Merge branch 'timer/cleanup' into late/mvebu2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / usb / host / xhci-mem.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27
28 #include "xhci.h"
29
30 /*
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
33 *
34 * Section 4.11.1.1:
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36 */
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
38 unsigned int cycle_state, gfp_t flags)
39 {
40 struct xhci_segment *seg;
41 dma_addr_t dma;
42 int i;
43
44 seg = kzalloc(sizeof *seg, flags);
45 if (!seg)
46 return NULL;
47
48 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
49 if (!seg->trbs) {
50 kfree(seg);
51 return NULL;
52 }
53
54 memset(seg->trbs, 0, SEGMENT_SIZE);
55 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
56 if (cycle_state == 0) {
57 for (i = 0; i < TRBS_PER_SEGMENT; i++)
58 seg->trbs[i].link.control |= TRB_CYCLE;
59 }
60 seg->dma = dma;
61 seg->next = NULL;
62
63 return seg;
64 }
65
66 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
67 {
68 if (seg->trbs) {
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
71 }
72 kfree(seg);
73 }
74
75 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
76 struct xhci_segment *first)
77 {
78 struct xhci_segment *seg;
79
80 seg = first->next;
81 while (seg != first) {
82 struct xhci_segment *next = seg->next;
83 xhci_segment_free(xhci, seg);
84 seg = next;
85 }
86 xhci_segment_free(xhci, first);
87 }
88
89 /*
90 * Make the prev segment point to the next segment.
91 *
92 * Change the last TRB in the prev segment to be a Link TRB which points to the
93 * DMA address of the next segment. The caller needs to set any Link TRB
94 * related flags, such as End TRB, Toggle Cycle, and no snoop.
95 */
96 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
97 struct xhci_segment *next, enum xhci_ring_type type)
98 {
99 u32 val;
100
101 if (!prev || !next)
102 return;
103 prev->next = next;
104 if (type != TYPE_EVENT) {
105 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
106 cpu_to_le64(next->dma);
107
108 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
109 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
110 val &= ~TRB_TYPE_BITMASK;
111 val |= TRB_TYPE(TRB_LINK);
112 /* Always set the chain bit with 0.95 hardware */
113 /* Set chain bit for isoc rings on AMD 0.96 host */
114 if (xhci_link_trb_quirk(xhci) ||
115 (type == TYPE_ISOC &&
116 (xhci->quirks & XHCI_AMD_0x96_HOST)))
117 val |= TRB_CHAIN;
118 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119 }
120 }
121
122 /*
123 * Link the ring to the new segments.
124 * Set Toggle Cycle for the new ring if needed.
125 */
126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127 struct xhci_segment *first, struct xhci_segment *last,
128 unsigned int num_segs)
129 {
130 struct xhci_segment *next;
131
132 if (!ring || !first || !last)
133 return;
134
135 next = ring->enq_seg->next;
136 xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
137 xhci_link_segments(xhci, last, next, ring->type);
138 ring->num_segs += num_segs;
139 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
140
141 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
142 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
143 &= ~cpu_to_le32(LINK_TOGGLE);
144 last->trbs[TRBS_PER_SEGMENT-1].link.control
145 |= cpu_to_le32(LINK_TOGGLE);
146 ring->last_seg = last;
147 }
148 }
149
150 /* XXX: Do we need the hcd structure in all these functions? */
151 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
152 {
153 if (!ring)
154 return;
155
156 if (ring->first_seg)
157 xhci_free_segments_for_ring(xhci, ring->first_seg);
158
159 kfree(ring);
160 }
161
162 static void xhci_initialize_ring_info(struct xhci_ring *ring,
163 unsigned int cycle_state)
164 {
165 /* The ring is empty, so the enqueue pointer == dequeue pointer */
166 ring->enqueue = ring->first_seg->trbs;
167 ring->enq_seg = ring->first_seg;
168 ring->dequeue = ring->enqueue;
169 ring->deq_seg = ring->first_seg;
170 /* The ring is initialized to 0. The producer must write 1 to the cycle
171 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
172 * compare CCS to the cycle bit to check ownership, so CCS = 1.
173 *
174 * New rings are initialized with cycle state equal to 1; if we are
175 * handling ring expansion, set the cycle state equal to the old ring.
176 */
177 ring->cycle_state = cycle_state;
178 /* Not necessary for new rings, but needed for re-initialized rings */
179 ring->enq_updates = 0;
180 ring->deq_updates = 0;
181
182 /*
183 * Each segment has a link TRB, and leave an extra TRB for SW
184 * accounting purpose
185 */
186 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
187 }
188
189 /* Allocate segments and link them for a ring */
190 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
191 struct xhci_segment **first, struct xhci_segment **last,
192 unsigned int num_segs, unsigned int cycle_state,
193 enum xhci_ring_type type, gfp_t flags)
194 {
195 struct xhci_segment *prev;
196
197 prev = xhci_segment_alloc(xhci, cycle_state, flags);
198 if (!prev)
199 return -ENOMEM;
200 num_segs--;
201
202 *first = prev;
203 while (num_segs > 0) {
204 struct xhci_segment *next;
205
206 next = xhci_segment_alloc(xhci, cycle_state, flags);
207 if (!next) {
208 prev = *first;
209 while (prev) {
210 next = prev->next;
211 xhci_segment_free(xhci, prev);
212 prev = next;
213 }
214 return -ENOMEM;
215 }
216 xhci_link_segments(xhci, prev, next, type);
217
218 prev = next;
219 num_segs--;
220 }
221 xhci_link_segments(xhci, prev, *first, type);
222 *last = prev;
223
224 return 0;
225 }
226
227 /**
228 * Create a new ring with zero or more segments.
229 *
230 * Link each segment together into a ring.
231 * Set the end flag and the cycle toggle bit on the last segment.
232 * See section 4.9.1 and figures 15 and 16.
233 */
234 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
235 unsigned int num_segs, unsigned int cycle_state,
236 enum xhci_ring_type type, gfp_t flags)
237 {
238 struct xhci_ring *ring;
239 int ret;
240
241 ring = kzalloc(sizeof *(ring), flags);
242 if (!ring)
243 return NULL;
244
245 ring->num_segs = num_segs;
246 INIT_LIST_HEAD(&ring->td_list);
247 ring->type = type;
248 if (num_segs == 0)
249 return ring;
250
251 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
252 &ring->last_seg, num_segs, cycle_state, type, flags);
253 if (ret)
254 goto fail;
255
256 /* Only event ring does not use link TRB */
257 if (type != TYPE_EVENT) {
258 /* See section 4.9.2.1 and 6.4.4.1 */
259 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
260 cpu_to_le32(LINK_TOGGLE);
261 }
262 xhci_initialize_ring_info(ring, cycle_state);
263 return ring;
264
265 fail:
266 kfree(ring);
267 return NULL;
268 }
269
270 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
271 struct xhci_virt_device *virt_dev,
272 unsigned int ep_index)
273 {
274 int rings_cached;
275
276 rings_cached = virt_dev->num_rings_cached;
277 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
278 virt_dev->ring_cache[rings_cached] =
279 virt_dev->eps[ep_index].ring;
280 virt_dev->num_rings_cached++;
281 xhci_dbg(xhci, "Cached old ring, "
282 "%d ring%s cached\n",
283 virt_dev->num_rings_cached,
284 (virt_dev->num_rings_cached > 1) ? "s" : "");
285 } else {
286 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
287 xhci_dbg(xhci, "Ring cache full (%d rings), "
288 "freeing ring\n",
289 virt_dev->num_rings_cached);
290 }
291 virt_dev->eps[ep_index].ring = NULL;
292 }
293
294 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
295 * pointers to the beginning of the ring.
296 */
297 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
298 struct xhci_ring *ring, unsigned int cycle_state,
299 enum xhci_ring_type type)
300 {
301 struct xhci_segment *seg = ring->first_seg;
302 int i;
303
304 do {
305 memset(seg->trbs, 0,
306 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
307 if (cycle_state == 0) {
308 for (i = 0; i < TRBS_PER_SEGMENT; i++)
309 seg->trbs[i].link.control |= TRB_CYCLE;
310 }
311 /* All endpoint rings have link TRBs */
312 xhci_link_segments(xhci, seg, seg->next, type);
313 seg = seg->next;
314 } while (seg != ring->first_seg);
315 ring->type = type;
316 xhci_initialize_ring_info(ring, cycle_state);
317 /* td list should be empty since all URBs have been cancelled,
318 * but just in case...
319 */
320 INIT_LIST_HEAD(&ring->td_list);
321 }
322
323 /*
324 * Expand an existing ring.
325 * Look for a cached ring or allocate a new ring which has same segment numbers
326 * and link the two rings.
327 */
328 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
329 unsigned int num_trbs, gfp_t flags)
330 {
331 struct xhci_segment *first;
332 struct xhci_segment *last;
333 unsigned int num_segs;
334 unsigned int num_segs_needed;
335 int ret;
336
337 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
338 (TRBS_PER_SEGMENT - 1);
339
340 /* Allocate number of segments we needed, or double the ring size */
341 num_segs = ring->num_segs > num_segs_needed ?
342 ring->num_segs : num_segs_needed;
343
344 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
345 num_segs, ring->cycle_state, ring->type, flags);
346 if (ret)
347 return -ENOMEM;
348
349 xhci_link_rings(xhci, ring, first, last, num_segs);
350 xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n",
351 ring->num_segs);
352
353 return 0;
354 }
355
356 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
357
358 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
359 int type, gfp_t flags)
360 {
361 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
362 if (!ctx)
363 return NULL;
364
365 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
366 ctx->type = type;
367 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
368 if (type == XHCI_CTX_TYPE_INPUT)
369 ctx->size += CTX_SIZE(xhci->hcc_params);
370
371 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
372 memset(ctx->bytes, 0, ctx->size);
373 return ctx;
374 }
375
376 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
377 struct xhci_container_ctx *ctx)
378 {
379 if (!ctx)
380 return;
381 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
382 kfree(ctx);
383 }
384
385 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
386 struct xhci_container_ctx *ctx)
387 {
388 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
389 return (struct xhci_input_control_ctx *)ctx->bytes;
390 }
391
392 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
393 struct xhci_container_ctx *ctx)
394 {
395 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
396 return (struct xhci_slot_ctx *)ctx->bytes;
397
398 return (struct xhci_slot_ctx *)
399 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
400 }
401
402 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
403 struct xhci_container_ctx *ctx,
404 unsigned int ep_index)
405 {
406 /* increment ep index by offset of start of ep ctx array */
407 ep_index++;
408 if (ctx->type == XHCI_CTX_TYPE_INPUT)
409 ep_index++;
410
411 return (struct xhci_ep_ctx *)
412 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
413 }
414
415
416 /***************** Streams structures manipulation *************************/
417
418 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
419 unsigned int num_stream_ctxs,
420 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
421 {
422 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
423
424 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
425 dma_free_coherent(&pdev->dev,
426 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
427 stream_ctx, dma);
428 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
429 return dma_pool_free(xhci->small_streams_pool,
430 stream_ctx, dma);
431 else
432 return dma_pool_free(xhci->medium_streams_pool,
433 stream_ctx, dma);
434 }
435
436 /*
437 * The stream context array for each endpoint with bulk streams enabled can
438 * vary in size, based on:
439 * - how many streams the endpoint supports,
440 * - the maximum primary stream array size the host controller supports,
441 * - and how many streams the device driver asks for.
442 *
443 * The stream context array must be a power of 2, and can be as small as
444 * 64 bytes or as large as 1MB.
445 */
446 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
447 unsigned int num_stream_ctxs, dma_addr_t *dma,
448 gfp_t mem_flags)
449 {
450 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
451
452 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
453 return dma_alloc_coherent(&pdev->dev,
454 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
455 dma, mem_flags);
456 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
457 return dma_pool_alloc(xhci->small_streams_pool,
458 mem_flags, dma);
459 else
460 return dma_pool_alloc(xhci->medium_streams_pool,
461 mem_flags, dma);
462 }
463
464 struct xhci_ring *xhci_dma_to_transfer_ring(
465 struct xhci_virt_ep *ep,
466 u64 address)
467 {
468 if (ep->ep_state & EP_HAS_STREAMS)
469 return radix_tree_lookup(&ep->stream_info->trb_address_map,
470 address >> SEGMENT_SHIFT);
471 return ep->ring;
472 }
473
474 /* Only use this when you know stream_info is valid */
475 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
476 static struct xhci_ring *dma_to_stream_ring(
477 struct xhci_stream_info *stream_info,
478 u64 address)
479 {
480 return radix_tree_lookup(&stream_info->trb_address_map,
481 address >> SEGMENT_SHIFT);
482 }
483 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
484
485 struct xhci_ring *xhci_stream_id_to_ring(
486 struct xhci_virt_device *dev,
487 unsigned int ep_index,
488 unsigned int stream_id)
489 {
490 struct xhci_virt_ep *ep = &dev->eps[ep_index];
491
492 if (stream_id == 0)
493 return ep->ring;
494 if (!ep->stream_info)
495 return NULL;
496
497 if (stream_id > ep->stream_info->num_streams)
498 return NULL;
499 return ep->stream_info->stream_rings[stream_id];
500 }
501
502 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
503 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
504 unsigned int num_streams,
505 struct xhci_stream_info *stream_info)
506 {
507 u32 cur_stream;
508 struct xhci_ring *cur_ring;
509 u64 addr;
510
511 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
512 struct xhci_ring *mapped_ring;
513 int trb_size = sizeof(union xhci_trb);
514
515 cur_ring = stream_info->stream_rings[cur_stream];
516 for (addr = cur_ring->first_seg->dma;
517 addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
518 addr += trb_size) {
519 mapped_ring = dma_to_stream_ring(stream_info, addr);
520 if (cur_ring != mapped_ring) {
521 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
522 "didn't map to stream ID %u; "
523 "mapped to ring %p\n",
524 (unsigned long long) addr,
525 cur_stream,
526 mapped_ring);
527 return -EINVAL;
528 }
529 }
530 /* One TRB after the end of the ring segment shouldn't return a
531 * pointer to the current ring (although it may be a part of a
532 * different ring).
533 */
534 mapped_ring = dma_to_stream_ring(stream_info, addr);
535 if (mapped_ring != cur_ring) {
536 /* One TRB before should also fail */
537 addr = cur_ring->first_seg->dma - trb_size;
538 mapped_ring = dma_to_stream_ring(stream_info, addr);
539 }
540 if (mapped_ring == cur_ring) {
541 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
542 "mapped to valid stream ID %u; "
543 "mapped ring = %p\n",
544 (unsigned long long) addr,
545 cur_stream,
546 mapped_ring);
547 return -EINVAL;
548 }
549 }
550 return 0;
551 }
552 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
553
554 /*
555 * Change an endpoint's internal structure so it supports stream IDs. The
556 * number of requested streams includes stream 0, which cannot be used by device
557 * drivers.
558 *
559 * The number of stream contexts in the stream context array may be bigger than
560 * the number of streams the driver wants to use. This is because the number of
561 * stream context array entries must be a power of two.
562 *
563 * We need a radix tree for mapping physical addresses of TRBs to which stream
564 * ID they belong to. We need to do this because the host controller won't tell
565 * us which stream ring the TRB came from. We could store the stream ID in an
566 * event data TRB, but that doesn't help us for the cancellation case, since the
567 * endpoint may stop before it reaches that event data TRB.
568 *
569 * The radix tree maps the upper portion of the TRB DMA address to a ring
570 * segment that has the same upper portion of DMA addresses. For example, say I
571 * have segments of size 1KB, that are always 64-byte aligned. A segment may
572 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
573 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
574 * pass the radix tree a key to get the right stream ID:
575 *
576 * 0x10c90fff >> 10 = 0x43243
577 * 0x10c912c0 >> 10 = 0x43244
578 * 0x10c91400 >> 10 = 0x43245
579 *
580 * Obviously, only those TRBs with DMA addresses that are within the segment
581 * will make the radix tree return the stream ID for that ring.
582 *
583 * Caveats for the radix tree:
584 *
585 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
586 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
587 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
588 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
589 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
590 * extended systems (where the DMA address can be bigger than 32-bits),
591 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
592 */
593 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
594 unsigned int num_stream_ctxs,
595 unsigned int num_streams, gfp_t mem_flags)
596 {
597 struct xhci_stream_info *stream_info;
598 u32 cur_stream;
599 struct xhci_ring *cur_ring;
600 unsigned long key;
601 u64 addr;
602 int ret;
603
604 xhci_dbg(xhci, "Allocating %u streams and %u "
605 "stream context array entries.\n",
606 num_streams, num_stream_ctxs);
607 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
608 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
609 return NULL;
610 }
611 xhci->cmd_ring_reserved_trbs++;
612
613 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
614 if (!stream_info)
615 goto cleanup_trbs;
616
617 stream_info->num_streams = num_streams;
618 stream_info->num_stream_ctxs = num_stream_ctxs;
619
620 /* Initialize the array of virtual pointers to stream rings. */
621 stream_info->stream_rings = kzalloc(
622 sizeof(struct xhci_ring *)*num_streams,
623 mem_flags);
624 if (!stream_info->stream_rings)
625 goto cleanup_info;
626
627 /* Initialize the array of DMA addresses for stream rings for the HW. */
628 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
629 num_stream_ctxs, &stream_info->ctx_array_dma,
630 mem_flags);
631 if (!stream_info->stream_ctx_array)
632 goto cleanup_ctx;
633 memset(stream_info->stream_ctx_array, 0,
634 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
635
636 /* Allocate everything needed to free the stream rings later */
637 stream_info->free_streams_command =
638 xhci_alloc_command(xhci, true, true, mem_flags);
639 if (!stream_info->free_streams_command)
640 goto cleanup_ctx;
641
642 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
643
644 /* Allocate rings for all the streams that the driver will use,
645 * and add their segment DMA addresses to the radix tree.
646 * Stream 0 is reserved.
647 */
648 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
649 stream_info->stream_rings[cur_stream] =
650 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
651 cur_ring = stream_info->stream_rings[cur_stream];
652 if (!cur_ring)
653 goto cleanup_rings;
654 cur_ring->stream_id = cur_stream;
655 /* Set deq ptr, cycle bit, and stream context type */
656 addr = cur_ring->first_seg->dma |
657 SCT_FOR_CTX(SCT_PRI_TR) |
658 cur_ring->cycle_state;
659 stream_info->stream_ctx_array[cur_stream].stream_ring =
660 cpu_to_le64(addr);
661 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
662 cur_stream, (unsigned long long) addr);
663
664 key = (unsigned long)
665 (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
666 ret = radix_tree_insert(&stream_info->trb_address_map,
667 key, cur_ring);
668 if (ret) {
669 xhci_ring_free(xhci, cur_ring);
670 stream_info->stream_rings[cur_stream] = NULL;
671 goto cleanup_rings;
672 }
673 }
674 /* Leave the other unused stream ring pointers in the stream context
675 * array initialized to zero. This will cause the xHC to give us an
676 * error if the device asks for a stream ID we don't have setup (if it
677 * was any other way, the host controller would assume the ring is
678 * "empty" and wait forever for data to be queued to that stream ID).
679 */
680 #if XHCI_DEBUG
681 /* Do a little test on the radix tree to make sure it returns the
682 * correct values.
683 */
684 if (xhci_test_radix_tree(xhci, num_streams, stream_info))
685 goto cleanup_rings;
686 #endif
687
688 return stream_info;
689
690 cleanup_rings:
691 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
692 cur_ring = stream_info->stream_rings[cur_stream];
693 if (cur_ring) {
694 addr = cur_ring->first_seg->dma;
695 radix_tree_delete(&stream_info->trb_address_map,
696 addr >> SEGMENT_SHIFT);
697 xhci_ring_free(xhci, cur_ring);
698 stream_info->stream_rings[cur_stream] = NULL;
699 }
700 }
701 xhci_free_command(xhci, stream_info->free_streams_command);
702 cleanup_ctx:
703 kfree(stream_info->stream_rings);
704 cleanup_info:
705 kfree(stream_info);
706 cleanup_trbs:
707 xhci->cmd_ring_reserved_trbs--;
708 return NULL;
709 }
710 /*
711 * Sets the MaxPStreams field and the Linear Stream Array field.
712 * Sets the dequeue pointer to the stream context array.
713 */
714 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
715 struct xhci_ep_ctx *ep_ctx,
716 struct xhci_stream_info *stream_info)
717 {
718 u32 max_primary_streams;
719 /* MaxPStreams is the number of stream context array entries, not the
720 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
721 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
722 */
723 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
724 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
725 1 << (max_primary_streams + 1));
726 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
727 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
728 | EP_HAS_LSA);
729 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
730 }
731
732 /*
733 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
734 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
735 * not at the beginning of the ring).
736 */
737 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
738 struct xhci_ep_ctx *ep_ctx,
739 struct xhci_virt_ep *ep)
740 {
741 dma_addr_t addr;
742 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
743 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
744 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
745 }
746
747 /* Frees all stream contexts associated with the endpoint,
748 *
749 * Caller should fix the endpoint context streams fields.
750 */
751 void xhci_free_stream_info(struct xhci_hcd *xhci,
752 struct xhci_stream_info *stream_info)
753 {
754 int cur_stream;
755 struct xhci_ring *cur_ring;
756 dma_addr_t addr;
757
758 if (!stream_info)
759 return;
760
761 for (cur_stream = 1; cur_stream < stream_info->num_streams;
762 cur_stream++) {
763 cur_ring = stream_info->stream_rings[cur_stream];
764 if (cur_ring) {
765 addr = cur_ring->first_seg->dma;
766 radix_tree_delete(&stream_info->trb_address_map,
767 addr >> SEGMENT_SHIFT);
768 xhci_ring_free(xhci, cur_ring);
769 stream_info->stream_rings[cur_stream] = NULL;
770 }
771 }
772 xhci_free_command(xhci, stream_info->free_streams_command);
773 xhci->cmd_ring_reserved_trbs--;
774 if (stream_info->stream_ctx_array)
775 xhci_free_stream_ctx(xhci,
776 stream_info->num_stream_ctxs,
777 stream_info->stream_ctx_array,
778 stream_info->ctx_array_dma);
779
780 if (stream_info)
781 kfree(stream_info->stream_rings);
782 kfree(stream_info);
783 }
784
785
786 /***************** Device context manipulation *************************/
787
788 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
789 struct xhci_virt_ep *ep)
790 {
791 init_timer(&ep->stop_cmd_timer);
792 ep->stop_cmd_timer.data = (unsigned long) ep;
793 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
794 ep->xhci = xhci;
795 }
796
797 static void xhci_free_tt_info(struct xhci_hcd *xhci,
798 struct xhci_virt_device *virt_dev,
799 int slot_id)
800 {
801 struct list_head *tt_list_head;
802 struct xhci_tt_bw_info *tt_info, *next;
803 bool slot_found = false;
804
805 /* If the device never made it past the Set Address stage,
806 * it may not have the real_port set correctly.
807 */
808 if (virt_dev->real_port == 0 ||
809 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
810 xhci_dbg(xhci, "Bad real port.\n");
811 return;
812 }
813
814 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
815 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
816 /* Multi-TT hubs will have more than one entry */
817 if (tt_info->slot_id == slot_id) {
818 slot_found = true;
819 list_del(&tt_info->tt_list);
820 kfree(tt_info);
821 } else if (slot_found) {
822 break;
823 }
824 }
825 }
826
827 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
828 struct xhci_virt_device *virt_dev,
829 struct usb_device *hdev,
830 struct usb_tt *tt, gfp_t mem_flags)
831 {
832 struct xhci_tt_bw_info *tt_info;
833 unsigned int num_ports;
834 int i, j;
835
836 if (!tt->multi)
837 num_ports = 1;
838 else
839 num_ports = hdev->maxchild;
840
841 for (i = 0; i < num_ports; i++, tt_info++) {
842 struct xhci_interval_bw_table *bw_table;
843
844 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
845 if (!tt_info)
846 goto free_tts;
847 INIT_LIST_HEAD(&tt_info->tt_list);
848 list_add(&tt_info->tt_list,
849 &xhci->rh_bw[virt_dev->real_port - 1].tts);
850 tt_info->slot_id = virt_dev->udev->slot_id;
851 if (tt->multi)
852 tt_info->ttport = i+1;
853 bw_table = &tt_info->bw_table;
854 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
855 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
856 }
857 return 0;
858
859 free_tts:
860 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
861 return -ENOMEM;
862 }
863
864
865 /* All the xhci_tds in the ring's TD list should be freed at this point.
866 * Should be called with xhci->lock held if there is any chance the TT lists
867 * will be manipulated by the configure endpoint, allocate device, or update
868 * hub functions while this function is removing the TT entries from the list.
869 */
870 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
871 {
872 struct xhci_virt_device *dev;
873 int i;
874 int old_active_eps = 0;
875
876 /* Slot ID 0 is reserved */
877 if (slot_id == 0 || !xhci->devs[slot_id])
878 return;
879
880 dev = xhci->devs[slot_id];
881 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
882 if (!dev)
883 return;
884
885 if (dev->tt_info)
886 old_active_eps = dev->tt_info->active_eps;
887
888 for (i = 0; i < 31; ++i) {
889 if (dev->eps[i].ring)
890 xhci_ring_free(xhci, dev->eps[i].ring);
891 if (dev->eps[i].stream_info)
892 xhci_free_stream_info(xhci,
893 dev->eps[i].stream_info);
894 /* Endpoints on the TT/root port lists should have been removed
895 * when usb_disable_device() was called for the device.
896 * We can't drop them anyway, because the udev might have gone
897 * away by this point, and we can't tell what speed it was.
898 */
899 if (!list_empty(&dev->eps[i].bw_endpoint_list))
900 xhci_warn(xhci, "Slot %u endpoint %u "
901 "not removed from BW list!\n",
902 slot_id, i);
903 }
904 /* If this is a hub, free the TT(s) from the TT list */
905 xhci_free_tt_info(xhci, dev, slot_id);
906 /* If necessary, update the number of active TTs on this root port */
907 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
908
909 if (dev->ring_cache) {
910 for (i = 0; i < dev->num_rings_cached; i++)
911 xhci_ring_free(xhci, dev->ring_cache[i]);
912 kfree(dev->ring_cache);
913 }
914
915 if (dev->in_ctx)
916 xhci_free_container_ctx(xhci, dev->in_ctx);
917 if (dev->out_ctx)
918 xhci_free_container_ctx(xhci, dev->out_ctx);
919
920 kfree(xhci->devs[slot_id]);
921 xhci->devs[slot_id] = NULL;
922 }
923
924 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
925 struct usb_device *udev, gfp_t flags)
926 {
927 struct xhci_virt_device *dev;
928 int i;
929
930 /* Slot ID 0 is reserved */
931 if (slot_id == 0 || xhci->devs[slot_id]) {
932 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
933 return 0;
934 }
935
936 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
937 if (!xhci->devs[slot_id])
938 return 0;
939 dev = xhci->devs[slot_id];
940
941 /* Allocate the (output) device context that will be used in the HC. */
942 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
943 if (!dev->out_ctx)
944 goto fail;
945
946 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
947 (unsigned long long)dev->out_ctx->dma);
948
949 /* Allocate the (input) device context for address device command */
950 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
951 if (!dev->in_ctx)
952 goto fail;
953
954 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
955 (unsigned long long)dev->in_ctx->dma);
956
957 /* Initialize the cancellation list and watchdog timers for each ep */
958 for (i = 0; i < 31; i++) {
959 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
960 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
961 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
962 }
963
964 /* Allocate endpoint 0 ring */
965 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
966 if (!dev->eps[0].ring)
967 goto fail;
968
969 /* Allocate pointers to the ring cache */
970 dev->ring_cache = kzalloc(
971 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
972 flags);
973 if (!dev->ring_cache)
974 goto fail;
975 dev->num_rings_cached = 0;
976
977 init_completion(&dev->cmd_completion);
978 INIT_LIST_HEAD(&dev->cmd_list);
979 dev->udev = udev;
980
981 /* Point to output device context in dcbaa. */
982 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
983 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
984 slot_id,
985 &xhci->dcbaa->dev_context_ptrs[slot_id],
986 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
987
988 return 1;
989 fail:
990 xhci_free_virt_device(xhci, slot_id);
991 return 0;
992 }
993
994 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
995 struct usb_device *udev)
996 {
997 struct xhci_virt_device *virt_dev;
998 struct xhci_ep_ctx *ep0_ctx;
999 struct xhci_ring *ep_ring;
1000
1001 virt_dev = xhci->devs[udev->slot_id];
1002 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1003 ep_ring = virt_dev->eps[0].ring;
1004 /*
1005 * FIXME we don't keep track of the dequeue pointer very well after a
1006 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1007 * host to our enqueue pointer. This should only be called after a
1008 * configured device has reset, so all control transfers should have
1009 * been completed or cancelled before the reset.
1010 */
1011 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1012 ep_ring->enqueue)
1013 | ep_ring->cycle_state);
1014 }
1015
1016 /*
1017 * The xHCI roothub may have ports of differing speeds in any order in the port
1018 * status registers. xhci->port_array provides an array of the port speed for
1019 * each offset into the port status registers.
1020 *
1021 * The xHCI hardware wants to know the roothub port number that the USB device
1022 * is attached to (or the roothub port its ancestor hub is attached to). All we
1023 * know is the index of that port under either the USB 2.0 or the USB 3.0
1024 * roothub, but that doesn't give us the real index into the HW port status
1025 * registers. Scan through the xHCI roothub port array, looking for the Nth
1026 * entry of the correct port speed. Return the port number of that entry.
1027 */
1028 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1029 struct usb_device *udev)
1030 {
1031 struct usb_device *top_dev;
1032 unsigned int num_similar_speed_ports;
1033 unsigned int faked_port_num;
1034 int i;
1035
1036 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1037 top_dev = top_dev->parent)
1038 /* Found device below root hub */;
1039 faked_port_num = top_dev->portnum;
1040 for (i = 0, num_similar_speed_ports = 0;
1041 i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
1042 u8 port_speed = xhci->port_array[i];
1043
1044 /*
1045 * Skip ports that don't have known speeds, or have duplicate
1046 * Extended Capabilities port speed entries.
1047 */
1048 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1049 continue;
1050
1051 /*
1052 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1053 * 1.1 ports are under the USB 2.0 hub. If the port speed
1054 * matches the device speed, it's a similar speed port.
1055 */
1056 if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
1057 num_similar_speed_ports++;
1058 if (num_similar_speed_ports == faked_port_num)
1059 /* Roothub ports are numbered from 1 to N */
1060 return i+1;
1061 }
1062 return 0;
1063 }
1064
1065 /* Setup an xHCI virtual device for a Set Address command */
1066 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1067 {
1068 struct xhci_virt_device *dev;
1069 struct xhci_ep_ctx *ep0_ctx;
1070 struct xhci_slot_ctx *slot_ctx;
1071 u32 port_num;
1072 struct usb_device *top_dev;
1073
1074 dev = xhci->devs[udev->slot_id];
1075 /* Slot ID 0 is reserved */
1076 if (udev->slot_id == 0 || !dev) {
1077 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1078 udev->slot_id);
1079 return -EINVAL;
1080 }
1081 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1082 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1083
1084 /* 3) Only the control endpoint is valid - one endpoint context */
1085 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1086 switch (udev->speed) {
1087 case USB_SPEED_SUPER:
1088 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1089 break;
1090 case USB_SPEED_HIGH:
1091 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1092 break;
1093 case USB_SPEED_FULL:
1094 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1095 break;
1096 case USB_SPEED_LOW:
1097 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1098 break;
1099 case USB_SPEED_WIRELESS:
1100 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1101 return -EINVAL;
1102 break;
1103 default:
1104 /* Speed was set earlier, this shouldn't happen. */
1105 BUG();
1106 }
1107 /* Find the root hub port this device is under */
1108 port_num = xhci_find_real_port_number(xhci, udev);
1109 if (!port_num)
1110 return -EINVAL;
1111 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1112 /* Set the port number in the virtual_device to the faked port number */
1113 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1114 top_dev = top_dev->parent)
1115 /* Found device below root hub */;
1116 dev->fake_port = top_dev->portnum;
1117 dev->real_port = port_num;
1118 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1119 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1120
1121 /* Find the right bandwidth table that this device will be a part of.
1122 * If this is a full speed device attached directly to a root port (or a
1123 * decendent of one), it counts as a primary bandwidth domain, not a
1124 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1125 * will never be created for the HS root hub.
1126 */
1127 if (!udev->tt || !udev->tt->hub->parent) {
1128 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1129 } else {
1130 struct xhci_root_port_bw_info *rh_bw;
1131 struct xhci_tt_bw_info *tt_bw;
1132
1133 rh_bw = &xhci->rh_bw[port_num - 1];
1134 /* Find the right TT. */
1135 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1136 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1137 continue;
1138
1139 if (!dev->udev->tt->multi ||
1140 (udev->tt->multi &&
1141 tt_bw->ttport == dev->udev->ttport)) {
1142 dev->bw_table = &tt_bw->bw_table;
1143 dev->tt_info = tt_bw;
1144 break;
1145 }
1146 }
1147 if (!dev->tt_info)
1148 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1149 }
1150
1151 /* Is this a LS/FS device under an external HS hub? */
1152 if (udev->tt && udev->tt->hub->parent) {
1153 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1154 (udev->ttport << 8));
1155 if (udev->tt->multi)
1156 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1157 }
1158 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1159 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1160
1161 /* Step 4 - ring already allocated */
1162 /* Step 5 */
1163 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1164 /*
1165 * XXX: Not sure about wireless USB devices.
1166 */
1167 switch (udev->speed) {
1168 case USB_SPEED_SUPER:
1169 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
1170 break;
1171 case USB_SPEED_HIGH:
1172 /* USB core guesses at a 64-byte max packet first for FS devices */
1173 case USB_SPEED_FULL:
1174 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
1175 break;
1176 case USB_SPEED_LOW:
1177 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
1178 break;
1179 case USB_SPEED_WIRELESS:
1180 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1181 return -EINVAL;
1182 break;
1183 default:
1184 /* New speed? */
1185 BUG();
1186 }
1187 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1188 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
1189
1190 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1191 dev->eps[0].ring->cycle_state);
1192
1193 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1194
1195 return 0;
1196 }
1197
1198 /*
1199 * Convert interval expressed as 2^(bInterval - 1) == interval into
1200 * straight exponent value 2^n == interval.
1201 *
1202 */
1203 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1204 struct usb_host_endpoint *ep)
1205 {
1206 unsigned int interval;
1207
1208 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1209 if (interval != ep->desc.bInterval - 1)
1210 dev_warn(&udev->dev,
1211 "ep %#x - rounding interval to %d %sframes\n",
1212 ep->desc.bEndpointAddress,
1213 1 << interval,
1214 udev->speed == USB_SPEED_FULL ? "" : "micro");
1215
1216 if (udev->speed == USB_SPEED_FULL) {
1217 /*
1218 * Full speed isoc endpoints specify interval in frames,
1219 * not microframes. We are using microframes everywhere,
1220 * so adjust accordingly.
1221 */
1222 interval += 3; /* 1 frame = 2^3 uframes */
1223 }
1224
1225 return interval;
1226 }
1227
1228 /*
1229 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1230 * microframes, rounded down to nearest power of 2.
1231 */
1232 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1233 struct usb_host_endpoint *ep, unsigned int desc_interval,
1234 unsigned int min_exponent, unsigned int max_exponent)
1235 {
1236 unsigned int interval;
1237
1238 interval = fls(desc_interval) - 1;
1239 interval = clamp_val(interval, min_exponent, max_exponent);
1240 if ((1 << interval) != desc_interval)
1241 dev_warn(&udev->dev,
1242 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1243 ep->desc.bEndpointAddress,
1244 1 << interval,
1245 desc_interval);
1246
1247 return interval;
1248 }
1249
1250 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1251 struct usb_host_endpoint *ep)
1252 {
1253 if (ep->desc.bInterval == 0)
1254 return 0;
1255 return xhci_microframes_to_exponent(udev, ep,
1256 ep->desc.bInterval, 0, 15);
1257 }
1258
1259
1260 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1261 struct usb_host_endpoint *ep)
1262 {
1263 return xhci_microframes_to_exponent(udev, ep,
1264 ep->desc.bInterval * 8, 3, 10);
1265 }
1266
1267 /* Return the polling or NAK interval.
1268 *
1269 * The polling interval is expressed in "microframes". If xHCI's Interval field
1270 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1271 *
1272 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1273 * is set to 0.
1274 */
1275 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1276 struct usb_host_endpoint *ep)
1277 {
1278 unsigned int interval = 0;
1279
1280 switch (udev->speed) {
1281 case USB_SPEED_HIGH:
1282 /* Max NAK rate */
1283 if (usb_endpoint_xfer_control(&ep->desc) ||
1284 usb_endpoint_xfer_bulk(&ep->desc)) {
1285 interval = xhci_parse_microframe_interval(udev, ep);
1286 break;
1287 }
1288 /* Fall through - SS and HS isoc/int have same decoding */
1289
1290 case USB_SPEED_SUPER:
1291 if (usb_endpoint_xfer_int(&ep->desc) ||
1292 usb_endpoint_xfer_isoc(&ep->desc)) {
1293 interval = xhci_parse_exponent_interval(udev, ep);
1294 }
1295 break;
1296
1297 case USB_SPEED_FULL:
1298 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1299 interval = xhci_parse_exponent_interval(udev, ep);
1300 break;
1301 }
1302 /*
1303 * Fall through for interrupt endpoint interval decoding
1304 * since it uses the same rules as low speed interrupt
1305 * endpoints.
1306 */
1307
1308 case USB_SPEED_LOW:
1309 if (usb_endpoint_xfer_int(&ep->desc) ||
1310 usb_endpoint_xfer_isoc(&ep->desc)) {
1311
1312 interval = xhci_parse_frame_interval(udev, ep);
1313 }
1314 break;
1315
1316 default:
1317 BUG();
1318 }
1319 return EP_INTERVAL(interval);
1320 }
1321
1322 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1323 * High speed endpoint descriptors can define "the number of additional
1324 * transaction opportunities per microframe", but that goes in the Max Burst
1325 * endpoint context field.
1326 */
1327 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1328 struct usb_host_endpoint *ep)
1329 {
1330 if (udev->speed != USB_SPEED_SUPER ||
1331 !usb_endpoint_xfer_isoc(&ep->desc))
1332 return 0;
1333 return ep->ss_ep_comp.bmAttributes;
1334 }
1335
1336 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1337 struct usb_host_endpoint *ep)
1338 {
1339 int in;
1340 u32 type;
1341
1342 in = usb_endpoint_dir_in(&ep->desc);
1343 if (usb_endpoint_xfer_control(&ep->desc)) {
1344 type = EP_TYPE(CTRL_EP);
1345 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1346 if (in)
1347 type = EP_TYPE(BULK_IN_EP);
1348 else
1349 type = EP_TYPE(BULK_OUT_EP);
1350 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1351 if (in)
1352 type = EP_TYPE(ISOC_IN_EP);
1353 else
1354 type = EP_TYPE(ISOC_OUT_EP);
1355 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1356 if (in)
1357 type = EP_TYPE(INT_IN_EP);
1358 else
1359 type = EP_TYPE(INT_OUT_EP);
1360 } else {
1361 BUG();
1362 }
1363 return type;
1364 }
1365
1366 /* Return the maximum endpoint service interval time (ESIT) payload.
1367 * Basically, this is the maxpacket size, multiplied by the burst size
1368 * and mult size.
1369 */
1370 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1371 struct usb_device *udev,
1372 struct usb_host_endpoint *ep)
1373 {
1374 int max_burst;
1375 int max_packet;
1376
1377 /* Only applies for interrupt or isochronous endpoints */
1378 if (usb_endpoint_xfer_control(&ep->desc) ||
1379 usb_endpoint_xfer_bulk(&ep->desc))
1380 return 0;
1381
1382 if (udev->speed == USB_SPEED_SUPER)
1383 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1384
1385 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1386 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1387 /* A 0 in max burst means 1 transfer per ESIT */
1388 return max_packet * (max_burst + 1);
1389 }
1390
1391 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1392 * Drivers will have to call usb_alloc_streams() to do that.
1393 */
1394 int xhci_endpoint_init(struct xhci_hcd *xhci,
1395 struct xhci_virt_device *virt_dev,
1396 struct usb_device *udev,
1397 struct usb_host_endpoint *ep,
1398 gfp_t mem_flags)
1399 {
1400 unsigned int ep_index;
1401 struct xhci_ep_ctx *ep_ctx;
1402 struct xhci_ring *ep_ring;
1403 unsigned int max_packet;
1404 unsigned int max_burst;
1405 enum xhci_ring_type type;
1406 u32 max_esit_payload;
1407
1408 ep_index = xhci_get_endpoint_index(&ep->desc);
1409 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1410
1411 type = usb_endpoint_type(&ep->desc);
1412 /* Set up the endpoint ring */
1413 virt_dev->eps[ep_index].new_ring =
1414 xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1415 if (!virt_dev->eps[ep_index].new_ring) {
1416 /* Attempt to use the ring cache */
1417 if (virt_dev->num_rings_cached == 0)
1418 return -ENOMEM;
1419 virt_dev->eps[ep_index].new_ring =
1420 virt_dev->ring_cache[virt_dev->num_rings_cached];
1421 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1422 virt_dev->num_rings_cached--;
1423 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1424 1, type);
1425 }
1426 virt_dev->eps[ep_index].skip = false;
1427 ep_ring = virt_dev->eps[ep_index].new_ring;
1428 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1429
1430 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1431 | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1432
1433 /* FIXME dig Mult and streams info out of ep companion desc */
1434
1435 /* Allow 3 retries for everything but isoc;
1436 * CErr shall be set to 0 for Isoch endpoints.
1437 */
1438 if (!usb_endpoint_xfer_isoc(&ep->desc))
1439 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1440 else
1441 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1442
1443 ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1444
1445 /* Set the max packet size and max burst */
1446 switch (udev->speed) {
1447 case USB_SPEED_SUPER:
1448 max_packet = usb_endpoint_maxp(&ep->desc);
1449 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1450 /* dig out max burst from ep companion desc */
1451 max_packet = ep->ss_ep_comp.bMaxBurst;
1452 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1453 break;
1454 case USB_SPEED_HIGH:
1455 /* bits 11:12 specify the number of additional transaction
1456 * opportunities per microframe (USB 2.0, section 9.6.6)
1457 */
1458 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1459 usb_endpoint_xfer_int(&ep->desc)) {
1460 max_burst = (usb_endpoint_maxp(&ep->desc)
1461 & 0x1800) >> 11;
1462 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1463 }
1464 /* Fall through */
1465 case USB_SPEED_FULL:
1466 case USB_SPEED_LOW:
1467 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1468 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1469 break;
1470 default:
1471 BUG();
1472 }
1473 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1474 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1475
1476 /*
1477 * XXX no idea how to calculate the average TRB buffer length for bulk
1478 * endpoints, as the driver gives us no clue how big each scatter gather
1479 * list entry (or buffer) is going to be.
1480 *
1481 * For isochronous and interrupt endpoints, we set it to the max
1482 * available, until we have new API in the USB core to allow drivers to
1483 * declare how much bandwidth they actually need.
1484 *
1485 * Normally, it would be calculated by taking the total of the buffer
1486 * lengths in the TD and then dividing by the number of TRBs in a TD,
1487 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1488 * use Event Data TRBs, and we don't chain in a link TRB on short
1489 * transfers, we're basically dividing by 1.
1490 *
1491 * xHCI 1.0 specification indicates that the Average TRB Length should
1492 * be set to 8 for control endpoints.
1493 */
1494 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1495 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1496 else
1497 ep_ctx->tx_info |=
1498 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1499
1500 /* FIXME Debug endpoint context */
1501 return 0;
1502 }
1503
1504 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1505 struct xhci_virt_device *virt_dev,
1506 struct usb_host_endpoint *ep)
1507 {
1508 unsigned int ep_index;
1509 struct xhci_ep_ctx *ep_ctx;
1510
1511 ep_index = xhci_get_endpoint_index(&ep->desc);
1512 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1513
1514 ep_ctx->ep_info = 0;
1515 ep_ctx->ep_info2 = 0;
1516 ep_ctx->deq = 0;
1517 ep_ctx->tx_info = 0;
1518 /* Don't free the endpoint ring until the set interface or configuration
1519 * request succeeds.
1520 */
1521 }
1522
1523 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1524 {
1525 bw_info->ep_interval = 0;
1526 bw_info->mult = 0;
1527 bw_info->num_packets = 0;
1528 bw_info->max_packet_size = 0;
1529 bw_info->type = 0;
1530 bw_info->max_esit_payload = 0;
1531 }
1532
1533 void xhci_update_bw_info(struct xhci_hcd *xhci,
1534 struct xhci_container_ctx *in_ctx,
1535 struct xhci_input_control_ctx *ctrl_ctx,
1536 struct xhci_virt_device *virt_dev)
1537 {
1538 struct xhci_bw_info *bw_info;
1539 struct xhci_ep_ctx *ep_ctx;
1540 unsigned int ep_type;
1541 int i;
1542
1543 for (i = 1; i < 31; ++i) {
1544 bw_info = &virt_dev->eps[i].bw_info;
1545
1546 /* We can't tell what endpoint type is being dropped, but
1547 * unconditionally clearing the bandwidth info for non-periodic
1548 * endpoints should be harmless because the info will never be
1549 * set in the first place.
1550 */
1551 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1552 /* Dropped endpoint */
1553 xhci_clear_endpoint_bw_info(bw_info);
1554 continue;
1555 }
1556
1557 if (EP_IS_ADDED(ctrl_ctx, i)) {
1558 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1559 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1560
1561 /* Ignore non-periodic endpoints */
1562 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1563 ep_type != ISOC_IN_EP &&
1564 ep_type != INT_IN_EP)
1565 continue;
1566
1567 /* Added or changed endpoint */
1568 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1569 le32_to_cpu(ep_ctx->ep_info));
1570 /* Number of packets and mult are zero-based in the
1571 * input context, but we want one-based for the
1572 * interval table.
1573 */
1574 bw_info->mult = CTX_TO_EP_MULT(
1575 le32_to_cpu(ep_ctx->ep_info)) + 1;
1576 bw_info->num_packets = CTX_TO_MAX_BURST(
1577 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1578 bw_info->max_packet_size = MAX_PACKET_DECODED(
1579 le32_to_cpu(ep_ctx->ep_info2));
1580 bw_info->type = ep_type;
1581 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1582 le32_to_cpu(ep_ctx->tx_info));
1583 }
1584 }
1585 }
1586
1587 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1588 * Useful when you want to change one particular aspect of the endpoint and then
1589 * issue a configure endpoint command.
1590 */
1591 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1592 struct xhci_container_ctx *in_ctx,
1593 struct xhci_container_ctx *out_ctx,
1594 unsigned int ep_index)
1595 {
1596 struct xhci_ep_ctx *out_ep_ctx;
1597 struct xhci_ep_ctx *in_ep_ctx;
1598
1599 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1600 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1601
1602 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1603 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1604 in_ep_ctx->deq = out_ep_ctx->deq;
1605 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1606 }
1607
1608 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1609 * Useful when you want to change one particular aspect of the endpoint and then
1610 * issue a configure endpoint command. Only the context entries field matters,
1611 * but we'll copy the whole thing anyway.
1612 */
1613 void xhci_slot_copy(struct xhci_hcd *xhci,
1614 struct xhci_container_ctx *in_ctx,
1615 struct xhci_container_ctx *out_ctx)
1616 {
1617 struct xhci_slot_ctx *in_slot_ctx;
1618 struct xhci_slot_ctx *out_slot_ctx;
1619
1620 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1621 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1622
1623 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1624 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1625 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1626 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1627 }
1628
1629 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1630 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1631 {
1632 int i;
1633 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1634 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1635
1636 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1637
1638 if (!num_sp)
1639 return 0;
1640
1641 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1642 if (!xhci->scratchpad)
1643 goto fail_sp;
1644
1645 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1646 num_sp * sizeof(u64),
1647 &xhci->scratchpad->sp_dma, flags);
1648 if (!xhci->scratchpad->sp_array)
1649 goto fail_sp2;
1650
1651 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1652 if (!xhci->scratchpad->sp_buffers)
1653 goto fail_sp3;
1654
1655 xhci->scratchpad->sp_dma_buffers =
1656 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1657
1658 if (!xhci->scratchpad->sp_dma_buffers)
1659 goto fail_sp4;
1660
1661 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1662 for (i = 0; i < num_sp; i++) {
1663 dma_addr_t dma;
1664 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1665 flags);
1666 if (!buf)
1667 goto fail_sp5;
1668
1669 xhci->scratchpad->sp_array[i] = dma;
1670 xhci->scratchpad->sp_buffers[i] = buf;
1671 xhci->scratchpad->sp_dma_buffers[i] = dma;
1672 }
1673
1674 return 0;
1675
1676 fail_sp5:
1677 for (i = i - 1; i >= 0; i--) {
1678 dma_free_coherent(dev, xhci->page_size,
1679 xhci->scratchpad->sp_buffers[i],
1680 xhci->scratchpad->sp_dma_buffers[i]);
1681 }
1682 kfree(xhci->scratchpad->sp_dma_buffers);
1683
1684 fail_sp4:
1685 kfree(xhci->scratchpad->sp_buffers);
1686
1687 fail_sp3:
1688 dma_free_coherent(dev, num_sp * sizeof(u64),
1689 xhci->scratchpad->sp_array,
1690 xhci->scratchpad->sp_dma);
1691
1692 fail_sp2:
1693 kfree(xhci->scratchpad);
1694 xhci->scratchpad = NULL;
1695
1696 fail_sp:
1697 return -ENOMEM;
1698 }
1699
1700 static void scratchpad_free(struct xhci_hcd *xhci)
1701 {
1702 int num_sp;
1703 int i;
1704 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1705
1706 if (!xhci->scratchpad)
1707 return;
1708
1709 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1710
1711 for (i = 0; i < num_sp; i++) {
1712 dma_free_coherent(&pdev->dev, xhci->page_size,
1713 xhci->scratchpad->sp_buffers[i],
1714 xhci->scratchpad->sp_dma_buffers[i]);
1715 }
1716 kfree(xhci->scratchpad->sp_dma_buffers);
1717 kfree(xhci->scratchpad->sp_buffers);
1718 dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1719 xhci->scratchpad->sp_array,
1720 xhci->scratchpad->sp_dma);
1721 kfree(xhci->scratchpad);
1722 xhci->scratchpad = NULL;
1723 }
1724
1725 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1726 bool allocate_in_ctx, bool allocate_completion,
1727 gfp_t mem_flags)
1728 {
1729 struct xhci_command *command;
1730
1731 command = kzalloc(sizeof(*command), mem_flags);
1732 if (!command)
1733 return NULL;
1734
1735 if (allocate_in_ctx) {
1736 command->in_ctx =
1737 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1738 mem_flags);
1739 if (!command->in_ctx) {
1740 kfree(command);
1741 return NULL;
1742 }
1743 }
1744
1745 if (allocate_completion) {
1746 command->completion =
1747 kzalloc(sizeof(struct completion), mem_flags);
1748 if (!command->completion) {
1749 xhci_free_container_ctx(xhci, command->in_ctx);
1750 kfree(command);
1751 return NULL;
1752 }
1753 init_completion(command->completion);
1754 }
1755
1756 command->status = 0;
1757 INIT_LIST_HEAD(&command->cmd_list);
1758 return command;
1759 }
1760
1761 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1762 {
1763 if (urb_priv) {
1764 kfree(urb_priv->td[0]);
1765 kfree(urb_priv);
1766 }
1767 }
1768
1769 void xhci_free_command(struct xhci_hcd *xhci,
1770 struct xhci_command *command)
1771 {
1772 xhci_free_container_ctx(xhci,
1773 command->in_ctx);
1774 kfree(command->completion);
1775 kfree(command);
1776 }
1777
1778 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1779 {
1780 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1781 struct dev_info *dev_info, *next;
1782 struct xhci_cd *cur_cd, *next_cd;
1783 unsigned long flags;
1784 int size;
1785 int i, j, num_ports;
1786
1787 /* Free the Event Ring Segment Table and the actual Event Ring */
1788 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1789 if (xhci->erst.entries)
1790 dma_free_coherent(&pdev->dev, size,
1791 xhci->erst.entries, xhci->erst.erst_dma_addr);
1792 xhci->erst.entries = NULL;
1793 xhci_dbg(xhci, "Freed ERST\n");
1794 if (xhci->event_ring)
1795 xhci_ring_free(xhci, xhci->event_ring);
1796 xhci->event_ring = NULL;
1797 xhci_dbg(xhci, "Freed event ring\n");
1798
1799 if (xhci->lpm_command)
1800 xhci_free_command(xhci, xhci->lpm_command);
1801 xhci->cmd_ring_reserved_trbs = 0;
1802 if (xhci->cmd_ring)
1803 xhci_ring_free(xhci, xhci->cmd_ring);
1804 xhci->cmd_ring = NULL;
1805 xhci_dbg(xhci, "Freed command ring\n");
1806 list_for_each_entry_safe(cur_cd, next_cd,
1807 &xhci->cancel_cmd_list, cancel_cmd_list) {
1808 list_del(&cur_cd->cancel_cmd_list);
1809 kfree(cur_cd);
1810 }
1811
1812 for (i = 1; i < MAX_HC_SLOTS; ++i)
1813 xhci_free_virt_device(xhci, i);
1814
1815 if (xhci->segment_pool)
1816 dma_pool_destroy(xhci->segment_pool);
1817 xhci->segment_pool = NULL;
1818 xhci_dbg(xhci, "Freed segment pool\n");
1819
1820 if (xhci->device_pool)
1821 dma_pool_destroy(xhci->device_pool);
1822 xhci->device_pool = NULL;
1823 xhci_dbg(xhci, "Freed device context pool\n");
1824
1825 if (xhci->small_streams_pool)
1826 dma_pool_destroy(xhci->small_streams_pool);
1827 xhci->small_streams_pool = NULL;
1828 xhci_dbg(xhci, "Freed small stream array pool\n");
1829
1830 if (xhci->medium_streams_pool)
1831 dma_pool_destroy(xhci->medium_streams_pool);
1832 xhci->medium_streams_pool = NULL;
1833 xhci_dbg(xhci, "Freed medium stream array pool\n");
1834
1835 if (xhci->dcbaa)
1836 dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1837 xhci->dcbaa, xhci->dcbaa->dma);
1838 xhci->dcbaa = NULL;
1839
1840 scratchpad_free(xhci);
1841
1842 spin_lock_irqsave(&xhci->lock, flags);
1843 list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1844 list_del(&dev_info->list);
1845 kfree(dev_info);
1846 }
1847 spin_unlock_irqrestore(&xhci->lock, flags);
1848
1849 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1850 for (i = 0; i < num_ports; i++) {
1851 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1852 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1853 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1854 while (!list_empty(ep))
1855 list_del_init(ep->next);
1856 }
1857 }
1858
1859 for (i = 0; i < num_ports; i++) {
1860 struct xhci_tt_bw_info *tt, *n;
1861 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1862 list_del(&tt->tt_list);
1863 kfree(tt);
1864 }
1865 }
1866
1867 xhci->num_usb2_ports = 0;
1868 xhci->num_usb3_ports = 0;
1869 xhci->num_active_eps = 0;
1870 kfree(xhci->usb2_ports);
1871 kfree(xhci->usb3_ports);
1872 kfree(xhci->port_array);
1873 kfree(xhci->rh_bw);
1874
1875 xhci->page_size = 0;
1876 xhci->page_shift = 0;
1877 xhci->bus_state[0].bus_suspended = 0;
1878 xhci->bus_state[1].bus_suspended = 0;
1879 }
1880
1881 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1882 struct xhci_segment *input_seg,
1883 union xhci_trb *start_trb,
1884 union xhci_trb *end_trb,
1885 dma_addr_t input_dma,
1886 struct xhci_segment *result_seg,
1887 char *test_name, int test_number)
1888 {
1889 unsigned long long start_dma;
1890 unsigned long long end_dma;
1891 struct xhci_segment *seg;
1892
1893 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1894 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1895
1896 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1897 if (seg != result_seg) {
1898 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1899 test_name, test_number);
1900 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1901 "input DMA 0x%llx\n",
1902 input_seg,
1903 (unsigned long long) input_dma);
1904 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1905 "ending TRB %p (0x%llx DMA)\n",
1906 start_trb, start_dma,
1907 end_trb, end_dma);
1908 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1909 result_seg, seg);
1910 return -1;
1911 }
1912 return 0;
1913 }
1914
1915 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1916 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1917 {
1918 struct {
1919 dma_addr_t input_dma;
1920 struct xhci_segment *result_seg;
1921 } simple_test_vector [] = {
1922 /* A zeroed DMA field should fail */
1923 { 0, NULL },
1924 /* One TRB before the ring start should fail */
1925 { xhci->event_ring->first_seg->dma - 16, NULL },
1926 /* One byte before the ring start should fail */
1927 { xhci->event_ring->first_seg->dma - 1, NULL },
1928 /* Starting TRB should succeed */
1929 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1930 /* Ending TRB should succeed */
1931 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1932 xhci->event_ring->first_seg },
1933 /* One byte after the ring end should fail */
1934 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1935 /* One TRB after the ring end should fail */
1936 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1937 /* An address of all ones should fail */
1938 { (dma_addr_t) (~0), NULL },
1939 };
1940 struct {
1941 struct xhci_segment *input_seg;
1942 union xhci_trb *start_trb;
1943 union xhci_trb *end_trb;
1944 dma_addr_t input_dma;
1945 struct xhci_segment *result_seg;
1946 } complex_test_vector [] = {
1947 /* Test feeding a valid DMA address from a different ring */
1948 { .input_seg = xhci->event_ring->first_seg,
1949 .start_trb = xhci->event_ring->first_seg->trbs,
1950 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1951 .input_dma = xhci->cmd_ring->first_seg->dma,
1952 .result_seg = NULL,
1953 },
1954 /* Test feeding a valid end TRB from a different ring */
1955 { .input_seg = xhci->event_ring->first_seg,
1956 .start_trb = xhci->event_ring->first_seg->trbs,
1957 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1958 .input_dma = xhci->cmd_ring->first_seg->dma,
1959 .result_seg = NULL,
1960 },
1961 /* Test feeding a valid start and end TRB from a different ring */
1962 { .input_seg = xhci->event_ring->first_seg,
1963 .start_trb = xhci->cmd_ring->first_seg->trbs,
1964 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1965 .input_dma = xhci->cmd_ring->first_seg->dma,
1966 .result_seg = NULL,
1967 },
1968 /* TRB in this ring, but after this TD */
1969 { .input_seg = xhci->event_ring->first_seg,
1970 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1971 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1972 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1973 .result_seg = NULL,
1974 },
1975 /* TRB in this ring, but before this TD */
1976 { .input_seg = xhci->event_ring->first_seg,
1977 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1978 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1979 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1980 .result_seg = NULL,
1981 },
1982 /* TRB in this ring, but after this wrapped TD */
1983 { .input_seg = xhci->event_ring->first_seg,
1984 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1985 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1986 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1987 .result_seg = NULL,
1988 },
1989 /* TRB in this ring, but before this wrapped TD */
1990 { .input_seg = xhci->event_ring->first_seg,
1991 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1992 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1993 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1994 .result_seg = NULL,
1995 },
1996 /* TRB not in this ring, and we have a wrapped TD */
1997 { .input_seg = xhci->event_ring->first_seg,
1998 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1999 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2000 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2001 .result_seg = NULL,
2002 },
2003 };
2004
2005 unsigned int num_tests;
2006 int i, ret;
2007
2008 num_tests = ARRAY_SIZE(simple_test_vector);
2009 for (i = 0; i < num_tests; i++) {
2010 ret = xhci_test_trb_in_td(xhci,
2011 xhci->event_ring->first_seg,
2012 xhci->event_ring->first_seg->trbs,
2013 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2014 simple_test_vector[i].input_dma,
2015 simple_test_vector[i].result_seg,
2016 "Simple", i);
2017 if (ret < 0)
2018 return ret;
2019 }
2020
2021 num_tests = ARRAY_SIZE(complex_test_vector);
2022 for (i = 0; i < num_tests; i++) {
2023 ret = xhci_test_trb_in_td(xhci,
2024 complex_test_vector[i].input_seg,
2025 complex_test_vector[i].start_trb,
2026 complex_test_vector[i].end_trb,
2027 complex_test_vector[i].input_dma,
2028 complex_test_vector[i].result_seg,
2029 "Complex", i);
2030 if (ret < 0)
2031 return ret;
2032 }
2033 xhci_dbg(xhci, "TRB math tests passed.\n");
2034 return 0;
2035 }
2036
2037 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2038 {
2039 u64 temp;
2040 dma_addr_t deq;
2041
2042 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2043 xhci->event_ring->dequeue);
2044 if (deq == 0 && !in_interrupt())
2045 xhci_warn(xhci, "WARN something wrong with SW event ring "
2046 "dequeue ptr.\n");
2047 /* Update HC event ring dequeue pointer */
2048 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2049 temp &= ERST_PTR_MASK;
2050 /* Don't clear the EHB bit (which is RW1C) because
2051 * there might be more events to service.
2052 */
2053 temp &= ~ERST_EHB;
2054 xhci_dbg(xhci, "// Write event ring dequeue pointer, "
2055 "preserving EHB bit\n");
2056 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2057 &xhci->ir_set->erst_dequeue);
2058 }
2059
2060 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2061 __le32 __iomem *addr, u8 major_revision)
2062 {
2063 u32 temp, port_offset, port_count;
2064 int i;
2065
2066 if (major_revision > 0x03) {
2067 xhci_warn(xhci, "Ignoring unknown port speed, "
2068 "Ext Cap %p, revision = 0x%x\n",
2069 addr, major_revision);
2070 /* Ignoring port protocol we can't understand. FIXME */
2071 return;
2072 }
2073
2074 /* Port offset and count in the third dword, see section 7.2 */
2075 temp = xhci_readl(xhci, addr + 2);
2076 port_offset = XHCI_EXT_PORT_OFF(temp);
2077 port_count = XHCI_EXT_PORT_COUNT(temp);
2078 xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
2079 "count = %u, revision = 0x%x\n",
2080 addr, port_offset, port_count, major_revision);
2081 /* Port count includes the current port offset */
2082 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2083 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2084 return;
2085
2086 /* Check the host's USB2 LPM capability */
2087 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2088 (temp & XHCI_L1C)) {
2089 xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
2090 xhci->sw_lpm_support = 1;
2091 }
2092
2093 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2094 xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
2095 xhci->sw_lpm_support = 1;
2096 if (temp & XHCI_HLC) {
2097 xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
2098 xhci->hw_lpm_support = 1;
2099 }
2100 }
2101
2102 port_offset--;
2103 for (i = port_offset; i < (port_offset + port_count); i++) {
2104 /* Duplicate entry. Ignore the port if the revisions differ. */
2105 if (xhci->port_array[i] != 0) {
2106 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2107 " port %u\n", addr, i);
2108 xhci_warn(xhci, "Port was marked as USB %u, "
2109 "duplicated as USB %u\n",
2110 xhci->port_array[i], major_revision);
2111 /* Only adjust the roothub port counts if we haven't
2112 * found a similar duplicate.
2113 */
2114 if (xhci->port_array[i] != major_revision &&
2115 xhci->port_array[i] != DUPLICATE_ENTRY) {
2116 if (xhci->port_array[i] == 0x03)
2117 xhci->num_usb3_ports--;
2118 else
2119 xhci->num_usb2_ports--;
2120 xhci->port_array[i] = DUPLICATE_ENTRY;
2121 }
2122 /* FIXME: Should we disable the port? */
2123 continue;
2124 }
2125 xhci->port_array[i] = major_revision;
2126 if (major_revision == 0x03)
2127 xhci->num_usb3_ports++;
2128 else
2129 xhci->num_usb2_ports++;
2130 }
2131 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2132 }
2133
2134 /*
2135 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2136 * specify what speeds each port is supposed to be. We can't count on the port
2137 * speed bits in the PORTSC register being correct until a device is connected,
2138 * but we need to set up the two fake roothubs with the correct number of USB
2139 * 3.0 and USB 2.0 ports at host controller initialization time.
2140 */
2141 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2142 {
2143 __le32 __iomem *addr;
2144 u32 offset;
2145 unsigned int num_ports;
2146 int i, j, port_index;
2147
2148 addr = &xhci->cap_regs->hcc_params;
2149 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2150 if (offset == 0) {
2151 xhci_err(xhci, "No Extended Capability registers, "
2152 "unable to set up roothub.\n");
2153 return -ENODEV;
2154 }
2155
2156 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2157 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2158 if (!xhci->port_array)
2159 return -ENOMEM;
2160
2161 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2162 if (!xhci->rh_bw)
2163 return -ENOMEM;
2164 for (i = 0; i < num_ports; i++) {
2165 struct xhci_interval_bw_table *bw_table;
2166
2167 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2168 bw_table = &xhci->rh_bw[i].bw_table;
2169 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2170 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2171 }
2172
2173 /*
2174 * For whatever reason, the first capability offset is from the
2175 * capability register base, not from the HCCPARAMS register.
2176 * See section 5.3.6 for offset calculation.
2177 */
2178 addr = &xhci->cap_regs->hc_capbase + offset;
2179 while (1) {
2180 u32 cap_id;
2181
2182 cap_id = xhci_readl(xhci, addr);
2183 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2184 xhci_add_in_port(xhci, num_ports, addr,
2185 (u8) XHCI_EXT_PORT_MAJOR(cap_id));
2186 offset = XHCI_EXT_CAPS_NEXT(cap_id);
2187 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2188 == num_ports)
2189 break;
2190 /*
2191 * Once you're into the Extended Capabilities, the offset is
2192 * always relative to the register holding the offset.
2193 */
2194 addr += offset;
2195 }
2196
2197 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2198 xhci_warn(xhci, "No ports on the roothubs?\n");
2199 return -ENODEV;
2200 }
2201 xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2202 xhci->num_usb2_ports, xhci->num_usb3_ports);
2203
2204 /* Place limits on the number of roothub ports so that the hub
2205 * descriptors aren't longer than the USB core will allocate.
2206 */
2207 if (xhci->num_usb3_ports > 15) {
2208 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
2209 xhci->num_usb3_ports = 15;
2210 }
2211 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2212 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
2213 USB_MAXCHILDREN);
2214 xhci->num_usb2_ports = USB_MAXCHILDREN;
2215 }
2216
2217 /*
2218 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2219 * Not sure how the USB core will handle a hub with no ports...
2220 */
2221 if (xhci->num_usb2_ports) {
2222 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2223 xhci->num_usb2_ports, flags);
2224 if (!xhci->usb2_ports)
2225 return -ENOMEM;
2226
2227 port_index = 0;
2228 for (i = 0; i < num_ports; i++) {
2229 if (xhci->port_array[i] == 0x03 ||
2230 xhci->port_array[i] == 0 ||
2231 xhci->port_array[i] == DUPLICATE_ENTRY)
2232 continue;
2233
2234 xhci->usb2_ports[port_index] =
2235 &xhci->op_regs->port_status_base +
2236 NUM_PORT_REGS*i;
2237 xhci_dbg(xhci, "USB 2.0 port at index %u, "
2238 "addr = %p\n", i,
2239 xhci->usb2_ports[port_index]);
2240 port_index++;
2241 if (port_index == xhci->num_usb2_ports)
2242 break;
2243 }
2244 }
2245 if (xhci->num_usb3_ports) {
2246 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2247 xhci->num_usb3_ports, flags);
2248 if (!xhci->usb3_ports)
2249 return -ENOMEM;
2250
2251 port_index = 0;
2252 for (i = 0; i < num_ports; i++)
2253 if (xhci->port_array[i] == 0x03) {
2254 xhci->usb3_ports[port_index] =
2255 &xhci->op_regs->port_status_base +
2256 NUM_PORT_REGS*i;
2257 xhci_dbg(xhci, "USB 3.0 port at index %u, "
2258 "addr = %p\n", i,
2259 xhci->usb3_ports[port_index]);
2260 port_index++;
2261 if (port_index == xhci->num_usb3_ports)
2262 break;
2263 }
2264 }
2265 return 0;
2266 }
2267
2268 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2269 {
2270 dma_addr_t dma;
2271 struct device *dev = xhci_to_hcd(xhci)->self.controller;
2272 unsigned int val, val2;
2273 u64 val_64;
2274 struct xhci_segment *seg;
2275 u32 page_size, temp;
2276 int i;
2277
2278 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2279 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
2280 for (i = 0; i < 16; i++) {
2281 if ((0x1 & page_size) != 0)
2282 break;
2283 page_size = page_size >> 1;
2284 }
2285 if (i < 16)
2286 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
2287 else
2288 xhci_warn(xhci, "WARN: no supported page size\n");
2289 /* Use 4K pages, since that's common and the minimum the HC supports */
2290 xhci->page_shift = 12;
2291 xhci->page_size = 1 << xhci->page_shift;
2292 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
2293
2294 /*
2295 * Program the Number of Device Slots Enabled field in the CONFIG
2296 * register with the max value of slots the HC can handle.
2297 */
2298 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2299 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2300 (unsigned int) val);
2301 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2302 val |= (val2 & ~HCS_SLOTS_MASK);
2303 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2304 (unsigned int) val);
2305 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2306
2307 /*
2308 * Section 5.4.8 - doorbell array must be
2309 * "physically contiguous and 64-byte (cache line) aligned".
2310 */
2311 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2312 GFP_KERNEL);
2313 if (!xhci->dcbaa)
2314 goto fail;
2315 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2316 xhci->dcbaa->dma = dma;
2317 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2318 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2319 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2320
2321 /*
2322 * Initialize the ring segment pool. The ring must be a contiguous
2323 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2324 * however, the command ring segment needs 64-byte aligned segments,
2325 * so we pick the greater alignment need.
2326 */
2327 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2328 SEGMENT_SIZE, 64, xhci->page_size);
2329
2330 /* See Table 46 and Note on Figure 55 */
2331 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2332 2112, 64, xhci->page_size);
2333 if (!xhci->segment_pool || !xhci->device_pool)
2334 goto fail;
2335
2336 /* Linear stream context arrays don't have any boundary restrictions,
2337 * and only need to be 16-byte aligned.
2338 */
2339 xhci->small_streams_pool =
2340 dma_pool_create("xHCI 256 byte stream ctx arrays",
2341 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2342 xhci->medium_streams_pool =
2343 dma_pool_create("xHCI 1KB stream ctx arrays",
2344 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2345 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2346 * will be allocated with dma_alloc_coherent()
2347 */
2348
2349 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2350 goto fail;
2351
2352 /* Set up the command ring to have one segments for now. */
2353 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2354 if (!xhci->cmd_ring)
2355 goto fail;
2356 INIT_LIST_HEAD(&xhci->cancel_cmd_list);
2357 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2358 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2359 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2360
2361 /* Set the address in the Command Ring Control register */
2362 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2363 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2364 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2365 xhci->cmd_ring->cycle_state;
2366 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2367 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2368 xhci_dbg_cmd_ptrs(xhci);
2369
2370 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2371 if (!xhci->lpm_command)
2372 goto fail;
2373
2374 /* Reserve one command ring TRB for disabling LPM.
2375 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2376 * disabling LPM, we only need to reserve one TRB for all devices.
2377 */
2378 xhci->cmd_ring_reserved_trbs++;
2379
2380 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2381 val &= DBOFF_MASK;
2382 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2383 " from cap regs base addr\n", val);
2384 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2385 xhci_dbg_regs(xhci);
2386 xhci_print_run_regs(xhci);
2387 /* Set ir_set to interrupt register set 0 */
2388 xhci->ir_set = &xhci->run_regs->ir_set[0];
2389
2390 /*
2391 * Event ring setup: Allocate a normal ring, but also setup
2392 * the event ring segment table (ERST). Section 4.9.3.
2393 */
2394 xhci_dbg(xhci, "// Allocating event ring\n");
2395 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2396 flags);
2397 if (!xhci->event_ring)
2398 goto fail;
2399 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2400 goto fail;
2401
2402 xhci->erst.entries = dma_alloc_coherent(dev,
2403 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2404 GFP_KERNEL);
2405 if (!xhci->erst.entries)
2406 goto fail;
2407 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2408 (unsigned long long)dma);
2409
2410 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2411 xhci->erst.num_entries = ERST_NUM_SEGS;
2412 xhci->erst.erst_dma_addr = dma;
2413 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2414 xhci->erst.num_entries,
2415 xhci->erst.entries,
2416 (unsigned long long)xhci->erst.erst_dma_addr);
2417
2418 /* set ring base address and size for each segment table entry */
2419 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2420 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2421 entry->seg_addr = cpu_to_le64(seg->dma);
2422 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2423 entry->rsvd = 0;
2424 seg = seg->next;
2425 }
2426
2427 /* set ERST count with the number of entries in the segment table */
2428 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2429 val &= ERST_SIZE_MASK;
2430 val |= ERST_NUM_SEGS;
2431 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2432 val);
2433 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2434
2435 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2436 /* set the segment table base address */
2437 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2438 (unsigned long long)xhci->erst.erst_dma_addr);
2439 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2440 val_64 &= ERST_PTR_MASK;
2441 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2442 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2443
2444 /* Set the event ring dequeue address */
2445 xhci_set_hc_event_deq(xhci);
2446 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2447 xhci_print_ir_set(xhci, 0);
2448
2449 /*
2450 * XXX: Might need to set the Interrupter Moderation Register to
2451 * something other than the default (~1ms minimum between interrupts).
2452 * See section 5.5.1.2.
2453 */
2454 init_completion(&xhci->addr_dev);
2455 for (i = 0; i < MAX_HC_SLOTS; ++i)
2456 xhci->devs[i] = NULL;
2457 for (i = 0; i < USB_MAXCHILDREN; ++i) {
2458 xhci->bus_state[0].resume_done[i] = 0;
2459 xhci->bus_state[1].resume_done[i] = 0;
2460 }
2461
2462 if (scratchpad_alloc(xhci, flags))
2463 goto fail;
2464 if (xhci_setup_port_arrays(xhci, flags))
2465 goto fail;
2466
2467 INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2468
2469 /* Enable USB 3.0 device notifications for function remote wake, which
2470 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2471 * U3 (device suspend).
2472 */
2473 temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
2474 temp &= ~DEV_NOTE_MASK;
2475 temp |= DEV_NOTE_FWAKE;
2476 xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
2477
2478 return 0;
2479
2480 fail:
2481 xhci_warn(xhci, "Couldn't initialize memory\n");
2482 xhci_halt(xhci);
2483 xhci_reset(xhci);
2484 xhci_mem_cleanup(xhci);
2485 return -ENOMEM;
2486 }