given depth
315 */
316 static void pxafb_set_pixfmt(struct fb_var_screeninfo *var, int depth)
317 {
318 if (depth == 0)
319 depth = var->bits_per_pixel;
320
321 if (var->bits_per_pixel < 16) {
322 /* indexed pixel formats */
323 var->red.offset = 0; var->red.length = 8;
324 var->green.offset = 0; var->green.length = 8;
325 var->blue.offset = 0; var->blue.length = 8;
326 var->transp.offset = 0; var->transp.length = 8;
327 }
328
329 switch (depth) {
330 case 16: var->transp.length ?
331 SET_PIXFMT(var, 5, 5, 5, 1) : /* RGBT555 */
332 SET_PIXFMT(var, 5, 6, 5, 0); break; /* RGB565 */
333 case 18: SET_PIXFMT(var, 6, 6, 6, 0); break; /* RGB666 */
334 case 19: SET_PIXFMT(var, 6, 6, 6, 1); break; /* RGBT666 */
335 case 24: var->transp.length ?
336 SET_PIXFMT(var, 8, 8, 7, 1) : /* RGBT887 */
337 SET_PIXFMT(var, 8, 8, 8, 0); break; /* RGB888 */
338 case 25: SET_PIXFMT(var, 8, 8, 8, 1); break; /* RGBT888 */
339 }
340 }
341
342 #ifdef CONFIG_CPU_FREQ
343 /*
344 * pxafb_display_dma_period()
345 * Calculate the minimum period (in picoseconds) between two DMA
346 * requests for the LCD controller. If we hit this, it means we're
347 * doing nothing but LCD DMA.
348 */
349 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
350 {
351 /*
352 * Period = pixclock * bits_per_byte * bytes_per_transfer
353 * / memory_bits_per_pixel;
354 */
355 return var->pixclock * 8 * 16 / var->bits_per_pixel;
356 }
357 #endif
358
359 /*
360 * Select the smallest mode that allows the desired resolution to be
361 * displayed. If desired parameters can be rounded up.
362 */
363 static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach,
364 struct fb_var_screeninfo *var)
365 {
366 struct pxafb_mode_info *mode = NULL;
367 struct pxafb_mode_info *modelist = mach->modes;
368 unsigned int best_x = 0xffffffff, best_y = 0xffffffff;
369 unsigned int i;
370
371 for (i = 0; i < mach->num_modes; i++) {
372 if (modelist[i].xres >= var->xres &&
373 modelist[i].yres >= var->yres &&
374 modelist[i].xres < best_x &&
375 modelist[i].yres < best_y &&
376 modelist[i].bpp >= var->bits_per_pixel) {
377 best_x = modelist[i].xres;
378 best_y = modelist[i].yres;
379 mode = &modelist[i];
380 }
381 }
382
383 return mode;
384 }
385
386 static void pxafb_setmode(struct fb_var_screeninfo *var,
387 struct pxafb_mode_info *mode)
388 {
389 var->xres = mode->xres;
390 var->yres = mode->yres;
391 var->bits_per_pixel = mode->bpp;
392 var->pixclock = mode->pixclock;
393 var->hsync_len = mode->hsync_len;
394 var->left_margin = mode->left_margin;
395 var->right_margin = mode->right_margin;
396 var->vsync_len = mode->vsync_len;
397 var->upper_margin = mode->upper_margin;
398 var->lower_margin = mode->lower_margin;
399 var->sync = mode->sync;
400 var->grayscale = mode->cmap_greyscale;
401
402 /* set the initial RGBA bitfields */
403 pxafb_set_pixfmt(var, mode->depth);
404 }
405
406 static int pxafb_adjust_timing(struct pxafb_info *fbi,
407 struct fb_var_screeninfo *var)
408 {
409 int line_length;
410
411 var->xres = max_t(int, var->xres, MIN_XRES);
412 var->yres = max_t(int, var->yres, MIN_YRES);
413
414 if (!(fbi->lccr0 & LCCR0_LCDT)) {
415 clamp_val(var->hsync_len, 1, 64);
416 clamp_val(var->vsync_len, 1, 64);
417 clamp_val(var->left_margin, 1, 255);
418 clamp_val(var->right_margin, 1, 255);
419 clamp_val(var->upper_margin, 1, 255);
420 clamp_val(var->lower_margin, 1, 255);
421 }
422
423 /* make sure each line is aligned on word boundary */
424 line_length = var->xres * var->bits_per_pixel / 8;
425 line_length = ALIGN(line_length, 4);
426 var->xres = line_length * 8 / var->bits_per_pixel;
427
428 /* we don't support xpan, force xres_virtual to be equal to xres */
429 var->xres_virtual = var->xres;
430
431 if (var->accel_flags & FB_ACCELF_TEXT)
432 var->yres_virtual = fbi->fb.fix.smem_len / line_length;
433 else
434 var->yres_virtual = max(var->yres_virtual, var->yres);
435
436 /* check for limits */
437 if (var->xres > MAX_XRES || var->yres > MAX_YRES)
438 return -EINVAL;
439
440 if (var->yres > var->yres_virtual)
441 return -EINVAL;
442
443 return 0;
444 }
445
446 /*
447 * pxafb_check_var():
448 * Get the video params out of 'var'. If a value doesn't fit, round it up,
449 * if it's too big, return -EINVAL.
450 *
451 * Round up in the following order: bits_per_pixel, xres,
452 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
453 * bitfields, horizontal timing, vertical timing.
454 */
455 static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
456 {
457 struct pxafb_info *fbi = (struct pxafb_info *)info;
458 struct pxafb_mach_info *inf = fbi->dev->platform_data;
459 int err;
460
461 if (inf->fixed_modes) {
462 struct pxafb_mode_info *mode;
463
464 mode = pxafb_getmode(inf, var);
465 if (!mode)
466 return -EINVAL;
467 pxafb_setmode(var, mode);
468 }
469
470 /* do a test conversion to BPP fields to check the color formats */
471 err = pxafb_var_to_bpp(var);
472 if (err < 0)
473 return err;
474
475 pxafb_set_pixfmt(var, var_to_depth(var));
476
477 err = pxafb_adjust_timing(fbi, var);
478 if (err)
479 return err;
480
481 #ifdef CONFIG_CPU_FREQ
482 pr_debug("pxafb: dma period = %d ps\n",
483 pxafb_display_dma_period(var));
484 #endif
485
486 return 0;
487 }
488
489 /*
490 * pxafb_set_par():
491 * Set the user defined part of the display for the specified console
492 */
493 static int pxafb_set_par(struct fb_info *info)
494 {
495 struct pxafb_info *fbi = (struct pxafb_info *)info;
496 struct fb_var_screeninfo *var = &info->var;
497
498 if (var->bits_per_pixel >= 16)
499 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
500 else if (!fbi->cmap_static)
501 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
502 else {
503 /*
504 * Some people have weird ideas about wanting static
505 * pseudocolor maps. I suspect their user space
506 * applications are broken.
507 */
508 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
509 }
510
511 fbi->fb.fix.line_length = var->xres_virtual *
512 var->bits_per_pixel / 8;
513 if (var->bits_per_pixel >= 16)
514 fbi->palette_size = 0;
515 else
516 fbi->palette_size = var->bits_per_pixel == 1 ?
517 4 : 1 << var->bits_per_pixel;
518
519 fbi->palette_cpu = (u16 *)&fbi->dma_buff->palette[0];
520
521 if (fbi->fb.var.bits_per_pixel >= 16)
522 fb_dealloc_cmap(&fbi->fb.cmap);
523 else
524 fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0);
525
526 pxafb_activate_var(var, fbi);
527
528 return 0;
529 }
530
531 static int pxafb_pan_display(struct fb_var_screeninfo *var,
532 struct fb_info *info)
533 {
534 struct pxafb_info *fbi = (struct pxafb_info *)info;
535 int dma = DMA_MAX + DMA_BASE;
536
537 if (fbi->state != C_ENABLE)
538 return 0;
539
540 setup_base_frame(fbi, 1);
541
542 if (fbi->lccr0 & LCCR0_SDS)
543 lcd_writel(fbi, FBR1, fbi->fdadr[dma + 1] | 0x1);
544
545 lcd_writel(fbi, FBR0, fbi->fdadr[dma] | 0x1);
546 return 0;
547 }
548
549 /*
550 * pxafb_blank():
551 * Blank the display by setting all palette values to zero. Note, the
552 * 16 bpp mode does not really use the palette, so this will not
553 * blank the display in all modes.
554 */
555 static int pxafb_blank(int blank, struct fb_info *info)
556 {
557 struct pxafb_info *fbi = (struct pxafb_info *)info;
558 int i;
559
560 switch (blank) {
561 case FB_BLANK_POWERDOWN:
562 case FB_BLANK_VSYNC_SUSPEND:
563 case FB_BLANK_HSYNC_SUSPEND:
564 case FB_BLANK_NORMAL:
565 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
566 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
567 for (i = 0; i < fbi->palette_size; i++)
568 pxafb_setpalettereg(i, 0, 0, 0, 0, info);
569
570 pxafb_schedule_work(fbi, C_DISABLE);
571 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
572 break;
573
574 case FB_BLANK_UNBLANK:
575 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
576 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
577 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
578 fb_set_cmap(&fbi->fb.cmap, info);
579 pxafb_schedule_work(fbi, C_ENABLE);
580 }
581 return 0;
582 }
583
584 static struct fb_ops pxafb_ops = {
585 .owner = THIS_MODULE,
586 .fb_check_var = pxafb_check_var,
587 .fb_set_par = pxafb_set_par,
588 .fb_pan_display = pxafb_pan_display,
589 .fb_setcolreg = pxafb_setcolreg,
590 .fb_fillrect = cfb_fillrect,
591 .fb_copyarea = cfb_copyarea,
592 .fb_imageblit = cfb_imageblit,
593 .fb_blank = pxafb_blank,
594 };
595
596 #ifdef CONFIG_FB_PXA_OVERLAY
597 static void overlay1fb_setup(struct pxafb_layer *ofb)
598 {
599 int size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
600 unsigned long start = ofb->video_mem_phys;
601 setup_frame_dma(ofb->fbi, DMA_OV1, PAL_NONE, start, size);
602 }
603
604 /* Depending on the enable status of overlay1/2, the DMA should be
605 * updated from FDADRx (when disabled) or FBRx (when enabled).
606 */
607 static void overlay1fb_enable(struct pxafb_layer *ofb)
608 {
609 int enabled = lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN;
610 uint32_t fdadr1 = ofb->fbi->fdadr[DMA_OV1] | (enabled ? 0x1 : 0);
611
612 lcd_writel(ofb->fbi, enabled ? FBR1 : FDADR1, fdadr1);
613 lcd_writel(ofb->fbi, OVL1C2, ofb->control[1]);
614 lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] | OVLxC1_OEN);
615 }
616
617 static void overlay1fb_disable(struct pxafb_layer *ofb)
618 {
619 uint32_t lccr5 = lcd_readl(ofb->fbi, LCCR5);
620
621 lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] & ~OVLxC1_OEN);
622
623 lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(1));
624 lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(1));
625 lcd_writel(ofb->fbi, FBR1, ofb->fbi->fdadr[DMA_OV1] | 0x3);
626
627 if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
628 pr_warning("%s: timeout disabling overlay1\n", __func__);
629
630 lcd_writel(ofb->fbi, LCCR5, lccr5);
631 }
632
633 static void overlay2fb_setup(struct pxafb_layer *ofb)
634 {
635 int size, div = 1, pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
636 unsigned long start[3] = { ofb->video_mem_phys, 0, 0 };
637
638 if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED) {
639 size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
640 setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size);
641 } else {
642 size = ofb->fb.var.xres_virtual * ofb->fb.var.yres_virtual;
643 switch (pfor) {
644 case OVERLAY_FORMAT_YUV444_PLANAR: div = 1; break;
645 case OVERLAY_FORMAT_YUV422_PLANAR: div = 2; break;
646 case OVERLAY_FORMAT_YUV420_PLANAR: div = 4; break;
647 }
648 start[1] = start[0] + size;
649 start[2] = start[1] + size / div;
650 setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size);
651 setup_frame_dma(ofb->fbi, DMA_OV2_Cb, -1, start[1], size / div);
652 setup_frame_dma(ofb->fbi, DMA_OV2_Cr, -1, start[2], size / div);
653 }
654 }
655
656 static void overlay2fb_enable(struct pxafb_layer *ofb)
657 {
658 int pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
659 int enabled = lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN;
660 uint32_t fdadr2 = ofb->fbi->fdadr[DMA_OV2_Y] | (enabled ? 0x1 : 0);
661 uint32_t fdadr3 = ofb->fbi->fdadr[DMA_OV2_Cb] | (enabled ? 0x1 : 0);
662 uint32_t fdadr4 = ofb->fbi->fdadr[DMA_OV2_Cr] | (enabled ? 0x1 : 0);
663
664 if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED)
665 lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
666 else {
667 lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
668 lcd_writel(ofb->fbi, enabled ? FBR3 : FDADR3, fdadr3);
669 lcd_writel(ofb->fbi, enabled ? FBR4 : FDADR4, fdadr4);
670 }
671 lcd_writel(ofb->fbi, OVL2C2, ofb->control[1]);
672 lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] | OVLxC1_OEN);
673 }
674
675 static void overlay2fb_disable(struct pxafb_layer *ofb)
676 {
677 uint32_t lccr5 = lcd_readl(ofb->fbi, LCCR5);
678
679 lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] & ~OVLxC1_OEN);
680
681 lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(2));
682 lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(2));
683 lcd_writel(ofb->fbi, FBR2, ofb->fbi->fdadr[DMA_OV2_Y] | 0x3);
684 lcd_writel(ofb->fbi, FBR3, ofb->fbi->fdadr[DMA_OV2_Cb] | 0x3);
685 lcd_writel(ofb->fbi, FBR4, ofb->fbi->fdadr[DMA_OV2_Cr] | 0x3);
686
687 if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
688 pr_warning("%s: timeout disabling overlay2\n", __func__);
689 }
690
691 static struct pxafb_layer_ops ofb_ops[] = {
692 [0] = {
693 .enable = overlay1fb_enable,
694 .disable = overlay1fb_disable,
695 .setup = overlay1fb_setup,
696 },
697 [1] = {
698 .enable = overlay2fb_enable,
699 .disable = overlay2fb_disable,
700 .setup = overlay2fb_setup,
701 },
702 };
703
704 static int overlayfb_open(struct fb_info *info, int user)
705 {
706 struct pxafb_layer *ofb = (struct pxafb_layer *)info;
707
708 /* no support for framebuffer console on overlay */
709 if (user == 0)
710 return -ENODEV;
711
712 /* allow only one user at a time */
713 if (atomic_inc_and_test(&ofb->usage))
714 return -EBUSY;
715
716 /* unblank the base framebuffer */
717 fb_blank(&ofb->fbi->fb, FB_BLANK_UNBLANK);
718 return 0;
719 }
720
721 static int overlayfb_release(struct fb_info *info, int user)
722 {
723 struct pxafb_layer *ofb = (struct pxafb_layer*) info;
724
725 atomic_dec(&ofb->usage);
726 ofb->ops->disable(ofb);
727
728 free_pages_exact(ofb->video_mem, ofb->video_mem_size);
729 ofb->video_mem = NULL;
730 ofb->video_mem_size = 0;
731 return 0;
732 }
733
734 static int overlayfb_check_var(struct fb_var_screeninfo *var,
735 struct fb_info *info)
736 {
737 struct pxafb_layer *ofb = (struct pxafb_layer *)info;
738 struct fb_var_screeninfo *base_var = &ofb->fbi->fb.var;
739 int xpos, ypos, pfor, bpp;
740
741 xpos = NONSTD_TO_XPOS(var->nonstd);
742 ypos = NONSTD_TO_XPOS(var->nonstd);
743 pfor = NONSTD_TO_PFOR(var->nonstd);
744
745 bpp = pxafb_var_to_bpp(var);
746 if (bpp < 0)
747 return -EINVAL;
748
749 /* no support for YUV format on overlay1 */
750 if (ofb->id == OVERLAY1 && pfor != 0)
751 return -EINVAL;
752
753 /* for YUV packed formats, bpp = 'minimum bpp of YUV components' */
754 switch (pfor) {
755 case OVERLAY_FORMAT_RGB:
756 bpp = pxafb_var_to_bpp(var);
757 if (bpp < 0)
758 return -EINVAL;
759
760 pxafb_set_pixfmt(var, var_to_depth(var));
761 break;
762 case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
763 case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 8; break;
764 case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 4; break;
765 case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 2; break;
766 default:
767 return -EINVAL;
768 }
769
770 /* each line must start at a 32-bit word boundary */
771 if ((xpos * bpp) % 32)
772 return -EINVAL;
773
774 /* xres must align on 32-bit word boundary */
775 var->xres = roundup(var->xres * bpp, 32) / bpp;
776
777 if ((xpos + var->xres > base_var->xres) ||
778 (ypos + var->yres > base_var->yres))
779 return -EINVAL;
780
781 var->xres_virtual = var->xres;
782 var->yres_virtual = max(var->yres, var->yres_virtual);
783 return 0;
784 }
785
786 static int overlayfb_map_video_memory(struct pxafb_layer *ofb)
787 {
788 struct fb_var_screeninfo *var = &ofb->fb.var;
789 int pfor = NONSTD_TO_PFOR(var->nonstd);
790 int size, bpp = 0;
791
792 switch (pfor) {
793 case OVERLAY_FORMAT_RGB: bpp = var->bits_per_pixel; break;
794 case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
795 case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 24; break;
796 case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 16; break;
797 case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 12; break;
798 }
799
800 ofb->fb.fix.line_length = var->xres_virtual * bpp / 8;
801
802 size = PAGE_ALIGN(ofb->fb.fix.line_length * var->yres_virtual);
803
804 /* don't re-allocate if the original video memory is enough */
805 if (ofb->video_mem) {
806 if (ofb->video_mem_size >= size)
807 return 0;
808
809 free_pages_exact(ofb->video_mem, ofb->video_mem_size);
810 }
811
812 ofb->video_mem = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
813 if (ofb->video_mem == NULL)
814 return -ENOMEM;
815
816 ofb->video_mem_phys = virt_to_phys(ofb->video_mem);
817 ofb->video_mem_size = size;
818
819 ofb->fb.fix.smem_start = ofb->video_mem_phys;
820 ofb->fb.fix.smem_len = ofb->fb.fix.line_length * var->yres_virtual;
821 ofb->fb.screen_base = ofb->video_mem;
822 return 0;
823 }
824
825 static int overlayfb_set_par(struct fb_info *info)
826 {
827 struct pxafb_layer *ofb = (struct pxafb_layer *)info;
828 struct fb_var_screeninfo *var = &info->var;
829 int xpos, ypos, pfor, bpp, ret;
830
831 ret = overlayfb_map_video_memory(ofb);
832 if (ret)
833 return ret;
834
835 bpp = pxafb_var_to_bpp(var);
836 xpos = NONSTD_TO_XPOS(var->nonstd);
837 ypos = NONSTD_TO_XPOS(var->nonstd);
838 pfor = NONSTD_TO_PFOR(var->nonstd);
839
840 ofb->control[0] = OVLxC1_PPL(var->xres) | OVLxC1_LPO(var->yres) |
841 OVLxC1_BPP(bpp);
842 ofb->control[1] = OVLxC2_XPOS(xpos) | OVLxC2_YPOS(ypos);
843
844 if (ofb->id == OVERLAY2)
845 ofb->control[1] |= OVL2C2_PFOR(pfor);
846
847 ofb->ops->setup(ofb);
848 ofb->ops->enable(ofb);
849 return 0;
850 }
851
852 static struct fb_ops overlay_fb_ops = {
853 .owner = THIS_MODULE,
854 .fb_open = overlayfb_open,
855 .fb_release = overlayfb_release,
856 .fb_check_var = overlayfb_check_var,
857 .fb_set_par = overlayfb_set_par,
858 };
859
860 static void __devinit init_pxafb_overlay(struct pxafb_info *fbi,
861 struct pxafb_layer *ofb, int id)
862 {
863 sprintf(ofb->fb.fix.id, "overlay%d", id + 1);
864
865 ofb->fb.fix.type = FB_TYPE_PACKED_PIXELS;
866 ofb->fb.fix.xpanstep = 0;
867 ofb->fb.fix.ypanstep = 1;
868
869 ofb->fb.var.activate = FB_ACTIVATE_NOW;
870 ofb->fb.var.height = -1;
871 ofb->fb.var.width = -1;
872 ofb->fb.var.vmode = FB_VMODE_NONINTERLACED;
873
874 ofb->fb.fbops = &overlay_fb_ops;
875 ofb->fb.flags = FBINFO_FLAG_DEFAULT;
876 ofb->fb.node = -1;
877 ofb->fb.pseudo_palette = NULL;
878
879 ofb->id = id;
880 ofb->ops = &ofb_ops[id];
881 atomic_set(&ofb->usage, 0);
882 ofb->fbi = fbi;
883 init_completion(&ofb->branch_done);
884 }
885
886 static int __devinit pxafb_overlay_init(struct pxafb_info *fbi)
887 {
888 int i, ret;
889
890 for (i = 0; i < 2; i++) {
891 init_pxafb_overlay(fbi, &fbi->overlay[i], i);
892 ret = register_framebuffer(&fbi->overlay[i].fb);
893 if (ret) {
894 dev_err(fbi->dev, "failed to register overlay %d\n", i);
895 return ret;
896 }
897 }
898
899 /* mask all IU/BS/EOF/SOF interrupts */
900 lcd_writel(fbi, LCCR5, ~0);
901
902 /* place overlay(s) on top of base */
903 fbi->lccr0 |= LCCR0_OUC;
904 pr_info("PXA Overlay driver loaded successfully!\n");
905 return 0;
906 }
907
908 static void __devexit pxafb_overlay_exit(struct pxafb_info *fbi)
909 {
910 int i;
911
912 for (i = 0; i < 2; i++)
913 unregister_framebuffer(&fbi->overlay[i].fb);
914 }
915 #else
916 static inline void pxafb_overlay_init(struct pxafb_info *fbi) {}
917 static inline void pxafb_overlay_exit(struct pxafb_info *fbi) {}
918 #endif /* CONFIG_FB_PXA_OVERLAY */
919
920 /*
921 * Calculate the PCD value from the clock rate (in picoseconds).
922 * We take account of the PPCR clock setting.
923 * From PXA Developer's Manual:
924 *
925 * PixelClock = LCLK
926 * -------------
927 * 2 ( PCD + 1 )
928 *
929 * PCD = LCLK
930 * ------------- - 1
931 * 2(PixelClock)
932 *
933 * Where:
934 * LCLK = LCD/Memory Clock
935 * PCD = LCCR3[7:0]
936 *
937 * PixelClock here is in Hz while the pixclock argument given is the
938 * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
939 *
940 * The function get_lclk_frequency_10khz returns LCLK in units of
941 * 10khz. Calling the result of this function lclk gives us the
942 * following
943 *
944 * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
945 * -------------------------------------- - 1
946 * 2
947 *
948 * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
949 */
950 static inline unsigned int get_pcd(struct pxafb_info *fbi,
951 unsigned int pixclock)
952 {
953 unsigned long long pcd;
954
955 /* FIXME: Need to take into account Double Pixel Clock mode
956 * (DPC) bit? or perhaps set it based on the various clock
957 * speeds */
958 pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000);
959 pcd *= pixclock;
960 do_div(pcd, 100000000 * 2);
961 /* no need for this, since we should subtract 1 anyway. they cancel */
962 /* pcd += 1; */ /* make up for integer math truncations */
963 return (unsigned int)pcd;
964 }
965
966 /*
967 * Some touchscreens need hsync information from the video driver to
968 * function correctly. We export it here. Note that 'hsync_time' and
969 * the value returned from pxafb_get_hsync_time() is the *reciprocal*
970 * of the hsync period in seconds.
971 */
972 static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd)
973 {
974 unsigned long htime;
975
976 if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) {
977 fbi->hsync_time = 0;
978 return;
979 }
980
981 htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len);
982
983 fbi->hsync_time = htime;
984 }
985
986 unsigned long pxafb_get_hsync_time(struct device *dev)
987 {
988 struct pxafb_info *fbi = dev_get_drvdata(dev);
989
990 /* If display is blanked/suspended, hsync isn't active */
991 if (!fbi || (fbi->state != C_ENABLE))
992 return 0;
993
994 return fbi->hsync_time;
995 }
996 EXPORT_SYMBOL(pxafb_get_hsync_time);
997
998 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
999 unsigned long start, size_t size)
1000 {
1001 struct pxafb_dma_descriptor *dma_desc, *pal_desc;
1002 unsigned int dma_desc_off, pal_desc_off;
1003
1004 if (dma < 0 || dma >= DMA_MAX * 2)
1005 return -EINVAL;
1006
1007 dma_desc = &fbi->dma_buff->dma_desc[dma];
1008 dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[dma]);
1009
1010 dma_desc->fsadr = start;
1011 dma_desc->fidr = 0;
1012 dma_desc->ldcmd = size;
1013
1014 if (pal < 0 || pal >= PAL_MAX * 2) {
1015 dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1016 fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
1017 } else {
1018 pal_desc = &fbi->dma_buff->pal_desc[pal];
1019 pal_desc_off = offsetof(struct pxafb_dma_buff, pal_desc[pal]);
1020
1021 pal_desc->fsadr = fbi->dma_buff_phys + pal * PALETTE_SIZE;
1022 pal_desc->fidr = 0;
1023
1024 if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
1025 pal_desc->ldcmd = fbi->palette_size * sizeof(u16);
1026 else
1027 pal_desc->ldcmd = fbi->palette_size * sizeof(u32);
1028
1029 pal_desc->ldcmd |= LDCMD_PAL;
1030
1031 /* flip back and forth between palette and frame buffer */
1032 pal_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1033 dma_desc->fdadr = fbi->dma_buff_phys + pal_desc_off;
1034 fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
1035 }
1036
1037 return 0;
1038 }
1039
1040 static void setup_base_frame(struct pxafb_info *fbi, int branch)
1041 {
1042 struct fb_var_screeninfo *var = &fbi->fb.var;
1043 struct fb_fix_screeninfo *fix = &fbi->fb.fix;
1044 int nbytes, dma, pal, bpp = var->bits_per_pixel;
1045 unsigned long offset;
1046
1047 dma = DMA_BASE + (branch ? DMA_MAX : 0);
1048 pal = (bpp >= 16) ? PAL_NONE : PAL_BASE + (branch ? PAL_MAX : 0);
1049
1050 nbytes = fix->line_length * var->yres;
1051 offset = fix->line_length * var->yoffset + fbi->video_mem_phys;
1052
1053 if (fbi->lccr0 & LCCR0_SDS) {
1054 nbytes = nbytes / 2;
1055 setup_frame_dma(fbi, dma + 1, PAL_NONE, offset + nbytes, nbytes);
1056 }
1057
1058 setup_frame_dma(fbi, dma, pal, offset, nbytes);
1059 }
1060
1061 #ifdef CONFIG_FB_PXA_SMARTPANEL
1062 static int setup_smart_dma(struct pxafb_info *fbi)
1063 {
1064 struct pxafb_dma_descriptor *dma_desc;
1065 unsigned long dma_desc_off, cmd_buff_off;
1066
1067 dma_desc = &fbi->dma_buff->dma_desc[DMA_CMD];
1068 dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[DMA_CMD]);
1069 cmd_buff_off = offsetof(struct pxafb_dma_buff, cmd_buff);
1070
1071 dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1072 dma_desc->fsadr = fbi->dma_buff_phys + cmd_buff_off;
1073 dma_desc->fidr = 0;
1074 dma_desc->ldcmd = fbi->n_smart_cmds * sizeof(uint16_t);
1075
1076 fbi->fdadr[DMA_CMD] = dma_desc->fdadr;
1077 return 0;
1078 }
1079
1080 int pxafb_smart_flush(struct fb_info *info)
1081 {
1082 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
1083 uint32_t prsr;
1084 int ret = 0;
1085
1086 /* disable controller until all registers are set up */
1087 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1088
1089 /* 1. make it an even number of commands to align on 32-bit boundary
1090 * 2. add the interrupt command to the end of the chain so we can
1091 * keep track of the end of the transfer
1092 */
1093
1094 while (fbi->n_smart_cmds & 1)
1095 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_NOOP;
1096
1097 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_INTERRUPT;
1098 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_WAIT_FOR_VSYNC;
1099 setup_smart_dma(fbi);
1100
1101 /* continue to execute next command */
1102 prsr = lcd_readl(fbi, PRSR) | PRSR_ST_OK | PRSR_CON_NT;
1103 lcd_writel(fbi, PRSR, prsr);
1104
1105 /* stop the processor in case it executed "wait for sync" cmd */
1106 lcd_writel(fbi, CMDCR, 0x0001);
1107
1108 /* don't send interrupts for fifo underruns on channel 6 */
1109 lcd_writel(fbi, LCCR5, LCCR5_IUM(6));
1110
1111 lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1112 lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1113 lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1114 lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1115 lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1116 lcd_writel(fbi, FDADR6, fbi->fdadr[6]);
1117
1118 /* begin sending */
1119 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1120
1121 if (wait_for_completion_timeout(&fbi->command_done, HZ/2) == 0) {
1122 pr_warning("%s: timeout waiting for command done\n",
1123 __func__);
1124 ret = -ETIMEDOUT;
1125 }
1126
1127 /* quick disable */
1128 prsr = lcd_readl(fbi, PRSR) & ~(PRSR_ST_OK | PRSR_CON_NT);
1129 lcd_writel(fbi, PRSR, prsr);
1130 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1131 lcd_writel(fbi, FDADR6, 0);
1132 fbi->n_smart_cmds = 0;
1133 return ret;
1134 }
1135
1136 int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
1137 {
1138 int i;
1139 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
1140
1141 for (i = 0; i < n_cmds; i++, cmds++) {
1142 /* if it is a software delay, flush and delay */
1143 if ((*cmds & 0xff00) == SMART_CMD_DELAY) {
1144 pxafb_smart_flush(info);
1145 mdelay(*cmds & 0xff);
1146 continue;
1147 }
1148
1149 /* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */
1150 if (fbi->n_smart_cmds == CMD_BUFF_SIZE - 8)
1151 pxafb_smart_flush(info);
1152
1153 fbi->smart_cmds[fbi->n_smart_cmds++] = *cmds;
1154 }
1155
1156 return 0;
1157 }
1158
1159 static unsigned int __smart_timing(unsigned time_ns, unsigned long lcd_clk)
1160 {
1161 unsigned int t = (time_ns * (lcd_clk / 1000000) / 1000);
1162 return (t == 0) ? 1 : t;
1163 }
1164
1165 static void setup_smart_timing(struct pxafb_info *fbi,
1166 struct fb_var_screeninfo *var)
1167 {
1168 struct pxafb_mach_info *inf = fbi->dev->platform_data;
1169 struct pxafb_mode_info *mode = &inf->modes[0];
1170 unsigned long lclk = clk_get_rate(fbi->clk);
1171 unsigned t1, t2, t3, t4;
1172
1173 t1 = max(mode->a0csrd_set_hld, mode->a0cswr_set_hld);
1174 t2 = max(mode->rd_pulse_width, mode->wr_pulse_width);
1175 t3 = mode->op_hold_time;
1176 t4 = mode->cmd_inh_time;
1177
1178 fbi->reg_lccr1 =
1179 LCCR1_DisWdth(var->xres) |
1180 LCCR1_BegLnDel(__smart_timing(t1, lclk)) |
1181 LCCR1_EndLnDel(__smart_timing(t2, lclk)) |
1182 LCCR1_HorSnchWdth(__smart_timing(t3, lclk));
1183
1184 fbi->reg_lccr2 = LCCR2_DisHght(var->yres);
1185 fbi->reg_lccr3 = fbi->lccr3 | LCCR3_PixClkDiv(__smart_timing(t4, lclk));
1186 fbi->reg_lccr3 |= (var->sync & FB_SYNC_HOR_HIGH_ACT) ? LCCR3_HSP : 0;
1187 fbi->reg_lccr3 |= (var->sync & FB_SYNC_VERT_HIGH_ACT) ? LCCR3_VSP : 0;
1188
1189 /* FIXME: make this configurable */
1190 fbi->reg_cmdcr = 1;
1191 }
1192
1193 static int pxafb_smart_thread(void *arg)
1194 {
1195 struct pxafb_info *fbi = arg;
1196 struct pxafb_mach_info *inf = fbi->dev->platform_data;
1197
1198 if (!fbi || !inf->smart_update) {
1199 pr_err("%s: not properly initialized, thread terminated\n",
1200 __func__);
1201 return -EINVAL;
1202 }
1203
1204 pr_debug("%s(): task starting\n", __func__);
1205
1206 set_freezable();
1207 while (!kthread_should_stop()) {
1208
1209 if (try_to_freeze())
1210 continue;
1211
1212 mutex_lock(&fbi->ctrlr_lock);
1213
1214 if (fbi->state == C_ENABLE) {
1215 inf->smart_update(&fbi->fb);
1216 complete(&fbi->refresh_done);
1217 }
1218
1219 mutex_unlock(&fbi->ctrlr_lock);
1220
1221 set_current_state(TASK_INTERRUPTIBLE);
1222 schedule_timeout(30 * HZ / 1000);
1223 }
1224
1225 pr_debug("%s(): task ending\n", __func__);
1226 return 0;
1227 }
1228
1229 static int pxafb_smart_init(struct pxafb_info *fbi)
1230 {
1231 if (!(fbi->lccr0 & LCCR0_LCDT))
1232 return 0;
1233
1234 fbi->smart_cmds = (uint16_t *) fbi->dma_buff->cmd_buff;
1235 fbi->n_smart_cmds = 0;
1236
1237 init_completion(&fbi->command_done);
1238 init_completion(&fbi->refresh_done);
1239
1240 fbi->smart_thread = kthread_run(pxafb_smart_thread, fbi,
1241 "lcd_refresh");
1242 if (IS_ERR(fbi->smart_thread)) {
1243 pr_err("%s: unable to create kernel thread\n", __func__);
1244 return PTR_ERR(fbi->smart_thread);
1245 }
1246
1247 return 0;
1248 }
1249 #else
1250 int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
1251 {
1252 return 0;
1253 }
1254
1255 int pxafb_smart_flush(struct fb_info *info)
1256 {
1257 return 0;
1258 }
1259
1260 static inline int pxafb_smart_init(struct pxafb_info *fbi) { return 0; }
1261 #endif /* CONFIG_FB_PXA_SMARTPANEL */
1262
1263 static void setup_parallel_timing(struct pxafb_info *fbi,
1264 struct fb_var_screeninfo *var)
1265 {
1266 unsigned int lines_per_panel, pcd = get_pcd(fbi, var->pixclock);
1267
1268 fbi->reg_lccr1 =
1269 LCCR1_DisWdth(var->xres) +
1270 LCCR1_HorSnchWdth(var->hsync_len) +
1271 LCCR1_BegLnDel(var->left_margin) +
1272 LCCR1_EndLnDel(var->right_margin);
1273
1274 /*
1275 * If we have a dual scan LCD, we need to halve
1276 * the YRES parameter.
1277 */
1278 lines_per_panel = var->yres;
1279 if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual)
1280 lines_per_panel /= 2;
1281
1282 fbi->reg_lccr2 =
1283 LCCR2_DisHght(lines_per_panel) +
1284 LCCR2_VrtSnchWdth(var->vsync_len) +
1285 LCCR2_BegFrmDel(var->upper_margin) +
1286 LCCR2_EndFrmDel(var->lower_margin);
1287
1288 fbi->reg_lccr3 = fbi->lccr3 |
1289 (var->sync & FB_SYNC_HOR_HIGH_ACT ?
1290 LCCR3_HorSnchH : LCCR3_HorSnchL) |
1291 (var->sync & FB_SYNC_VERT_HIGH_ACT ?
1292 LCCR3_VrtSnchH : LCCR3_VrtSnchL);
1293
1294 if (pcd) {
1295 fbi->reg_lccr3 |= LCCR3_PixClkDiv(pcd);
1296 set_hsync_time(fbi, pcd);
1297 }
1298 }
1299
1300 /*
1301 * pxafb_activate_var():
1302 * Configures LCD Controller based on entries in var parameter.
1303 * Settings are only written to the controller if changes were made.
1304 */
1305 static int pxafb_activate_var(struct fb_var_screeninfo *var,
1306 struct pxafb_info *fbi)
1307 {
1308 u_long flags;
1309
1310 /* Update shadow copy atomically */
1311 local_irq_save(flags);
1312
1313 #ifdef CONFIG_FB_PXA_SMARTPANEL
1314 if (fbi->lccr0 & LCCR0_LCDT)
1315 setup_smart_timing(fbi, var);
1316 else
1317 #endif
1318 setup_parallel_timing(fbi, var);
1319
1320 setup_base_frame(fbi, 0);
1321
1322 fbi->reg_lccr0 = fbi->lccr0 |
1323 (LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM |
1324 LCCR0_QDM | LCCR0_BM | LCCR0_OUM);
1325
1326 fbi->reg_lccr3 |= pxafb_var_to_lccr3(var);
1327
1328 fbi->reg_lccr4 = lcd_readl(fbi, LCCR4) & ~LCCR4_PAL_FOR_MASK;
1329 fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK);
1330 local_irq_restore(flags);
1331
1332 /*
1333 * Only update the registers if the controller is enabled
1334 * and something has changed.
1335 */
1336 if ((lcd_readl(fbi, LCCR0) != fbi->reg_lccr0) ||
1337 (lcd_readl(fbi, LCCR1) != fbi->reg_lccr1) ||
1338 (lcd_readl(fbi, LCCR2) != fbi->reg_lccr2) ||
1339 (lcd_readl(fbi, LCCR3) != fbi->reg_lccr3) ||
1340 (lcd_readl(fbi, LCCR4) != fbi->reg_lccr4) ||
1341 (lcd_readl(fbi, FDADR0) != fbi->fdadr[0]) ||
1342 (lcd_readl(fbi, FDADR1) != fbi->fdadr[1]))
1343 pxafb_schedule_work(fbi, C_REENABLE);
1344
1345 return 0;
1346 }
1347
1348 /*
1349 * NOTE! The following functions are purely helpers for set_ctrlr_state.
1350 * Do not call them directly; set_ctrlr_state does the correct serialisation
1351 * to ensure that things happen in the right way 100% of time time.
1352 * -- rmk
1353 */
1354 static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
1355 {
1356 pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
1357
1358 if (fbi->backlight_power)
1359 fbi->backlight_power(on);
1360 }
1361
1362 static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
1363 {
1364 pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
1365
1366 if (fbi->lcd_power)
1367 fbi->lcd_power(on, &fbi->fb.var);
1368 }
1369
1370 static void pxafb_enable_controller(struct pxafb_info *fbi)
1371 {
1372 pr_debug("pxafb: Enabling LCD controller\n");
1373 pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr[0]);
1374 pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr[1]);
1375 pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
1376 pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
1377 pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
1378 pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
1379
1380 /* enable LCD controller clock */
1381 clk_enable(fbi->clk);
1382
1383 if (fbi->lccr0 & LCCR0_LCDT)
1384 return;
1385
1386 /* Sequence from 11.7.10 */
1387 lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1388 lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1389 lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1390 lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1391 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1392
1393 lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1394 lcd_writel(fbi, FDADR1, fbi->fdadr[1]);
1395 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1396 }
1397
1398 static void pxafb_disable_controller(struct pxafb_info *fbi)
1399 {
1400 uint32_t lccr0;
1401
1402 #ifdef CONFIG_FB_PXA_SMARTPANEL
1403 if (fbi->lccr0 & LCCR0_LCDT) {
1404 wait_for_completion_timeout(&fbi->refresh_done,
1405 200 * HZ / 1000);
1406 return;
1407 }
1408 #endif
1409
1410 /* Clear LCD Status Register */
1411 lcd_writel(fbi, LCSR, 0xffffffff);
1412
1413 lccr0 = lcd_readl(fbi, LCCR0) & ~LCCR0_LDM;
1414 lcd_writel(fbi, LCCR0, lccr0);
1415 lcd_writel(fbi, LCCR0, lccr0 | LCCR0_DIS);
1416
1417 wait_for_completion_timeout(&fbi->disable_done, 200 * HZ / 1000);
1418
1419 /* disable LCD controller clock */
1420 clk_disable(fbi->clk);
1421 }
1422
1423 /*
1424 * pxafb_handle_irq: Handle 'LCD DONE' interrupts.
1425 */
1426 static irqreturn_t pxafb_handle_irq(int irq, void *dev_id)
1427 {
1428 struct pxafb_info *fbi = dev_id;
1429 unsigned int lccr0, lcsr, lcsr1;
1430
1431 lcsr = lcd_readl(fbi, LCSR);
1432 if (lcsr & LCSR_LDD) {
1433 lccr0 = lcd_readl(fbi, LCCR0);
1434 lcd_writel(fbi, LCCR0, lccr0 | LCCR0_LDM);
1435 complete(&fbi->disable_done);
1436 }
1437
1438 #ifdef CONFIG_FB_PXA_SMARTPANEL
1439 if (lcsr & LCSR_CMD_INT)
1440 complete(&fbi->command_done);
1441 #endif
1442 lcd_writel(fbi, LCSR, lcsr);
1443
1444 #ifdef CONFIG_FB_PXA_OVERLAY
1445 lcsr1 = lcd_readl(fbi, LCSR1);
1446 if (lcsr1 & LCSR1_BS(1))
1447 complete(&fbi->overlay[0].branch_done);
1448
1449 if (lcsr1 & LCSR1_BS(2))
1450 complete(&fbi->overlay[1].branch_done);
1451
1452 lcd_writel(fbi, LCSR1, lcsr1);
1453 #endif
1454 return IRQ_HANDLED;
1455 }
1456
1457 /*
1458 * This function must be called from task context only, since it will
1459 * sleep when disabling the LCD controller, or if we get two contending
1460 * processes trying to alter state.
1461 */
1462 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
1463 {
1464 u_int old_state;
1465
1466 mutex_lock(&fbi->ctrlr_lock);
1467
1468 old_state = fbi->state;
1469
1470 /*
1471 * Hack around fbcon initialisation.
1472 */
1473 if (old_state == C_STARTUP && state == C_REENABLE)
1474 state = C_ENABLE;
1475
1476 switch (state) {
1477 case C_DISABLE_CLKCHANGE:
1478 /*
1479 * Disable controller for clock change. If the
1480 * controller is already disabled, then do nothing.
1481 */
1482 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
1483 fbi->state = state;
1484 /* TODO __pxafb_lcd_power(fbi, 0); */
1485 pxafb_disable_controller(fbi);
1486 }
1487 break;
1488
1489 case C_DISABLE_PM:
1490 case C_DISABLE:
1491 /*
1492 * Disable controller
1493 */
1494 if (old_state != C_DISABLE) {
1495 fbi->state = state;
1496 __pxafb_backlight_power(fbi, 0);
1497 __pxafb_lcd_power(fbi, 0);
1498 if (old_state != C_DISABLE_CLKCHANGE)
1499 pxafb_disable_controller(fbi);
1500 }
1501 break;
1502
1503 case C_ENABLE_CLKCHANGE:
1504 /*
1505 * Enable the controller after clock change. Only
1506 * do this if we were disabled for the clock change.
1507 */
1508 if (old_state == C_DISABLE_CLKCHANGE) {
1509 fbi->state = C_ENABLE;
1510 pxafb_enable_controller(fbi);
1511 /* TODO __pxafb_lcd_power(fbi, 1); */
1512 }
1513 break;
1514
1515 case C_REENABLE:
1516 /*
1517 * Re-enable the controller only if it was already
1518 * enabled. This is so we reprogram the control
1519 * registers.
1520 */
1521 if (old_state == C_ENABLE) {
1522 __pxafb_lcd_power(fbi, 0);
1523 pxafb_disable_controller(fbi);
1524 pxafb_enable_controller(fbi);
1525 __pxafb_lcd_power(fbi, 1);
1526 }
1527 break;
1528
1529 case C_ENABLE_PM:
1530 /*
1531 * Re-enable the controller after PM. This is not
1532 * perfect - think about the case where we were doing
1533 * a clock change, and we suspended half-way through.
1534 */
1535 if (old_state != C_DISABLE_PM)
1536 break;
1537 /* fall through */
1538
1539 case C_ENABLE:
1540 /*
1541 * Power up the LCD screen, enable controller, and
1542 * turn on the backlight.
1543 */
1544 if (old_state != C_ENABLE) {
1545 fbi->state = C_ENABLE;
1546 pxafb_enable_controller(fbi);
1547 __pxafb_lcd_power(fbi, 1);
1548 __pxafb_backlight_power(fbi, 1);
1549 }
1550 break;
1551 }
1552 mutex_unlock(&fbi->ctrlr_lock);
1553 }
1554
1555 /*
1556 * Our LCD controller task (which is called when we blank or unblank)
1557 * via keventd.
1558 */
1559 static void pxafb_task(struct work_struct *work)
1560 {
1561 struct pxafb_info *fbi =
1562 container_of(work, struct pxafb_info, task);
1563 u_int state = xchg(&fbi->task_state, -1);
1564
1565 set_ctrlr_state(fbi, state);
1566 }
1567
1568 #ifdef CONFIG_CPU_FREQ
1569 /*
1570 * CPU clock speed change handler. We need to adjust the LCD timing
1571 * parameters when the CPU clock is adjusted by the power management
1572 * subsystem.
1573 *
1574 * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
1575 */
1576 static int
1577 pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
1578 {
1579 struct pxafb_info *fbi = TO_INF(nb, freq_transition);
1580 /* TODO struct cpufreq_freqs *f = data; */
1581 u_int pcd;
1582
1583 switch (val) {
1584 case CPUFREQ_PRECHANGE:
1585 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1586 break;
1587
1588 case CPUFREQ_POSTCHANGE:
1589 pcd = get_pcd(fbi, fbi->fb.var.pixclock);
1590 set_hsync_time(fbi, pcd);
1591 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) |
1592 LCCR3_PixClkDiv(pcd);
1593 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1594 break;
1595 }
1596 return 0;
1597 }
1598
1599 static int
1600 pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data)
1601 {
1602 struct pxafb_info *fbi = TO_INF(nb, freq_policy);
1603 struct fb_var_screeninfo *var = &fbi->fb.var;
1604 struct cpufreq_policy *policy = data;
1605
1606 switch (val) {
1607 case CPUFREQ_ADJUST:
1608 case CPUFREQ_INCOMPATIBLE:
1609 pr_debug("min dma period: %d ps, "
1610 "new clock %d kHz\n", pxafb_display_dma_period(var),
1611 policy->max);
1612 /* TODO: fill in min/max values */
1613 break;
1614 }
1615 return 0;
1616 }
1617 #endif
1618
1619 #ifdef CONFIG_PM
1620 /*
1621 * Power management hooks. Note that we won't be called from IRQ context,
1622 * unlike the blank functions above, so we may sleep.
1623 */
1624 static int pxafb_suspend(struct platform_device *dev, pm_message_t state)
1625 {
1626 struct pxafb_info *fbi = platform_get_drvdata(dev);
1627
1628 set_ctrlr_state(fbi, C_DISABLE_PM);
1629 return 0;
1630 }
1631
1632 static int pxafb_resume(struct platform_device *dev)
1633 {
1634 struct pxafb_info *fbi = platform_get_drvdata(dev);
1635
1636 set_ctrlr_state(fbi, C_ENABLE_PM);
1637 return 0;
1638 }
1639 #else
1640 #define pxafb_suspend NULL
1641 #define pxafb_resume NULL
1642 #endif
1643
1644 static int __devinit pxafb_init_video_memory(struct pxafb_info *fbi)
1645 {
1646 int size = PAGE_ALIGN(fbi->video_mem_size);
1647
1648 fbi->video_mem = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
1649 if (fbi->video_mem == NULL)
1650 return -ENOMEM;
1651
1652 fbi->video_mem_phys = virt_to_phys(fbi->video_mem);
1653 fbi->video_mem_size = size;
1654
1655 fbi->fb.fix.smem_start = fbi->video_mem_phys;
1656 fbi->fb.fix.smem_len = fbi->video_mem_size;
1657 fbi->fb.screen_base = fbi->video_mem;
1658
1659 return fbi->video_mem ? 0 : -ENOMEM;
1660 }
1661
1662 static void pxafb_decode_mach_info(struct pxafb_info *fbi,
1663 struct pxafb_mach_info *inf)
1664 {
1665 unsigned int lcd_conn = inf->lcd_conn;
1666 struct pxafb_mode_info *m;
1667 int i;
1668
1669 fbi->cmap_inverse = inf->cmap_inverse;
1670 fbi->cmap_static = inf->cmap_static;
1671 fbi->lccr4 = inf->lccr4;
1672
1673 switch (lcd_conn & LCD_TYPE_MASK) {
1674 case LCD_TYPE_MONO_STN:
1675 fbi->lccr0 = LCCR0_CMS;
1676 break;
1677 case LCD_TYPE_MONO_DSTN:
1678 fbi->lccr0 = LCCR0_CMS | LCCR0_SDS;
1679 break;
1680 case LCD_TYPE_COLOR_STN:
1681 fbi->lccr0 = 0;
1682 break;
1683 case LCD_TYPE_COLOR_DSTN:
1684 fbi->lccr0 = LCCR0_SDS;
1685 break;
1686 case LCD_TYPE_COLOR_TFT:
1687 fbi->lccr0 = LCCR0_PAS;
1688 break;
1689 case LCD_TYPE_SMART_PANEL:
1690 fbi->lccr0 = LCCR0_LCDT | LCCR0_PAS;
1691 break;
1692 default:
1693 /* fall back to backward compatibility way */
1694 fbi->lccr0 = inf->lccr0;
1695 fbi->lccr3 = inf->lccr3;
1696 goto decode_mode;
1697 }
1698
1699 if (lcd_conn == LCD_MONO_STN_8BPP)
1700 fbi->lccr0 |= LCCR0_DPD;
1701
1702 fbi->lccr0 |= (lcd_conn & LCD_ALTERNATE_MAPPING) ? LCCR0_LDDALT : 0;
1703
1704 fbi->lccr3 = LCCR3_Acb((inf->lcd_conn >> 10) & 0xff);
1705 fbi->lccr3 |= (lcd_conn & LCD_BIAS_ACTIVE_LOW) ? LCCR3_OEP : 0;
1706 fbi->lccr3 |= (lcd_conn & LCD_PCLK_EDGE_FALL) ? LCCR3_PCP : 0;
1707
1708 decode_mode:
1709 pxafb_setmode(&fbi->fb.var, &inf->modes[0]);
1710
1711 /* decide video memory size as follows:
1712 * 1. default to mode of maximum resolution
1713 * 2. allow platform to override
1714 * 3. allow module parameter to override
1715 */
1716 for (i = 0, m = &inf->modes[0]; i < inf->num_modes; i++, m++)
1717 fbi->video_mem_size = max_t(size_t, fbi->video_mem_size,
1718 m->xres * m->yres * m->bpp / 8);
1719
1720 if (inf->video_mem_size > fbi->video_mem_size)
1721 fbi->video_mem_size = inf->video_mem_size;
1722
1723 if (video_mem_size > fbi->video_mem_size)
1724 fbi->video_mem_size = video_mem_size;
1725 }
1726
1727 static struct pxafb_info * __devinit pxafb_init_fbinfo(struct device *dev)
1728 {
1729 struct pxafb_info *fbi;
1730 void *addr;
1731 struct pxafb_mach_info *inf = dev->platform_data;
1732
1733 /* Alloc the pxafb_info and pseudo_palette in one step */
1734 fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL);
1735 if (!fbi)
1736 return NULL;
1737
1738 memset(fbi, 0, sizeof(struct pxafb_info));
1739 fbi->dev = dev;
1740
1741 fbi->clk = clk_get(dev, NULL);
1742 if (IS_ERR(fbi->clk)) {
1743 kfree(fbi);
1744 return NULL;
1745 }
1746
1747 strcpy(fbi->fb.fix.id, PXA_NAME);
1748
1749 fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1750 fbi->fb.fix.type_aux = 0;
1751 fbi->fb.fix.xpanstep = 0;
1752 fbi->fb.fix.ypanstep = 1;
1753 fbi->fb.fix.ywrapstep = 0;
1754 fbi->fb.fix.accel = FB_ACCEL_NONE;
1755
1756 fbi->fb.var.nonstd = 0;
1757 fbi->fb.var.activate = FB_ACTIVATE_NOW;
1758 fbi->fb.var.height = -1;
1759 fbi->fb.var.width = -1;
1760 fbi->fb.var.accel_flags = FB_ACCELF_TEXT;
1761 fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
1762
1763 fbi->fb.fbops = &pxafb_ops;
1764 fbi->fb.flags = FBINFO_DEFAULT;
1765 fbi->fb.node = -1;
1766
1767 addr = fbi;
1768 addr = addr + sizeof(struct pxafb_info);
1769 fbi->fb.pseudo_palette = addr;
1770
1771 fbi->state = C_STARTUP;
1772 fbi->task_state = (u_char)-1;
1773
1774 pxafb_decode_mach_info(fbi, inf);
1775
1776 init_waitqueue_head(&fbi->ctrlr_wait);
1777 INIT_WORK(&fbi->task, pxafb_task);
1778 mutex_init(&fbi->ctrlr_lock);
1779 init_completion(&fbi->disable_done);
1780
1781 return fbi;
1782 }
1783
1784 #ifdef CONFIG_FB_PXA_PARAMETERS
1785 static int __devinit parse_opt_mode(struct device *dev, const char *this_opt)
1786 {
1787 struct pxafb_mach_info *inf = dev->platform_data;
1788
1789 const char *name = this_opt+5;
1790 unsigned int namelen = strlen(name);
1791 int res_specified = 0, bpp_specified = 0;
1792 unsigned int xres = 0, yres = 0, bpp = 0;
1793 int yres_specified = 0;
1794 int i;
1795 for (i = namelen-1; i >= 0; i--) {
1796 switch (name[i]) {
1797 case '-':
1798 namelen = i;
1799 if (!bpp_specified && !yres_specified) {
1800 bpp = simple_strtoul(&name[i+1], NULL, 0);
1801 bpp_specified = 1;
1802 } else
1803 goto done;
1804 break;
1805 case 'x':
1806 if (!yres_specified) {
1807 yres = simple_strtoul(&name[i+1], NULL, 0);
1808 yres_specified = 1;
1809 } else
1810 goto done;
1811 break;
1812 case '0' ... '9':
1813 break;
1814 default:
1815 goto done;
1816 }
1817 }
1818 if (i < 0 && yres_specified) {
1819 xres = simple_strtoul(name, NULL, 0);
1820 res_specified = 1;
1821 }
1822 done:
1823 if (res_specified) {
1824 dev_info(dev, "overriding resolution: %dx%d\n", xres, yres);
1825 inf->modes[0].xres = xres; inf->modes[0].yres = yres;
1826 }
1827 if (bpp_specified)
1828 switch (bpp) {
1829 case 1:
1830 case 2:
1831 case 4:
1832 case 8:
1833 case 16:
1834 inf->modes[0].bpp = bpp;
1835 dev_info(dev, "overriding bit depth: %d\n", bpp);
1836 break;
1837 default:
1838 dev_err(dev, "Depth %d is not valid\n", bpp);
1839 return -EINVAL;
1840 }
1841 return 0;
1842 }
1843
1844 static int __devinit parse_opt(struct device *dev, char *this_opt)
1845 {
1846 struct pxafb_mach_info *inf = dev->platform_data;
1847 struct pxafb_mode_info *mode = &inf->modes[0];
1848 char s[64];
1849
1850 s[0] = '\0';
1851
1852 if (!strncmp(this_opt, "vmem:", 5)) {
1853 video_mem_size = memparse(this_opt + 5, NULL);
1854 } else if (!strncmp(this_opt, "mode:", 5)) {
1855 return parse_opt_mode(dev, this_opt);
1856 } else if (!strncmp(this_opt, "pixclock:", 9)) {
1857 mode->pixclock = simple_strtoul(this_opt+9, NULL, 0);
1858 sprintf(s, "pixclock: %ld\n", mode->pixclock);
1859 } else if (!strncmp(this_opt, "left:", 5)) {
1860 mode->left_margin = simple_strtoul(this_opt+5, NULL, 0);
1861 sprintf(s, "left: %u\n", mode->left_margin);
1862 } else if (!strncmp(this_opt, "right:", 6)) {
1863 mode->right_margin = simple_strtoul(this_opt+6, NULL, 0);
1864 sprintf(s, "right: %u\n", mode->right_margin);
1865 } else if (!strncmp(this_opt, "upper:", 6)) {
1866 mode->upper_margin = simple_strtoul(this_opt+6, NULL, 0);
1867 sprintf(s, "upper: %u\n", mode->upper_margin);
1868 } else if (!strncmp(this_opt, "lower:", 6)) {
1869 mode->lower_margin = simple_strtoul(this_opt+6, NULL, 0);
1870 sprintf(s, "lower: %u\n", mode->lower_margin);
1871 } else if (!strncmp(this_opt, "hsynclen:", 9)) {
1872 mode->hsync_len = simple_strtoul(this_opt+9, NULL, 0);
1873 sprintf(s, "hsynclen: %u\n", mode->hsync_len);
1874 } else if (!strncmp(this_opt, "vsynclen:", 9)) {
1875 mode->vsync_len = simple_strtoul(this_opt+9, NULL, 0);
1876 sprintf(s, "vsynclen: %u\n", mode->vsync_len);
1877 } else if (!strncmp(this_opt, "hsync:", 6)) {
1878 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1879 sprintf(s, "hsync: Active Low\n");
1880 mode->sync &= ~FB_SYNC_HOR_HIGH_ACT;
1881 } else {
1882 sprintf(s, "hsync: Active High\n");
1883 mode->sync |= FB_SYNC_HOR_HIGH_ACT;
1884 }
1885 } else if (!strncmp(this_opt, "vsync:", 6)) {
1886 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1887 sprintf(s, "vsync: Active Low\n");
1888 mode->sync &= ~FB_SYNC_VERT_HIGH_ACT;
1889 } else {
1890 sprintf(s, "vsync: Active High\n");
1891 mode->sync |= FB_SYNC_VERT_HIGH_ACT;
1892 }
1893 } else if (!strncmp(this_opt, "dpc:", 4)) {
1894 if (simple_strtoul(this_opt+4, NULL, 0) == 0) {
1895 sprintf(s, "double pixel clock: false\n");
1896 inf->lccr3 &= ~LCCR3_DPC;
1897 } else {
1898 sprintf(s, "double pixel clock: true\n");
1899 inf->lccr3 |= LCCR3_DPC;
1900 }
1901 } else if (!strncmp(this_opt, "outputen:", 9)) {
1902 if (simple_strtoul(this_opt+9, NULL, 0) == 0) {
1903 sprintf(s, "output enable: active low\n");
1904 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL;
1905 } else {
1906 sprintf(s, "output enable: active high\n");
1907 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH;
1908 }
1909 } else if (!strncmp(this_opt, "pixclockpol:", 12)) {
1910 if (simple_strtoul(this_opt+12, NULL, 0) == 0) {
1911 sprintf(s, "pixel clock polarity: falling edge\n");
1912 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg;
1913 } else {
1914 sprintf(s, "pixel clock polarity: rising edge\n");
1915 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg;
1916 }
1917 } else if (!strncmp(this_opt, "color", 5)) {
1918 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
1919 } else if (!strncmp(this_opt, "mono", 4)) {
1920 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
1921 } else if (!strncmp(this_opt, "active", 6)) {
1922 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
1923 } else if (!strncmp(this_opt, "passive", 7)) {
1924 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
1925 } else if (!strncmp(this_opt, "single", 6)) {
1926 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
1927 } else if (!strncmp(this_opt, "dual", 4)) {
1928 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
1929 } else if (!strncmp(this_opt, "4pix", 4)) {
1930 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
1931 } else if (!strncmp(this_opt, "8pix", 4)) {
1932 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
1933 } else {
1934 dev_err(dev, "unknown option: %s\n", this_opt);
1935 return -EINVAL;
1936 }
1937
1938 if (s[0] != '\0')
1939 dev_info(dev, "override %s", s);
1940
1941 return 0;
1942 }
1943
1944 static int __devinit pxafb_parse_options(struct device *dev, char *options)
1945 {
1946 char *this_opt;
1947 int ret;
1948
1949 if (!options || !*options)
1950 return 0;
1951
1952 dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
1953
1954 /* could be made table driven or similar?... */
1955 while ((this_opt = strsep(&options, ",")) != NULL) {
1956 ret = parse_opt(dev, this_opt);
1957 if (ret)
1958 return ret;
1959 }
1960 return 0;
1961 }
1962
1963 static char g_options[256] __devinitdata = "";
1964
1965 #ifndef MODULE
1966 static int __init pxafb_setup_options(void)
1967 {
1968 char *options = NULL;
1969
1970 if (fb_get_options("pxafb", &options))
1971 return -ENODEV;
1972
1973 if (options)
1974 strlcpy(g_options, options, sizeof(g_options));
1975
1976 return 0;
1977 }
1978 #else
1979 #define pxafb_setup_options() (0)
1980
1981 module_param_string(options, g_options, sizeof(g_options), 0);
1982 MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)");
1983 #endif
1984
1985 #else
1986 #define pxafb_parse_options(...) (0)
1987 #define pxafb_setup_options() (0)
1988 #endif
1989
1990 #ifdef DEBUG_VAR
1991 /* Check for various illegal bit-combinations. Currently only
1992 * a warning is given. */
1993 static void __devinit pxafb_check_options(struct device *dev,
1994 struct pxafb_mach_info *inf)
1995 {
1996 if (inf->lcd_conn)
1997 return;
1998
1999 if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK)
2000 dev_warn(dev, "machine LCCR0 setting contains "
2001 "illegal bits: %08x\n",
2002 inf->lccr0 & LCCR0_INVALID_CONFIG_MASK);
2003 if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK)
2004 dev_warn(dev, "machine LCCR3 setting contains "
2005 "illegal bits: %08x\n",
2006 inf->lccr3 & LCCR3_INVALID_CONFIG_MASK);
2007 if (inf->lccr0 & LCCR0_DPD &&
2008 ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas ||
2009 (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl ||
2010 (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono))
2011 dev_warn(dev, "Double Pixel Data (DPD) mode is "
2012 "only valid in passive mono"
2013 " single panel mode\n");
2014 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
2015 (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual)
2016 dev_warn(dev, "Dual panel only valid in passive mode\n");
2017 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas &&
2018 (inf->modes->upper_margin || inf->modes->lower_margin))
2019 dev_warn(dev, "Upper and lower margins must be 0 in "
2020 "passive mode\n");
2021 }
2022 #else
2023 #define pxafb_check_options(...) do {} while (0)
2024 #endif
2025
2026 static int __devinit pxafb_probe(struct platform_device *dev)
2027 {
2028 struct pxafb_info *fbi;
2029 struct pxafb_mach_info *inf;
2030 struct resource *r;
2031 int irq, ret;
2032
2033 dev_dbg(&dev->dev, "pxafb_probe\n");
2034
2035 inf = dev->dev.platform_data;
2036 ret = -ENOMEM;
2037 fbi = NULL;
2038 if (!inf)
2039 goto failed;
2040
2041 ret = pxafb_parse_options(&dev->dev, g_options);
2042 if (ret < 0)
2043 goto failed;
2044
2045 pxafb_check_options(&dev->dev, inf);
2046
2047 dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",
2048 inf->modes->xres,
2049 inf->modes->yres,
2050 inf->modes->bpp);
2051 if (inf->modes->xres == 0 ||
2052 inf->modes->yres == 0 ||
2053 inf->modes->bpp == 0) {
2054 dev_err(&dev->dev, "Invalid resolution or bit depth\n");
2055 ret = -EINVAL;
2056 goto failed;
2057 }
2058
2059 fbi = pxafb_init_fbinfo(&dev->dev);
2060 if (!fbi) {
2061 /* only reason for pxafb_init_fbinfo to fail is kmalloc */
2062 dev_err(&dev->dev, "Failed to initialize framebuffer device\n");
2063 ret = -ENOMEM;
2064 goto failed;
2065 }
2066
2067 fbi->backlight_power = inf->pxafb_backlight_power;
2068 fbi->lcd_power = inf->pxafb_lcd_power;
2069
2070 r = platform_get_resource(dev, IORESOURCE_MEM, 0);
2071 if (r == NULL) {
2072 dev_err(&dev->dev, "no I/O memory resource defined\n");
2073 ret = -ENODEV;
2074 goto failed_fbi;
2075 }
2076
2077 r = request_mem_region(r->start, r->end - r->start + 1, dev->name);
2078 if (r == NULL) {
2079 dev_err(&dev->dev, "failed to request I/O memory\n");
2080 ret = -EBUSY;
2081 goto failed_fbi;
2082 }
2083
2084 fbi->mmio_base = ioremap(r->start, r->end - r->start + 1);
2085 if (fbi->mmio_base == NULL) {
2086 dev_err(&dev->dev, "failed to map I/O memory\n");
2087 ret = -EBUSY;
2088 goto failed_free_res;
2089 }
2090
2091 fbi->dma_buff_size = PAGE_ALIGN(sizeof(struct pxafb_dma_buff));
2092 fbi->dma_buff = dma_alloc_coherent(fbi->dev, fbi->dma_buff_size,
2093 &fbi->dma_buff_phys, GFP_KERNEL);
2094 if (fbi->dma_buff == NULL) {
2095 dev_err(&dev->dev, "failed to allocate memory for DMA\n");
2096 ret = -ENOMEM;
2097 goto failed_free_io;
2098 }
2099
2100 ret = pxafb_init_video_memory(fbi);
2101 if (ret) {
2102 dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret);
2103 ret = -ENOMEM;
2104 goto failed_free_dma;
2105 }
2106
2107 irq = platform_get_irq(dev, 0);
2108 if (irq < 0) {
2109 dev_err(&dev->dev, "no IRQ defined\n");
2110 ret = -ENODEV;
2111 goto failed_free_mem;
2112 }
2113
2114 ret = request_irq(irq, pxafb_handle_irq, IRQF_DISABLED, "LCD", fbi);
2115 if (ret) {
2116 dev_err(&dev->dev, "request_irq failed: %d\n", ret);
2117 ret = -EBUSY;
2118 goto failed_free_mem;
2119 }
2120
2121 ret = pxafb_smart_init(fbi);
2122 if (ret) {
2123 dev_err(&dev->dev, "failed to initialize smartpanel\n");
2124 goto failed_free_irq;
2125 }
2126
2127 /*
2128 * This makes sure that our colour bitfield
2129 * descriptors are correctly initialised.
2130 */
2131 ret = pxafb_check_var(&fbi->fb.var, &fbi->fb);
2132 if (ret) {
2133 dev_err(&dev->dev, "failed to get suitable mode\n");
2134 goto failed_free_irq;
2135 }
2136
2137 ret = pxafb_set_par(&fbi->fb);
2138 if (ret) {
2139 dev_err(&dev->dev, "Failed to set parameters\n");
2140 goto failed_free_irq;
2141 }
2142
2143 platform_set_drvdata(dev, fbi);
2144
2145 ret = register_framebuffer(&fbi->fb);
2146 if (ret < 0) {
2147 dev_err(&dev->dev,
2148 "Failed to register framebuffer device: %d\n", ret);
2149 goto failed_free_cmap;
2150 }
2151
2152 pxafb_overlay_init(fbi);
2153
2154 #ifdef CONFIG_CPU_FREQ
2155 fbi->freq_transition.notifier_call = pxafb_freq_transition;
2156 fbi->freq_policy.notifier_call = pxafb_freq_policy;
2157 cpufreq_register_notifier(&fbi->freq_transition,
2158 CPUFREQ_TRANSITION_NOTIFIER);
2159 cpufreq_register_notifier(&fbi->freq_policy,
2160 CPUFREQ_POLICY_NOTIFIER);
2161 #endif
2162
2163 /*
2164 * Ok, now enable the LCD controller
2165 */
2166 set_ctrlr_state(fbi, C_ENABLE);
2167
2168 return 0;
2169
2170 failed_free_cmap:
2171 if (fbi->fb.cmap.len)
2172 fb_dealloc_cmap(&fbi->fb.cmap);
2173 failed_free_irq:
2174 free_irq(irq, fbi);
2175 failed_free_mem:
2176 free_pages_exact(fbi->video_mem, fbi->video_mem_size);
2177 failed_free_dma:
2178 dma_free_coherent(&dev->dev, fbi->dma_buff_size,
2179 fbi->dma_buff, fbi->dma_buff_phys);
2180 failed_free_io:
2181 iounmap(fbi->mmio_base);
2182 failed_free_res:
2183 release_mem_region(r->start, r->end - r->start + 1);
2184 failed_fbi:
2185 clk_put(fbi->clk);
2186 platform_set_drvdata(dev, NULL);
2187 kfree(fbi);
2188 failed:
2189 return ret;
2190 }
2191
2192 static int __devexit pxafb_remove(struct platform_device *dev)
2193 {
2194 struct pxafb_info *fbi = platform_get_drvdata(dev);
2195 struct resource *r;
2196 int irq;
2197 struct fb_info *info;
2198
2199 if (!fbi)
2200 return 0;
2201
2202 info = &fbi->fb;
2203
2204 pxafb_overlay_exit(fbi);
2205 unregister_framebuffer(info);
2206
2207 pxafb_disable_controller(fbi);
2208
2209 if (fbi->fb.cmap.len)
2210 fb_dealloc_cmap(&fbi->fb.cmap);
2211
2212 irq = platform_get_irq(dev, 0);
2213 free_irq(irq, fbi);
2214
2215 free_pages_exact(fbi->video_mem, fbi->video_mem_size);
2216
2217 dma_free_writecombine(&dev->dev, fbi->dma_buff_size,
2218 fbi->dma_buff, fbi->dma_buff_phys);
2219
2220 iounmap(fbi->mmio_base);
2221
2222 r = platform_get_resource(dev, IORESOURCE_MEM, 0);
2223 release_mem_region(r->start, r->end - r->start + 1);
2224
2225 clk_put(fbi->clk);
2226 kfree(fbi);
2227
2228 return 0;
2229 }
2230
2231 static struct platform_driver pxafb_driver = {
2232 .probe = pxafb_probe,
2233 .remove = __devexit_p(pxafb_remove),
2234 .suspend = pxafb_suspend,
2235 .resume = pxafb_resume,
2236 .driver = {
2237 .owner = THIS_MODULE,
2238 .name = "pxa2xx-fb",
2239 },
2240 };
2241
2242 static int __init pxafb_init(void)
2243 {
2244 if (pxafb_setup_options())
2245 return -EINVAL;
2246
2247 return platform_driver_register(&pxafb_driver);
2248 }
2249
2250 static void __exit pxafb_exit(void)
2251 {
2252 platform_driver_unregister(&pxafb_driver);
2253 }
2254
2255 module_init(pxafb_init);
2256 module_exit(pxafb_exit);
2257
2258 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
2259 MODULE_LICENSE("GPL");