Merge branch 'topic/hda' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / usb / host / xhci-ring.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29 *
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
41 *
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
47 *
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
56 *
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
65 */
66
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70
71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
72 struct xhci_virt_device *virt_dev,
73 struct xhci_event_cmd *event);
74
75 /*
76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
77 * address of the TRB.
78 */
79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
80 union xhci_trb *trb)
81 {
82 unsigned long segment_offset;
83
84 if (!seg || !trb || trb < seg->trbs)
85 return 0;
86 /* offset in TRBs */
87 segment_offset = trb - seg->trbs;
88 if (segment_offset > TRBS_PER_SEGMENT)
89 return 0;
90 return seg->dma + (segment_offset * sizeof(*trb));
91 }
92
93 /* Does this link TRB point to the first segment in a ring,
94 * or was the previous TRB the last TRB on the last segment in the ERST?
95 */
96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
97 struct xhci_segment *seg, union xhci_trb *trb)
98 {
99 if (ring == xhci->event_ring)
100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
101 (seg->next == xhci->event_ring->first_seg);
102 else
103 return trb->link.control & LINK_TOGGLE;
104 }
105
106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
107 * segment? I.e. would the updated event TRB pointer step off the end of the
108 * event seg?
109 */
110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
111 struct xhci_segment *seg, union xhci_trb *trb)
112 {
113 if (ring == xhci->event_ring)
114 return trb == &seg->trbs[TRBS_PER_SEGMENT];
115 else
116 return (trb->link.control & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK);
117 }
118
119 static int enqueue_is_link_trb(struct xhci_ring *ring)
120 {
121 struct xhci_link_trb *link = &ring->enqueue->link;
122 return ((link->control & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK));
123 }
124
125 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
126 * TRB is in a new segment. This does not skip over link TRBs, and it does not
127 * effect the ring dequeue or enqueue pointers.
128 */
129 static void next_trb(struct xhci_hcd *xhci,
130 struct xhci_ring *ring,
131 struct xhci_segment **seg,
132 union xhci_trb **trb)
133 {
134 if (last_trb(xhci, ring, *seg, *trb)) {
135 *seg = (*seg)->next;
136 *trb = ((*seg)->trbs);
137 } else {
138 (*trb)++;
139 }
140 }
141
142 /*
143 * See Cycle bit rules. SW is the consumer for the event ring only.
144 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
145 */
146 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer)
147 {
148 union xhci_trb *next = ++(ring->dequeue);
149 unsigned long long addr;
150
151 ring->deq_updates++;
152 /* Update the dequeue pointer further if that was a link TRB or we're at
153 * the end of an event ring segment (which doesn't have link TRBS)
154 */
155 while (last_trb(xhci, ring, ring->deq_seg, next)) {
156 if (consumer && last_trb_on_last_seg(xhci, ring, ring->deq_seg, next)) {
157 ring->cycle_state = (ring->cycle_state ? 0 : 1);
158 if (!in_interrupt())
159 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
160 ring,
161 (unsigned int) ring->cycle_state);
162 }
163 ring->deq_seg = ring->deq_seg->next;
164 ring->dequeue = ring->deq_seg->trbs;
165 next = ring->dequeue;
166 }
167 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
168 if (ring == xhci->event_ring)
169 xhci_dbg(xhci, "Event ring deq = 0x%llx (DMA)\n", addr);
170 else if (ring == xhci->cmd_ring)
171 xhci_dbg(xhci, "Command ring deq = 0x%llx (DMA)\n", addr);
172 else
173 xhci_dbg(xhci, "Ring deq = 0x%llx (DMA)\n", addr);
174 }
175
176 /*
177 * See Cycle bit rules. SW is the consumer for the event ring only.
178 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
179 *
180 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
181 * chain bit is set), then set the chain bit in all the following link TRBs.
182 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
183 * have their chain bit cleared (so that each Link TRB is a separate TD).
184 *
185 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
186 * set, but other sections talk about dealing with the chain bit set. This was
187 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
188 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
189 *
190 * @more_trbs_coming: Will you enqueue more TRBs before calling
191 * prepare_transfer()?
192 */
193 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
194 bool consumer, bool more_trbs_coming)
195 {
196 u32 chain;
197 union xhci_trb *next;
198 unsigned long long addr;
199
200 chain = ring->enqueue->generic.field[3] & TRB_CHAIN;
201 next = ++(ring->enqueue);
202
203 ring->enq_updates++;
204 /* Update the dequeue pointer further if that was a link TRB or we're at
205 * the end of an event ring segment (which doesn't have link TRBS)
206 */
207 while (last_trb(xhci, ring, ring->enq_seg, next)) {
208 if (!consumer) {
209 if (ring != xhci->event_ring) {
210 /*
211 * If the caller doesn't plan on enqueueing more
212 * TDs before ringing the doorbell, then we
213 * don't want to give the link TRB to the
214 * hardware just yet. We'll give the link TRB
215 * back in prepare_ring() just before we enqueue
216 * the TD at the top of the ring.
217 */
218 if (!chain && !more_trbs_coming)
219 break;
220
221 /* If we're not dealing with 0.95 hardware,
222 * carry over the chain bit of the previous TRB
223 * (which may mean the chain bit is cleared).
224 */
225 if (!xhci_link_trb_quirk(xhci)) {
226 next->link.control &= ~TRB_CHAIN;
227 next->link.control |= chain;
228 }
229 /* Give this link TRB to the hardware */
230 wmb();
231 next->link.control ^= TRB_CYCLE;
232 }
233 /* Toggle the cycle bit after the last ring segment. */
234 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
235 ring->cycle_state = (ring->cycle_state ? 0 : 1);
236 if (!in_interrupt())
237 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
238 ring,
239 (unsigned int) ring->cycle_state);
240 }
241 }
242 ring->enq_seg = ring->enq_seg->next;
243 ring->enqueue = ring->enq_seg->trbs;
244 next = ring->enqueue;
245 }
246 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
247 if (ring == xhci->event_ring)
248 xhci_dbg(xhci, "Event ring enq = 0x%llx (DMA)\n", addr);
249 else if (ring == xhci->cmd_ring)
250 xhci_dbg(xhci, "Command ring enq = 0x%llx (DMA)\n", addr);
251 else
252 xhci_dbg(xhci, "Ring enq = 0x%llx (DMA)\n", addr);
253 }
254
255 /*
256 * Check to see if there's room to enqueue num_trbs on the ring. See rules
257 * above.
258 * FIXME: this would be simpler and faster if we just kept track of the number
259 * of free TRBs in a ring.
260 */
261 static int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
262 unsigned int num_trbs)
263 {
264 int i;
265 union xhci_trb *enq = ring->enqueue;
266 struct xhci_segment *enq_seg = ring->enq_seg;
267 struct xhci_segment *cur_seg;
268 unsigned int left_on_ring;
269
270 /* If we are currently pointing to a link TRB, advance the
271 * enqueue pointer before checking for space */
272 while (last_trb(xhci, ring, enq_seg, enq)) {
273 enq_seg = enq_seg->next;
274 enq = enq_seg->trbs;
275 }
276
277 /* Check if ring is empty */
278 if (enq == ring->dequeue) {
279 /* Can't use link trbs */
280 left_on_ring = TRBS_PER_SEGMENT - 1;
281 for (cur_seg = enq_seg->next; cur_seg != enq_seg;
282 cur_seg = cur_seg->next)
283 left_on_ring += TRBS_PER_SEGMENT - 1;
284
285 /* Always need one TRB free in the ring. */
286 left_on_ring -= 1;
287 if (num_trbs > left_on_ring) {
288 xhci_warn(xhci, "Not enough room on ring; "
289 "need %u TRBs, %u TRBs left\n",
290 num_trbs, left_on_ring);
291 return 0;
292 }
293 return 1;
294 }
295 /* Make sure there's an extra empty TRB available */
296 for (i = 0; i <= num_trbs; ++i) {
297 if (enq == ring->dequeue)
298 return 0;
299 enq++;
300 while (last_trb(xhci, ring, enq_seg, enq)) {
301 enq_seg = enq_seg->next;
302 enq = enq_seg->trbs;
303 }
304 }
305 return 1;
306 }
307
308 /* Ring the host controller doorbell after placing a command on the ring */
309 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
310 {
311 xhci_dbg(xhci, "// Ding dong!\n");
312 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
313 /* Flush PCI posted writes */
314 xhci_readl(xhci, &xhci->dba->doorbell[0]);
315 }
316
317 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
318 unsigned int slot_id,
319 unsigned int ep_index,
320 unsigned int stream_id)
321 {
322 __u32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
323 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
324 unsigned int ep_state = ep->ep_state;
325
326 /* Don't ring the doorbell for this endpoint if there are pending
327 * cancellations because we don't want to interrupt processing.
328 * We don't want to restart any stream rings if there's a set dequeue
329 * pointer command pending because the device can choose to start any
330 * stream once the endpoint is on the HW schedule.
331 * FIXME - check all the stream rings for pending cancellations.
332 */
333 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
334 (ep_state & EP_HALTED))
335 return;
336 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
337 /* The CPU has better things to do at this point than wait for a
338 * write-posting flush. It'll get there soon enough.
339 */
340 }
341
342 /* Ring the doorbell for any rings with pending URBs */
343 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
344 unsigned int slot_id,
345 unsigned int ep_index)
346 {
347 unsigned int stream_id;
348 struct xhci_virt_ep *ep;
349
350 ep = &xhci->devs[slot_id]->eps[ep_index];
351
352 /* A ring has pending URBs if its TD list is not empty */
353 if (!(ep->ep_state & EP_HAS_STREAMS)) {
354 if (!(list_empty(&ep->ring->td_list)))
355 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
356 return;
357 }
358
359 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
360 stream_id++) {
361 struct xhci_stream_info *stream_info = ep->stream_info;
362 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
363 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
364 stream_id);
365 }
366 }
367
368 /*
369 * Find the segment that trb is in. Start searching in start_seg.
370 * If we must move past a segment that has a link TRB with a toggle cycle state
371 * bit set, then we will toggle the value pointed at by cycle_state.
372 */
373 static struct xhci_segment *find_trb_seg(
374 struct xhci_segment *start_seg,
375 union xhci_trb *trb, int *cycle_state)
376 {
377 struct xhci_segment *cur_seg = start_seg;
378 struct xhci_generic_trb *generic_trb;
379
380 while (cur_seg->trbs > trb ||
381 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
382 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
383 if (generic_trb->field[3] & LINK_TOGGLE)
384 *cycle_state ^= 0x1;
385 cur_seg = cur_seg->next;
386 if (cur_seg == start_seg)
387 /* Looped over the entire list. Oops! */
388 return NULL;
389 }
390 return cur_seg;
391 }
392
393
394 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
395 unsigned int slot_id, unsigned int ep_index,
396 unsigned int stream_id)
397 {
398 struct xhci_virt_ep *ep;
399
400 ep = &xhci->devs[slot_id]->eps[ep_index];
401 /* Common case: no streams */
402 if (!(ep->ep_state & EP_HAS_STREAMS))
403 return ep->ring;
404
405 if (stream_id == 0) {
406 xhci_warn(xhci,
407 "WARN: Slot ID %u, ep index %u has streams, "
408 "but URB has no stream ID.\n",
409 slot_id, ep_index);
410 return NULL;
411 }
412
413 if (stream_id < ep->stream_info->num_streams)
414 return ep->stream_info->stream_rings[stream_id];
415
416 xhci_warn(xhci,
417 "WARN: Slot ID %u, ep index %u has "
418 "stream IDs 1 to %u allocated, "
419 "but stream ID %u is requested.\n",
420 slot_id, ep_index,
421 ep->stream_info->num_streams - 1,
422 stream_id);
423 return NULL;
424 }
425
426 /* Get the right ring for the given URB.
427 * If the endpoint supports streams, boundary check the URB's stream ID.
428 * If the endpoint doesn't support streams, return the singular endpoint ring.
429 */
430 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
431 struct urb *urb)
432 {
433 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
434 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
435 }
436
437 /*
438 * Move the xHC's endpoint ring dequeue pointer past cur_td.
439 * Record the new state of the xHC's endpoint ring dequeue segment,
440 * dequeue pointer, and new consumer cycle state in state.
441 * Update our internal representation of the ring's dequeue pointer.
442 *
443 * We do this in three jumps:
444 * - First we update our new ring state to be the same as when the xHC stopped.
445 * - Then we traverse the ring to find the segment that contains
446 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
447 * any link TRBs with the toggle cycle bit set.
448 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
449 * if we've moved it past a link TRB with the toggle cycle bit set.
450 */
451 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
452 unsigned int slot_id, unsigned int ep_index,
453 unsigned int stream_id, struct xhci_td *cur_td,
454 struct xhci_dequeue_state *state)
455 {
456 struct xhci_virt_device *dev = xhci->devs[slot_id];
457 struct xhci_ring *ep_ring;
458 struct xhci_generic_trb *trb;
459 struct xhci_ep_ctx *ep_ctx;
460 dma_addr_t addr;
461
462 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
463 ep_index, stream_id);
464 if (!ep_ring) {
465 xhci_warn(xhci, "WARN can't find new dequeue state "
466 "for invalid stream ID %u.\n",
467 stream_id);
468 return;
469 }
470 state->new_cycle_state = 0;
471 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n");
472 state->new_deq_seg = find_trb_seg(cur_td->start_seg,
473 dev->eps[ep_index].stopped_trb,
474 &state->new_cycle_state);
475 if (!state->new_deq_seg) {
476 WARN_ON(1);
477 return;
478 }
479
480 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
481 xhci_dbg(xhci, "Finding endpoint context\n");
482 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
483 state->new_cycle_state = 0x1 & ep_ctx->deq;
484
485 state->new_deq_ptr = cur_td->last_trb;
486 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n");
487 state->new_deq_seg = find_trb_seg(state->new_deq_seg,
488 state->new_deq_ptr,
489 &state->new_cycle_state);
490 if (!state->new_deq_seg) {
491 WARN_ON(1);
492 return;
493 }
494
495 trb = &state->new_deq_ptr->generic;
496 if ((trb->field[3] & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK) &&
497 (trb->field[3] & LINK_TOGGLE))
498 state->new_cycle_state ^= 0x1;
499 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
500
501 /*
502 * If there is only one segment in a ring, find_trb_seg()'s while loop
503 * will not run, and it will return before it has a chance to see if it
504 * needs to toggle the cycle bit. It can't tell if the stalled transfer
505 * ended just before the link TRB on a one-segment ring, or if the TD
506 * wrapped around the top of the ring, because it doesn't have the TD in
507 * question. Look for the one-segment case where stalled TRB's address
508 * is greater than the new dequeue pointer address.
509 */
510 if (ep_ring->first_seg == ep_ring->first_seg->next &&
511 state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
512 state->new_cycle_state ^= 0x1;
513 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state);
514
515 /* Don't update the ring cycle state for the producer (us). */
516 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n",
517 state->new_deq_seg);
518 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
519 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n",
520 (unsigned long long) addr);
521 }
522
523 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
524 struct xhci_td *cur_td)
525 {
526 struct xhci_segment *cur_seg;
527 union xhci_trb *cur_trb;
528
529 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
530 true;
531 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
532 if ((cur_trb->generic.field[3] & TRB_TYPE_BITMASK) ==
533 TRB_TYPE(TRB_LINK)) {
534 /* Unchain any chained Link TRBs, but
535 * leave the pointers intact.
536 */
537 cur_trb->generic.field[3] &= ~TRB_CHAIN;
538 xhci_dbg(xhci, "Cancel (unchain) link TRB\n");
539 xhci_dbg(xhci, "Address = %p (0x%llx dma); "
540 "in seg %p (0x%llx dma)\n",
541 cur_trb,
542 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
543 cur_seg,
544 (unsigned long long)cur_seg->dma);
545 } else {
546 cur_trb->generic.field[0] = 0;
547 cur_trb->generic.field[1] = 0;
548 cur_trb->generic.field[2] = 0;
549 /* Preserve only the cycle bit of this TRB */
550 cur_trb->generic.field[3] &= TRB_CYCLE;
551 cur_trb->generic.field[3] |= TRB_TYPE(TRB_TR_NOOP);
552 xhci_dbg(xhci, "Cancel TRB %p (0x%llx dma) "
553 "in seg %p (0x%llx dma)\n",
554 cur_trb,
555 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
556 cur_seg,
557 (unsigned long long)cur_seg->dma);
558 }
559 if (cur_trb == cur_td->last_trb)
560 break;
561 }
562 }
563
564 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
565 unsigned int ep_index, unsigned int stream_id,
566 struct xhci_segment *deq_seg,
567 union xhci_trb *deq_ptr, u32 cycle_state);
568
569 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
570 unsigned int slot_id, unsigned int ep_index,
571 unsigned int stream_id,
572 struct xhci_dequeue_state *deq_state)
573 {
574 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
575
576 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
577 "new deq ptr = %p (0x%llx dma), new cycle = %u\n",
578 deq_state->new_deq_seg,
579 (unsigned long long)deq_state->new_deq_seg->dma,
580 deq_state->new_deq_ptr,
581 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
582 deq_state->new_cycle_state);
583 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
584 deq_state->new_deq_seg,
585 deq_state->new_deq_ptr,
586 (u32) deq_state->new_cycle_state);
587 /* Stop the TD queueing code from ringing the doorbell until
588 * this command completes. The HC won't set the dequeue pointer
589 * if the ring is running, and ringing the doorbell starts the
590 * ring running.
591 */
592 ep->ep_state |= SET_DEQ_PENDING;
593 }
594
595 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
596 struct xhci_virt_ep *ep)
597 {
598 ep->ep_state &= ~EP_HALT_PENDING;
599 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
600 * timer is running on another CPU, we don't decrement stop_cmds_pending
601 * (since we didn't successfully stop the watchdog timer).
602 */
603 if (del_timer(&ep->stop_cmd_timer))
604 ep->stop_cmds_pending--;
605 }
606
607 /* Must be called with xhci->lock held in interrupt context */
608 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
609 struct xhci_td *cur_td, int status, char *adjective)
610 {
611 struct usb_hcd *hcd;
612 struct urb *urb;
613 struct urb_priv *urb_priv;
614
615 urb = cur_td->urb;
616 urb_priv = urb->hcpriv;
617 urb_priv->td_cnt++;
618 hcd = bus_to_hcd(urb->dev->bus);
619
620 /* Only giveback urb when this is the last td in urb */
621 if (urb_priv->td_cnt == urb_priv->length) {
622 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
623 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
624 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
625 if (xhci->quirks & XHCI_AMD_PLL_FIX)
626 usb_amd_quirk_pll_enable();
627 }
628 }
629 usb_hcd_unlink_urb_from_ep(hcd, urb);
630 xhci_dbg(xhci, "Giveback %s URB %p\n", adjective, urb);
631
632 spin_unlock(&xhci->lock);
633 usb_hcd_giveback_urb(hcd, urb, status);
634 xhci_urb_free_priv(xhci, urb_priv);
635 spin_lock(&xhci->lock);
636 xhci_dbg(xhci, "%s URB given back\n", adjective);
637 }
638 }
639
640 /*
641 * When we get a command completion for a Stop Endpoint Command, we need to
642 * unlink any cancelled TDs from the ring. There are two ways to do that:
643 *
644 * 1. If the HW was in the middle of processing the TD that needs to be
645 * cancelled, then we must move the ring's dequeue pointer past the last TRB
646 * in the TD with a Set Dequeue Pointer Command.
647 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
648 * bit cleared) so that the HW will skip over them.
649 */
650 static void handle_stopped_endpoint(struct xhci_hcd *xhci,
651 union xhci_trb *trb, struct xhci_event_cmd *event)
652 {
653 unsigned int slot_id;
654 unsigned int ep_index;
655 struct xhci_virt_device *virt_dev;
656 struct xhci_ring *ep_ring;
657 struct xhci_virt_ep *ep;
658 struct list_head *entry;
659 struct xhci_td *cur_td = NULL;
660 struct xhci_td *last_unlinked_td;
661
662 struct xhci_dequeue_state deq_state;
663
664 if (unlikely(TRB_TO_SUSPEND_PORT(
665 xhci->cmd_ring->dequeue->generic.field[3]))) {
666 slot_id = TRB_TO_SLOT_ID(
667 xhci->cmd_ring->dequeue->generic.field[3]);
668 virt_dev = xhci->devs[slot_id];
669 if (virt_dev)
670 handle_cmd_in_cmd_wait_list(xhci, virt_dev,
671 event);
672 else
673 xhci_warn(xhci, "Stop endpoint command "
674 "completion for disabled slot %u\n",
675 slot_id);
676 return;
677 }
678
679 memset(&deq_state, 0, sizeof(deq_state));
680 slot_id = TRB_TO_SLOT_ID(trb->generic.field[3]);
681 ep_index = TRB_TO_EP_INDEX(trb->generic.field[3]);
682 ep = &xhci->devs[slot_id]->eps[ep_index];
683
684 if (list_empty(&ep->cancelled_td_list)) {
685 xhci_stop_watchdog_timer_in_irq(xhci, ep);
686 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
687 return;
688 }
689
690 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
691 * We have the xHCI lock, so nothing can modify this list until we drop
692 * it. We're also in the event handler, so we can't get re-interrupted
693 * if another Stop Endpoint command completes
694 */
695 list_for_each(entry, &ep->cancelled_td_list) {
696 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
697 xhci_dbg(xhci, "Cancelling TD starting at %p, 0x%llx (dma).\n",
698 cur_td->first_trb,
699 (unsigned long long)xhci_trb_virt_to_dma(cur_td->start_seg, cur_td->first_trb));
700 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
701 if (!ep_ring) {
702 /* This shouldn't happen unless a driver is mucking
703 * with the stream ID after submission. This will
704 * leave the TD on the hardware ring, and the hardware
705 * will try to execute it, and may access a buffer
706 * that has already been freed. In the best case, the
707 * hardware will execute it, and the event handler will
708 * ignore the completion event for that TD, since it was
709 * removed from the td_list for that endpoint. In
710 * short, don't muck with the stream ID after
711 * submission.
712 */
713 xhci_warn(xhci, "WARN Cancelled URB %p "
714 "has invalid stream ID %u.\n",
715 cur_td->urb,
716 cur_td->urb->stream_id);
717 goto remove_finished_td;
718 }
719 /*
720 * If we stopped on the TD we need to cancel, then we have to
721 * move the xHC endpoint ring dequeue pointer past this TD.
722 */
723 if (cur_td == ep->stopped_td)
724 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
725 cur_td->urb->stream_id,
726 cur_td, &deq_state);
727 else
728 td_to_noop(xhci, ep_ring, cur_td);
729 remove_finished_td:
730 /*
731 * The event handler won't see a completion for this TD anymore,
732 * so remove it from the endpoint ring's TD list. Keep it in
733 * the cancelled TD list for URB completion later.
734 */
735 list_del(&cur_td->td_list);
736 }
737 last_unlinked_td = cur_td;
738 xhci_stop_watchdog_timer_in_irq(xhci, ep);
739
740 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
741 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
742 xhci_queue_new_dequeue_state(xhci,
743 slot_id, ep_index,
744 ep->stopped_td->urb->stream_id,
745 &deq_state);
746 xhci_ring_cmd_db(xhci);
747 } else {
748 /* Otherwise ring the doorbell(s) to restart queued transfers */
749 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
750 }
751 ep->stopped_td = NULL;
752 ep->stopped_trb = NULL;
753
754 /*
755 * Drop the lock and complete the URBs in the cancelled TD list.
756 * New TDs to be cancelled might be added to the end of the list before
757 * we can complete all the URBs for the TDs we already unlinked.
758 * So stop when we've completed the URB for the last TD we unlinked.
759 */
760 do {
761 cur_td = list_entry(ep->cancelled_td_list.next,
762 struct xhci_td, cancelled_td_list);
763 list_del(&cur_td->cancelled_td_list);
764
765 /* Clean up the cancelled URB */
766 /* Doesn't matter what we pass for status, since the core will
767 * just overwrite it (because the URB has been unlinked).
768 */
769 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
770
771 /* Stop processing the cancelled list if the watchdog timer is
772 * running.
773 */
774 if (xhci->xhc_state & XHCI_STATE_DYING)
775 return;
776 } while (cur_td != last_unlinked_td);
777
778 /* Return to the event handler with xhci->lock re-acquired */
779 }
780
781 /* Watchdog timer function for when a stop endpoint command fails to complete.
782 * In this case, we assume the host controller is broken or dying or dead. The
783 * host may still be completing some other events, so we have to be careful to
784 * let the event ring handler and the URB dequeueing/enqueueing functions know
785 * through xhci->state.
786 *
787 * The timer may also fire if the host takes a very long time to respond to the
788 * command, and the stop endpoint command completion handler cannot delete the
789 * timer before the timer function is called. Another endpoint cancellation may
790 * sneak in before the timer function can grab the lock, and that may queue
791 * another stop endpoint command and add the timer back. So we cannot use a
792 * simple flag to say whether there is a pending stop endpoint command for a
793 * particular endpoint.
794 *
795 * Instead we use a combination of that flag and a counter for the number of
796 * pending stop endpoint commands. If the timer is the tail end of the last
797 * stop endpoint command, and the endpoint's command is still pending, we assume
798 * the host is dying.
799 */
800 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
801 {
802 struct xhci_hcd *xhci;
803 struct xhci_virt_ep *ep;
804 struct xhci_virt_ep *temp_ep;
805 struct xhci_ring *ring;
806 struct xhci_td *cur_td;
807 int ret, i, j;
808
809 ep = (struct xhci_virt_ep *) arg;
810 xhci = ep->xhci;
811
812 spin_lock(&xhci->lock);
813
814 ep->stop_cmds_pending--;
815 if (xhci->xhc_state & XHCI_STATE_DYING) {
816 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked "
817 "xHCI as DYING, exiting.\n");
818 spin_unlock(&xhci->lock);
819 return;
820 }
821 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
822 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, "
823 "exiting.\n");
824 spin_unlock(&xhci->lock);
825 return;
826 }
827
828 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
829 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
830 /* Oops, HC is dead or dying or at least not responding to the stop
831 * endpoint command.
832 */
833 xhci->xhc_state |= XHCI_STATE_DYING;
834 /* Disable interrupts from the host controller and start halting it */
835 xhci_quiesce(xhci);
836 spin_unlock(&xhci->lock);
837
838 ret = xhci_halt(xhci);
839
840 spin_lock(&xhci->lock);
841 if (ret < 0) {
842 /* This is bad; the host is not responding to commands and it's
843 * not allowing itself to be halted. At least interrupts are
844 * disabled. If we call usb_hc_died(), it will attempt to
845 * disconnect all device drivers under this host. Those
846 * disconnect() methods will wait for all URBs to be unlinked,
847 * so we must complete them.
848 */
849 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
850 xhci_warn(xhci, "Completing active URBs anyway.\n");
851 /* We could turn all TDs on the rings to no-ops. This won't
852 * help if the host has cached part of the ring, and is slow if
853 * we want to preserve the cycle bit. Skip it and hope the host
854 * doesn't touch the memory.
855 */
856 }
857 for (i = 0; i < MAX_HC_SLOTS; i++) {
858 if (!xhci->devs[i])
859 continue;
860 for (j = 0; j < 31; j++) {
861 temp_ep = &xhci->devs[i]->eps[j];
862 ring = temp_ep->ring;
863 if (!ring)
864 continue;
865 xhci_dbg(xhci, "Killing URBs for slot ID %u, "
866 "ep index %u\n", i, j);
867 while (!list_empty(&ring->td_list)) {
868 cur_td = list_first_entry(&ring->td_list,
869 struct xhci_td,
870 td_list);
871 list_del(&cur_td->td_list);
872 if (!list_empty(&cur_td->cancelled_td_list))
873 list_del(&cur_td->cancelled_td_list);
874 xhci_giveback_urb_in_irq(xhci, cur_td,
875 -ESHUTDOWN, "killed");
876 }
877 while (!list_empty(&temp_ep->cancelled_td_list)) {
878 cur_td = list_first_entry(
879 &temp_ep->cancelled_td_list,
880 struct xhci_td,
881 cancelled_td_list);
882 list_del(&cur_td->cancelled_td_list);
883 xhci_giveback_urb_in_irq(xhci, cur_td,
884 -ESHUTDOWN, "killed");
885 }
886 }
887 }
888 spin_unlock(&xhci->lock);
889 xhci_dbg(xhci, "Calling usb_hc_died()\n");
890 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
891 xhci_dbg(xhci, "xHCI host controller is dead.\n");
892 }
893
894 /*
895 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
896 * we need to clear the set deq pending flag in the endpoint ring state, so that
897 * the TD queueing code can ring the doorbell again. We also need to ring the
898 * endpoint doorbell to restart the ring, but only if there aren't more
899 * cancellations pending.
900 */
901 static void handle_set_deq_completion(struct xhci_hcd *xhci,
902 struct xhci_event_cmd *event,
903 union xhci_trb *trb)
904 {
905 unsigned int slot_id;
906 unsigned int ep_index;
907 unsigned int stream_id;
908 struct xhci_ring *ep_ring;
909 struct xhci_virt_device *dev;
910 struct xhci_ep_ctx *ep_ctx;
911 struct xhci_slot_ctx *slot_ctx;
912
913 slot_id = TRB_TO_SLOT_ID(trb->generic.field[3]);
914 ep_index = TRB_TO_EP_INDEX(trb->generic.field[3]);
915 stream_id = TRB_TO_STREAM_ID(trb->generic.field[2]);
916 dev = xhci->devs[slot_id];
917
918 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
919 if (!ep_ring) {
920 xhci_warn(xhci, "WARN Set TR deq ptr command for "
921 "freed stream ID %u\n",
922 stream_id);
923 /* XXX: Harmless??? */
924 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
925 return;
926 }
927
928 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
929 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
930
931 if (GET_COMP_CODE(event->status) != COMP_SUCCESS) {
932 unsigned int ep_state;
933 unsigned int slot_state;
934
935 switch (GET_COMP_CODE(event->status)) {
936 case COMP_TRB_ERR:
937 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
938 "of stream ID configuration\n");
939 break;
940 case COMP_CTX_STATE:
941 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
942 "to incorrect slot or ep state.\n");
943 ep_state = ep_ctx->ep_info;
944 ep_state &= EP_STATE_MASK;
945 slot_state = slot_ctx->dev_state;
946 slot_state = GET_SLOT_STATE(slot_state);
947 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n",
948 slot_state, ep_state);
949 break;
950 case COMP_EBADSLT:
951 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
952 "slot %u was not enabled.\n", slot_id);
953 break;
954 default:
955 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
956 "completion code of %u.\n",
957 GET_COMP_CODE(event->status));
958 break;
959 }
960 /* OK what do we do now? The endpoint state is hosed, and we
961 * should never get to this point if the synchronization between
962 * queueing, and endpoint state are correct. This might happen
963 * if the device gets disconnected after we've finished
964 * cancelling URBs, which might not be an error...
965 */
966 } else {
967 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
968 ep_ctx->deq);
969 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
970 dev->eps[ep_index].queued_deq_ptr) ==
971 (ep_ctx->deq & ~(EP_CTX_CYCLE_MASK))) {
972 /* Update the ring's dequeue segment and dequeue pointer
973 * to reflect the new position.
974 */
975 ep_ring->deq_seg = dev->eps[ep_index].queued_deq_seg;
976 ep_ring->dequeue = dev->eps[ep_index].queued_deq_ptr;
977 } else {
978 xhci_warn(xhci, "Mismatch between completed Set TR Deq "
979 "Ptr command & xHCI internal state.\n");
980 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
981 dev->eps[ep_index].queued_deq_seg,
982 dev->eps[ep_index].queued_deq_ptr);
983 }
984 }
985
986 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
987 dev->eps[ep_index].queued_deq_seg = NULL;
988 dev->eps[ep_index].queued_deq_ptr = NULL;
989 /* Restart any rings with pending URBs */
990 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
991 }
992
993 static void handle_reset_ep_completion(struct xhci_hcd *xhci,
994 struct xhci_event_cmd *event,
995 union xhci_trb *trb)
996 {
997 int slot_id;
998 unsigned int ep_index;
999
1000 slot_id = TRB_TO_SLOT_ID(trb->generic.field[3]);
1001 ep_index = TRB_TO_EP_INDEX(trb->generic.field[3]);
1002 /* This command will only fail if the endpoint wasn't halted,
1003 * but we don't care.
1004 */
1005 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n",
1006 (unsigned int) GET_COMP_CODE(event->status));
1007
1008 /* HW with the reset endpoint quirk needs to have a configure endpoint
1009 * command complete before the endpoint can be used. Queue that here
1010 * because the HW can't handle two commands being queued in a row.
1011 */
1012 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1013 xhci_dbg(xhci, "Queueing configure endpoint command\n");
1014 xhci_queue_configure_endpoint(xhci,
1015 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1016 false);
1017 xhci_ring_cmd_db(xhci);
1018 } else {
1019 /* Clear our internal halted state and restart the ring(s) */
1020 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1021 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1022 }
1023 }
1024
1025 /* Check to see if a command in the device's command queue matches this one.
1026 * Signal the completion or free the command, and return 1. Return 0 if the
1027 * completed command isn't at the head of the command list.
1028 */
1029 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1030 struct xhci_virt_device *virt_dev,
1031 struct xhci_event_cmd *event)
1032 {
1033 struct xhci_command *command;
1034
1035 if (list_empty(&virt_dev->cmd_list))
1036 return 0;
1037
1038 command = list_entry(virt_dev->cmd_list.next,
1039 struct xhci_command, cmd_list);
1040 if (xhci->cmd_ring->dequeue != command->command_trb)
1041 return 0;
1042
1043 command->status =
1044 GET_COMP_CODE(event->status);
1045 list_del(&command->cmd_list);
1046 if (command->completion)
1047 complete(command->completion);
1048 else
1049 xhci_free_command(xhci, command);
1050 return 1;
1051 }
1052
1053 static void handle_cmd_completion(struct xhci_hcd *xhci,
1054 struct xhci_event_cmd *event)
1055 {
1056 int slot_id = TRB_TO_SLOT_ID(event->flags);
1057 u64 cmd_dma;
1058 dma_addr_t cmd_dequeue_dma;
1059 struct xhci_input_control_ctx *ctrl_ctx;
1060 struct xhci_virt_device *virt_dev;
1061 unsigned int ep_index;
1062 struct xhci_ring *ep_ring;
1063 unsigned int ep_state;
1064
1065 cmd_dma = event->cmd_trb;
1066 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1067 xhci->cmd_ring->dequeue);
1068 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1069 if (cmd_dequeue_dma == 0) {
1070 xhci->error_bitmask |= 1 << 4;
1071 return;
1072 }
1073 /* Does the DMA address match our internal dequeue pointer address? */
1074 if (cmd_dma != (u64) cmd_dequeue_dma) {
1075 xhci->error_bitmask |= 1 << 5;
1076 return;
1077 }
1078 switch (xhci->cmd_ring->dequeue->generic.field[3] & TRB_TYPE_BITMASK) {
1079 case TRB_TYPE(TRB_ENABLE_SLOT):
1080 if (GET_COMP_CODE(event->status) == COMP_SUCCESS)
1081 xhci->slot_id = slot_id;
1082 else
1083 xhci->slot_id = 0;
1084 complete(&xhci->addr_dev);
1085 break;
1086 case TRB_TYPE(TRB_DISABLE_SLOT):
1087 if (xhci->devs[slot_id])
1088 xhci_free_virt_device(xhci, slot_id);
1089 break;
1090 case TRB_TYPE(TRB_CONFIG_EP):
1091 virt_dev = xhci->devs[slot_id];
1092 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1093 break;
1094 /*
1095 * Configure endpoint commands can come from the USB core
1096 * configuration or alt setting changes, or because the HW
1097 * needed an extra configure endpoint command after a reset
1098 * endpoint command or streams were being configured.
1099 * If the command was for a halted endpoint, the xHCI driver
1100 * is not waiting on the configure endpoint command.
1101 */
1102 ctrl_ctx = xhci_get_input_control_ctx(xhci,
1103 virt_dev->in_ctx);
1104 /* Input ctx add_flags are the endpoint index plus one */
1105 ep_index = xhci_last_valid_endpoint(ctrl_ctx->add_flags) - 1;
1106 /* A usb_set_interface() call directly after clearing a halted
1107 * condition may race on this quirky hardware. Not worth
1108 * worrying about, since this is prototype hardware. Not sure
1109 * if this will work for streams, but streams support was
1110 * untested on this prototype.
1111 */
1112 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1113 ep_index != (unsigned int) -1 &&
1114 ctrl_ctx->add_flags - SLOT_FLAG ==
1115 ctrl_ctx->drop_flags) {
1116 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1117 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1118 if (!(ep_state & EP_HALTED))
1119 goto bandwidth_change;
1120 xhci_dbg(xhci, "Completed config ep cmd - "
1121 "last ep index = %d, state = %d\n",
1122 ep_index, ep_state);
1123 /* Clear internal halted state and restart ring(s) */
1124 xhci->devs[slot_id]->eps[ep_index].ep_state &=
1125 ~EP_HALTED;
1126 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1127 break;
1128 }
1129 bandwidth_change:
1130 xhci_dbg(xhci, "Completed config ep cmd\n");
1131 xhci->devs[slot_id]->cmd_status =
1132 GET_COMP_CODE(event->status);
1133 complete(&xhci->devs[slot_id]->cmd_completion);
1134 break;
1135 case TRB_TYPE(TRB_EVAL_CONTEXT):
1136 virt_dev = xhci->devs[slot_id];
1137 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1138 break;
1139 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(event->status);
1140 complete(&xhci->devs[slot_id]->cmd_completion);
1141 break;
1142 case TRB_TYPE(TRB_ADDR_DEV):
1143 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(event->status);
1144 complete(&xhci->addr_dev);
1145 break;
1146 case TRB_TYPE(TRB_STOP_RING):
1147 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
1148 break;
1149 case TRB_TYPE(TRB_SET_DEQ):
1150 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
1151 break;
1152 case TRB_TYPE(TRB_CMD_NOOP):
1153 break;
1154 case TRB_TYPE(TRB_RESET_EP):
1155 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
1156 break;
1157 case TRB_TYPE(TRB_RESET_DEV):
1158 xhci_dbg(xhci, "Completed reset device command.\n");
1159 slot_id = TRB_TO_SLOT_ID(
1160 xhci->cmd_ring->dequeue->generic.field[3]);
1161 virt_dev = xhci->devs[slot_id];
1162 if (virt_dev)
1163 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1164 else
1165 xhci_warn(xhci, "Reset device command completion "
1166 "for disabled slot %u\n", slot_id);
1167 break;
1168 case TRB_TYPE(TRB_NEC_GET_FW):
1169 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1170 xhci->error_bitmask |= 1 << 6;
1171 break;
1172 }
1173 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n",
1174 NEC_FW_MAJOR(event->status),
1175 NEC_FW_MINOR(event->status));
1176 break;
1177 default:
1178 /* Skip over unknown commands on the event ring */
1179 xhci->error_bitmask |= 1 << 6;
1180 break;
1181 }
1182 inc_deq(xhci, xhci->cmd_ring, false);
1183 }
1184
1185 static void handle_vendor_event(struct xhci_hcd *xhci,
1186 union xhci_trb *event)
1187 {
1188 u32 trb_type;
1189
1190 trb_type = TRB_FIELD_TO_TYPE(event->generic.field[3]);
1191 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1192 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1193 handle_cmd_completion(xhci, &event->event_cmd);
1194 }
1195
1196 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1197 * port registers -- USB 3.0 and USB 2.0).
1198 *
1199 * Returns a zero-based port number, which is suitable for indexing into each of
1200 * the split roothubs' port arrays and bus state arrays.
1201 */
1202 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1203 struct xhci_hcd *xhci, u32 port_id)
1204 {
1205 unsigned int i;
1206 unsigned int num_similar_speed_ports = 0;
1207
1208 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1209 * and usb2_ports are 0-based indexes. Count the number of similar
1210 * speed ports, up to 1 port before this port.
1211 */
1212 for (i = 0; i < (port_id - 1); i++) {
1213 u8 port_speed = xhci->port_array[i];
1214
1215 /*
1216 * Skip ports that don't have known speeds, or have duplicate
1217 * Extended Capabilities port speed entries.
1218 */
1219 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1220 continue;
1221
1222 /*
1223 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1224 * 1.1 ports are under the USB 2.0 hub. If the port speed
1225 * matches the device speed, it's a similar speed port.
1226 */
1227 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1228 num_similar_speed_ports++;
1229 }
1230 return num_similar_speed_ports;
1231 }
1232
1233 static void handle_port_status(struct xhci_hcd *xhci,
1234 union xhci_trb *event)
1235 {
1236 struct usb_hcd *hcd;
1237 u32 port_id;
1238 u32 temp, temp1;
1239 int max_ports;
1240 int slot_id;
1241 unsigned int faked_port_index;
1242 u8 major_revision;
1243 struct xhci_bus_state *bus_state;
1244 u32 __iomem **port_array;
1245 bool bogus_port_status = false;
1246
1247 /* Port status change events always have a successful completion code */
1248 if (GET_COMP_CODE(event->generic.field[2]) != COMP_SUCCESS) {
1249 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1250 xhci->error_bitmask |= 1 << 8;
1251 }
1252 port_id = GET_PORT_ID(event->generic.field[0]);
1253 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1254
1255 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1256 if ((port_id <= 0) || (port_id > max_ports)) {
1257 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1258 bogus_port_status = true;
1259 goto cleanup;
1260 }
1261
1262 /* Figure out which usb_hcd this port is attached to:
1263 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1264 */
1265 major_revision = xhci->port_array[port_id - 1];
1266 if (major_revision == 0) {
1267 xhci_warn(xhci, "Event for port %u not in "
1268 "Extended Capabilities, ignoring.\n",
1269 port_id);
1270 bogus_port_status = true;
1271 goto cleanup;
1272 }
1273 if (major_revision == DUPLICATE_ENTRY) {
1274 xhci_warn(xhci, "Event for port %u duplicated in"
1275 "Extended Capabilities, ignoring.\n",
1276 port_id);
1277 bogus_port_status = true;
1278 goto cleanup;
1279 }
1280
1281 /*
1282 * Hardware port IDs reported by a Port Status Change Event include USB
1283 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1284 * resume event, but we first need to translate the hardware port ID
1285 * into the index into the ports on the correct split roothub, and the
1286 * correct bus_state structure.
1287 */
1288 /* Find the right roothub. */
1289 hcd = xhci_to_hcd(xhci);
1290 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1291 hcd = xhci->shared_hcd;
1292 bus_state = &xhci->bus_state[hcd_index(hcd)];
1293 if (hcd->speed == HCD_USB3)
1294 port_array = xhci->usb3_ports;
1295 else
1296 port_array = xhci->usb2_ports;
1297 /* Find the faked port hub number */
1298 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1299 port_id);
1300
1301 temp = xhci_readl(xhci, port_array[faked_port_index]);
1302 if (hcd->state == HC_STATE_SUSPENDED) {
1303 xhci_dbg(xhci, "resume root hub\n");
1304 usb_hcd_resume_root_hub(hcd);
1305 }
1306
1307 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1308 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1309
1310 temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1311 if (!(temp1 & CMD_RUN)) {
1312 xhci_warn(xhci, "xHC is not running.\n");
1313 goto cleanup;
1314 }
1315
1316 if (DEV_SUPERSPEED(temp)) {
1317 xhci_dbg(xhci, "resume SS port %d\n", port_id);
1318 temp = xhci_port_state_to_neutral(temp);
1319 temp &= ~PORT_PLS_MASK;
1320 temp |= PORT_LINK_STROBE | XDEV_U0;
1321 xhci_writel(xhci, temp, port_array[faked_port_index]);
1322 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1323 faked_port_index);
1324 if (!slot_id) {
1325 xhci_dbg(xhci, "slot_id is zero\n");
1326 goto cleanup;
1327 }
1328 xhci_ring_device(xhci, slot_id);
1329 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1330 /* Clear PORT_PLC */
1331 temp = xhci_readl(xhci, port_array[faked_port_index]);
1332 temp = xhci_port_state_to_neutral(temp);
1333 temp |= PORT_PLC;
1334 xhci_writel(xhci, temp, port_array[faked_port_index]);
1335 } else {
1336 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1337 bus_state->resume_done[faked_port_index] = jiffies +
1338 msecs_to_jiffies(20);
1339 mod_timer(&hcd->rh_timer,
1340 bus_state->resume_done[faked_port_index]);
1341 /* Do the rest in GetPortStatus */
1342 }
1343 }
1344
1345 cleanup:
1346 /* Update event ring dequeue pointer before dropping the lock */
1347 inc_deq(xhci, xhci->event_ring, true);
1348
1349 /* Don't make the USB core poll the roothub if we got a bad port status
1350 * change event. Besides, at that point we can't tell which roothub
1351 * (USB 2.0 or USB 3.0) to kick.
1352 */
1353 if (bogus_port_status)
1354 return;
1355
1356 spin_unlock(&xhci->lock);
1357 /* Pass this up to the core */
1358 usb_hcd_poll_rh_status(hcd);
1359 spin_lock(&xhci->lock);
1360 }
1361
1362 /*
1363 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1364 * at end_trb, which may be in another segment. If the suspect DMA address is a
1365 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1366 * returns 0.
1367 */
1368 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1369 union xhci_trb *start_trb,
1370 union xhci_trb *end_trb,
1371 dma_addr_t suspect_dma)
1372 {
1373 dma_addr_t start_dma;
1374 dma_addr_t end_seg_dma;
1375 dma_addr_t end_trb_dma;
1376 struct xhci_segment *cur_seg;
1377
1378 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1379 cur_seg = start_seg;
1380
1381 do {
1382 if (start_dma == 0)
1383 return NULL;
1384 /* We may get an event for a Link TRB in the middle of a TD */
1385 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1386 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1387 /* If the end TRB isn't in this segment, this is set to 0 */
1388 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1389
1390 if (end_trb_dma > 0) {
1391 /* The end TRB is in this segment, so suspect should be here */
1392 if (start_dma <= end_trb_dma) {
1393 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1394 return cur_seg;
1395 } else {
1396 /* Case for one segment with
1397 * a TD wrapped around to the top
1398 */
1399 if ((suspect_dma >= start_dma &&
1400 suspect_dma <= end_seg_dma) ||
1401 (suspect_dma >= cur_seg->dma &&
1402 suspect_dma <= end_trb_dma))
1403 return cur_seg;
1404 }
1405 return NULL;
1406 } else {
1407 /* Might still be somewhere in this segment */
1408 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1409 return cur_seg;
1410 }
1411 cur_seg = cur_seg->next;
1412 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1413 } while (cur_seg != start_seg);
1414
1415 return NULL;
1416 }
1417
1418 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1419 unsigned int slot_id, unsigned int ep_index,
1420 unsigned int stream_id,
1421 struct xhci_td *td, union xhci_trb *event_trb)
1422 {
1423 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1424 ep->ep_state |= EP_HALTED;
1425 ep->stopped_td = td;
1426 ep->stopped_trb = event_trb;
1427 ep->stopped_stream = stream_id;
1428
1429 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1430 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1431
1432 ep->stopped_td = NULL;
1433 ep->stopped_trb = NULL;
1434 ep->stopped_stream = 0;
1435
1436 xhci_ring_cmd_db(xhci);
1437 }
1438
1439 /* Check if an error has halted the endpoint ring. The class driver will
1440 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1441 * However, a babble and other errors also halt the endpoint ring, and the class
1442 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1443 * Ring Dequeue Pointer command manually.
1444 */
1445 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1446 struct xhci_ep_ctx *ep_ctx,
1447 unsigned int trb_comp_code)
1448 {
1449 /* TRB completion codes that may require a manual halt cleanup */
1450 if (trb_comp_code == COMP_TX_ERR ||
1451 trb_comp_code == COMP_BABBLE ||
1452 trb_comp_code == COMP_SPLIT_ERR)
1453 /* The 0.96 spec says a babbling control endpoint
1454 * is not halted. The 0.96 spec says it is. Some HW
1455 * claims to be 0.95 compliant, but it halts the control
1456 * endpoint anyway. Check if a babble halted the
1457 * endpoint.
1458 */
1459 if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_HALTED)
1460 return 1;
1461
1462 return 0;
1463 }
1464
1465 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1466 {
1467 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1468 /* Vendor defined "informational" completion code,
1469 * treat as not-an-error.
1470 */
1471 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1472 trb_comp_code);
1473 xhci_dbg(xhci, "Treating code as success.\n");
1474 return 1;
1475 }
1476 return 0;
1477 }
1478
1479 /*
1480 * Finish the td processing, remove the td from td list;
1481 * Return 1 if the urb can be given back.
1482 */
1483 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1484 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1485 struct xhci_virt_ep *ep, int *status, bool skip)
1486 {
1487 struct xhci_virt_device *xdev;
1488 struct xhci_ring *ep_ring;
1489 unsigned int slot_id;
1490 int ep_index;
1491 struct urb *urb = NULL;
1492 struct xhci_ep_ctx *ep_ctx;
1493 int ret = 0;
1494 struct urb_priv *urb_priv;
1495 u32 trb_comp_code;
1496
1497 slot_id = TRB_TO_SLOT_ID(event->flags);
1498 xdev = xhci->devs[slot_id];
1499 ep_index = TRB_TO_EP_ID(event->flags) - 1;
1500 ep_ring = xhci_dma_to_transfer_ring(ep, event->buffer);
1501 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1502 trb_comp_code = GET_COMP_CODE(event->transfer_len);
1503
1504 if (skip)
1505 goto td_cleanup;
1506
1507 if (trb_comp_code == COMP_STOP_INVAL ||
1508 trb_comp_code == COMP_STOP) {
1509 /* The Endpoint Stop Command completion will take care of any
1510 * stopped TDs. A stopped TD may be restarted, so don't update
1511 * the ring dequeue pointer or take this TD off any lists yet.
1512 */
1513 ep->stopped_td = td;
1514 ep->stopped_trb = event_trb;
1515 return 0;
1516 } else {
1517 if (trb_comp_code == COMP_STALL) {
1518 /* The transfer is completed from the driver's
1519 * perspective, but we need to issue a set dequeue
1520 * command for this stalled endpoint to move the dequeue
1521 * pointer past the TD. We can't do that here because
1522 * the halt condition must be cleared first. Let the
1523 * USB class driver clear the stall later.
1524 */
1525 ep->stopped_td = td;
1526 ep->stopped_trb = event_trb;
1527 ep->stopped_stream = ep_ring->stream_id;
1528 } else if (xhci_requires_manual_halt_cleanup(xhci,
1529 ep_ctx, trb_comp_code)) {
1530 /* Other types of errors halt the endpoint, but the
1531 * class driver doesn't call usb_reset_endpoint() unless
1532 * the error is -EPIPE. Clear the halted status in the
1533 * xHCI hardware manually.
1534 */
1535 xhci_cleanup_halted_endpoint(xhci,
1536 slot_id, ep_index, ep_ring->stream_id,
1537 td, event_trb);
1538 } else {
1539 /* Update ring dequeue pointer */
1540 while (ep_ring->dequeue != td->last_trb)
1541 inc_deq(xhci, ep_ring, false);
1542 inc_deq(xhci, ep_ring, false);
1543 }
1544
1545 td_cleanup:
1546 /* Clean up the endpoint's TD list */
1547 urb = td->urb;
1548 urb_priv = urb->hcpriv;
1549
1550 /* Do one last check of the actual transfer length.
1551 * If the host controller said we transferred more data than
1552 * the buffer length, urb->actual_length will be a very big
1553 * number (since it's unsigned). Play it safe and say we didn't
1554 * transfer anything.
1555 */
1556 if (urb->actual_length > urb->transfer_buffer_length) {
1557 xhci_warn(xhci, "URB transfer length is wrong, "
1558 "xHC issue? req. len = %u, "
1559 "act. len = %u\n",
1560 urb->transfer_buffer_length,
1561 urb->actual_length);
1562 urb->actual_length = 0;
1563 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1564 *status = -EREMOTEIO;
1565 else
1566 *status = 0;
1567 }
1568 list_del(&td->td_list);
1569 /* Was this TD slated to be cancelled but completed anyway? */
1570 if (!list_empty(&td->cancelled_td_list))
1571 list_del(&td->cancelled_td_list);
1572
1573 urb_priv->td_cnt++;
1574 /* Giveback the urb when all the tds are completed */
1575 if (urb_priv->td_cnt == urb_priv->length) {
1576 ret = 1;
1577 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1578 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1579 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
1580 == 0) {
1581 if (xhci->quirks & XHCI_AMD_PLL_FIX)
1582 usb_amd_quirk_pll_enable();
1583 }
1584 }
1585 }
1586 }
1587
1588 return ret;
1589 }
1590
1591 /*
1592 * Process control tds, update urb status and actual_length.
1593 */
1594 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1595 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1596 struct xhci_virt_ep *ep, int *status)
1597 {
1598 struct xhci_virt_device *xdev;
1599 struct xhci_ring *ep_ring;
1600 unsigned int slot_id;
1601 int ep_index;
1602 struct xhci_ep_ctx *ep_ctx;
1603 u32 trb_comp_code;
1604
1605 slot_id = TRB_TO_SLOT_ID(event->flags);
1606 xdev = xhci->devs[slot_id];
1607 ep_index = TRB_TO_EP_ID(event->flags) - 1;
1608 ep_ring = xhci_dma_to_transfer_ring(ep, event->buffer);
1609 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1610 trb_comp_code = GET_COMP_CODE(event->transfer_len);
1611
1612 xhci_debug_trb(xhci, xhci->event_ring->dequeue);
1613 switch (trb_comp_code) {
1614 case COMP_SUCCESS:
1615 if (event_trb == ep_ring->dequeue) {
1616 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1617 "without IOC set??\n");
1618 *status = -ESHUTDOWN;
1619 } else if (event_trb != td->last_trb) {
1620 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1621 "without IOC set??\n");
1622 *status = -ESHUTDOWN;
1623 } else {
1624 xhci_dbg(xhci, "Successful control transfer!\n");
1625 *status = 0;
1626 }
1627 break;
1628 case COMP_SHORT_TX:
1629 xhci_warn(xhci, "WARN: short transfer on control ep\n");
1630 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1631 *status = -EREMOTEIO;
1632 else
1633 *status = 0;
1634 break;
1635 default:
1636 if (!xhci_requires_manual_halt_cleanup(xhci,
1637 ep_ctx, trb_comp_code))
1638 break;
1639 xhci_dbg(xhci, "TRB error code %u, "
1640 "halted endpoint index = %u\n",
1641 trb_comp_code, ep_index);
1642 /* else fall through */
1643 case COMP_STALL:
1644 /* Did we transfer part of the data (middle) phase? */
1645 if (event_trb != ep_ring->dequeue &&
1646 event_trb != td->last_trb)
1647 td->urb->actual_length =
1648 td->urb->transfer_buffer_length
1649 - TRB_LEN(event->transfer_len);
1650 else
1651 td->urb->actual_length = 0;
1652
1653 xhci_cleanup_halted_endpoint(xhci,
1654 slot_id, ep_index, 0, td, event_trb);
1655 return finish_td(xhci, td, event_trb, event, ep, status, true);
1656 }
1657 /*
1658 * Did we transfer any data, despite the errors that might have
1659 * happened? I.e. did we get past the setup stage?
1660 */
1661 if (event_trb != ep_ring->dequeue) {
1662 /* The event was for the status stage */
1663 if (event_trb == td->last_trb) {
1664 if (td->urb->actual_length != 0) {
1665 /* Don't overwrite a previously set error code
1666 */
1667 if ((*status == -EINPROGRESS || *status == 0) &&
1668 (td->urb->transfer_flags
1669 & URB_SHORT_NOT_OK))
1670 /* Did we already see a short data
1671 * stage? */
1672 *status = -EREMOTEIO;
1673 } else {
1674 td->urb->actual_length =
1675 td->urb->transfer_buffer_length;
1676 }
1677 } else {
1678 /* Maybe the event was for the data stage? */
1679 if (trb_comp_code != COMP_STOP_INVAL) {
1680 /* We didn't stop on a link TRB in the middle */
1681 td->urb->actual_length =
1682 td->urb->transfer_buffer_length -
1683 TRB_LEN(event->transfer_len);
1684 xhci_dbg(xhci, "Waiting for status "
1685 "stage event\n");
1686 return 0;
1687 }
1688 }
1689 }
1690
1691 return finish_td(xhci, td, event_trb, event, ep, status, false);
1692 }
1693
1694 /*
1695 * Process isochronous tds, update urb packet status and actual_length.
1696 */
1697 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1698 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1699 struct xhci_virt_ep *ep, int *status)
1700 {
1701 struct xhci_ring *ep_ring;
1702 struct urb_priv *urb_priv;
1703 int idx;
1704 int len = 0;
1705 union xhci_trb *cur_trb;
1706 struct xhci_segment *cur_seg;
1707 struct usb_iso_packet_descriptor *frame;
1708 u32 trb_comp_code;
1709 bool skip_td = false;
1710
1711 ep_ring = xhci_dma_to_transfer_ring(ep, event->buffer);
1712 trb_comp_code = GET_COMP_CODE(event->transfer_len);
1713 urb_priv = td->urb->hcpriv;
1714 idx = urb_priv->td_cnt;
1715 frame = &td->urb->iso_frame_desc[idx];
1716
1717 /* handle completion code */
1718 switch (trb_comp_code) {
1719 case COMP_SUCCESS:
1720 frame->status = 0;
1721 xhci_dbg(xhci, "Successful isoc transfer!\n");
1722 break;
1723 case COMP_SHORT_TX:
1724 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
1725 -EREMOTEIO : 0;
1726 break;
1727 case COMP_BW_OVER:
1728 frame->status = -ECOMM;
1729 skip_td = true;
1730 break;
1731 case COMP_BUFF_OVER:
1732 case COMP_BABBLE:
1733 frame->status = -EOVERFLOW;
1734 skip_td = true;
1735 break;
1736 case COMP_STALL:
1737 frame->status = -EPROTO;
1738 skip_td = true;
1739 break;
1740 case COMP_STOP:
1741 case COMP_STOP_INVAL:
1742 break;
1743 default:
1744 frame->status = -1;
1745 break;
1746 }
1747
1748 if (trb_comp_code == COMP_SUCCESS || skip_td) {
1749 frame->actual_length = frame->length;
1750 td->urb->actual_length += frame->length;
1751 } else {
1752 for (cur_trb = ep_ring->dequeue,
1753 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
1754 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1755 if ((cur_trb->generic.field[3] &
1756 TRB_TYPE_BITMASK) != TRB_TYPE(TRB_TR_NOOP) &&
1757 (cur_trb->generic.field[3] &
1758 TRB_TYPE_BITMASK) != TRB_TYPE(TRB_LINK))
1759 len +=
1760 TRB_LEN(cur_trb->generic.field[2]);
1761 }
1762 len += TRB_LEN(cur_trb->generic.field[2]) -
1763 TRB_LEN(event->transfer_len);
1764
1765 if (trb_comp_code != COMP_STOP_INVAL) {
1766 frame->actual_length = len;
1767 td->urb->actual_length += len;
1768 }
1769 }
1770
1771 if ((idx == urb_priv->length - 1) && *status == -EINPROGRESS)
1772 *status = 0;
1773
1774 return finish_td(xhci, td, event_trb, event, ep, status, false);
1775 }
1776
1777 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1778 struct xhci_transfer_event *event,
1779 struct xhci_virt_ep *ep, int *status)
1780 {
1781 struct xhci_ring *ep_ring;
1782 struct urb_priv *urb_priv;
1783 struct usb_iso_packet_descriptor *frame;
1784 int idx;
1785
1786 ep_ring = xhci_dma_to_transfer_ring(ep, event->buffer);
1787 urb_priv = td->urb->hcpriv;
1788 idx = urb_priv->td_cnt;
1789 frame = &td->urb->iso_frame_desc[idx];
1790
1791 /* The transfer is partly done */
1792 *status = -EXDEV;
1793 frame->status = -EXDEV;
1794
1795 /* calc actual length */
1796 frame->actual_length = 0;
1797
1798 /* Update ring dequeue pointer */
1799 while (ep_ring->dequeue != td->last_trb)
1800 inc_deq(xhci, ep_ring, false);
1801 inc_deq(xhci, ep_ring, false);
1802
1803 return finish_td(xhci, td, NULL, event, ep, status, true);
1804 }
1805
1806 /*
1807 * Process bulk and interrupt tds, update urb status and actual_length.
1808 */
1809 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
1810 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1811 struct xhci_virt_ep *ep, int *status)
1812 {
1813 struct xhci_ring *ep_ring;
1814 union xhci_trb *cur_trb;
1815 struct xhci_segment *cur_seg;
1816 u32 trb_comp_code;
1817
1818 ep_ring = xhci_dma_to_transfer_ring(ep, event->buffer);
1819 trb_comp_code = GET_COMP_CODE(event->transfer_len);
1820
1821 switch (trb_comp_code) {
1822 case COMP_SUCCESS:
1823 /* Double check that the HW transferred everything. */
1824 if (event_trb != td->last_trb) {
1825 xhci_warn(xhci, "WARN Successful completion "
1826 "on short TX\n");
1827 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1828 *status = -EREMOTEIO;
1829 else
1830 *status = 0;
1831 } else {
1832 if (usb_endpoint_xfer_bulk(&td->urb->ep->desc))
1833 xhci_dbg(xhci, "Successful bulk "
1834 "transfer!\n");
1835 else
1836 xhci_dbg(xhci, "Successful interrupt "
1837 "transfer!\n");
1838 *status = 0;
1839 }
1840 break;
1841 case COMP_SHORT_TX:
1842 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1843 *status = -EREMOTEIO;
1844 else
1845 *status = 0;
1846 break;
1847 default:
1848 /* Others already handled above */
1849 break;
1850 }
1851 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
1852 "%d bytes untransferred\n",
1853 td->urb->ep->desc.bEndpointAddress,
1854 td->urb->transfer_buffer_length,
1855 TRB_LEN(event->transfer_len));
1856 /* Fast path - was this the last TRB in the TD for this URB? */
1857 if (event_trb == td->last_trb) {
1858 if (TRB_LEN(event->transfer_len) != 0) {
1859 td->urb->actual_length =
1860 td->urb->transfer_buffer_length -
1861 TRB_LEN(event->transfer_len);
1862 if (td->urb->transfer_buffer_length <
1863 td->urb->actual_length) {
1864 xhci_warn(xhci, "HC gave bad length "
1865 "of %d bytes left\n",
1866 TRB_LEN(event->transfer_len));
1867 td->urb->actual_length = 0;
1868 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1869 *status = -EREMOTEIO;
1870 else
1871 *status = 0;
1872 }
1873 /* Don't overwrite a previously set error code */
1874 if (*status == -EINPROGRESS) {
1875 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1876 *status = -EREMOTEIO;
1877 else
1878 *status = 0;
1879 }
1880 } else {
1881 td->urb->actual_length =
1882 td->urb->transfer_buffer_length;
1883 /* Ignore a short packet completion if the
1884 * untransferred length was zero.
1885 */
1886 if (*status == -EREMOTEIO)
1887 *status = 0;
1888 }
1889 } else {
1890 /* Slow path - walk the list, starting from the dequeue
1891 * pointer, to get the actual length transferred.
1892 */
1893 td->urb->actual_length = 0;
1894 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
1895 cur_trb != event_trb;
1896 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1897 if ((cur_trb->generic.field[3] &
1898 TRB_TYPE_BITMASK) != TRB_TYPE(TRB_TR_NOOP) &&
1899 (cur_trb->generic.field[3] &
1900 TRB_TYPE_BITMASK) != TRB_TYPE(TRB_LINK))
1901 td->urb->actual_length +=
1902 TRB_LEN(cur_trb->generic.field[2]);
1903 }
1904 /* If the ring didn't stop on a Link or No-op TRB, add
1905 * in the actual bytes transferred from the Normal TRB
1906 */
1907 if (trb_comp_code != COMP_STOP_INVAL)
1908 td->urb->actual_length +=
1909 TRB_LEN(cur_trb->generic.field[2]) -
1910 TRB_LEN(event->transfer_len);
1911 }
1912
1913 return finish_td(xhci, td, event_trb, event, ep, status, false);
1914 }
1915
1916 /*
1917 * If this function returns an error condition, it means it got a Transfer
1918 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
1919 * At this point, the host controller is probably hosed and should be reset.
1920 */
1921 static int handle_tx_event(struct xhci_hcd *xhci,
1922 struct xhci_transfer_event *event)
1923 {
1924 struct xhci_virt_device *xdev;
1925 struct xhci_virt_ep *ep;
1926 struct xhci_ring *ep_ring;
1927 unsigned int slot_id;
1928 int ep_index;
1929 struct xhci_td *td = NULL;
1930 dma_addr_t event_dma;
1931 struct xhci_segment *event_seg;
1932 union xhci_trb *event_trb;
1933 struct urb *urb = NULL;
1934 int status = -EINPROGRESS;
1935 struct urb_priv *urb_priv;
1936 struct xhci_ep_ctx *ep_ctx;
1937 u32 trb_comp_code;
1938 int ret = 0;
1939
1940 slot_id = TRB_TO_SLOT_ID(event->flags);
1941 xdev = xhci->devs[slot_id];
1942 if (!xdev) {
1943 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
1944 return -ENODEV;
1945 }
1946
1947 /* Endpoint ID is 1 based, our index is zero based */
1948 ep_index = TRB_TO_EP_ID(event->flags) - 1;
1949 xhci_dbg(xhci, "%s - ep index = %d\n", __func__, ep_index);
1950 ep = &xdev->eps[ep_index];
1951 ep_ring = xhci_dma_to_transfer_ring(ep, event->buffer);
1952 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1953 if (!ep_ring ||
1954 (ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED) {
1955 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
1956 "or incorrect stream ring\n");
1957 return -ENODEV;
1958 }
1959
1960 event_dma = event->buffer;
1961 trb_comp_code = GET_COMP_CODE(event->transfer_len);
1962 /* Look for common error cases */
1963 switch (trb_comp_code) {
1964 /* Skip codes that require special handling depending on
1965 * transfer type
1966 */
1967 case COMP_SUCCESS:
1968 case COMP_SHORT_TX:
1969 break;
1970 case COMP_STOP:
1971 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
1972 break;
1973 case COMP_STOP_INVAL:
1974 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
1975 break;
1976 case COMP_STALL:
1977 xhci_warn(xhci, "WARN: Stalled endpoint\n");
1978 ep->ep_state |= EP_HALTED;
1979 status = -EPIPE;
1980 break;
1981 case COMP_TRB_ERR:
1982 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
1983 status = -EILSEQ;
1984 break;
1985 case COMP_SPLIT_ERR:
1986 case COMP_TX_ERR:
1987 xhci_warn(xhci, "WARN: transfer error on endpoint\n");
1988 status = -EPROTO;
1989 break;
1990 case COMP_BABBLE:
1991 xhci_warn(xhci, "WARN: babble error on endpoint\n");
1992 status = -EOVERFLOW;
1993 break;
1994 case COMP_DB_ERR:
1995 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
1996 status = -ENOSR;
1997 break;
1998 case COMP_BW_OVER:
1999 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2000 break;
2001 case COMP_BUFF_OVER:
2002 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2003 break;
2004 case COMP_UNDERRUN:
2005 /*
2006 * When the Isoch ring is empty, the xHC will generate
2007 * a Ring Overrun Event for IN Isoch endpoint or Ring
2008 * Underrun Event for OUT Isoch endpoint.
2009 */
2010 xhci_dbg(xhci, "underrun event on endpoint\n");
2011 if (!list_empty(&ep_ring->td_list))
2012 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2013 "still with TDs queued?\n",
2014 TRB_TO_SLOT_ID(event->flags), ep_index);
2015 goto cleanup;
2016 case COMP_OVERRUN:
2017 xhci_dbg(xhci, "overrun event on endpoint\n");
2018 if (!list_empty(&ep_ring->td_list))
2019 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2020 "still with TDs queued?\n",
2021 TRB_TO_SLOT_ID(event->flags), ep_index);
2022 goto cleanup;
2023 case COMP_MISSED_INT:
2024 /*
2025 * When encounter missed service error, one or more isoc tds
2026 * may be missed by xHC.
2027 * Set skip flag of the ep_ring; Complete the missed tds as
2028 * short transfer when process the ep_ring next time.
2029 */
2030 ep->skip = true;
2031 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2032 goto cleanup;
2033 default:
2034 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2035 status = 0;
2036 break;
2037 }
2038 xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2039 "busted\n");
2040 goto cleanup;
2041 }
2042
2043 do {
2044 /* This TRB should be in the TD at the head of this ring's
2045 * TD list.
2046 */
2047 if (list_empty(&ep_ring->td_list)) {
2048 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d "
2049 "with no TDs queued?\n",
2050 TRB_TO_SLOT_ID(event->flags), ep_index);
2051 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2052 (unsigned int) (event->flags & TRB_TYPE_BITMASK)>>10);
2053 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2054 if (ep->skip) {
2055 ep->skip = false;
2056 xhci_dbg(xhci, "td_list is empty while skip "
2057 "flag set. Clear skip flag.\n");
2058 }
2059 ret = 0;
2060 goto cleanup;
2061 }
2062
2063 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2064
2065 /* Is this a TRB in the currently executing TD? */
2066 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2067 td->last_trb, event_dma);
2068 if (!event_seg) {
2069 if (!ep->skip ||
2070 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2071 /* HC is busted, give up! */
2072 xhci_err(xhci,
2073 "ERROR Transfer event TRB DMA ptr not "
2074 "part of current TD\n");
2075 return -ESHUTDOWN;
2076 }
2077
2078 ret = skip_isoc_td(xhci, td, event, ep, &status);
2079 goto cleanup;
2080 }
2081
2082 if (ep->skip) {
2083 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2084 ep->skip = false;
2085 }
2086
2087 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2088 sizeof(*event_trb)];
2089 /*
2090 * No-op TRB should not trigger interrupts.
2091 * If event_trb is a no-op TRB, it means the
2092 * corresponding TD has been cancelled. Just ignore
2093 * the TD.
2094 */
2095 if ((event_trb->generic.field[3] & TRB_TYPE_BITMASK)
2096 == TRB_TYPE(TRB_TR_NOOP)) {
2097 xhci_dbg(xhci,
2098 "event_trb is a no-op TRB. Skip it\n");
2099 goto cleanup;
2100 }
2101
2102 /* Now update the urb's actual_length and give back to
2103 * the core
2104 */
2105 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2106 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2107 &status);
2108 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2109 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2110 &status);
2111 else
2112 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2113 ep, &status);
2114
2115 cleanup:
2116 /*
2117 * Do not update event ring dequeue pointer if ep->skip is set.
2118 * Will roll back to continue process missed tds.
2119 */
2120 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2121 inc_deq(xhci, xhci->event_ring, true);
2122 }
2123
2124 if (ret) {
2125 urb = td->urb;
2126 urb_priv = urb->hcpriv;
2127 /* Leave the TD around for the reset endpoint function
2128 * to use(but only if it's not a control endpoint,
2129 * since we already queued the Set TR dequeue pointer
2130 * command for stalled control endpoints).
2131 */
2132 if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2133 (trb_comp_code != COMP_STALL &&
2134 trb_comp_code != COMP_BABBLE))
2135 xhci_urb_free_priv(xhci, urb_priv);
2136
2137 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2138 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2139 "status = %d\n",
2140 urb, urb->actual_length, status);
2141 spin_unlock(&xhci->lock);
2142 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2143 spin_lock(&xhci->lock);
2144 }
2145
2146 /*
2147 * If ep->skip is set, it means there are missed tds on the
2148 * endpoint ring need to take care of.
2149 * Process them as short transfer until reach the td pointed by
2150 * the event.
2151 */
2152 } while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2153
2154 return 0;
2155 }
2156
2157 /*
2158 * This function handles all OS-owned events on the event ring. It may drop
2159 * xhci->lock between event processing (e.g. to pass up port status changes).
2160 */
2161 static void xhci_handle_event(struct xhci_hcd *xhci)
2162 {
2163 union xhci_trb *event;
2164 int update_ptrs = 1;
2165 int ret;
2166
2167 xhci_dbg(xhci, "In %s\n", __func__);
2168 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2169 xhci->error_bitmask |= 1 << 1;
2170 return;
2171 }
2172
2173 event = xhci->event_ring->dequeue;
2174 /* Does the HC or OS own the TRB? */
2175 if ((event->event_cmd.flags & TRB_CYCLE) !=
2176 xhci->event_ring->cycle_state) {
2177 xhci->error_bitmask |= 1 << 2;
2178 return;
2179 }
2180 xhci_dbg(xhci, "%s - OS owns TRB\n", __func__);
2181
2182 /* FIXME: Handle more event types. */
2183 switch ((event->event_cmd.flags & TRB_TYPE_BITMASK)) {
2184 case TRB_TYPE(TRB_COMPLETION):
2185 xhci_dbg(xhci, "%s - calling handle_cmd_completion\n", __func__);
2186 handle_cmd_completion(xhci, &event->event_cmd);
2187 xhci_dbg(xhci, "%s - returned from handle_cmd_completion\n", __func__);
2188 break;
2189 case TRB_TYPE(TRB_PORT_STATUS):
2190 xhci_dbg(xhci, "%s - calling handle_port_status\n", __func__);
2191 handle_port_status(xhci, event);
2192 xhci_dbg(xhci, "%s - returned from handle_port_status\n", __func__);
2193 update_ptrs = 0;
2194 break;
2195 case TRB_TYPE(TRB_TRANSFER):
2196 xhci_dbg(xhci, "%s - calling handle_tx_event\n", __func__);
2197 ret = handle_tx_event(xhci, &event->trans_event);
2198 xhci_dbg(xhci, "%s - returned from handle_tx_event\n", __func__);
2199 if (ret < 0)
2200 xhci->error_bitmask |= 1 << 9;
2201 else
2202 update_ptrs = 0;
2203 break;
2204 default:
2205 if ((event->event_cmd.flags & TRB_TYPE_BITMASK) >= TRB_TYPE(48))
2206 handle_vendor_event(xhci, event);
2207 else
2208 xhci->error_bitmask |= 1 << 3;
2209 }
2210 /* Any of the above functions may drop and re-acquire the lock, so check
2211 * to make sure a watchdog timer didn't mark the host as non-responsive.
2212 */
2213 if (xhci->xhc_state & XHCI_STATE_DYING) {
2214 xhci_dbg(xhci, "xHCI host dying, returning from "
2215 "event handler.\n");
2216 return;
2217 }
2218
2219 if (update_ptrs)
2220 /* Update SW event ring dequeue pointer */
2221 inc_deq(xhci, xhci->event_ring, true);
2222
2223 /* Are there more items on the event ring? */
2224 xhci_handle_event(xhci);
2225 }
2226
2227 /*
2228 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2229 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2230 * indicators of an event TRB error, but we check the status *first* to be safe.
2231 */
2232 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2233 {
2234 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2235 u32 status;
2236 union xhci_trb *trb;
2237 u64 temp_64;
2238 union xhci_trb *event_ring_deq;
2239 dma_addr_t deq;
2240
2241 spin_lock(&xhci->lock);
2242 trb = xhci->event_ring->dequeue;
2243 /* Check if the xHC generated the interrupt, or the irq is shared */
2244 status = xhci_readl(xhci, &xhci->op_regs->status);
2245 if (status == 0xffffffff)
2246 goto hw_died;
2247
2248 if (!(status & STS_EINT)) {
2249 spin_unlock(&xhci->lock);
2250 return IRQ_NONE;
2251 }
2252 xhci_dbg(xhci, "op reg status = %08x\n", status);
2253 xhci_dbg(xhci, "Event ring dequeue ptr:\n");
2254 xhci_dbg(xhci, "@%llx %08x %08x %08x %08x\n",
2255 (unsigned long long)
2256 xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, trb),
2257 lower_32_bits(trb->link.segment_ptr),
2258 upper_32_bits(trb->link.segment_ptr),
2259 (unsigned int) trb->link.intr_target,
2260 (unsigned int) trb->link.control);
2261
2262 if (status & STS_FATAL) {
2263 xhci_warn(xhci, "WARNING: Host System Error\n");
2264 xhci_halt(xhci);
2265 hw_died:
2266 spin_unlock(&xhci->lock);
2267 return -ESHUTDOWN;
2268 }
2269
2270 /*
2271 * Clear the op reg interrupt status first,
2272 * so we can receive interrupts from other MSI-X interrupters.
2273 * Write 1 to clear the interrupt status.
2274 */
2275 status |= STS_EINT;
2276 xhci_writel(xhci, status, &xhci->op_regs->status);
2277 /* FIXME when MSI-X is supported and there are multiple vectors */
2278 /* Clear the MSI-X event interrupt status */
2279
2280 if (hcd->irq != -1) {
2281 u32 irq_pending;
2282 /* Acknowledge the PCI interrupt */
2283 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2284 irq_pending |= 0x3;
2285 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2286 }
2287
2288 if (xhci->xhc_state & XHCI_STATE_DYING) {
2289 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2290 "Shouldn't IRQs be disabled?\n");
2291 /* Clear the event handler busy flag (RW1C);
2292 * the event ring should be empty.
2293 */
2294 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2295 xhci_write_64(xhci, temp_64 | ERST_EHB,
2296 &xhci->ir_set->erst_dequeue);
2297 spin_unlock(&xhci->lock);
2298
2299 return IRQ_HANDLED;
2300 }
2301
2302 event_ring_deq = xhci->event_ring->dequeue;
2303 /* FIXME this should be a delayed service routine
2304 * that clears the EHB.
2305 */
2306 xhci_handle_event(xhci);
2307
2308 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2309 /* If necessary, update the HW's version of the event ring deq ptr. */
2310 if (event_ring_deq != xhci->event_ring->dequeue) {
2311 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2312 xhci->event_ring->dequeue);
2313 if (deq == 0)
2314 xhci_warn(xhci, "WARN something wrong with SW event "
2315 "ring dequeue ptr.\n");
2316 /* Update HC event ring dequeue pointer */
2317 temp_64 &= ERST_PTR_MASK;
2318 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2319 }
2320
2321 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2322 temp_64 |= ERST_EHB;
2323 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2324
2325 spin_unlock(&xhci->lock);
2326
2327 return IRQ_HANDLED;
2328 }
2329
2330 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd)
2331 {
2332 irqreturn_t ret;
2333 struct xhci_hcd *xhci;
2334
2335 xhci = hcd_to_xhci(hcd);
2336 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
2337 if (xhci->shared_hcd)
2338 set_bit(HCD_FLAG_SAW_IRQ, &xhci->shared_hcd->flags);
2339
2340 ret = xhci_irq(hcd);
2341
2342 return ret;
2343 }
2344
2345 /**** Endpoint Ring Operations ****/
2346
2347 /*
2348 * Generic function for queueing a TRB on a ring.
2349 * The caller must have checked to make sure there's room on the ring.
2350 *
2351 * @more_trbs_coming: Will you enqueue more TRBs before calling
2352 * prepare_transfer()?
2353 */
2354 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2355 bool consumer, bool more_trbs_coming,
2356 u32 field1, u32 field2, u32 field3, u32 field4)
2357 {
2358 struct xhci_generic_trb *trb;
2359
2360 trb = &ring->enqueue->generic;
2361 trb->field[0] = field1;
2362 trb->field[1] = field2;
2363 trb->field[2] = field3;
2364 trb->field[3] = field4;
2365 inc_enq(xhci, ring, consumer, more_trbs_coming);
2366 }
2367
2368 /*
2369 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2370 * FIXME allocate segments if the ring is full.
2371 */
2372 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2373 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2374 {
2375 /* Make sure the endpoint has been added to xHC schedule */
2376 xhci_dbg(xhci, "Endpoint state = 0x%x\n", ep_state);
2377 switch (ep_state) {
2378 case EP_STATE_DISABLED:
2379 /*
2380 * USB core changed config/interfaces without notifying us,
2381 * or hardware is reporting the wrong state.
2382 */
2383 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2384 return -ENOENT;
2385 case EP_STATE_ERROR:
2386 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2387 /* FIXME event handling code for error needs to clear it */
2388 /* XXX not sure if this should be -ENOENT or not */
2389 return -EINVAL;
2390 case EP_STATE_HALTED:
2391 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2392 case EP_STATE_STOPPED:
2393 case EP_STATE_RUNNING:
2394 break;
2395 default:
2396 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2397 /*
2398 * FIXME issue Configure Endpoint command to try to get the HC
2399 * back into a known state.
2400 */
2401 return -EINVAL;
2402 }
2403 if (!room_on_ring(xhci, ep_ring, num_trbs)) {
2404 /* FIXME allocate more room */
2405 xhci_err(xhci, "ERROR no room on ep ring\n");
2406 return -ENOMEM;
2407 }
2408
2409 if (enqueue_is_link_trb(ep_ring)) {
2410 struct xhci_ring *ring = ep_ring;
2411 union xhci_trb *next;
2412
2413 xhci_dbg(xhci, "prepare_ring: pointing to link trb\n");
2414 next = ring->enqueue;
2415
2416 while (last_trb(xhci, ring, ring->enq_seg, next)) {
2417
2418 /* If we're not dealing with 0.95 hardware,
2419 * clear the chain bit.
2420 */
2421 if (!xhci_link_trb_quirk(xhci))
2422 next->link.control &= ~TRB_CHAIN;
2423 else
2424 next->link.control |= TRB_CHAIN;
2425
2426 wmb();
2427 next->link.control ^= (u32) TRB_CYCLE;
2428
2429 /* Toggle the cycle bit after the last ring segment. */
2430 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2431 ring->cycle_state = (ring->cycle_state ? 0 : 1);
2432 if (!in_interrupt()) {
2433 xhci_dbg(xhci, "queue_trb: Toggle cycle "
2434 "state for ring %p = %i\n",
2435 ring, (unsigned int)ring->cycle_state);
2436 }
2437 }
2438 ring->enq_seg = ring->enq_seg->next;
2439 ring->enqueue = ring->enq_seg->trbs;
2440 next = ring->enqueue;
2441 }
2442 }
2443
2444 return 0;
2445 }
2446
2447 static int prepare_transfer(struct xhci_hcd *xhci,
2448 struct xhci_virt_device *xdev,
2449 unsigned int ep_index,
2450 unsigned int stream_id,
2451 unsigned int num_trbs,
2452 struct urb *urb,
2453 unsigned int td_index,
2454 gfp_t mem_flags)
2455 {
2456 int ret;
2457 struct urb_priv *urb_priv;
2458 struct xhci_td *td;
2459 struct xhci_ring *ep_ring;
2460 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2461
2462 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2463 if (!ep_ring) {
2464 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2465 stream_id);
2466 return -EINVAL;
2467 }
2468
2469 ret = prepare_ring(xhci, ep_ring,
2470 ep_ctx->ep_info & EP_STATE_MASK,
2471 num_trbs, mem_flags);
2472 if (ret)
2473 return ret;
2474
2475 urb_priv = urb->hcpriv;
2476 td = urb_priv->td[td_index];
2477
2478 INIT_LIST_HEAD(&td->td_list);
2479 INIT_LIST_HEAD(&td->cancelled_td_list);
2480
2481 if (td_index == 0) {
2482 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2483 if (unlikely(ret)) {
2484 xhci_urb_free_priv(xhci, urb_priv);
2485 urb->hcpriv = NULL;
2486 return ret;
2487 }
2488 }
2489
2490 td->urb = urb;
2491 /* Add this TD to the tail of the endpoint ring's TD list */
2492 list_add_tail(&td->td_list, &ep_ring->td_list);
2493 td->start_seg = ep_ring->enq_seg;
2494 td->first_trb = ep_ring->enqueue;
2495
2496 urb_priv->td[td_index] = td;
2497
2498 return 0;
2499 }
2500
2501 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
2502 {
2503 int num_sgs, num_trbs, running_total, temp, i;
2504 struct scatterlist *sg;
2505
2506 sg = NULL;
2507 num_sgs = urb->num_sgs;
2508 temp = urb->transfer_buffer_length;
2509
2510 xhci_dbg(xhci, "count sg list trbs: \n");
2511 num_trbs = 0;
2512 for_each_sg(urb->sg, sg, num_sgs, i) {
2513 unsigned int previous_total_trbs = num_trbs;
2514 unsigned int len = sg_dma_len(sg);
2515
2516 /* Scatter gather list entries may cross 64KB boundaries */
2517 running_total = TRB_MAX_BUFF_SIZE -
2518 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
2519 running_total &= TRB_MAX_BUFF_SIZE - 1;
2520 if (running_total != 0)
2521 num_trbs++;
2522
2523 /* How many more 64KB chunks to transfer, how many more TRBs? */
2524 while (running_total < sg_dma_len(sg) && running_total < temp) {
2525 num_trbs++;
2526 running_total += TRB_MAX_BUFF_SIZE;
2527 }
2528 xhci_dbg(xhci, " sg #%d: dma = %#llx, len = %#x (%d), num_trbs = %d\n",
2529 i, (unsigned long long)sg_dma_address(sg),
2530 len, len, num_trbs - previous_total_trbs);
2531
2532 len = min_t(int, len, temp);
2533 temp -= len;
2534 if (temp == 0)
2535 break;
2536 }
2537 xhci_dbg(xhci, "\n");
2538 if (!in_interrupt())
2539 xhci_dbg(xhci, "ep %#x - urb len = %d, sglist used, "
2540 "num_trbs = %d\n",
2541 urb->ep->desc.bEndpointAddress,
2542 urb->transfer_buffer_length,
2543 num_trbs);
2544 return num_trbs;
2545 }
2546
2547 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
2548 {
2549 if (num_trbs != 0)
2550 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
2551 "TRBs, %d left\n", __func__,
2552 urb->ep->desc.bEndpointAddress, num_trbs);
2553 if (running_total != urb->transfer_buffer_length)
2554 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2555 "queued %#x (%d), asked for %#x (%d)\n",
2556 __func__,
2557 urb->ep->desc.bEndpointAddress,
2558 running_total, running_total,
2559 urb->transfer_buffer_length,
2560 urb->transfer_buffer_length);
2561 }
2562
2563 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2564 unsigned int ep_index, unsigned int stream_id, int start_cycle,
2565 struct xhci_generic_trb *start_trb)
2566 {
2567 /*
2568 * Pass all the TRBs to the hardware at once and make sure this write
2569 * isn't reordered.
2570 */
2571 wmb();
2572 if (start_cycle)
2573 start_trb->field[3] |= start_cycle;
2574 else
2575 start_trb->field[3] &= ~0x1;
2576 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
2577 }
2578
2579 /*
2580 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
2581 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
2582 * (comprised of sg list entries) can take several service intervals to
2583 * transmit.
2584 */
2585 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2586 struct urb *urb, int slot_id, unsigned int ep_index)
2587 {
2588 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
2589 xhci->devs[slot_id]->out_ctx, ep_index);
2590 int xhci_interval;
2591 int ep_interval;
2592
2593 xhci_interval = EP_INTERVAL_TO_UFRAMES(ep_ctx->ep_info);
2594 ep_interval = urb->interval;
2595 /* Convert to microframes */
2596 if (urb->dev->speed == USB_SPEED_LOW ||
2597 urb->dev->speed == USB_SPEED_FULL)
2598 ep_interval *= 8;
2599 /* FIXME change this to a warning and a suggestion to use the new API
2600 * to set the polling interval (once the API is added).
2601 */
2602 if (xhci_interval != ep_interval) {
2603 if (printk_ratelimit())
2604 dev_dbg(&urb->dev->dev, "Driver uses different interval"
2605 " (%d microframe%s) than xHCI "
2606 "(%d microframe%s)\n",
2607 ep_interval,
2608 ep_interval == 1 ? "" : "s",
2609 xhci_interval,
2610 xhci_interval == 1 ? "" : "s");
2611 urb->interval = xhci_interval;
2612 /* Convert back to frames for LS/FS devices */
2613 if (urb->dev->speed == USB_SPEED_LOW ||
2614 urb->dev->speed == USB_SPEED_FULL)
2615 urb->interval /= 8;
2616 }
2617 return xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
2618 }
2619
2620 /*
2621 * The TD size is the number of bytes remaining in the TD (including this TRB),
2622 * right shifted by 10.
2623 * It must fit in bits 21:17, so it can't be bigger than 31.
2624 */
2625 static u32 xhci_td_remainder(unsigned int remainder)
2626 {
2627 u32 max = (1 << (21 - 17 + 1)) - 1;
2628
2629 if ((remainder >> 10) >= max)
2630 return max << 17;
2631 else
2632 return (remainder >> 10) << 17;
2633 }
2634
2635 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2636 struct urb *urb, int slot_id, unsigned int ep_index)
2637 {
2638 struct xhci_ring *ep_ring;
2639 unsigned int num_trbs;
2640 struct urb_priv *urb_priv;
2641 struct xhci_td *td;
2642 struct scatterlist *sg;
2643 int num_sgs;
2644 int trb_buff_len, this_sg_len, running_total;
2645 bool first_trb;
2646 u64 addr;
2647 bool more_trbs_coming;
2648
2649 struct xhci_generic_trb *start_trb;
2650 int start_cycle;
2651
2652 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2653 if (!ep_ring)
2654 return -EINVAL;
2655
2656 num_trbs = count_sg_trbs_needed(xhci, urb);
2657 num_sgs = urb->num_sgs;
2658
2659 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
2660 ep_index, urb->stream_id,
2661 num_trbs, urb, 0, mem_flags);
2662 if (trb_buff_len < 0)
2663 return trb_buff_len;
2664
2665 urb_priv = urb->hcpriv;
2666 td = urb_priv->td[0];
2667
2668 /*
2669 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2670 * until we've finished creating all the other TRBs. The ring's cycle
2671 * state may change as we enqueue the other TRBs, so save it too.
2672 */
2673 start_trb = &ep_ring->enqueue->generic;
2674 start_cycle = ep_ring->cycle_state;
2675
2676 running_total = 0;
2677 /*
2678 * How much data is in the first TRB?
2679 *
2680 * There are three forces at work for TRB buffer pointers and lengths:
2681 * 1. We don't want to walk off the end of this sg-list entry buffer.
2682 * 2. The transfer length that the driver requested may be smaller than
2683 * the amount of memory allocated for this scatter-gather list.
2684 * 3. TRBs buffers can't cross 64KB boundaries.
2685 */
2686 sg = urb->sg;
2687 addr = (u64) sg_dma_address(sg);
2688 this_sg_len = sg_dma_len(sg);
2689 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
2690 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2691 if (trb_buff_len > urb->transfer_buffer_length)
2692 trb_buff_len = urb->transfer_buffer_length;
2693 xhci_dbg(xhci, "First length to xfer from 1st sglist entry = %u\n",
2694 trb_buff_len);
2695
2696 first_trb = true;
2697 /* Queue the first TRB, even if it's zero-length */
2698 do {
2699 u32 field = 0;
2700 u32 length_field = 0;
2701 u32 remainder = 0;
2702
2703 /* Don't change the cycle bit of the first TRB until later */
2704 if (first_trb) {
2705 first_trb = false;
2706 if (start_cycle == 0)
2707 field |= 0x1;
2708 } else
2709 field |= ep_ring->cycle_state;
2710
2711 /* Chain all the TRBs together; clear the chain bit in the last
2712 * TRB to indicate it's the last TRB in the chain.
2713 */
2714 if (num_trbs > 1) {
2715 field |= TRB_CHAIN;
2716 } else {
2717 /* FIXME - add check for ZERO_PACKET flag before this */
2718 td->last_trb = ep_ring->enqueue;
2719 field |= TRB_IOC;
2720 }
2721 xhci_dbg(xhci, " sg entry: dma = %#x, len = %#x (%d), "
2722 "64KB boundary at %#x, end dma = %#x\n",
2723 (unsigned int) addr, trb_buff_len, trb_buff_len,
2724 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2725 (unsigned int) addr + trb_buff_len);
2726 if (TRB_MAX_BUFF_SIZE -
2727 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
2728 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
2729 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
2730 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2731 (unsigned int) addr + trb_buff_len);
2732 }
2733 remainder = xhci_td_remainder(urb->transfer_buffer_length -
2734 running_total) ;
2735 length_field = TRB_LEN(trb_buff_len) |
2736 remainder |
2737 TRB_INTR_TARGET(0);
2738 if (num_trbs > 1)
2739 more_trbs_coming = true;
2740 else
2741 more_trbs_coming = false;
2742 queue_trb(xhci, ep_ring, false, more_trbs_coming,
2743 lower_32_bits(addr),
2744 upper_32_bits(addr),
2745 length_field,
2746 /* We always want to know if the TRB was short,
2747 * or we won't get an event when it completes.
2748 * (Unless we use event data TRBs, which are a
2749 * waste of space and HC resources.)
2750 */
2751 field | TRB_ISP | TRB_TYPE(TRB_NORMAL));
2752 --num_trbs;
2753 running_total += trb_buff_len;
2754
2755 /* Calculate length for next transfer --
2756 * Are we done queueing all the TRBs for this sg entry?
2757 */
2758 this_sg_len -= trb_buff_len;
2759 if (this_sg_len == 0) {
2760 --num_sgs;
2761 if (num_sgs == 0)
2762 break;
2763 sg = sg_next(sg);
2764 addr = (u64) sg_dma_address(sg);
2765 this_sg_len = sg_dma_len(sg);
2766 } else {
2767 addr += trb_buff_len;
2768 }
2769
2770 trb_buff_len = TRB_MAX_BUFF_SIZE -
2771 (addr & (TRB_MAX_BUFF_SIZE - 1));
2772 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2773 if (running_total + trb_buff_len > urb->transfer_buffer_length)
2774 trb_buff_len =
2775 urb->transfer_buffer_length - running_total;
2776 } while (running_total < urb->transfer_buffer_length);
2777
2778 check_trb_math(urb, num_trbs, running_total);
2779 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
2780 start_cycle, start_trb);
2781 return 0;
2782 }
2783
2784 /* This is very similar to what ehci-q.c qtd_fill() does */
2785 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2786 struct urb *urb, int slot_id, unsigned int ep_index)
2787 {
2788 struct xhci_ring *ep_ring;
2789 struct urb_priv *urb_priv;
2790 struct xhci_td *td;
2791 int num_trbs;
2792 struct xhci_generic_trb *start_trb;
2793 bool first_trb;
2794 bool more_trbs_coming;
2795 int start_cycle;
2796 u32 field, length_field;
2797
2798 int running_total, trb_buff_len, ret;
2799 u64 addr;
2800
2801 if (urb->num_sgs)
2802 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
2803
2804 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2805 if (!ep_ring)
2806 return -EINVAL;
2807
2808 num_trbs = 0;
2809 /* How much data is (potentially) left before the 64KB boundary? */
2810 running_total = TRB_MAX_BUFF_SIZE -
2811 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2812 running_total &= TRB_MAX_BUFF_SIZE - 1;
2813
2814 /* If there's some data on this 64KB chunk, or we have to send a
2815 * zero-length transfer, we need at least one TRB
2816 */
2817 if (running_total != 0 || urb->transfer_buffer_length == 0)
2818 num_trbs++;
2819 /* How many more 64KB chunks to transfer, how many more TRBs? */
2820 while (running_total < urb->transfer_buffer_length) {
2821 num_trbs++;
2822 running_total += TRB_MAX_BUFF_SIZE;
2823 }
2824 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
2825
2826 if (!in_interrupt())
2827 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d), "
2828 "addr = %#llx, num_trbs = %d\n",
2829 urb->ep->desc.bEndpointAddress,
2830 urb->transfer_buffer_length,
2831 urb->transfer_buffer_length,
2832 (unsigned long long)urb->transfer_dma,
2833 num_trbs);
2834
2835 ret = prepare_transfer(xhci, xhci->devs[slot_id],
2836 ep_index, urb->stream_id,
2837 num_trbs, urb, 0, mem_flags);
2838 if (ret < 0)
2839 return ret;
2840
2841 urb_priv = urb->hcpriv;
2842 td = urb_priv->td[0];
2843
2844 /*
2845 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2846 * until we've finished creating all the other TRBs. The ring's cycle
2847 * state may change as we enqueue the other TRBs, so save it too.
2848 */
2849 start_trb = &ep_ring->enqueue->generic;
2850 start_cycle = ep_ring->cycle_state;
2851
2852 running_total = 0;
2853 /* How much data is in the first TRB? */
2854 addr = (u64) urb->transfer_dma;
2855 trb_buff_len = TRB_MAX_BUFF_SIZE -
2856 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2857 if (trb_buff_len > urb->transfer_buffer_length)
2858 trb_buff_len = urb->transfer_buffer_length;
2859
2860 first_trb = true;
2861
2862 /* Queue the first TRB, even if it's zero-length */
2863 do {
2864 u32 remainder = 0;
2865 field = 0;
2866
2867 /* Don't change the cycle bit of the first TRB until later */
2868 if (first_trb) {
2869 first_trb = false;
2870 if (start_cycle == 0)
2871 field |= 0x1;
2872 } else
2873 field |= ep_ring->cycle_state;
2874
2875 /* Chain all the TRBs together; clear the chain bit in the last
2876 * TRB to indicate it's the last TRB in the chain.
2877 */
2878 if (num_trbs > 1) {
2879 field |= TRB_CHAIN;
2880 } else {
2881 /* FIXME - add check for ZERO_PACKET flag before this */
2882 td->last_trb = ep_ring->enqueue;
2883 field |= TRB_IOC;
2884 }
2885 remainder = xhci_td_remainder(urb->transfer_buffer_length -
2886 running_total);
2887 length_field = TRB_LEN(trb_buff_len) |
2888 remainder |
2889 TRB_INTR_TARGET(0);
2890 if (num_trbs > 1)
2891 more_trbs_coming = true;
2892 else
2893 more_trbs_coming = false;
2894 queue_trb(xhci, ep_ring, false, more_trbs_coming,
2895 lower_32_bits(addr),
2896 upper_32_bits(addr),
2897 length_field,
2898 /* We always want to know if the TRB was short,
2899 * or we won't get an event when it completes.
2900 * (Unless we use event data TRBs, which are a
2901 * waste of space and HC resources.)
2902 */
2903 field | TRB_ISP | TRB_TYPE(TRB_NORMAL));
2904 --num_trbs;
2905 running_total += trb_buff_len;
2906
2907 /* Calculate length for next transfer */
2908 addr += trb_buff_len;
2909 trb_buff_len = urb->transfer_buffer_length - running_total;
2910 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
2911 trb_buff_len = TRB_MAX_BUFF_SIZE;
2912 } while (running_total < urb->transfer_buffer_length);
2913
2914 check_trb_math(urb, num_trbs, running_total);
2915 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
2916 start_cycle, start_trb);
2917 return 0;
2918 }
2919
2920 /* Caller must have locked xhci->lock */
2921 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2922 struct urb *urb, int slot_id, unsigned int ep_index)
2923 {
2924 struct xhci_ring *ep_ring;
2925 int num_trbs;
2926 int ret;
2927 struct usb_ctrlrequest *setup;
2928 struct xhci_generic_trb *start_trb;
2929 int start_cycle;
2930 u32 field, length_field;
2931 struct urb_priv *urb_priv;
2932 struct xhci_td *td;
2933
2934 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2935 if (!ep_ring)
2936 return -EINVAL;
2937
2938 /*
2939 * Need to copy setup packet into setup TRB, so we can't use the setup
2940 * DMA address.
2941 */
2942 if (!urb->setup_packet)
2943 return -EINVAL;
2944
2945 if (!in_interrupt())
2946 xhci_dbg(xhci, "Queueing ctrl tx for slot id %d, ep %d\n",
2947 slot_id, ep_index);
2948 /* 1 TRB for setup, 1 for status */
2949 num_trbs = 2;
2950 /*
2951 * Don't need to check if we need additional event data and normal TRBs,
2952 * since data in control transfers will never get bigger than 16MB
2953 * XXX: can we get a buffer that crosses 64KB boundaries?
2954 */
2955 if (urb->transfer_buffer_length > 0)
2956 num_trbs++;
2957 ret = prepare_transfer(xhci, xhci->devs[slot_id],
2958 ep_index, urb->stream_id,
2959 num_trbs, urb, 0, mem_flags);
2960 if (ret < 0)
2961 return ret;
2962
2963 urb_priv = urb->hcpriv;
2964 td = urb_priv->td[0];
2965
2966 /*
2967 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2968 * until we've finished creating all the other TRBs. The ring's cycle
2969 * state may change as we enqueue the other TRBs, so save it too.
2970 */
2971 start_trb = &ep_ring->enqueue->generic;
2972 start_cycle = ep_ring->cycle_state;
2973
2974 /* Queue setup TRB - see section 6.4.1.2.1 */
2975 /* FIXME better way to translate setup_packet into two u32 fields? */
2976 setup = (struct usb_ctrlrequest *) urb->setup_packet;
2977 field = 0;
2978 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
2979 if (start_cycle == 0)
2980 field |= 0x1;
2981 queue_trb(xhci, ep_ring, false, true,
2982 /* FIXME endianness is probably going to bite my ass here. */
2983 setup->bRequestType | setup->bRequest << 8 | setup->wValue << 16,
2984 setup->wIndex | setup->wLength << 16,
2985 TRB_LEN(8) | TRB_INTR_TARGET(0),
2986 /* Immediate data in pointer */
2987 field);
2988
2989 /* If there's data, queue data TRBs */
2990 field = 0;
2991 length_field = TRB_LEN(urb->transfer_buffer_length) |
2992 xhci_td_remainder(urb->transfer_buffer_length) |
2993 TRB_INTR_TARGET(0);
2994 if (urb->transfer_buffer_length > 0) {
2995 if (setup->bRequestType & USB_DIR_IN)
2996 field |= TRB_DIR_IN;
2997 queue_trb(xhci, ep_ring, false, true,
2998 lower_32_bits(urb->transfer_dma),
2999 upper_32_bits(urb->transfer_dma),
3000 length_field,
3001 /* Event on short tx */
3002 field | TRB_ISP | TRB_TYPE(TRB_DATA) | ep_ring->cycle_state);
3003 }
3004
3005 /* Save the DMA address of the last TRB in the TD */
3006 td->last_trb = ep_ring->enqueue;
3007
3008 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3009 /* If the device sent data, the status stage is an OUT transfer */
3010 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3011 field = 0;
3012 else
3013 field = TRB_DIR_IN;
3014 queue_trb(xhci, ep_ring, false, false,
3015 0,
3016 0,
3017 TRB_INTR_TARGET(0),
3018 /* Event on completion */
3019 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3020
3021 giveback_first_trb(xhci, slot_id, ep_index, 0,
3022 start_cycle, start_trb);
3023 return 0;
3024 }
3025
3026 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3027 struct urb *urb, int i)
3028 {
3029 int num_trbs = 0;
3030 u64 addr, td_len, running_total;
3031
3032 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3033 td_len = urb->iso_frame_desc[i].length;
3034
3035 running_total = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
3036 running_total &= TRB_MAX_BUFF_SIZE - 1;
3037 if (running_total != 0)
3038 num_trbs++;
3039
3040 while (running_total < td_len) {
3041 num_trbs++;
3042 running_total += TRB_MAX_BUFF_SIZE;
3043 }
3044
3045 return num_trbs;
3046 }
3047
3048 /* This is for isoc transfer */
3049 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3050 struct urb *urb, int slot_id, unsigned int ep_index)
3051 {
3052 struct xhci_ring *ep_ring;
3053 struct urb_priv *urb_priv;
3054 struct xhci_td *td;
3055 int num_tds, trbs_per_td;
3056 struct xhci_generic_trb *start_trb;
3057 bool first_trb;
3058 int start_cycle;
3059 u32 field, length_field;
3060 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3061 u64 start_addr, addr;
3062 int i, j;
3063 bool more_trbs_coming;
3064
3065 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3066
3067 num_tds = urb->number_of_packets;
3068 if (num_tds < 1) {
3069 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3070 return -EINVAL;
3071 }
3072
3073 if (!in_interrupt())
3074 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d),"
3075 " addr = %#llx, num_tds = %d\n",
3076 urb->ep->desc.bEndpointAddress,
3077 urb->transfer_buffer_length,
3078 urb->transfer_buffer_length,
3079 (unsigned long long)urb->transfer_dma,
3080 num_tds);
3081
3082 start_addr = (u64) urb->transfer_dma;
3083 start_trb = &ep_ring->enqueue->generic;
3084 start_cycle = ep_ring->cycle_state;
3085
3086 /* Queue the first TRB, even if it's zero-length */
3087 for (i = 0; i < num_tds; i++) {
3088 first_trb = true;
3089
3090 running_total = 0;
3091 addr = start_addr + urb->iso_frame_desc[i].offset;
3092 td_len = urb->iso_frame_desc[i].length;
3093 td_remain_len = td_len;
3094
3095 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3096
3097 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3098 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3099 if (ret < 0)
3100 return ret;
3101
3102 urb_priv = urb->hcpriv;
3103 td = urb_priv->td[i];
3104
3105 for (j = 0; j < trbs_per_td; j++) {
3106 u32 remainder = 0;
3107 field = 0;
3108
3109 if (first_trb) {
3110 /* Queue the isoc TRB */
3111 field |= TRB_TYPE(TRB_ISOC);
3112 /* Assume URB_ISO_ASAP is set */
3113 field |= TRB_SIA;
3114 if (i == 0) {
3115 if (start_cycle == 0)
3116 field |= 0x1;
3117 } else
3118 field |= ep_ring->cycle_state;
3119 first_trb = false;
3120 } else {
3121 /* Queue other normal TRBs */
3122 field |= TRB_TYPE(TRB_NORMAL);
3123 field |= ep_ring->cycle_state;
3124 }
3125
3126 /* Chain all the TRBs together; clear the chain bit in
3127 * the last TRB to indicate it's the last TRB in the
3128 * chain.
3129 */
3130 if (j < trbs_per_td - 1) {
3131 field |= TRB_CHAIN;
3132 more_trbs_coming = true;
3133 } else {
3134 td->last_trb = ep_ring->enqueue;
3135 field |= TRB_IOC;
3136 more_trbs_coming = false;
3137 }
3138
3139 /* Calculate TRB length */
3140 trb_buff_len = TRB_MAX_BUFF_SIZE -
3141 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3142 if (trb_buff_len > td_remain_len)
3143 trb_buff_len = td_remain_len;
3144
3145 remainder = xhci_td_remainder(td_len - running_total);
3146 length_field = TRB_LEN(trb_buff_len) |
3147 remainder |
3148 TRB_INTR_TARGET(0);
3149 queue_trb(xhci, ep_ring, false, more_trbs_coming,
3150 lower_32_bits(addr),
3151 upper_32_bits(addr),
3152 length_field,
3153 /* We always want to know if the TRB was short,
3154 * or we won't get an event when it completes.
3155 * (Unless we use event data TRBs, which are a
3156 * waste of space and HC resources.)
3157 */
3158 field | TRB_ISP);
3159 running_total += trb_buff_len;
3160
3161 addr += trb_buff_len;
3162 td_remain_len -= trb_buff_len;
3163 }
3164
3165 /* Check TD length */
3166 if (running_total != td_len) {
3167 xhci_err(xhci, "ISOC TD length unmatch\n");
3168 return -EINVAL;
3169 }
3170 }
3171
3172 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3173 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3174 usb_amd_quirk_pll_disable();
3175 }
3176 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3177
3178 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3179 start_cycle, start_trb);
3180 return 0;
3181 }
3182
3183 /*
3184 * Check transfer ring to guarantee there is enough room for the urb.
3185 * Update ISO URB start_frame and interval.
3186 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3187 * update the urb->start_frame by now.
3188 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3189 */
3190 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3191 struct urb *urb, int slot_id, unsigned int ep_index)
3192 {
3193 struct xhci_virt_device *xdev;
3194 struct xhci_ring *ep_ring;
3195 struct xhci_ep_ctx *ep_ctx;
3196 int start_frame;
3197 int xhci_interval;
3198 int ep_interval;
3199 int num_tds, num_trbs, i;
3200 int ret;
3201
3202 xdev = xhci->devs[slot_id];
3203 ep_ring = xdev->eps[ep_index].ring;
3204 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3205
3206 num_trbs = 0;
3207 num_tds = urb->number_of_packets;
3208 for (i = 0; i < num_tds; i++)
3209 num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3210
3211 /* Check the ring to guarantee there is enough room for the whole urb.
3212 * Do not insert any td of the urb to the ring if the check failed.
3213 */
3214 ret = prepare_ring(xhci, ep_ring, ep_ctx->ep_info & EP_STATE_MASK,
3215 num_trbs, mem_flags);
3216 if (ret)
3217 return ret;
3218
3219 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3220 start_frame &= 0x3fff;
3221
3222 urb->start_frame = start_frame;
3223 if (urb->dev->speed == USB_SPEED_LOW ||
3224 urb->dev->speed == USB_SPEED_FULL)
3225 urb->start_frame >>= 3;
3226
3227 xhci_interval = EP_INTERVAL_TO_UFRAMES(ep_ctx->ep_info);
3228 ep_interval = urb->interval;
3229 /* Convert to microframes */
3230 if (urb->dev->speed == USB_SPEED_LOW ||
3231 urb->dev->speed == USB_SPEED_FULL)
3232 ep_interval *= 8;
3233 /* FIXME change this to a warning and a suggestion to use the new API
3234 * to set the polling interval (once the API is added).
3235 */
3236 if (xhci_interval != ep_interval) {
3237 if (printk_ratelimit())
3238 dev_dbg(&urb->dev->dev, "Driver uses different interval"
3239 " (%d microframe%s) than xHCI "
3240 "(%d microframe%s)\n",
3241 ep_interval,
3242 ep_interval == 1 ? "" : "s",
3243 xhci_interval,
3244 xhci_interval == 1 ? "" : "s");
3245 urb->interval = xhci_interval;
3246 /* Convert back to frames for LS/FS devices */
3247 if (urb->dev->speed == USB_SPEED_LOW ||
3248 urb->dev->speed == USB_SPEED_FULL)
3249 urb->interval /= 8;
3250 }
3251 return xhci_queue_isoc_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
3252 }
3253
3254 /**** Command Ring Operations ****/
3255
3256 /* Generic function for queueing a command TRB on the command ring.
3257 * Check to make sure there's room on the command ring for one command TRB.
3258 * Also check that there's room reserved for commands that must not fail.
3259 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3260 * then only check for the number of reserved spots.
3261 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3262 * because the command event handler may want to resubmit a failed command.
3263 */
3264 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3265 u32 field3, u32 field4, bool command_must_succeed)
3266 {
3267 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3268 int ret;
3269
3270 if (!command_must_succeed)
3271 reserved_trbs++;
3272
3273 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3274 reserved_trbs, GFP_ATOMIC);
3275 if (ret < 0) {
3276 xhci_err(xhci, "ERR: No room for command on command ring\n");
3277 if (command_must_succeed)
3278 xhci_err(xhci, "ERR: Reserved TRB counting for "
3279 "unfailable commands failed.\n");
3280 return ret;
3281 }
3282 queue_trb(xhci, xhci->cmd_ring, false, false, field1, field2, field3,
3283 field4 | xhci->cmd_ring->cycle_state);
3284 return 0;
3285 }
3286
3287 /* Queue a slot enable or disable request on the command ring */
3288 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
3289 {
3290 return queue_command(xhci, 0, 0, 0,
3291 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3292 }
3293
3294 /* Queue an address device command TRB */
3295 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3296 u32 slot_id)
3297 {
3298 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3299 upper_32_bits(in_ctx_ptr), 0,
3300 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
3301 false);
3302 }
3303
3304 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
3305 u32 field1, u32 field2, u32 field3, u32 field4)
3306 {
3307 return queue_command(xhci, field1, field2, field3, field4, false);
3308 }
3309
3310 /* Queue a reset device command TRB */
3311 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
3312 {
3313 return queue_command(xhci, 0, 0, 0,
3314 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3315 false);
3316 }
3317
3318 /* Queue a configure endpoint command TRB */
3319 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3320 u32 slot_id, bool command_must_succeed)
3321 {
3322 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3323 upper_32_bits(in_ctx_ptr), 0,
3324 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3325 command_must_succeed);
3326 }
3327
3328 /* Queue an evaluate context command TRB */
3329 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3330 u32 slot_id)
3331 {
3332 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3333 upper_32_bits(in_ctx_ptr), 0,
3334 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3335 false);
3336 }
3337
3338 /*
3339 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3340 * activity on an endpoint that is about to be suspended.
3341 */
3342 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
3343 unsigned int ep_index, int suspend)
3344 {
3345 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3346 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3347 u32 type = TRB_TYPE(TRB_STOP_RING);
3348 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3349
3350 return queue_command(xhci, 0, 0, 0,
3351 trb_slot_id | trb_ep_index | type | trb_suspend, false);
3352 }
3353
3354 /* Set Transfer Ring Dequeue Pointer command.
3355 * This should not be used for endpoints that have streams enabled.
3356 */
3357 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
3358 unsigned int ep_index, unsigned int stream_id,
3359 struct xhci_segment *deq_seg,
3360 union xhci_trb *deq_ptr, u32 cycle_state)
3361 {
3362 dma_addr_t addr;
3363 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3364 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3365 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3366 u32 type = TRB_TYPE(TRB_SET_DEQ);
3367 struct xhci_virt_ep *ep;
3368
3369 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
3370 if (addr == 0) {
3371 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3372 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3373 deq_seg, deq_ptr);
3374 return 0;
3375 }
3376 ep = &xhci->devs[slot_id]->eps[ep_index];
3377 if ((ep->ep_state & SET_DEQ_PENDING)) {
3378 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3379 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3380 return 0;
3381 }
3382 ep->queued_deq_seg = deq_seg;
3383 ep->queued_deq_ptr = deq_ptr;
3384 return queue_command(xhci, lower_32_bits(addr) | cycle_state,
3385 upper_32_bits(addr), trb_stream_id,
3386 trb_slot_id | trb_ep_index | type, false);
3387 }
3388
3389 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
3390 unsigned int ep_index)
3391 {
3392 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3393 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3394 u32 type = TRB_TYPE(TRB_RESET_EP);
3395
3396 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
3397 false);
3398 }