Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / drivers / usb / mon / mon_bin.c
1 /*
2 * The USB Monitor, inspired by Dave Harding's USBMon.
3 *
4 * This is a binary format reader.
5 *
6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/cdev.h>
14 #include <linux/usb.h>
15 #include <linux/poll.h>
16 #include <linux/compat.h>
17 #include <linux/mm.h>
18 #include <linux/smp_lock.h>
19
20 #include <asm/uaccess.h>
21
22 #include "usb_mon.h"
23
24 /*
25 * Defined by USB 2.0 clause 9.3, table 9.2.
26 */
27 #define SETUP_LEN 8
28
29 /* ioctl macros */
30 #define MON_IOC_MAGIC 0x92
31
32 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
33 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
34 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
35 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
36 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
37 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
38 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
39 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
40 /* #9 was MON_IOCT_SETAPI */
41 #define MON_IOCX_GETX _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
42
43 #ifdef CONFIG_COMPAT
44 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
45 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
46 #define MON_IOCX_GETX32 _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
47 #endif
48
49 /*
50 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
51 * But it's all right. Just use a simple way to make sure the chunk is never
52 * smaller than a page.
53 *
54 * N.B. An application does not know our chunk size.
55 *
56 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
57 * page-sized chunks for the time being.
58 */
59 #define CHUNK_SIZE PAGE_SIZE
60 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
61
62 /*
63 * The magic limit was calculated so that it allows the monitoring
64 * application to pick data once in two ticks. This way, another application,
65 * which presumably drives the bus, gets to hog CPU, yet we collect our data.
66 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
67 * enormous overhead built into the bus protocol, so we need about 1000 KB.
68 *
69 * This is still too much for most cases, where we just snoop a few
70 * descriptor fetches for enumeration. So, the default is a "reasonable"
71 * amount for systems with HZ=250 and incomplete bus saturation.
72 *
73 * XXX What about multi-megabyte URBs which take minutes to transfer?
74 */
75 #define BUFF_MAX CHUNK_ALIGN(1200*1024)
76 #define BUFF_DFL CHUNK_ALIGN(300*1024)
77 #define BUFF_MIN CHUNK_ALIGN(8*1024)
78
79 /*
80 * The per-event API header (2 per URB).
81 *
82 * This structure is seen in userland as defined by the documentation.
83 */
84 struct mon_bin_hdr {
85 u64 id; /* URB ID - from submission to callback */
86 unsigned char type; /* Same as in text API; extensible. */
87 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */
88 unsigned char epnum; /* Endpoint number and transfer direction */
89 unsigned char devnum; /* Device address */
90 unsigned short busnum; /* Bus number */
91 char flag_setup;
92 char flag_data;
93 s64 ts_sec; /* gettimeofday */
94 s32 ts_usec; /* gettimeofday */
95 int status;
96 unsigned int len_urb; /* Length of data (submitted or actual) */
97 unsigned int len_cap; /* Delivered length */
98 union {
99 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */
100 struct iso_rec {
101 int error_count;
102 int numdesc;
103 } iso;
104 } s;
105 int interval;
106 int start_frame;
107 unsigned int xfer_flags;
108 unsigned int ndesc; /* Actual number of ISO descriptors */
109 };
110
111 /*
112 * ISO vector, packed into the head of data stream.
113 * This has to take 16 bytes to make sure that the end of buffer
114 * wrap is not happening in the middle of a descriptor.
115 */
116 struct mon_bin_isodesc {
117 int iso_status;
118 unsigned int iso_off;
119 unsigned int iso_len;
120 u32 _pad;
121 };
122
123 /* per file statistic */
124 struct mon_bin_stats {
125 u32 queued;
126 u32 dropped;
127 };
128
129 struct mon_bin_get {
130 struct mon_bin_hdr __user *hdr; /* Can be 48 bytes or 64. */
131 void __user *data;
132 size_t alloc; /* Length of data (can be zero) */
133 };
134
135 struct mon_bin_mfetch {
136 u32 __user *offvec; /* Vector of events fetched */
137 u32 nfetch; /* Number of events to fetch (out: fetched) */
138 u32 nflush; /* Number of events to flush */
139 };
140
141 #ifdef CONFIG_COMPAT
142 struct mon_bin_get32 {
143 u32 hdr32;
144 u32 data32;
145 u32 alloc32;
146 };
147
148 struct mon_bin_mfetch32 {
149 u32 offvec32;
150 u32 nfetch32;
151 u32 nflush32;
152 };
153 #endif
154
155 /* Having these two values same prevents wrapping of the mon_bin_hdr */
156 #define PKT_ALIGN 64
157 #define PKT_SIZE 64
158
159 #define PKT_SZ_API0 48 /* API 0 (2.6.20) size */
160 #define PKT_SZ_API1 64 /* API 1 size: extra fields */
161
162 #define ISODESC_MAX 128 /* Same number as usbfs allows, 2048 bytes. */
163
164 /* max number of USB bus supported */
165 #define MON_BIN_MAX_MINOR 128
166
167 /*
168 * The buffer: map of used pages.
169 */
170 struct mon_pgmap {
171 struct page *pg;
172 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */
173 };
174
175 /*
176 * This gets associated with an open file struct.
177 */
178 struct mon_reader_bin {
179 /* The buffer: one per open. */
180 spinlock_t b_lock; /* Protect b_cnt, b_in */
181 unsigned int b_size; /* Current size of the buffer - bytes */
182 unsigned int b_cnt; /* Bytes used */
183 unsigned int b_in, b_out; /* Offsets into buffer - bytes */
184 unsigned int b_read; /* Amount of read data in curr. pkt. */
185 struct mon_pgmap *b_vec; /* The map array */
186 wait_queue_head_t b_wait; /* Wait for data here */
187
188 struct mutex fetch_lock; /* Protect b_read, b_out */
189 int mmap_active;
190
191 /* A list of these is needed for "bus 0". Some time later. */
192 struct mon_reader r;
193
194 /* Stats */
195 unsigned int cnt_lost;
196 };
197
198 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
199 unsigned int offset)
200 {
201 return (struct mon_bin_hdr *)
202 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
203 }
204
205 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0)
206
207 static unsigned char xfer_to_pipe[4] = {
208 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
209 };
210
211 static struct class *mon_bin_class;
212 static dev_t mon_bin_dev0;
213 static struct cdev mon_bin_cdev;
214
215 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
216 unsigned int offset, unsigned int size);
217 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
218 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
219 static void mon_free_buff(struct mon_pgmap *map, int npages);
220
221 /*
222 * This is a "chunked memcpy". It does not manipulate any counters.
223 */
224 static void mon_copy_to_buff(const struct mon_reader_bin *this,
225 unsigned int off, const unsigned char *from, unsigned int length)
226 {
227 unsigned int step_len;
228 unsigned char *buf;
229 unsigned int in_page;
230
231 while (length) {
232 /*
233 * Determine step_len.
234 */
235 step_len = length;
236 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
237 if (in_page < step_len)
238 step_len = in_page;
239
240 /*
241 * Copy data and advance pointers.
242 */
243 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
244 memcpy(buf, from, step_len);
245 if ((off += step_len) >= this->b_size) off = 0;
246 from += step_len;
247 length -= step_len;
248 }
249 }
250
251 /*
252 * This is a little worse than the above because it's "chunked copy_to_user".
253 * The return value is an error code, not an offset.
254 */
255 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
256 char __user *to, int length)
257 {
258 unsigned int step_len;
259 unsigned char *buf;
260 unsigned int in_page;
261
262 while (length) {
263 /*
264 * Determine step_len.
265 */
266 step_len = length;
267 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
268 if (in_page < step_len)
269 step_len = in_page;
270
271 /*
272 * Copy data and advance pointers.
273 */
274 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
275 if (copy_to_user(to, buf, step_len))
276 return -EINVAL;
277 if ((off += step_len) >= this->b_size) off = 0;
278 to += step_len;
279 length -= step_len;
280 }
281 return 0;
282 }
283
284 /*
285 * Allocate an (aligned) area in the buffer.
286 * This is called under b_lock.
287 * Returns ~0 on failure.
288 */
289 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
290 unsigned int size)
291 {
292 unsigned int offset;
293
294 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
295 if (rp->b_cnt + size > rp->b_size)
296 return ~0;
297 offset = rp->b_in;
298 rp->b_cnt += size;
299 if ((rp->b_in += size) >= rp->b_size)
300 rp->b_in -= rp->b_size;
301 return offset;
302 }
303
304 /*
305 * This is the same thing as mon_buff_area_alloc, only it does not allow
306 * buffers to wrap. This is needed by applications which pass references
307 * into mmap-ed buffers up their stacks (libpcap can do that).
308 *
309 * Currently, we always have the header stuck with the data, although
310 * it is not strictly speaking necessary.
311 *
312 * When a buffer would wrap, we place a filler packet to mark the space.
313 */
314 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
315 unsigned int size)
316 {
317 unsigned int offset;
318 unsigned int fill_size;
319
320 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
321 if (rp->b_cnt + size > rp->b_size)
322 return ~0;
323 if (rp->b_in + size > rp->b_size) {
324 /*
325 * This would wrap. Find if we still have space after
326 * skipping to the end of the buffer. If we do, place
327 * a filler packet and allocate a new packet.
328 */
329 fill_size = rp->b_size - rp->b_in;
330 if (rp->b_cnt + size + fill_size > rp->b_size)
331 return ~0;
332 mon_buff_area_fill(rp, rp->b_in, fill_size);
333
334 offset = 0;
335 rp->b_in = size;
336 rp->b_cnt += size + fill_size;
337 } else if (rp->b_in + size == rp->b_size) {
338 offset = rp->b_in;
339 rp->b_in = 0;
340 rp->b_cnt += size;
341 } else {
342 offset = rp->b_in;
343 rp->b_in += size;
344 rp->b_cnt += size;
345 }
346 return offset;
347 }
348
349 /*
350 * Return a few (kilo-)bytes to the head of the buffer.
351 * This is used if a DMA fetch fails.
352 */
353 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
354 {
355
356 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
357 rp->b_cnt -= size;
358 if (rp->b_in < size)
359 rp->b_in += rp->b_size;
360 rp->b_in -= size;
361 }
362
363 /*
364 * This has to be called under both b_lock and fetch_lock, because
365 * it accesses both b_cnt and b_out.
366 */
367 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
368 {
369
370 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
371 rp->b_cnt -= size;
372 if ((rp->b_out += size) >= rp->b_size)
373 rp->b_out -= rp->b_size;
374 }
375
376 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
377 unsigned int offset, unsigned int size)
378 {
379 struct mon_bin_hdr *ep;
380
381 ep = MON_OFF2HDR(rp, offset);
382 memset(ep, 0, PKT_SIZE);
383 ep->type = '@';
384 ep->len_cap = size - PKT_SIZE;
385 }
386
387 static inline char mon_bin_get_setup(unsigned char *setupb,
388 const struct urb *urb, char ev_type)
389 {
390
391 if (urb->setup_packet == NULL)
392 return 'Z';
393 memcpy(setupb, urb->setup_packet, SETUP_LEN);
394 return 0;
395 }
396
397 static char mon_bin_get_data(const struct mon_reader_bin *rp,
398 unsigned int offset, struct urb *urb, unsigned int length)
399 {
400
401 if (urb->transfer_buffer == NULL)
402 return 'Z';
403 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
404 return 0;
405 }
406
407 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
408 unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
409 {
410 struct mon_bin_isodesc *dp;
411 struct usb_iso_packet_descriptor *fp;
412
413 fp = urb->iso_frame_desc;
414 while (ndesc-- != 0) {
415 dp = (struct mon_bin_isodesc *)
416 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
417 dp->iso_status = fp->status;
418 dp->iso_off = fp->offset;
419 dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
420 dp->_pad = 0;
421 if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
422 offset = 0;
423 fp++;
424 }
425 }
426
427 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
428 char ev_type, int status)
429 {
430 const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
431 unsigned long flags;
432 struct timeval ts;
433 unsigned int urb_length;
434 unsigned int offset;
435 unsigned int length;
436 unsigned int ndesc, lendesc;
437 unsigned char dir;
438 struct mon_bin_hdr *ep;
439 char data_tag = 0;
440
441 do_gettimeofday(&ts);
442
443 spin_lock_irqsave(&rp->b_lock, flags);
444
445 /*
446 * Find the maximum allowable length, then allocate space.
447 */
448 if (usb_endpoint_xfer_isoc(epd)) {
449 if (urb->number_of_packets < 0) {
450 ndesc = 0;
451 } else if (urb->number_of_packets >= ISODESC_MAX) {
452 ndesc = ISODESC_MAX;
453 } else {
454 ndesc = urb->number_of_packets;
455 }
456 } else {
457 ndesc = 0;
458 }
459 lendesc = ndesc*sizeof(struct mon_bin_isodesc);
460
461 urb_length = (ev_type == 'S') ?
462 urb->transfer_buffer_length : urb->actual_length;
463 length = urb_length;
464
465 if (length >= rp->b_size/5)
466 length = rp->b_size/5;
467
468 if (usb_urb_dir_in(urb)) {
469 if (ev_type == 'S') {
470 length = 0;
471 data_tag = '<';
472 }
473 /* Cannot rely on endpoint number in case of control ep.0 */
474 dir = USB_DIR_IN;
475 } else {
476 if (ev_type == 'C') {
477 length = 0;
478 data_tag = '>';
479 }
480 dir = 0;
481 }
482
483 if (rp->mmap_active) {
484 offset = mon_buff_area_alloc_contiguous(rp,
485 length + PKT_SIZE + lendesc);
486 } else {
487 offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
488 }
489 if (offset == ~0) {
490 rp->cnt_lost++;
491 spin_unlock_irqrestore(&rp->b_lock, flags);
492 return;
493 }
494
495 ep = MON_OFF2HDR(rp, offset);
496 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
497
498 /*
499 * Fill the allocated area.
500 */
501 memset(ep, 0, PKT_SIZE);
502 ep->type = ev_type;
503 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
504 ep->epnum = dir | usb_endpoint_num(epd);
505 ep->devnum = urb->dev->devnum;
506 ep->busnum = urb->dev->bus->busnum;
507 ep->id = (unsigned long) urb;
508 ep->ts_sec = ts.tv_sec;
509 ep->ts_usec = ts.tv_usec;
510 ep->status = status;
511 ep->len_urb = urb_length;
512 ep->len_cap = length + lendesc;
513 ep->xfer_flags = urb->transfer_flags;
514
515 if (usb_endpoint_xfer_int(epd)) {
516 ep->interval = urb->interval;
517 } else if (usb_endpoint_xfer_isoc(epd)) {
518 ep->interval = urb->interval;
519 ep->start_frame = urb->start_frame;
520 ep->s.iso.error_count = urb->error_count;
521 ep->s.iso.numdesc = urb->number_of_packets;
522 }
523
524 if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
525 ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
526 } else {
527 ep->flag_setup = '-';
528 }
529
530 if (ndesc != 0) {
531 ep->ndesc = ndesc;
532 mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
533 if ((offset += lendesc) >= rp->b_size)
534 offset -= rp->b_size;
535 }
536
537 if (length != 0) {
538 ep->flag_data = mon_bin_get_data(rp, offset, urb, length);
539 if (ep->flag_data != 0) { /* Yes, it's 0x00, not '0' */
540 ep->len_cap = 0;
541 mon_buff_area_shrink(rp, length);
542 }
543 } else {
544 ep->flag_data = data_tag;
545 }
546
547 spin_unlock_irqrestore(&rp->b_lock, flags);
548
549 wake_up(&rp->b_wait);
550 }
551
552 static void mon_bin_submit(void *data, struct urb *urb)
553 {
554 struct mon_reader_bin *rp = data;
555 mon_bin_event(rp, urb, 'S', -EINPROGRESS);
556 }
557
558 static void mon_bin_complete(void *data, struct urb *urb, int status)
559 {
560 struct mon_reader_bin *rp = data;
561 mon_bin_event(rp, urb, 'C', status);
562 }
563
564 static void mon_bin_error(void *data, struct urb *urb, int error)
565 {
566 struct mon_reader_bin *rp = data;
567 unsigned long flags;
568 unsigned int offset;
569 struct mon_bin_hdr *ep;
570
571 spin_lock_irqsave(&rp->b_lock, flags);
572
573 offset = mon_buff_area_alloc(rp, PKT_SIZE);
574 if (offset == ~0) {
575 /* Not incrementing cnt_lost. Just because. */
576 spin_unlock_irqrestore(&rp->b_lock, flags);
577 return;
578 }
579
580 ep = MON_OFF2HDR(rp, offset);
581
582 memset(ep, 0, PKT_SIZE);
583 ep->type = 'E';
584 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
585 ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
586 ep->epnum |= usb_endpoint_num(&urb->ep->desc);
587 ep->devnum = urb->dev->devnum;
588 ep->busnum = urb->dev->bus->busnum;
589 ep->id = (unsigned long) urb;
590 ep->status = error;
591
592 ep->flag_setup = '-';
593 ep->flag_data = 'E';
594
595 spin_unlock_irqrestore(&rp->b_lock, flags);
596
597 wake_up(&rp->b_wait);
598 }
599
600 static int mon_bin_open(struct inode *inode, struct file *file)
601 {
602 struct mon_bus *mbus;
603 struct mon_reader_bin *rp;
604 size_t size;
605 int rc;
606
607 lock_kernel();
608 mutex_lock(&mon_lock);
609 if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) {
610 mutex_unlock(&mon_lock);
611 unlock_kernel();
612 return -ENODEV;
613 }
614 if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
615 printk(KERN_ERR TAG ": consistency error on open\n");
616 mutex_unlock(&mon_lock);
617 unlock_kernel();
618 return -ENODEV;
619 }
620
621 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
622 if (rp == NULL) {
623 rc = -ENOMEM;
624 goto err_alloc;
625 }
626 spin_lock_init(&rp->b_lock);
627 init_waitqueue_head(&rp->b_wait);
628 mutex_init(&rp->fetch_lock);
629 rp->b_size = BUFF_DFL;
630
631 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
632 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
633 rc = -ENOMEM;
634 goto err_allocvec;
635 }
636
637 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
638 goto err_allocbuff;
639
640 rp->r.m_bus = mbus;
641 rp->r.r_data = rp;
642 rp->r.rnf_submit = mon_bin_submit;
643 rp->r.rnf_error = mon_bin_error;
644 rp->r.rnf_complete = mon_bin_complete;
645
646 mon_reader_add(mbus, &rp->r);
647
648 file->private_data = rp;
649 mutex_unlock(&mon_lock);
650 unlock_kernel();
651 return 0;
652
653 err_allocbuff:
654 kfree(rp->b_vec);
655 err_allocvec:
656 kfree(rp);
657 err_alloc:
658 mutex_unlock(&mon_lock);
659 unlock_kernel();
660 return rc;
661 }
662
663 /*
664 * Extract an event from buffer and copy it to user space.
665 * Wait if there is no event ready.
666 * Returns zero or error.
667 */
668 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
669 struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
670 void __user *data, unsigned int nbytes)
671 {
672 unsigned long flags;
673 struct mon_bin_hdr *ep;
674 size_t step_len;
675 unsigned int offset;
676 int rc;
677
678 mutex_lock(&rp->fetch_lock);
679
680 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
681 mutex_unlock(&rp->fetch_lock);
682 return rc;
683 }
684
685 ep = MON_OFF2HDR(rp, rp->b_out);
686
687 if (copy_to_user(hdr, ep, hdrbytes)) {
688 mutex_unlock(&rp->fetch_lock);
689 return -EFAULT;
690 }
691
692 step_len = min(ep->len_cap, nbytes);
693 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
694
695 if (copy_from_buf(rp, offset, data, step_len)) {
696 mutex_unlock(&rp->fetch_lock);
697 return -EFAULT;
698 }
699
700 spin_lock_irqsave(&rp->b_lock, flags);
701 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
702 spin_unlock_irqrestore(&rp->b_lock, flags);
703 rp->b_read = 0;
704
705 mutex_unlock(&rp->fetch_lock);
706 return 0;
707 }
708
709 static int mon_bin_release(struct inode *inode, struct file *file)
710 {
711 struct mon_reader_bin *rp = file->private_data;
712 struct mon_bus* mbus = rp->r.m_bus;
713
714 mutex_lock(&mon_lock);
715
716 if (mbus->nreaders <= 0) {
717 printk(KERN_ERR TAG ": consistency error on close\n");
718 mutex_unlock(&mon_lock);
719 return 0;
720 }
721 mon_reader_del(mbus, &rp->r);
722
723 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
724 kfree(rp->b_vec);
725 kfree(rp);
726
727 mutex_unlock(&mon_lock);
728 return 0;
729 }
730
731 static ssize_t mon_bin_read(struct file *file, char __user *buf,
732 size_t nbytes, loff_t *ppos)
733 {
734 struct mon_reader_bin *rp = file->private_data;
735 unsigned int hdrbytes = PKT_SZ_API0;
736 unsigned long flags;
737 struct mon_bin_hdr *ep;
738 unsigned int offset;
739 size_t step_len;
740 char *ptr;
741 ssize_t done = 0;
742 int rc;
743
744 mutex_lock(&rp->fetch_lock);
745
746 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
747 mutex_unlock(&rp->fetch_lock);
748 return rc;
749 }
750
751 ep = MON_OFF2HDR(rp, rp->b_out);
752
753 if (rp->b_read < hdrbytes) {
754 step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
755 ptr = ((char *)ep) + rp->b_read;
756 if (step_len && copy_to_user(buf, ptr, step_len)) {
757 mutex_unlock(&rp->fetch_lock);
758 return -EFAULT;
759 }
760 nbytes -= step_len;
761 buf += step_len;
762 rp->b_read += step_len;
763 done += step_len;
764 }
765
766 if (rp->b_read >= hdrbytes) {
767 step_len = ep->len_cap;
768 step_len -= rp->b_read - hdrbytes;
769 if (step_len > nbytes)
770 step_len = nbytes;
771 offset = rp->b_out + PKT_SIZE;
772 offset += rp->b_read - hdrbytes;
773 if (offset >= rp->b_size)
774 offset -= rp->b_size;
775 if (copy_from_buf(rp, offset, buf, step_len)) {
776 mutex_unlock(&rp->fetch_lock);
777 return -EFAULT;
778 }
779 nbytes -= step_len;
780 buf += step_len;
781 rp->b_read += step_len;
782 done += step_len;
783 }
784
785 /*
786 * Check if whole packet was read, and if so, jump to the next one.
787 */
788 if (rp->b_read >= hdrbytes + ep->len_cap) {
789 spin_lock_irqsave(&rp->b_lock, flags);
790 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
791 spin_unlock_irqrestore(&rp->b_lock, flags);
792 rp->b_read = 0;
793 }
794
795 mutex_unlock(&rp->fetch_lock);
796 return done;
797 }
798
799 /*
800 * Remove at most nevents from chunked buffer.
801 * Returns the number of removed events.
802 */
803 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
804 {
805 unsigned long flags;
806 struct mon_bin_hdr *ep;
807 int i;
808
809 mutex_lock(&rp->fetch_lock);
810 spin_lock_irqsave(&rp->b_lock, flags);
811 for (i = 0; i < nevents; ++i) {
812 if (MON_RING_EMPTY(rp))
813 break;
814
815 ep = MON_OFF2HDR(rp, rp->b_out);
816 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
817 }
818 spin_unlock_irqrestore(&rp->b_lock, flags);
819 rp->b_read = 0;
820 mutex_unlock(&rp->fetch_lock);
821 return i;
822 }
823
824 /*
825 * Fetch at most max event offsets into the buffer and put them into vec.
826 * The events are usually freed later with mon_bin_flush.
827 * Return the effective number of events fetched.
828 */
829 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
830 u32 __user *vec, unsigned int max)
831 {
832 unsigned int cur_out;
833 unsigned int bytes, avail;
834 unsigned int size;
835 unsigned int nevents;
836 struct mon_bin_hdr *ep;
837 unsigned long flags;
838 int rc;
839
840 mutex_lock(&rp->fetch_lock);
841
842 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
843 mutex_unlock(&rp->fetch_lock);
844 return rc;
845 }
846
847 spin_lock_irqsave(&rp->b_lock, flags);
848 avail = rp->b_cnt;
849 spin_unlock_irqrestore(&rp->b_lock, flags);
850
851 cur_out = rp->b_out;
852 nevents = 0;
853 bytes = 0;
854 while (bytes < avail) {
855 if (nevents >= max)
856 break;
857
858 ep = MON_OFF2HDR(rp, cur_out);
859 if (put_user(cur_out, &vec[nevents])) {
860 mutex_unlock(&rp->fetch_lock);
861 return -EFAULT;
862 }
863
864 nevents++;
865 size = ep->len_cap + PKT_SIZE;
866 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
867 if ((cur_out += size) >= rp->b_size)
868 cur_out -= rp->b_size;
869 bytes += size;
870 }
871
872 mutex_unlock(&rp->fetch_lock);
873 return nevents;
874 }
875
876 /*
877 * Count events. This is almost the same as the above mon_bin_fetch,
878 * only we do not store offsets into user vector, and we have no limit.
879 */
880 static int mon_bin_queued(struct mon_reader_bin *rp)
881 {
882 unsigned int cur_out;
883 unsigned int bytes, avail;
884 unsigned int size;
885 unsigned int nevents;
886 struct mon_bin_hdr *ep;
887 unsigned long flags;
888
889 mutex_lock(&rp->fetch_lock);
890
891 spin_lock_irqsave(&rp->b_lock, flags);
892 avail = rp->b_cnt;
893 spin_unlock_irqrestore(&rp->b_lock, flags);
894
895 cur_out = rp->b_out;
896 nevents = 0;
897 bytes = 0;
898 while (bytes < avail) {
899 ep = MON_OFF2HDR(rp, cur_out);
900
901 nevents++;
902 size = ep->len_cap + PKT_SIZE;
903 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
904 if ((cur_out += size) >= rp->b_size)
905 cur_out -= rp->b_size;
906 bytes += size;
907 }
908
909 mutex_unlock(&rp->fetch_lock);
910 return nevents;
911 }
912
913 /*
914 */
915 static int mon_bin_ioctl(struct inode *inode, struct file *file,
916 unsigned int cmd, unsigned long arg)
917 {
918 struct mon_reader_bin *rp = file->private_data;
919 // struct mon_bus* mbus = rp->r.m_bus;
920 int ret = 0;
921 struct mon_bin_hdr *ep;
922 unsigned long flags;
923
924 switch (cmd) {
925
926 case MON_IOCQ_URB_LEN:
927 /*
928 * N.B. This only returns the size of data, without the header.
929 */
930 spin_lock_irqsave(&rp->b_lock, flags);
931 if (!MON_RING_EMPTY(rp)) {
932 ep = MON_OFF2HDR(rp, rp->b_out);
933 ret = ep->len_cap;
934 }
935 spin_unlock_irqrestore(&rp->b_lock, flags);
936 break;
937
938 case MON_IOCQ_RING_SIZE:
939 ret = rp->b_size;
940 break;
941
942 case MON_IOCT_RING_SIZE:
943 /*
944 * Changing the buffer size will flush it's contents; the new
945 * buffer is allocated before releasing the old one to be sure
946 * the device will stay functional also in case of memory
947 * pressure.
948 */
949 {
950 int size;
951 struct mon_pgmap *vec;
952
953 if (arg < BUFF_MIN || arg > BUFF_MAX)
954 return -EINVAL;
955
956 size = CHUNK_ALIGN(arg);
957 if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE),
958 GFP_KERNEL)) == NULL) {
959 ret = -ENOMEM;
960 break;
961 }
962
963 ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
964 if (ret < 0) {
965 kfree(vec);
966 break;
967 }
968
969 mutex_lock(&rp->fetch_lock);
970 spin_lock_irqsave(&rp->b_lock, flags);
971 mon_free_buff(rp->b_vec, size/CHUNK_SIZE);
972 kfree(rp->b_vec);
973 rp->b_vec = vec;
974 rp->b_size = size;
975 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
976 rp->cnt_lost = 0;
977 spin_unlock_irqrestore(&rp->b_lock, flags);
978 mutex_unlock(&rp->fetch_lock);
979 }
980 break;
981
982 case MON_IOCH_MFLUSH:
983 ret = mon_bin_flush(rp, arg);
984 break;
985
986 case MON_IOCX_GET:
987 case MON_IOCX_GETX:
988 {
989 struct mon_bin_get getb;
990
991 if (copy_from_user(&getb, (void __user *)arg,
992 sizeof(struct mon_bin_get)))
993 return -EFAULT;
994
995 if (getb.alloc > 0x10000000) /* Want to cast to u32 */
996 return -EINVAL;
997 ret = mon_bin_get_event(file, rp, getb.hdr,
998 (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
999 getb.data, (unsigned int)getb.alloc);
1000 }
1001 break;
1002
1003 case MON_IOCX_MFETCH:
1004 {
1005 struct mon_bin_mfetch mfetch;
1006 struct mon_bin_mfetch __user *uptr;
1007
1008 uptr = (struct mon_bin_mfetch __user *)arg;
1009
1010 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1011 return -EFAULT;
1012
1013 if (mfetch.nflush) {
1014 ret = mon_bin_flush(rp, mfetch.nflush);
1015 if (ret < 0)
1016 return ret;
1017 if (put_user(ret, &uptr->nflush))
1018 return -EFAULT;
1019 }
1020 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1021 if (ret < 0)
1022 return ret;
1023 if (put_user(ret, &uptr->nfetch))
1024 return -EFAULT;
1025 ret = 0;
1026 }
1027 break;
1028
1029 case MON_IOCG_STATS: {
1030 struct mon_bin_stats __user *sp;
1031 unsigned int nevents;
1032 unsigned int ndropped;
1033
1034 spin_lock_irqsave(&rp->b_lock, flags);
1035 ndropped = rp->cnt_lost;
1036 rp->cnt_lost = 0;
1037 spin_unlock_irqrestore(&rp->b_lock, flags);
1038 nevents = mon_bin_queued(rp);
1039
1040 sp = (struct mon_bin_stats __user *)arg;
1041 if (put_user(rp->cnt_lost, &sp->dropped))
1042 return -EFAULT;
1043 if (put_user(nevents, &sp->queued))
1044 return -EFAULT;
1045
1046 }
1047 break;
1048
1049 default:
1050 return -ENOTTY;
1051 }
1052
1053 return ret;
1054 }
1055
1056 #ifdef CONFIG_COMPAT
1057 static long mon_bin_compat_ioctl(struct file *file,
1058 unsigned int cmd, unsigned long arg)
1059 {
1060 struct mon_reader_bin *rp = file->private_data;
1061 int ret;
1062
1063 switch (cmd) {
1064
1065 case MON_IOCX_GET32:
1066 case MON_IOCX_GETX32:
1067 {
1068 struct mon_bin_get32 getb;
1069
1070 if (copy_from_user(&getb, (void __user *)arg,
1071 sizeof(struct mon_bin_get32)))
1072 return -EFAULT;
1073
1074 ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1075 (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1076 compat_ptr(getb.data32), getb.alloc32);
1077 if (ret < 0)
1078 return ret;
1079 }
1080 return 0;
1081
1082 case MON_IOCX_MFETCH32:
1083 {
1084 struct mon_bin_mfetch32 mfetch;
1085 struct mon_bin_mfetch32 __user *uptr;
1086
1087 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1088
1089 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1090 return -EFAULT;
1091
1092 if (mfetch.nflush32) {
1093 ret = mon_bin_flush(rp, mfetch.nflush32);
1094 if (ret < 0)
1095 return ret;
1096 if (put_user(ret, &uptr->nflush32))
1097 return -EFAULT;
1098 }
1099 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1100 mfetch.nfetch32);
1101 if (ret < 0)
1102 return ret;
1103 if (put_user(ret, &uptr->nfetch32))
1104 return -EFAULT;
1105 }
1106 return 0;
1107
1108 case MON_IOCG_STATS:
1109 return mon_bin_ioctl(NULL, file, cmd,
1110 (unsigned long) compat_ptr(arg));
1111
1112 case MON_IOCQ_URB_LEN:
1113 case MON_IOCQ_RING_SIZE:
1114 case MON_IOCT_RING_SIZE:
1115 case MON_IOCH_MFLUSH:
1116 return mon_bin_ioctl(NULL, file, cmd, arg);
1117
1118 default:
1119 ;
1120 }
1121 return -ENOTTY;
1122 }
1123 #endif /* CONFIG_COMPAT */
1124
1125 static unsigned int
1126 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1127 {
1128 struct mon_reader_bin *rp = file->private_data;
1129 unsigned int mask = 0;
1130 unsigned long flags;
1131
1132 if (file->f_mode & FMODE_READ)
1133 poll_wait(file, &rp->b_wait, wait);
1134
1135 spin_lock_irqsave(&rp->b_lock, flags);
1136 if (!MON_RING_EMPTY(rp))
1137 mask |= POLLIN | POLLRDNORM; /* readable */
1138 spin_unlock_irqrestore(&rp->b_lock, flags);
1139 return mask;
1140 }
1141
1142 /*
1143 * open and close: just keep track of how many times the device is
1144 * mapped, to use the proper memory allocation function.
1145 */
1146 static void mon_bin_vma_open(struct vm_area_struct *vma)
1147 {
1148 struct mon_reader_bin *rp = vma->vm_private_data;
1149 rp->mmap_active++;
1150 }
1151
1152 static void mon_bin_vma_close(struct vm_area_struct *vma)
1153 {
1154 struct mon_reader_bin *rp = vma->vm_private_data;
1155 rp->mmap_active--;
1156 }
1157
1158 /*
1159 * Map ring pages to user space.
1160 */
1161 static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1162 {
1163 struct mon_reader_bin *rp = vma->vm_private_data;
1164 unsigned long offset, chunk_idx;
1165 struct page *pageptr;
1166
1167 offset = vmf->pgoff << PAGE_SHIFT;
1168 if (offset >= rp->b_size)
1169 return VM_FAULT_SIGBUS;
1170 chunk_idx = offset / CHUNK_SIZE;
1171 pageptr = rp->b_vec[chunk_idx].pg;
1172 get_page(pageptr);
1173 vmf->page = pageptr;
1174 return 0;
1175 }
1176
1177 static const struct vm_operations_struct mon_bin_vm_ops = {
1178 .open = mon_bin_vma_open,
1179 .close = mon_bin_vma_close,
1180 .fault = mon_bin_vma_fault,
1181 };
1182
1183 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1184 {
1185 /* don't do anything here: "fault" will set up page table entries */
1186 vma->vm_ops = &mon_bin_vm_ops;
1187 vma->vm_flags |= VM_RESERVED;
1188 vma->vm_private_data = filp->private_data;
1189 mon_bin_vma_open(vma);
1190 return 0;
1191 }
1192
1193 static const struct file_operations mon_fops_binary = {
1194 .owner = THIS_MODULE,
1195 .open = mon_bin_open,
1196 .llseek = no_llseek,
1197 .read = mon_bin_read,
1198 /* .write = mon_text_write, */
1199 .poll = mon_bin_poll,
1200 .ioctl = mon_bin_ioctl,
1201 #ifdef CONFIG_COMPAT
1202 .compat_ioctl = mon_bin_compat_ioctl,
1203 #endif
1204 .release = mon_bin_release,
1205 .mmap = mon_bin_mmap,
1206 };
1207
1208 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1209 {
1210 DECLARE_WAITQUEUE(waita, current);
1211 unsigned long flags;
1212
1213 add_wait_queue(&rp->b_wait, &waita);
1214 set_current_state(TASK_INTERRUPTIBLE);
1215
1216 spin_lock_irqsave(&rp->b_lock, flags);
1217 while (MON_RING_EMPTY(rp)) {
1218 spin_unlock_irqrestore(&rp->b_lock, flags);
1219
1220 if (file->f_flags & O_NONBLOCK) {
1221 set_current_state(TASK_RUNNING);
1222 remove_wait_queue(&rp->b_wait, &waita);
1223 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1224 }
1225 schedule();
1226 if (signal_pending(current)) {
1227 remove_wait_queue(&rp->b_wait, &waita);
1228 return -EINTR;
1229 }
1230 set_current_state(TASK_INTERRUPTIBLE);
1231
1232 spin_lock_irqsave(&rp->b_lock, flags);
1233 }
1234 spin_unlock_irqrestore(&rp->b_lock, flags);
1235
1236 set_current_state(TASK_RUNNING);
1237 remove_wait_queue(&rp->b_wait, &waita);
1238 return 0;
1239 }
1240
1241 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1242 {
1243 int n;
1244 unsigned long vaddr;
1245
1246 for (n = 0; n < npages; n++) {
1247 vaddr = get_zeroed_page(GFP_KERNEL);
1248 if (vaddr == 0) {
1249 while (n-- != 0)
1250 free_page((unsigned long) map[n].ptr);
1251 return -ENOMEM;
1252 }
1253 map[n].ptr = (unsigned char *) vaddr;
1254 map[n].pg = virt_to_page((void *) vaddr);
1255 }
1256 return 0;
1257 }
1258
1259 static void mon_free_buff(struct mon_pgmap *map, int npages)
1260 {
1261 int n;
1262
1263 for (n = 0; n < npages; n++)
1264 free_page((unsigned long) map[n].ptr);
1265 }
1266
1267 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1268 {
1269 struct device *dev;
1270 unsigned minor = ubus? ubus->busnum: 0;
1271
1272 if (minor >= MON_BIN_MAX_MINOR)
1273 return 0;
1274
1275 dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1276 MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1277 "usbmon%d", minor);
1278 if (IS_ERR(dev))
1279 return 0;
1280
1281 mbus->classdev = dev;
1282 return 1;
1283 }
1284
1285 void mon_bin_del(struct mon_bus *mbus)
1286 {
1287 device_destroy(mon_bin_class, mbus->classdev->devt);
1288 }
1289
1290 int __init mon_bin_init(void)
1291 {
1292 int rc;
1293
1294 mon_bin_class = class_create(THIS_MODULE, "usbmon");
1295 if (IS_ERR(mon_bin_class)) {
1296 rc = PTR_ERR(mon_bin_class);
1297 goto err_class;
1298 }
1299
1300 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1301 if (rc < 0)
1302 goto err_dev;
1303
1304 cdev_init(&mon_bin_cdev, &mon_fops_binary);
1305 mon_bin_cdev.owner = THIS_MODULE;
1306
1307 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1308 if (rc < 0)
1309 goto err_add;
1310
1311 return 0;
1312
1313 err_add:
1314 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1315 err_dev:
1316 class_destroy(mon_bin_class);
1317 err_class:
1318 return rc;
1319 }
1320
1321 void mon_bin_exit(void)
1322 {
1323 cdev_del(&mon_bin_cdev);
1324 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1325 class_destroy(mon_bin_class);
1326 }