ext4: Fix time encoding with extra epoch bits
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / drivers / video / omap / dispc.c
1 /*
2 * OMAP2 display controller support
3 *
4 * Copyright (C) 2005 Nokia Corporation
5 * Author: Imre Deak <imre.deak@nokia.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; either version 2 of the License, or (at your
10 * option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21 #include <linux/kernel.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/mm.h>
24 #include <linux/vmalloc.h>
25 #include <linux/clk.h>
26 #include <linux/io.h>
27
28 #include <mach/sram.h>
29 #include <mach/omapfb.h>
30 #include <mach/board.h>
31
32 #include "dispc.h"
33
34 #define MODULE_NAME "dispc"
35
36 #define DSS_BASE 0x48050000
37 #define DSS_SYSCONFIG 0x0010
38
39 #define DISPC_BASE 0x48050400
40
41 /* DISPC common */
42 #define DISPC_REVISION 0x0000
43 #define DISPC_SYSCONFIG 0x0010
44 #define DISPC_SYSSTATUS 0x0014
45 #define DISPC_IRQSTATUS 0x0018
46 #define DISPC_IRQENABLE 0x001C
47 #define DISPC_CONTROL 0x0040
48 #define DISPC_CONFIG 0x0044
49 #define DISPC_CAPABLE 0x0048
50 #define DISPC_DEFAULT_COLOR0 0x004C
51 #define DISPC_DEFAULT_COLOR1 0x0050
52 #define DISPC_TRANS_COLOR0 0x0054
53 #define DISPC_TRANS_COLOR1 0x0058
54 #define DISPC_LINE_STATUS 0x005C
55 #define DISPC_LINE_NUMBER 0x0060
56 #define DISPC_TIMING_H 0x0064
57 #define DISPC_TIMING_V 0x0068
58 #define DISPC_POL_FREQ 0x006C
59 #define DISPC_DIVISOR 0x0070
60 #define DISPC_SIZE_DIG 0x0078
61 #define DISPC_SIZE_LCD 0x007C
62
63 #define DISPC_DATA_CYCLE1 0x01D4
64 #define DISPC_DATA_CYCLE2 0x01D8
65 #define DISPC_DATA_CYCLE3 0x01DC
66
67 /* DISPC GFX plane */
68 #define DISPC_GFX_BA0 0x0080
69 #define DISPC_GFX_BA1 0x0084
70 #define DISPC_GFX_POSITION 0x0088
71 #define DISPC_GFX_SIZE 0x008C
72 #define DISPC_GFX_ATTRIBUTES 0x00A0
73 #define DISPC_GFX_FIFO_THRESHOLD 0x00A4
74 #define DISPC_GFX_FIFO_SIZE_STATUS 0x00A8
75 #define DISPC_GFX_ROW_INC 0x00AC
76 #define DISPC_GFX_PIXEL_INC 0x00B0
77 #define DISPC_GFX_WINDOW_SKIP 0x00B4
78 #define DISPC_GFX_TABLE_BA 0x00B8
79
80 /* DISPC Video plane 1/2 */
81 #define DISPC_VID1_BASE 0x00BC
82 #define DISPC_VID2_BASE 0x014C
83
84 /* Offsets into DISPC_VID1/2_BASE */
85 #define DISPC_VID_BA0 0x0000
86 #define DISPC_VID_BA1 0x0004
87 #define DISPC_VID_POSITION 0x0008
88 #define DISPC_VID_SIZE 0x000C
89 #define DISPC_VID_ATTRIBUTES 0x0010
90 #define DISPC_VID_FIFO_THRESHOLD 0x0014
91 #define DISPC_VID_FIFO_SIZE_STATUS 0x0018
92 #define DISPC_VID_ROW_INC 0x001C
93 #define DISPC_VID_PIXEL_INC 0x0020
94 #define DISPC_VID_FIR 0x0024
95 #define DISPC_VID_PICTURE_SIZE 0x0028
96 #define DISPC_VID_ACCU0 0x002C
97 #define DISPC_VID_ACCU1 0x0030
98
99 /* 8 elements in 8 byte increments */
100 #define DISPC_VID_FIR_COEF_H0 0x0034
101 /* 8 elements in 8 byte increments */
102 #define DISPC_VID_FIR_COEF_HV0 0x0038
103 /* 5 elements in 4 byte increments */
104 #define DISPC_VID_CONV_COEF0 0x0074
105
106 #define DISPC_IRQ_FRAMEMASK 0x0001
107 #define DISPC_IRQ_VSYNC 0x0002
108 #define DISPC_IRQ_EVSYNC_EVEN 0x0004
109 #define DISPC_IRQ_EVSYNC_ODD 0x0008
110 #define DISPC_IRQ_ACBIAS_COUNT_STAT 0x0010
111 #define DISPC_IRQ_PROG_LINE_NUM 0x0020
112 #define DISPC_IRQ_GFX_FIFO_UNDERFLOW 0x0040
113 #define DISPC_IRQ_GFX_END_WIN 0x0080
114 #define DISPC_IRQ_PAL_GAMMA_MASK 0x0100
115 #define DISPC_IRQ_OCP_ERR 0x0200
116 #define DISPC_IRQ_VID1_FIFO_UNDERFLOW 0x0400
117 #define DISPC_IRQ_VID1_END_WIN 0x0800
118 #define DISPC_IRQ_VID2_FIFO_UNDERFLOW 0x1000
119 #define DISPC_IRQ_VID2_END_WIN 0x2000
120 #define DISPC_IRQ_SYNC_LOST 0x4000
121
122 #define DISPC_IRQ_MASK_ALL 0x7fff
123
124 #define DISPC_IRQ_MASK_ERROR (DISPC_IRQ_GFX_FIFO_UNDERFLOW | \
125 DISPC_IRQ_VID1_FIFO_UNDERFLOW | \
126 DISPC_IRQ_VID2_FIFO_UNDERFLOW | \
127 DISPC_IRQ_SYNC_LOST)
128
129 #define RFBI_CONTROL 0x48050040
130
131 #define MAX_PALETTE_SIZE (256 * 16)
132
133 #define FLD_MASK(pos, len) (((1 << len) - 1) << pos)
134
135 #define MOD_REG_FLD(reg, mask, val) \
136 dispc_write_reg((reg), (dispc_read_reg(reg) & ~(mask)) | (val));
137
138 #define OMAP2_SRAM_START 0x40200000
139 /* Maximum size, in reality this is smaller if SRAM is partially locked. */
140 #define OMAP2_SRAM_SIZE 0xa0000 /* 640k */
141
142 /* We support the SDRAM / SRAM types. See OMAPFB_PLANE_MEMTYPE_* in omapfb.h */
143 #define DISPC_MEMTYPE_NUM 2
144
145 #define RESMAP_SIZE(_page_cnt) \
146 ((_page_cnt + (sizeof(unsigned long) * 8) - 1) / 8)
147 #define RESMAP_PTR(_res_map, _page_nr) \
148 (((_res_map)->map) + (_page_nr) / (sizeof(unsigned long) * 8))
149 #define RESMAP_MASK(_page_nr) \
150 (1 << ((_page_nr) & (sizeof(unsigned long) * 8 - 1)))
151
152 struct resmap {
153 unsigned long start;
154 unsigned page_cnt;
155 unsigned long *map;
156 };
157
158 #define MAX_IRQ_HANDLERS 4
159
160 static struct {
161 void __iomem *base;
162
163 struct omapfb_mem_desc mem_desc;
164 struct resmap *res_map[DISPC_MEMTYPE_NUM];
165 atomic_t map_count[OMAPFB_PLANE_NUM];
166
167 dma_addr_t palette_paddr;
168 void *palette_vaddr;
169
170 int ext_mode;
171
172 struct {
173 u32 irq_mask;
174 void (*callback)(void *);
175 void *data;
176 } irq_handlers[MAX_IRQ_HANDLERS];
177 struct completion frame_done;
178
179 int fir_hinc[OMAPFB_PLANE_NUM];
180 int fir_vinc[OMAPFB_PLANE_NUM];
181
182 struct clk *dss_ick, *dss1_fck;
183 struct clk *dss_54m_fck;
184
185 enum omapfb_update_mode update_mode;
186 struct omapfb_device *fbdev;
187
188 struct omapfb_color_key color_key;
189 } dispc;
190
191 static void enable_lcd_clocks(int enable);
192
193 static void inline dispc_write_reg(int idx, u32 val)
194 {
195 __raw_writel(val, dispc.base + idx);
196 }
197
198 static u32 inline dispc_read_reg(int idx)
199 {
200 u32 l = __raw_readl(dispc.base + idx);
201 return l;
202 }
203
204 /* Select RFBI or bypass mode */
205 static void enable_rfbi_mode(int enable)
206 {
207 u32 l;
208
209 l = dispc_read_reg(DISPC_CONTROL);
210 /* Enable RFBI, GPIO0/1 */
211 l &= ~((1 << 11) | (1 << 15) | (1 << 16));
212 l |= enable ? (1 << 11) : 0;
213 /* RFBI En: GPIO0/1=10 RFBI Dis: GPIO0/1=11 */
214 l |= 1 << 15;
215 l |= enable ? 0 : (1 << 16);
216 dispc_write_reg(DISPC_CONTROL, l);
217
218 /* Set bypass mode in RFBI module */
219 l = __raw_readl(OMAP2_IO_ADDRESS(RFBI_CONTROL));
220 l |= enable ? 0 : (1 << 1);
221 __raw_writel(l, OMAP2_IO_ADDRESS(RFBI_CONTROL));
222 }
223
224 static void set_lcd_data_lines(int data_lines)
225 {
226 u32 l;
227 int code = 0;
228
229 switch (data_lines) {
230 case 12:
231 code = 0;
232 break;
233 case 16:
234 code = 1;
235 break;
236 case 18:
237 code = 2;
238 break;
239 case 24:
240 code = 3;
241 break;
242 default:
243 BUG();
244 }
245
246 l = dispc_read_reg(DISPC_CONTROL);
247 l &= ~(0x03 << 8);
248 l |= code << 8;
249 dispc_write_reg(DISPC_CONTROL, l);
250 }
251
252 static void set_load_mode(int mode)
253 {
254 BUG_ON(mode & ~(DISPC_LOAD_CLUT_ONLY | DISPC_LOAD_FRAME_ONLY |
255 DISPC_LOAD_CLUT_ONCE_FRAME));
256 MOD_REG_FLD(DISPC_CONFIG, 0x03 << 1, mode << 1);
257 }
258
259 void omap_dispc_set_lcd_size(int x, int y)
260 {
261 BUG_ON((x > (1 << 11)) || (y > (1 << 11)));
262 enable_lcd_clocks(1);
263 MOD_REG_FLD(DISPC_SIZE_LCD, FLD_MASK(16, 11) | FLD_MASK(0, 11),
264 ((y - 1) << 16) | (x - 1));
265 enable_lcd_clocks(0);
266 }
267 EXPORT_SYMBOL(omap_dispc_set_lcd_size);
268
269 void omap_dispc_set_digit_size(int x, int y)
270 {
271 BUG_ON((x > (1 << 11)) || (y > (1 << 11)));
272 enable_lcd_clocks(1);
273 MOD_REG_FLD(DISPC_SIZE_DIG, FLD_MASK(16, 11) | FLD_MASK(0, 11),
274 ((y - 1) << 16) | (x - 1));
275 enable_lcd_clocks(0);
276 }
277 EXPORT_SYMBOL(omap_dispc_set_digit_size);
278
279 static void setup_plane_fifo(int plane, int ext_mode)
280 {
281 const u32 ftrs_reg[] = { DISPC_GFX_FIFO_THRESHOLD,
282 DISPC_VID1_BASE + DISPC_VID_FIFO_THRESHOLD,
283 DISPC_VID2_BASE + DISPC_VID_FIFO_THRESHOLD };
284 const u32 fsz_reg[] = { DISPC_GFX_FIFO_SIZE_STATUS,
285 DISPC_VID1_BASE + DISPC_VID_FIFO_SIZE_STATUS,
286 DISPC_VID2_BASE + DISPC_VID_FIFO_SIZE_STATUS };
287 int low, high;
288 u32 l;
289
290 BUG_ON(plane > 2);
291
292 l = dispc_read_reg(fsz_reg[plane]);
293 l &= FLD_MASK(0, 11);
294 if (ext_mode) {
295 low = l * 3 / 4;
296 high = l;
297 } else {
298 low = l / 4;
299 high = l * 3 / 4;
300 }
301 MOD_REG_FLD(ftrs_reg[plane], FLD_MASK(16, 12) | FLD_MASK(0, 12),
302 (high << 16) | low);
303 }
304
305 void omap_dispc_enable_lcd_out(int enable)
306 {
307 enable_lcd_clocks(1);
308 MOD_REG_FLD(DISPC_CONTROL, 1, enable ? 1 : 0);
309 enable_lcd_clocks(0);
310 }
311 EXPORT_SYMBOL(omap_dispc_enable_lcd_out);
312
313 void omap_dispc_enable_digit_out(int enable)
314 {
315 enable_lcd_clocks(1);
316 MOD_REG_FLD(DISPC_CONTROL, 1 << 1, enable ? 1 << 1 : 0);
317 enable_lcd_clocks(0);
318 }
319 EXPORT_SYMBOL(omap_dispc_enable_digit_out);
320
321 static inline int _setup_plane(int plane, int channel_out,
322 u32 paddr, int screen_width,
323 int pos_x, int pos_y, int width, int height,
324 int color_mode)
325 {
326 const u32 at_reg[] = { DISPC_GFX_ATTRIBUTES,
327 DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
328 DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
329 const u32 ba_reg[] = { DISPC_GFX_BA0, DISPC_VID1_BASE + DISPC_VID_BA0,
330 DISPC_VID2_BASE + DISPC_VID_BA0 };
331 const u32 ps_reg[] = { DISPC_GFX_POSITION,
332 DISPC_VID1_BASE + DISPC_VID_POSITION,
333 DISPC_VID2_BASE + DISPC_VID_POSITION };
334 const u32 sz_reg[] = { DISPC_GFX_SIZE,
335 DISPC_VID1_BASE + DISPC_VID_PICTURE_SIZE,
336 DISPC_VID2_BASE + DISPC_VID_PICTURE_SIZE };
337 const u32 ri_reg[] = { DISPC_GFX_ROW_INC,
338 DISPC_VID1_BASE + DISPC_VID_ROW_INC,
339 DISPC_VID2_BASE + DISPC_VID_ROW_INC };
340 const u32 vs_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_SIZE,
341 DISPC_VID2_BASE + DISPC_VID_SIZE };
342
343 int chout_shift, burst_shift;
344 int chout_val;
345 int color_code;
346 int bpp;
347 int cconv_en;
348 int set_vsize;
349 u32 l;
350
351 #ifdef VERBOSE
352 dev_dbg(dispc.fbdev->dev, "plane %d channel %d paddr %#08x scr_width %d"
353 " pos_x %d pos_y %d width %d height %d color_mode %d\n",
354 plane, channel_out, paddr, screen_width, pos_x, pos_y,
355 width, height, color_mode);
356 #endif
357
358 set_vsize = 0;
359 switch (plane) {
360 case OMAPFB_PLANE_GFX:
361 burst_shift = 6;
362 chout_shift = 8;
363 break;
364 case OMAPFB_PLANE_VID1:
365 case OMAPFB_PLANE_VID2:
366 burst_shift = 14;
367 chout_shift = 16;
368 set_vsize = 1;
369 break;
370 default:
371 return -EINVAL;
372 }
373
374 switch (channel_out) {
375 case OMAPFB_CHANNEL_OUT_LCD:
376 chout_val = 0;
377 break;
378 case OMAPFB_CHANNEL_OUT_DIGIT:
379 chout_val = 1;
380 break;
381 default:
382 return -EINVAL;
383 }
384
385 cconv_en = 0;
386 switch (color_mode) {
387 case OMAPFB_COLOR_RGB565:
388 color_code = DISPC_RGB_16_BPP;
389 bpp = 16;
390 break;
391 case OMAPFB_COLOR_YUV422:
392 if (plane == 0)
393 return -EINVAL;
394 color_code = DISPC_UYVY_422;
395 cconv_en = 1;
396 bpp = 16;
397 break;
398 case OMAPFB_COLOR_YUY422:
399 if (plane == 0)
400 return -EINVAL;
401 color_code = DISPC_YUV2_422;
402 cconv_en = 1;
403 bpp = 16;
404 break;
405 default:
406 return -EINVAL;
407 }
408
409 l = dispc_read_reg(at_reg[plane]);
410
411 l &= ~(0x0f << 1);
412 l |= color_code << 1;
413 l &= ~(1 << 9);
414 l |= cconv_en << 9;
415
416 l &= ~(0x03 << burst_shift);
417 l |= DISPC_BURST_8x32 << burst_shift;
418
419 l &= ~(1 << chout_shift);
420 l |= chout_val << chout_shift;
421
422 dispc_write_reg(at_reg[plane], l);
423
424 dispc_write_reg(ba_reg[plane], paddr);
425 MOD_REG_FLD(ps_reg[plane],
426 FLD_MASK(16, 11) | FLD_MASK(0, 11), (pos_y << 16) | pos_x);
427
428 MOD_REG_FLD(sz_reg[plane], FLD_MASK(16, 11) | FLD_MASK(0, 11),
429 ((height - 1) << 16) | (width - 1));
430
431 if (set_vsize) {
432 /* Set video size if set_scale hasn't set it */
433 if (!dispc.fir_vinc[plane])
434 MOD_REG_FLD(vs_reg[plane],
435 FLD_MASK(16, 11), (height - 1) << 16);
436 if (!dispc.fir_hinc[plane])
437 MOD_REG_FLD(vs_reg[plane],
438 FLD_MASK(0, 11), width - 1);
439 }
440
441 dispc_write_reg(ri_reg[plane], (screen_width - width) * bpp / 8 + 1);
442
443 return height * screen_width * bpp / 8;
444 }
445
446 static int omap_dispc_setup_plane(int plane, int channel_out,
447 unsigned long offset,
448 int screen_width,
449 int pos_x, int pos_y, int width, int height,
450 int color_mode)
451 {
452 u32 paddr;
453 int r;
454
455 if ((unsigned)plane > dispc.mem_desc.region_cnt)
456 return -EINVAL;
457 paddr = dispc.mem_desc.region[plane].paddr + offset;
458 enable_lcd_clocks(1);
459 r = _setup_plane(plane, channel_out, paddr,
460 screen_width,
461 pos_x, pos_y, width, height, color_mode);
462 enable_lcd_clocks(0);
463 return r;
464 }
465
466 static void write_firh_reg(int plane, int reg, u32 value)
467 {
468 u32 base;
469
470 if (plane == 1)
471 base = DISPC_VID1_BASE + DISPC_VID_FIR_COEF_H0;
472 else
473 base = DISPC_VID2_BASE + DISPC_VID_FIR_COEF_H0;
474 dispc_write_reg(base + reg * 8, value);
475 }
476
477 static void write_firhv_reg(int plane, int reg, u32 value)
478 {
479 u32 base;
480
481 if (plane == 1)
482 base = DISPC_VID1_BASE + DISPC_VID_FIR_COEF_HV0;
483 else
484 base = DISPC_VID2_BASE + DISPC_VID_FIR_COEF_HV0;
485 dispc_write_reg(base + reg * 8, value);
486 }
487
488 static void set_upsampling_coef_table(int plane)
489 {
490 const u32 coef[][2] = {
491 { 0x00800000, 0x00800000 },
492 { 0x0D7CF800, 0x037B02FF },
493 { 0x1E70F5FF, 0x0C6F05FE },
494 { 0x335FF5FE, 0x205907FB },
495 { 0xF74949F7, 0x00404000 },
496 { 0xF55F33FB, 0x075920FE },
497 { 0xF5701EFE, 0x056F0CFF },
498 { 0xF87C0DFF, 0x027B0300 },
499 };
500 int i;
501
502 for (i = 0; i < 8; i++) {
503 write_firh_reg(plane, i, coef[i][0]);
504 write_firhv_reg(plane, i, coef[i][1]);
505 }
506 }
507
508 static int omap_dispc_set_scale(int plane,
509 int orig_width, int orig_height,
510 int out_width, int out_height)
511 {
512 const u32 at_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
513 DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
514 const u32 vs_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_SIZE,
515 DISPC_VID2_BASE + DISPC_VID_SIZE };
516 const u32 fir_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_FIR,
517 DISPC_VID2_BASE + DISPC_VID_FIR };
518
519 u32 l;
520 int fir_hinc;
521 int fir_vinc;
522
523 if ((unsigned)plane > OMAPFB_PLANE_NUM)
524 return -ENODEV;
525
526 if (plane == OMAPFB_PLANE_GFX &&
527 (out_width != orig_width || out_height != orig_height))
528 return -EINVAL;
529
530 enable_lcd_clocks(1);
531 if (orig_width < out_width) {
532 /*
533 * Upsampling.
534 * Currently you can only scale both dimensions in one way.
535 */
536 if (orig_height > out_height ||
537 orig_width * 8 < out_width ||
538 orig_height * 8 < out_height) {
539 enable_lcd_clocks(0);
540 return -EINVAL;
541 }
542 set_upsampling_coef_table(plane);
543 } else if (orig_width > out_width) {
544 /* Downsampling not yet supported
545 */
546
547 enable_lcd_clocks(0);
548 return -EINVAL;
549 }
550 if (!orig_width || orig_width == out_width)
551 fir_hinc = 0;
552 else
553 fir_hinc = 1024 * orig_width / out_width;
554 if (!orig_height || orig_height == out_height)
555 fir_vinc = 0;
556 else
557 fir_vinc = 1024 * orig_height / out_height;
558 dispc.fir_hinc[plane] = fir_hinc;
559 dispc.fir_vinc[plane] = fir_vinc;
560
561 MOD_REG_FLD(fir_reg[plane],
562 FLD_MASK(16, 12) | FLD_MASK(0, 12),
563 ((fir_vinc & 4095) << 16) |
564 (fir_hinc & 4095));
565
566 dev_dbg(dispc.fbdev->dev, "out_width %d out_height %d orig_width %d "
567 "orig_height %d fir_hinc %d fir_vinc %d\n",
568 out_width, out_height, orig_width, orig_height,
569 fir_hinc, fir_vinc);
570
571 MOD_REG_FLD(vs_reg[plane],
572 FLD_MASK(16, 11) | FLD_MASK(0, 11),
573 ((out_height - 1) << 16) | (out_width - 1));
574
575 l = dispc_read_reg(at_reg[plane]);
576 l &= ~(0x03 << 5);
577 l |= fir_hinc ? (1 << 5) : 0;
578 l |= fir_vinc ? (1 << 6) : 0;
579 dispc_write_reg(at_reg[plane], l);
580
581 enable_lcd_clocks(0);
582 return 0;
583 }
584
585 static int omap_dispc_enable_plane(int plane, int enable)
586 {
587 const u32 at_reg[] = { DISPC_GFX_ATTRIBUTES,
588 DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
589 DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
590 if ((unsigned int)plane > dispc.mem_desc.region_cnt)
591 return -EINVAL;
592
593 enable_lcd_clocks(1);
594 MOD_REG_FLD(at_reg[plane], 1, enable ? 1 : 0);
595 enable_lcd_clocks(0);
596
597 return 0;
598 }
599
600 static int omap_dispc_set_color_key(struct omapfb_color_key *ck)
601 {
602 u32 df_reg, tr_reg;
603 int shift, val;
604
605 switch (ck->channel_out) {
606 case OMAPFB_CHANNEL_OUT_LCD:
607 df_reg = DISPC_DEFAULT_COLOR0;
608 tr_reg = DISPC_TRANS_COLOR0;
609 shift = 10;
610 break;
611 case OMAPFB_CHANNEL_OUT_DIGIT:
612 df_reg = DISPC_DEFAULT_COLOR1;
613 tr_reg = DISPC_TRANS_COLOR1;
614 shift = 12;
615 break;
616 default:
617 return -EINVAL;
618 }
619 switch (ck->key_type) {
620 case OMAPFB_COLOR_KEY_DISABLED:
621 val = 0;
622 break;
623 case OMAPFB_COLOR_KEY_GFX_DST:
624 val = 1;
625 break;
626 case OMAPFB_COLOR_KEY_VID_SRC:
627 val = 3;
628 break;
629 default:
630 return -EINVAL;
631 }
632 enable_lcd_clocks(1);
633 MOD_REG_FLD(DISPC_CONFIG, FLD_MASK(shift, 2), val << shift);
634
635 if (val != 0)
636 dispc_write_reg(tr_reg, ck->trans_key);
637 dispc_write_reg(df_reg, ck->background);
638 enable_lcd_clocks(0);
639
640 dispc.color_key = *ck;
641
642 return 0;
643 }
644
645 static int omap_dispc_get_color_key(struct omapfb_color_key *ck)
646 {
647 *ck = dispc.color_key;
648 return 0;
649 }
650
651 static void load_palette(void)
652 {
653 }
654
655 static int omap_dispc_set_update_mode(enum omapfb_update_mode mode)
656 {
657 int r = 0;
658
659 if (mode != dispc.update_mode) {
660 switch (mode) {
661 case OMAPFB_AUTO_UPDATE:
662 case OMAPFB_MANUAL_UPDATE:
663 enable_lcd_clocks(1);
664 omap_dispc_enable_lcd_out(1);
665 dispc.update_mode = mode;
666 break;
667 case OMAPFB_UPDATE_DISABLED:
668 init_completion(&dispc.frame_done);
669 omap_dispc_enable_lcd_out(0);
670 if (!wait_for_completion_timeout(&dispc.frame_done,
671 msecs_to_jiffies(500))) {
672 dev_err(dispc.fbdev->dev,
673 "timeout waiting for FRAME DONE\n");
674 }
675 dispc.update_mode = mode;
676 enable_lcd_clocks(0);
677 break;
678 default:
679 r = -EINVAL;
680 }
681 }
682
683 return r;
684 }
685
686 static void omap_dispc_get_caps(int plane, struct omapfb_caps *caps)
687 {
688 caps->ctrl |= OMAPFB_CAPS_PLANE_RELOCATE_MEM;
689 if (plane > 0)
690 caps->ctrl |= OMAPFB_CAPS_PLANE_SCALE;
691 caps->plane_color |= (1 << OMAPFB_COLOR_RGB565) |
692 (1 << OMAPFB_COLOR_YUV422) |
693 (1 << OMAPFB_COLOR_YUY422);
694 if (plane == 0)
695 caps->plane_color |= (1 << OMAPFB_COLOR_CLUT_8BPP) |
696 (1 << OMAPFB_COLOR_CLUT_4BPP) |
697 (1 << OMAPFB_COLOR_CLUT_2BPP) |
698 (1 << OMAPFB_COLOR_CLUT_1BPP) |
699 (1 << OMAPFB_COLOR_RGB444);
700 }
701
702 static enum omapfb_update_mode omap_dispc_get_update_mode(void)
703 {
704 return dispc.update_mode;
705 }
706
707 static void setup_color_conv_coef(void)
708 {
709 u32 mask = FLD_MASK(16, 11) | FLD_MASK(0, 11);
710 int cf1_reg = DISPC_VID1_BASE + DISPC_VID_CONV_COEF0;
711 int cf2_reg = DISPC_VID2_BASE + DISPC_VID_CONV_COEF0;
712 int at1_reg = DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES;
713 int at2_reg = DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES;
714 const struct color_conv_coef {
715 int ry, rcr, rcb, gy, gcr, gcb, by, bcr, bcb;
716 int full_range;
717 } ctbl_bt601_5 = {
718 298, 409, 0, 298, -208, -100, 298, 0, 517, 0,
719 };
720 const struct color_conv_coef *ct;
721 #define CVAL(x, y) (((x & 2047) << 16) | (y & 2047))
722
723 ct = &ctbl_bt601_5;
724
725 MOD_REG_FLD(cf1_reg, mask, CVAL(ct->rcr, ct->ry));
726 MOD_REG_FLD(cf1_reg + 4, mask, CVAL(ct->gy, ct->rcb));
727 MOD_REG_FLD(cf1_reg + 8, mask, CVAL(ct->gcb, ct->gcr));
728 MOD_REG_FLD(cf1_reg + 12, mask, CVAL(ct->bcr, ct->by));
729 MOD_REG_FLD(cf1_reg + 16, mask, CVAL(0, ct->bcb));
730
731 MOD_REG_FLD(cf2_reg, mask, CVAL(ct->rcr, ct->ry));
732 MOD_REG_FLD(cf2_reg + 4, mask, CVAL(ct->gy, ct->rcb));
733 MOD_REG_FLD(cf2_reg + 8, mask, CVAL(ct->gcb, ct->gcr));
734 MOD_REG_FLD(cf2_reg + 12, mask, CVAL(ct->bcr, ct->by));
735 MOD_REG_FLD(cf2_reg + 16, mask, CVAL(0, ct->bcb));
736 #undef CVAL
737
738 MOD_REG_FLD(at1_reg, (1 << 11), ct->full_range);
739 MOD_REG_FLD(at2_reg, (1 << 11), ct->full_range);
740 }
741
742 static void calc_ck_div(int is_tft, int pck, int *lck_div, int *pck_div)
743 {
744 unsigned long fck, lck;
745
746 *lck_div = 1;
747 pck = max(1, pck);
748 fck = clk_get_rate(dispc.dss1_fck);
749 lck = fck;
750 *pck_div = (lck + pck - 1) / pck;
751 if (is_tft)
752 *pck_div = max(2, *pck_div);
753 else
754 *pck_div = max(3, *pck_div);
755 if (*pck_div > 255) {
756 *pck_div = 255;
757 lck = pck * *pck_div;
758 *lck_div = fck / lck;
759 BUG_ON(*lck_div < 1);
760 if (*lck_div > 255) {
761 *lck_div = 255;
762 dev_warn(dispc.fbdev->dev, "pixclock %d kHz too low.\n",
763 pck / 1000);
764 }
765 }
766 }
767
768 static void set_lcd_tft_mode(int enable)
769 {
770 u32 mask;
771
772 mask = 1 << 3;
773 MOD_REG_FLD(DISPC_CONTROL, mask, enable ? mask : 0);
774 }
775
776 static void set_lcd_timings(void)
777 {
778 u32 l;
779 int lck_div, pck_div;
780 struct lcd_panel *panel = dispc.fbdev->panel;
781 int is_tft = panel->config & OMAP_LCDC_PANEL_TFT;
782 unsigned long fck;
783
784 l = dispc_read_reg(DISPC_TIMING_H);
785 l &= ~(FLD_MASK(0, 6) | FLD_MASK(8, 8) | FLD_MASK(20, 8));
786 l |= ( max(1, (min(64, panel->hsw))) - 1 ) << 0;
787 l |= ( max(1, (min(256, panel->hfp))) - 1 ) << 8;
788 l |= ( max(1, (min(256, panel->hbp))) - 1 ) << 20;
789 dispc_write_reg(DISPC_TIMING_H, l);
790
791 l = dispc_read_reg(DISPC_TIMING_V);
792 l &= ~(FLD_MASK(0, 6) | FLD_MASK(8, 8) | FLD_MASK(20, 8));
793 l |= ( max(1, (min(64, panel->vsw))) - 1 ) << 0;
794 l |= ( max(0, (min(255, panel->vfp))) - 0 ) << 8;
795 l |= ( max(0, (min(255, panel->vbp))) - 0 ) << 20;
796 dispc_write_reg(DISPC_TIMING_V, l);
797
798 l = dispc_read_reg(DISPC_POL_FREQ);
799 l &= ~FLD_MASK(12, 6);
800 l |= (panel->config & OMAP_LCDC_SIGNAL_MASK) << 12;
801 l |= panel->acb & 0xff;
802 dispc_write_reg(DISPC_POL_FREQ, l);
803
804 calc_ck_div(is_tft, panel->pixel_clock * 1000, &lck_div, &pck_div);
805
806 l = dispc_read_reg(DISPC_DIVISOR);
807 l &= ~(FLD_MASK(16, 8) | FLD_MASK(0, 8));
808 l |= (lck_div << 16) | (pck_div << 0);
809 dispc_write_reg(DISPC_DIVISOR, l);
810
811 /* update panel info with the exact clock */
812 fck = clk_get_rate(dispc.dss1_fck);
813 panel->pixel_clock = fck / lck_div / pck_div / 1000;
814 }
815
816 static void recalc_irq_mask(void)
817 {
818 int i;
819 unsigned long irq_mask = DISPC_IRQ_MASK_ERROR;
820
821 for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
822 if (!dispc.irq_handlers[i].callback)
823 continue;
824
825 irq_mask |= dispc.irq_handlers[i].irq_mask;
826 }
827
828 enable_lcd_clocks(1);
829 MOD_REG_FLD(DISPC_IRQENABLE, 0x7fff, irq_mask);
830 enable_lcd_clocks(0);
831 }
832
833 int omap_dispc_request_irq(unsigned long irq_mask, void (*callback)(void *data),
834 void *data)
835 {
836 int i;
837
838 BUG_ON(callback == NULL);
839
840 for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
841 if (dispc.irq_handlers[i].callback)
842 continue;
843
844 dispc.irq_handlers[i].irq_mask = irq_mask;
845 dispc.irq_handlers[i].callback = callback;
846 dispc.irq_handlers[i].data = data;
847 recalc_irq_mask();
848
849 return 0;
850 }
851
852 return -EBUSY;
853 }
854 EXPORT_SYMBOL(omap_dispc_request_irq);
855
856 void omap_dispc_free_irq(unsigned long irq_mask, void (*callback)(void *data),
857 void *data)
858 {
859 int i;
860
861 for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
862 if (dispc.irq_handlers[i].callback == callback &&
863 dispc.irq_handlers[i].data == data) {
864 dispc.irq_handlers[i].irq_mask = 0;
865 dispc.irq_handlers[i].callback = NULL;
866 dispc.irq_handlers[i].data = NULL;
867 recalc_irq_mask();
868 return;
869 }
870 }
871
872 BUG();
873 }
874 EXPORT_SYMBOL(omap_dispc_free_irq);
875
876 static irqreturn_t omap_dispc_irq_handler(int irq, void *dev)
877 {
878 u32 stat;
879 int i = 0;
880
881 enable_lcd_clocks(1);
882
883 stat = dispc_read_reg(DISPC_IRQSTATUS);
884 if (stat & DISPC_IRQ_FRAMEMASK)
885 complete(&dispc.frame_done);
886
887 if (stat & DISPC_IRQ_MASK_ERROR) {
888 if (printk_ratelimit()) {
889 dev_err(dispc.fbdev->dev, "irq error status %04x\n",
890 stat & 0x7fff);
891 }
892 }
893
894 for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
895 if (unlikely(dispc.irq_handlers[i].callback &&
896 (stat & dispc.irq_handlers[i].irq_mask)))
897 dispc.irq_handlers[i].callback(
898 dispc.irq_handlers[i].data);
899 }
900
901 dispc_write_reg(DISPC_IRQSTATUS, stat);
902
903 enable_lcd_clocks(0);
904
905 return IRQ_HANDLED;
906 }
907
908 static int get_dss_clocks(void)
909 {
910 dispc.dss_ick = clk_get(dispc.fbdev->dev, "ick");
911 if (IS_ERR(dispc.dss_ick)) {
912 dev_err(dispc.fbdev->dev, "can't get ick\n");
913 return PTR_ERR(dispc.dss_ick);
914 }
915
916 dispc.dss1_fck = clk_get(dispc.fbdev->dev, "dss1_fck");
917 if (IS_ERR(dispc.dss1_fck)) {
918 dev_err(dispc.fbdev->dev, "can't get dss1_fck\n");
919 clk_put(dispc.dss_ick);
920 return PTR_ERR(dispc.dss1_fck);
921 }
922
923 dispc.dss_54m_fck = clk_get(dispc.fbdev->dev, "tv_fck");
924 if (IS_ERR(dispc.dss_54m_fck)) {
925 dev_err(dispc.fbdev->dev, "can't get tv_fck\n");
926 clk_put(dispc.dss_ick);
927 clk_put(dispc.dss1_fck);
928 return PTR_ERR(dispc.dss_54m_fck);
929 }
930
931 return 0;
932 }
933
934 static void put_dss_clocks(void)
935 {
936 clk_put(dispc.dss_54m_fck);
937 clk_put(dispc.dss1_fck);
938 clk_put(dispc.dss_ick);
939 }
940
941 static void enable_lcd_clocks(int enable)
942 {
943 if (enable) {
944 clk_enable(dispc.dss_ick);
945 clk_enable(dispc.dss1_fck);
946 } else {
947 clk_disable(dispc.dss1_fck);
948 clk_disable(dispc.dss_ick);
949 }
950 }
951
952 static void enable_digit_clocks(int enable)
953 {
954 if (enable)
955 clk_enable(dispc.dss_54m_fck);
956 else
957 clk_disable(dispc.dss_54m_fck);
958 }
959
960 static void omap_dispc_suspend(void)
961 {
962 if (dispc.update_mode == OMAPFB_AUTO_UPDATE) {
963 init_completion(&dispc.frame_done);
964 omap_dispc_enable_lcd_out(0);
965 if (!wait_for_completion_timeout(&dispc.frame_done,
966 msecs_to_jiffies(500))) {
967 dev_err(dispc.fbdev->dev,
968 "timeout waiting for FRAME DONE\n");
969 }
970 enable_lcd_clocks(0);
971 }
972 }
973
974 static void omap_dispc_resume(void)
975 {
976 if (dispc.update_mode == OMAPFB_AUTO_UPDATE) {
977 enable_lcd_clocks(1);
978 if (!dispc.ext_mode) {
979 set_lcd_timings();
980 load_palette();
981 }
982 omap_dispc_enable_lcd_out(1);
983 }
984 }
985
986
987 static int omap_dispc_update_window(struct fb_info *fbi,
988 struct omapfb_update_window *win,
989 void (*complete_callback)(void *arg),
990 void *complete_callback_data)
991 {
992 return dispc.update_mode == OMAPFB_UPDATE_DISABLED ? -ENODEV : 0;
993 }
994
995 static int mmap_kern(struct omapfb_mem_region *region)
996 {
997 struct vm_struct *kvma;
998 struct vm_area_struct vma;
999 pgprot_t pgprot;
1000 unsigned long vaddr;
1001
1002 kvma = get_vm_area(region->size, VM_IOREMAP);
1003 if (kvma == NULL) {
1004 dev_err(dispc.fbdev->dev, "can't get kernel vm area\n");
1005 return -ENOMEM;
1006 }
1007 vma.vm_mm = &init_mm;
1008
1009 vaddr = (unsigned long)kvma->addr;
1010
1011 pgprot = pgprot_writecombine(pgprot_kernel);
1012 vma.vm_start = vaddr;
1013 vma.vm_end = vaddr + region->size;
1014 if (io_remap_pfn_range(&vma, vaddr, region->paddr >> PAGE_SHIFT,
1015 region->size, pgprot) < 0) {
1016 dev_err(dispc.fbdev->dev, "kernel mmap for FBMEM failed\n");
1017 return -EAGAIN;
1018 }
1019 region->vaddr = (void *)vaddr;
1020
1021 return 0;
1022 }
1023
1024 static void mmap_user_open(struct vm_area_struct *vma)
1025 {
1026 int plane = (int)vma->vm_private_data;
1027
1028 atomic_inc(&dispc.map_count[plane]);
1029 }
1030
1031 static void mmap_user_close(struct vm_area_struct *vma)
1032 {
1033 int plane = (int)vma->vm_private_data;
1034
1035 atomic_dec(&dispc.map_count[plane]);
1036 }
1037
1038 static struct vm_operations_struct mmap_user_ops = {
1039 .open = mmap_user_open,
1040 .close = mmap_user_close,
1041 };
1042
1043 static int omap_dispc_mmap_user(struct fb_info *info,
1044 struct vm_area_struct *vma)
1045 {
1046 struct omapfb_plane_struct *plane = info->par;
1047 unsigned long off;
1048 unsigned long start;
1049 u32 len;
1050
1051 if (vma->vm_end - vma->vm_start == 0)
1052 return 0;
1053 if (vma->vm_pgoff > (~0UL >> PAGE_SHIFT))
1054 return -EINVAL;
1055 off = vma->vm_pgoff << PAGE_SHIFT;
1056
1057 start = info->fix.smem_start;
1058 len = info->fix.smem_len;
1059 if (off >= len)
1060 return -EINVAL;
1061 if ((vma->vm_end - vma->vm_start + off) > len)
1062 return -EINVAL;
1063 off += start;
1064 vma->vm_pgoff = off >> PAGE_SHIFT;
1065 vma->vm_flags |= VM_IO | VM_RESERVED;
1066 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
1067 vma->vm_ops = &mmap_user_ops;
1068 vma->vm_private_data = (void *)plane->idx;
1069 if (io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT,
1070 vma->vm_end - vma->vm_start, vma->vm_page_prot))
1071 return -EAGAIN;
1072 /* vm_ops.open won't be called for mmap itself. */
1073 atomic_inc(&dispc.map_count[plane->idx]);
1074 return 0;
1075 }
1076
1077 static void unmap_kern(struct omapfb_mem_region *region)
1078 {
1079 vunmap(region->vaddr);
1080 }
1081
1082 static int alloc_palette_ram(void)
1083 {
1084 dispc.palette_vaddr = dma_alloc_writecombine(dispc.fbdev->dev,
1085 MAX_PALETTE_SIZE, &dispc.palette_paddr, GFP_KERNEL);
1086 if (dispc.palette_vaddr == NULL) {
1087 dev_err(dispc.fbdev->dev, "failed to alloc palette memory\n");
1088 return -ENOMEM;
1089 }
1090
1091 return 0;
1092 }
1093
1094 static void free_palette_ram(void)
1095 {
1096 dma_free_writecombine(dispc.fbdev->dev, MAX_PALETTE_SIZE,
1097 dispc.palette_vaddr, dispc.palette_paddr);
1098 }
1099
1100 static int alloc_fbmem(struct omapfb_mem_region *region)
1101 {
1102 region->vaddr = dma_alloc_writecombine(dispc.fbdev->dev,
1103 region->size, &region->paddr, GFP_KERNEL);
1104
1105 if (region->vaddr == NULL) {
1106 dev_err(dispc.fbdev->dev, "unable to allocate FB DMA memory\n");
1107 return -ENOMEM;
1108 }
1109
1110 return 0;
1111 }
1112
1113 static void free_fbmem(struct omapfb_mem_region *region)
1114 {
1115 dma_free_writecombine(dispc.fbdev->dev, region->size,
1116 region->vaddr, region->paddr);
1117 }
1118
1119 static struct resmap *init_resmap(unsigned long start, size_t size)
1120 {
1121 unsigned page_cnt;
1122 struct resmap *res_map;
1123
1124 page_cnt = PAGE_ALIGN(size) / PAGE_SIZE;
1125 res_map =
1126 kzalloc(sizeof(struct resmap) + RESMAP_SIZE(page_cnt), GFP_KERNEL);
1127 if (res_map == NULL)
1128 return NULL;
1129 res_map->start = start;
1130 res_map->page_cnt = page_cnt;
1131 res_map->map = (unsigned long *)(res_map + 1);
1132 return res_map;
1133 }
1134
1135 static void cleanup_resmap(struct resmap *res_map)
1136 {
1137 kfree(res_map);
1138 }
1139
1140 static inline int resmap_mem_type(unsigned long start)
1141 {
1142 if (start >= OMAP2_SRAM_START &&
1143 start < OMAP2_SRAM_START + OMAP2_SRAM_SIZE)
1144 return OMAPFB_MEMTYPE_SRAM;
1145 else
1146 return OMAPFB_MEMTYPE_SDRAM;
1147 }
1148
1149 static inline int resmap_page_reserved(struct resmap *res_map, unsigned page_nr)
1150 {
1151 return *RESMAP_PTR(res_map, page_nr) & RESMAP_MASK(page_nr) ? 1 : 0;
1152 }
1153
1154 static inline void resmap_reserve_page(struct resmap *res_map, unsigned page_nr)
1155 {
1156 BUG_ON(resmap_page_reserved(res_map, page_nr));
1157 *RESMAP_PTR(res_map, page_nr) |= RESMAP_MASK(page_nr);
1158 }
1159
1160 static inline void resmap_free_page(struct resmap *res_map, unsigned page_nr)
1161 {
1162 BUG_ON(!resmap_page_reserved(res_map, page_nr));
1163 *RESMAP_PTR(res_map, page_nr) &= ~RESMAP_MASK(page_nr);
1164 }
1165
1166 static void resmap_reserve_region(unsigned long start, size_t size)
1167 {
1168
1169 struct resmap *res_map;
1170 unsigned start_page;
1171 unsigned end_page;
1172 int mtype;
1173 unsigned i;
1174
1175 mtype = resmap_mem_type(start);
1176 res_map = dispc.res_map[mtype];
1177 dev_dbg(dispc.fbdev->dev, "reserve mem type %d start %08lx size %d\n",
1178 mtype, start, size);
1179 start_page = (start - res_map->start) / PAGE_SIZE;
1180 end_page = start_page + PAGE_ALIGN(size) / PAGE_SIZE;
1181 for (i = start_page; i < end_page; i++)
1182 resmap_reserve_page(res_map, i);
1183 }
1184
1185 static void resmap_free_region(unsigned long start, size_t size)
1186 {
1187 struct resmap *res_map;
1188 unsigned start_page;
1189 unsigned end_page;
1190 unsigned i;
1191 int mtype;
1192
1193 mtype = resmap_mem_type(start);
1194 res_map = dispc.res_map[mtype];
1195 dev_dbg(dispc.fbdev->dev, "free mem type %d start %08lx size %d\n",
1196 mtype, start, size);
1197 start_page = (start - res_map->start) / PAGE_SIZE;
1198 end_page = start_page + PAGE_ALIGN(size) / PAGE_SIZE;
1199 for (i = start_page; i < end_page; i++)
1200 resmap_free_page(res_map, i);
1201 }
1202
1203 static unsigned long resmap_alloc_region(int mtype, size_t size)
1204 {
1205 unsigned i;
1206 unsigned total;
1207 unsigned start_page;
1208 unsigned long start;
1209 struct resmap *res_map = dispc.res_map[mtype];
1210
1211 BUG_ON(mtype >= DISPC_MEMTYPE_NUM || res_map == NULL || !size);
1212
1213 size = PAGE_ALIGN(size) / PAGE_SIZE;
1214 start_page = 0;
1215 total = 0;
1216 for (i = 0; i < res_map->page_cnt; i++) {
1217 if (resmap_page_reserved(res_map, i)) {
1218 start_page = i + 1;
1219 total = 0;
1220 } else if (++total == size)
1221 break;
1222 }
1223 if (total < size)
1224 return 0;
1225
1226 start = res_map->start + start_page * PAGE_SIZE;
1227 resmap_reserve_region(start, size * PAGE_SIZE);
1228
1229 return start;
1230 }
1231
1232 /* Note that this will only work for user mappings, we don't deal with
1233 * kernel mappings here, so fbcon will keep using the old region.
1234 */
1235 static int omap_dispc_setup_mem(int plane, size_t size, int mem_type,
1236 unsigned long *paddr)
1237 {
1238 struct omapfb_mem_region *rg;
1239 unsigned long new_addr = 0;
1240
1241 if ((unsigned)plane > dispc.mem_desc.region_cnt)
1242 return -EINVAL;
1243 if (mem_type >= DISPC_MEMTYPE_NUM)
1244 return -EINVAL;
1245 if (dispc.res_map[mem_type] == NULL)
1246 return -ENOMEM;
1247 rg = &dispc.mem_desc.region[plane];
1248 if (size == rg->size && mem_type == rg->type)
1249 return 0;
1250 if (atomic_read(&dispc.map_count[plane]))
1251 return -EBUSY;
1252 if (rg->size != 0)
1253 resmap_free_region(rg->paddr, rg->size);
1254 if (size != 0) {
1255 new_addr = resmap_alloc_region(mem_type, size);
1256 if (!new_addr) {
1257 /* Reallocate old region. */
1258 resmap_reserve_region(rg->paddr, rg->size);
1259 return -ENOMEM;
1260 }
1261 }
1262 rg->paddr = new_addr;
1263 rg->size = size;
1264 rg->type = mem_type;
1265
1266 *paddr = new_addr;
1267
1268 return 0;
1269 }
1270
1271 static int setup_fbmem(struct omapfb_mem_desc *req_md)
1272 {
1273 struct omapfb_mem_region *rg;
1274 int i;
1275 int r;
1276 unsigned long mem_start[DISPC_MEMTYPE_NUM];
1277 unsigned long mem_end[DISPC_MEMTYPE_NUM];
1278
1279 if (!req_md->region_cnt) {
1280 dev_err(dispc.fbdev->dev, "no memory regions defined\n");
1281 return -ENOENT;
1282 }
1283
1284 rg = &req_md->region[0];
1285 memset(mem_start, 0xff, sizeof(mem_start));
1286 memset(mem_end, 0, sizeof(mem_end));
1287
1288 for (i = 0; i < req_md->region_cnt; i++, rg++) {
1289 int mtype;
1290 if (rg->paddr) {
1291 rg->alloc = 0;
1292 if (rg->vaddr == NULL) {
1293 rg->map = 1;
1294 if ((r = mmap_kern(rg)) < 0)
1295 return r;
1296 }
1297 } else {
1298 if (rg->type != OMAPFB_MEMTYPE_SDRAM) {
1299 dev_err(dispc.fbdev->dev,
1300 "unsupported memory type\n");
1301 return -EINVAL;
1302 }
1303 rg->alloc = rg->map = 1;
1304 if ((r = alloc_fbmem(rg)) < 0)
1305 return r;
1306 }
1307 mtype = rg->type;
1308
1309 if (rg->paddr < mem_start[mtype])
1310 mem_start[mtype] = rg->paddr;
1311 if (rg->paddr + rg->size > mem_end[mtype])
1312 mem_end[mtype] = rg->paddr + rg->size;
1313 }
1314
1315 for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
1316 unsigned long start;
1317 size_t size;
1318 if (mem_end[i] == 0)
1319 continue;
1320 start = mem_start[i];
1321 size = mem_end[i] - start;
1322 dispc.res_map[i] = init_resmap(start, size);
1323 r = -ENOMEM;
1324 if (dispc.res_map[i] == NULL)
1325 goto fail;
1326 /* Initial state is that everything is reserved. This
1327 * includes possible holes as well, which will never be
1328 * freed.
1329 */
1330 resmap_reserve_region(start, size);
1331 }
1332
1333 dispc.mem_desc = *req_md;
1334
1335 return 0;
1336 fail:
1337 for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
1338 if (dispc.res_map[i] != NULL)
1339 cleanup_resmap(dispc.res_map[i]);
1340 }
1341 return r;
1342 }
1343
1344 static void cleanup_fbmem(void)
1345 {
1346 struct omapfb_mem_region *rg;
1347 int i;
1348
1349 for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
1350 if (dispc.res_map[i] != NULL)
1351 cleanup_resmap(dispc.res_map[i]);
1352 }
1353 rg = &dispc.mem_desc.region[0];
1354 for (i = 0; i < dispc.mem_desc.region_cnt; i++, rg++) {
1355 if (rg->alloc)
1356 free_fbmem(rg);
1357 else {
1358 if (rg->map)
1359 unmap_kern(rg);
1360 }
1361 }
1362 }
1363
1364 static int omap_dispc_init(struct omapfb_device *fbdev, int ext_mode,
1365 struct omapfb_mem_desc *req_vram)
1366 {
1367 int r;
1368 u32 l;
1369 struct lcd_panel *panel = fbdev->panel;
1370 int tmo = 10000;
1371 int skip_init = 0;
1372 int i;
1373
1374 memset(&dispc, 0, sizeof(dispc));
1375
1376 dispc.base = ioremap(DISPC_BASE, SZ_1K);
1377 if (!dispc.base) {
1378 dev_err(fbdev->dev, "can't ioremap DISPC\n");
1379 return -ENOMEM;
1380 }
1381
1382 dispc.fbdev = fbdev;
1383 dispc.ext_mode = ext_mode;
1384
1385 init_completion(&dispc.frame_done);
1386
1387 if ((r = get_dss_clocks()) < 0)
1388 goto fail0;
1389
1390 enable_lcd_clocks(1);
1391
1392 #ifdef CONFIG_FB_OMAP_BOOTLOADER_INIT
1393 l = dispc_read_reg(DISPC_CONTROL);
1394 /* LCD enabled ? */
1395 if (l & 1) {
1396 pr_info("omapfb: skipping hardware initialization\n");
1397 skip_init = 1;
1398 }
1399 #endif
1400
1401 if (!skip_init) {
1402 /* Reset monitoring works only w/ the 54M clk */
1403 enable_digit_clocks(1);
1404
1405 /* Soft reset */
1406 MOD_REG_FLD(DISPC_SYSCONFIG, 1 << 1, 1 << 1);
1407
1408 while (!(dispc_read_reg(DISPC_SYSSTATUS) & 1)) {
1409 if (!--tmo) {
1410 dev_err(dispc.fbdev->dev, "soft reset failed\n");
1411 r = -ENODEV;
1412 enable_digit_clocks(0);
1413 goto fail1;
1414 }
1415 }
1416
1417 enable_digit_clocks(0);
1418 }
1419
1420 /* Enable smart standby/idle, autoidle and wakeup */
1421 l = dispc_read_reg(DISPC_SYSCONFIG);
1422 l &= ~((3 << 12) | (3 << 3));
1423 l |= (2 << 12) | (2 << 3) | (1 << 2) | (1 << 0);
1424 dispc_write_reg(DISPC_SYSCONFIG, l);
1425 omap_writel(1 << 0, DSS_BASE + DSS_SYSCONFIG);
1426
1427 /* Set functional clock autogating */
1428 l = dispc_read_reg(DISPC_CONFIG);
1429 l |= 1 << 9;
1430 dispc_write_reg(DISPC_CONFIG, l);
1431
1432 l = dispc_read_reg(DISPC_IRQSTATUS);
1433 dispc_write_reg(DISPC_IRQSTATUS, l);
1434
1435 recalc_irq_mask();
1436
1437 if ((r = request_irq(INT_24XX_DSS_IRQ, omap_dispc_irq_handler,
1438 0, MODULE_NAME, fbdev)) < 0) {
1439 dev_err(dispc.fbdev->dev, "can't get DSS IRQ\n");
1440 goto fail1;
1441 }
1442
1443 /* L3 firewall setting: enable access to OCM RAM */
1444 __raw_writel(0x402000b0, OMAP2_IO_ADDRESS(0x680050a0));
1445
1446 if ((r = alloc_palette_ram()) < 0)
1447 goto fail2;
1448
1449 if ((r = setup_fbmem(req_vram)) < 0)
1450 goto fail3;
1451
1452 if (!skip_init) {
1453 for (i = 0; i < dispc.mem_desc.region_cnt; i++) {
1454 memset(dispc.mem_desc.region[i].vaddr, 0,
1455 dispc.mem_desc.region[i].size);
1456 }
1457
1458 /* Set logic clock to fck, pixel clock to fck/2 for now */
1459 MOD_REG_FLD(DISPC_DIVISOR, FLD_MASK(16, 8), 1 << 16);
1460 MOD_REG_FLD(DISPC_DIVISOR, FLD_MASK(0, 8), 2 << 0);
1461
1462 setup_plane_fifo(0, ext_mode);
1463 setup_plane_fifo(1, ext_mode);
1464 setup_plane_fifo(2, ext_mode);
1465
1466 setup_color_conv_coef();
1467
1468 set_lcd_tft_mode(panel->config & OMAP_LCDC_PANEL_TFT);
1469 set_load_mode(DISPC_LOAD_FRAME_ONLY);
1470
1471 if (!ext_mode) {
1472 set_lcd_data_lines(panel->data_lines);
1473 omap_dispc_set_lcd_size(panel->x_res, panel->y_res);
1474 set_lcd_timings();
1475 } else
1476 set_lcd_data_lines(panel->bpp);
1477 enable_rfbi_mode(ext_mode);
1478 }
1479
1480 l = dispc_read_reg(DISPC_REVISION);
1481 pr_info("omapfb: DISPC version %d.%d initialized\n",
1482 l >> 4 & 0x0f, l & 0x0f);
1483 enable_lcd_clocks(0);
1484
1485 return 0;
1486 fail3:
1487 free_palette_ram();
1488 fail2:
1489 free_irq(INT_24XX_DSS_IRQ, fbdev);
1490 fail1:
1491 enable_lcd_clocks(0);
1492 put_dss_clocks();
1493 fail0:
1494 iounmap(dispc.base);
1495 return r;
1496 }
1497
1498 static void omap_dispc_cleanup(void)
1499 {
1500 int i;
1501
1502 omap_dispc_set_update_mode(OMAPFB_UPDATE_DISABLED);
1503 /* This will also disable clocks that are on */
1504 for (i = 0; i < dispc.mem_desc.region_cnt; i++)
1505 omap_dispc_enable_plane(i, 0);
1506 cleanup_fbmem();
1507 free_palette_ram();
1508 free_irq(INT_24XX_DSS_IRQ, dispc.fbdev);
1509 put_dss_clocks();
1510 iounmap(dispc.base);
1511 }
1512
1513 const struct lcd_ctrl omap2_int_ctrl = {
1514 .name = "internal",
1515 .init = omap_dispc_init,
1516 .cleanup = omap_dispc_cleanup,
1517 .get_caps = omap_dispc_get_caps,
1518 .set_update_mode = omap_dispc_set_update_mode,
1519 .get_update_mode = omap_dispc_get_update_mode,
1520 .update_window = omap_dispc_update_window,
1521 .suspend = omap_dispc_suspend,
1522 .resume = omap_dispc_resume,
1523 .setup_plane = omap_dispc_setup_plane,
1524 .setup_mem = omap_dispc_setup_mem,
1525 .set_scale = omap_dispc_set_scale,
1526 .enable_plane = omap_dispc_enable_plane,
1527 .set_color_key = omap_dispc_set_color_key,
1528 .get_color_key = omap_dispc_get_color_key,
1529 .mmap = omap_dispc_mmap_user,
1530 };