Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / vhost / vhost.c
1 /* Copyright (C) 2009 Red Hat, Inc.
2 * Copyright (C) 2006 Rusty Russell IBM Corporation
3 *
4 * Author: Michael S. Tsirkin <mst@redhat.com>
5 *
6 * Inspiration, some code, and most witty comments come from
7 * Documentation/lguest/lguest.c, by Rusty Russell
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2.
10 *
11 * Generic code for virtio server in host kernel.
12 */
13
14 #include <linux/eventfd.h>
15 #include <linux/vhost.h>
16 #include <linux/virtio_net.h>
17 #include <linux/mm.h>
18 #include <linux/miscdevice.h>
19 #include <linux/mutex.h>
20 #include <linux/rcupdate.h>
21 #include <linux/poll.h>
22 #include <linux/file.h>
23 #include <linux/highmem.h>
24 #include <linux/slab.h>
25 #include <linux/kthread.h>
26 #include <linux/cgroup.h>
27
28 #include <linux/net.h>
29 #include <linux/if_packet.h>
30 #include <linux/if_arp.h>
31
32 #include <net/sock.h>
33
34 #include "vhost.h"
35
36 enum {
37 VHOST_MEMORY_MAX_NREGIONS = 64,
38 VHOST_MEMORY_F_LOG = 0x1,
39 };
40
41 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh,
42 poll_table *pt)
43 {
44 struct vhost_poll *poll;
45 poll = container_of(pt, struct vhost_poll, table);
46
47 poll->wqh = wqh;
48 add_wait_queue(wqh, &poll->wait);
49 }
50
51 static int vhost_poll_wakeup(wait_queue_t *wait, unsigned mode, int sync,
52 void *key)
53 {
54 struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait);
55
56 if (!((unsigned long)key & poll->mask))
57 return 0;
58
59 vhost_poll_queue(poll);
60 return 0;
61 }
62
63 /* Init poll structure */
64 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn,
65 unsigned long mask, struct vhost_dev *dev)
66 {
67 struct vhost_work *work = &poll->work;
68
69 init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup);
70 init_poll_funcptr(&poll->table, vhost_poll_func);
71 poll->mask = mask;
72 poll->dev = dev;
73
74 INIT_LIST_HEAD(&work->node);
75 work->fn = fn;
76 init_waitqueue_head(&work->done);
77 work->flushing = 0;
78 work->queue_seq = work->done_seq = 0;
79 }
80
81 /* Start polling a file. We add ourselves to file's wait queue. The caller must
82 * keep a reference to a file until after vhost_poll_stop is called. */
83 void vhost_poll_start(struct vhost_poll *poll, struct file *file)
84 {
85 unsigned long mask;
86 mask = file->f_op->poll(file, &poll->table);
87 if (mask)
88 vhost_poll_wakeup(&poll->wait, 0, 0, (void *)mask);
89 }
90
91 /* Stop polling a file. After this function returns, it becomes safe to drop the
92 * file reference. You must also flush afterwards. */
93 void vhost_poll_stop(struct vhost_poll *poll)
94 {
95 remove_wait_queue(poll->wqh, &poll->wait);
96 }
97
98 /* Flush any work that has been scheduled. When calling this, don't hold any
99 * locks that are also used by the callback. */
100 void vhost_poll_flush(struct vhost_poll *poll)
101 {
102 struct vhost_work *work = &poll->work;
103 unsigned seq;
104 int left;
105 int flushing;
106
107 spin_lock_irq(&poll->dev->work_lock);
108 seq = work->queue_seq;
109 work->flushing++;
110 spin_unlock_irq(&poll->dev->work_lock);
111 wait_event(work->done, ({
112 spin_lock_irq(&poll->dev->work_lock);
113 left = seq - work->done_seq <= 0;
114 spin_unlock_irq(&poll->dev->work_lock);
115 left;
116 }));
117 spin_lock_irq(&poll->dev->work_lock);
118 flushing = --work->flushing;
119 spin_unlock_irq(&poll->dev->work_lock);
120 BUG_ON(flushing < 0);
121 }
122
123 void vhost_poll_queue(struct vhost_poll *poll)
124 {
125 struct vhost_dev *dev = poll->dev;
126 struct vhost_work *work = &poll->work;
127 unsigned long flags;
128
129 spin_lock_irqsave(&dev->work_lock, flags);
130 if (list_empty(&work->node)) {
131 list_add_tail(&work->node, &dev->work_list);
132 work->queue_seq++;
133 wake_up_process(dev->worker);
134 }
135 spin_unlock_irqrestore(&dev->work_lock, flags);
136 }
137
138 static void vhost_vq_reset(struct vhost_dev *dev,
139 struct vhost_virtqueue *vq)
140 {
141 vq->num = 1;
142 vq->desc = NULL;
143 vq->avail = NULL;
144 vq->used = NULL;
145 vq->last_avail_idx = 0;
146 vq->avail_idx = 0;
147 vq->last_used_idx = 0;
148 vq->used_flags = 0;
149 vq->used_flags = 0;
150 vq->log_used = false;
151 vq->log_addr = -1ull;
152 vq->vhost_hlen = 0;
153 vq->sock_hlen = 0;
154 vq->private_data = NULL;
155 vq->log_base = NULL;
156 vq->error_ctx = NULL;
157 vq->error = NULL;
158 vq->kick = NULL;
159 vq->call_ctx = NULL;
160 vq->call = NULL;
161 vq->log_ctx = NULL;
162 }
163
164 static int vhost_worker(void *data)
165 {
166 struct vhost_dev *dev = data;
167 struct vhost_work *work = NULL;
168 unsigned uninitialized_var(seq);
169
170 for (;;) {
171 /* mb paired w/ kthread_stop */
172 set_current_state(TASK_INTERRUPTIBLE);
173
174 spin_lock_irq(&dev->work_lock);
175 if (work) {
176 work->done_seq = seq;
177 if (work->flushing)
178 wake_up_all(&work->done);
179 }
180
181 if (kthread_should_stop()) {
182 spin_unlock_irq(&dev->work_lock);
183 __set_current_state(TASK_RUNNING);
184 return 0;
185 }
186 if (!list_empty(&dev->work_list)) {
187 work = list_first_entry(&dev->work_list,
188 struct vhost_work, node);
189 list_del_init(&work->node);
190 seq = work->queue_seq;
191 } else
192 work = NULL;
193 spin_unlock_irq(&dev->work_lock);
194
195 if (work) {
196 __set_current_state(TASK_RUNNING);
197 work->fn(work);
198 } else
199 schedule();
200
201 }
202 }
203
204 long vhost_dev_init(struct vhost_dev *dev,
205 struct vhost_virtqueue *vqs, int nvqs)
206 {
207 int i;
208
209 dev->vqs = vqs;
210 dev->nvqs = nvqs;
211 mutex_init(&dev->mutex);
212 dev->log_ctx = NULL;
213 dev->log_file = NULL;
214 dev->memory = NULL;
215 dev->mm = NULL;
216 spin_lock_init(&dev->work_lock);
217 INIT_LIST_HEAD(&dev->work_list);
218 dev->worker = NULL;
219
220 for (i = 0; i < dev->nvqs; ++i) {
221 dev->vqs[i].dev = dev;
222 mutex_init(&dev->vqs[i].mutex);
223 vhost_vq_reset(dev, dev->vqs + i);
224 if (dev->vqs[i].handle_kick)
225 vhost_poll_init(&dev->vqs[i].poll,
226 dev->vqs[i].handle_kick, POLLIN, dev);
227 }
228
229 return 0;
230 }
231
232 /* Caller should have device mutex */
233 long vhost_dev_check_owner(struct vhost_dev *dev)
234 {
235 /* Are you the owner? If not, I don't think you mean to do that */
236 return dev->mm == current->mm ? 0 : -EPERM;
237 }
238
239 /* Caller should have device mutex */
240 static long vhost_dev_set_owner(struct vhost_dev *dev)
241 {
242 struct task_struct *worker;
243 int err;
244 /* Is there an owner already? */
245 if (dev->mm) {
246 err = -EBUSY;
247 goto err_mm;
248 }
249 /* No owner, become one */
250 dev->mm = get_task_mm(current);
251 worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid);
252 if (IS_ERR(worker)) {
253 err = PTR_ERR(worker);
254 goto err_worker;
255 }
256
257 dev->worker = worker;
258 err = cgroup_attach_task_current_cg(worker);
259 if (err)
260 goto err_cgroup;
261 wake_up_process(worker); /* avoid contributing to loadavg */
262
263 return 0;
264 err_cgroup:
265 kthread_stop(worker);
266 err_worker:
267 if (dev->mm)
268 mmput(dev->mm);
269 dev->mm = NULL;
270 err_mm:
271 return err;
272 }
273
274 /* Caller should have device mutex */
275 long vhost_dev_reset_owner(struct vhost_dev *dev)
276 {
277 struct vhost_memory *memory;
278
279 /* Restore memory to default empty mapping. */
280 memory = kmalloc(offsetof(struct vhost_memory, regions), GFP_KERNEL);
281 if (!memory)
282 return -ENOMEM;
283
284 vhost_dev_cleanup(dev);
285
286 memory->nregions = 0;
287 dev->memory = memory;
288 return 0;
289 }
290
291 /* Caller should have device mutex */
292 void vhost_dev_cleanup(struct vhost_dev *dev)
293 {
294 int i;
295 for (i = 0; i < dev->nvqs; ++i) {
296 if (dev->vqs[i].kick && dev->vqs[i].handle_kick) {
297 vhost_poll_stop(&dev->vqs[i].poll);
298 vhost_poll_flush(&dev->vqs[i].poll);
299 }
300 if (dev->vqs[i].error_ctx)
301 eventfd_ctx_put(dev->vqs[i].error_ctx);
302 if (dev->vqs[i].error)
303 fput(dev->vqs[i].error);
304 if (dev->vqs[i].kick)
305 fput(dev->vqs[i].kick);
306 if (dev->vqs[i].call_ctx)
307 eventfd_ctx_put(dev->vqs[i].call_ctx);
308 if (dev->vqs[i].call)
309 fput(dev->vqs[i].call);
310 vhost_vq_reset(dev, dev->vqs + i);
311 }
312 if (dev->log_ctx)
313 eventfd_ctx_put(dev->log_ctx);
314 dev->log_ctx = NULL;
315 if (dev->log_file)
316 fput(dev->log_file);
317 dev->log_file = NULL;
318 /* No one will access memory at this point */
319 kfree(dev->memory);
320 dev->memory = NULL;
321 if (dev->mm)
322 mmput(dev->mm);
323 dev->mm = NULL;
324
325 WARN_ON(!list_empty(&dev->work_list));
326 kthread_stop(dev->worker);
327 }
328
329 static int log_access_ok(void __user *log_base, u64 addr, unsigned long sz)
330 {
331 u64 a = addr / VHOST_PAGE_SIZE / 8;
332 /* Make sure 64 bit math will not overflow. */
333 if (a > ULONG_MAX - (unsigned long)log_base ||
334 a + (unsigned long)log_base > ULONG_MAX)
335 return -EFAULT;
336
337 return access_ok(VERIFY_WRITE, log_base + a,
338 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8);
339 }
340
341 /* Caller should have vq mutex and device mutex. */
342 static int vq_memory_access_ok(void __user *log_base, struct vhost_memory *mem,
343 int log_all)
344 {
345 int i;
346
347 if (!mem)
348 return 0;
349
350 for (i = 0; i < mem->nregions; ++i) {
351 struct vhost_memory_region *m = mem->regions + i;
352 unsigned long a = m->userspace_addr;
353 if (m->memory_size > ULONG_MAX)
354 return 0;
355 else if (!access_ok(VERIFY_WRITE, (void __user *)a,
356 m->memory_size))
357 return 0;
358 else if (log_all && !log_access_ok(log_base,
359 m->guest_phys_addr,
360 m->memory_size))
361 return 0;
362 }
363 return 1;
364 }
365
366 /* Can we switch to this memory table? */
367 /* Caller should have device mutex but not vq mutex */
368 static int memory_access_ok(struct vhost_dev *d, struct vhost_memory *mem,
369 int log_all)
370 {
371 int i;
372 for (i = 0; i < d->nvqs; ++i) {
373 int ok;
374 mutex_lock(&d->vqs[i].mutex);
375 /* If ring is inactive, will check when it's enabled. */
376 if (d->vqs[i].private_data)
377 ok = vq_memory_access_ok(d->vqs[i].log_base, mem,
378 log_all);
379 else
380 ok = 1;
381 mutex_unlock(&d->vqs[i].mutex);
382 if (!ok)
383 return 0;
384 }
385 return 1;
386 }
387
388 static int vq_access_ok(unsigned int num,
389 struct vring_desc __user *desc,
390 struct vring_avail __user *avail,
391 struct vring_used __user *used)
392 {
393 return access_ok(VERIFY_READ, desc, num * sizeof *desc) &&
394 access_ok(VERIFY_READ, avail,
395 sizeof *avail + num * sizeof *avail->ring) &&
396 access_ok(VERIFY_WRITE, used,
397 sizeof *used + num * sizeof *used->ring);
398 }
399
400 /* Can we log writes? */
401 /* Caller should have device mutex but not vq mutex */
402 int vhost_log_access_ok(struct vhost_dev *dev)
403 {
404 return memory_access_ok(dev, dev->memory, 1);
405 }
406
407 /* Verify access for write logging. */
408 /* Caller should have vq mutex and device mutex */
409 static int vq_log_access_ok(struct vhost_virtqueue *vq, void __user *log_base)
410 {
411 return vq_memory_access_ok(log_base, vq->dev->memory,
412 vhost_has_feature(vq->dev, VHOST_F_LOG_ALL)) &&
413 (!vq->log_used || log_access_ok(log_base, vq->log_addr,
414 sizeof *vq->used +
415 vq->num * sizeof *vq->used->ring));
416 }
417
418 /* Can we start vq? */
419 /* Caller should have vq mutex and device mutex */
420 int vhost_vq_access_ok(struct vhost_virtqueue *vq)
421 {
422 return vq_access_ok(vq->num, vq->desc, vq->avail, vq->used) &&
423 vq_log_access_ok(vq, vq->log_base);
424 }
425
426 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m)
427 {
428 struct vhost_memory mem, *newmem, *oldmem;
429 unsigned long size = offsetof(struct vhost_memory, regions);
430 if (copy_from_user(&mem, m, size))
431 return -EFAULT;
432 if (mem.padding)
433 return -EOPNOTSUPP;
434 if (mem.nregions > VHOST_MEMORY_MAX_NREGIONS)
435 return -E2BIG;
436 newmem = kmalloc(size + mem.nregions * sizeof *m->regions, GFP_KERNEL);
437 if (!newmem)
438 return -ENOMEM;
439
440 memcpy(newmem, &mem, size);
441 if (copy_from_user(newmem->regions, m->regions,
442 mem.nregions * sizeof *m->regions)) {
443 kfree(newmem);
444 return -EFAULT;
445 }
446
447 if (!memory_access_ok(d, newmem, vhost_has_feature(d, VHOST_F_LOG_ALL))) {
448 kfree(newmem);
449 return -EFAULT;
450 }
451 oldmem = d->memory;
452 rcu_assign_pointer(d->memory, newmem);
453 synchronize_rcu();
454 kfree(oldmem);
455 return 0;
456 }
457
458 static int init_used(struct vhost_virtqueue *vq,
459 struct vring_used __user *used)
460 {
461 int r = put_user(vq->used_flags, &used->flags);
462 if (r)
463 return r;
464 return get_user(vq->last_used_idx, &used->idx);
465 }
466
467 static long vhost_set_vring(struct vhost_dev *d, int ioctl, void __user *argp)
468 {
469 struct file *eventfp, *filep = NULL,
470 *pollstart = NULL, *pollstop = NULL;
471 struct eventfd_ctx *ctx = NULL;
472 u32 __user *idxp = argp;
473 struct vhost_virtqueue *vq;
474 struct vhost_vring_state s;
475 struct vhost_vring_file f;
476 struct vhost_vring_addr a;
477 u32 idx;
478 long r;
479
480 r = get_user(idx, idxp);
481 if (r < 0)
482 return r;
483 if (idx >= d->nvqs)
484 return -ENOBUFS;
485
486 vq = d->vqs + idx;
487
488 mutex_lock(&vq->mutex);
489
490 switch (ioctl) {
491 case VHOST_SET_VRING_NUM:
492 /* Resizing ring with an active backend?
493 * You don't want to do that. */
494 if (vq->private_data) {
495 r = -EBUSY;
496 break;
497 }
498 if (copy_from_user(&s, argp, sizeof s)) {
499 r = -EFAULT;
500 break;
501 }
502 if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) {
503 r = -EINVAL;
504 break;
505 }
506 vq->num = s.num;
507 break;
508 case VHOST_SET_VRING_BASE:
509 /* Moving base with an active backend?
510 * You don't want to do that. */
511 if (vq->private_data) {
512 r = -EBUSY;
513 break;
514 }
515 if (copy_from_user(&s, argp, sizeof s)) {
516 r = -EFAULT;
517 break;
518 }
519 if (s.num > 0xffff) {
520 r = -EINVAL;
521 break;
522 }
523 vq->last_avail_idx = s.num;
524 /* Forget the cached index value. */
525 vq->avail_idx = vq->last_avail_idx;
526 break;
527 case VHOST_GET_VRING_BASE:
528 s.index = idx;
529 s.num = vq->last_avail_idx;
530 if (copy_to_user(argp, &s, sizeof s))
531 r = -EFAULT;
532 break;
533 case VHOST_SET_VRING_ADDR:
534 if (copy_from_user(&a, argp, sizeof a)) {
535 r = -EFAULT;
536 break;
537 }
538 if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) {
539 r = -EOPNOTSUPP;
540 break;
541 }
542 /* For 32bit, verify that the top 32bits of the user
543 data are set to zero. */
544 if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr ||
545 (u64)(unsigned long)a.used_user_addr != a.used_user_addr ||
546 (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) {
547 r = -EFAULT;
548 break;
549 }
550 if ((a.avail_user_addr & (sizeof *vq->avail->ring - 1)) ||
551 (a.used_user_addr & (sizeof *vq->used->ring - 1)) ||
552 (a.log_guest_addr & (sizeof *vq->used->ring - 1))) {
553 r = -EINVAL;
554 break;
555 }
556
557 /* We only verify access here if backend is configured.
558 * If it is not, we don't as size might not have been setup.
559 * We will verify when backend is configured. */
560 if (vq->private_data) {
561 if (!vq_access_ok(vq->num,
562 (void __user *)(unsigned long)a.desc_user_addr,
563 (void __user *)(unsigned long)a.avail_user_addr,
564 (void __user *)(unsigned long)a.used_user_addr)) {
565 r = -EINVAL;
566 break;
567 }
568
569 /* Also validate log access for used ring if enabled. */
570 if ((a.flags & (0x1 << VHOST_VRING_F_LOG)) &&
571 !log_access_ok(vq->log_base, a.log_guest_addr,
572 sizeof *vq->used +
573 vq->num * sizeof *vq->used->ring)) {
574 r = -EINVAL;
575 break;
576 }
577 }
578
579 r = init_used(vq, (struct vring_used __user *)(unsigned long)
580 a.used_user_addr);
581 if (r)
582 break;
583 vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG));
584 vq->desc = (void __user *)(unsigned long)a.desc_user_addr;
585 vq->avail = (void __user *)(unsigned long)a.avail_user_addr;
586 vq->log_addr = a.log_guest_addr;
587 vq->used = (void __user *)(unsigned long)a.used_user_addr;
588 break;
589 case VHOST_SET_VRING_KICK:
590 if (copy_from_user(&f, argp, sizeof f)) {
591 r = -EFAULT;
592 break;
593 }
594 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd);
595 if (IS_ERR(eventfp)) {
596 r = PTR_ERR(eventfp);
597 break;
598 }
599 if (eventfp != vq->kick) {
600 pollstop = filep = vq->kick;
601 pollstart = vq->kick = eventfp;
602 } else
603 filep = eventfp;
604 break;
605 case VHOST_SET_VRING_CALL:
606 if (copy_from_user(&f, argp, sizeof f)) {
607 r = -EFAULT;
608 break;
609 }
610 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd);
611 if (IS_ERR(eventfp)) {
612 r = PTR_ERR(eventfp);
613 break;
614 }
615 if (eventfp != vq->call) {
616 filep = vq->call;
617 ctx = vq->call_ctx;
618 vq->call = eventfp;
619 vq->call_ctx = eventfp ?
620 eventfd_ctx_fileget(eventfp) : NULL;
621 } else
622 filep = eventfp;
623 break;
624 case VHOST_SET_VRING_ERR:
625 if (copy_from_user(&f, argp, sizeof f)) {
626 r = -EFAULT;
627 break;
628 }
629 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd);
630 if (IS_ERR(eventfp)) {
631 r = PTR_ERR(eventfp);
632 break;
633 }
634 if (eventfp != vq->error) {
635 filep = vq->error;
636 vq->error = eventfp;
637 ctx = vq->error_ctx;
638 vq->error_ctx = eventfp ?
639 eventfd_ctx_fileget(eventfp) : NULL;
640 } else
641 filep = eventfp;
642 break;
643 default:
644 r = -ENOIOCTLCMD;
645 }
646
647 if (pollstop && vq->handle_kick)
648 vhost_poll_stop(&vq->poll);
649
650 if (ctx)
651 eventfd_ctx_put(ctx);
652 if (filep)
653 fput(filep);
654
655 if (pollstart && vq->handle_kick)
656 vhost_poll_start(&vq->poll, vq->kick);
657
658 mutex_unlock(&vq->mutex);
659
660 if (pollstop && vq->handle_kick)
661 vhost_poll_flush(&vq->poll);
662 return r;
663 }
664
665 /* Caller must have device mutex */
666 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, unsigned long arg)
667 {
668 void __user *argp = (void __user *)arg;
669 struct file *eventfp, *filep = NULL;
670 struct eventfd_ctx *ctx = NULL;
671 u64 p;
672 long r;
673 int i, fd;
674
675 /* If you are not the owner, you can become one */
676 if (ioctl == VHOST_SET_OWNER) {
677 r = vhost_dev_set_owner(d);
678 goto done;
679 }
680
681 /* You must be the owner to do anything else */
682 r = vhost_dev_check_owner(d);
683 if (r)
684 goto done;
685
686 switch (ioctl) {
687 case VHOST_SET_MEM_TABLE:
688 r = vhost_set_memory(d, argp);
689 break;
690 case VHOST_SET_LOG_BASE:
691 if (copy_from_user(&p, argp, sizeof p)) {
692 r = -EFAULT;
693 break;
694 }
695 if ((u64)(unsigned long)p != p) {
696 r = -EFAULT;
697 break;
698 }
699 for (i = 0; i < d->nvqs; ++i) {
700 struct vhost_virtqueue *vq;
701 void __user *base = (void __user *)(unsigned long)p;
702 vq = d->vqs + i;
703 mutex_lock(&vq->mutex);
704 /* If ring is inactive, will check when it's enabled. */
705 if (vq->private_data && !vq_log_access_ok(vq, base))
706 r = -EFAULT;
707 else
708 vq->log_base = base;
709 mutex_unlock(&vq->mutex);
710 }
711 break;
712 case VHOST_SET_LOG_FD:
713 r = get_user(fd, (int __user *)argp);
714 if (r < 0)
715 break;
716 eventfp = fd == -1 ? NULL : eventfd_fget(fd);
717 if (IS_ERR(eventfp)) {
718 r = PTR_ERR(eventfp);
719 break;
720 }
721 if (eventfp != d->log_file) {
722 filep = d->log_file;
723 ctx = d->log_ctx;
724 d->log_ctx = eventfp ?
725 eventfd_ctx_fileget(eventfp) : NULL;
726 } else
727 filep = eventfp;
728 for (i = 0; i < d->nvqs; ++i) {
729 mutex_lock(&d->vqs[i].mutex);
730 d->vqs[i].log_ctx = d->log_ctx;
731 mutex_unlock(&d->vqs[i].mutex);
732 }
733 if (ctx)
734 eventfd_ctx_put(ctx);
735 if (filep)
736 fput(filep);
737 break;
738 default:
739 r = vhost_set_vring(d, ioctl, argp);
740 break;
741 }
742 done:
743 return r;
744 }
745
746 static const struct vhost_memory_region *find_region(struct vhost_memory *mem,
747 __u64 addr, __u32 len)
748 {
749 struct vhost_memory_region *reg;
750 int i;
751 /* linear search is not brilliant, but we really have on the order of 6
752 * regions in practice */
753 for (i = 0; i < mem->nregions; ++i) {
754 reg = mem->regions + i;
755 if (reg->guest_phys_addr <= addr &&
756 reg->guest_phys_addr + reg->memory_size - 1 >= addr)
757 return reg;
758 }
759 return NULL;
760 }
761
762 /* TODO: This is really inefficient. We need something like get_user()
763 * (instruction directly accesses the data, with an exception table entry
764 * returning -EFAULT). See Documentation/x86/exception-tables.txt.
765 */
766 static int set_bit_to_user(int nr, void __user *addr)
767 {
768 unsigned long log = (unsigned long)addr;
769 struct page *page;
770 void *base;
771 int bit = nr + (log % PAGE_SIZE) * 8;
772 int r;
773 r = get_user_pages_fast(log, 1, 1, &page);
774 if (r < 0)
775 return r;
776 BUG_ON(r != 1);
777 base = kmap_atomic(page, KM_USER0);
778 set_bit(bit, base);
779 kunmap_atomic(base, KM_USER0);
780 set_page_dirty_lock(page);
781 put_page(page);
782 return 0;
783 }
784
785 static int log_write(void __user *log_base,
786 u64 write_address, u64 write_length)
787 {
788 int r;
789 if (!write_length)
790 return 0;
791 write_address /= VHOST_PAGE_SIZE;
792 for (;;) {
793 u64 base = (u64)(unsigned long)log_base;
794 u64 log = base + write_address / 8;
795 int bit = write_address % 8;
796 if ((u64)(unsigned long)log != log)
797 return -EFAULT;
798 r = set_bit_to_user(bit, (void __user *)(unsigned long)log);
799 if (r < 0)
800 return r;
801 if (write_length <= VHOST_PAGE_SIZE)
802 break;
803 write_length -= VHOST_PAGE_SIZE;
804 write_address += VHOST_PAGE_SIZE;
805 }
806 return r;
807 }
808
809 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log,
810 unsigned int log_num, u64 len)
811 {
812 int i, r;
813
814 /* Make sure data written is seen before log. */
815 smp_wmb();
816 for (i = 0; i < log_num; ++i) {
817 u64 l = min(log[i].len, len);
818 r = log_write(vq->log_base, log[i].addr, l);
819 if (r < 0)
820 return r;
821 len -= l;
822 if (!len)
823 return 0;
824 }
825 if (vq->log_ctx)
826 eventfd_signal(vq->log_ctx, 1);
827 /* Length written exceeds what we have stored. This is a bug. */
828 BUG();
829 return 0;
830 }
831
832 static int translate_desc(struct vhost_dev *dev, u64 addr, u32 len,
833 struct iovec iov[], int iov_size)
834 {
835 const struct vhost_memory_region *reg;
836 struct vhost_memory *mem;
837 struct iovec *_iov;
838 u64 s = 0;
839 int ret = 0;
840
841 rcu_read_lock();
842
843 mem = rcu_dereference(dev->memory);
844 while ((u64)len > s) {
845 u64 size;
846 if (unlikely(ret >= iov_size)) {
847 ret = -ENOBUFS;
848 break;
849 }
850 reg = find_region(mem, addr, len);
851 if (unlikely(!reg)) {
852 ret = -EFAULT;
853 break;
854 }
855 _iov = iov + ret;
856 size = reg->memory_size - addr + reg->guest_phys_addr;
857 _iov->iov_len = min((u64)len, size);
858 _iov->iov_base = (void __user *)(unsigned long)
859 (reg->userspace_addr + addr - reg->guest_phys_addr);
860 s += size;
861 addr += size;
862 ++ret;
863 }
864
865 rcu_read_unlock();
866 return ret;
867 }
868
869 /* Each buffer in the virtqueues is actually a chain of descriptors. This
870 * function returns the next descriptor in the chain,
871 * or -1U if we're at the end. */
872 static unsigned next_desc(struct vring_desc *desc)
873 {
874 unsigned int next;
875
876 /* If this descriptor says it doesn't chain, we're done. */
877 if (!(desc->flags & VRING_DESC_F_NEXT))
878 return -1U;
879
880 /* Check they're not leading us off end of descriptors. */
881 next = desc->next;
882 /* Make sure compiler knows to grab that: we don't want it changing! */
883 /* We will use the result as an index in an array, so most
884 * architectures only need a compiler barrier here. */
885 read_barrier_depends();
886
887 return next;
888 }
889
890 static int get_indirect(struct vhost_dev *dev, struct vhost_virtqueue *vq,
891 struct iovec iov[], unsigned int iov_size,
892 unsigned int *out_num, unsigned int *in_num,
893 struct vhost_log *log, unsigned int *log_num,
894 struct vring_desc *indirect)
895 {
896 struct vring_desc desc;
897 unsigned int i = 0, count, found = 0;
898 int ret;
899
900 /* Sanity check */
901 if (unlikely(indirect->len % sizeof desc)) {
902 vq_err(vq, "Invalid length in indirect descriptor: "
903 "len 0x%llx not multiple of 0x%zx\n",
904 (unsigned long long)indirect->len,
905 sizeof desc);
906 return -EINVAL;
907 }
908
909 ret = translate_desc(dev, indirect->addr, indirect->len, vq->indirect,
910 ARRAY_SIZE(vq->indirect));
911 if (unlikely(ret < 0)) {
912 vq_err(vq, "Translation failure %d in indirect.\n", ret);
913 return ret;
914 }
915
916 /* We will use the result as an address to read from, so most
917 * architectures only need a compiler barrier here. */
918 read_barrier_depends();
919
920 count = indirect->len / sizeof desc;
921 /* Buffers are chained via a 16 bit next field, so
922 * we can have at most 2^16 of these. */
923 if (unlikely(count > USHRT_MAX + 1)) {
924 vq_err(vq, "Indirect buffer length too big: %d\n",
925 indirect->len);
926 return -E2BIG;
927 }
928
929 do {
930 unsigned iov_count = *in_num + *out_num;
931 if (unlikely(++found > count)) {
932 vq_err(vq, "Loop detected: last one at %u "
933 "indirect size %u\n",
934 i, count);
935 return -EINVAL;
936 }
937 if (unlikely(memcpy_fromiovec((unsigned char *)&desc, vq->indirect,
938 sizeof desc))) {
939 vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n",
940 i, (size_t)indirect->addr + i * sizeof desc);
941 return -EINVAL;
942 }
943 if (unlikely(desc.flags & VRING_DESC_F_INDIRECT)) {
944 vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n",
945 i, (size_t)indirect->addr + i * sizeof desc);
946 return -EINVAL;
947 }
948
949 ret = translate_desc(dev, desc.addr, desc.len, iov + iov_count,
950 iov_size - iov_count);
951 if (unlikely(ret < 0)) {
952 vq_err(vq, "Translation failure %d indirect idx %d\n",
953 ret, i);
954 return ret;
955 }
956 /* If this is an input descriptor, increment that count. */
957 if (desc.flags & VRING_DESC_F_WRITE) {
958 *in_num += ret;
959 if (unlikely(log)) {
960 log[*log_num].addr = desc.addr;
961 log[*log_num].len = desc.len;
962 ++*log_num;
963 }
964 } else {
965 /* If it's an output descriptor, they're all supposed
966 * to come before any input descriptors. */
967 if (unlikely(*in_num)) {
968 vq_err(vq, "Indirect descriptor "
969 "has out after in: idx %d\n", i);
970 return -EINVAL;
971 }
972 *out_num += ret;
973 }
974 } while ((i = next_desc(&desc)) != -1);
975 return 0;
976 }
977
978 /* This looks in the virtqueue and for the first available buffer, and converts
979 * it to an iovec for convenient access. Since descriptors consist of some
980 * number of output then some number of input descriptors, it's actually two
981 * iovecs, but we pack them into one and note how many of each there were.
982 *
983 * This function returns the descriptor number found, or vq->num (which is
984 * never a valid descriptor number) if none was found. A negative code is
985 * returned on error. */
986 int vhost_get_vq_desc(struct vhost_dev *dev, struct vhost_virtqueue *vq,
987 struct iovec iov[], unsigned int iov_size,
988 unsigned int *out_num, unsigned int *in_num,
989 struct vhost_log *log, unsigned int *log_num)
990 {
991 struct vring_desc desc;
992 unsigned int i, head, found = 0;
993 u16 last_avail_idx;
994 int ret;
995
996 /* Check it isn't doing very strange things with descriptor numbers. */
997 last_avail_idx = vq->last_avail_idx;
998 if (unlikely(get_user(vq->avail_idx, &vq->avail->idx))) {
999 vq_err(vq, "Failed to access avail idx at %p\n",
1000 &vq->avail->idx);
1001 return -EFAULT;
1002 }
1003
1004 if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) {
1005 vq_err(vq, "Guest moved used index from %u to %u",
1006 last_avail_idx, vq->avail_idx);
1007 return -EFAULT;
1008 }
1009
1010 /* If there's nothing new since last we looked, return invalid. */
1011 if (vq->avail_idx == last_avail_idx)
1012 return vq->num;
1013
1014 /* Only get avail ring entries after they have been exposed by guest. */
1015 smp_rmb();
1016
1017 /* Grab the next descriptor number they're advertising, and increment
1018 * the index we've seen. */
1019 if (unlikely(get_user(head,
1020 &vq->avail->ring[last_avail_idx % vq->num]))) {
1021 vq_err(vq, "Failed to read head: idx %d address %p\n",
1022 last_avail_idx,
1023 &vq->avail->ring[last_avail_idx % vq->num]);
1024 return -EFAULT;
1025 }
1026
1027 /* If their number is silly, that's an error. */
1028 if (unlikely(head >= vq->num)) {
1029 vq_err(vq, "Guest says index %u > %u is available",
1030 head, vq->num);
1031 return -EINVAL;
1032 }
1033
1034 /* When we start there are none of either input nor output. */
1035 *out_num = *in_num = 0;
1036 if (unlikely(log))
1037 *log_num = 0;
1038
1039 i = head;
1040 do {
1041 unsigned iov_count = *in_num + *out_num;
1042 if (unlikely(i >= vq->num)) {
1043 vq_err(vq, "Desc index is %u > %u, head = %u",
1044 i, vq->num, head);
1045 return -EINVAL;
1046 }
1047 if (unlikely(++found > vq->num)) {
1048 vq_err(vq, "Loop detected: last one at %u "
1049 "vq size %u head %u\n",
1050 i, vq->num, head);
1051 return -EINVAL;
1052 }
1053 ret = copy_from_user(&desc, vq->desc + i, sizeof desc);
1054 if (unlikely(ret)) {
1055 vq_err(vq, "Failed to get descriptor: idx %d addr %p\n",
1056 i, vq->desc + i);
1057 return -EFAULT;
1058 }
1059 if (desc.flags & VRING_DESC_F_INDIRECT) {
1060 ret = get_indirect(dev, vq, iov, iov_size,
1061 out_num, in_num,
1062 log, log_num, &desc);
1063 if (unlikely(ret < 0)) {
1064 vq_err(vq, "Failure detected "
1065 "in indirect descriptor at idx %d\n", i);
1066 return ret;
1067 }
1068 continue;
1069 }
1070
1071 ret = translate_desc(dev, desc.addr, desc.len, iov + iov_count,
1072 iov_size - iov_count);
1073 if (unlikely(ret < 0)) {
1074 vq_err(vq, "Translation failure %d descriptor idx %d\n",
1075 ret, i);
1076 return ret;
1077 }
1078 if (desc.flags & VRING_DESC_F_WRITE) {
1079 /* If this is an input descriptor,
1080 * increment that count. */
1081 *in_num += ret;
1082 if (unlikely(log)) {
1083 log[*log_num].addr = desc.addr;
1084 log[*log_num].len = desc.len;
1085 ++*log_num;
1086 }
1087 } else {
1088 /* If it's an output descriptor, they're all supposed
1089 * to come before any input descriptors. */
1090 if (unlikely(*in_num)) {
1091 vq_err(vq, "Descriptor has out after in: "
1092 "idx %d\n", i);
1093 return -EINVAL;
1094 }
1095 *out_num += ret;
1096 }
1097 } while ((i = next_desc(&desc)) != -1);
1098
1099 /* On success, increment avail index. */
1100 vq->last_avail_idx++;
1101 return head;
1102 }
1103
1104 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */
1105 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n)
1106 {
1107 vq->last_avail_idx -= n;
1108 }
1109
1110 /* After we've used one of their buffers, we tell them about it. We'll then
1111 * want to notify the guest, using eventfd. */
1112 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len)
1113 {
1114 struct vring_used_elem __user *used;
1115
1116 /* The virtqueue contains a ring of used buffers. Get a pointer to the
1117 * next entry in that used ring. */
1118 used = &vq->used->ring[vq->last_used_idx % vq->num];
1119 if (put_user(head, &used->id)) {
1120 vq_err(vq, "Failed to write used id");
1121 return -EFAULT;
1122 }
1123 if (put_user(len, &used->len)) {
1124 vq_err(vq, "Failed to write used len");
1125 return -EFAULT;
1126 }
1127 /* Make sure buffer is written before we update index. */
1128 smp_wmb();
1129 if (put_user(vq->last_used_idx + 1, &vq->used->idx)) {
1130 vq_err(vq, "Failed to increment used idx");
1131 return -EFAULT;
1132 }
1133 if (unlikely(vq->log_used)) {
1134 /* Make sure data is seen before log. */
1135 smp_wmb();
1136 /* Log used ring entry write. */
1137 log_write(vq->log_base,
1138 vq->log_addr +
1139 ((void __user *)used - (void __user *)vq->used),
1140 sizeof *used);
1141 /* Log used index update. */
1142 log_write(vq->log_base,
1143 vq->log_addr + offsetof(struct vring_used, idx),
1144 sizeof vq->used->idx);
1145 if (vq->log_ctx)
1146 eventfd_signal(vq->log_ctx, 1);
1147 }
1148 vq->last_used_idx++;
1149 return 0;
1150 }
1151
1152 static int __vhost_add_used_n(struct vhost_virtqueue *vq,
1153 struct vring_used_elem *heads,
1154 unsigned count)
1155 {
1156 struct vring_used_elem __user *used;
1157 int start;
1158
1159 start = vq->last_used_idx % vq->num;
1160 used = vq->used->ring + start;
1161 if (copy_to_user(used, heads, count * sizeof *used)) {
1162 vq_err(vq, "Failed to write used");
1163 return -EFAULT;
1164 }
1165 if (unlikely(vq->log_used)) {
1166 /* Make sure data is seen before log. */
1167 smp_wmb();
1168 /* Log used ring entry write. */
1169 log_write(vq->log_base,
1170 vq->log_addr +
1171 ((void __user *)used - (void __user *)vq->used),
1172 count * sizeof *used);
1173 }
1174 vq->last_used_idx += count;
1175 return 0;
1176 }
1177
1178 /* After we've used one of their buffers, we tell them about it. We'll then
1179 * want to notify the guest, using eventfd. */
1180 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads,
1181 unsigned count)
1182 {
1183 int start, n, r;
1184
1185 start = vq->last_used_idx % vq->num;
1186 n = vq->num - start;
1187 if (n < count) {
1188 r = __vhost_add_used_n(vq, heads, n);
1189 if (r < 0)
1190 return r;
1191 heads += n;
1192 count -= n;
1193 }
1194 r = __vhost_add_used_n(vq, heads, count);
1195
1196 /* Make sure buffer is written before we update index. */
1197 smp_wmb();
1198 if (put_user(vq->last_used_idx, &vq->used->idx)) {
1199 vq_err(vq, "Failed to increment used idx");
1200 return -EFAULT;
1201 }
1202 if (unlikely(vq->log_used)) {
1203 /* Log used index update. */
1204 log_write(vq->log_base,
1205 vq->log_addr + offsetof(struct vring_used, idx),
1206 sizeof vq->used->idx);
1207 if (vq->log_ctx)
1208 eventfd_signal(vq->log_ctx, 1);
1209 }
1210 return r;
1211 }
1212
1213 /* This actually signals the guest, using eventfd. */
1214 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq)
1215 {
1216 __u16 flags;
1217 /* Flush out used index updates. This is paired
1218 * with the barrier that the Guest executes when enabling
1219 * interrupts. */
1220 smp_mb();
1221
1222 if (get_user(flags, &vq->avail->flags)) {
1223 vq_err(vq, "Failed to get flags");
1224 return;
1225 }
1226
1227 /* If they don't want an interrupt, don't signal, unless empty. */
1228 if ((flags & VRING_AVAIL_F_NO_INTERRUPT) &&
1229 (vq->avail_idx != vq->last_avail_idx ||
1230 !vhost_has_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY)))
1231 return;
1232
1233 /* Signal the Guest tell them we used something up. */
1234 if (vq->call_ctx)
1235 eventfd_signal(vq->call_ctx, 1);
1236 }
1237
1238 /* And here's the combo meal deal. Supersize me! */
1239 void vhost_add_used_and_signal(struct vhost_dev *dev,
1240 struct vhost_virtqueue *vq,
1241 unsigned int head, int len)
1242 {
1243 vhost_add_used(vq, head, len);
1244 vhost_signal(dev, vq);
1245 }
1246
1247 /* multi-buffer version of vhost_add_used_and_signal */
1248 void vhost_add_used_and_signal_n(struct vhost_dev *dev,
1249 struct vhost_virtqueue *vq,
1250 struct vring_used_elem *heads, unsigned count)
1251 {
1252 vhost_add_used_n(vq, heads, count);
1253 vhost_signal(dev, vq);
1254 }
1255
1256 /* OK, now we need to know about added descriptors. */
1257 bool vhost_enable_notify(struct vhost_virtqueue *vq)
1258 {
1259 u16 avail_idx;
1260 int r;
1261 if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY))
1262 return false;
1263 vq->used_flags &= ~VRING_USED_F_NO_NOTIFY;
1264 r = put_user(vq->used_flags, &vq->used->flags);
1265 if (r) {
1266 vq_err(vq, "Failed to enable notification at %p: %d\n",
1267 &vq->used->flags, r);
1268 return false;
1269 }
1270 /* They could have slipped one in as we were doing that: make
1271 * sure it's written, then check again. */
1272 smp_mb();
1273 r = get_user(avail_idx, &vq->avail->idx);
1274 if (r) {
1275 vq_err(vq, "Failed to check avail idx at %p: %d\n",
1276 &vq->avail->idx, r);
1277 return false;
1278 }
1279
1280 return avail_idx != vq->avail_idx;
1281 }
1282
1283 /* We don't need to be notified again. */
1284 void vhost_disable_notify(struct vhost_virtqueue *vq)
1285 {
1286 int r;
1287 if (vq->used_flags & VRING_USED_F_NO_NOTIFY)
1288 return;
1289 vq->used_flags |= VRING_USED_F_NO_NOTIFY;
1290 r = put_user(vq->used_flags, &vq->used->flags);
1291 if (r)
1292 vq_err(vq, "Failed to enable notification at %p: %d\n",
1293 &vq->used->flags, r);
1294 }