Linux-2.6.12-rc2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / video / aty / aty128fb.c
1 /* $Id: aty128fb.c,v 1.1.1.1.36.1 1999/12/11 09:03:05 Exp $
2 * linux/drivers/video/aty128fb.c -- Frame buffer device for ATI Rage128
3 *
4 * Copyright (C) 1999-2003, Brad Douglas <brad@neruo.com>
5 * Copyright (C) 1999, Anthony Tong <atong@uiuc.edu>
6 *
7 * Ani Joshi / Jeff Garzik
8 * - Code cleanup
9 *
10 * Michel Danzer <michdaen@iiic.ethz.ch>
11 * - 15/16 bit cleanup
12 * - fix panning
13 *
14 * Benjamin Herrenschmidt
15 * - pmac-specific PM stuff
16 * - various fixes & cleanups
17 *
18 * Andreas Hundt <andi@convergence.de>
19 * - FB_ACTIVATE fixes
20 *
21 * Paul Mackerras <paulus@samba.org>
22 * - Convert to new framebuffer API,
23 * fix colormap setting at 16 bits/pixel (565)
24 *
25 * Paul Mundt
26 * - PCI hotplug
27 *
28 * Jon Smirl <jonsmirl@yahoo.com>
29 * - PCI ID update
30 * - replace ROM BIOS search
31 *
32 * Based off of Geert's atyfb.c and vfb.c.
33 *
34 * TODO:
35 * - monitor sensing (DDC)
36 * - virtual display
37 * - other platform support (only ppc/x86 supported)
38 * - hardware cursor support
39 *
40 * Please cc: your patches to brad@neruo.com.
41 */
42
43 /*
44 * A special note of gratitude to ATI's devrel for providing documentation,
45 * example code and hardware. Thanks Nitya. -atong and brad
46 */
47
48
49 #include <linux/config.h>
50 #include <linux/module.h>
51 #include <linux/moduleparam.h>
52 #include <linux/kernel.h>
53 #include <linux/errno.h>
54 #include <linux/string.h>
55 #include <linux/mm.h>
56 #include <linux/tty.h>
57 #include <linux/slab.h>
58 #include <linux/vmalloc.h>
59 #include <linux/delay.h>
60 #include <linux/interrupt.h>
61 #include <asm/uaccess.h>
62 #include <linux/fb.h>
63 #include <linux/init.h>
64 #include <linux/pci.h>
65 #include <linux/ioport.h>
66 #include <linux/console.h>
67 #include <asm/io.h>
68
69 #ifdef CONFIG_PPC_PMAC
70 #include <asm/pmac_feature.h>
71 #include <asm/prom.h>
72 #include <asm/pci-bridge.h>
73 #include "../macmodes.h"
74 #endif
75
76 #ifdef CONFIG_PMAC_BACKLIGHT
77 #include <asm/backlight.h>
78 #endif
79
80 #ifdef CONFIG_BOOTX_TEXT
81 #include <asm/btext.h>
82 #endif /* CONFIG_BOOTX_TEXT */
83
84 #ifdef CONFIG_MTRR
85 #include <asm/mtrr.h>
86 #endif
87
88 #include <video/aty128.h>
89
90 /* Debug flag */
91 #undef DEBUG
92
93 #ifdef DEBUG
94 #define DBG(fmt, args...) printk(KERN_DEBUG "aty128fb: %s " fmt, __FUNCTION__, ##args);
95 #else
96 #define DBG(fmt, args...)
97 #endif
98
99 #ifndef CONFIG_PPC_PMAC
100 /* default mode */
101 static struct fb_var_screeninfo default_var __initdata = {
102 /* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */
103 640, 480, 640, 480, 0, 0, 8, 0,
104 {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
105 0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2,
106 0, FB_VMODE_NONINTERLACED
107 };
108
109 #else /* CONFIG_PPC_PMAC */
110 /* default to 1024x768 at 75Hz on PPC - this will work
111 * on the iMac, the usual 640x480 @ 60Hz doesn't. */
112 static struct fb_var_screeninfo default_var = {
113 /* 1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock) */
114 1024, 768, 1024, 768, 0, 0, 8, 0,
115 {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
116 0, 0, -1, -1, 0, 12699, 160, 32, 28, 1, 96, 3,
117 FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
118 FB_VMODE_NONINTERLACED
119 };
120 #endif /* CONFIG_PPC_PMAC */
121
122 /* default modedb mode */
123 /* 640x480, 60 Hz, Non-Interlaced (25.172 MHz dotclock) */
124 static struct fb_videomode defaultmode __initdata = {
125 .refresh = 60,
126 .xres = 640,
127 .yres = 480,
128 .pixclock = 39722,
129 .left_margin = 48,
130 .right_margin = 16,
131 .upper_margin = 33,
132 .lower_margin = 10,
133 .hsync_len = 96,
134 .vsync_len = 2,
135 .sync = 0,
136 .vmode = FB_VMODE_NONINTERLACED
137 };
138
139 /* Chip generations */
140 enum {
141 rage_128,
142 rage_128_pci,
143 rage_128_pro,
144 rage_128_pro_pci,
145 rage_M3,
146 rage_M3_pci,
147 rage_M4,
148 rage_128_ultra,
149 };
150
151 /* Must match above enum */
152 static const char *r128_family[] __devinitdata = {
153 "AGP",
154 "PCI",
155 "PRO AGP",
156 "PRO PCI",
157 "M3 AGP",
158 "M3 PCI",
159 "M4 AGP",
160 "Ultra AGP",
161 };
162
163 /*
164 * PCI driver prototypes
165 */
166 static int aty128_probe(struct pci_dev *pdev,
167 const struct pci_device_id *ent);
168 static void aty128_remove(struct pci_dev *pdev);
169 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state);
170 static int aty128_pci_resume(struct pci_dev *pdev);
171 static int aty128_do_resume(struct pci_dev *pdev);
172
173 /* supported Rage128 chipsets */
174 static struct pci_device_id aty128_pci_tbl[] = {
175 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LE,
176 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3_pci },
177 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LF,
178 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3 },
179 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_MF,
180 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
181 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_ML,
182 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
183 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PA,
184 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
185 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PB,
186 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
187 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PC,
188 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
189 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PD,
190 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
191 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PE,
192 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
193 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PF,
194 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
195 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PG,
196 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
197 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PH,
198 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
199 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PI,
200 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
201 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PJ,
202 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
203 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PK,
204 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
205 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PL,
206 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
207 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PM,
208 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
209 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PN,
210 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
211 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PO,
212 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
213 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PP,
214 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
215 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PQ,
216 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
217 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PR,
218 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
219 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PS,
220 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
221 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PT,
222 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
223 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PU,
224 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
225 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PV,
226 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
227 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PW,
228 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
229 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PX,
230 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
231 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RE,
232 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
233 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RF,
234 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
235 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RG,
236 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
237 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RK,
238 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
239 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RL,
240 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
241 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SE,
242 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
243 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SF,
244 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
245 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SG,
246 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
247 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SH,
248 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
249 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SK,
250 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
251 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SL,
252 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
253 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SM,
254 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
255 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SN,
256 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
257 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TF,
258 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
259 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TL,
260 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
261 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TR,
262 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
263 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TS,
264 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
265 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TT,
266 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
267 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TU,
268 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
269 { 0, }
270 };
271
272 MODULE_DEVICE_TABLE(pci, aty128_pci_tbl);
273
274 static struct pci_driver aty128fb_driver = {
275 .name = "aty128fb",
276 .id_table = aty128_pci_tbl,
277 .probe = aty128_probe,
278 .remove = __devexit_p(aty128_remove),
279 .suspend = aty128_pci_suspend,
280 .resume = aty128_pci_resume,
281 };
282
283 /* packed BIOS settings */
284 #ifndef CONFIG_PPC
285 typedef struct {
286 u8 clock_chip_type;
287 u8 struct_size;
288 u8 accelerator_entry;
289 u8 VGA_entry;
290 u16 VGA_table_offset;
291 u16 POST_table_offset;
292 u16 XCLK;
293 u16 MCLK;
294 u8 num_PLL_blocks;
295 u8 size_PLL_blocks;
296 u16 PCLK_ref_freq;
297 u16 PCLK_ref_divider;
298 u32 PCLK_min_freq;
299 u32 PCLK_max_freq;
300 u16 MCLK_ref_freq;
301 u16 MCLK_ref_divider;
302 u32 MCLK_min_freq;
303 u32 MCLK_max_freq;
304 u16 XCLK_ref_freq;
305 u16 XCLK_ref_divider;
306 u32 XCLK_min_freq;
307 u32 XCLK_max_freq;
308 } __attribute__ ((packed)) PLL_BLOCK;
309 #endif /* !CONFIG_PPC */
310
311 /* onboard memory information */
312 struct aty128_meminfo {
313 u8 ML;
314 u8 MB;
315 u8 Trcd;
316 u8 Trp;
317 u8 Twr;
318 u8 CL;
319 u8 Tr2w;
320 u8 LoopLatency;
321 u8 DspOn;
322 u8 Rloop;
323 const char *name;
324 };
325
326 /* various memory configurations */
327 static const struct aty128_meminfo sdr_128 =
328 { 4, 4, 3, 3, 1, 3, 1, 16, 30, 16, "128-bit SDR SGRAM (1:1)" };
329 static const struct aty128_meminfo sdr_64 =
330 { 4, 8, 3, 3, 1, 3, 1, 17, 46, 17, "64-bit SDR SGRAM (1:1)" };
331 static const struct aty128_meminfo sdr_sgram =
332 { 4, 4, 1, 2, 1, 2, 1, 16, 24, 16, "64-bit SDR SGRAM (2:1)" };
333 static const struct aty128_meminfo ddr_sgram =
334 { 4, 4, 3, 3, 2, 3, 1, 16, 31, 16, "64-bit DDR SGRAM" };
335
336 static struct fb_fix_screeninfo aty128fb_fix __initdata = {
337 .id = "ATY Rage128",
338 .type = FB_TYPE_PACKED_PIXELS,
339 .visual = FB_VISUAL_PSEUDOCOLOR,
340 .xpanstep = 8,
341 .ypanstep = 1,
342 .mmio_len = 0x2000,
343 .accel = FB_ACCEL_ATI_RAGE128,
344 };
345
346 static char *mode_option __initdata = NULL;
347
348 #ifdef CONFIG_PPC_PMAC
349 static int default_vmode __initdata = VMODE_1024_768_60;
350 static int default_cmode __initdata = CMODE_8;
351 #endif
352
353 #ifdef CONFIG_PMAC_PBOOK
354 static int default_crt_on __initdata = 0;
355 static int default_lcd_on __initdata = 1;
356 #endif
357
358 #ifdef CONFIG_MTRR
359 static int mtrr = 1;
360 #endif
361
362 /* PLL constants */
363 struct aty128_constants {
364 u32 ref_clk;
365 u32 ppll_min;
366 u32 ppll_max;
367 u32 ref_divider;
368 u32 xclk;
369 u32 fifo_width;
370 u32 fifo_depth;
371 };
372
373 struct aty128_crtc {
374 u32 gen_cntl;
375 u32 h_total, h_sync_strt_wid;
376 u32 v_total, v_sync_strt_wid;
377 u32 pitch;
378 u32 offset, offset_cntl;
379 u32 xoffset, yoffset;
380 u32 vxres, vyres;
381 u32 depth, bpp;
382 };
383
384 struct aty128_pll {
385 u32 post_divider;
386 u32 feedback_divider;
387 u32 vclk;
388 };
389
390 struct aty128_ddafifo {
391 u32 dda_config;
392 u32 dda_on_off;
393 };
394
395 /* register values for a specific mode */
396 struct aty128fb_par {
397 struct aty128_crtc crtc;
398 struct aty128_pll pll;
399 struct aty128_ddafifo fifo_reg;
400 u32 accel_flags;
401 struct aty128_constants constants; /* PLL and others */
402 void __iomem *regbase; /* remapped mmio */
403 u32 vram_size; /* onboard video ram */
404 int chip_gen;
405 const struct aty128_meminfo *mem; /* onboard mem info */
406 #ifdef CONFIG_MTRR
407 struct { int vram; int vram_valid; } mtrr;
408 #endif
409 int blitter_may_be_busy;
410 int fifo_slots; /* free slots in FIFO (64 max) */
411
412 int pm_reg;
413 int crt_on, lcd_on;
414 struct pci_dev *pdev;
415 struct fb_info *next;
416 int asleep;
417 int lock_blank;
418
419 u8 red[32]; /* see aty128fb_setcolreg */
420 u8 green[64];
421 u8 blue[32];
422 u32 pseudo_palette[16]; /* used for TRUECOLOR */
423 };
424
425
426 #define round_div(n, d) ((n+(d/2))/d)
427
428 static int aty128fb_check_var(struct fb_var_screeninfo *var,
429 struct fb_info *info);
430 static int aty128fb_set_par(struct fb_info *info);
431 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
432 u_int transp, struct fb_info *info);
433 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
434 struct fb_info *fb);
435 static int aty128fb_blank(int blank, struct fb_info *fb);
436 static int aty128fb_ioctl(struct inode *inode, struct file *file, u_int cmd,
437 u_long arg, struct fb_info *info);
438 static int aty128fb_sync(struct fb_info *info);
439
440 /*
441 * Internal routines
442 */
443
444 static int aty128_encode_var(struct fb_var_screeninfo *var,
445 const struct aty128fb_par *par);
446 static int aty128_decode_var(struct fb_var_screeninfo *var,
447 struct aty128fb_par *par);
448 #if 0
449 static void __init aty128_get_pllinfo(struct aty128fb_par *par,
450 void __iomem *bios);
451 static void __init __iomem *aty128_map_ROM(struct pci_dev *pdev, const struct aty128fb_par *par);
452 #endif
453 static void aty128_timings(struct aty128fb_par *par);
454 static void aty128_init_engine(struct aty128fb_par *par);
455 static void aty128_reset_engine(const struct aty128fb_par *par);
456 static void aty128_flush_pixel_cache(const struct aty128fb_par *par);
457 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par);
458 static void wait_for_fifo(u16 entries, struct aty128fb_par *par);
459 static void wait_for_idle(struct aty128fb_par *par);
460 static u32 depth_to_dst(u32 depth);
461
462 #define BIOS_IN8(v) (readb(bios + (v)))
463 #define BIOS_IN16(v) (readb(bios + (v)) | \
464 (readb(bios + (v) + 1) << 8))
465 #define BIOS_IN32(v) (readb(bios + (v)) | \
466 (readb(bios + (v) + 1) << 8) | \
467 (readb(bios + (v) + 2) << 16) | \
468 (readb(bios + (v) + 3) << 24))
469
470
471 static struct fb_ops aty128fb_ops = {
472 .owner = THIS_MODULE,
473 .fb_check_var = aty128fb_check_var,
474 .fb_set_par = aty128fb_set_par,
475 .fb_setcolreg = aty128fb_setcolreg,
476 .fb_pan_display = aty128fb_pan_display,
477 .fb_blank = aty128fb_blank,
478 .fb_ioctl = aty128fb_ioctl,
479 .fb_sync = aty128fb_sync,
480 .fb_fillrect = cfb_fillrect,
481 .fb_copyarea = cfb_copyarea,
482 .fb_imageblit = cfb_imageblit,
483 .fb_cursor = soft_cursor,
484 };
485
486 #ifdef CONFIG_PMAC_BACKLIGHT
487 static int aty128_set_backlight_enable(int on, int level, void* data);
488 static int aty128_set_backlight_level(int level, void* data);
489
490 static struct backlight_controller aty128_backlight_controller = {
491 aty128_set_backlight_enable,
492 aty128_set_backlight_level
493 };
494 #endif /* CONFIG_PMAC_BACKLIGHT */
495
496 /*
497 * Functions to read from/write to the mmio registers
498 * - endian conversions may possibly be avoided by
499 * using the other register aperture. TODO.
500 */
501 static inline u32 _aty_ld_le32(volatile unsigned int regindex,
502 const struct aty128fb_par *par)
503 {
504 return readl (par->regbase + regindex);
505 }
506
507 static inline void _aty_st_le32(volatile unsigned int regindex, u32 val,
508 const struct aty128fb_par *par)
509 {
510 writel (val, par->regbase + regindex);
511 }
512
513 static inline u8 _aty_ld_8(unsigned int regindex,
514 const struct aty128fb_par *par)
515 {
516 return readb (par->regbase + regindex);
517 }
518
519 static inline void _aty_st_8(unsigned int regindex, u8 val,
520 const struct aty128fb_par *par)
521 {
522 writeb (val, par->regbase + regindex);
523 }
524
525 #define aty_ld_le32(regindex) _aty_ld_le32(regindex, par)
526 #define aty_st_le32(regindex, val) _aty_st_le32(regindex, val, par)
527 #define aty_ld_8(regindex) _aty_ld_8(regindex, par)
528 #define aty_st_8(regindex, val) _aty_st_8(regindex, val, par)
529
530 /*
531 * Functions to read from/write to the pll registers
532 */
533
534 #define aty_ld_pll(pll_index) _aty_ld_pll(pll_index, par)
535 #define aty_st_pll(pll_index, val) _aty_st_pll(pll_index, val, par)
536
537
538 static u32 _aty_ld_pll(unsigned int pll_index,
539 const struct aty128fb_par *par)
540 {
541 aty_st_8(CLOCK_CNTL_INDEX, pll_index & 0x3F);
542 return aty_ld_le32(CLOCK_CNTL_DATA);
543 }
544
545
546 static void _aty_st_pll(unsigned int pll_index, u32 val,
547 const struct aty128fb_par *par)
548 {
549 aty_st_8(CLOCK_CNTL_INDEX, (pll_index & 0x3F) | PLL_WR_EN);
550 aty_st_le32(CLOCK_CNTL_DATA, val);
551 }
552
553
554 /* return true when the PLL has completed an atomic update */
555 static int aty_pll_readupdate(const struct aty128fb_par *par)
556 {
557 return !(aty_ld_pll(PPLL_REF_DIV) & PPLL_ATOMIC_UPDATE_R);
558 }
559
560
561 static void aty_pll_wait_readupdate(const struct aty128fb_par *par)
562 {
563 unsigned long timeout = jiffies + HZ/100; // should be more than enough
564 int reset = 1;
565
566 while (time_before(jiffies, timeout))
567 if (aty_pll_readupdate(par)) {
568 reset = 0;
569 break;
570 }
571
572 if (reset) /* reset engine?? */
573 printk(KERN_DEBUG "aty128fb: PLL write timeout!\n");
574 }
575
576
577 /* tell PLL to update */
578 static void aty_pll_writeupdate(const struct aty128fb_par *par)
579 {
580 aty_pll_wait_readupdate(par);
581
582 aty_st_pll(PPLL_REF_DIV,
583 aty_ld_pll(PPLL_REF_DIV) | PPLL_ATOMIC_UPDATE_W);
584 }
585
586
587 /* write to the scratch register to test r/w functionality */
588 static int __init register_test(const struct aty128fb_par *par)
589 {
590 u32 val;
591 int flag = 0;
592
593 val = aty_ld_le32(BIOS_0_SCRATCH);
594
595 aty_st_le32(BIOS_0_SCRATCH, 0x55555555);
596 if (aty_ld_le32(BIOS_0_SCRATCH) == 0x55555555) {
597 aty_st_le32(BIOS_0_SCRATCH, 0xAAAAAAAA);
598
599 if (aty_ld_le32(BIOS_0_SCRATCH) == 0xAAAAAAAA)
600 flag = 1;
601 }
602
603 aty_st_le32(BIOS_0_SCRATCH, val); // restore value
604 return flag;
605 }
606
607
608 /*
609 * Accelerator engine functions
610 */
611 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par)
612 {
613 int i;
614
615 for (;;) {
616 for (i = 0; i < 2000000; i++) {
617 par->fifo_slots = aty_ld_le32(GUI_STAT) & 0x0fff;
618 if (par->fifo_slots >= entries)
619 return;
620 }
621 aty128_reset_engine(par);
622 }
623 }
624
625
626 static void wait_for_idle(struct aty128fb_par *par)
627 {
628 int i;
629
630 do_wait_for_fifo(64, par);
631
632 for (;;) {
633 for (i = 0; i < 2000000; i++) {
634 if (!(aty_ld_le32(GUI_STAT) & (1 << 31))) {
635 aty128_flush_pixel_cache(par);
636 par->blitter_may_be_busy = 0;
637 return;
638 }
639 }
640 aty128_reset_engine(par);
641 }
642 }
643
644
645 static void wait_for_fifo(u16 entries, struct aty128fb_par *par)
646 {
647 if (par->fifo_slots < entries)
648 do_wait_for_fifo(64, par);
649 par->fifo_slots -= entries;
650 }
651
652
653 static void aty128_flush_pixel_cache(const struct aty128fb_par *par)
654 {
655 int i;
656 u32 tmp;
657
658 tmp = aty_ld_le32(PC_NGUI_CTLSTAT);
659 tmp &= ~(0x00ff);
660 tmp |= 0x00ff;
661 aty_st_le32(PC_NGUI_CTLSTAT, tmp);
662
663 for (i = 0; i < 2000000; i++)
664 if (!(aty_ld_le32(PC_NGUI_CTLSTAT) & PC_BUSY))
665 break;
666 }
667
668
669 static void aty128_reset_engine(const struct aty128fb_par *par)
670 {
671 u32 gen_reset_cntl, clock_cntl_index, mclk_cntl;
672
673 aty128_flush_pixel_cache(par);
674
675 clock_cntl_index = aty_ld_le32(CLOCK_CNTL_INDEX);
676 mclk_cntl = aty_ld_pll(MCLK_CNTL);
677
678 aty_st_pll(MCLK_CNTL, mclk_cntl | 0x00030000);
679
680 gen_reset_cntl = aty_ld_le32(GEN_RESET_CNTL);
681 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl | SOFT_RESET_GUI);
682 aty_ld_le32(GEN_RESET_CNTL);
683 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl & ~(SOFT_RESET_GUI));
684 aty_ld_le32(GEN_RESET_CNTL);
685
686 aty_st_pll(MCLK_CNTL, mclk_cntl);
687 aty_st_le32(CLOCK_CNTL_INDEX, clock_cntl_index);
688 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl);
689
690 /* use old pio mode */
691 aty_st_le32(PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPM4);
692
693 DBG("engine reset");
694 }
695
696
697 static void aty128_init_engine(struct aty128fb_par *par)
698 {
699 u32 pitch_value;
700
701 wait_for_idle(par);
702
703 /* 3D scaler not spoken here */
704 wait_for_fifo(1, par);
705 aty_st_le32(SCALE_3D_CNTL, 0x00000000);
706
707 aty128_reset_engine(par);
708
709 pitch_value = par->crtc.pitch;
710 if (par->crtc.bpp == 24) {
711 pitch_value = pitch_value * 3;
712 }
713
714 wait_for_fifo(4, par);
715 /* setup engine offset registers */
716 aty_st_le32(DEFAULT_OFFSET, 0x00000000);
717
718 /* setup engine pitch registers */
719 aty_st_le32(DEFAULT_PITCH, pitch_value);
720
721 /* set the default scissor register to max dimensions */
722 aty_st_le32(DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF);
723
724 /* set the drawing controls registers */
725 aty_st_le32(DP_GUI_MASTER_CNTL,
726 GMC_SRC_PITCH_OFFSET_DEFAULT |
727 GMC_DST_PITCH_OFFSET_DEFAULT |
728 GMC_SRC_CLIP_DEFAULT |
729 GMC_DST_CLIP_DEFAULT |
730 GMC_BRUSH_SOLIDCOLOR |
731 (depth_to_dst(par->crtc.depth) << 8) |
732 GMC_SRC_DSTCOLOR |
733 GMC_BYTE_ORDER_MSB_TO_LSB |
734 GMC_DP_CONVERSION_TEMP_6500 |
735 ROP3_PATCOPY |
736 GMC_DP_SRC_RECT |
737 GMC_3D_FCN_EN_CLR |
738 GMC_DST_CLR_CMP_FCN_CLEAR |
739 GMC_AUX_CLIP_CLEAR |
740 GMC_WRITE_MASK_SET);
741
742 wait_for_fifo(8, par);
743 /* clear the line drawing registers */
744 aty_st_le32(DST_BRES_ERR, 0);
745 aty_st_le32(DST_BRES_INC, 0);
746 aty_st_le32(DST_BRES_DEC, 0);
747
748 /* set brush color registers */
749 aty_st_le32(DP_BRUSH_FRGD_CLR, 0xFFFFFFFF); /* white */
750 aty_st_le32(DP_BRUSH_BKGD_CLR, 0x00000000); /* black */
751
752 /* set source color registers */
753 aty_st_le32(DP_SRC_FRGD_CLR, 0xFFFFFFFF); /* white */
754 aty_st_le32(DP_SRC_BKGD_CLR, 0x00000000); /* black */
755
756 /* default write mask */
757 aty_st_le32(DP_WRITE_MASK, 0xFFFFFFFF);
758
759 /* Wait for all the writes to be completed before returning */
760 wait_for_idle(par);
761 }
762
763
764 /* convert depth values to their register representation */
765 static u32 depth_to_dst(u32 depth)
766 {
767 if (depth <= 8)
768 return DST_8BPP;
769 else if (depth <= 15)
770 return DST_15BPP;
771 else if (depth == 16)
772 return DST_16BPP;
773 else if (depth <= 24)
774 return DST_24BPP;
775 else if (depth <= 32)
776 return DST_32BPP;
777
778 return -EINVAL;
779 }
780
781 /*
782 * PLL informations retreival
783 */
784
785
786 #ifndef __sparc__
787 static void __iomem * __init aty128_map_ROM(const struct aty128fb_par *par, struct pci_dev *dev)
788 {
789 u16 dptr;
790 u8 rom_type;
791 void __iomem *bios;
792 size_t rom_size;
793
794 /* Fix from ATI for problem with Rage128 hardware not leaving ROM enabled */
795 unsigned int temp;
796 temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
797 temp &= 0x00ffffffu;
798 temp |= 0x04 << 24;
799 aty_st_le32(RAGE128_MPP_TB_CONFIG, temp);
800 temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
801
802 bios = pci_map_rom(dev, &rom_size);
803
804 if (!bios) {
805 printk(KERN_ERR "aty128fb: ROM failed to map\n");
806 return NULL;
807 }
808
809 /* Very simple test to make sure it appeared */
810 if (BIOS_IN16(0) != 0xaa55) {
811 printk(KERN_ERR "aty128fb: Invalid ROM signature %x should be 0xaa55\n",
812 BIOS_IN16(0));
813 goto failed;
814 }
815
816 /* Look for the PCI data to check the ROM type */
817 dptr = BIOS_IN16(0x18);
818
819 /* Check the PCI data signature. If it's wrong, we still assume a normal x86 ROM
820 * for now, until I've verified this works everywhere. The goal here is more
821 * to phase out Open Firmware images.
822 *
823 * Currently, we only look at the first PCI data, we could iteratre and deal with
824 * them all, and we should use fb_bios_start relative to start of image and not
825 * relative start of ROM, but so far, I never found a dual-image ATI card
826 *
827 * typedef struct {
828 * u32 signature; + 0x00
829 * u16 vendor; + 0x04
830 * u16 device; + 0x06
831 * u16 reserved_1; + 0x08
832 * u16 dlen; + 0x0a
833 * u8 drevision; + 0x0c
834 * u8 class_hi; + 0x0d
835 * u16 class_lo; + 0x0e
836 * u16 ilen; + 0x10
837 * u16 irevision; + 0x12
838 * u8 type; + 0x14
839 * u8 indicator; + 0x15
840 * u16 reserved_2; + 0x16
841 * } pci_data_t;
842 */
843 if (BIOS_IN32(dptr) != (('R' << 24) | ('I' << 16) | ('C' << 8) | 'P')) {
844 printk(KERN_WARNING "aty128fb: PCI DATA signature in ROM incorrect: %08x\n",
845 BIOS_IN32(dptr));
846 goto anyway;
847 }
848 rom_type = BIOS_IN8(dptr + 0x14);
849 switch(rom_type) {
850 case 0:
851 printk(KERN_INFO "aty128fb: Found Intel x86 BIOS ROM Image\n");
852 break;
853 case 1:
854 printk(KERN_INFO "aty128fb: Found Open Firmware ROM Image\n");
855 goto failed;
856 case 2:
857 printk(KERN_INFO "aty128fb: Found HP PA-RISC ROM Image\n");
858 goto failed;
859 default:
860 printk(KERN_INFO "aty128fb: Found unknown type %d ROM Image\n", rom_type);
861 goto failed;
862 }
863 anyway:
864 return bios;
865
866 failed:
867 pci_unmap_rom(dev, bios);
868 return NULL;
869 }
870
871 static void __init aty128_get_pllinfo(struct aty128fb_par *par, unsigned char __iomem *bios)
872 {
873 unsigned int bios_hdr;
874 unsigned int bios_pll;
875
876 bios_hdr = BIOS_IN16(0x48);
877 bios_pll = BIOS_IN16(bios_hdr + 0x30);
878
879 par->constants.ppll_max = BIOS_IN32(bios_pll + 0x16);
880 par->constants.ppll_min = BIOS_IN32(bios_pll + 0x12);
881 par->constants.xclk = BIOS_IN16(bios_pll + 0x08);
882 par->constants.ref_divider = BIOS_IN16(bios_pll + 0x10);
883 par->constants.ref_clk = BIOS_IN16(bios_pll + 0x0e);
884
885 DBG("ppll_max %d ppll_min %d xclk %d ref_divider %d ref clock %d\n",
886 par->constants.ppll_max, par->constants.ppll_min,
887 par->constants.xclk, par->constants.ref_divider,
888 par->constants.ref_clk);
889
890 }
891
892 #ifdef CONFIG_X86
893 static void __iomem * __devinit aty128_find_mem_vbios(struct aty128fb_par *par)
894 {
895 /* I simplified this code as we used to miss the signatures in
896 * a lot of case. It's now closer to XFree, we just don't check
897 * for signatures at all... Something better will have to be done
898 * if we end up having conflicts
899 */
900 u32 segstart;
901 unsigned char __iomem *rom_base = NULL;
902
903 for (segstart=0x000c0000; segstart<0x000f0000; segstart+=0x00001000) {
904 rom_base = ioremap(segstart, 0x10000);
905 if (rom_base == NULL)
906 return NULL;
907 if (readb(rom_base) == 0x55 && readb(rom_base + 1) == 0xaa)
908 break;
909 iounmap(rom_base);
910 rom_base = NULL;
911 }
912 return rom_base;
913 }
914 #endif
915 #endif /* ndef(__sparc__) */
916
917 /* fill in known card constants if pll_block is not available */
918 static void __init aty128_timings(struct aty128fb_par *par)
919 {
920 #ifdef CONFIG_PPC_OF
921 /* instead of a table lookup, assume OF has properly
922 * setup the PLL registers and use their values
923 * to set the XCLK values and reference divider values */
924
925 u32 x_mpll_ref_fb_div;
926 u32 xclk_cntl;
927 u32 Nx, M;
928 unsigned PostDivSet[] = { 0, 1, 2, 4, 8, 3, 6, 12 };
929 #endif
930
931 if (!par->constants.ref_clk)
932 par->constants.ref_clk = 2950;
933
934 #ifdef CONFIG_PPC_OF
935 x_mpll_ref_fb_div = aty_ld_pll(X_MPLL_REF_FB_DIV);
936 xclk_cntl = aty_ld_pll(XCLK_CNTL) & 0x7;
937 Nx = (x_mpll_ref_fb_div & 0x00ff00) >> 8;
938 M = x_mpll_ref_fb_div & 0x0000ff;
939
940 par->constants.xclk = round_div((2 * Nx * par->constants.ref_clk),
941 (M * PostDivSet[xclk_cntl]));
942
943 par->constants.ref_divider =
944 aty_ld_pll(PPLL_REF_DIV) & PPLL_REF_DIV_MASK;
945 #endif
946
947 if (!par->constants.ref_divider) {
948 par->constants.ref_divider = 0x3b;
949
950 aty_st_pll(X_MPLL_REF_FB_DIV, 0x004c4c1e);
951 aty_pll_writeupdate(par);
952 }
953 aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider);
954 aty_pll_writeupdate(par);
955
956 /* from documentation */
957 if (!par->constants.ppll_min)
958 par->constants.ppll_min = 12500;
959 if (!par->constants.ppll_max)
960 par->constants.ppll_max = 25000; /* 23000 on some cards? */
961 if (!par->constants.xclk)
962 par->constants.xclk = 0x1d4d; /* same as mclk */
963
964 par->constants.fifo_width = 128;
965 par->constants.fifo_depth = 32;
966
967 switch (aty_ld_le32(MEM_CNTL) & 0x3) {
968 case 0:
969 par->mem = &sdr_128;
970 break;
971 case 1:
972 par->mem = &sdr_sgram;
973 break;
974 case 2:
975 par->mem = &ddr_sgram;
976 break;
977 default:
978 par->mem = &sdr_sgram;
979 }
980 }
981
982
983
984 /*
985 * CRTC programming
986 */
987
988 /* Program the CRTC registers */
989 static void aty128_set_crtc(const struct aty128_crtc *crtc,
990 const struct aty128fb_par *par)
991 {
992 aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl);
993 aty_st_le32(CRTC_H_TOTAL_DISP, crtc->h_total);
994 aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->h_sync_strt_wid);
995 aty_st_le32(CRTC_V_TOTAL_DISP, crtc->v_total);
996 aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->v_sync_strt_wid);
997 aty_st_le32(CRTC_PITCH, crtc->pitch);
998 aty_st_le32(CRTC_OFFSET, crtc->offset);
999 aty_st_le32(CRTC_OFFSET_CNTL, crtc->offset_cntl);
1000 /* Disable ATOMIC updating. Is this the right place? */
1001 aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~(0x00030000));
1002 }
1003
1004
1005 static int aty128_var_to_crtc(const struct fb_var_screeninfo *var,
1006 struct aty128_crtc *crtc,
1007 const struct aty128fb_par *par)
1008 {
1009 u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp, dst;
1010 u32 left, right, upper, lower, hslen, vslen, sync, vmode;
1011 u32 h_total, h_disp, h_sync_strt, h_sync_wid, h_sync_pol;
1012 u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1013 u32 depth, bytpp;
1014 u8 mode_bytpp[7] = { 0, 0, 1, 2, 2, 3, 4 };
1015
1016 /* input */
1017 xres = var->xres;
1018 yres = var->yres;
1019 vxres = var->xres_virtual;
1020 vyres = var->yres_virtual;
1021 xoffset = var->xoffset;
1022 yoffset = var->yoffset;
1023 bpp = var->bits_per_pixel;
1024 left = var->left_margin;
1025 right = var->right_margin;
1026 upper = var->upper_margin;
1027 lower = var->lower_margin;
1028 hslen = var->hsync_len;
1029 vslen = var->vsync_len;
1030 sync = var->sync;
1031 vmode = var->vmode;
1032
1033 if (bpp != 16)
1034 depth = bpp;
1035 else
1036 depth = (var->green.length == 6) ? 16 : 15;
1037
1038 /* check for mode eligibility
1039 * accept only non interlaced modes */
1040 if ((vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
1041 return -EINVAL;
1042
1043 /* convert (and round up) and validate */
1044 xres = (xres + 7) & ~7;
1045 xoffset = (xoffset + 7) & ~7;
1046
1047 if (vxres < xres + xoffset)
1048 vxres = xres + xoffset;
1049
1050 if (vyres < yres + yoffset)
1051 vyres = yres + yoffset;
1052
1053 /* convert depth into ATI register depth */
1054 dst = depth_to_dst(depth);
1055
1056 if (dst == -EINVAL) {
1057 printk(KERN_ERR "aty128fb: Invalid depth or RGBA\n");
1058 return -EINVAL;
1059 }
1060
1061 /* convert register depth to bytes per pixel */
1062 bytpp = mode_bytpp[dst];
1063
1064 /* make sure there is enough video ram for the mode */
1065 if ((u32)(vxres * vyres * bytpp) > par->vram_size) {
1066 printk(KERN_ERR "aty128fb: Not enough memory for mode\n");
1067 return -EINVAL;
1068 }
1069
1070 h_disp = (xres >> 3) - 1;
1071 h_total = (((xres + right + hslen + left) >> 3) - 1) & 0xFFFFL;
1072
1073 v_disp = yres - 1;
1074 v_total = (yres + upper + vslen + lower - 1) & 0xFFFFL;
1075
1076 /* check to make sure h_total and v_total are in range */
1077 if (((h_total >> 3) - 1) > 0x1ff || (v_total - 1) > 0x7FF) {
1078 printk(KERN_ERR "aty128fb: invalid width ranges\n");
1079 return -EINVAL;
1080 }
1081
1082 h_sync_wid = (hslen + 7) >> 3;
1083 if (h_sync_wid == 0)
1084 h_sync_wid = 1;
1085 else if (h_sync_wid > 0x3f) /* 0x3f = max hwidth */
1086 h_sync_wid = 0x3f;
1087
1088 h_sync_strt = (h_disp << 3) + right;
1089
1090 v_sync_wid = vslen;
1091 if (v_sync_wid == 0)
1092 v_sync_wid = 1;
1093 else if (v_sync_wid > 0x1f) /* 0x1f = max vwidth */
1094 v_sync_wid = 0x1f;
1095
1096 v_sync_strt = v_disp + lower;
1097
1098 h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1;
1099 v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1;
1100
1101 c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? (1 << 4) : 0;
1102
1103 crtc->gen_cntl = 0x3000000L | c_sync | (dst << 8);
1104
1105 crtc->h_total = h_total | (h_disp << 16);
1106 crtc->v_total = v_total | (v_disp << 16);
1107
1108 crtc->h_sync_strt_wid = h_sync_strt | (h_sync_wid << 16) |
1109 (h_sync_pol << 23);
1110 crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) |
1111 (v_sync_pol << 23);
1112
1113 crtc->pitch = vxres >> 3;
1114
1115 crtc->offset = 0;
1116
1117 if ((var->activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW)
1118 crtc->offset_cntl = 0x00010000;
1119 else
1120 crtc->offset_cntl = 0;
1121
1122 crtc->vxres = vxres;
1123 crtc->vyres = vyres;
1124 crtc->xoffset = xoffset;
1125 crtc->yoffset = yoffset;
1126 crtc->depth = depth;
1127 crtc->bpp = bpp;
1128
1129 return 0;
1130 }
1131
1132
1133 static int aty128_pix_width_to_var(int pix_width, struct fb_var_screeninfo *var)
1134 {
1135
1136 /* fill in pixel info */
1137 var->red.msb_right = 0;
1138 var->green.msb_right = 0;
1139 var->blue.offset = 0;
1140 var->blue.msb_right = 0;
1141 var->transp.offset = 0;
1142 var->transp.length = 0;
1143 var->transp.msb_right = 0;
1144 switch (pix_width) {
1145 case CRTC_PIX_WIDTH_8BPP:
1146 var->bits_per_pixel = 8;
1147 var->red.offset = 0;
1148 var->red.length = 8;
1149 var->green.offset = 0;
1150 var->green.length = 8;
1151 var->blue.length = 8;
1152 break;
1153 case CRTC_PIX_WIDTH_15BPP:
1154 var->bits_per_pixel = 16;
1155 var->red.offset = 10;
1156 var->red.length = 5;
1157 var->green.offset = 5;
1158 var->green.length = 5;
1159 var->blue.length = 5;
1160 break;
1161 case CRTC_PIX_WIDTH_16BPP:
1162 var->bits_per_pixel = 16;
1163 var->red.offset = 11;
1164 var->red.length = 5;
1165 var->green.offset = 5;
1166 var->green.length = 6;
1167 var->blue.length = 5;
1168 break;
1169 case CRTC_PIX_WIDTH_24BPP:
1170 var->bits_per_pixel = 24;
1171 var->red.offset = 16;
1172 var->red.length = 8;
1173 var->green.offset = 8;
1174 var->green.length = 8;
1175 var->blue.length = 8;
1176 break;
1177 case CRTC_PIX_WIDTH_32BPP:
1178 var->bits_per_pixel = 32;
1179 var->red.offset = 16;
1180 var->red.length = 8;
1181 var->green.offset = 8;
1182 var->green.length = 8;
1183 var->blue.length = 8;
1184 var->transp.offset = 24;
1185 var->transp.length = 8;
1186 break;
1187 default:
1188 printk(KERN_ERR "aty128fb: Invalid pixel width\n");
1189 return -EINVAL;
1190 }
1191
1192 return 0;
1193 }
1194
1195
1196 static int aty128_crtc_to_var(const struct aty128_crtc *crtc,
1197 struct fb_var_screeninfo *var)
1198 {
1199 u32 xres, yres, left, right, upper, lower, hslen, vslen, sync;
1200 u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol;
1201 u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1202 u32 pix_width;
1203
1204 /* fun with masking */
1205 h_total = crtc->h_total & 0x1ff;
1206 h_disp = (crtc->h_total >> 16) & 0xff;
1207 h_sync_strt = (crtc->h_sync_strt_wid >> 3) & 0x1ff;
1208 h_sync_dly = crtc->h_sync_strt_wid & 0x7;
1209 h_sync_wid = (crtc->h_sync_strt_wid >> 16) & 0x3f;
1210 h_sync_pol = (crtc->h_sync_strt_wid >> 23) & 0x1;
1211 v_total = crtc->v_total & 0x7ff;
1212 v_disp = (crtc->v_total >> 16) & 0x7ff;
1213 v_sync_strt = crtc->v_sync_strt_wid & 0x7ff;
1214 v_sync_wid = (crtc->v_sync_strt_wid >> 16) & 0x1f;
1215 v_sync_pol = (crtc->v_sync_strt_wid >> 23) & 0x1;
1216 c_sync = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0;
1217 pix_width = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK;
1218
1219 /* do conversions */
1220 xres = (h_disp + 1) << 3;
1221 yres = v_disp + 1;
1222 left = ((h_total - h_sync_strt - h_sync_wid) << 3) - h_sync_dly;
1223 right = ((h_sync_strt - h_disp) << 3) + h_sync_dly;
1224 hslen = h_sync_wid << 3;
1225 upper = v_total - v_sync_strt - v_sync_wid;
1226 lower = v_sync_strt - v_disp;
1227 vslen = v_sync_wid;
1228 sync = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) |
1229 (v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) |
1230 (c_sync ? FB_SYNC_COMP_HIGH_ACT : 0);
1231
1232 aty128_pix_width_to_var(pix_width, var);
1233
1234 var->xres = xres;
1235 var->yres = yres;
1236 var->xres_virtual = crtc->vxres;
1237 var->yres_virtual = crtc->vyres;
1238 var->xoffset = crtc->xoffset;
1239 var->yoffset = crtc->yoffset;
1240 var->left_margin = left;
1241 var->right_margin = right;
1242 var->upper_margin = upper;
1243 var->lower_margin = lower;
1244 var->hsync_len = hslen;
1245 var->vsync_len = vslen;
1246 var->sync = sync;
1247 var->vmode = FB_VMODE_NONINTERLACED;
1248
1249 return 0;
1250 }
1251
1252 #ifdef CONFIG_PMAC_PBOOK
1253 static void aty128_set_crt_enable(struct aty128fb_par *par, int on)
1254 {
1255 if (on) {
1256 aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) | CRT_CRTC_ON);
1257 aty_st_le32(DAC_CNTL, (aty_ld_le32(DAC_CNTL) | DAC_PALETTE2_SNOOP_EN));
1258 } else
1259 aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) & ~CRT_CRTC_ON);
1260 }
1261
1262 static void aty128_set_lcd_enable(struct aty128fb_par *par, int on)
1263 {
1264 u32 reg;
1265
1266 if (on) {
1267 reg = aty_ld_le32(LVDS_GEN_CNTL);
1268 reg |= LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION;
1269 reg &= ~LVDS_DISPLAY_DIS;
1270 aty_st_le32(LVDS_GEN_CNTL, reg);
1271 #ifdef CONFIG_PMAC_BACKLIGHT
1272 aty128_set_backlight_enable(get_backlight_enable(),
1273 get_backlight_level(), par);
1274 #endif
1275 } else {
1276 #ifdef CONFIG_PMAC_BACKLIGHT
1277 aty128_set_backlight_enable(0, 0, par);
1278 #endif
1279 reg = aty_ld_le32(LVDS_GEN_CNTL);
1280 reg |= LVDS_DISPLAY_DIS;
1281 aty_st_le32(LVDS_GEN_CNTL, reg);
1282 mdelay(100);
1283 reg &= ~(LVDS_ON /*| LVDS_EN*/);
1284 aty_st_le32(LVDS_GEN_CNTL, reg);
1285 }
1286 }
1287 #endif /* CONFIG_PMAC_PBOOK */
1288
1289 static void aty128_set_pll(struct aty128_pll *pll, const struct aty128fb_par *par)
1290 {
1291 u32 div3;
1292
1293 unsigned char post_conv[] = /* register values for post dividers */
1294 { 2, 0, 1, 4, 2, 2, 6, 2, 3, 2, 2, 2, 7 };
1295
1296 /* select PPLL_DIV_3 */
1297 aty_st_le32(CLOCK_CNTL_INDEX, aty_ld_le32(CLOCK_CNTL_INDEX) | (3 << 8));
1298
1299 /* reset PLL */
1300 aty_st_pll(PPLL_CNTL,
1301 aty_ld_pll(PPLL_CNTL) | PPLL_RESET | PPLL_ATOMIC_UPDATE_EN);
1302
1303 /* write the reference divider */
1304 aty_pll_wait_readupdate(par);
1305 aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider & 0x3ff);
1306 aty_pll_writeupdate(par);
1307
1308 div3 = aty_ld_pll(PPLL_DIV_3);
1309 div3 &= ~PPLL_FB3_DIV_MASK;
1310 div3 |= pll->feedback_divider;
1311 div3 &= ~PPLL_POST3_DIV_MASK;
1312 div3 |= post_conv[pll->post_divider] << 16;
1313
1314 /* write feedback and post dividers */
1315 aty_pll_wait_readupdate(par);
1316 aty_st_pll(PPLL_DIV_3, div3);
1317 aty_pll_writeupdate(par);
1318
1319 aty_pll_wait_readupdate(par);
1320 aty_st_pll(HTOTAL_CNTL, 0); /* no horiz crtc adjustment */
1321 aty_pll_writeupdate(par);
1322
1323 /* clear the reset, just in case */
1324 aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~PPLL_RESET);
1325 }
1326
1327
1328 static int aty128_var_to_pll(u32 period_in_ps, struct aty128_pll *pll,
1329 const struct aty128fb_par *par)
1330 {
1331 const struct aty128_constants c = par->constants;
1332 unsigned char post_dividers[] = {1,2,4,8,3,6,12};
1333 u32 output_freq;
1334 u32 vclk; /* in .01 MHz */
1335 int i;
1336 u32 n, d;
1337
1338 vclk = 100000000 / period_in_ps; /* convert units to 10 kHz */
1339
1340 /* adjust pixel clock if necessary */
1341 if (vclk > c.ppll_max)
1342 vclk = c.ppll_max;
1343 if (vclk * 12 < c.ppll_min)
1344 vclk = c.ppll_min/12;
1345
1346 /* now, find an acceptable divider */
1347 for (i = 0; i < sizeof(post_dividers); i++) {
1348 output_freq = post_dividers[i] * vclk;
1349 if (output_freq >= c.ppll_min && output_freq <= c.ppll_max)
1350 break;
1351 }
1352
1353 /* calculate feedback divider */
1354 n = c.ref_divider * output_freq;
1355 d = c.ref_clk;
1356
1357 pll->post_divider = post_dividers[i];
1358 pll->feedback_divider = round_div(n, d);
1359 pll->vclk = vclk;
1360
1361 DBG("post %d feedback %d vlck %d output %d ref_divider %d "
1362 "vclk_per: %d\n", pll->post_divider,
1363 pll->feedback_divider, vclk, output_freq,
1364 c.ref_divider, period_in_ps);
1365
1366 return 0;
1367 }
1368
1369
1370 static int aty128_pll_to_var(const struct aty128_pll *pll, struct fb_var_screeninfo *var)
1371 {
1372 var->pixclock = 100000000 / pll->vclk;
1373
1374 return 0;
1375 }
1376
1377
1378 static void aty128_set_fifo(const struct aty128_ddafifo *dsp,
1379 const struct aty128fb_par *par)
1380 {
1381 aty_st_le32(DDA_CONFIG, dsp->dda_config);
1382 aty_st_le32(DDA_ON_OFF, dsp->dda_on_off);
1383 }
1384
1385
1386 static int aty128_ddafifo(struct aty128_ddafifo *dsp,
1387 const struct aty128_pll *pll,
1388 u32 depth,
1389 const struct aty128fb_par *par)
1390 {
1391 const struct aty128_meminfo *m = par->mem;
1392 u32 xclk = par->constants.xclk;
1393 u32 fifo_width = par->constants.fifo_width;
1394 u32 fifo_depth = par->constants.fifo_depth;
1395 s32 x, b, p, ron, roff;
1396 u32 n, d, bpp;
1397
1398 /* round up to multiple of 8 */
1399 bpp = (depth+7) & ~7;
1400
1401 n = xclk * fifo_width;
1402 d = pll->vclk * bpp;
1403 x = round_div(n, d);
1404
1405 ron = 4 * m->MB +
1406 3 * ((m->Trcd - 2 > 0) ? m->Trcd - 2 : 0) +
1407 2 * m->Trp +
1408 m->Twr +
1409 m->CL +
1410 m->Tr2w +
1411 x;
1412
1413 DBG("x %x\n", x);
1414
1415 b = 0;
1416 while (x) {
1417 x >>= 1;
1418 b++;
1419 }
1420 p = b + 1;
1421
1422 ron <<= (11 - p);
1423
1424 n <<= (11 - p);
1425 x = round_div(n, d);
1426 roff = x * (fifo_depth - 4);
1427
1428 if ((ron + m->Rloop) >= roff) {
1429 printk(KERN_ERR "aty128fb: Mode out of range!\n");
1430 return -EINVAL;
1431 }
1432
1433 DBG("p: %x rloop: %x x: %x ron: %x roff: %x\n",
1434 p, m->Rloop, x, ron, roff);
1435
1436 dsp->dda_config = p << 16 | m->Rloop << 20 | x;
1437 dsp->dda_on_off = ron << 16 | roff;
1438
1439 return 0;
1440 }
1441
1442
1443 /*
1444 * This actually sets the video mode.
1445 */
1446 static int aty128fb_set_par(struct fb_info *info)
1447 {
1448 struct aty128fb_par *par = info->par;
1449 u32 config;
1450 int err;
1451
1452 if ((err = aty128_decode_var(&info->var, par)) != 0)
1453 return err;
1454
1455 if (par->blitter_may_be_busy)
1456 wait_for_idle(par);
1457
1458 /* clear all registers that may interfere with mode setting */
1459 aty_st_le32(OVR_CLR, 0);
1460 aty_st_le32(OVR_WID_LEFT_RIGHT, 0);
1461 aty_st_le32(OVR_WID_TOP_BOTTOM, 0);
1462 aty_st_le32(OV0_SCALE_CNTL, 0);
1463 aty_st_le32(MPP_TB_CONFIG, 0);
1464 aty_st_le32(MPP_GP_CONFIG, 0);
1465 aty_st_le32(SUBPIC_CNTL, 0);
1466 aty_st_le32(VIPH_CONTROL, 0);
1467 aty_st_le32(I2C_CNTL_1, 0); /* turn off i2c */
1468 aty_st_le32(GEN_INT_CNTL, 0); /* turn off interrupts */
1469 aty_st_le32(CAP0_TRIG_CNTL, 0);
1470 aty_st_le32(CAP1_TRIG_CNTL, 0);
1471
1472 aty_st_8(CRTC_EXT_CNTL + 1, 4); /* turn video off */
1473
1474 aty128_set_crtc(&par->crtc, par);
1475 aty128_set_pll(&par->pll, par);
1476 aty128_set_fifo(&par->fifo_reg, par);
1477
1478 config = aty_ld_le32(CONFIG_CNTL) & ~3;
1479
1480 #if defined(__BIG_ENDIAN)
1481 if (par->crtc.bpp == 32)
1482 config |= 2; /* make aperture do 32 bit swapping */
1483 else if (par->crtc.bpp == 16)
1484 config |= 1; /* make aperture do 16 bit swapping */
1485 #endif
1486
1487 aty_st_le32(CONFIG_CNTL, config);
1488 aty_st_8(CRTC_EXT_CNTL + 1, 0); /* turn the video back on */
1489
1490 info->fix.line_length = (par->crtc.vxres * par->crtc.bpp) >> 3;
1491 info->fix.visual = par->crtc.bpp == 8 ? FB_VISUAL_PSEUDOCOLOR
1492 : FB_VISUAL_DIRECTCOLOR;
1493
1494 #ifdef CONFIG_PMAC_PBOOK
1495 if (par->chip_gen == rage_M3) {
1496 aty128_set_crt_enable(par, par->crt_on);
1497 aty128_set_lcd_enable(par, par->lcd_on);
1498 }
1499 #endif
1500 if (par->accel_flags & FB_ACCELF_TEXT)
1501 aty128_init_engine(par);
1502
1503 #ifdef CONFIG_BOOTX_TEXT
1504 btext_update_display(info->fix.smem_start,
1505 (((par->crtc.h_total>>16) & 0xff)+1)*8,
1506 ((par->crtc.v_total>>16) & 0x7ff)+1,
1507 par->crtc.bpp,
1508 par->crtc.vxres*par->crtc.bpp/8);
1509 #endif /* CONFIG_BOOTX_TEXT */
1510
1511 return 0;
1512 }
1513
1514 /*
1515 * encode/decode the User Defined Part of the Display
1516 */
1517
1518 static int aty128_decode_var(struct fb_var_screeninfo *var, struct aty128fb_par *par)
1519 {
1520 int err;
1521 struct aty128_crtc crtc;
1522 struct aty128_pll pll;
1523 struct aty128_ddafifo fifo_reg;
1524
1525 if ((err = aty128_var_to_crtc(var, &crtc, par)))
1526 return err;
1527
1528 if ((err = aty128_var_to_pll(var->pixclock, &pll, par)))
1529 return err;
1530
1531 if ((err = aty128_ddafifo(&fifo_reg, &pll, crtc.depth, par)))
1532 return err;
1533
1534 par->crtc = crtc;
1535 par->pll = pll;
1536 par->fifo_reg = fifo_reg;
1537 par->accel_flags = var->accel_flags;
1538
1539 return 0;
1540 }
1541
1542
1543 static int aty128_encode_var(struct fb_var_screeninfo *var,
1544 const struct aty128fb_par *par)
1545 {
1546 int err;
1547
1548 if ((err = aty128_crtc_to_var(&par->crtc, var)))
1549 return err;
1550
1551 if ((err = aty128_pll_to_var(&par->pll, var)))
1552 return err;
1553
1554 var->nonstd = 0;
1555 var->activate = 0;
1556
1557 var->height = -1;
1558 var->width = -1;
1559 var->accel_flags = par->accel_flags;
1560
1561 return 0;
1562 }
1563
1564
1565 static int aty128fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
1566 {
1567 struct aty128fb_par par;
1568 int err;
1569
1570 par = *(struct aty128fb_par *)info->par;
1571 if ((err = aty128_decode_var(var, &par)) != 0)
1572 return err;
1573 aty128_encode_var(var, &par);
1574 return 0;
1575 }
1576
1577
1578 /*
1579 * Pan or Wrap the Display
1580 */
1581 static int aty128fb_pan_display(struct fb_var_screeninfo *var, struct fb_info *fb)
1582 {
1583 struct aty128fb_par *par = fb->par;
1584 u32 xoffset, yoffset;
1585 u32 offset;
1586 u32 xres, yres;
1587
1588 xres = (((par->crtc.h_total >> 16) & 0xff) + 1) << 3;
1589 yres = ((par->crtc.v_total >> 16) & 0x7ff) + 1;
1590
1591 xoffset = (var->xoffset +7) & ~7;
1592 yoffset = var->yoffset;
1593
1594 if (xoffset+xres > par->crtc.vxres || yoffset+yres > par->crtc.vyres)
1595 return -EINVAL;
1596
1597 par->crtc.xoffset = xoffset;
1598 par->crtc.yoffset = yoffset;
1599
1600 offset = ((yoffset * par->crtc.vxres + xoffset)*(par->crtc.bpp >> 3)) & ~7;
1601
1602 if (par->crtc.bpp == 24)
1603 offset += 8 * (offset % 3); /* Must be multiple of 8 and 3 */
1604
1605 aty_st_le32(CRTC_OFFSET, offset);
1606
1607 return 0;
1608 }
1609
1610
1611 /*
1612 * Helper function to store a single palette register
1613 */
1614 static void aty128_st_pal(u_int regno, u_int red, u_int green, u_int blue,
1615 struct aty128fb_par *par)
1616 {
1617 if (par->chip_gen == rage_M3) {
1618 #if 0
1619 /* Note: For now, on M3, we set palette on both heads, which may
1620 * be useless. Can someone with a M3 check this ?
1621 *
1622 * This code would still be useful if using the second CRTC to
1623 * do mirroring
1624 */
1625
1626 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PALETTE_ACCESS_CNTL);
1627 aty_st_8(PALETTE_INDEX, regno);
1628 aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1629 #endif
1630 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & ~DAC_PALETTE_ACCESS_CNTL);
1631 }
1632
1633 aty_st_8(PALETTE_INDEX, regno);
1634 aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1635 }
1636
1637 static int aty128fb_sync(struct fb_info *info)
1638 {
1639 struct aty128fb_par *par = info->par;
1640
1641 if (par->blitter_may_be_busy)
1642 wait_for_idle(par);
1643 return 0;
1644 }
1645
1646 #ifndef MODULE
1647 static int __init aty128fb_setup(char *options)
1648 {
1649 char *this_opt;
1650
1651 if (!options || !*options)
1652 return 0;
1653
1654 while ((this_opt = strsep(&options, ",")) != NULL) {
1655 #ifdef CONFIG_PMAC_PBOOK
1656 if (!strncmp(this_opt, "lcd:", 4)) {
1657 default_lcd_on = simple_strtoul(this_opt+4, NULL, 0);
1658 continue;
1659 } else if (!strncmp(this_opt, "crt:", 4)) {
1660 default_crt_on = simple_strtoul(this_opt+4, NULL, 0);
1661 continue;
1662 }
1663 #endif
1664 #ifdef CONFIG_MTRR
1665 if(!strncmp(this_opt, "nomtrr", 6)) {
1666 mtrr = 0;
1667 continue;
1668 }
1669 #endif
1670 #ifdef CONFIG_PPC_PMAC
1671 /* vmode and cmode deprecated */
1672 if (!strncmp(this_opt, "vmode:", 6)) {
1673 unsigned int vmode = simple_strtoul(this_opt+6, NULL, 0);
1674 if (vmode > 0 && vmode <= VMODE_MAX)
1675 default_vmode = vmode;
1676 continue;
1677 } else if (!strncmp(this_opt, "cmode:", 6)) {
1678 unsigned int cmode = simple_strtoul(this_opt+6, NULL, 0);
1679 switch (cmode) {
1680 case 0:
1681 case 8:
1682 default_cmode = CMODE_8;
1683 break;
1684 case 15:
1685 case 16:
1686 default_cmode = CMODE_16;
1687 break;
1688 case 24:
1689 case 32:
1690 default_cmode = CMODE_32;
1691 break;
1692 }
1693 continue;
1694 }
1695 #endif /* CONFIG_PPC_PMAC */
1696 mode_option = this_opt;
1697 }
1698 return 0;
1699 }
1700 #endif /* MODULE */
1701
1702
1703 /*
1704 * Initialisation
1705 */
1706
1707 #ifdef CONFIG_PPC_PMAC
1708 static void aty128_early_resume(void *data)
1709 {
1710 struct aty128fb_par *par = data;
1711
1712 if (try_acquire_console_sem())
1713 return;
1714 aty128_do_resume(par->pdev);
1715 release_console_sem();
1716 }
1717 #endif /* CONFIG_PPC_PMAC */
1718
1719 static int __init aty128_init(struct pci_dev *pdev, const struct pci_device_id *ent)
1720 {
1721 struct fb_info *info = pci_get_drvdata(pdev);
1722 struct aty128fb_par *par = info->par;
1723 struct fb_var_screeninfo var;
1724 char video_card[DEVICE_NAME_SIZE];
1725 u8 chip_rev;
1726 u32 dac;
1727
1728 if (!par->vram_size) /* may have already been probed */
1729 par->vram_size = aty_ld_le32(CONFIG_MEMSIZE) & 0x03FFFFFF;
1730
1731 /* Get the chip revision */
1732 chip_rev = (aty_ld_le32(CONFIG_CNTL) >> 16) & 0x1F;
1733
1734 strcpy(video_card, "Rage128 XX ");
1735 video_card[8] = ent->device >> 8;
1736 video_card[9] = ent->device & 0xFF;
1737
1738 /* range check to make sure */
1739 if (ent->driver_data < (sizeof(r128_family)/sizeof(char *)))
1740 strncat(video_card, r128_family[ent->driver_data], sizeof(video_card));
1741
1742 printk(KERN_INFO "aty128fb: %s [chip rev 0x%x] ", video_card, chip_rev);
1743
1744 if (par->vram_size % (1024 * 1024) == 0)
1745 printk("%dM %s\n", par->vram_size / (1024*1024), par->mem->name);
1746 else
1747 printk("%dk %s\n", par->vram_size / 1024, par->mem->name);
1748
1749 par->chip_gen = ent->driver_data;
1750
1751 /* fill in info */
1752 info->fbops = &aty128fb_ops;
1753 info->flags = FBINFO_FLAG_DEFAULT;
1754
1755 #ifdef CONFIG_PMAC_PBOOK
1756 par->lcd_on = default_lcd_on;
1757 par->crt_on = default_crt_on;
1758 #endif
1759
1760 var = default_var;
1761 #ifdef CONFIG_PPC_PMAC
1762 if (_machine == _MACH_Pmac) {
1763 /* Indicate sleep capability */
1764 if (par->chip_gen == rage_M3) {
1765 pmac_call_feature(PMAC_FTR_DEVICE_CAN_WAKE, NULL, 0, 1);
1766 pmac_set_early_video_resume(aty128_early_resume, par);
1767 }
1768
1769 /* Find default mode */
1770 if (mode_option) {
1771 if (!mac_find_mode(&var, info, mode_option, 8))
1772 var = default_var;
1773 } else {
1774 if (default_vmode <= 0 || default_vmode > VMODE_MAX)
1775 default_vmode = VMODE_1024_768_60;
1776
1777 /* iMacs need that resolution
1778 * PowerMac2,1 first r128 iMacs
1779 * PowerMac2,2 summer 2000 iMacs
1780 * PowerMac4,1 january 2001 iMacs "flower power"
1781 */
1782 if (machine_is_compatible("PowerMac2,1") ||
1783 machine_is_compatible("PowerMac2,2") ||
1784 machine_is_compatible("PowerMac4,1"))
1785 default_vmode = VMODE_1024_768_75;
1786
1787 /* iBook SE */
1788 if (machine_is_compatible("PowerBook2,2"))
1789 default_vmode = VMODE_800_600_60;
1790
1791 /* PowerBook Firewire (Pismo), iBook Dual USB */
1792 if (machine_is_compatible("PowerBook3,1") ||
1793 machine_is_compatible("PowerBook4,1"))
1794 default_vmode = VMODE_1024_768_60;
1795
1796 /* PowerBook Titanium */
1797 if (machine_is_compatible("PowerBook3,2"))
1798 default_vmode = VMODE_1152_768_60;
1799
1800 if (default_cmode > 16)
1801 default_cmode = CMODE_32;
1802 else if (default_cmode > 8)
1803 default_cmode = CMODE_16;
1804 else
1805 default_cmode = CMODE_8;
1806
1807 if (mac_vmode_to_var(default_vmode, default_cmode, &var))
1808 var = default_var;
1809 }
1810 } else
1811 #endif /* CONFIG_PPC_PMAC */
1812 {
1813 if (mode_option)
1814 if (fb_find_mode(&var, info, mode_option, NULL,
1815 0, &defaultmode, 8) == 0)
1816 var = default_var;
1817 }
1818
1819 var.accel_flags &= ~FB_ACCELF_TEXT;
1820 // var.accel_flags |= FB_ACCELF_TEXT;/* FIXME Will add accel later */
1821
1822 if (aty128fb_check_var(&var, info)) {
1823 printk(KERN_ERR "aty128fb: Cannot set default mode.\n");
1824 return 0;
1825 }
1826
1827 /* setup the DAC the way we like it */
1828 dac = aty_ld_le32(DAC_CNTL);
1829 dac |= (DAC_8BIT_EN | DAC_RANGE_CNTL);
1830 dac |= DAC_MASK;
1831 if (par->chip_gen == rage_M3)
1832 dac |= DAC_PALETTE2_SNOOP_EN;
1833 aty_st_le32(DAC_CNTL, dac);
1834
1835 /* turn off bus mastering, just in case */
1836 aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL) | BUS_MASTER_DIS);
1837
1838 info->var = var;
1839 fb_alloc_cmap(&info->cmap, 256, 0);
1840
1841 var.activate = FB_ACTIVATE_NOW;
1842
1843 aty128_init_engine(par);
1844
1845 if (register_framebuffer(info) < 0)
1846 return 0;
1847
1848 #ifdef CONFIG_PMAC_BACKLIGHT
1849 /* Could be extended to Rage128Pro LVDS output too */
1850 if (par->chip_gen == rage_M3)
1851 register_backlight_controller(&aty128_backlight_controller, par, "ati");
1852 #endif /* CONFIG_PMAC_BACKLIGHT */
1853
1854 par->pm_reg = pci_find_capability(pdev, PCI_CAP_ID_PM);
1855 par->pdev = pdev;
1856 par->asleep = 0;
1857 par->lock_blank = 0;
1858
1859 printk(KERN_INFO "fb%d: %s frame buffer device on %s\n",
1860 info->node, info->fix.id, video_card);
1861
1862 return 1; /* success! */
1863 }
1864
1865 #ifdef CONFIG_PCI
1866 /* register a card ++ajoshi */
1867 static int __init aty128_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1868 {
1869 unsigned long fb_addr, reg_addr;
1870 struct aty128fb_par *par;
1871 struct fb_info *info;
1872 int err;
1873 #ifndef __sparc__
1874 void __iomem *bios = NULL;
1875 #endif
1876
1877 /* Enable device in PCI config */
1878 if ((err = pci_enable_device(pdev))) {
1879 printk(KERN_ERR "aty128fb: Cannot enable PCI device: %d\n",
1880 err);
1881 return -ENODEV;
1882 }
1883
1884 fb_addr = pci_resource_start(pdev, 0);
1885 if (!request_mem_region(fb_addr, pci_resource_len(pdev, 0),
1886 "aty128fb FB")) {
1887 printk(KERN_ERR "aty128fb: cannot reserve frame "
1888 "buffer memory\n");
1889 return -ENODEV;
1890 }
1891
1892 reg_addr = pci_resource_start(pdev, 2);
1893 if (!request_mem_region(reg_addr, pci_resource_len(pdev, 2),
1894 "aty128fb MMIO")) {
1895 printk(KERN_ERR "aty128fb: cannot reserve MMIO region\n");
1896 goto err_free_fb;
1897 }
1898
1899 /* We have the resources. Now virtualize them */
1900 info = framebuffer_alloc(sizeof(struct aty128fb_par), &pdev->dev);
1901 if (info == NULL) {
1902 printk(KERN_ERR "aty128fb: can't alloc fb_info_aty128\n");
1903 goto err_free_mmio;
1904 }
1905 par = info->par;
1906
1907 info->pseudo_palette = par->pseudo_palette;
1908 info->fix = aty128fb_fix;
1909
1910 /* Virtualize mmio region */
1911 info->fix.mmio_start = reg_addr;
1912 par->regbase = ioremap(reg_addr, pci_resource_len(pdev, 2));
1913 if (!par->regbase)
1914 goto err_free_info;
1915
1916 /* Grab memory size from the card */
1917 // How does this relate to the resource length from the PCI hardware?
1918 par->vram_size = aty_ld_le32(CONFIG_MEMSIZE) & 0x03FFFFFF;
1919
1920 /* Virtualize the framebuffer */
1921 info->screen_base = ioremap(fb_addr, par->vram_size);
1922 if (!info->screen_base)
1923 goto err_unmap_out;
1924
1925 /* Set up info->fix */
1926 info->fix = aty128fb_fix;
1927 info->fix.smem_start = fb_addr;
1928 info->fix.smem_len = par->vram_size;
1929 info->fix.mmio_start = reg_addr;
1930
1931 /* If we can't test scratch registers, something is seriously wrong */
1932 if (!register_test(par)) {
1933 printk(KERN_ERR "aty128fb: Can't write to video register!\n");
1934 goto err_out;
1935 }
1936
1937 #ifndef __sparc__
1938 bios = aty128_map_ROM(par, pdev);
1939 #ifdef CONFIG_X86
1940 if (bios == NULL)
1941 bios = aty128_find_mem_vbios(par);
1942 #endif
1943 if (bios == NULL)
1944 printk(KERN_INFO "aty128fb: BIOS not located, guessing timings.\n");
1945 else {
1946 printk(KERN_INFO "aty128fb: Rage128 BIOS located\n");
1947 aty128_get_pllinfo(par, bios);
1948 pci_unmap_rom(pdev, bios);
1949 }
1950 #endif /* __sparc__ */
1951
1952 aty128_timings(par);
1953 pci_set_drvdata(pdev, info);
1954
1955 if (!aty128_init(pdev, ent))
1956 goto err_out;
1957
1958 #ifdef CONFIG_MTRR
1959 if (mtrr) {
1960 par->mtrr.vram = mtrr_add(info->fix.smem_start,
1961 par->vram_size, MTRR_TYPE_WRCOMB, 1);
1962 par->mtrr.vram_valid = 1;
1963 /* let there be speed */
1964 printk(KERN_INFO "aty128fb: Rage128 MTRR set to ON\n");
1965 }
1966 #endif /* CONFIG_MTRR */
1967 return 0;
1968
1969 err_out:
1970 iounmap(info->screen_base);
1971 err_unmap_out:
1972 iounmap(par->regbase);
1973 err_free_info:
1974 framebuffer_release(info);
1975 err_free_mmio:
1976 release_mem_region(pci_resource_start(pdev, 2),
1977 pci_resource_len(pdev, 2));
1978 err_free_fb:
1979 release_mem_region(pci_resource_start(pdev, 0),
1980 pci_resource_len(pdev, 0));
1981 return -ENODEV;
1982 }
1983
1984 static void __devexit aty128_remove(struct pci_dev *pdev)
1985 {
1986 struct fb_info *info = pci_get_drvdata(pdev);
1987 struct aty128fb_par *par;
1988
1989 if (!info)
1990 return;
1991
1992 par = info->par;
1993
1994 unregister_framebuffer(info);
1995 #ifdef CONFIG_MTRR
1996 if (par->mtrr.vram_valid)
1997 mtrr_del(par->mtrr.vram, info->fix.smem_start,
1998 par->vram_size);
1999 #endif /* CONFIG_MTRR */
2000 iounmap(par->regbase);
2001 iounmap(info->screen_base);
2002
2003 release_mem_region(pci_resource_start(pdev, 0),
2004 pci_resource_len(pdev, 0));
2005 release_mem_region(pci_resource_start(pdev, 2),
2006 pci_resource_len(pdev, 2));
2007 framebuffer_release(info);
2008 }
2009 #endif /* CONFIG_PCI */
2010
2011
2012
2013 /*
2014 * Blank the display.
2015 */
2016 static int aty128fb_blank(int blank, struct fb_info *fb)
2017 {
2018 struct aty128fb_par *par = fb->par;
2019 u8 state = 0;
2020
2021 if (par->lock_blank || par->asleep)
2022 return 0;
2023
2024 #ifdef CONFIG_PMAC_BACKLIGHT
2025 if ((_machine == _MACH_Pmac) && blank)
2026 set_backlight_enable(0);
2027 #endif /* CONFIG_PMAC_BACKLIGHT */
2028
2029 if (blank & FB_BLANK_VSYNC_SUSPEND)
2030 state |= 2;
2031 if (blank & FB_BLANK_HSYNC_SUSPEND)
2032 state |= 1;
2033 if (blank & FB_BLANK_POWERDOWN)
2034 state |= 4;
2035
2036 aty_st_8(CRTC_EXT_CNTL+1, state);
2037
2038 #ifdef CONFIG_PMAC_PBOOK
2039 if (par->chip_gen == rage_M3) {
2040 aty128_set_crt_enable(par, par->crt_on && !blank);
2041 aty128_set_lcd_enable(par, par->lcd_on && !blank);
2042 }
2043 #endif
2044 #ifdef CONFIG_PMAC_BACKLIGHT
2045 if ((_machine == _MACH_Pmac) && !blank)
2046 set_backlight_enable(1);
2047 #endif /* CONFIG_PMAC_BACKLIGHT */
2048 return 0;
2049 }
2050
2051 /*
2052 * Set a single color register. The values supplied are already
2053 * rounded down to the hardware's capabilities (according to the
2054 * entries in the var structure). Return != 0 for invalid regno.
2055 */
2056 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
2057 u_int transp, struct fb_info *info)
2058 {
2059 struct aty128fb_par *par = info->par;
2060
2061 if (regno > 255
2062 || (par->crtc.depth == 16 && regno > 63)
2063 || (par->crtc.depth == 15 && regno > 31))
2064 return 1;
2065
2066 red >>= 8;
2067 green >>= 8;
2068 blue >>= 8;
2069
2070 if (regno < 16) {
2071 int i;
2072 u32 *pal = info->pseudo_palette;
2073
2074 switch (par->crtc.depth) {
2075 case 15:
2076 pal[regno] = (regno << 10) | (regno << 5) | regno;
2077 break;
2078 case 16:
2079 pal[regno] = (regno << 11) | (regno << 6) | regno;
2080 break;
2081 case 24:
2082 pal[regno] = (regno << 16) | (regno << 8) | regno;
2083 break;
2084 case 32:
2085 i = (regno << 8) | regno;
2086 pal[regno] = (i << 16) | i;
2087 break;
2088 }
2089 }
2090
2091 if (par->crtc.depth == 16 && regno > 0) {
2092 /*
2093 * With the 5-6-5 split of bits for RGB at 16 bits/pixel, we
2094 * have 32 slots for R and B values but 64 slots for G values.
2095 * Thus the R and B values go in one slot but the G value
2096 * goes in a different slot, and we have to avoid disturbing
2097 * the other fields in the slots we touch.
2098 */
2099 par->green[regno] = green;
2100 if (regno < 32) {
2101 par->red[regno] = red;
2102 par->blue[regno] = blue;
2103 aty128_st_pal(regno * 8, red, par->green[regno*2],
2104 blue, par);
2105 }
2106 red = par->red[regno/2];
2107 blue = par->blue[regno/2];
2108 regno <<= 2;
2109 } else if (par->crtc.bpp == 16)
2110 regno <<= 3;
2111 aty128_st_pal(regno, red, green, blue, par);
2112
2113 return 0;
2114 }
2115
2116 #define ATY_MIRROR_LCD_ON 0x00000001
2117 #define ATY_MIRROR_CRT_ON 0x00000002
2118
2119 /* out param: u32* backlight value: 0 to 15 */
2120 #define FBIO_ATY128_GET_MIRROR _IOR('@', 1, __u32)
2121 /* in param: u32* backlight value: 0 to 15 */
2122 #define FBIO_ATY128_SET_MIRROR _IOW('@', 2, __u32)
2123
2124 static int aty128fb_ioctl(struct inode *inode, struct file *file, u_int cmd,
2125 u_long arg, struct fb_info *info)
2126 {
2127 #ifdef CONFIG_PMAC_PBOOK
2128 struct aty128fb_par *par = info->par;
2129 u32 value;
2130 int rc;
2131
2132 switch (cmd) {
2133 case FBIO_ATY128_SET_MIRROR:
2134 if (par->chip_gen != rage_M3)
2135 return -EINVAL;
2136 rc = get_user(value, (__u32 __user *)arg);
2137 if (rc)
2138 return rc;
2139 par->lcd_on = (value & 0x01) != 0;
2140 par->crt_on = (value & 0x02) != 0;
2141 if (!par->crt_on && !par->lcd_on)
2142 par->lcd_on = 1;
2143 aty128_set_crt_enable(par, par->crt_on);
2144 aty128_set_lcd_enable(par, par->lcd_on);
2145 return 0;
2146 case FBIO_ATY128_GET_MIRROR:
2147 if (par->chip_gen != rage_M3)
2148 return -EINVAL;
2149 value = (par->crt_on << 1) | par->lcd_on;
2150 return put_user(value, (__u32 __user *)arg);
2151 }
2152 #endif
2153 return -EINVAL;
2154 }
2155
2156 #ifdef CONFIG_PMAC_BACKLIGHT
2157 static int backlight_conv[] = {
2158 0xff, 0xc0, 0xb5, 0xaa, 0x9f, 0x94, 0x89, 0x7e,
2159 0x73, 0x68, 0x5d, 0x52, 0x47, 0x3c, 0x31, 0x24
2160 };
2161
2162 /* We turn off the LCD completely instead of just dimming the backlight.
2163 * This provides greater power saving and the display is useless without
2164 * backlight anyway
2165 */
2166 #define BACKLIGHT_LVDS_OFF
2167 /* That one prevents proper CRT output with LCD off */
2168 #undef BACKLIGHT_DAC_OFF
2169
2170 static int aty128_set_backlight_enable(int on, int level, void *data)
2171 {
2172 struct aty128fb_par *par = data;
2173 unsigned int reg = aty_ld_le32(LVDS_GEN_CNTL);
2174
2175 if (!par->lcd_on)
2176 on = 0;
2177 reg |= LVDS_BL_MOD_EN | LVDS_BLON;
2178 if (on && level > BACKLIGHT_OFF) {
2179 reg |= LVDS_DIGION;
2180 if (!(reg & LVDS_ON)) {
2181 reg &= ~LVDS_BLON;
2182 aty_st_le32(LVDS_GEN_CNTL, reg);
2183 (void)aty_ld_le32(LVDS_GEN_CNTL);
2184 mdelay(10);
2185 reg |= LVDS_BLON;
2186 aty_st_le32(LVDS_GEN_CNTL, reg);
2187 }
2188 reg &= ~LVDS_BL_MOD_LEVEL_MASK;
2189 reg |= (backlight_conv[level] << LVDS_BL_MOD_LEVEL_SHIFT);
2190 #ifdef BACKLIGHT_LVDS_OFF
2191 reg |= LVDS_ON | LVDS_EN;
2192 reg &= ~LVDS_DISPLAY_DIS;
2193 #endif
2194 aty_st_le32(LVDS_GEN_CNTL, reg);
2195 #ifdef BACKLIGHT_DAC_OFF
2196 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & (~DAC_PDWN));
2197 #endif
2198 } else {
2199 reg &= ~LVDS_BL_MOD_LEVEL_MASK;
2200 reg |= (backlight_conv[0] << LVDS_BL_MOD_LEVEL_SHIFT);
2201 #ifdef BACKLIGHT_LVDS_OFF
2202 reg |= LVDS_DISPLAY_DIS;
2203 aty_st_le32(LVDS_GEN_CNTL, reg);
2204 (void)aty_ld_le32(LVDS_GEN_CNTL);
2205 udelay(10);
2206 reg &= ~(LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION);
2207 #endif
2208 aty_st_le32(LVDS_GEN_CNTL, reg);
2209 #ifdef BACKLIGHT_DAC_OFF
2210 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PDWN);
2211 #endif
2212 }
2213
2214 return 0;
2215 }
2216
2217 static int aty128_set_backlight_level(int level, void* data)
2218 {
2219 return aty128_set_backlight_enable(1, level, data);
2220 }
2221 #endif /* CONFIG_PMAC_BACKLIGHT */
2222
2223 #if 0
2224 /*
2225 * Accelerated functions
2226 */
2227
2228 static inline void aty128_rectcopy(int srcx, int srcy, int dstx, int dsty,
2229 u_int width, u_int height,
2230 struct fb_info_aty128 *par)
2231 {
2232 u32 save_dp_datatype, save_dp_cntl, dstval;
2233
2234 if (!width || !height)
2235 return;
2236
2237 dstval = depth_to_dst(par->current_par.crtc.depth);
2238 if (dstval == DST_24BPP) {
2239 srcx *= 3;
2240 dstx *= 3;
2241 width *= 3;
2242 } else if (dstval == -EINVAL) {
2243 printk("aty128fb: invalid depth or RGBA\n");
2244 return;
2245 }
2246
2247 wait_for_fifo(2, par);
2248 save_dp_datatype = aty_ld_le32(DP_DATATYPE);
2249 save_dp_cntl = aty_ld_le32(DP_CNTL);
2250
2251 wait_for_fifo(6, par);
2252 aty_st_le32(SRC_Y_X, (srcy << 16) | srcx);
2253 aty_st_le32(DP_MIX, ROP3_SRCCOPY | DP_SRC_RECT);
2254 aty_st_le32(DP_CNTL, DST_X_LEFT_TO_RIGHT | DST_Y_TOP_TO_BOTTOM);
2255 aty_st_le32(DP_DATATYPE, save_dp_datatype | dstval | SRC_DSTCOLOR);
2256
2257 aty_st_le32(DST_Y_X, (dsty << 16) | dstx);
2258 aty_st_le32(DST_HEIGHT_WIDTH, (height << 16) | width);
2259
2260 par->blitter_may_be_busy = 1;
2261
2262 wait_for_fifo(2, par);
2263 aty_st_le32(DP_DATATYPE, save_dp_datatype);
2264 aty_st_le32(DP_CNTL, save_dp_cntl);
2265 }
2266
2267
2268 /*
2269 * Text mode accelerated functions
2270 */
2271
2272 static void fbcon_aty128_bmove(struct display *p, int sy, int sx, int dy, int dx,
2273 int height, int width)
2274 {
2275 sx *= fontwidth(p);
2276 sy *= fontheight(p);
2277 dx *= fontwidth(p);
2278 dy *= fontheight(p);
2279 width *= fontwidth(p);
2280 height *= fontheight(p);
2281
2282 aty128_rectcopy(sx, sy, dx, dy, width, height,
2283 (struct fb_info_aty128 *)p->fb_info);
2284 }
2285 #endif /* 0 */
2286
2287 static void aty128_set_suspend(struct aty128fb_par *par, int suspend)
2288 {
2289 u32 pmgt;
2290 u16 pwr_command;
2291 struct pci_dev *pdev = par->pdev;
2292
2293 if (!par->pm_reg)
2294 return;
2295
2296 /* Set the chip into the appropriate suspend mode (we use D2,
2297 * D3 would require a complete re-initialisation of the chip,
2298 * including PCI config registers, clocks, AGP configuration, ...)
2299 */
2300 if (suspend) {
2301 /* Make sure CRTC2 is reset. Remove that the day we decide to
2302 * actually use CRTC2 and replace it with real code for disabling
2303 * the CRTC2 output during sleep
2304 */
2305 aty_st_le32(CRTC2_GEN_CNTL, aty_ld_le32(CRTC2_GEN_CNTL) &
2306 ~(CRTC2_EN));
2307
2308 /* Set the power management mode to be PCI based */
2309 /* Use this magic value for now */
2310 pmgt = 0x0c005407;
2311 aty_st_pll(POWER_MANAGEMENT, pmgt);
2312 (void)aty_ld_pll(POWER_MANAGEMENT);
2313 aty_st_le32(BUS_CNTL1, 0x00000010);
2314 aty_st_le32(MEM_POWER_MISC, 0x0c830000);
2315 mdelay(100);
2316 pci_read_config_word(pdev, par->pm_reg+PCI_PM_CTRL, &pwr_command);
2317 /* Switch PCI power management to D2 */
2318 pci_write_config_word(pdev, par->pm_reg+PCI_PM_CTRL,
2319 (pwr_command & ~PCI_PM_CTRL_STATE_MASK) | 2);
2320 pci_read_config_word(pdev, par->pm_reg+PCI_PM_CTRL, &pwr_command);
2321 } else {
2322 /* Switch back PCI power management to D0 */
2323 mdelay(100);
2324 pci_write_config_word(pdev, par->pm_reg+PCI_PM_CTRL, 0);
2325 pci_read_config_word(pdev, par->pm_reg+PCI_PM_CTRL, &pwr_command);
2326 mdelay(100);
2327 }
2328 }
2329
2330 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2331 {
2332 struct fb_info *info = pci_get_drvdata(pdev);
2333 struct aty128fb_par *par = info->par;
2334 u8 agp;
2335
2336 /* We don't do anything but D2, for now we return 0, but
2337 * we may want to change that. How do we know if the BIOS
2338 * can properly take care of D3 ? Also, with swsusp, we
2339 * know we'll be rebooted, ...
2340 */
2341 #ifdef CONFIG_PPC_PMAC
2342 /* HACK ALERT ! Once I find a proper way to say to each driver
2343 * individually what will happen with it's PCI slot, I'll change
2344 * that. On laptops, the AGP slot is just unclocked, so D2 is
2345 * expected, while on desktops, the card is powered off
2346 */
2347 if (state >= 3)
2348 state = 2;
2349 #endif /* CONFIG_PPC_PMAC */
2350
2351 if (state != 2 || state == pdev->dev.power.power_state)
2352 return 0;
2353
2354 printk(KERN_DEBUG "aty128fb: suspending...\n");
2355
2356 acquire_console_sem();
2357
2358 fb_set_suspend(info, 1);
2359
2360 /* Make sure engine is reset */
2361 wait_for_idle(par);
2362 aty128_reset_engine(par);
2363 wait_for_idle(par);
2364
2365 /* Blank display and LCD */
2366 aty128fb_blank(VESA_POWERDOWN, info);
2367
2368 /* Sleep */
2369 par->asleep = 1;
2370 par->lock_blank = 1;
2371
2372 /* Disable AGP. The AGP host should have done it, but since ordering
2373 * isn't always properly guaranteed in this specific case, let's make
2374 * sure it's disabled on card side now. Ultimately, when merging fbdev
2375 * and dri into some common infrastructure, this will be handled
2376 * more nicely. The host bridge side will (or will not) be dealt with
2377 * by the bridge AGP driver, we don't attempt to touch it here.
2378 */
2379 agp = pci_find_capability(pdev, PCI_CAP_ID_AGP);
2380 if (agp) {
2381 u32 cmd;
2382
2383 pci_read_config_dword(pdev, agp + PCI_AGP_COMMAND, &cmd);
2384 if (cmd & PCI_AGP_COMMAND_AGP) {
2385 printk(KERN_INFO "aty128fb: AGP was enabled, "
2386 "disabling ...\n");
2387 cmd &= ~PCI_AGP_COMMAND_AGP;
2388 pci_write_config_dword(pdev, agp + PCI_AGP_COMMAND,
2389 cmd);
2390 }
2391 }
2392
2393 /* We need a way to make sure the fbdev layer will _not_ touch the
2394 * framebuffer before we put the chip to suspend state. On 2.4, I
2395 * used dummy fb ops, 2.5 need proper support for this at the
2396 * fbdev level
2397 */
2398 if (state == 2)
2399 aty128_set_suspend(par, 1);
2400
2401 release_console_sem();
2402
2403 pdev->dev.power.power_state = state;
2404
2405 return 0;
2406 }
2407
2408 static int aty128_do_resume(struct pci_dev *pdev)
2409 {
2410 struct fb_info *info = pci_get_drvdata(pdev);
2411 struct aty128fb_par *par = info->par;
2412
2413 if (pdev->dev.power.power_state == 0)
2414 return 0;
2415
2416 /* Wakeup chip */
2417 if (pdev->dev.power.power_state == 2)
2418 aty128_set_suspend(par, 0);
2419 par->asleep = 0;
2420
2421 /* Restore display & engine */
2422 aty128_reset_engine(par);
2423 wait_for_idle(par);
2424 aty128fb_set_par(info);
2425 fb_pan_display(info, &info->var);
2426 fb_set_cmap(&info->cmap, info);
2427
2428 /* Refresh */
2429 fb_set_suspend(info, 0);
2430
2431 /* Unblank */
2432 par->lock_blank = 0;
2433 aty128fb_blank(0, info);
2434
2435 pdev->dev.power.power_state = PMSG_ON;
2436
2437 printk(KERN_DEBUG "aty128fb: resumed !\n");
2438
2439 return 0;
2440 }
2441
2442 static int aty128_pci_resume(struct pci_dev *pdev)
2443 {
2444 int rc;
2445
2446 acquire_console_sem();
2447 rc = aty128_do_resume(pdev);
2448 release_console_sem();
2449
2450 return rc;
2451 }
2452
2453
2454 static int __init aty128fb_init(void)
2455 {
2456 #ifndef MODULE
2457 char *option = NULL;
2458
2459 if (fb_get_options("aty128fb", &option))
2460 return -ENODEV;
2461 aty128fb_setup(option);
2462 #endif
2463
2464 return pci_register_driver(&aty128fb_driver);
2465 }
2466
2467 static void __exit aty128fb_exit(void)
2468 {
2469 pci_unregister_driver(&aty128fb_driver);
2470 }
2471
2472 module_init(aty128fb_init);
2473
2474 module_exit(aty128fb_exit);
2475
2476 MODULE_AUTHOR("(c)1999-2003 Brad Douglas <brad@neruo.com>");
2477 MODULE_DESCRIPTION("FBDev driver for ATI Rage128 / Pro cards");
2478 MODULE_LICENSE("GPL");
2479 module_param(mode_option, charp, 0);
2480 MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\" ");
2481 #ifdef CONFIG_MTRR
2482 module_param_named(nomtrr, mtrr, invbool, 0);
2483 MODULE_PARM_DESC(nomtrr, "bool: Disable MTRR support (0 or 1=disabled) (default=0)");
2484 #endif
2485