[PATCH] drivers/video: Use ARRAY_SIZE macro
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / video / aty / aty128fb.c
1 /* $Id: aty128fb.c,v 1.1.1.1.36.1 1999/12/11 09:03:05 Exp $
2 * linux/drivers/video/aty128fb.c -- Frame buffer device for ATI Rage128
3 *
4 * Copyright (C) 1999-2003, Brad Douglas <brad@neruo.com>
5 * Copyright (C) 1999, Anthony Tong <atong@uiuc.edu>
6 *
7 * Ani Joshi / Jeff Garzik
8 * - Code cleanup
9 *
10 * Michel Danzer <michdaen@iiic.ethz.ch>
11 * - 15/16 bit cleanup
12 * - fix panning
13 *
14 * Benjamin Herrenschmidt
15 * - pmac-specific PM stuff
16 * - various fixes & cleanups
17 *
18 * Andreas Hundt <andi@convergence.de>
19 * - FB_ACTIVATE fixes
20 *
21 * Paul Mackerras <paulus@samba.org>
22 * - Convert to new framebuffer API,
23 * fix colormap setting at 16 bits/pixel (565)
24 *
25 * Paul Mundt
26 * - PCI hotplug
27 *
28 * Jon Smirl <jonsmirl@yahoo.com>
29 * - PCI ID update
30 * - replace ROM BIOS search
31 *
32 * Based off of Geert's atyfb.c and vfb.c.
33 *
34 * TODO:
35 * - monitor sensing (DDC)
36 * - virtual display
37 * - other platform support (only ppc/x86 supported)
38 * - hardware cursor support
39 *
40 * Please cc: your patches to brad@neruo.com.
41 */
42
43 /*
44 * A special note of gratitude to ATI's devrel for providing documentation,
45 * example code and hardware. Thanks Nitya. -atong and brad
46 */
47
48
49 #include <linux/config.h>
50 #include <linux/module.h>
51 #include <linux/moduleparam.h>
52 #include <linux/kernel.h>
53 #include <linux/errno.h>
54 #include <linux/string.h>
55 #include <linux/mm.h>
56 #include <linux/tty.h>
57 #include <linux/slab.h>
58 #include <linux/vmalloc.h>
59 #include <linux/delay.h>
60 #include <linux/interrupt.h>
61 #include <asm/uaccess.h>
62 #include <linux/fb.h>
63 #include <linux/init.h>
64 #include <linux/pci.h>
65 #include <linux/ioport.h>
66 #include <linux/console.h>
67 #include <asm/io.h>
68
69 #ifdef CONFIG_PPC_PMAC
70 #include <asm/pmac_feature.h>
71 #include <asm/prom.h>
72 #include <asm/pci-bridge.h>
73 #include "../macmodes.h"
74 #endif
75
76 #ifdef CONFIG_PMAC_BACKLIGHT
77 #include <asm/backlight.h>
78 #endif
79
80 #ifdef CONFIG_BOOTX_TEXT
81 #include <asm/btext.h>
82 #endif /* CONFIG_BOOTX_TEXT */
83
84 #ifdef CONFIG_MTRR
85 #include <asm/mtrr.h>
86 #endif
87
88 #include <video/aty128.h>
89
90 /* Debug flag */
91 #undef DEBUG
92
93 #ifdef DEBUG
94 #define DBG(fmt, args...) printk(KERN_DEBUG "aty128fb: %s " fmt, __FUNCTION__, ##args);
95 #else
96 #define DBG(fmt, args...)
97 #endif
98
99 #ifndef CONFIG_PPC_PMAC
100 /* default mode */
101 static struct fb_var_screeninfo default_var __initdata = {
102 /* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */
103 640, 480, 640, 480, 0, 0, 8, 0,
104 {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
105 0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2,
106 0, FB_VMODE_NONINTERLACED
107 };
108
109 #else /* CONFIG_PPC_PMAC */
110 /* default to 1024x768 at 75Hz on PPC - this will work
111 * on the iMac, the usual 640x480 @ 60Hz doesn't. */
112 static struct fb_var_screeninfo default_var = {
113 /* 1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock) */
114 1024, 768, 1024, 768, 0, 0, 8, 0,
115 {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
116 0, 0, -1, -1, 0, 12699, 160, 32, 28, 1, 96, 3,
117 FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
118 FB_VMODE_NONINTERLACED
119 };
120 #endif /* CONFIG_PPC_PMAC */
121
122 /* default modedb mode */
123 /* 640x480, 60 Hz, Non-Interlaced (25.172 MHz dotclock) */
124 static struct fb_videomode defaultmode __initdata = {
125 .refresh = 60,
126 .xres = 640,
127 .yres = 480,
128 .pixclock = 39722,
129 .left_margin = 48,
130 .right_margin = 16,
131 .upper_margin = 33,
132 .lower_margin = 10,
133 .hsync_len = 96,
134 .vsync_len = 2,
135 .sync = 0,
136 .vmode = FB_VMODE_NONINTERLACED
137 };
138
139 /* Chip generations */
140 enum {
141 rage_128,
142 rage_128_pci,
143 rage_128_pro,
144 rage_128_pro_pci,
145 rage_M3,
146 rage_M3_pci,
147 rage_M4,
148 rage_128_ultra,
149 };
150
151 /* Must match above enum */
152 static const char *r128_family[] __devinitdata = {
153 "AGP",
154 "PCI",
155 "PRO AGP",
156 "PRO PCI",
157 "M3 AGP",
158 "M3 PCI",
159 "M4 AGP",
160 "Ultra AGP",
161 };
162
163 /*
164 * PCI driver prototypes
165 */
166 static int aty128_probe(struct pci_dev *pdev,
167 const struct pci_device_id *ent);
168 static void aty128_remove(struct pci_dev *pdev);
169 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state);
170 static int aty128_pci_resume(struct pci_dev *pdev);
171 static int aty128_do_resume(struct pci_dev *pdev);
172
173 /* supported Rage128 chipsets */
174 static struct pci_device_id aty128_pci_tbl[] = {
175 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LE,
176 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3_pci },
177 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LF,
178 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3 },
179 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_MF,
180 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
181 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_ML,
182 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
183 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PA,
184 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
185 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PB,
186 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
187 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PC,
188 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
189 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PD,
190 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
191 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PE,
192 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
193 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PF,
194 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
195 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PG,
196 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
197 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PH,
198 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
199 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PI,
200 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
201 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PJ,
202 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
203 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PK,
204 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
205 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PL,
206 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
207 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PM,
208 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
209 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PN,
210 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
211 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PO,
212 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
213 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PP,
214 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
215 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PQ,
216 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
217 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PR,
218 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
219 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PS,
220 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
221 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PT,
222 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
223 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PU,
224 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
225 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PV,
226 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
227 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PW,
228 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
229 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PX,
230 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
231 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RE,
232 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
233 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RF,
234 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
235 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RG,
236 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
237 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RK,
238 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
239 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RL,
240 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
241 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SE,
242 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
243 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SF,
244 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
245 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SG,
246 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
247 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SH,
248 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
249 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SK,
250 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
251 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SL,
252 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
253 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SM,
254 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
255 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SN,
256 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
257 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TF,
258 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
259 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TL,
260 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
261 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TR,
262 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
263 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TS,
264 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
265 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TT,
266 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
267 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TU,
268 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
269 { 0, }
270 };
271
272 MODULE_DEVICE_TABLE(pci, aty128_pci_tbl);
273
274 static struct pci_driver aty128fb_driver = {
275 .name = "aty128fb",
276 .id_table = aty128_pci_tbl,
277 .probe = aty128_probe,
278 .remove = __devexit_p(aty128_remove),
279 .suspend = aty128_pci_suspend,
280 .resume = aty128_pci_resume,
281 };
282
283 /* packed BIOS settings */
284 #ifndef CONFIG_PPC
285 typedef struct {
286 u8 clock_chip_type;
287 u8 struct_size;
288 u8 accelerator_entry;
289 u8 VGA_entry;
290 u16 VGA_table_offset;
291 u16 POST_table_offset;
292 u16 XCLK;
293 u16 MCLK;
294 u8 num_PLL_blocks;
295 u8 size_PLL_blocks;
296 u16 PCLK_ref_freq;
297 u16 PCLK_ref_divider;
298 u32 PCLK_min_freq;
299 u32 PCLK_max_freq;
300 u16 MCLK_ref_freq;
301 u16 MCLK_ref_divider;
302 u32 MCLK_min_freq;
303 u32 MCLK_max_freq;
304 u16 XCLK_ref_freq;
305 u16 XCLK_ref_divider;
306 u32 XCLK_min_freq;
307 u32 XCLK_max_freq;
308 } __attribute__ ((packed)) PLL_BLOCK;
309 #endif /* !CONFIG_PPC */
310
311 /* onboard memory information */
312 struct aty128_meminfo {
313 u8 ML;
314 u8 MB;
315 u8 Trcd;
316 u8 Trp;
317 u8 Twr;
318 u8 CL;
319 u8 Tr2w;
320 u8 LoopLatency;
321 u8 DspOn;
322 u8 Rloop;
323 const char *name;
324 };
325
326 /* various memory configurations */
327 static const struct aty128_meminfo sdr_128 =
328 { 4, 4, 3, 3, 1, 3, 1, 16, 30, 16, "128-bit SDR SGRAM (1:1)" };
329 static const struct aty128_meminfo sdr_64 =
330 { 4, 8, 3, 3, 1, 3, 1, 17, 46, 17, "64-bit SDR SGRAM (1:1)" };
331 static const struct aty128_meminfo sdr_sgram =
332 { 4, 4, 1, 2, 1, 2, 1, 16, 24, 16, "64-bit SDR SGRAM (2:1)" };
333 static const struct aty128_meminfo ddr_sgram =
334 { 4, 4, 3, 3, 2, 3, 1, 16, 31, 16, "64-bit DDR SGRAM" };
335
336 static struct fb_fix_screeninfo aty128fb_fix __initdata = {
337 .id = "ATY Rage128",
338 .type = FB_TYPE_PACKED_PIXELS,
339 .visual = FB_VISUAL_PSEUDOCOLOR,
340 .xpanstep = 8,
341 .ypanstep = 1,
342 .mmio_len = 0x2000,
343 .accel = FB_ACCEL_ATI_RAGE128,
344 };
345
346 static char *mode_option __initdata = NULL;
347
348 #ifdef CONFIG_PPC_PMAC
349 static int default_vmode __initdata = VMODE_1024_768_60;
350 static int default_cmode __initdata = CMODE_8;
351 #endif
352
353 static int default_crt_on __initdata = 0;
354 static int default_lcd_on __initdata = 1;
355
356 #ifdef CONFIG_MTRR
357 static int mtrr = 1;
358 #endif
359
360 /* PLL constants */
361 struct aty128_constants {
362 u32 ref_clk;
363 u32 ppll_min;
364 u32 ppll_max;
365 u32 ref_divider;
366 u32 xclk;
367 u32 fifo_width;
368 u32 fifo_depth;
369 };
370
371 struct aty128_crtc {
372 u32 gen_cntl;
373 u32 h_total, h_sync_strt_wid;
374 u32 v_total, v_sync_strt_wid;
375 u32 pitch;
376 u32 offset, offset_cntl;
377 u32 xoffset, yoffset;
378 u32 vxres, vyres;
379 u32 depth, bpp;
380 };
381
382 struct aty128_pll {
383 u32 post_divider;
384 u32 feedback_divider;
385 u32 vclk;
386 };
387
388 struct aty128_ddafifo {
389 u32 dda_config;
390 u32 dda_on_off;
391 };
392
393 /* register values for a specific mode */
394 struct aty128fb_par {
395 struct aty128_crtc crtc;
396 struct aty128_pll pll;
397 struct aty128_ddafifo fifo_reg;
398 u32 accel_flags;
399 struct aty128_constants constants; /* PLL and others */
400 void __iomem *regbase; /* remapped mmio */
401 u32 vram_size; /* onboard video ram */
402 int chip_gen;
403 const struct aty128_meminfo *mem; /* onboard mem info */
404 #ifdef CONFIG_MTRR
405 struct { int vram; int vram_valid; } mtrr;
406 #endif
407 int blitter_may_be_busy;
408 int fifo_slots; /* free slots in FIFO (64 max) */
409
410 int pm_reg;
411 int crt_on, lcd_on;
412 struct pci_dev *pdev;
413 struct fb_info *next;
414 int asleep;
415 int lock_blank;
416
417 u8 red[32]; /* see aty128fb_setcolreg */
418 u8 green[64];
419 u8 blue[32];
420 u32 pseudo_palette[16]; /* used for TRUECOLOR */
421 };
422
423
424 #define round_div(n, d) ((n+(d/2))/d)
425
426 static int aty128fb_check_var(struct fb_var_screeninfo *var,
427 struct fb_info *info);
428 static int aty128fb_set_par(struct fb_info *info);
429 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
430 u_int transp, struct fb_info *info);
431 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
432 struct fb_info *fb);
433 static int aty128fb_blank(int blank, struct fb_info *fb);
434 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, unsigned long arg);
435 static int aty128fb_sync(struct fb_info *info);
436
437 /*
438 * Internal routines
439 */
440
441 static int aty128_encode_var(struct fb_var_screeninfo *var,
442 const struct aty128fb_par *par);
443 static int aty128_decode_var(struct fb_var_screeninfo *var,
444 struct aty128fb_par *par);
445 #if 0
446 static void __init aty128_get_pllinfo(struct aty128fb_par *par,
447 void __iomem *bios);
448 static void __init __iomem *aty128_map_ROM(struct pci_dev *pdev, const struct aty128fb_par *par);
449 #endif
450 static void aty128_timings(struct aty128fb_par *par);
451 static void aty128_init_engine(struct aty128fb_par *par);
452 static void aty128_reset_engine(const struct aty128fb_par *par);
453 static void aty128_flush_pixel_cache(const struct aty128fb_par *par);
454 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par);
455 static void wait_for_fifo(u16 entries, struct aty128fb_par *par);
456 static void wait_for_idle(struct aty128fb_par *par);
457 static u32 depth_to_dst(u32 depth);
458
459 #define BIOS_IN8(v) (readb(bios + (v)))
460 #define BIOS_IN16(v) (readb(bios + (v)) | \
461 (readb(bios + (v) + 1) << 8))
462 #define BIOS_IN32(v) (readb(bios + (v)) | \
463 (readb(bios + (v) + 1) << 8) | \
464 (readb(bios + (v) + 2) << 16) | \
465 (readb(bios + (v) + 3) << 24))
466
467
468 static struct fb_ops aty128fb_ops = {
469 .owner = THIS_MODULE,
470 .fb_check_var = aty128fb_check_var,
471 .fb_set_par = aty128fb_set_par,
472 .fb_setcolreg = aty128fb_setcolreg,
473 .fb_pan_display = aty128fb_pan_display,
474 .fb_blank = aty128fb_blank,
475 .fb_ioctl = aty128fb_ioctl,
476 .fb_sync = aty128fb_sync,
477 .fb_fillrect = cfb_fillrect,
478 .fb_copyarea = cfb_copyarea,
479 .fb_imageblit = cfb_imageblit,
480 };
481
482 #ifdef CONFIG_PMAC_BACKLIGHT
483 static int aty128_set_backlight_enable(int on, int level, void* data);
484 static int aty128_set_backlight_level(int level, void* data);
485
486 static struct backlight_controller aty128_backlight_controller = {
487 aty128_set_backlight_enable,
488 aty128_set_backlight_level
489 };
490 #endif /* CONFIG_PMAC_BACKLIGHT */
491
492 /*
493 * Functions to read from/write to the mmio registers
494 * - endian conversions may possibly be avoided by
495 * using the other register aperture. TODO.
496 */
497 static inline u32 _aty_ld_le32(volatile unsigned int regindex,
498 const struct aty128fb_par *par)
499 {
500 return readl (par->regbase + regindex);
501 }
502
503 static inline void _aty_st_le32(volatile unsigned int regindex, u32 val,
504 const struct aty128fb_par *par)
505 {
506 writel (val, par->regbase + regindex);
507 }
508
509 static inline u8 _aty_ld_8(unsigned int regindex,
510 const struct aty128fb_par *par)
511 {
512 return readb (par->regbase + regindex);
513 }
514
515 static inline void _aty_st_8(unsigned int regindex, u8 val,
516 const struct aty128fb_par *par)
517 {
518 writeb (val, par->regbase + regindex);
519 }
520
521 #define aty_ld_le32(regindex) _aty_ld_le32(regindex, par)
522 #define aty_st_le32(regindex, val) _aty_st_le32(regindex, val, par)
523 #define aty_ld_8(regindex) _aty_ld_8(regindex, par)
524 #define aty_st_8(regindex, val) _aty_st_8(regindex, val, par)
525
526 /*
527 * Functions to read from/write to the pll registers
528 */
529
530 #define aty_ld_pll(pll_index) _aty_ld_pll(pll_index, par)
531 #define aty_st_pll(pll_index, val) _aty_st_pll(pll_index, val, par)
532
533
534 static u32 _aty_ld_pll(unsigned int pll_index,
535 const struct aty128fb_par *par)
536 {
537 aty_st_8(CLOCK_CNTL_INDEX, pll_index & 0x3F);
538 return aty_ld_le32(CLOCK_CNTL_DATA);
539 }
540
541
542 static void _aty_st_pll(unsigned int pll_index, u32 val,
543 const struct aty128fb_par *par)
544 {
545 aty_st_8(CLOCK_CNTL_INDEX, (pll_index & 0x3F) | PLL_WR_EN);
546 aty_st_le32(CLOCK_CNTL_DATA, val);
547 }
548
549
550 /* return true when the PLL has completed an atomic update */
551 static int aty_pll_readupdate(const struct aty128fb_par *par)
552 {
553 return !(aty_ld_pll(PPLL_REF_DIV) & PPLL_ATOMIC_UPDATE_R);
554 }
555
556
557 static void aty_pll_wait_readupdate(const struct aty128fb_par *par)
558 {
559 unsigned long timeout = jiffies + HZ/100; // should be more than enough
560 int reset = 1;
561
562 while (time_before(jiffies, timeout))
563 if (aty_pll_readupdate(par)) {
564 reset = 0;
565 break;
566 }
567
568 if (reset) /* reset engine?? */
569 printk(KERN_DEBUG "aty128fb: PLL write timeout!\n");
570 }
571
572
573 /* tell PLL to update */
574 static void aty_pll_writeupdate(const struct aty128fb_par *par)
575 {
576 aty_pll_wait_readupdate(par);
577
578 aty_st_pll(PPLL_REF_DIV,
579 aty_ld_pll(PPLL_REF_DIV) | PPLL_ATOMIC_UPDATE_W);
580 }
581
582
583 /* write to the scratch register to test r/w functionality */
584 static int __init register_test(const struct aty128fb_par *par)
585 {
586 u32 val;
587 int flag = 0;
588
589 val = aty_ld_le32(BIOS_0_SCRATCH);
590
591 aty_st_le32(BIOS_0_SCRATCH, 0x55555555);
592 if (aty_ld_le32(BIOS_0_SCRATCH) == 0x55555555) {
593 aty_st_le32(BIOS_0_SCRATCH, 0xAAAAAAAA);
594
595 if (aty_ld_le32(BIOS_0_SCRATCH) == 0xAAAAAAAA)
596 flag = 1;
597 }
598
599 aty_st_le32(BIOS_0_SCRATCH, val); // restore value
600 return flag;
601 }
602
603
604 /*
605 * Accelerator engine functions
606 */
607 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par)
608 {
609 int i;
610
611 for (;;) {
612 for (i = 0; i < 2000000; i++) {
613 par->fifo_slots = aty_ld_le32(GUI_STAT) & 0x0fff;
614 if (par->fifo_slots >= entries)
615 return;
616 }
617 aty128_reset_engine(par);
618 }
619 }
620
621
622 static void wait_for_idle(struct aty128fb_par *par)
623 {
624 int i;
625
626 do_wait_for_fifo(64, par);
627
628 for (;;) {
629 for (i = 0; i < 2000000; i++) {
630 if (!(aty_ld_le32(GUI_STAT) & (1 << 31))) {
631 aty128_flush_pixel_cache(par);
632 par->blitter_may_be_busy = 0;
633 return;
634 }
635 }
636 aty128_reset_engine(par);
637 }
638 }
639
640
641 static void wait_for_fifo(u16 entries, struct aty128fb_par *par)
642 {
643 if (par->fifo_slots < entries)
644 do_wait_for_fifo(64, par);
645 par->fifo_slots -= entries;
646 }
647
648
649 static void aty128_flush_pixel_cache(const struct aty128fb_par *par)
650 {
651 int i;
652 u32 tmp;
653
654 tmp = aty_ld_le32(PC_NGUI_CTLSTAT);
655 tmp &= ~(0x00ff);
656 tmp |= 0x00ff;
657 aty_st_le32(PC_NGUI_CTLSTAT, tmp);
658
659 for (i = 0; i < 2000000; i++)
660 if (!(aty_ld_le32(PC_NGUI_CTLSTAT) & PC_BUSY))
661 break;
662 }
663
664
665 static void aty128_reset_engine(const struct aty128fb_par *par)
666 {
667 u32 gen_reset_cntl, clock_cntl_index, mclk_cntl;
668
669 aty128_flush_pixel_cache(par);
670
671 clock_cntl_index = aty_ld_le32(CLOCK_CNTL_INDEX);
672 mclk_cntl = aty_ld_pll(MCLK_CNTL);
673
674 aty_st_pll(MCLK_CNTL, mclk_cntl | 0x00030000);
675
676 gen_reset_cntl = aty_ld_le32(GEN_RESET_CNTL);
677 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl | SOFT_RESET_GUI);
678 aty_ld_le32(GEN_RESET_CNTL);
679 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl & ~(SOFT_RESET_GUI));
680 aty_ld_le32(GEN_RESET_CNTL);
681
682 aty_st_pll(MCLK_CNTL, mclk_cntl);
683 aty_st_le32(CLOCK_CNTL_INDEX, clock_cntl_index);
684 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl);
685
686 /* use old pio mode */
687 aty_st_le32(PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPM4);
688
689 DBG("engine reset");
690 }
691
692
693 static void aty128_init_engine(struct aty128fb_par *par)
694 {
695 u32 pitch_value;
696
697 wait_for_idle(par);
698
699 /* 3D scaler not spoken here */
700 wait_for_fifo(1, par);
701 aty_st_le32(SCALE_3D_CNTL, 0x00000000);
702
703 aty128_reset_engine(par);
704
705 pitch_value = par->crtc.pitch;
706 if (par->crtc.bpp == 24) {
707 pitch_value = pitch_value * 3;
708 }
709
710 wait_for_fifo(4, par);
711 /* setup engine offset registers */
712 aty_st_le32(DEFAULT_OFFSET, 0x00000000);
713
714 /* setup engine pitch registers */
715 aty_st_le32(DEFAULT_PITCH, pitch_value);
716
717 /* set the default scissor register to max dimensions */
718 aty_st_le32(DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF);
719
720 /* set the drawing controls registers */
721 aty_st_le32(DP_GUI_MASTER_CNTL,
722 GMC_SRC_PITCH_OFFSET_DEFAULT |
723 GMC_DST_PITCH_OFFSET_DEFAULT |
724 GMC_SRC_CLIP_DEFAULT |
725 GMC_DST_CLIP_DEFAULT |
726 GMC_BRUSH_SOLIDCOLOR |
727 (depth_to_dst(par->crtc.depth) << 8) |
728 GMC_SRC_DSTCOLOR |
729 GMC_BYTE_ORDER_MSB_TO_LSB |
730 GMC_DP_CONVERSION_TEMP_6500 |
731 ROP3_PATCOPY |
732 GMC_DP_SRC_RECT |
733 GMC_3D_FCN_EN_CLR |
734 GMC_DST_CLR_CMP_FCN_CLEAR |
735 GMC_AUX_CLIP_CLEAR |
736 GMC_WRITE_MASK_SET);
737
738 wait_for_fifo(8, par);
739 /* clear the line drawing registers */
740 aty_st_le32(DST_BRES_ERR, 0);
741 aty_st_le32(DST_BRES_INC, 0);
742 aty_st_le32(DST_BRES_DEC, 0);
743
744 /* set brush color registers */
745 aty_st_le32(DP_BRUSH_FRGD_CLR, 0xFFFFFFFF); /* white */
746 aty_st_le32(DP_BRUSH_BKGD_CLR, 0x00000000); /* black */
747
748 /* set source color registers */
749 aty_st_le32(DP_SRC_FRGD_CLR, 0xFFFFFFFF); /* white */
750 aty_st_le32(DP_SRC_BKGD_CLR, 0x00000000); /* black */
751
752 /* default write mask */
753 aty_st_le32(DP_WRITE_MASK, 0xFFFFFFFF);
754
755 /* Wait for all the writes to be completed before returning */
756 wait_for_idle(par);
757 }
758
759
760 /* convert depth values to their register representation */
761 static u32 depth_to_dst(u32 depth)
762 {
763 if (depth <= 8)
764 return DST_8BPP;
765 else if (depth <= 15)
766 return DST_15BPP;
767 else if (depth == 16)
768 return DST_16BPP;
769 else if (depth <= 24)
770 return DST_24BPP;
771 else if (depth <= 32)
772 return DST_32BPP;
773
774 return -EINVAL;
775 }
776
777 /*
778 * PLL informations retreival
779 */
780
781
782 #ifndef __sparc__
783 static void __iomem * __init aty128_map_ROM(const struct aty128fb_par *par, struct pci_dev *dev)
784 {
785 u16 dptr;
786 u8 rom_type;
787 void __iomem *bios;
788 size_t rom_size;
789
790 /* Fix from ATI for problem with Rage128 hardware not leaving ROM enabled */
791 unsigned int temp;
792 temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
793 temp &= 0x00ffffffu;
794 temp |= 0x04 << 24;
795 aty_st_le32(RAGE128_MPP_TB_CONFIG, temp);
796 temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
797
798 bios = pci_map_rom(dev, &rom_size);
799
800 if (!bios) {
801 printk(KERN_ERR "aty128fb: ROM failed to map\n");
802 return NULL;
803 }
804
805 /* Very simple test to make sure it appeared */
806 if (BIOS_IN16(0) != 0xaa55) {
807 printk(KERN_DEBUG "aty128fb: Invalid ROM signature %x should "
808 " be 0xaa55\n", BIOS_IN16(0));
809 goto failed;
810 }
811
812 /* Look for the PCI data to check the ROM type */
813 dptr = BIOS_IN16(0x18);
814
815 /* Check the PCI data signature. If it's wrong, we still assume a normal x86 ROM
816 * for now, until I've verified this works everywhere. The goal here is more
817 * to phase out Open Firmware images.
818 *
819 * Currently, we only look at the first PCI data, we could iteratre and deal with
820 * them all, and we should use fb_bios_start relative to start of image and not
821 * relative start of ROM, but so far, I never found a dual-image ATI card
822 *
823 * typedef struct {
824 * u32 signature; + 0x00
825 * u16 vendor; + 0x04
826 * u16 device; + 0x06
827 * u16 reserved_1; + 0x08
828 * u16 dlen; + 0x0a
829 * u8 drevision; + 0x0c
830 * u8 class_hi; + 0x0d
831 * u16 class_lo; + 0x0e
832 * u16 ilen; + 0x10
833 * u16 irevision; + 0x12
834 * u8 type; + 0x14
835 * u8 indicator; + 0x15
836 * u16 reserved_2; + 0x16
837 * } pci_data_t;
838 */
839 if (BIOS_IN32(dptr) != (('R' << 24) | ('I' << 16) | ('C' << 8) | 'P')) {
840 printk(KERN_WARNING "aty128fb: PCI DATA signature in ROM incorrect: %08x\n",
841 BIOS_IN32(dptr));
842 goto anyway;
843 }
844 rom_type = BIOS_IN8(dptr + 0x14);
845 switch(rom_type) {
846 case 0:
847 printk(KERN_INFO "aty128fb: Found Intel x86 BIOS ROM Image\n");
848 break;
849 case 1:
850 printk(KERN_INFO "aty128fb: Found Open Firmware ROM Image\n");
851 goto failed;
852 case 2:
853 printk(KERN_INFO "aty128fb: Found HP PA-RISC ROM Image\n");
854 goto failed;
855 default:
856 printk(KERN_INFO "aty128fb: Found unknown type %d ROM Image\n", rom_type);
857 goto failed;
858 }
859 anyway:
860 return bios;
861
862 failed:
863 pci_unmap_rom(dev, bios);
864 return NULL;
865 }
866
867 static void __init aty128_get_pllinfo(struct aty128fb_par *par, unsigned char __iomem *bios)
868 {
869 unsigned int bios_hdr;
870 unsigned int bios_pll;
871
872 bios_hdr = BIOS_IN16(0x48);
873 bios_pll = BIOS_IN16(bios_hdr + 0x30);
874
875 par->constants.ppll_max = BIOS_IN32(bios_pll + 0x16);
876 par->constants.ppll_min = BIOS_IN32(bios_pll + 0x12);
877 par->constants.xclk = BIOS_IN16(bios_pll + 0x08);
878 par->constants.ref_divider = BIOS_IN16(bios_pll + 0x10);
879 par->constants.ref_clk = BIOS_IN16(bios_pll + 0x0e);
880
881 DBG("ppll_max %d ppll_min %d xclk %d ref_divider %d ref clock %d\n",
882 par->constants.ppll_max, par->constants.ppll_min,
883 par->constants.xclk, par->constants.ref_divider,
884 par->constants.ref_clk);
885
886 }
887
888 #ifdef CONFIG_X86
889 static void __iomem * __devinit aty128_find_mem_vbios(struct aty128fb_par *par)
890 {
891 /* I simplified this code as we used to miss the signatures in
892 * a lot of case. It's now closer to XFree, we just don't check
893 * for signatures at all... Something better will have to be done
894 * if we end up having conflicts
895 */
896 u32 segstart;
897 unsigned char __iomem *rom_base = NULL;
898
899 for (segstart=0x000c0000; segstart<0x000f0000; segstart+=0x00001000) {
900 rom_base = ioremap(segstart, 0x10000);
901 if (rom_base == NULL)
902 return NULL;
903 if (readb(rom_base) == 0x55 && readb(rom_base + 1) == 0xaa)
904 break;
905 iounmap(rom_base);
906 rom_base = NULL;
907 }
908 return rom_base;
909 }
910 #endif
911 #endif /* ndef(__sparc__) */
912
913 /* fill in known card constants if pll_block is not available */
914 static void __init aty128_timings(struct aty128fb_par *par)
915 {
916 #ifdef CONFIG_PPC_OF
917 /* instead of a table lookup, assume OF has properly
918 * setup the PLL registers and use their values
919 * to set the XCLK values and reference divider values */
920
921 u32 x_mpll_ref_fb_div;
922 u32 xclk_cntl;
923 u32 Nx, M;
924 unsigned PostDivSet[] = { 0, 1, 2, 4, 8, 3, 6, 12 };
925 #endif
926
927 if (!par->constants.ref_clk)
928 par->constants.ref_clk = 2950;
929
930 #ifdef CONFIG_PPC_OF
931 x_mpll_ref_fb_div = aty_ld_pll(X_MPLL_REF_FB_DIV);
932 xclk_cntl = aty_ld_pll(XCLK_CNTL) & 0x7;
933 Nx = (x_mpll_ref_fb_div & 0x00ff00) >> 8;
934 M = x_mpll_ref_fb_div & 0x0000ff;
935
936 par->constants.xclk = round_div((2 * Nx * par->constants.ref_clk),
937 (M * PostDivSet[xclk_cntl]));
938
939 par->constants.ref_divider =
940 aty_ld_pll(PPLL_REF_DIV) & PPLL_REF_DIV_MASK;
941 #endif
942
943 if (!par->constants.ref_divider) {
944 par->constants.ref_divider = 0x3b;
945
946 aty_st_pll(X_MPLL_REF_FB_DIV, 0x004c4c1e);
947 aty_pll_writeupdate(par);
948 }
949 aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider);
950 aty_pll_writeupdate(par);
951
952 /* from documentation */
953 if (!par->constants.ppll_min)
954 par->constants.ppll_min = 12500;
955 if (!par->constants.ppll_max)
956 par->constants.ppll_max = 25000; /* 23000 on some cards? */
957 if (!par->constants.xclk)
958 par->constants.xclk = 0x1d4d; /* same as mclk */
959
960 par->constants.fifo_width = 128;
961 par->constants.fifo_depth = 32;
962
963 switch (aty_ld_le32(MEM_CNTL) & 0x3) {
964 case 0:
965 par->mem = &sdr_128;
966 break;
967 case 1:
968 par->mem = &sdr_sgram;
969 break;
970 case 2:
971 par->mem = &ddr_sgram;
972 break;
973 default:
974 par->mem = &sdr_sgram;
975 }
976 }
977
978
979
980 /*
981 * CRTC programming
982 */
983
984 /* Program the CRTC registers */
985 static void aty128_set_crtc(const struct aty128_crtc *crtc,
986 const struct aty128fb_par *par)
987 {
988 aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl);
989 aty_st_le32(CRTC_H_TOTAL_DISP, crtc->h_total);
990 aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->h_sync_strt_wid);
991 aty_st_le32(CRTC_V_TOTAL_DISP, crtc->v_total);
992 aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->v_sync_strt_wid);
993 aty_st_le32(CRTC_PITCH, crtc->pitch);
994 aty_st_le32(CRTC_OFFSET, crtc->offset);
995 aty_st_le32(CRTC_OFFSET_CNTL, crtc->offset_cntl);
996 /* Disable ATOMIC updating. Is this the right place? */
997 aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~(0x00030000));
998 }
999
1000
1001 static int aty128_var_to_crtc(const struct fb_var_screeninfo *var,
1002 struct aty128_crtc *crtc,
1003 const struct aty128fb_par *par)
1004 {
1005 u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp, dst;
1006 u32 left, right, upper, lower, hslen, vslen, sync, vmode;
1007 u32 h_total, h_disp, h_sync_strt, h_sync_wid, h_sync_pol;
1008 u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1009 u32 depth, bytpp;
1010 u8 mode_bytpp[7] = { 0, 0, 1, 2, 2, 3, 4 };
1011
1012 /* input */
1013 xres = var->xres;
1014 yres = var->yres;
1015 vxres = var->xres_virtual;
1016 vyres = var->yres_virtual;
1017 xoffset = var->xoffset;
1018 yoffset = var->yoffset;
1019 bpp = var->bits_per_pixel;
1020 left = var->left_margin;
1021 right = var->right_margin;
1022 upper = var->upper_margin;
1023 lower = var->lower_margin;
1024 hslen = var->hsync_len;
1025 vslen = var->vsync_len;
1026 sync = var->sync;
1027 vmode = var->vmode;
1028
1029 if (bpp != 16)
1030 depth = bpp;
1031 else
1032 depth = (var->green.length == 6) ? 16 : 15;
1033
1034 /* check for mode eligibility
1035 * accept only non interlaced modes */
1036 if ((vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
1037 return -EINVAL;
1038
1039 /* convert (and round up) and validate */
1040 xres = (xres + 7) & ~7;
1041 xoffset = (xoffset + 7) & ~7;
1042
1043 if (vxres < xres + xoffset)
1044 vxres = xres + xoffset;
1045
1046 if (vyres < yres + yoffset)
1047 vyres = yres + yoffset;
1048
1049 /* convert depth into ATI register depth */
1050 dst = depth_to_dst(depth);
1051
1052 if (dst == -EINVAL) {
1053 printk(KERN_ERR "aty128fb: Invalid depth or RGBA\n");
1054 return -EINVAL;
1055 }
1056
1057 /* convert register depth to bytes per pixel */
1058 bytpp = mode_bytpp[dst];
1059
1060 /* make sure there is enough video ram for the mode */
1061 if ((u32)(vxres * vyres * bytpp) > par->vram_size) {
1062 printk(KERN_ERR "aty128fb: Not enough memory for mode\n");
1063 return -EINVAL;
1064 }
1065
1066 h_disp = (xres >> 3) - 1;
1067 h_total = (((xres + right + hslen + left) >> 3) - 1) & 0xFFFFL;
1068
1069 v_disp = yres - 1;
1070 v_total = (yres + upper + vslen + lower - 1) & 0xFFFFL;
1071
1072 /* check to make sure h_total and v_total are in range */
1073 if (((h_total >> 3) - 1) > 0x1ff || (v_total - 1) > 0x7FF) {
1074 printk(KERN_ERR "aty128fb: invalid width ranges\n");
1075 return -EINVAL;
1076 }
1077
1078 h_sync_wid = (hslen + 7) >> 3;
1079 if (h_sync_wid == 0)
1080 h_sync_wid = 1;
1081 else if (h_sync_wid > 0x3f) /* 0x3f = max hwidth */
1082 h_sync_wid = 0x3f;
1083
1084 h_sync_strt = (h_disp << 3) + right;
1085
1086 v_sync_wid = vslen;
1087 if (v_sync_wid == 0)
1088 v_sync_wid = 1;
1089 else if (v_sync_wid > 0x1f) /* 0x1f = max vwidth */
1090 v_sync_wid = 0x1f;
1091
1092 v_sync_strt = v_disp + lower;
1093
1094 h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1;
1095 v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1;
1096
1097 c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? (1 << 4) : 0;
1098
1099 crtc->gen_cntl = 0x3000000L | c_sync | (dst << 8);
1100
1101 crtc->h_total = h_total | (h_disp << 16);
1102 crtc->v_total = v_total | (v_disp << 16);
1103
1104 crtc->h_sync_strt_wid = h_sync_strt | (h_sync_wid << 16) |
1105 (h_sync_pol << 23);
1106 crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) |
1107 (v_sync_pol << 23);
1108
1109 crtc->pitch = vxres >> 3;
1110
1111 crtc->offset = 0;
1112
1113 if ((var->activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW)
1114 crtc->offset_cntl = 0x00010000;
1115 else
1116 crtc->offset_cntl = 0;
1117
1118 crtc->vxres = vxres;
1119 crtc->vyres = vyres;
1120 crtc->xoffset = xoffset;
1121 crtc->yoffset = yoffset;
1122 crtc->depth = depth;
1123 crtc->bpp = bpp;
1124
1125 return 0;
1126 }
1127
1128
1129 static int aty128_pix_width_to_var(int pix_width, struct fb_var_screeninfo *var)
1130 {
1131
1132 /* fill in pixel info */
1133 var->red.msb_right = 0;
1134 var->green.msb_right = 0;
1135 var->blue.offset = 0;
1136 var->blue.msb_right = 0;
1137 var->transp.offset = 0;
1138 var->transp.length = 0;
1139 var->transp.msb_right = 0;
1140 switch (pix_width) {
1141 case CRTC_PIX_WIDTH_8BPP:
1142 var->bits_per_pixel = 8;
1143 var->red.offset = 0;
1144 var->red.length = 8;
1145 var->green.offset = 0;
1146 var->green.length = 8;
1147 var->blue.length = 8;
1148 break;
1149 case CRTC_PIX_WIDTH_15BPP:
1150 var->bits_per_pixel = 16;
1151 var->red.offset = 10;
1152 var->red.length = 5;
1153 var->green.offset = 5;
1154 var->green.length = 5;
1155 var->blue.length = 5;
1156 break;
1157 case CRTC_PIX_WIDTH_16BPP:
1158 var->bits_per_pixel = 16;
1159 var->red.offset = 11;
1160 var->red.length = 5;
1161 var->green.offset = 5;
1162 var->green.length = 6;
1163 var->blue.length = 5;
1164 break;
1165 case CRTC_PIX_WIDTH_24BPP:
1166 var->bits_per_pixel = 24;
1167 var->red.offset = 16;
1168 var->red.length = 8;
1169 var->green.offset = 8;
1170 var->green.length = 8;
1171 var->blue.length = 8;
1172 break;
1173 case CRTC_PIX_WIDTH_32BPP:
1174 var->bits_per_pixel = 32;
1175 var->red.offset = 16;
1176 var->red.length = 8;
1177 var->green.offset = 8;
1178 var->green.length = 8;
1179 var->blue.length = 8;
1180 var->transp.offset = 24;
1181 var->transp.length = 8;
1182 break;
1183 default:
1184 printk(KERN_ERR "aty128fb: Invalid pixel width\n");
1185 return -EINVAL;
1186 }
1187
1188 return 0;
1189 }
1190
1191
1192 static int aty128_crtc_to_var(const struct aty128_crtc *crtc,
1193 struct fb_var_screeninfo *var)
1194 {
1195 u32 xres, yres, left, right, upper, lower, hslen, vslen, sync;
1196 u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol;
1197 u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1198 u32 pix_width;
1199
1200 /* fun with masking */
1201 h_total = crtc->h_total & 0x1ff;
1202 h_disp = (crtc->h_total >> 16) & 0xff;
1203 h_sync_strt = (crtc->h_sync_strt_wid >> 3) & 0x1ff;
1204 h_sync_dly = crtc->h_sync_strt_wid & 0x7;
1205 h_sync_wid = (crtc->h_sync_strt_wid >> 16) & 0x3f;
1206 h_sync_pol = (crtc->h_sync_strt_wid >> 23) & 0x1;
1207 v_total = crtc->v_total & 0x7ff;
1208 v_disp = (crtc->v_total >> 16) & 0x7ff;
1209 v_sync_strt = crtc->v_sync_strt_wid & 0x7ff;
1210 v_sync_wid = (crtc->v_sync_strt_wid >> 16) & 0x1f;
1211 v_sync_pol = (crtc->v_sync_strt_wid >> 23) & 0x1;
1212 c_sync = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0;
1213 pix_width = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK;
1214
1215 /* do conversions */
1216 xres = (h_disp + 1) << 3;
1217 yres = v_disp + 1;
1218 left = ((h_total - h_sync_strt - h_sync_wid) << 3) - h_sync_dly;
1219 right = ((h_sync_strt - h_disp) << 3) + h_sync_dly;
1220 hslen = h_sync_wid << 3;
1221 upper = v_total - v_sync_strt - v_sync_wid;
1222 lower = v_sync_strt - v_disp;
1223 vslen = v_sync_wid;
1224 sync = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) |
1225 (v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) |
1226 (c_sync ? FB_SYNC_COMP_HIGH_ACT : 0);
1227
1228 aty128_pix_width_to_var(pix_width, var);
1229
1230 var->xres = xres;
1231 var->yres = yres;
1232 var->xres_virtual = crtc->vxres;
1233 var->yres_virtual = crtc->vyres;
1234 var->xoffset = crtc->xoffset;
1235 var->yoffset = crtc->yoffset;
1236 var->left_margin = left;
1237 var->right_margin = right;
1238 var->upper_margin = upper;
1239 var->lower_margin = lower;
1240 var->hsync_len = hslen;
1241 var->vsync_len = vslen;
1242 var->sync = sync;
1243 var->vmode = FB_VMODE_NONINTERLACED;
1244
1245 return 0;
1246 }
1247
1248 static void aty128_set_crt_enable(struct aty128fb_par *par, int on)
1249 {
1250 if (on) {
1251 aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) | CRT_CRTC_ON);
1252 aty_st_le32(DAC_CNTL, (aty_ld_le32(DAC_CNTL) | DAC_PALETTE2_SNOOP_EN));
1253 } else
1254 aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) & ~CRT_CRTC_ON);
1255 }
1256
1257 static void aty128_set_lcd_enable(struct aty128fb_par *par, int on)
1258 {
1259 u32 reg;
1260
1261 if (on) {
1262 reg = aty_ld_le32(LVDS_GEN_CNTL);
1263 reg |= LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION;
1264 reg &= ~LVDS_DISPLAY_DIS;
1265 aty_st_le32(LVDS_GEN_CNTL, reg);
1266 #ifdef CONFIG_PMAC_BACKLIGHT
1267 aty128_set_backlight_enable(get_backlight_enable(),
1268 get_backlight_level(), par);
1269 #endif
1270 } else {
1271 #ifdef CONFIG_PMAC_BACKLIGHT
1272 aty128_set_backlight_enable(0, 0, par);
1273 #endif
1274 reg = aty_ld_le32(LVDS_GEN_CNTL);
1275 reg |= LVDS_DISPLAY_DIS;
1276 aty_st_le32(LVDS_GEN_CNTL, reg);
1277 mdelay(100);
1278 reg &= ~(LVDS_ON /*| LVDS_EN*/);
1279 aty_st_le32(LVDS_GEN_CNTL, reg);
1280 }
1281 }
1282
1283 static void aty128_set_pll(struct aty128_pll *pll, const struct aty128fb_par *par)
1284 {
1285 u32 div3;
1286
1287 unsigned char post_conv[] = /* register values for post dividers */
1288 { 2, 0, 1, 4, 2, 2, 6, 2, 3, 2, 2, 2, 7 };
1289
1290 /* select PPLL_DIV_3 */
1291 aty_st_le32(CLOCK_CNTL_INDEX, aty_ld_le32(CLOCK_CNTL_INDEX) | (3 << 8));
1292
1293 /* reset PLL */
1294 aty_st_pll(PPLL_CNTL,
1295 aty_ld_pll(PPLL_CNTL) | PPLL_RESET | PPLL_ATOMIC_UPDATE_EN);
1296
1297 /* write the reference divider */
1298 aty_pll_wait_readupdate(par);
1299 aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider & 0x3ff);
1300 aty_pll_writeupdate(par);
1301
1302 div3 = aty_ld_pll(PPLL_DIV_3);
1303 div3 &= ~PPLL_FB3_DIV_MASK;
1304 div3 |= pll->feedback_divider;
1305 div3 &= ~PPLL_POST3_DIV_MASK;
1306 div3 |= post_conv[pll->post_divider] << 16;
1307
1308 /* write feedback and post dividers */
1309 aty_pll_wait_readupdate(par);
1310 aty_st_pll(PPLL_DIV_3, div3);
1311 aty_pll_writeupdate(par);
1312
1313 aty_pll_wait_readupdate(par);
1314 aty_st_pll(HTOTAL_CNTL, 0); /* no horiz crtc adjustment */
1315 aty_pll_writeupdate(par);
1316
1317 /* clear the reset, just in case */
1318 aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~PPLL_RESET);
1319 }
1320
1321
1322 static int aty128_var_to_pll(u32 period_in_ps, struct aty128_pll *pll,
1323 const struct aty128fb_par *par)
1324 {
1325 const struct aty128_constants c = par->constants;
1326 unsigned char post_dividers[] = {1,2,4,8,3,6,12};
1327 u32 output_freq;
1328 u32 vclk; /* in .01 MHz */
1329 int i = 0;
1330 u32 n, d;
1331
1332 vclk = 100000000 / period_in_ps; /* convert units to 10 kHz */
1333
1334 /* adjust pixel clock if necessary */
1335 if (vclk > c.ppll_max)
1336 vclk = c.ppll_max;
1337 if (vclk * 12 < c.ppll_min)
1338 vclk = c.ppll_min/12;
1339
1340 /* now, find an acceptable divider */
1341 for (i = 0; i < sizeof(post_dividers); i++) {
1342 output_freq = post_dividers[i] * vclk;
1343 if (output_freq >= c.ppll_min && output_freq <= c.ppll_max) {
1344 pll->post_divider = post_dividers[i];
1345 break;
1346 }
1347 }
1348
1349 /* calculate feedback divider */
1350 n = c.ref_divider * output_freq;
1351 d = c.ref_clk;
1352
1353 pll->feedback_divider = round_div(n, d);
1354 pll->vclk = vclk;
1355
1356 DBG("post %d feedback %d vlck %d output %d ref_divider %d "
1357 "vclk_per: %d\n", pll->post_divider,
1358 pll->feedback_divider, vclk, output_freq,
1359 c.ref_divider, period_in_ps);
1360
1361 return 0;
1362 }
1363
1364
1365 static int aty128_pll_to_var(const struct aty128_pll *pll, struct fb_var_screeninfo *var)
1366 {
1367 var->pixclock = 100000000 / pll->vclk;
1368
1369 return 0;
1370 }
1371
1372
1373 static void aty128_set_fifo(const struct aty128_ddafifo *dsp,
1374 const struct aty128fb_par *par)
1375 {
1376 aty_st_le32(DDA_CONFIG, dsp->dda_config);
1377 aty_st_le32(DDA_ON_OFF, dsp->dda_on_off);
1378 }
1379
1380
1381 static int aty128_ddafifo(struct aty128_ddafifo *dsp,
1382 const struct aty128_pll *pll,
1383 u32 depth,
1384 const struct aty128fb_par *par)
1385 {
1386 const struct aty128_meminfo *m = par->mem;
1387 u32 xclk = par->constants.xclk;
1388 u32 fifo_width = par->constants.fifo_width;
1389 u32 fifo_depth = par->constants.fifo_depth;
1390 s32 x, b, p, ron, roff;
1391 u32 n, d, bpp;
1392
1393 /* round up to multiple of 8 */
1394 bpp = (depth+7) & ~7;
1395
1396 n = xclk * fifo_width;
1397 d = pll->vclk * bpp;
1398 x = round_div(n, d);
1399
1400 ron = 4 * m->MB +
1401 3 * ((m->Trcd - 2 > 0) ? m->Trcd - 2 : 0) +
1402 2 * m->Trp +
1403 m->Twr +
1404 m->CL +
1405 m->Tr2w +
1406 x;
1407
1408 DBG("x %x\n", x);
1409
1410 b = 0;
1411 while (x) {
1412 x >>= 1;
1413 b++;
1414 }
1415 p = b + 1;
1416
1417 ron <<= (11 - p);
1418
1419 n <<= (11 - p);
1420 x = round_div(n, d);
1421 roff = x * (fifo_depth - 4);
1422
1423 if ((ron + m->Rloop) >= roff) {
1424 printk(KERN_ERR "aty128fb: Mode out of range!\n");
1425 return -EINVAL;
1426 }
1427
1428 DBG("p: %x rloop: %x x: %x ron: %x roff: %x\n",
1429 p, m->Rloop, x, ron, roff);
1430
1431 dsp->dda_config = p << 16 | m->Rloop << 20 | x;
1432 dsp->dda_on_off = ron << 16 | roff;
1433
1434 return 0;
1435 }
1436
1437
1438 /*
1439 * This actually sets the video mode.
1440 */
1441 static int aty128fb_set_par(struct fb_info *info)
1442 {
1443 struct aty128fb_par *par = info->par;
1444 u32 config;
1445 int err;
1446
1447 if ((err = aty128_decode_var(&info->var, par)) != 0)
1448 return err;
1449
1450 if (par->blitter_may_be_busy)
1451 wait_for_idle(par);
1452
1453 /* clear all registers that may interfere with mode setting */
1454 aty_st_le32(OVR_CLR, 0);
1455 aty_st_le32(OVR_WID_LEFT_RIGHT, 0);
1456 aty_st_le32(OVR_WID_TOP_BOTTOM, 0);
1457 aty_st_le32(OV0_SCALE_CNTL, 0);
1458 aty_st_le32(MPP_TB_CONFIG, 0);
1459 aty_st_le32(MPP_GP_CONFIG, 0);
1460 aty_st_le32(SUBPIC_CNTL, 0);
1461 aty_st_le32(VIPH_CONTROL, 0);
1462 aty_st_le32(I2C_CNTL_1, 0); /* turn off i2c */
1463 aty_st_le32(GEN_INT_CNTL, 0); /* turn off interrupts */
1464 aty_st_le32(CAP0_TRIG_CNTL, 0);
1465 aty_st_le32(CAP1_TRIG_CNTL, 0);
1466
1467 aty_st_8(CRTC_EXT_CNTL + 1, 4); /* turn video off */
1468
1469 aty128_set_crtc(&par->crtc, par);
1470 aty128_set_pll(&par->pll, par);
1471 aty128_set_fifo(&par->fifo_reg, par);
1472
1473 config = aty_ld_le32(CONFIG_CNTL) & ~3;
1474
1475 #if defined(__BIG_ENDIAN)
1476 if (par->crtc.bpp == 32)
1477 config |= 2; /* make aperture do 32 bit swapping */
1478 else if (par->crtc.bpp == 16)
1479 config |= 1; /* make aperture do 16 bit swapping */
1480 #endif
1481
1482 aty_st_le32(CONFIG_CNTL, config);
1483 aty_st_8(CRTC_EXT_CNTL + 1, 0); /* turn the video back on */
1484
1485 info->fix.line_length = (par->crtc.vxres * par->crtc.bpp) >> 3;
1486 info->fix.visual = par->crtc.bpp == 8 ? FB_VISUAL_PSEUDOCOLOR
1487 : FB_VISUAL_DIRECTCOLOR;
1488
1489 if (par->chip_gen == rage_M3) {
1490 aty128_set_crt_enable(par, par->crt_on);
1491 aty128_set_lcd_enable(par, par->lcd_on);
1492 }
1493 if (par->accel_flags & FB_ACCELF_TEXT)
1494 aty128_init_engine(par);
1495
1496 #ifdef CONFIG_BOOTX_TEXT
1497 btext_update_display(info->fix.smem_start,
1498 (((par->crtc.h_total>>16) & 0xff)+1)*8,
1499 ((par->crtc.v_total>>16) & 0x7ff)+1,
1500 par->crtc.bpp,
1501 par->crtc.vxres*par->crtc.bpp/8);
1502 #endif /* CONFIG_BOOTX_TEXT */
1503
1504 return 0;
1505 }
1506
1507 /*
1508 * encode/decode the User Defined Part of the Display
1509 */
1510
1511 static int aty128_decode_var(struct fb_var_screeninfo *var, struct aty128fb_par *par)
1512 {
1513 int err;
1514 struct aty128_crtc crtc;
1515 struct aty128_pll pll;
1516 struct aty128_ddafifo fifo_reg;
1517
1518 if ((err = aty128_var_to_crtc(var, &crtc, par)))
1519 return err;
1520
1521 if ((err = aty128_var_to_pll(var->pixclock, &pll, par)))
1522 return err;
1523
1524 if ((err = aty128_ddafifo(&fifo_reg, &pll, crtc.depth, par)))
1525 return err;
1526
1527 par->crtc = crtc;
1528 par->pll = pll;
1529 par->fifo_reg = fifo_reg;
1530 par->accel_flags = var->accel_flags;
1531
1532 return 0;
1533 }
1534
1535
1536 static int aty128_encode_var(struct fb_var_screeninfo *var,
1537 const struct aty128fb_par *par)
1538 {
1539 int err;
1540
1541 if ((err = aty128_crtc_to_var(&par->crtc, var)))
1542 return err;
1543
1544 if ((err = aty128_pll_to_var(&par->pll, var)))
1545 return err;
1546
1547 var->nonstd = 0;
1548 var->activate = 0;
1549
1550 var->height = -1;
1551 var->width = -1;
1552 var->accel_flags = par->accel_flags;
1553
1554 return 0;
1555 }
1556
1557
1558 static int aty128fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
1559 {
1560 struct aty128fb_par par;
1561 int err;
1562
1563 par = *(struct aty128fb_par *)info->par;
1564 if ((err = aty128_decode_var(var, &par)) != 0)
1565 return err;
1566 aty128_encode_var(var, &par);
1567 return 0;
1568 }
1569
1570
1571 /*
1572 * Pan or Wrap the Display
1573 */
1574 static int aty128fb_pan_display(struct fb_var_screeninfo *var, struct fb_info *fb)
1575 {
1576 struct aty128fb_par *par = fb->par;
1577 u32 xoffset, yoffset;
1578 u32 offset;
1579 u32 xres, yres;
1580
1581 xres = (((par->crtc.h_total >> 16) & 0xff) + 1) << 3;
1582 yres = ((par->crtc.v_total >> 16) & 0x7ff) + 1;
1583
1584 xoffset = (var->xoffset +7) & ~7;
1585 yoffset = var->yoffset;
1586
1587 if (xoffset+xres > par->crtc.vxres || yoffset+yres > par->crtc.vyres)
1588 return -EINVAL;
1589
1590 par->crtc.xoffset = xoffset;
1591 par->crtc.yoffset = yoffset;
1592
1593 offset = ((yoffset * par->crtc.vxres + xoffset)*(par->crtc.bpp >> 3)) & ~7;
1594
1595 if (par->crtc.bpp == 24)
1596 offset += 8 * (offset % 3); /* Must be multiple of 8 and 3 */
1597
1598 aty_st_le32(CRTC_OFFSET, offset);
1599
1600 return 0;
1601 }
1602
1603
1604 /*
1605 * Helper function to store a single palette register
1606 */
1607 static void aty128_st_pal(u_int regno, u_int red, u_int green, u_int blue,
1608 struct aty128fb_par *par)
1609 {
1610 if (par->chip_gen == rage_M3) {
1611 #if 0
1612 /* Note: For now, on M3, we set palette on both heads, which may
1613 * be useless. Can someone with a M3 check this ?
1614 *
1615 * This code would still be useful if using the second CRTC to
1616 * do mirroring
1617 */
1618
1619 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PALETTE_ACCESS_CNTL);
1620 aty_st_8(PALETTE_INDEX, regno);
1621 aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1622 #endif
1623 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & ~DAC_PALETTE_ACCESS_CNTL);
1624 }
1625
1626 aty_st_8(PALETTE_INDEX, regno);
1627 aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1628 }
1629
1630 static int aty128fb_sync(struct fb_info *info)
1631 {
1632 struct aty128fb_par *par = info->par;
1633
1634 if (par->blitter_may_be_busy)
1635 wait_for_idle(par);
1636 return 0;
1637 }
1638
1639 #ifndef MODULE
1640 static int __init aty128fb_setup(char *options)
1641 {
1642 char *this_opt;
1643
1644 if (!options || !*options)
1645 return 0;
1646
1647 while ((this_opt = strsep(&options, ",")) != NULL) {
1648 if (!strncmp(this_opt, "lcd:", 4)) {
1649 default_lcd_on = simple_strtoul(this_opt+4, NULL, 0);
1650 continue;
1651 } else if (!strncmp(this_opt, "crt:", 4)) {
1652 default_crt_on = simple_strtoul(this_opt+4, NULL, 0);
1653 continue;
1654 }
1655 #ifdef CONFIG_MTRR
1656 if(!strncmp(this_opt, "nomtrr", 6)) {
1657 mtrr = 0;
1658 continue;
1659 }
1660 #endif
1661 #ifdef CONFIG_PPC_PMAC
1662 /* vmode and cmode deprecated */
1663 if (!strncmp(this_opt, "vmode:", 6)) {
1664 unsigned int vmode = simple_strtoul(this_opt+6, NULL, 0);
1665 if (vmode > 0 && vmode <= VMODE_MAX)
1666 default_vmode = vmode;
1667 continue;
1668 } else if (!strncmp(this_opt, "cmode:", 6)) {
1669 unsigned int cmode = simple_strtoul(this_opt+6, NULL, 0);
1670 switch (cmode) {
1671 case 0:
1672 case 8:
1673 default_cmode = CMODE_8;
1674 break;
1675 case 15:
1676 case 16:
1677 default_cmode = CMODE_16;
1678 break;
1679 case 24:
1680 case 32:
1681 default_cmode = CMODE_32;
1682 break;
1683 }
1684 continue;
1685 }
1686 #endif /* CONFIG_PPC_PMAC */
1687 mode_option = this_opt;
1688 }
1689 return 0;
1690 }
1691 #endif /* MODULE */
1692
1693
1694 /*
1695 * Initialisation
1696 */
1697
1698 #ifdef CONFIG_PPC_PMAC
1699 static void aty128_early_resume(void *data)
1700 {
1701 struct aty128fb_par *par = data;
1702
1703 if (try_acquire_console_sem())
1704 return;
1705 aty128_do_resume(par->pdev);
1706 release_console_sem();
1707 }
1708 #endif /* CONFIG_PPC_PMAC */
1709
1710 static int __init aty128_init(struct pci_dev *pdev, const struct pci_device_id *ent)
1711 {
1712 struct fb_info *info = pci_get_drvdata(pdev);
1713 struct aty128fb_par *par = info->par;
1714 struct fb_var_screeninfo var;
1715 char video_card[DEVICE_NAME_SIZE];
1716 u8 chip_rev;
1717 u32 dac;
1718
1719 if (!par->vram_size) /* may have already been probed */
1720 par->vram_size = aty_ld_le32(CONFIG_MEMSIZE) & 0x03FFFFFF;
1721
1722 /* Get the chip revision */
1723 chip_rev = (aty_ld_le32(CONFIG_CNTL) >> 16) & 0x1F;
1724
1725 strcpy(video_card, "Rage128 XX ");
1726 video_card[8] = ent->device >> 8;
1727 video_card[9] = ent->device & 0xFF;
1728
1729 /* range check to make sure */
1730 if (ent->driver_data < ARRAY_SIZE(r128_family))
1731 strncat(video_card, r128_family[ent->driver_data], sizeof(video_card));
1732
1733 printk(KERN_INFO "aty128fb: %s [chip rev 0x%x] ", video_card, chip_rev);
1734
1735 if (par->vram_size % (1024 * 1024) == 0)
1736 printk("%dM %s\n", par->vram_size / (1024*1024), par->mem->name);
1737 else
1738 printk("%dk %s\n", par->vram_size / 1024, par->mem->name);
1739
1740 par->chip_gen = ent->driver_data;
1741
1742 /* fill in info */
1743 info->fbops = &aty128fb_ops;
1744 info->flags = FBINFO_FLAG_DEFAULT;
1745
1746 par->lcd_on = default_lcd_on;
1747 par->crt_on = default_crt_on;
1748
1749 var = default_var;
1750 #ifdef CONFIG_PPC_PMAC
1751 if (_machine == _MACH_Pmac) {
1752 /* Indicate sleep capability */
1753 if (par->chip_gen == rage_M3) {
1754 pmac_call_feature(PMAC_FTR_DEVICE_CAN_WAKE, NULL, 0, 1);
1755 pmac_set_early_video_resume(aty128_early_resume, par);
1756 }
1757
1758 /* Find default mode */
1759 if (mode_option) {
1760 if (!mac_find_mode(&var, info, mode_option, 8))
1761 var = default_var;
1762 } else {
1763 if (default_vmode <= 0 || default_vmode > VMODE_MAX)
1764 default_vmode = VMODE_1024_768_60;
1765
1766 /* iMacs need that resolution
1767 * PowerMac2,1 first r128 iMacs
1768 * PowerMac2,2 summer 2000 iMacs
1769 * PowerMac4,1 january 2001 iMacs "flower power"
1770 */
1771 if (machine_is_compatible("PowerMac2,1") ||
1772 machine_is_compatible("PowerMac2,2") ||
1773 machine_is_compatible("PowerMac4,1"))
1774 default_vmode = VMODE_1024_768_75;
1775
1776 /* iBook SE */
1777 if (machine_is_compatible("PowerBook2,2"))
1778 default_vmode = VMODE_800_600_60;
1779
1780 /* PowerBook Firewire (Pismo), iBook Dual USB */
1781 if (machine_is_compatible("PowerBook3,1") ||
1782 machine_is_compatible("PowerBook4,1"))
1783 default_vmode = VMODE_1024_768_60;
1784
1785 /* PowerBook Titanium */
1786 if (machine_is_compatible("PowerBook3,2"))
1787 default_vmode = VMODE_1152_768_60;
1788
1789 if (default_cmode > 16)
1790 default_cmode = CMODE_32;
1791 else if (default_cmode > 8)
1792 default_cmode = CMODE_16;
1793 else
1794 default_cmode = CMODE_8;
1795
1796 if (mac_vmode_to_var(default_vmode, default_cmode, &var))
1797 var = default_var;
1798 }
1799 } else
1800 #endif /* CONFIG_PPC_PMAC */
1801 {
1802 if (mode_option)
1803 if (fb_find_mode(&var, info, mode_option, NULL,
1804 0, &defaultmode, 8) == 0)
1805 var = default_var;
1806 }
1807
1808 var.accel_flags &= ~FB_ACCELF_TEXT;
1809 // var.accel_flags |= FB_ACCELF_TEXT;/* FIXME Will add accel later */
1810
1811 if (aty128fb_check_var(&var, info)) {
1812 printk(KERN_ERR "aty128fb: Cannot set default mode.\n");
1813 return 0;
1814 }
1815
1816 /* setup the DAC the way we like it */
1817 dac = aty_ld_le32(DAC_CNTL);
1818 dac |= (DAC_8BIT_EN | DAC_RANGE_CNTL);
1819 dac |= DAC_MASK;
1820 if (par->chip_gen == rage_M3)
1821 dac |= DAC_PALETTE2_SNOOP_EN;
1822 aty_st_le32(DAC_CNTL, dac);
1823
1824 /* turn off bus mastering, just in case */
1825 aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL) | BUS_MASTER_DIS);
1826
1827 info->var = var;
1828 fb_alloc_cmap(&info->cmap, 256, 0);
1829
1830 var.activate = FB_ACTIVATE_NOW;
1831
1832 aty128_init_engine(par);
1833
1834 if (register_framebuffer(info) < 0)
1835 return 0;
1836
1837 #ifdef CONFIG_PMAC_BACKLIGHT
1838 /* Could be extended to Rage128Pro LVDS output too */
1839 if (par->chip_gen == rage_M3)
1840 register_backlight_controller(&aty128_backlight_controller, par, "ati");
1841 #endif /* CONFIG_PMAC_BACKLIGHT */
1842
1843 par->pm_reg = pci_find_capability(pdev, PCI_CAP_ID_PM);
1844 par->pdev = pdev;
1845 par->asleep = 0;
1846 par->lock_blank = 0;
1847
1848 printk(KERN_INFO "fb%d: %s frame buffer device on %s\n",
1849 info->node, info->fix.id, video_card);
1850
1851 return 1; /* success! */
1852 }
1853
1854 #ifdef CONFIG_PCI
1855 /* register a card ++ajoshi */
1856 static int __init aty128_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1857 {
1858 unsigned long fb_addr, reg_addr;
1859 struct aty128fb_par *par;
1860 struct fb_info *info;
1861 int err;
1862 #ifndef __sparc__
1863 void __iomem *bios = NULL;
1864 #endif
1865
1866 /* Enable device in PCI config */
1867 if ((err = pci_enable_device(pdev))) {
1868 printk(KERN_ERR "aty128fb: Cannot enable PCI device: %d\n",
1869 err);
1870 return -ENODEV;
1871 }
1872
1873 fb_addr = pci_resource_start(pdev, 0);
1874 if (!request_mem_region(fb_addr, pci_resource_len(pdev, 0),
1875 "aty128fb FB")) {
1876 printk(KERN_ERR "aty128fb: cannot reserve frame "
1877 "buffer memory\n");
1878 return -ENODEV;
1879 }
1880
1881 reg_addr = pci_resource_start(pdev, 2);
1882 if (!request_mem_region(reg_addr, pci_resource_len(pdev, 2),
1883 "aty128fb MMIO")) {
1884 printk(KERN_ERR "aty128fb: cannot reserve MMIO region\n");
1885 goto err_free_fb;
1886 }
1887
1888 /* We have the resources. Now virtualize them */
1889 info = framebuffer_alloc(sizeof(struct aty128fb_par), &pdev->dev);
1890 if (info == NULL) {
1891 printk(KERN_ERR "aty128fb: can't alloc fb_info_aty128\n");
1892 goto err_free_mmio;
1893 }
1894 par = info->par;
1895
1896 info->pseudo_palette = par->pseudo_palette;
1897 info->fix = aty128fb_fix;
1898
1899 /* Virtualize mmio region */
1900 info->fix.mmio_start = reg_addr;
1901 par->regbase = ioremap(reg_addr, pci_resource_len(pdev, 2));
1902 if (!par->regbase)
1903 goto err_free_info;
1904
1905 /* Grab memory size from the card */
1906 // How does this relate to the resource length from the PCI hardware?
1907 par->vram_size = aty_ld_le32(CONFIG_MEMSIZE) & 0x03FFFFFF;
1908
1909 /* Virtualize the framebuffer */
1910 info->screen_base = ioremap(fb_addr, par->vram_size);
1911 if (!info->screen_base)
1912 goto err_unmap_out;
1913
1914 /* Set up info->fix */
1915 info->fix = aty128fb_fix;
1916 info->fix.smem_start = fb_addr;
1917 info->fix.smem_len = par->vram_size;
1918 info->fix.mmio_start = reg_addr;
1919
1920 /* If we can't test scratch registers, something is seriously wrong */
1921 if (!register_test(par)) {
1922 printk(KERN_ERR "aty128fb: Can't write to video register!\n");
1923 goto err_out;
1924 }
1925
1926 #ifndef __sparc__
1927 bios = aty128_map_ROM(par, pdev);
1928 #ifdef CONFIG_X86
1929 if (bios == NULL)
1930 bios = aty128_find_mem_vbios(par);
1931 #endif
1932 if (bios == NULL)
1933 printk(KERN_INFO "aty128fb: BIOS not located, guessing timings.\n");
1934 else {
1935 printk(KERN_INFO "aty128fb: Rage128 BIOS located\n");
1936 aty128_get_pllinfo(par, bios);
1937 pci_unmap_rom(pdev, bios);
1938 }
1939 #endif /* __sparc__ */
1940
1941 aty128_timings(par);
1942 pci_set_drvdata(pdev, info);
1943
1944 if (!aty128_init(pdev, ent))
1945 goto err_out;
1946
1947 #ifdef CONFIG_MTRR
1948 if (mtrr) {
1949 par->mtrr.vram = mtrr_add(info->fix.smem_start,
1950 par->vram_size, MTRR_TYPE_WRCOMB, 1);
1951 par->mtrr.vram_valid = 1;
1952 /* let there be speed */
1953 printk(KERN_INFO "aty128fb: Rage128 MTRR set to ON\n");
1954 }
1955 #endif /* CONFIG_MTRR */
1956 return 0;
1957
1958 err_out:
1959 iounmap(info->screen_base);
1960 err_unmap_out:
1961 iounmap(par->regbase);
1962 err_free_info:
1963 framebuffer_release(info);
1964 err_free_mmio:
1965 release_mem_region(pci_resource_start(pdev, 2),
1966 pci_resource_len(pdev, 2));
1967 err_free_fb:
1968 release_mem_region(pci_resource_start(pdev, 0),
1969 pci_resource_len(pdev, 0));
1970 return -ENODEV;
1971 }
1972
1973 static void __devexit aty128_remove(struct pci_dev *pdev)
1974 {
1975 struct fb_info *info = pci_get_drvdata(pdev);
1976 struct aty128fb_par *par;
1977
1978 if (!info)
1979 return;
1980
1981 par = info->par;
1982
1983 unregister_framebuffer(info);
1984 #ifdef CONFIG_MTRR
1985 if (par->mtrr.vram_valid)
1986 mtrr_del(par->mtrr.vram, info->fix.smem_start,
1987 par->vram_size);
1988 #endif /* CONFIG_MTRR */
1989 iounmap(par->regbase);
1990 iounmap(info->screen_base);
1991
1992 release_mem_region(pci_resource_start(pdev, 0),
1993 pci_resource_len(pdev, 0));
1994 release_mem_region(pci_resource_start(pdev, 2),
1995 pci_resource_len(pdev, 2));
1996 framebuffer_release(info);
1997 }
1998 #endif /* CONFIG_PCI */
1999
2000
2001
2002 /*
2003 * Blank the display.
2004 */
2005 static int aty128fb_blank(int blank, struct fb_info *fb)
2006 {
2007 struct aty128fb_par *par = fb->par;
2008 u8 state = 0;
2009
2010 if (par->lock_blank || par->asleep)
2011 return 0;
2012
2013 #ifdef CONFIG_PMAC_BACKLIGHT
2014 if ((_machine == _MACH_Pmac) && blank)
2015 set_backlight_enable(0);
2016 #endif /* CONFIG_PMAC_BACKLIGHT */
2017
2018 if (blank & FB_BLANK_VSYNC_SUSPEND)
2019 state |= 2;
2020 if (blank & FB_BLANK_HSYNC_SUSPEND)
2021 state |= 1;
2022 if (blank & FB_BLANK_POWERDOWN)
2023 state |= 4;
2024
2025 aty_st_8(CRTC_EXT_CNTL+1, state);
2026
2027 if (par->chip_gen == rage_M3) {
2028 aty128_set_crt_enable(par, par->crt_on && !blank);
2029 aty128_set_lcd_enable(par, par->lcd_on && !blank);
2030 }
2031 #ifdef CONFIG_PMAC_BACKLIGHT
2032 if ((_machine == _MACH_Pmac) && !blank)
2033 set_backlight_enable(1);
2034 #endif /* CONFIG_PMAC_BACKLIGHT */
2035 return 0;
2036 }
2037
2038 /*
2039 * Set a single color register. The values supplied are already
2040 * rounded down to the hardware's capabilities (according to the
2041 * entries in the var structure). Return != 0 for invalid regno.
2042 */
2043 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
2044 u_int transp, struct fb_info *info)
2045 {
2046 struct aty128fb_par *par = info->par;
2047
2048 if (regno > 255
2049 || (par->crtc.depth == 16 && regno > 63)
2050 || (par->crtc.depth == 15 && regno > 31))
2051 return 1;
2052
2053 red >>= 8;
2054 green >>= 8;
2055 blue >>= 8;
2056
2057 if (regno < 16) {
2058 int i;
2059 u32 *pal = info->pseudo_palette;
2060
2061 switch (par->crtc.depth) {
2062 case 15:
2063 pal[regno] = (regno << 10) | (regno << 5) | regno;
2064 break;
2065 case 16:
2066 pal[regno] = (regno << 11) | (regno << 6) | regno;
2067 break;
2068 case 24:
2069 pal[regno] = (regno << 16) | (regno << 8) | regno;
2070 break;
2071 case 32:
2072 i = (regno << 8) | regno;
2073 pal[regno] = (i << 16) | i;
2074 break;
2075 }
2076 }
2077
2078 if (par->crtc.depth == 16 && regno > 0) {
2079 /*
2080 * With the 5-6-5 split of bits for RGB at 16 bits/pixel, we
2081 * have 32 slots for R and B values but 64 slots for G values.
2082 * Thus the R and B values go in one slot but the G value
2083 * goes in a different slot, and we have to avoid disturbing
2084 * the other fields in the slots we touch.
2085 */
2086 par->green[regno] = green;
2087 if (regno < 32) {
2088 par->red[regno] = red;
2089 par->blue[regno] = blue;
2090 aty128_st_pal(regno * 8, red, par->green[regno*2],
2091 blue, par);
2092 }
2093 red = par->red[regno/2];
2094 blue = par->blue[regno/2];
2095 regno <<= 2;
2096 } else if (par->crtc.bpp == 16)
2097 regno <<= 3;
2098 aty128_st_pal(regno, red, green, blue, par);
2099
2100 return 0;
2101 }
2102
2103 #define ATY_MIRROR_LCD_ON 0x00000001
2104 #define ATY_MIRROR_CRT_ON 0x00000002
2105
2106 /* out param: u32* backlight value: 0 to 15 */
2107 #define FBIO_ATY128_GET_MIRROR _IOR('@', 1, __u32)
2108 /* in param: u32* backlight value: 0 to 15 */
2109 #define FBIO_ATY128_SET_MIRROR _IOW('@', 2, __u32)
2110
2111 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
2112 {
2113 struct aty128fb_par *par = info->par;
2114 u32 value;
2115 int rc;
2116
2117 switch (cmd) {
2118 case FBIO_ATY128_SET_MIRROR:
2119 if (par->chip_gen != rage_M3)
2120 return -EINVAL;
2121 rc = get_user(value, (__u32 __user *)arg);
2122 if (rc)
2123 return rc;
2124 par->lcd_on = (value & 0x01) != 0;
2125 par->crt_on = (value & 0x02) != 0;
2126 if (!par->crt_on && !par->lcd_on)
2127 par->lcd_on = 1;
2128 aty128_set_crt_enable(par, par->crt_on);
2129 aty128_set_lcd_enable(par, par->lcd_on);
2130 return 0;
2131 case FBIO_ATY128_GET_MIRROR:
2132 if (par->chip_gen != rage_M3)
2133 return -EINVAL;
2134 value = (par->crt_on << 1) | par->lcd_on;
2135 return put_user(value, (__u32 __user *)arg);
2136 }
2137 return -EINVAL;
2138 }
2139
2140 #ifdef CONFIG_PMAC_BACKLIGHT
2141 static int backlight_conv[] = {
2142 0xff, 0xc0, 0xb5, 0xaa, 0x9f, 0x94, 0x89, 0x7e,
2143 0x73, 0x68, 0x5d, 0x52, 0x47, 0x3c, 0x31, 0x24
2144 };
2145
2146 /* We turn off the LCD completely instead of just dimming the backlight.
2147 * This provides greater power saving and the display is useless without
2148 * backlight anyway
2149 */
2150 #define BACKLIGHT_LVDS_OFF
2151 /* That one prevents proper CRT output with LCD off */
2152 #undef BACKLIGHT_DAC_OFF
2153
2154 static int aty128_set_backlight_enable(int on, int level, void *data)
2155 {
2156 struct aty128fb_par *par = data;
2157 unsigned int reg = aty_ld_le32(LVDS_GEN_CNTL);
2158
2159 if (!par->lcd_on)
2160 on = 0;
2161 reg |= LVDS_BL_MOD_EN | LVDS_BLON;
2162 if (on && level > BACKLIGHT_OFF) {
2163 reg |= LVDS_DIGION;
2164 if (!(reg & LVDS_ON)) {
2165 reg &= ~LVDS_BLON;
2166 aty_st_le32(LVDS_GEN_CNTL, reg);
2167 (void)aty_ld_le32(LVDS_GEN_CNTL);
2168 mdelay(10);
2169 reg |= LVDS_BLON;
2170 aty_st_le32(LVDS_GEN_CNTL, reg);
2171 }
2172 reg &= ~LVDS_BL_MOD_LEVEL_MASK;
2173 reg |= (backlight_conv[level] << LVDS_BL_MOD_LEVEL_SHIFT);
2174 #ifdef BACKLIGHT_LVDS_OFF
2175 reg |= LVDS_ON | LVDS_EN;
2176 reg &= ~LVDS_DISPLAY_DIS;
2177 #endif
2178 aty_st_le32(LVDS_GEN_CNTL, reg);
2179 #ifdef BACKLIGHT_DAC_OFF
2180 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & (~DAC_PDWN));
2181 #endif
2182 } else {
2183 reg &= ~LVDS_BL_MOD_LEVEL_MASK;
2184 reg |= (backlight_conv[0] << LVDS_BL_MOD_LEVEL_SHIFT);
2185 #ifdef BACKLIGHT_LVDS_OFF
2186 reg |= LVDS_DISPLAY_DIS;
2187 aty_st_le32(LVDS_GEN_CNTL, reg);
2188 (void)aty_ld_le32(LVDS_GEN_CNTL);
2189 udelay(10);
2190 reg &= ~(LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION);
2191 #endif
2192 aty_st_le32(LVDS_GEN_CNTL, reg);
2193 #ifdef BACKLIGHT_DAC_OFF
2194 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PDWN);
2195 #endif
2196 }
2197
2198 return 0;
2199 }
2200
2201 static int aty128_set_backlight_level(int level, void* data)
2202 {
2203 return aty128_set_backlight_enable(1, level, data);
2204 }
2205 #endif /* CONFIG_PMAC_BACKLIGHT */
2206
2207 #if 0
2208 /*
2209 * Accelerated functions
2210 */
2211
2212 static inline void aty128_rectcopy(int srcx, int srcy, int dstx, int dsty,
2213 u_int width, u_int height,
2214 struct fb_info_aty128 *par)
2215 {
2216 u32 save_dp_datatype, save_dp_cntl, dstval;
2217
2218 if (!width || !height)
2219 return;
2220
2221 dstval = depth_to_dst(par->current_par.crtc.depth);
2222 if (dstval == DST_24BPP) {
2223 srcx *= 3;
2224 dstx *= 3;
2225 width *= 3;
2226 } else if (dstval == -EINVAL) {
2227 printk("aty128fb: invalid depth or RGBA\n");
2228 return;
2229 }
2230
2231 wait_for_fifo(2, par);
2232 save_dp_datatype = aty_ld_le32(DP_DATATYPE);
2233 save_dp_cntl = aty_ld_le32(DP_CNTL);
2234
2235 wait_for_fifo(6, par);
2236 aty_st_le32(SRC_Y_X, (srcy << 16) | srcx);
2237 aty_st_le32(DP_MIX, ROP3_SRCCOPY | DP_SRC_RECT);
2238 aty_st_le32(DP_CNTL, DST_X_LEFT_TO_RIGHT | DST_Y_TOP_TO_BOTTOM);
2239 aty_st_le32(DP_DATATYPE, save_dp_datatype | dstval | SRC_DSTCOLOR);
2240
2241 aty_st_le32(DST_Y_X, (dsty << 16) | dstx);
2242 aty_st_le32(DST_HEIGHT_WIDTH, (height << 16) | width);
2243
2244 par->blitter_may_be_busy = 1;
2245
2246 wait_for_fifo(2, par);
2247 aty_st_le32(DP_DATATYPE, save_dp_datatype);
2248 aty_st_le32(DP_CNTL, save_dp_cntl);
2249 }
2250
2251
2252 /*
2253 * Text mode accelerated functions
2254 */
2255
2256 static void fbcon_aty128_bmove(struct display *p, int sy, int sx, int dy, int dx,
2257 int height, int width)
2258 {
2259 sx *= fontwidth(p);
2260 sy *= fontheight(p);
2261 dx *= fontwidth(p);
2262 dy *= fontheight(p);
2263 width *= fontwidth(p);
2264 height *= fontheight(p);
2265
2266 aty128_rectcopy(sx, sy, dx, dy, width, height,
2267 (struct fb_info_aty128 *)p->fb_info);
2268 }
2269 #endif /* 0 */
2270
2271 static void aty128_set_suspend(struct aty128fb_par *par, int suspend)
2272 {
2273 u32 pmgt;
2274 u16 pwr_command;
2275 struct pci_dev *pdev = par->pdev;
2276
2277 if (!par->pm_reg)
2278 return;
2279
2280 /* Set the chip into the appropriate suspend mode (we use D2,
2281 * D3 would require a complete re-initialisation of the chip,
2282 * including PCI config registers, clocks, AGP configuration, ...)
2283 */
2284 if (suspend) {
2285 /* Make sure CRTC2 is reset. Remove that the day we decide to
2286 * actually use CRTC2 and replace it with real code for disabling
2287 * the CRTC2 output during sleep
2288 */
2289 aty_st_le32(CRTC2_GEN_CNTL, aty_ld_le32(CRTC2_GEN_CNTL) &
2290 ~(CRTC2_EN));
2291
2292 /* Set the power management mode to be PCI based */
2293 /* Use this magic value for now */
2294 pmgt = 0x0c005407;
2295 aty_st_pll(POWER_MANAGEMENT, pmgt);
2296 (void)aty_ld_pll(POWER_MANAGEMENT);
2297 aty_st_le32(BUS_CNTL1, 0x00000010);
2298 aty_st_le32(MEM_POWER_MISC, 0x0c830000);
2299 mdelay(100);
2300 pci_read_config_word(pdev, par->pm_reg+PCI_PM_CTRL, &pwr_command);
2301 /* Switch PCI power management to D2 */
2302 pci_write_config_word(pdev, par->pm_reg+PCI_PM_CTRL,
2303 (pwr_command & ~PCI_PM_CTRL_STATE_MASK) | 2);
2304 pci_read_config_word(pdev, par->pm_reg+PCI_PM_CTRL, &pwr_command);
2305 } else {
2306 /* Switch back PCI power management to D0 */
2307 mdelay(100);
2308 pci_write_config_word(pdev, par->pm_reg+PCI_PM_CTRL, 0);
2309 pci_read_config_word(pdev, par->pm_reg+PCI_PM_CTRL, &pwr_command);
2310 mdelay(100);
2311 }
2312 }
2313
2314 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2315 {
2316 struct fb_info *info = pci_get_drvdata(pdev);
2317 struct aty128fb_par *par = info->par;
2318
2319 /* We don't do anything but D2, for now we return 0, but
2320 * we may want to change that. How do we know if the BIOS
2321 * can properly take care of D3 ? Also, with swsusp, we
2322 * know we'll be rebooted, ...
2323 */
2324 #ifndef CONFIG_PPC_PMAC
2325 /* HACK ALERT ! Once I find a proper way to say to each driver
2326 * individually what will happen with it's PCI slot, I'll change
2327 * that. On laptops, the AGP slot is just unclocked, so D2 is
2328 * expected, while on desktops, the card is powered off
2329 */
2330 return 0;
2331 #endif /* CONFIG_PPC_PMAC */
2332
2333 if (state.event == pdev->dev.power.power_state.event)
2334 return 0;
2335
2336 printk(KERN_DEBUG "aty128fb: suspending...\n");
2337
2338 acquire_console_sem();
2339
2340 fb_set_suspend(info, 1);
2341
2342 /* Make sure engine is reset */
2343 wait_for_idle(par);
2344 aty128_reset_engine(par);
2345 wait_for_idle(par);
2346
2347 /* Blank display and LCD */
2348 aty128fb_blank(VESA_POWERDOWN, info);
2349
2350 /* Sleep */
2351 par->asleep = 1;
2352 par->lock_blank = 1;
2353
2354 #ifdef CONFIG_PPC_PMAC
2355 /* On powermac, we have hooks to properly suspend/resume AGP now,
2356 * use them here. We'll ultimately need some generic support here,
2357 * but the generic code isn't quite ready for that yet
2358 */
2359 pmac_suspend_agp_for_card(pdev);
2360 #endif /* CONFIG_PPC_PMAC */
2361
2362 /* We need a way to make sure the fbdev layer will _not_ touch the
2363 * framebuffer before we put the chip to suspend state. On 2.4, I
2364 * used dummy fb ops, 2.5 need proper support for this at the
2365 * fbdev level
2366 */
2367 if (state.event != PM_EVENT_ON)
2368 aty128_set_suspend(par, 1);
2369
2370 release_console_sem();
2371
2372 pdev->dev.power.power_state = state;
2373
2374 return 0;
2375 }
2376
2377 static int aty128_do_resume(struct pci_dev *pdev)
2378 {
2379 struct fb_info *info = pci_get_drvdata(pdev);
2380 struct aty128fb_par *par = info->par;
2381
2382 if (pdev->dev.power.power_state.event == PM_EVENT_ON)
2383 return 0;
2384
2385 /* Wakeup chip */
2386 aty128_set_suspend(par, 0);
2387 par->asleep = 0;
2388
2389 /* Restore display & engine */
2390 aty128_reset_engine(par);
2391 wait_for_idle(par);
2392 aty128fb_set_par(info);
2393 fb_pan_display(info, &info->var);
2394 fb_set_cmap(&info->cmap, info);
2395
2396 /* Refresh */
2397 fb_set_suspend(info, 0);
2398
2399 /* Unblank */
2400 par->lock_blank = 0;
2401 aty128fb_blank(0, info);
2402
2403 #ifdef CONFIG_PPC_PMAC
2404 /* On powermac, we have hooks to properly suspend/resume AGP now,
2405 * use them here. We'll ultimately need some generic support here,
2406 * but the generic code isn't quite ready for that yet
2407 */
2408 pmac_resume_agp_for_card(pdev);
2409 #endif /* CONFIG_PPC_PMAC */
2410
2411 pdev->dev.power.power_state = PMSG_ON;
2412
2413 printk(KERN_DEBUG "aty128fb: resumed !\n");
2414
2415 return 0;
2416 }
2417
2418 static int aty128_pci_resume(struct pci_dev *pdev)
2419 {
2420 int rc;
2421
2422 acquire_console_sem();
2423 rc = aty128_do_resume(pdev);
2424 release_console_sem();
2425
2426 return rc;
2427 }
2428
2429
2430 static int __init aty128fb_init(void)
2431 {
2432 #ifndef MODULE
2433 char *option = NULL;
2434
2435 if (fb_get_options("aty128fb", &option))
2436 return -ENODEV;
2437 aty128fb_setup(option);
2438 #endif
2439
2440 return pci_register_driver(&aty128fb_driver);
2441 }
2442
2443 static void __exit aty128fb_exit(void)
2444 {
2445 pci_unregister_driver(&aty128fb_driver);
2446 }
2447
2448 module_init(aty128fb_init);
2449
2450 module_exit(aty128fb_exit);
2451
2452 MODULE_AUTHOR("(c)1999-2003 Brad Douglas <brad@neruo.com>");
2453 MODULE_DESCRIPTION("FBDev driver for ATI Rage128 / Pro cards");
2454 MODULE_LICENSE("GPL");
2455 module_param(mode_option, charp, 0);
2456 MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\" ");
2457 #ifdef CONFIG_MTRR
2458 module_param_named(nomtrr, mtrr, invbool, 0);
2459 MODULE_PARM_DESC(nomtrr, "bool: Disable MTRR support (0 or 1=disabled) (default=0)");
2460 #endif
2461